Sample records for contrast agent gd-dtpa-anti-vegf

  1. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer.

    PubMed

    Liu, Yongjun; Chen, Zhijin; Liu, Chunxi; Yu, Dexin; Lu, Zaijun; Zhang, Na

    2011-08-01

    Molecular imaging is essential to increase the sensitivity and selectivity of cancer diagnosis especially in the early stage of tumor. Here, we designed a novel multifunctional polymeric nanoparticle contrast agent (Anti-VEGF PLA-PEG-PLL-Gd NP) simultaneously modified with Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and anti-vascular endothelial growth factor (VEGF) antibody to deliver Gd-DTPA to the tumor area and achieve the early diagnosis of hepatocellular carcinoma (HCC). The Anti-VEGF PLA-PEG-PLL-Gd NPs exhibited high T(1) relaxivity and no obvious cytotoxicity under the experimental concentrations in human hepatocellular carcinoma (HepG2) cells. The results of in vitro cell uptake experiments demonstrated that the uptake process of NPs was both concentration and time depended. Compared with non-targeted NPs, the Anti-VEGF antibody modified NPs showed much higher cell uptake in the HepG2 cells. During in vivo studies, the targeted NPs showed significantly signal intensity enhancement at the tumor site (mouse hepatocarcinoma tumor, H22) compared with non-targeted NPs and Gd-DTPA injection in tumor-bearing mice and the imaging time was significantly prolonged from less than an hour (Gd-DTPA injection group) to 12 h. These results demonstrated that this novel MRI contrast agent Anti-VEGF PLA-PEG-PLL-Gd NPs showed great potential in the early diagnosis of liver tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Determination of the MRI contrast agent Gd-DTPA by SEC-ICP-MS.

    PubMed

    Loreti, Valeria; Bettmer, Jörg

    2004-08-01

    The simultaneous determination of Gd(3+) and Gd-DTPA (DTPA: diethylenetriamino-pentaacetic acid), often used as contrast agent, is described. The proposed approach combines size-exclusion chromatography (SEC) and inductively coupled plasma-mass spectrometry (ICP-MS) for element-selective detection in order to determine also high-molecular Gd-complexes if present. This method was applied to the analysis of urine samples of a patient to whom Gd-DTPA was intravenously administered. The results showed that no conversion or adsorption of Gd-DTPA could be observed in any sample, even free Gd(3+) could not be detected. Urine excretion behaviour was monitored and it was proved that Gd-DTPA was almost completely (>99%) excreted by urination within one day. Traces of Gd-DTPA could be measured in hair samples, but extraction with tetramethylammonium hydroxide (TMAH) resulted in degradation of Gd-DTPA.

  3. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI

    PubMed Central

    XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI

    2016-01-01

    Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336

  4. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    PubMed

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  5. Effects of the magnetic resonance imaging contrast agent Gd-DTPA on plant growth and root imaging in rice.

    PubMed

    Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin

    2014-01-01

    Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.

  6. Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG2[Gd(DTPA)

    NASA Astrophysics Data System (ADS)

    Qin, Huan; Yang, Sihua; Xing, Da

    2012-01-01

    NMG2[Gd(DTPA)], a clinical contrast agent, was investigated for microwave-induced thermoacoustic computed tomography (CT). Due to ionic conduction and magnetic dipole rotation in the presence of microwave field, microwave energy absorbed by NMG2[Gd(DTPA)] would be transformed to thermoacoustic signals based on the thermoelastic effect. The experimental results demonstrated that NMG2[Gd(DTPA)] at a concentration of 10 mM provided effective enhancement compared with water. The enhancement of NMG2[Gd(DTPA)] for thermoacoustic CT was further demonstrated in invivo tumor-bearing mouse. The theory and experimental results indicate that the clinically available NMG2[Gd(DTPA)] will promote the medical applications of thermoacoustic CT.

  7. Preclinical evaluation of Gd-DTPA and gadomelitol as contrast agents in DCE-MRI of cervical carcinoma interstitial fluid pressure.

    PubMed

    Hompland, Tord; Ellingsen, Christine; Rofstad, Einar K

    2012-11-22

    High interstitial fluid pressure (IFP) in the primary tumor is associated with poor disease-free survival in locally advanced cervical carcinoma. A noninvasive assay is needed to identify cervical cancer patients with highly elevated tumor IFP because these patients may benefit from particularly aggressive treatment. It has been suggested that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) as contrast agent may provide useful information on the IFP of cervical carcinomas. In this preclinical study, we investigated whether DCE-MRI with contrast agents with higher molecular weights (MW) than Gd-DTPA would be superior to Gd-DTPA-based DCE-MRI. CK-160 human cervical carcinoma xenografts were subjected to DCE-MRI with Gd-DTPA (MW of 0.55 kDa) or gadomelitol (MW of 6.5 kDa) as contrast agent before tumor IFP was measured invasively with a Millar SPC 320 catheter. The DCE-MRI was carried out at a spatial resolution of 0.23 × 0.23 × 2.0 mm³ and a time resolution of 14 s by using a 1.5-T whole-body scanner and a slotted tube resonator transceiver coil constructed for mice. Parametric images were derived from the DCE-MRI recordings by using the Tofts iso-directional transport model and the Patlak uni-directional transport model. When gadomelitol was used as contrast agent, significant positive correlations were found between the parameters of both pharmacokinetic models and tumor IFP. On the other hand, significant correlations between DCE-MRI-derived parameters and IFP could not be detected with Gd-DTPA as contrast agent. Gadomelitol is a superior contrast agent to Gd-DTPA in DCE-MRI of the IFP of CK-160 cervical carcinoma xenografts. Clinical studies attempting to develop DCE-MRI-based assays of the IFP of cervical carcinomas should involve contrast agents with higher MW than Gd-DTPA.

  8. Gd-DTPA L-cystine bisamide copolymers as novel biodegradable macromolecular contrast agents for MR blood pool imaging.

    PubMed

    Kaneshiro, Todd L; Ke, Tianyi; Jeong, Eun-Kee; Parker, Dennis L; Lu, Zheng-Rong

    2006-06-01

    The purpose of this study was to synthesize biodegradable Gd-DTPA L-cystine bisamide copolymers (GCAC) as safe and effective, macromolecular contrast agents for magnetic resonance imaging (MRI) and to evaluate their biodegradability and efficacy in MR blood pool imaging in an animal model. Three new biodegradable GCAC with different substituents at the cystine bisamide [R = H (GCAC), CH2CH2CH3 (Gd-DTPA L-cystine bispropyl amide copolymers, GCPC), and CH(CH3)2 (Gd-DTPA cystine bisisopropyl copolymers, GCIC)] were prepared by the condensation copolymerization of diethylenetriamine pentaacetic acid (DTPA) dianhydride with cystine bisamide or bisalkyl amides, followed by complexation with gadolinium triacetate. The degradability of the agents was studied in vitro by incubation in 15 microM cysteine and in vivo with Sprague-Dawley rats. The kinetics of in vivo contrast enhancement was investigated in Sprague-Dawley rats on a Siemens Trio 3 T scanner. The apparent molecular weight of the polydisulfide Gd(III) chelates ranged from 22 to 25 kDa. The longitudinal (T1) relaxivities of GCAC, GCPC, and GCIC were 4.37, 5.28, and 5.56 mM(-1) s(-1) at 3 T, respectively. The polymeric ligands and polymeric Gd(III) chelates readily degraded into smaller molecules in incubation with 15 microM cysteine via disulfide-thiol exchange reactions. The in vitro degradation rates of both the polymeric ligands and macromolecular Gd(III) chelates decreased as the steric effect around the disulfide bonds increased. The agents readily degraded in vivo, and the catabolic degradation products were detected in rat urine samples collected after intravenous injection. The agents showed strong contrast enhancement in the blood pool, major organs, and tissues at a dose of 0.1 mmol Gd/kg. The difference of their in vitro degradability did not significantly alter the kinetics of in vivo contrast enhancement of the agents. These novel GCAC are promising contrast agents for cardiovascular and tumor MRI

  9. Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Jing, Fengying; Pei, Fengkui; Liu, Maili

    2003-09-01

    Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca 2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D 2O at 25°C and 9.4 T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9±5.6%, 57.8±7.4% at 65-85 min; kidney 144.9±14.5%, 199.9±25.4% at 10-30 min for PQPS-Gd-DTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.

  10. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer.

    PubMed

    Khantasup, Kannika; Saiviroonporn, Pairash; Jarussophon, Suwatchai; Chantima, Warangkana; Dharakul, Tararaj

    2018-05-08

    The development of targeted contrast agents for magnetic resonance imaging (MRI) facilitates enhanced cancer imaging and more accurate diagnosis. In the present study, a novel contrast agent was developed by conjugating anti-EpCAM humanized scFv with gadolinium chelate to achieve target specificity. The material design strategy involved site-specific conjugation of the chelating agent to scFv. The scFv monomer was linked to maleimide-DTPA via unpaired cysteine at the scFv C-terminus, followed by chelation with gadolinium (Gd). Successful scFv-DTPA conjugation was achieved at 1:10 molar ratio of scFv to maleimide-DTPA at pH 6.5. The developed anti-EpCAM-Gd-DTPA MRI contrast agent was evaluated for cell targeting ability, in vitro serum stability, cell cytotoxicity, relaxivity, and MR contrast enhancement. A high level of targeting efficacy of anti-EpCAM-Gd-DTPA to an EpCAM-overexpressing HT29 colorectal cell was demonstrated by confocal microscopy. Good stability of the contrast agent was obtained and no cytotoxicity was observed in HT29 cells after 48 h incubation with 25-100 µM of Gd. Favorable imaging was obtained using anti-EpCAM-Gd-DTPA, including 1.8-fold enhanced relaxivity compared with Gd-DTPA, and MR contrast enhancement observed after binding to HT29. The potential benefit of this contrast agent for in vivo MR imaging of colorectal cancer, as well as other EpCAM positive cancers, is suggested and warrants further investigation.

  11. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  12. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    PubMed

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA

    PubMed Central

    Liu, Xiaoli; Madhankumar, Achuthamangalam B.; Miller, Patti A.; Duck, Kari A.; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M.; Connor, James R.; Yang, Qing X.

    2016-01-01

    Background Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. Methods The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. Results The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. Conclusions IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. PMID:26519740

  14. Temperature effects on separation of Gd3+ from Gd-DTPA-folate using nanofiltration method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Indraneli, R. P.; Yuliyati, Y. B.; Anggraeni, A.; Soedjanaatmadja, U. M. S.; Bahti, H. H.

    2018-05-01

    MRI is one of the best techniques in medical diagnostics. Contrast agents are used to improve the visual of organs that are difficult to distinguish through MRI. Gd-DTPA-folate is one of the specific contrast agents against cancer diagnosis, because it has a high affinity to folate receptors. In the complexing Gd-DTPA-folate, does not rule out the complexity step runs imperfectly, so there is still Gd3+ in the Gd-DTPA-folate complex. The separation of Gd3+ from the Gd-DTPA-folate complex is important to eliminate toxic effects on the contrast agent. This study aims to determine the effect of temperature on the separation of Gd-DTPA-folate from Gd3+ with nanofiltration. The method are preparation Gd-DTPA-folate from GdCl3.6H2O and DTPA-folate by reflux method, then separated Gd-DTPA-folate complex from Gd3+ with nanofiltration at variation temperature (40, 41, 42, 43, 44oC ). Then, the values of flux and rejection coefficients were analyzed. The results showed that the optimum temperature for the separation of Gd3+ from Gd-DTPA-folate was achieved at 42.6°C with the rejection coefficient of 24% and the permeate flux of 403 L.m-2.h-1.

  15. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA.

    PubMed

    Liu, Xiaoli; Madhankumar, Achuthamangalam B; Miller, Patti A; Duck, Kari A; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M; Connor, James R; Yang, Qing X

    2016-05-01

    Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Taheri, Saeid; Shah, N Jon; Rosenberg, Gary A

    2016-09-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23-85years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PKs of Gd-DTPA from 58 subjects (28-80years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025mmol/kg) had a half-life of 37.3±6.6min, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1mmol/kg). The area under the curve (AUC) for 0.025mmol/kg was 3.37±0.46, which was a quarter of AUC of 0.1mmol/kg. In population analysis, a dose of 0.025mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025mmol/kg Gd-DTPA enabled us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent.

    PubMed

    Jenjob, Ratchapol; Kun, Na; Ghee, Jung Yeon; Shen, Zheyu; Wu, Xiaoxia; Cho, Steve K; Lee, Don Haeng; Yang, Su-Geun

    2016-04-01

    In this study, we prepared macromolecular MR T1 contrast agent: pullulan-conjugated Gd diethylene triamine pentaacetate (Gd-DTPA-Pullulan) and estimated residual free Gd(3+), chelation stability in competition with metal ions, plasma and tissue pharmacokinetics, and abdominal MR contrast on rats. Residual free Gd(3+) in Gd-DTPA-Pullulan was measured using colorimetric spectroscopy. The transmetalation of Gd(3+) incubated with Ca(2+) was performed by using a dialysis membrane (MWCO 100-500 Da) and investigated by ICP-OES. The plasma concentration profiles of Gd-DTPA-Pullulan were estimated after intravenous injection at a dose 0.1 mmol/kg of Gd. The coronal-plane abdominal images of normal rats were observed by MR imaging. The content of free Gd(3+), the toxic residual form, was less than 0.01%. Chelation stability of Gd-DTPA-Pullulan was estimated, and only 0.2% and 0.00045% of Gd(3+) were released from Gd-DTPA-Pullulan after 2h incubation with Ca(2+) and Fe(2+), respectively. Gd-DTPA-Pullulan displayed the extended plasma half-life (t1/2,α=0.43 h, t1/2,β=2.32 h), much longer than 0.11h and 0.79 h of Gd-EOB-DTPA. Abdominal MR imaging showed Gd-DTPA-Pullulan maintained initial MR contrast for 30 min. The extended plasma half-life of Gd-DTPA-Pullulan probably allows the prolonged MR acquisition time in clinic with enhanced MR contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Synthesis of DTPA analogues derived from piperidine and azepane: potential contrast enhancement agents for magnetic resonance imaging.

    PubMed

    Chong, H S; Garmestani, K; Bryant, L H; Brechbiel, M W

    2001-11-16

    Two DTPA derivatives (PIP-DTPA and AZEP-DTPA) as potential contrast enhancement agents in MRI are synthesized. The T1 and T2 relaxivities of their corresponding Gd(III) complexes are reported. At clinically relevant field strengths, the relaxivities of the complexes are comparable to that of the contrast agent, Gd(DTPA) which is in clinical use. The serum stability of the (153)Gd-labeled complexes is assessed by measuring the release of (153)Gd from the ligands. The radiolabeled Gd chelates are found to be kinetically stable in human serum for up to at least 14 days without any measurable loss of radioactivity.

  20. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs).

    PubMed

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin

    2017-05-01

    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gd-complexes of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes as high relaxivity MRI blood-pool contrast agents (BPCAs).

    PubMed

    Kim, Hee-Kyung; Park, Ji-Ae; Kim, Kyeong Min; Nasiruzzaman, Sk Md; Kang, Duk-Sik; Lee, Jongmin; Chang, Yongmin; Kim, Tae-Jeong

    2010-11-28

    We report the synthesis of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes (1a-b) and their Gd-complexes [Gd(L)(H(2)O)] (2a-b, L = 1a-b) for use as new MRI blood-pool contrast agents. High R(1) relaxivity in HSA as well as high thermodynamic and kinetic stabilities is observed for 2a.

  2. Simple Fabrication of Gd(III)-DTPA-Nanodiamond Particles by Chemical Modification for Use as Magnetic Resonance Imaging (MRI) Contrast Agent

    NASA Astrophysics Data System (ADS)

    Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu

    2013-01-01

    We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.

  3. Gd-DTPA-loaded polymer-metal complex micelles with high relaxivity for MR cancer imaging.

    PubMed

    Mi, Peng; Cabral, Horacio; Kokuryo, Daisuke; Rafi, Mohammad; Terada, Yasuko; Aoki, Ichio; Saga, Tsuneo; Takehiko, Ishii; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2013-01-01

    Nanodevices for magnetic resonance imaging of cancer were self-assembled to core-shell micellar structures by metal complex formation of K(2)PtCl(6) with diethylenetriaminepentaacetic acid gadolinium (III) dihydrogen (Gd-DTPA), a T(1)-contrast agent, and poly(ethylene glycol)-b-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) copolymer in aqueous solution. Gd-DTPA-loaded polymeric micelles (Gd-DTPA/m) showed a hydrodynamic diameter of 45 nm and a core size of 22 nm. Confining Gd-DTPA inside the core of the micelles increased the relaxivity of Gd-DTPA more than 13 times (48 mM(-1) s(-1)). In physiological conditions Gd-DTPA/m sustainedly released Gd-DTPA, while the Pt(IV) complexes remain bound to the polymer. Gd-DTPA/m extended the circulation time in plasma and augmented the tumor accumulation of Gd-DTPA leading to successful contrast enhancement of solid tumors. μ-Synchrotron radiation-X-ray fluorescence results confirmed that Gd-DTPA was delivered to the tumor site by the micelles. Our study provides a facile strategy for incorporating contrast agents, dyes and bioactive molecules into nanodevices for developing safe and efficient drug carriers for clinical application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Single-walled carbon nanotube-loaded doxorubicin and Gd-DTPA for targeted drug delivery and magnetic resonance imaging.

    PubMed

    Yan, Chenyu; Chen, Chengqun; Hou, Lin; Zhang, Huijuan; Che, Yingyu; Qi, Yuedong; Zhang, Xiaojian; Cheng, Jingliang; Zhang, Zhenzhong

    2017-02-01

    An aspargine-glycine-arginine (NGR) peptide modified single-walled carbon nanotubes (SWCNTs) system, developed by a simple non-covalent approach, could be loaded with the anticancer drug doxorubicin (DOX) and magnetic resonance imaging (MRI) contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). This DOX- and Gd-DTPA-loaded NGR functionalized SWCNTs (DOX/NGR-SWCNTs/Gd-DPTA) retained both cytotoxicity of DOX and MRI contrast effect of Gd-DPTA. This drug delivery system showed excellent stability in physiological solutions. This DOX/NGR-SWCNTs/Gd-DPTA system could accumulate in tumors and enter into tumor cells, which facilitated combination chemotherapy with diagnosis of tumor in one system. An excellent in vitro anti-tumor effect was shown in MCF-7 cells treated by DOX/NGR-SWCNTs/Gd-DPTA, compared with DOX solution, DOX/SWCNTs and DOX/SWCNTs/Gd-DPTA. In vivo data of DOX/NGR-SWCNTs/Gd-DPTA group in tumor-bearing mice further confirmed that this system performed much higher tumor targeting capacity and anti-tumor efficacy than other control groups.

  5. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure.

    PubMed

    Wan, Chuanling; Xue, Rong; Zhan, Youyang; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2017-09-01

    Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg -1 body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the

  6. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging.

    PubMed

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B; Eagle, Cheyenne Sun; Williams, Todd D; Siahaan, Teruna J

    2016-02-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new noninvasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (iv) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain.

  7. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging

    PubMed Central

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B.; Eagle, Cheyenne Sun; Williams, Todd D.; Siahaan, Teruna J.

    2015-01-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new non-invasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (i.v.) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain. PMID:26705088

  8. Gd complexes of macrocyclic diethylenetriaminepentaacetic acid (DTPA) biphenyl-2,2'-bisamides as strong blood-pool magnetic resonance imaging contrast agents.

    PubMed

    Jung, Ki-Hye; Kim, Hee-Kyung; Lee, Gang Ho; Kang, Duk-Sik; Park, Ji-Ae; Kim, Kyeong Min; Chang, Yongmin; Kim, Tae-Jeong

    2011-08-11

    We report the synthesis of macrocyclic DTPA conjugates of 2,2'-diaminobiphenyl and their Gd complexes of the type [Gd(L)(H(2)O)]·xH(2)O (2a,b; L = 1a,b) for use as new MRI blood-pool contrast agents (MRI BPCAs). Pharmacokinetic inertness of 2 compares well with those of analogous Gd-DTPA MRI CAs currently in use. The present system also shows very high stability in human serum. The R(1) relaxivity reaches 10.9 mM(-1) s(-1), which is approximately 3 times as high as that of structurally related Gd-DOTA (R(1) = 3.7 mM(-1) s(-1)). The R(1) relaxivity in HSA goes up to 37.2 mM(-1) s(-1), which is almost twice as high as that of MS-325, a leading BPCA, demonstrating a strong blood pool effect. The in vivo MR images of mice obtained with 2b are coherent, showing strong signal enhancement in heart, abdominal aorta, and small vessels. Even the brain tumor is vividly enhanced for an extended period of time. The structural uniqueness of 2 is that it is neutral in charge and thus makes no resort to electrostatic interaction, supposedly one of the essential factors for the blood-pool effect.

  9. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging.

    PubMed

    Ratanajanchai, Montri; Lee, Don Haeng; Sunintaboon, Panya; Yang, Su-Geun

    2014-02-01

    Herein, we introduced amine-functionalized core-shell nanoparticles (Polymethyl methacrylate/Polyethyleneimine; PMMA/PEI) with surface primary amines (3.15×10(5) groups/particle) and uniform size distribution (150-200nm) that were prepared by one-step photo-induced emulsion polymerization. Further PEI-surface was modified with diethylenetriamine pentaacetic acid (DTPA) and introduced with Gd(III). The modified particles possessing DTPA can entrap a high content of Gd(III) ions of over 5.5×10(4)Gd/particle with stable chelation (no release of free Gd) at least 7h. The Gd-DTPA-conjugated core-shell nanoparticles (PMMA/PEI-DTPA-Gd NPs) enhanced the MRI intensity more than Primovist (a commercial hepatic contrast agent). Moreover, the PMMA/PEI-DTPA-Gd NPs showed non-cytotoxicity up to 250μM in normal liver cells. Thus, in vitro data suggested the PMMA/PEI-DTPA-Gd NPs is promising delivery system as a superior MRI contrast agent, especially for hepatic lesion targeted MR imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Dynamic magnetic resonance imaging of the breast: Comparison of gadobutrol vs. Gd-DTPA.

    PubMed

    Escribano, F; Sentís, M; Oliva, J C; Tortajada, L; Villajos, M; Martín, A; Ganau, S

    To compare the pharmacokinetic profile of gadobutrol versus Gd-DTPA in dynamic contrast-enhanced MRI (DCE-MRI) in patients with breast cancer. Secondary objectives included comparing the safety profiles and diagnostic efficacy of the two contrast agents for detecting additional malignant lesions. This retrospective observational study included 400 patients with histologically confirmed breast cancer; 200 underwent DCE-MRI with Gd-DTPA (Magnevist®) and 200 underwent DCE-MRI with gadobutrol (Gadovist®). Pharmacokinetic parameters and signal intensity were analyzed in a region of interest placed in the area within the lesion that had greatest signal intensity in postcontrast sequences. We compared the two groups on pharmacokinetic variables (K trans , K ep , and V e ), time-signal intensity curves, and the number of additional malignant lesions detected. The relative signal intensity (enhancement) was higher with gadobutrol than with Gd-DTPA. Washout was lower with gadobutrol than with Gd-DTPA (46% vs. 58,29%, respectively; p=0,0323). Values for K trans and K ep were higher for gadobutrol (p=0,001). There were no differences in the number of histologically confirmed additional malignant lesions detected (p=0,387). Relative enhancement is greater with gadobutrol, but washout is more pronounced with Gd-DTPA. The number of additional malignant lesions detected did not differ between the two contrast agents. Both contrasts are safe. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    NASA Astrophysics Data System (ADS)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  12. Gd-EOB-DTPA-enhanced magnetic resonance imaging for focal liver lesions in Chinese patients: a multicenter, open-label, phase III study.

    PubMed

    Zeng, Meng-Su; Ye, Hui-Yi; Guo, Liang; Peng, Wei-Jun; Lu, Jian-Ping; Teng, Gao-Jun; Huan, Yi; Li, Ping; Xu, Jian-Rong; Liang, Chang-Hong; Breuer, Josy

    2013-12-01

    Contrast agents help to improve visibility in magnetic resonance (MR) imaging. However, owing to the large interstitial spaces of the liver, there is a reduction in the natural contrast gradient between lesions and healthy tissue. This study was undertaken to evaluate the efficacy and safety of the liver-specific MR imaging contrast agent gadoxetate disodium (Gd-EOB-DTPA) in Chinese patients. This was a single-arm, open-label, multicenter study in patients with known or suspected focal liver lesions referred for contrast-enhanced MR imaging. MR imaging was performed in 234 patients before and after a single intravenous bolus of Gd-EOB-DTPA (0.025 mmol/kg body weight). Images were evaluated by clinical study investigators and three independent, blinded radiologists. The primary efficacy endpoint was sensitivity in lesion detection. Gd-EOB-DTPA improved sensitivity in lesion detection by 9.46% compared with pre-contrast imaging for the average of the three blinded readers (94.78% vs 85.32% for Gd-EOB-DTPA vs pre-contrast, respectively). Improvements in detection were more pronounced in lesions less than 1 cm. Gd-EOB-DTPA improved diagnostic accuracy in lesion classification. This open-label study demonstrated that Gd-EOB-DTPA improves diagnostic sensitivity in liver lesions, particularly in those smaller than 1 cm. Gd-EOB-DTPA also significantly improves the diagnostic accuracy in lesion classification, and furthermore, Gd-EOB-DTPA is safe in Chinese patients with liver lesions.

  13. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  14. Impaired hepatic Gd-EOB-DTPA enhancement after radioembolisation of liver malignancies.

    PubMed

    Powerski, Maciej Janusz; Scheurig-Münkler, Christian; Hamm, Bernd; Gebauer, Bernhard

    2014-08-01

    To evaluate the uptake of the liver-specific magnetic resonance imaging (MRI) contrast agent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by functional liver parenchyma after radioembolisation (RE) of hepatic malignancies. Uptake of Gd-EOB-DTPA prior to RE versus 60+/-24d and 126+/-32d after RE was compared in a group of 33 patients with primary or secondary hepatic malignancies. In patients who underwent single-lobe treatment, left and right lobes were compared 59+/-24 days after RE. Gd-EOB-DTPA uptake was determined as follows: ratio of mean signal intensity in liver parenchyma to muscle in Gd-EOB-DTPA-enhanced T1-weighted MRI was subtracted from ratio of mean intensity in liver parenchyma to muscle in unenhanced T1-weighted MRI. Gd-EOB-DTPA uptake in liver parenchyma was 0.845+/-0.29 before RE, 0.615+/-0.38 (P = 0.0022) at day 60+/-24, and 0.739+/-0.30 at day 126+/-32 after RE. In cases of single-lobe treatment, Gd-EOB-DTPA uptake was 0.581+/-0.256 for treated and 0.828+/-0.32 (P = 0.0164) for untreated hepatic lobes. Uptake of Gd-EOB-DTPA by liver parenchyma is impaired after RE, indicating dysfunction of the local hepatic system. These findings suggest that Gd-EOB-DTPA-enhanced MRI has the potential to be used for monitoring liver damage after RE. © 2014 The Royal Australian and New Zealand College of Radiologists.

  15. Magnetic resonance imaging of osteosarcoma using a bis(alendronate)-based bone-targeted contrast agent.

    PubMed

    Ge, Pingju; Sheng, Fugeng; Jin, Yiguang; Tong, Li; Du, Lina; Zhang, Lei; Tian, Ning; Li, Gongjie

    2016-12-01

    Magnetic resonance (MR) is currently used for diagnosis of osteosarcoma but not well even though contrast agents are administered. Here, we report a novel bone-targeted MR imaging contrast agent, Gd 2 -diethylenetriaminepentaacetate-bis(alendronate) (Gd 2 -DTPA-BA) for the diagnosis of osteosarcoma. It is the conjugate of a bone cell-seeking molecule (i.e., alendronate) and an MR imaging contrast agent (i.e., Gd-DTPA). Its physicochemical parameters were measured, including pK a , complex constant, and T 1 relaxivity. Its bone cell-seeking ability was evaluated by measuring its adsorption on hydroxyapatite. Hemolysis was investigated. MR imaging and biodistribution of Gd 2 -DTPA-BA and Gd-DTPA were studied on healthy and osteosarcoma-bearing nude mice. Gd 2 -DTPA-BA showed high adsorption on hydroxyapatite, the high MR relaxivity (r 1 ) of 7.613mM -1 s -1 (2.6 folds of Gd-DTPA), and no hemolysis. The MR contrast effect of Gd 2 -DTPA-BA was much higher than that of Gd-DTPA after intravenous injection to the mice. More importantly, the MR imaging of osteosarcoma was significantly improved by Gd 2 -DTPA-BA. The signal intensity of Gd 2 -DTPA-BA reached 120.3% at 50min, equal to three folds of Gd-DTPA. The bone targeting index (bone/blood) of Gd 2 -DTPA-BA in the osteosarcoma-bearing mice was very high to 130 at 180min. Furthermore, the contrast enhancement could also be found in the lung due to metastasis of osteosarcoma. Gd 2 -DTPA-BA plays a promising role in the diagnoses of osteosacomas, including the primary bone tumors and metastases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA.

    PubMed

    Tamada, Tsutomu; Ito, Katsuyoshi; Sone, Teruki; Yamamoto, Akira; Yoshida, Koji; Kakuba, Koki; Tanimoto, Daigo; Higashi, Hiroki; Yamashita, Takenori

    2009-03-01

    To evaluate the differences in enhancement of the abdominal solid organ and the major vessel on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) obtained with gadolinium ethoxybenzyldiethylenetriamine pentaacetic acid (Gd-EOB-DTPA: EOB) and gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) in the same patients. A total of 13 healthy volunteers underwent repeat assessments of abdominal MR examinations with DCE-MRI using either Gd-DTPA at a dose of 0.1 mmol/kg body weight or EOB at a dose of 0.025 mmol/kg body weight. DCE images were obtained at precontrast injection and in the arterial phase (AP: 25 seconds), portal phase (PP: 70 seconds), and equilibrium phase (EP: 3 minutes). The signal intensities (SIs) of liver at AP, PP, and EP; the SIs of spleen, renal cortex, renal medulla, pancreas, adrenal gland, aorta at AP; and the SIs of portal vein and inferior vena cava (IVC) at PP were defined using region-of-interest measurements, and were used for calculation of signal intensity ratio (SIR). The mean SIRs of liver (0.195+/-0.140), spleen (1.35+/-0.353), renal cortex (1.58+/-0.517), renal medulla (0.548+/-0.259), pancreas (0.540+/-0.183), adrenal gland (1.04+/-0.405), and aorta (2.44+/-0.648) at AP as well as the mean SIRs of portal vein (1.85+/-0.477) and IVC (1.16+/-0.187) at PP in the EOB images were significantly lower than those (0.337+/-0.200, 1.99+/-0.443, 2.01+/-0.474, 0.742+/-0.336, 0.771+/-0.227, 1.26+/-0.442, 3.22+/-1.20, 2.73+/-0.429, and 1.68+/-0.366, respectively) in the Gd-DTPA images (P<0.05 each). There was no significant difference in mean SIR of liver at PP between EOB (0.529+/-0.124) and Gd-DTPA (0.564+/-0.139). Conversely, the mean SIR of liver at EP was significantly higher with EOB (0.576+/-0.167) than with Gd-DTPA (0.396+/-0.093) (P<0.001). Lower arterial vascular and parenchymal enhancement with Gd-EOB, as compared with Gd-DTPA, may require reassessment of its dose, despite the higher late venous phase liver parenchymal

  17. Magnetic Resonance Imaging of Acute Reperfused Myocardial Infarction: Intraindividual Comparison of ECIII-60 and Gd-DTPA in a Swine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Jiyang; Teng Gaojun; Feng Yi

    2007-04-15

    Purpose. To compare a necrosis-avid contrast agent (NACA) bis-Gd-DTPA-pamoic acid derivative (ECIII-60) after intracoronary delivery with an extracellular agent Gd-DTPA after intravenous injection on magnetic resonance imaging (MRI) in a swine model of acute reperfused myocardial infarction (MI). Methods. Eight pigs underwent 90 min of transcatheter coronary balloon occlusion and 60 min of reperfusion. After intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg, all pigs were scanned with T1-weighted MRI until the delayed enhancement of MI disappeared. Then they were intracoronarily infused with ECIII-60 at 0.0025 mmol/kg and imaged for 5 hr. Signal intensity, infarct-over-normal contrast ratio andmore » relative infarct size were quantified, compared, and correlated with the results of postmortem MRI and triphenyltetrazolium chloride (TTC) histochemical staining. Results. A contrast ratio over 3.0 was induced by both Gd-DTPA and ECIII-60. However, while the delayed enhancement with Gd-DTPA virtually vanished in 1 hr, ECIII-60 at an 80x smaller dose depicted the MI accurately over 5 hr as proven by ex vivo MRI and TTC staining. Conclusion. Both Gd-DTPA and ECIII-60 strongly enhanced acute MI. Comparing with fading contrast in a narrow time window with intravenous Gd-DTPA, intracoronary ECIII-60 persistently demarcated the acute MI, indicating a potential method for postprocedural assessment of myocardial viability after coronary interventions.« less

  18. Dynamic contrast enhanced MRI of the prostate: comparison of gadobutrol and Gd-DTPA.

    PubMed

    Durmus, T; Vollnberg, B; Schwenke, C; Kilic, E; Huppertz, A; Taupitz, M; Franiel, T

    2013-09-01

    To evaluate the enhancement profile of the macrocyclic contrast medium (CM) gadobutrol in comparison to linear CM Gd-DTPA in DCE-MRI of the prostate. In total 53 patients with prostata cancer (PCa) were included, who received a radical prostatectomy after multiparametric MRI of the prostate including DCE-MRI. Using circular regions of interests normal peripheral zone (PZ) and PCa foci > 5 mm in diameter (42 and 34 foci in Gd-DTPA and gadobutrol group, respectively) were analysed in DCE-MRI. Enhancement curves (Type I, II and III) and pharmacokinetic parameters were analyzed qualitatively and quantitatively and compared using mixed linear models (two sided p-values < 0.05 were regarded significant). There was no significant difference in frequencies of curve types I, II or III in the normal PZ (p = 0.63) or in PCa foci (p = 0.75). PCa with a Gleason score ≥ 7 had in comparison to Gleason ≤ 6 significantly more often a Wash-Out-curve (Type III) with both CM (p = 0.02). The relative peak enhancement was in the PZ (Gd-DTPA 1.4 a. u. [1.20; 1.59], gadobutrol 1.58 a. u. [1.37; 1.78]) and in PCa foci (Gd-DTPA 1.56 a. u. [1.41; 1.71], gadobutrol 1.76 a. u. [1.59; 1.94]) significantly higher with gadobutrol (p = 0.04). The pharmacokinetic parameters Ktrans und kep were higher in PCa foci than in PZ (p < 0.0001 and p = 0.002, respectively) without significant difference of the parameter values between both CM (p = 0.65). [corrected] This study is the first systematic comparison of gadobutrol and Gd-DTPA in DCE-MRI of the prostate. The relative peak enhancement is higher using gadobutrol compared to Gd-DTPA in DCE-MRI. There was no statistically significant difference in curve types or the pharmacokinetic parameters in PCa or normal PZ between both CM. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Separation of Gd-humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-Sephadex A-25 for the fractionation analysis.

    PubMed

    Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka

    2014-10-01

    Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-01

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×109 MBs ml-1 using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C3F8) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd3+ ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T1-weighted turbo-spin-echo sequence MR imaging. Heavy T2*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T1-, T2- and T2*-weighted MR images. The r1 and r2 relaxivities for Gd-DTPA were 7.69 and 21.35 s-1mM-1, respectively, indicating that the MBs represent a positive contrast agent in T1-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual-modality contrast agent for

  1. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging.

    PubMed

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-07

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×10(9) MBs ml(-1) using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C(3)F(8)) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd(3+) ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T(1)-weighted turbo-spin-echo sequence MR imaging. Heavy T(2)*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T(1)-, T(2)- and T(2)*-weighted MR images. The r(1) and r(2) relaxivities for Gd-DTPA were 7.69 and 21.35 s(-1)mM(-1), respectively, indicating that the MBs represent a positive contrast agent in T(1)-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual

  2. Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents.

    PubMed

    Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Helm, Lothar; Platas-Iglesias, Carlos

    2012-11-12

    Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions.

    PubMed

    Baranyai, Zsolt; Brücher, Ernő; Uggeri, Fulvio; Maiocchi, Alessandro; Tóth, Imre; Andrási, Melinda; Gáspár, Attila; Zékány, László; Aime, Silvio

    2015-03-16

    [Gd(DTPA-BMA)] is the principal constituent of Omniscan, a magnetic resonance imaging (MRI) contrast agent. In body fluids, endogenous ions (Zn(2+), Cu(2+), and Ca(2+)) may displace the Gd(3+). To assess the extent of displacement at equilibrium, the stability constants of DTPA-BMA(3-) complexes of Gd(3+), Ca(2+), Zn(2+), and Cu(2+) have been determined at 37 °C in 0.15 M NaCl. The order of these stability constants is as follows: GdL≈CuL>ZnL≫CaL. Applying a simplified blood plasma model, the extent of dissociation of Omniscan (0.35 mM [Gd(DTPA-BMA)]) was found to be 17% by the formation of Gd(PO4), [Zn(DTPA-BMA)](-) (2.4%), [Cu(DTPA-BMA)](-) (0.2%), and [Ca(DTPA-BMA)](-) (17.7%). By capillary electrophoresis, the formation of [Ca(DTPA-BMA)](-) has been detected in human serum spiked with [Gd(DTPA-BMA)] (2.0 mM) at pH 7.4. Transmetallation reactions between [Gd(DTPA-BMA)] and Cu(2+) at 37 °C in the presence of citrate, phosphate, and bicarbonate ions occur by dissociation of the complex assisted by the endogenous ligands. At physiological concentrations of citrate, phosphate, and bicarbonate ions, the half-life of dissociation of [Gd(DTPA-BMA)] was calculated to be 9.3 h at pH 7.4. Considering the rates of distribution and dissociation of [Gd(DTPA-BMA)] in the extracellular space of the body, an open two-compartment model has been developed, which allows prediction of the extent of dissociation of the Gd(III) complex in body fluids depending on the rate of elimination of the contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Macromolecular and Dendrimer Based Magnetic Resonance Contrast Agents

    PubMed Central

    Bumb, Ambika; Brechbiel, Martin W.; Choyke, Peter

    2010-01-01

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20–25 years, a number of gadolinium based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution and targeting of dendrimer-based MR contrast agents are also discussed. PMID:20590365

  5. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  6. Preclinical evaluation of biodegradable macromolecular contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feng, Yi

    Macromolecular contrast agents have been shown to be superior to small molecular weight contrast agents for MRI in blood pool imaging, tumor diagnosis and grading. However, none has been approved by the FDA because they circulate in the bloodstream much longer than small molecular weight contrast agents and result in high tissue accumulation of toxic Gd(III) ions. Biodegradable macromolecular contrast agents (BMCA) were invented to alleviate the toxic accumulation. They have a cleavable disulfide bond based backbone that can be degraded in vivo and excreted out of the body via renal filtration. Furthermore, the side chain of the backbone can be modified to achieve various degradation rates. Three BMCA, (Gd-DTPA)-cystamine copolymers (GDCC), Gd-DTPA cystine copolymers (GDCP), and Gd-DTPA cystine diethyl ester copolymers (GDCEP), were evaluated as blood pool contrast agents in a rat model. They have excellent blood pool enhancement, preferred pharmacokinetics, and only minimal long-term tissue retention of toxic Gd(III) ions. GDCC and GDCP, the lead agents with desired degradation rates, with molecular weights of 20 KDa and 70 KDa, were chosen for dynamic contrast enhanced MRI (DCE-MRI) to differentiate human prostate tumor models of different malignancy and growth rates. GDCC and GDCP could differentiate these tumor models, providing more accurate estimations of plasma volume, flow leakage rate, and permeability surface area product than a small molecular weight contrast agent Gd-DTPA-BMA when compared to the prototype macromolecular contrast agent albumin-Gd-DTPA. GDCC was favored for its neutral charge side chain and reasonable uptake rate by the tumors. GDCC with a molecular weight of 40 KDa (GDCC-40, above the renal filtration cutoff size) was used to assess the efficacy of two photothermal therapies (interstitial and indocyanine green enhanced). GDCC-40 provided excellent tumor enhancement shortly after its injection. Acute tumor response (4 hr) after therapies

  7. Preclinical evaluation of severely defective manganese-based nanocrystal as a liver-specific contrast media for MR imaging: comparison with Gd-EOB-DTPA and MnDPDP

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xiao, Xiao-ping; Shu, Ting; Cai, Jing; Xiao, Xin-lan; Li, Yan-shu; Zhang, Zhong-wei; Tang, Qun

    2018-06-01

    Manganese-based (chemically formulated of KMnF3) nanocrystal was evaluated as a liver-specific contrast agent for MR imaging and its imaging performance was also compared with those of two commercial hepatobiliary contrast media (Gd-EOB-DTPA and MnDPDP). KMnF3 nanocrystal was post-treated using a plasma technique to cause severe defects, leading to appropriate water dispersibility and high relaxivity. Severely defective KMnF3 nanocrystal (SD-KMnF3) has characteristic high tolerance, as evidenced by cytotoxicity on the macrophage cell, and acute and subchronic toxicity on the healthy mouse. SD-KMnF3 showed better hepatic MR imaging as the T 1 relaxation time of the liver decreased to only 17% of the control group, compared to 22% of the control group for Gd-EOB-DTPA (P < 0.01) and 42% of the control group for MnDPDP (P < 0.001). As applied to MR imaging of the allograft orthotopic model of liver cancer, statistical studies demonstrated that SD-KMnF3 significantly improved the tumor’s contrast-to-noise ratio, compared with Gd-EOB-DTPA (P < 0.01) and MnDPDP (P < 0.01) by spin-echo pulse sequence, and even better performance (P < 0.001) by gradient-echo sequence. Our findings indicate that SD-KMnF3 could serve as a hepatic contrast agent for imaging liver cancer such as hepatocarcinoma or metastatic lesions.

  8. Preclinical evaluation of severely defective manganese-based nanocrystal as a liver-specific contrast media for MR imaging: comparison with Gd-EOB-DTPA and MnDPDP.

    PubMed

    Zhang, Yu; Xiao, Xiao-Ping; Shu, Ting; Cai, Jing; Xiao, Xin-Lan; Li, Yan-Shu; Zhang, Zhong-Wei; Tang, Qun

    2018-06-01

    Manganese-based (chemically formulated of KMnF 3 ) nanocrystal was evaluated as a liver-specific contrast agent for MR imaging and its imaging performance was also compared with those of two commercial hepatobiliary contrast media (Gd-EOB-DTPA and MnDPDP). KMnF 3 nanocrystal was post-treated using a plasma technique to cause severe defects, leading to appropriate water dispersibility and high relaxivity. Severely defective KMnF 3 nanocrystal (SD-KMnF 3 ) has characteristic high tolerance, as evidenced by cytotoxicity on the macrophage cell, and acute and subchronic toxicity on the healthy mouse. SD-KMnF 3 showed better hepatic MR imaging as the T 1 relaxation time of the liver decreased to only 17% of the control group, compared to 22% of the control group for Gd-EOB-DTPA (P < 0.01) and 42% of the control group for MnDPDP (P < 0.001). As applied to MR imaging of the allograft orthotopic model of liver cancer, statistical studies demonstrated that SD-KMnF 3 significantly improved the tumor's contrast-to-noise ratio, compared with Gd-EOB-DTPA (P < 0.01) and MnDPDP (P < 0.01) by spin-echo pulse sequence, and even better performance (P < 0.001) by gradient-echo sequence. Our findings indicate that SD-KMnF 3 could serve as a hepatic contrast agent for imaging liver cancer such as hepatocarcinoma or metastatic lesions.

  9. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    PubMed

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  10. Highly stabilized gadolinium chelates functionalized on metal nanoparticles as magnetic resonance imaging contrast agent

    NASA Astrophysics Data System (ADS)

    Siddiqui, Talha S.

    Magnetic resonance imaging (MRI) is a non-invasive method for imaging and diagnosing tissue damage, organ function and the vascular system. Magnevist(TM) a complex of diethylenetriaminepentaacetic acid (DTPA) and Gd3+ is a clinically approved contrast agent for MRI. A derivative of DTPA was formed by the addition of two cysteine groups (DTPA-L-Cys) through amide linkage. The Gd complex of this ligand bonds with the silver surfaces through the cysteine thiols. GdDTPA-L-Cys was bound to ˜10nm diameter Ag nanoparticles for use as a multifunctional MRI contrast agent. The ligand and complex were characterized by 1H and 13C NMR, ESI-MS and IR spectroscopy. The silver construct was characterized by TEM, TGA and UV-Vis absorption spectra. The per metal complex r1 relaxivity of GdDTPA-L-Cys{Ag} greater than that of Magnavist(TM) with the same molarity for both compounds. The synthesis of a DTPA derivative is described that allows it to bind to silver or gold nanoparticles through a single thiol linkage (DTPASH). The resulting Gd complex, GdDTPASH, was bound to Ag nanoparticles to create a single monolayer on the surface. The construct was further stabilized in buffered solution with the addition of a thiolated PEG chain. The highly stabilized nanoparticle construct delivers a high payload of Gd compelex and is an effective T1 brightening agent. The production of this type of construct opens the way for engineered multimodal MRI contrast agents.

  11. In Vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent

    PubMed Central

    Varga-Szemes, Akos; Kiss, Pal; Rab, Andras; Suranyi, Pal; Lenkey, Zsofia; Simor, Tamas; Bryant, Robert G.; Elgavish, Gabriel A.

    2016-01-01

    Purpose MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). Materials and Methods The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. Results The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. Conclusions The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end. PMID:26872055

  12. NOTE: The effects of paramagnetic contrast agents on metabolite protons in aqueous solution

    NASA Astrophysics Data System (ADS)

    Murphy, Philip S.; Leach, Martin O.; Rowland, Ian J.

    2002-03-01

    The longitudinal (R1) and transverse (R2) relaxivities of the clinically used contrast agents Gd(DTPA)2-, Gd(DOTA)- and Gd(DTPA-BMA) have been determined in mixed aqueous metabolite solutions for choline, creatine and N-acetylaspartate. Measurements were performed at 1.5 T using a STEAM sequence on 25 mM metabolite solutions at pH = 7.4 and 22 °C. The data showed that for all the contrast agents and metabolites, R1 ~ R2. The largest range of relaxivity values was found for Gd(DTPA)2-, where R2 = 6.8 +/- 0.3 mM-1 s-1 for choline and 1.5 +/- 0.4 mM-1 s-1 for N-acetylaspartate. Variation in relaxivity values was attributed primarily to differences between the charges of the paramagnetic agent and metabolite. The maximum potential influence of the contrast agents on in vivo metabolite signals was calculated using the measured relaxivities.

  13. Lectin conjugates as biospecific contrast agents for MRI. Coupling of Lycopersicon esculentum agglutinin to linear water-soluble DTPA-loaded oligomers.

    PubMed

    Pashkunova-Martic, Irena; Kremser, Christian; Galanski, Markus; Schluga, Petra; Arion, Vladimir; Debbage, Paul; Jaschke, Werner; Keppler, Bernhard

    2011-06-01

    Magnetic resonance imaging (MRI) requires synthesis of contrast media bearing targeting groups and numerous gadolinium chelating groups generating high relaxivity. This paper explores the results of linking the gadolinium chelates to the targeting group, a protein molecule, via various types of linkers. Polycondensates of diethylenetriaminepentaacetic acid (DTPA) with either diols or diamines were synthesised and coupled to the targeting group, a lectin (Lycopersicon esculentum agglutinin, tomato lectin) which binds with high affinity to specific oligosaccharide configurations in the endothelial glycocalyx. The polycondensates bear up to four carboxylic groups per constitutive unit. Gd-chelate bonds are created through dative interactions with the unshared pair of electrons on each oxygen and nitrogen atom on DTPA. This is mandatory for complexation of Gd(III) and avoidance of the severe toxicity of free gadolinium ions. The polymer-DTPA compounds were characterised by (1)H NMR and mass spectrometry. The final lectin-DTPA-polycondensate conjugates were purified by fast protein liquid chromatography (FPLC). The capacity for specific binding was assessed, and the MRI properties were examined in order to evaluate the use of these oligomers as components of selective perfusional contrast agents.

  14. Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity.

    PubMed

    Parac-Vogt, Tatjana N; Vander Elst, Luce; Kimpe, Kristof; Laurent, Sophie; Burtéa, Carmen; Chen, Feng; Van Deun, Rik; Ni, Yicheng; Muller, Robert N; Binnemans, Koen

    2006-01-01

    A high-molecular weight tetrametallic supramolecular complex [(Ln-DTPA-phen)3Fe]- (Ln = Gd, Eu, La) has been obtained upon self-assembly around one iron(II) ion of three 1,10-phenantroline-based molecules substituted in 5'-position with the polyaminocarboxylate diethylenetriamine-N,N,N',N',N'-pentaacetate, DTPA-phen(4-). The ICP-MS measurements indicated that the lanthanide:iron ratio is 3:1. Photoluminescence spectra of [Eu-DTPA-phen](-) and of [(Eu-DTPA-phen)3Fe]- are nearly identical, implying that the first coordination sphere of the lanthanide(III) ion has not been changed upon coordination of phenantroline unit to iron(II) ion. NMRD measurements revealed that at 20 MHz and 310 K the relaxivity of the [(Gd-DTPA-phen)3Fe]- is equal to 9.5 +/- 0.3 s(-1) mM(-1) of Gd (28.5 s(-1) per millimole per liter of complex) which is significantly higher than that for Gd-DTPA (3.9 s(-1) mM(-1)). The pharmacokinetic parameters of [(Gd-DTPA-phen)3Fe]- in rats indicate that the elimination of [(Gd-DTPA-phen)3Fe]- is significantly slower than that of Gd-DTPA and is correlated with a reduced volume of distribution. The low volume of distribution and the longer elimination time (T(e1/2)) suggest that the agent is confined to the blood compartment, so it could have an important potential as a blood pool contrast agent. The biodistribution profile of [(Gd-DTPA-phen)3Fe]- 2 h after injection indicates significantly higher concentrations of [(Gd-DTPA-phen)3Fe]- as compared with Gd-DTPA in kidney, liver, lungs, heart and spleen. The images obtained on rats by MR angiography show the enhancement of the abdominal blood vessels. The signal intensity reaches a maximum of 55% at 7 min post-contrast and remains around 25% after 90 min. MRI-histomorphological correlation studies of [Gd-DTPA-phen]- and [(Gd-DTPA-phen)3Fe]- showed that both agents displayed potent contrast enhancement in organs including the liver. The necrosis avidity tests indicated that, in contrast to the [Gd-DTPA

  15. Simple method for quantification of gadolinium magnetic resonance imaging contrast agents using ESR spectroscopy.

    PubMed

    Takeshita, Keizo; Kinoshita, Shota; Okazaki, Shoko

    2012-01-01

    To develop an estimation method of gadolinium magnetic resonance imaging (MRI) contrast agents, the effect of concentration of Gd compounds on the ESR spectrum of nitroxyl radical was examined. A solution of either 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) was mixed with a solution of Gd compound and the ESR spectrum was recorded. Increased concentration of gadolinium-diethylenetriamine pentaacetic acid chelate (Gd-DTPA), an MRI contrast agent, increased the peak-to-peak line widths of ESR spectra of the nitroxyl radicals, in accordance with a decrease of their signal heights. A linear relationship was observed between concentration of Gd-DTPA and line width of ESR signal, up to approximately 50 mmol/L Gd-DTPA, with a high correlation coefficient. Response of TEMPONE was 1.4-times higher than that of TEMPOL as evaluated from the slopes of the lines. The response was slightly different among Gd compounds; the slopes of calibration curves for acua[N,N-bis[2-[(carboxymethyl)[(methylcarbamoyl)methyl]amino]ethyl]glycinato(3-)]gadolinium hydrate (Gd-DTPA-BMA) (6.22 μT·L/mmol) and gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelate (Gd-DOTA) (6.62 μT·L/mmol) were steeper than the slope for Gd-DTPA (5.45 μT·L/mmol), whereas the slope for gadolinium chloride (4.94 μT·L/mmol) was less steep than that for Gd-DTPA. This method is simple to apply. The results indicate that this method is useful for rough estimation of the concentration of Gd contrast agents if calibration is carried out with each standard compound. It was also found that the plot of the reciprocal square root of signal height against concentrations of contrast agents could be useful for the estimation if a constant volume of sample solution is taken and measured at the same position in the ESR cavity every time.

  16. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    PubMed

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  17. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.

    PubMed

    Yasuda, Satoshi; Ikuta, Kenjiro; Uwatoku, Toyokazu; Oi, Keiji; Abe, Kohtaro; Hyodo, Fuminori; Yoshimitsu, Kengo; Sugimura, Kohtaro; Utsumi, Hideo; Katayama, Yoshiki; Shimokawa, Hiroaki

    2008-01-01

    Magnetic resonance imaging (MRI) contrast agents that specifically detect atherosclerotic plaque may be useful for the noninvasive detection of the plaque. We have recently developed a new contrast agent, Evans blue-DTPA-gadolinium (EB-DTPA-Gd), which selectively accumulates vascular lesions with endothelial removal. In this study, we examined whether EB-DTPA-Gd is also useful for in vivo imaging of atherosclerotic plaques. We used male apolipoprotein-E-deficient (ApoE-/-) mice of different ages (3, 6 and 12 months old) and age-matched male wild-type mice. After a single intravenous administration of EB-DTPA-Gd (160 microM/kg body weight), MRI T(1) signal was obtained in vivo. Increased signal intensity in the aortic wall was noted within 10-20 min after intravenous injection of EB-DTPA-Gd and was maintained for 30 min. The MRI enhancement in the aorta of ApoE-/- mice was increased in accordance with age, whereas no such enhancement was noted in wild-type mice. Histological examination demonstrated that there was a topological correlation between the site of MRI enhancement and that of atherosclerotic plaque. These results indicate that EB-DTPA-Gd is a useful MRI contrast medium for the in vivo detection of atherosclerotic plaques. Copyright (c) 2007 S. Karger AG, Basel.

  18. Comparison of Gadofluorine-M and Gd-DTPA for Non-Invasive Staging of Atherosclerotic Plaque Stability Using MRI

    PubMed Central

    Ronald, John A.; Chen, Yuanxin; Belisle, Andre J.-L.; Hamilton, Amanda M.; Rogers, Kem A.; Hegele, Robert A.; Misselwitz, Bernd; Rutt, Brian K.

    2009-01-01

    Background Inflammation and neovascularization play critical roles in the stability of atherosclerotic plaques. Whole-body quantitative assessment of these plaque features may improve patient risk-stratification for life-threatening thromboembolic events and direct appropriate intervention. Here we determined the utility of the MR contrast agent Gadofluorine-M (GdF) for staging plaque stability and compared this to the conventional agent Gd-DTPA. Methods and Results 5 control and 7 atherosclerotic rabbits were sequentially imaged following administration of Gd-DTPA (0.2 mmol/kg) and GdF (0.1 mmol/kg) using a T1-weighted pulse sequence on a 3T MRI scanner. Diseased aortic wall could be distinguished from normal wall based on wall-to-muscle contrast-to-noise values following GdF administration. RAM-11 (macrophages) and CD-31 (endothelial cells) immunostaining of MR-matched histological sections revealed that GdF accumulation was related to the degree of inflammation at the surface of plaques and the extent of core neovascularization. Importantly, an MR measure of GdF accumulation at both 1 and 24 hours post-injection, but not Gd-DTPA at peak enhancement, was shown to correlate with a quantitative histological morphology index related to these two plaque features. Conclusions GdF-enhanced MRI of atherosclerotic plaques allows non-invasive quantitative information about plaque composition to be acquired at multiple time points post-injection (within 1 and up to 24 hours post-injection). This dramatically widens the imaging window for assessing plaque stability that is currently attainable with clinically approved MR agents, therefore opening the possibility of whole-body (including coronary) detection of unstable plaques in the future and potentially improved mitigation of cataclysmic cardiovascular events. PMID:19808597

  19. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    PubMed

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  20. Contrast agent choice for intravenous coronary angiography

    NASA Astrophysics Data System (ADS)

    Zeman, H. D.; Siddons, D. P.

    1990-05-01

    The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with monochromatic synchrotron radiation X-rays and an iodine-containing contrast agent at the Stanford Synchrotron Radiation Laboratory have shown that such an intravenous angiography procedure would be possible with an adequately intense monochromatic X-ray source. Because of the size and cost of synchrotron radiation facilities it would be desirable to make the most efficient use of the intensity available, while reducing as much as possible the radiation dose experienced by the patient. By choosing contrast agents containing elements with a higher atomic number than iodine, it is possible to both improve the image quality and reduce the patient radiation dose, while using the same synchrotron radiation source. By using Si monochromator crystals with a small mosaic spread, it is possible to increase the X-ray flux available for imaging by over an order of magnitude, without any changes in the storage ring or wiggler magnet. The most critical imaging task for intravenous coronary angiography utilizing synchrotron radiation X-rays is visualizing a coronary artery through the left ventricle or aorta which also contain contrast agent. Calculations have been made of the signal to noise ratio expected for this imaging task for various contrast agents with atomic numbers between that of iodine and bismuth. The X-ray energy spectrum of the X-17 superconduction wiggler beam line at the National Synchrotron Light Source at Brookhaven National Laboratory has been used for these calculations. Both perfect Si crystals and Si crystals with a small mosaic spread are considered as monochromators. Contrast agents containing Gd or Yb seem to have about the optimal calculated signal to noise ratio. Gd-DTPA is already approved for use as a contrast agent for

  1. Evaluation of liver function using gadoxetate disodium (Gd-EOB-DTPA) enhanced MR imaging

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Hara, Takeshi; Li, Feng; Doi, Kunio

    2010-03-01

    Indocyanine green (ICG) is widely used for its clearance test in the evaluation of liver function. Gadoxetate disodium (Gd-EOB-DTPA) is a targeted MR contrast agent partially taken up by hepatocytes. The objective of this study was to evaluate the feasibility of an estimation of the liver function corresponding to plasma disappearance rate of indocyanine green (ICG-PDR) by use of the signal intensity of the liver alone in Gd-EOB-DTPA enhanced MR imaging (EOB-MRI). We evaluated fourteen patients who had EOB-MRI and ICG clearance test within 1 month. 2D-GRE T1 weighted images were obtained at pre contrast, 3 min (equilibrium phase) and 20 min (hepatobiliary phase) after the intravenous administration of Gd-EOB-DTPA, and the mean signal intensity of the liver was measured. The correlation between ICG-PDR and many parameters derived from the signal intensity of the liver in EOB-MRI was evaluated. The correlation coefficient between ICG-PDR and many parameters derived from the signal intensity of the liver in EOBMRI was low and not significant. The estimation of the liver function corresponding to ICG-PDR by use of the signal intensity of the liver alone in EOB-MRI would not be reliable.

  2. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Qing; Wei Daixu; Cheng Jiejun

    2012-08-15

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF{sub 4}:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF{sub 4}:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T{sub 1}-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and bothmore » high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future. - Graphical abstract: We have synthesized magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. Highlights: Black-Right-Pointing-Pointer A novel magnetic-luminescent multifunctional nanoparticles are synthesized. Black-Right-Pointing-Pointer The nanoparticles are highly efficient for luminescence and T{sub 1}-weighted MR imaging. Black-Right-Pointing-Pointer The nanoparticles are small in size and highly solubility in water. Black-Right-Pointing-Pointer The nanoparticles hold great potential usage for future biomedical engineering.« less

  3. Thermodynamic stability and kinetic inertness of a Gd-DTPA bisamide complex grafted onto gold nanoparticles.

    PubMed

    Mogilireddy, Vijetha; Déchamps-Olivier, Isabelle; Alric, Christophe; Laurent, Gautier; Laurent, Sophie; Vander Elst, Luce; Muller, Robert; Bazzi, Rana; Roux, Stéphane; Tillement, Olivier; Chuburu, Françoise

    2015-01-01

    Gold nanoparticles coated by gadolinium (III) chelates (Au@DTDTPA) where DTDTPA is a dithiolated bisamide derivative of diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), constituted contrast agents for both X-ray computed tomography and magnetic resonance imaging. In an MRI context, highly stable Gd(3+) complexes are needed for in vivo applications. Thus, knowledge of the thermodynamic stability and kinetic inertness of these chelates, when grafted onto gold nanoparticles, is crucial since bisamide DTPA chelates are usually less suited for Gd(3+) coordination than DTPA. Therefore, these parameters were evaluated by means of potentiometric titrations and relaxivity measurements. The results showed that, when the chelates were grafted onto the nanoparticle, not only their thermodynamic stability but also their kinetic inertness were improved. These positive effects were correlated to the chelate packing at the nanoparticle surface that stabilized the corresponding Gd(3+) complexes and greatly enhanced their kinetic inertness. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI.

    PubMed

    Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jonas, Eduard

    2010-10-01

    Gd-EOB-DTPA (gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid) is a gadolinium-based hepatocyte-specific contrast agent for magnetic resonance imaging (MRI). The aim of this study was to determine whether the hepatic uptake and excretion of Gd-EOB-DTPA differ between patients with primary biliary cirrhosis (PBC) and healthy controls, and whether differences could be quantified. Gd-EOB-DTPA-enhanced liver MRI was performed in 20 healthy volunteers and 12 patients with PBC. The uptake of Gd-EOB-DTPA was assessed using traditional semi-quantitative parameters (C(max) , T(max) and T(1/2) ), as well as model-free parameters derived after deconvolutional analysis (hepatic extraction fraction [HEF], input-relative blood flow [irBF] and mean transit time [MTT]). In each individual, all parameters were calculated for each liver segment and the median of the segmental values was used to define a global liver median (GLM). Although the PBC patients had relatively mild disease according to their Model for End-stage Liver Disease (MELD), Child-Pugh and Mayo risk scores, they had significantly lower HEF and shorter MTT values compared with the healthy controls. These differences significantly increased with increasing MELD and Child-Pugh scores. Dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) has a potential role as an imaging-based liver function test. The high spatial resolution of MRI enables hepatic function to be assessed on segmental and sub-segmental levels. © 2010 International Hepato-Pancreato-Biliary Association.

  5. Safety assessment of nanoparamagnetic contrast agents with different coatings for molecular MRI

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Saffari, Mojtaba; Zohdiaghdam, Reza; Gorji, Ensieh

    2013-04-01

    Despite the wide application of gadolinium as a contrast agent for magnetic resonance imaging (MRI), there is a serious lack of information on its toxicity. Gadolinium and gadolinium oxide (Gd-oxide) are used as contrast agents for magnetic resonance imaging (MRI). There are methods for reducing toxicity of these materials, such as core nanoparticles coating or conjugating. Therefore, for toxicity evaluation, we compared the viability of commercial contrast agents in MRI (Gd-DTPA) and three nanoparticles with the same core Gd2O3 and small particulate gadolinium oxide or SPGO (< 40 nm) but different coatings of diethyleneglycol (DEG) as Gd2O3-DEG and methoxy polyethylene glycol-silane (mPEG-silane: 550 and 2000 Dalton) as SPGO-mPEG-silane550 and SPGO-mPEG-silane2000, respectively, in the SK-MEL3 cell line, by light microscopy, MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity. The viability values were not statistically different between the three nanoparticles and Gd-DTPA. The MTT and LDH assay results showed that Gd2O3-DEG nanoparticles were more toxic than Gd-DTPA and other nanoparticles. Also, SPGO-mPEG-silane2000 was more biocompatible than other nanoparticles. The obtained results did not show any significant increase in cytotoxicity of the nanoparticles and Gd-DTPA, neither dose-dependent nor time-dependent. Therefore, DEG and PEG, due to their considerable properties and irregular sizes (different molecular weights), were selected as the useful surface covering materials of nanomagnetic particles that could reveal noticeable relaxivity and biocompatibility characteristics.

  6. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy.

    PubMed

    Fujimoto, T; Ichikawa, H; Akisue, T; Fujita, I; Kishimoto, K; Hara, H; Imabori, M; Kawamitsu, H; Sharma, P; Brown, S C; Moudgil, B M; Fujii, M; Yamamoto, T; Kurosaka, M; Fukumori, Y

    2009-07-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  7. The Effect of Pressure and Temperature on Separation of Free Gadolinium(III) From Gd-DTPA Complex by Nanofiltration-Complexation Method

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Anggraeni, Anni; Ukun, MSS; Bahti, Husein H.

    2017-05-01

    Nowdays, the utilization of rare earth elements has been carried out widely in industry and medicine, one of them is gadolinium in Gd-DTPA complex is used as a contrast agent in a magnetic resonance imaging (MRI) diagnostic to increase the visual contrast between normal tissue and diseased. Although the stability of a given complex may be high enough, the complexation step couldnot have been completed, so there is possible to gadolinium(III) in the complex compound. Therefore, the function of that compounds should be dangerous because of the toxicity of gadolinium(III) in human body. So, it is necessarry to separate free gadolinium(III) from Gd-DTPA complex by nanofiltration-complexation. The method of this study is complexing of Gd2O3 with DTPA ligand by reflux and separation of Gd-DTPA complex from gadolinium(III) with a nanofiltration membrane on the variation of pressures(2, 3, 4, 5, 6 bars) and temperature (25, 30, 35, 40 °C) and determined the flux and rejection. The results of this study are the higher of pressures and temperatures, permeation flux are increasing and ion rejections are decreasing and gave the free gadolinium(III) rejection until 86.26%.

  8. Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model.

    PubMed

    Kartamihardja, A Adhipatria P; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito

    2016-10-01

    The aim of this study was to investigate the impact of impaired renal function on gadolinium (Gd) retention in various organs after Gd-based contrast agent injection. After local animal care and review committee approval, 23 normal mice and 26 with renal failure were divided into 4 treatment groups (Gd-DTPA-BMA, 5 mmol/kg; Gd-DOTA, 5 mmol/kg; GdCl3, 0.02 mmol/kg; and saline, 250 μL). Each agent was intravenously administered on weekdays for 4 weeks. Samples were collected on days 3 (short-term) and 45 (long-term) after the last injection. Gadolinium concentrations were quantified by inductively coupled plasma-mass spectrometry. Three mice with renal failure and 2 normal mice in the GdCl3 group and 1 mouse with renal failure in the Gd-DTPA-BMA group died. In the Gd-DTPA-BMA group, impaired renal function increased short-term Gd retention in the liver, bone, spleen, skin, and kidney (P < 0.01) but did not affect long-term Gd retention. Gd-DTPA-BMA showed higher Gd retention than Gd-DOTA. Although Gd retention in the Gd-DOTA group was generally low, impaired renal function increased only long-term hepatic Gd retention. Hepatic and splenic Gd retentions were significantly higher than other organs' Gd retention in the GdCl3 group (P < 0.01). Renal function did not affect brain Gd retention, regardless of the Gd compound used. The tendency of Gd retention varied according to the agent, regardless of renal function. Although renal impairment increased short-term Gd retention after Gd-DTPA-BMA administration, long-term Gd retention for Gd-based contrast agents was almost unaffected by renal function, suggesting that the chemical structures of retained Gd may not be consistent and some Gd is slowly eliminated after initially being retained.

  9. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin-avidin-specific binding.

    PubMed

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin-avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P <0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM -1 s -1 ) was observed compared to Magnevist ® (4.9 mM -1 s -1 ; P <0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor.

  10. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    PubMed Central

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P<0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM−1 s−1) was observed compared to Magnevist® (4.9 mM−1 s−1; P<0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. PMID:28765707

  11. [Studies on renal damages after extracorporeal shock wave lithotripsy using Gd-DTPA-enhanced dynamic MRI].

    PubMed

    Umekawa, T; Kohri, K; Iguchi, M; Kurita, T

    1991-11-01

    Renal damages after ESWL treatment were examined by Gd-DTPA enhanced dynamic MRI. Gd-DTPA was used as the contrast medium and fast magnetic resonance imaging with suspended respiration using the flip angle of 20 degrees and gradient echo technique at 0.5 Tesla was used for photographing. In normal kidneys, a low intensity band was observed with the passage of Gd-DTPA through the kidney from 1 to 2 minutes after the injection. In patients who underwent ESWL treatment, however, the low intensity band which was observed before ESWL treatment became partly obscure after ESWL treatment. Furthermore, these find changes in the renal parenchyma could not be fully detected by usual MRI which does not use Gd-DTPA. Gd-DTPA enhanced dynamic MRI was considered to be effective for finding the limited dose of shock waves for ESWL treatment.

  12. Porphyrin-containing polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents.

    PubMed

    Yan, Guo-Ping; Li, Zhen; Xu, Wei; Zhou, Cheng-Kai; Yang, Lian; Zhang, Qiao; Li, Liang; Liu, Fan; Han, Lin; Ge, Yuan-Xing; Guo, Jun-Fang

    2011-04-04

    Porphyrin-containing polyaspartamide ligands (APTSPP-PHEA-DTPA) were synthesized by the incorporation of diethylenetriaminepentaacetic acid (DTPA) and 5-(4'-aminophenyl)-10,15,20-tris(4'-sulfonatophenyl) porphyrin, trisodium salt (APTSPP) into poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide] (PHEA). These ligands were further reacted with gadolinium chloride to produce macromolecule-gadolinium complexes (APTSPP-PHEA-DTPA-Gd). Experimental data of (1)H NMR, IR, UV and elemental analysis evidenced the formation of the polyaspartamide ligands and gadolinium complexes. In vitro and in vivo property tests indicated that APTSPP-PHEA-DTPA-Gd possessed noticeably higher relaxation effectiveness, less toxicity to HeLa cells, and significantly higher enhanced signal intensities (SI) of the VX2 carcinoma in rabbits with lower injection dose requirement than that of Gd-DTPA. Moreover, APTSPP-PHEA-DTPA-Gd was found to greatly enhance the contrast of MR images of the VX2 carcinoma, providing prolonged intravascular duration, and distinguished the VX2 carcinoma and normal tissues in rabbits according to MR image signal enhancements. These porphyrin-containing polyaspartamide gadolinium complexes can be used as the candidates of contrast agents for targeted MRI to tumors. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. Pharmacokinetics and Magnetic Resonance Imaging of Biodegradable Macromolecular Blood-Pool Contrast Agent PG-Gd in Non-Human Primates: A Pilot Study

    PubMed Central

    Tian, Mei; Wen, Xiaoxia; Jackson, Edward F.; Ng, Chaan; Uthamanthil, Rajesh; Liang, Dong; Gelovani, Juri G.; Li, Chun

    2012-01-01

    The purpose of this study was to evaluate poly(L-glutamic acid)-benzyl-DTPA-Gd (PG-Gd), a new biodegradable macromolecular magnetic resonance imaging contrast agent, for its pharmacokinetics and MRI enhancement in nonhuman primates. Studies were performed in rhesus monkeys at intravenous doses of 0.01, 0.02, and 0.08 mmol Gd/kg. T1-weighted MR images were acquired at 1.5T using fast spoiled gradient recalled echo and fast spin echo imaging protocols. The small-molecule contrast agent Magnevist was used as a control. PG-Gd in the monkey showed a bi-exponential disposition. The initial blood concentrations within 2 hours of PG-Gd administration were much higher than for those of Magnevist. The high blood concentration of PG-Gd was consistent with the MR imaging data, which showed prolonged circulation of PG-Gd in the blood pool. Enhancement of blood vessels and organs with a high blood perfusion (heart, liver, and kidney) was clearly visualized at 2 hours after contrast injection at the three doses used. A greater than proportional increase of the area under the blood concentration-time curve was observed when the administered single dose was increased from 0.01 mmol/kg to 0.08 mmol/kg. By 2 days after PG-Gd injection, the contrast agent was mostly cleared from all major organs, including kidney. The mean residence time was 15 hours at the 0.08 mmol/kg dose. A similar pharmacokinetic profile was observed in mice, with a mean residence time of 5.4 hours and a volume of distribution at steady-state of 85.5 mL/kg, indicating that the drug was mainly distributed in the blood compartment. Based on this pilot study, further investigations on potential systemic toxicity of PG-Gd in both rodents and large animals are needed before testing this agent in humans. PMID:21861289

  14. Molecular nanomagnets as contrast agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Rodríguez, Elisenda; Roig, Anna; Molins, Elies; Arús, Carles; Cabañas, Miquel; Quintero, María Rosa; Cerdán, Sebastián; Sanfeliu, Coral

    2003-03-01

    Magnetic resonance imaging (MRI) is a non-invasive technique used in medicine to produce high quality images of human body slices. In order to enhance the contrast between different organs or to reveal altered portions of them such necrosis or tumors, the administration of a contrast agent is highly convenient. Currently Gd-DTPA, a paramagnetic complex, is the most widely administered compound. In this context, we have assayed molecular nanomagnets as MRI contrast agents. The complex [(tacn)_6Fe_8(μ_3-O)_2(μ_2-OH)_12]Br_8·9H_2O^1(Fe8 in brief) has been evaluated and shorter relaxation times, T1 and T_2, have been obtained for Fe8 than those obtained for the commercial Gd-DTPA. No toxic effects have been observed at concentrations up to 1 mM of Fe8 in cultured cells. Phantom studies with T_1-weighted MRI at 9.4 Tesla suggest that Fe8 can have potentiality as T_1-contrast agent. ^1Wieghardt K Angew Chem Intl Ed Engl 23 1 (1984) 77

  15. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Sato, Tomohiro; Ito, Katsuyoshi; Tamada, Tsutomu; Kanki, Akihiko; Watanabe, Shigeru; Nishimura, Hirotake; Tanimoto, Daigo; Higashi, Hiroki; Yamamoto, Akira

    2013-10-01

    To quantify tissue gadolinium (Gd) deposition in renally impaired rats exposed to Gd-EOB-DTPA and other Gd-based MRI contrast agents by means of inductively coupled plasma mass spectrometry (ICP-MS), and to compare the differences in distribution among major organs as possible triggers for nephrogenic systemic fibrosis (NSF). A total of 15 renally impaired rats were injected with Gd-EOB-DTPA, Gd-DTPA-BMA and Gd-HP-DO3A. Gd contents of skin, liver, kidney, lung, heart, spleen, diaphragm and femoral muscle were measured by inductively coupled plasma mass spectrometry (ICP-MS). Histological assessment was also conducted. Tissue Gd deposition in all organs was significantly higher (P=0.005~0.009) in the Gd-DTPA-BMA group than in the Gd-HP-DO3A and Gd-EOB-DTPA groups. In the Gd-DTPA-BMA group, Gd was predominantly deposited in kidney (1306±605.7μg/g), followed by skin, liver, lung, spleen, femoral muscle, diaphragm and heart. Comparing Gd-HP-DO3A and Gd-EOB-DTPA groups, Gd depositions in the kidney, liver and lung were significantly lower (P=0.009~0.011) in the Gd-EOB-DTPA group than in the Gd-HP-DO3A group although no significant differences were seen for any other organs. Gd-EOB-DTPA is a stable and safe Gd-based contrast agent (GBCA) showing lower Gd deposition in major organs in renally impaired rats, compared with other GBCAs. This fact suggests that the risk of NSF onset would be low in the use of Gd-EOB-DTPA. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Novel functionalized pyridine-containing DTPA-like ligand. Synthesis, computational studies and characterization of the corresponding Gd(III) complex.

    PubMed

    Artali, Roberto; Botta, Mauro; Cavallotti, Camilla; Giovenzana, Giovanni B; Palmisano, Giovanni; Sisti, Massimo

    2007-08-07

    A novel pyridine-containing DTPA-like ligand, carrying additional hydroxymethyl groups on the pyridine side-arms, was synthesized in 5 steps. The corresponding Gd(III) complex, potentially useful as an MRI contrast agent, was prepared and characterized in detail by relaxometric methods and its structure modeled by computational methods.

  17. Gadolinium heteropoly complex K 17[Gd(P 2W 17O 61) 2] as a potential MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Wu, Huifeng; Pei, Fengkui; Fang, Ke; Lei, Hao

    2004-10-01

    Gadolinium heteropoly complex K17[Gd(P2W17O61)2] has been evaluated by in vitro and in vivo experiments as a potential contrast agent for magnetic resonance imaging (MRI). The thermal analysis and conductivity study indicate that this complex has good thermal stability and wide pH stability range. The T1 relaxivity is 7.59 mM-1 s-1 in aqueous solution and 7.97 mM-1 s-1 in 0.725 mmol l-1 bovine serum albumin (BSA) solution at 25 °C and 9.39 T, respectively. MR imaging of three male Sprague-Dawley rats showed remarkable enhancement in rat liver after intravenous injection, which persisted longer than with Gd-DTPA. The signal intensity increased by 57.1±16.9% during the whole imaging period at 0.082 mmol kg-1dose. Our preliminary in vitro and in vivo studies indicate that K17[Gd(P2W17O61)2] is a potential liver-specific MRI contrast agent.

  18. Gd-Complexes of New Arylpiperazinyl Conjugates of DTPA-Bis(amides): Synthesis, Characterization and Magnetic Relaxation Properties.

    PubMed

    Ba-Salem, Abdullah O; Ullah, Nisar; Shaikh, M Nasiruzzaman; Faiz, Mohamed; Ul-Haq, Zaheer

    2015-04-29

    Two new DTPA-bis(amide) based ligands conjugated with the arylpiperazinyl moiety were synthesized and subsequently transformed into their corresponding Gd(III) complexes 1 and 2 of the type [Gd(L)H2O]·nH2O. The relaxivity (R1) of these complexes was measured, which turned out to be comparable with that of Omniscan®, a commercially available MRI contrast agent. The cytotoxicity studies of these complexes indicated that they are non-toxic, which reveals their potential and physiological suitability as MRI contrast agents. All the synthesized ligands and complexes were characterized with the aid of analytical and spectroscopic methods, including elemental analysis, 1H-NMR, FT-IR, XPS and fast atom bombardment (FAB) mass spectrometry.

  19. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Wei, Daixu; Cheng, Jiejun; Xu, Jianrong; Zhu, Jun

    2012-08-01

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T1-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and both high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future.

  20. Superparamagnetic And Paramagnetic MRI Contrast Agents: Application Of Rapid Magnetic Resonance Imaging To Assess Renal Function

    NASA Astrophysics Data System (ADS)

    Carvlin, Mark J.; Renshaw, Perry F.; Arger, Peter; Kundel, Harold L.; Dougherty, Larry; Axel, Leon; Kassab, Eleanor; Moore, Bethanne

    1988-06-01

    The paramagnetic chelate complex, gadolinium-diethylene-triamine-pentaacetic acid, Gd-DTPA, and superparamagnetic particles, such as those composed of dextran coated magnetite, function as magnetic resonance contrast agents by changing the relaxation rates, 1/T1 and 1/T2. The effects that these agents have upon MR signal intensity are determined by: the inherent biophysical properties of the tissue being imaged, the concentration of the contrast agent and the data acquisition scheme (pulse sequence parameters) employed. Following the time course of MR signal change in the first minutes after the injection of contrast agent(s) allows a dynamic assessment of organ functions in a manner analogous to certain nuclear medicine studies. In order to study renal function, sequential MR fast scan images, gradient echo (TR=35/TE=7 msec, flip angle=25 degrees), were acquired, one every 12 seconds, after intravenous injection of Gd-DTPA and/or dextran-magnetite. Gd-DTPA, which is freely filtered at the glomerulus and is neither secreted nor reabsorbed, provides information concerning renal perfusion, glomerular filtration and tubular concentrating ability. Dextran-magnetite (200 A diameter), which is primarily contained within the intravascular space shortly after injection, provides information on blood flow to and distribution within the kidney. The MR signal change observed after administration of contrast agents varied dramatically depending upon the agents injected and the imaging parameters used. Hence a broad range of physiolgic processes may be described using these techniques, i.e. contrast agent enhanced functional MR examinations.

  1. An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjing; Chen, Lina; Wang, Zhiming; Huang, Yuankui; Jia, Nengqin

    2018-02-01

    In pursuit of the biological detection applications, recent years have witnessed the prosperity of novel multi-modal nanoprobes. In this study, biocompatible bovine serum albumin (BSA)-coated gold nanoparticles (Au NPs) containing Gd (III) as the contrast agent for both X-ray CT and T1-weighted MR imaging is reported. Firstly, the Au NPs with BSA coating (Au@BSA) was prepared through a moderate one-pot reduction route in the presence of hydrazine hydrate as reducer. Sequentially, the BSA coating enables modification of diethylenetriaminepentaacetic acid (DTPA) as well as targeting reagent hyaluronic acid (HA), and further chelation of Gd (III) ions led to the formation of biomimetic nanoagent HA-targeted Gd-Au NPs (HA-targeted Au@BSA-Gd-DTPA). Several techniques were used to thoroughly characterize the formed HA-targeted Gd-Au NPs. As expected, the as-prepared nanoagent with mean diameter of 13.82 nm exhibits not only good colloid stablility and water dispersibility, but also satisfying low cytotoxicity and hemocompatibility in the tested concentration range. Additionally, for the CT phantoms, the obtained nanocomplex shows an improved contrast in CT scanning than that of Au@BSA as well as small molecule iodine-based CT contrast agents such as iopromide. Meanwhile, for the T1-weighted MRI images, there is a linear increase of contrast with concentration of Gd for the two cases of HA-targeted Gd-Au NPs and Magnevist. Strikingly, the nanoagent we explored displays a relatively higher r1 relaxivity than that of commercial MR contrast agents. Therefore, this newly constructed nanoagent could be used as contrast agents for synergistically enhanced X-ray CT and MR phantoms, holding promising potential for future biomedical applications.

  2. Primed infusion with delayed equilibrium of Gd.DTPA for enhanced imaging of small pulmonary metastases.

    PubMed

    Kalber, Tammy L; Campbell-Washburn, Adrienne E; Siow, Bernard M; Sage, Elizabeth; Price, Anthony N; Ordidge, Katherine L; Walker-Samuel, Simon; Janes, Sam M; Lythgoe, Mark F

    2013-01-01

    To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm(2)) with a similar morphology to early bronchoalveolar cell carcinomas. As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors.

  3. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM.

    PubMed

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-12-18

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r₁) values about four times higher than that of clinically used Gd-DTPA (Magnevist(®), Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (K(a)) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The K(a) values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  4. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    PubMed Central

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-01-01

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo. PMID:26694418

  5. Radiation-induced changes in hepatocyte-specific Gd-EOB-DTPA enhanced MRI: potential mechanism.

    PubMed

    Richter, Christian; Seco, Joao; Hong, Ted S; Duda, Dan G; Bortfeld, Thomas

    2014-10-01

    Liver irradiation leads to a decreased uptake of a hepatobiliary directed MRI contrast agent (Gd-EOB-DTPA) as shown in studies performed 1-6 months after proton therapy, stereotactic ablative body radiation therapy and brachytherapy. Therefore, Gd-EOB-DTPA enhanced MRI could potentially be used for in vivo verification of the delivered dose distribution. Achieving this would be highly desirable, especially for particle therapy, where the accuracy and precision of the spatial dose deposition is affected by uncertainties of the range of particles in patients. However, the empirically detected effect needs to be understood before it can be used as a surrogate imaging biomarker for in vivo treatment verification or even liver functionality. Here, we propose a model of the underlying molecular mechanism of this phenomenon and discuss its implications for radiation therapy. We model the multi-step process starting from the immediate response after liver irradiation to the delayed/subsequent signal decrease in Gd-EOB-DTPA enhanced MRI. The model is based on both: (a) Evidence from different previously published reports and (b) a detailed evaluation of intra-hepatic signaling using a pathway analysis to identify potential pathways that are critical in this process. The proposed model provides mechanistic understanding of the reduced signal intensity in Gd-EOB-DTPA enhanced MRI occurring in irradiated liver. We think that establishing this comprehensive model will be of great interest for the field of radiation oncology and can trigger further research. For example, measuring the expression of involved cytokines and specific transport proteins in blood samples and biopsy derived tissue samples and correlating the results with MRI imaging could give important information and may even explain inter-patient variations in MRI signal decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Nano-assemblies of cationic mPEG brush block copolymers with gadolinium polyoxotungstate [Gd(W5O18)2]9- form stable, high relaxivity MRI contrast agents.

    PubMed

    Ly, Joanne; Li, Yuhuan; Vu, Mai N; Moffat, Bradford A; Jack, Kevin S; Quinn, John F; Whittaker, Michael R; Davis, Thomas P

    2018-04-19

    Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.

  7. Primed Infusion with Delayed Equilibrium of Gd.DTPA for Enhanced Imaging of Small Pulmonary Metastases

    PubMed Central

    Kalber, Tammy L.; Campbell-Washburn, Adrienne E.; Siow, Bernard M.; Sage, Elizabeth; Price, Anthony N.; Ordidge, Katherine L.; Walker-Samuel, Simon

    2013-01-01

    Objectives To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. Methods A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. Results We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm2) with a similar morphology to early bronchoalveolar cell carcinomas. Conclusion As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors. PMID:23382996

  8. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    PubMed

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P < .001), whereas there was no significant difference in all other imaging phases. In the Gd-EOB-DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P < .001). On delayed phase MR images the FCF-to-liver contrast is reversed with the lesions appearing hyperintense on ECA enhanced images and hypointense on Gd-EOB-DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  9. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  10. DCE-MRI using small-molecular and albumin-binding contrast agents in experimental carcinomas with different stromal content.

    PubMed

    Farace, Paolo; Merigo, Flavia; Fiorini, Silvia; Nicolato, Elena; Tambalo, Stefano; Daducci, Alessandro; Degrassi, Anna; Sbarbati, Andrea; Rubello, Domenico; Marzola, Pasquina

    2011-04-01

    To compare DCE-MRI experiments performed using a standard small-molecular (Gd-DTPA) and an albumin-binding (MS-325) contrast agent in two carcinoma models with different stromal content. DU-145 or BXPC-3 cancer cells were subcutaneously injected into nude mice. DCE-MRI was performed by a bolus injection of Gd-DTPA or MS-325 about 2 weeks after inoculation. For quantitative analysis a volume of interest was manually drawn over each tumor. To address the heterogeneous enhancement, each tumor volume was then divided into the 20% most-enhancing and the remaining 80% least-enhancing fractions. Mean tumor enhancement was calculated over these selected tumor volumes and compared between tumor groups and contrast agents. Maps of differential enhancement, peak enhancement and time-to-peak were used for visual evaluation. CD31 and VEGF immunohistochemistry were performed in excised tumors. In the 80% least-enhancing volume, at late time points of the dynamic scan, the mean enhancement elicited by MS-325 was higher in BXPC-3 than in DU-145 tumors. In the 20% most-enhancing volume, using either contrast agents, significant difference between the two tumors types were observed only early, while at later time points of the dynamic scan the difference were obscured by the faster washout observed in the BXPC-3 tumors. Enhancement maps confirmed that BXPC-3 tumors were characterized by marked washout rate using either contrast agent, particularly in the higher enhancing peripheral rim. With MS-325 this washout pattern appeared to be specific to the BXPC-3 carcinomas, since it was not observed in the DU-145 tumors. Finally, in both tumor types, MS-325 produced significantly higher enhancement than Gd-DTPA in the late phase of the dynamic scan. Ex vivo analysis confirmed the marked presence of aberrant infiltrative stroma in BXPC-3 tumors, in which tumor vessels were embedded. In all tumors the central portion was less viable and less infiltrated by stromal tissue then the peripheral

  11. Gd2O3 nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2016-04-01

    Gd2O3 nanoparticles of a few nm in size and their agglomerates dispersed in dextrose derived polymer template were synthesized by hydrothermal treatment. The produced nanosized material was investigated by TEM, FTIR spectroscopy, SQUID measurements and NMR relaxometry. Biological evaluation of this material was done by crystal violet and MTT assays to determine the cell viability. Longitudinal and transverse NMR relaxivities of water diluted Gd2O3 nanoparticle dispersions measured at the magnetic field of 1.5 T, estimated to be r1(Gd2O3)=9.6 s-1 mM-1 in the Gd concentration range 0.1-30 mM and r2(Gd2O3)=17.7 s-1 mM-1 in the lower concentration range 0.1-0.8 mM, are significantly higher than the corresponding relaxivities measured for the standard contrast agent r1(Gd-DTPA)=4.1 s-1 mM-1 and r2(Gd-DTPA)=5.1 s-1 mM-1. The ratio of the two relaxivities for Gd2O3 nanoparticles r2/r1=1.8 is suitable for T1-weighted imaging. Good MRI signal intensities of the water diluted Gd2O3 nanoparticle dispersions were recorded at lower Gd concentrations 0.2-0.8 mM. The Gd2O3 samples did not exert any significant cytotoxic effects at Gd concentrations of 0.2 mM and below. These properties of the produced Gd2O3 nanoparticles in hydrothermally modified dextrose make them promising for potential application in MRI for the design of a positive MRI contrast agent.

  12. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography.

    PubMed

    Sun, Jihong; Zhang, Shizheng; Jiang, Shaojie; Bai, Weixian; Liu, Fei; Yuan, Hong; Ji, Jiansong; Luo, Jingfeng; Han, Guocan; Chen, Lumin; Jin, Yin; Hu, Peng; Yu, Lei; Yang, Xiaoming

    2016-09-01

    Magnetic resonance (MR) contrast agents focusing on special functions are required to improve cancer diagnosis, particularly in the early stages. Here, we designed multifunctional solid lipid nanoparticles (SLNs) with simultaneous loading of gadolinium (Gd) diethylenetriaminepentaacetic acid (Gd-DTPA) and octadecylamine fluorescein isothiocyanate (FITC) to obtain Gd-FITC-SLNs as a tumor-absorbable nanoparticle contrast agent for the histological confirmation of MR imaging (MRI) findings. Colorectal tumors were evaluated in vitro and in vivo via direct uptake of this contrast agent, which displayed reasonable T1 relaxivity and no significant cytotoxicity at the experimental concentrations in human colon carcinoma cells (HT29) and mouse colon carcinoma cells (CT26). In vitro cell uptake experiments demonstrated that contrast agent absorption by the two types of cancer cells was concentration-dependent in the safe concentration range. During in vivo MRI, transrectal infusion of Gd-FITC-SLNs showed more significant enhancement at the tumor site compared with the infusion of Gd-DTPA in female C57/BL mice with azoxymethane/dextran sulfate sodium-induced colorectal highgrade intraepithelial neoplasia. Subsequent confocal fluorescence microscopy demonstrated Gd-FITC-SLNs as highly concentrated green fluorescent spots distributed from the tumor capsule into the tumor. This study establishes the "proof-of-principle" of a new MRI technique wherein colorectal tumors are enhanced via direct absorption or uptake of the nanoparticle contrast agent.

  13. Ni-Fe2O4 nanoparticles as contrast agents for magnetic resonance imaging.

    PubMed

    Ahmad, Tanveer; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun

    2011-07-01

    Reported herein is the synthesis of a dextran coating on nickel ferrite (Ni-Fe2O4) nanoparticles via chemical coprecipitation. The aqueous solution of the synthesized nanoparticles showed good colloidal stability, and no precipitate was observed 20 months after the synthesis. The coated nanoparticles were found to be cylindrical in shape in the TEM images, and showed a uniform size distribution with an average length and diameter of 17 and 4 nm, respectively. The coated particles were evaluated as potential T1 and T2 contrast agents for MRI. The T1 and T2 relaxations of the hydrogen protons in the water molecules in an aqueous solution of dextran-coated Ni-Fe2O4 nanoparticles were studied. It was found that the T1 relaxivity for the aqueous solution of dextran-coated nanoparticles was slightly greater than that of a commercial Gd-DTPA-BMA contrast agent. The T2 relaxivity, however, was almost twice that of the commercial Gd-DTPA-BMA contrast agent. Animal experimentation also demonstrated that the dextran-coated Ni-Fe2O4 nanoparticles are suitable for use as either T1 or T2 contrast agents in MRI.

  14. [Quantitative evaluation of Gd-EOB-DTPA uptake in phantom study for liver MRI].

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Koda, Wataru; Suzuki, Masayuki; Sanada, Shigeru; Ohno, Naoki; Hamaguchi, Takashi; Matsuura, Yukihiro; Kawahara, Kazuhiro; Yamamoto, Tomoyuki; Matsui, Osamu

    2010-05-20

    Gd-EOB-DTPA is a new liver specific MRI contrast media. In the hepatobiliary phase, contrast media is trapped in normal liver tissue, a normal liver shows high intensity, tumor/liver contrast becomes high, and diagnostic ability improves. In order to indicate the degree of uptake of the contrast media, the enhancement ratio (ER) is calculated. The ER is obtained by calculating (signal intensity (SI) after injection-SI before injection) / SI before injection. However, because there is no linearity between contrast media concentration and SI, ER is not correctly estimated by this method. We discuss a method of measuring ER based on SI and T(1) values using the phantom. We used a column phantom, with an internal diameter of 3 cm, that was filled with Gd-EOB-DTPA diluted solution. Moreover, measurement of the T(1) value by the IR method was also performed. The ER measuring method of this technique consists of the following three components: 1) Measurement of ER based on differences in 1/T(1) values using the variable flip angle (FA) method, 2) Measurement of differences in SI, and 3) Measurement of differences in 1/T(1) values using the IR method. ER values calculated by these three methods were compared. In measurement made using the variable FA method and the IR method, linearity was found between contrast media concentration and ER. On the other hand, linearity was not found between contrast media concentration and SI. For calculation of ER using Gd-EOB-DTPA, a more correct ER is obtained by measuring the T(1) value using the variable FA method.

  15. Comparison of gadopentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment

    NASA Astrophysics Data System (ADS)

    Dulski, Peter; Möller, Peter; Pekdeger, Asaf

    2011-06-01

    At a test site consisting of a storage pond and connected artificial aquifer, the long-time behaviour of gadopentetic acid (Gd-DTPA) was compared with the classic tracer bromide (Br-) in a 70-day dual-tracer experiment. The mixed tracer solution was injected into the oligotrophic pond, which is separated from the aquifer by an infiltration bank. The water drained from the aquifer was returned to the pond together with additional fresh groundwater, causing reduced concentrations of Gd-DTPA and Br- in the system. Transmetallation of Gd-DTPA by rare earth elements and yttrium was negligible but Cu2+ and Ni2+ might have played a role. Adsorption and/or biodegradation of Gd-DTPA were negligible. The decline of Gd-DTPA/Br ratios by 18% in the pond over 68 days was caused by reversible sorption of Br- in the aquifer, which caused variation of Br- background. Thus, Br- behaves less conservatively than Gd-DTPA in the aquifer. Comparison of both proves the suitability of Gd-chelates as tracers in hydrological studies. The advantage of Gd-DTPA as a tracer is that natural Gd3+ in water can continuously be monitored by analysing the suite of naturally occurring rare-earth elements. Thus, stable organic Gd-chelates are determinable with high precision at very low concentrations.

  16. Chlorophyll-a analogues conjugated with aminobenzyl-DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy.

    PubMed

    Li, Guolin; Slansky, Adam; Dobhal, Mahabeer P; Goswami, Lalit N; Graham, Andrew; Chen, Yihui; Kanter, Peter; Alberico, Ronald A; Spernyak, Joseph; Morgan, Janet; Mazurchuk, Richard; Oseroff, Allan; Grossman, Zachary; Pandey, Ravindra K

    2005-01-01

    A clinically relevant photosensitizer, 3-devinyl-3-(1-hexyloxyethyl)pyropheophorbide-a (HPPH, a chlorophyll-a derivative), was conjugated with Gd(III)-aminobenzyl-diethylenetriaminepentaacetic acid (DTPA), an experimental magnetic resonance (MR) imaging agent. In vivo reflectance spectroscopy confirmed tumor uptake of HPPH-aminobenzyl-Gd(III)-DTPA conjugate was higher than free HPPH administered intraveneously (iv) to C3H mice with subcutaneously (sc) implanted radiation-induced fibrosarcoma (RIF) tumor cells. In other experiments, Sprague-Dawley (SD) rats with sc implanted Ward Colon Carcinoma cells yielded markedly increased MR signal intensities from tumor regions-of-interest (ROIs) 24 h post-iv injection of HPPH-aminobenzyl-Gd(III)-DTPA conjugate as compared to unconjugated HPPH. In both in vitro (RIF tumor cells) and in vivo (mice bearing RIF tumors and rats bearing Ward Colon tumors) the conjugate produced significant increases in tumor conspicuity at 1.5 T and retained therapeutic efficacy following PDT. Also synthesized were a series of novel bifunctional agents containing two Gd(III) atoms per HPPH molecule that remained tumor-avid and PDT-active and yielded improved MR tumor conspicuity compared to their corresponding mono-Gd(III) analogues. Administered iv at a MR imaging dose of 10 micromol/kg, these conjugates produced severe skin phototoxicity. However, by replacing the hexyl group of the pyropheophorbide-a with a tri(ethylene glycol) monomethyl ether (PEG-methyl ether), these conjugates produced remarkable MR tumor enhancement at 8 h post-iv injection, significant tumoricidal activity (80% of mice were tumor-free on day 90), and reduced skin phototoxicity compared to their corresponding hexyl ether analogues. The poor water-solubility characteristic of these conjugates was resolved by incorporation into a liposomal formulation. This paper presents the synthesis of tumor-avid contrast enhancing agents for MR imaging and thus represents an important

  17. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

    PubMed Central

    2014-01-01

    Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p < 0.05), and was lower in the medial than in the lateral meniscus at all time points (p < 0.05). A faster increase in ΔR1 was observed in the vascularized peripheral region of the posterior medial meniscus, than in the avascular central

  18. Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide

    NASA Astrophysics Data System (ADS)

    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.

    1993-08-01

    The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.

  19. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model.

    PubMed

    Kuo, Yu-Ting; Chen, Chiao-Yun; Liu, Gin-Chung; Wang, Yun-Ming

    2016-01-01

    Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and

  20. Magnetic nanoparticles modified with DTPA-AMC-rare earth for fluorescent and magnetic resonance dual mode imaging.

    PubMed

    Liu, Zengchen; Li, Bo; Wang, Baodui; Yang, Zhengyin; Wang, Qin; Li, Tianrong; Qin, Dongdong; Li, Yong; Wang, Mingfang; Yan, Mihui

    2012-07-28

    In the present study, we report new water-soluble cell fluorescence imaging and contrast agents that are based on DTPA-AMC(7-amino-4-methyl coumarin)-Eu(3+) and DTPA-AMC(7-amino-4-methyl coumarin)-Gd(3+) compounds conjugated to Fe(3)O(4) NPs via a PEG-NH(2) linker. The novel Fe(3)O(4) NP-conjugates present two main advantages for cell fluorescence labelling: water solubility and targeting ability. The in vitro experiments demonstrate that water-soluble Fe(3)O(4) NPs-DBI-PEG-NH-DTPA-AMC(7-amino-4-methyl coumarin)-Eu(3+) has excellent cell permeating activity. Moreover, the relaxation rate test of Fe(3)O(4) NPs-DBI-PEG-NH-DTPA-AMC(7-amino-4-methyl coumarin)-Gd(3+) shows a higher T1 relaxation effect than traditional DTPA-Gd(3+) MRI agents. According to in vivo liver MRI experiments, better contrast of the liver was achieved after addition of Fe(3)O(4) NPs-DBI-PEG-NH-DTPA-AMC(7-amino-4-methyl coumarin)-Gd(3+). The results will provide a significant guide for researchers exploring the biomedical applications of superparamagnetic Fe(3)O(4) NPs.

  1. Reference tissue quantification of DCE-MRI data without a contrast agent calibration

    NASA Astrophysics Data System (ADS)

    Walker-Samuel, Simon; Leach, Martin O.; Collins, David J.

    2007-02-01

    The quantification of dynamic contrast-enhanced (DCE) MRI data conventionally requires a conversion from signal intensity to contrast agent concentration by measuring a change in the tissue longitudinal relaxation rate, R1. In this paper, it is shown that the use of a spoiled gradient-echo acquisition sequence (optimized so that signal intensity scales linearly with contrast agent concentration) in conjunction with a reference tissue-derived vascular input function (VIF), avoids the need for the conversion to Gd-DTPA concentration. This study evaluates how to optimize such sequences and which dynamic time-series parameters are most suitable for this type of analysis. It is shown that signal difference and relative enhancement provide useful alternatives when full contrast agent quantification cannot be achieved, but that pharmacokinetic parameters derived from both contain sources of error (such as those caused by differences between reference tissue and region of interest proton density and native T1 values). It is shown in a rectal cancer study that these sources of uncertainty are smaller when using signal difference, compared with relative enhancement (15 ± 4% compared with 33 ± 4%). Both of these uncertainties are of the order of those associated with the conversion to Gd-DTPA concentration, according to literature estimates.

  2. Mechanical delivery of aerosolized gadolinium-DTPA for pulmonary ventilation assessment in MR imaging.

    PubMed

    Haage, P; Adam, G; Karaagac, S; Pfeffer, J; Glowinski, A; Döhmen, S; Günther, R W

    2001-04-01

    To evaluate a new technique with mechanical administration of aerosolized gadolinium (Gd)-DTPA for MR visualization of lung ventilation. Ten experimental procedures were performed in six domestic pigs. Gd-DTPA was aerosolized by a small-particle generator. The intubated animals were mechanically aerosolized with the nebulized contrast agent and studied on a 1.5-T MR imager. Respiratory gated T1-weighted turbo spin-echo images were obtained before, during, and after contrast administration. Pulmonary signal intensity (SI) changes were calculated for corresponding regions of both lungs. Homogeneity of aerosol distribution was graded independently by two radiologists. To achieve a comparable SI increase as attained in previous trials that used manual aerosol ventilation, a ventilation period of 20 minutes (formerly 30 minutes) was sufficient. Mean SI changes of 116% were observed after that duration. Contrast delivery was rated evenly distributed in all cases by the reviewers. The feasibility of applying Gd-DTPA as a contrast agent to demonstrate pulmonary ventilation in large animals has been described before. The results of this refined technique substantiate the potential of Gd-based ventilation MR imaging by improving aerosol distribution and shortening the nebulization duration in the healthy lung.

  3. Gd-EOB-DTPA-Enhanced MR Guidance in Thermal Ablation of Liver Malignancies

    PubMed Central

    Rosenberg, Christian; Jahn, Andrea; Pickartz, Tilman; Wahnschaffe, Ulrich; Patrzyk, Maciej; Hosten, Norbert

    2014-01-01

    Objective To evaluate the potency of Gd-EOB-DTPA to support hepatic catheter placement in laser ablation procedures by quantifying time-dependent delineation effects for instrumentation and target tumor within liver parenchyma. Monitoring potential influence on online MR thermometry during the ablation procedure is a secondary aim. Materials and Methods 30 cases of MR-guided laser ablation were performed after i.v. bolus injection of gadoxetic acid (0.025 mmol/Kg Gd-EOB-DTPA; Bayer Healthcare, Berlin, Germany). T1-weighted GRE sequences were used for applicator guidance (FLASH 3D) in the catheter placement phase and for therapy monitoring (FLASH 2D) in the therapy phase. SNR and consecutive CNR values were measured for elements of interest plotted over time both for catheter placement and therapy phase and compared with a non-contrast control group of 19 earlier cases. Statistical analysis was realized using the paired Wilcoxon test. Results Sustainable signal elevation of liver parenchyma in the contrast-enhanced group was sufficient to silhouette both target tumor and applicator against the liver. Differences in time dependent CNR alteration were highly significant between contrast-enhanced and non-contrast interventions for parenchyma and target on the one hand (p = 0.020) and parenchyma and instrument on the other hand (p = 0.002). Effects lasted for the whole procedure (monitoring up to 60 min) and were specific for the contrast-enhanced group. Contrasting maxima were seen after median 30 (applicator) and 38 (tumor) minutes, in the potential core time of a multineedle procedure. Contrast influence on T1 thermometry for real-time monitoring of thermal impact was not significant (p = 0.068–0.715). Conclusion Results strongly support anticipated promotive effects of Gd-EOB-DTPA for MR-guided percutaneous liver interventions by proving and quantifying the delineating effects for therapy-relevant elements in the procedure. Time benefit, cost

  4. Gd-EOB-DTPA-enhanced MR guidance in thermal ablation of liver malignancies.

    PubMed

    Rosenberg, Christian; Jahn, Andrea; Pickartz, Tilman; Wahnschaffe, Ulrich; Patrzyk, Maciej; Hosten, Norbert

    2014-01-01

    To evaluate the potency of Gd-EOB-DTPA to support hepatic catheter placement in laser ablation procedures by quantifying time-dependent delineation effects for instrumentation and target tumor within liver parenchyma. Monitoring potential influence on online MR thermometry during the ablation procedure is a secondary aim. 30 cases of MR-guided laser ablation were performed after i.v. bolus injection of gadoxetic acid (0.025 mmol/Kg Gd-EOB-DTPA; Bayer Healthcare, Berlin, Germany). T1-weighted GRE sequences were used for applicator guidance (FLASH 3D) in the catheter placement phase and for therapy monitoring (FLASH 2D) in the therapy phase. SNR and consecutive CNR values were measured for elements of interest plotted over time both for catheter placement and therapy phase and compared with a non-contrast control group of 19 earlier cases. Statistical analysis was realized using the paired Wilcoxon test. Sustainable signal elevation of liver parenchyma in the contrast-enhanced group was sufficient to silhouette both target tumor and applicator against the liver. Differences in time dependent CNR alteration were highly significant between contrast-enhanced and non-contrast interventions for parenchyma and target on the one hand (p = 0.020) and parenchyma and instrument on the other hand (p = 0.002). Effects lasted for the whole procedure (monitoring up to 60 min) and were specific for the contrast-enhanced group. Contrasting maxima were seen after median 30 (applicator) and 38 (tumor) minutes, in the potential core time of a multineedle procedure. Contrast influence on T1 thermometry for real-time monitoring of thermal impact was not significant (p = 0.068-0.715). Results strongly support anticipated promotive effects of Gd-EOB-DTPA for MR-guided percutaneous liver interventions by proving and quantifying the delineating effects for therapy-relevant elements in the procedure. Time benefit, cost effectiveness and oncologic outcome of the described beneficiary effects

  5. In vivo cleavage rate of a dextran-bound magnetic resonance imaging contrast agent: preparation and intravascular pharmacokinetic characteristics in the rabbit.

    PubMed

    Hals, Petter Arnt; Sontum, Per Christian; Holtz, Eckart; Klaveness, Jo; Rongved, Pål

    2013-02-01

    Earlier described dextran-based contrast agents for magnetic resonance imaging (MRI) comprising the gadolinium chelate diethylenetriamine pentaacetic acid (GdDTPA, 1) have shown significantly shorter in vivo contrast duration in rat than what would be expected from the initial average molecular weight (Mw) of the dextran fraction (71.4 kD). To investigate this further, four dextran fractions with given initial average molecular weight (Mw) of 10.4, 41.0, 71.4 and 580 kD were used as starting material to prepare products 2-5 where one of the carboxylic acid functionalities in GdDTPA was used as a direct covalent ester linker to hydroxyl groups in dextrans. A fifth derivative (6) was an amide-ester bound β-alanine-DTPAGd conjugate with dextran having Mw 71.4 kD. The reference compound GdDTPA (1) and gadoliniumlabelled dextran derivatives 2-6 were injected intravenously in rabbits. Pharmacokinetic parameters showed that when GdDTPA is ester-bound directly to dextran hydroxyls, the cleavage rates of 2-5 were only moderately dependent on the molecular weights of the dextrans, having blood pool half-lives comparable to the low-molecular reference compound (t 1/2,β 0.3 - 0.5 hrs.). Presence of a β-alanine spacer in 6 prolonged the plasma half-life t 1/2,β to 6.9 hours, rendering a blood residence time suitable for blood pool slow release of GdDTPA. Biological cleavage regenerates the clinically acceptable carrier dextran and the β-alanine derivative of GdDTPA, pointing at a clinically acceptable product class for blood-pool contrast in MRI.

  6. In vivo tumor characterization using both MR and optical contrast agents with a hybrid MRI-DOT system

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Ghijsen, Michael; Thayer, David; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-03-01

    Dynamic contrast enhanced MRI (DCE-MRI) has been proven to be the most sensitive modality in detecting breast lesions. Currently available MR contrast agent, Gd-DTPA, is a low molecular weight extracellular agent and can diffuse freely from the vascular space into interstitial space. Due to this reason, DCE-MRI has low sensitivity in differentiating benign and malignant tumors. Meanwhile, diffuse optical tomography (DOT) can be used to provide enhancement kinetics of an FDA approved optical contrast agent, ICG, which behaves like a large molecular weight optical agent due to its binding to albumin. The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence improve the specificity. Our group has developed a high speed hybrid MRI-DOT system. The DOT is a fully automated, MR-compatible, multi-frequency and multi-spectral imaging system. Fischer-344 rats bearing subcutaneous R3230 tumor are injected simultaneously with Gd-DTPA (0.1nmol/kg) and IC-Green (2.5mg/kg). The enhancement kinetics of both contrast agents are recorded simultaneously with this hybrid MRI-DOT system and evaluated for different tumors.

  7. Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention.

    PubMed

    Saito, Kazuhiro; Ledsam, Joseph; Sourbron, Steven; Hashimoto, Tsuyoshi; Araki, Yoichi; Akata, Soichi; Tokuuye, Koichi

    2014-01-01

    To investigate if tracer kinetic modelling of low temporal resolution dynamic contrast-enhanced (DCE) MRI with Gd-EOB-DTPA could replace technetium-99 m galactosyl human serum albumin (GSA) single positron emission computed tomography (SPECT) and indocyanine green (ICG) retention for the measurement of liver functional reserve. Twenty eight patients awaiting liver resection for various cancers were included in this retrospective study that was approved by the institutional review board. The Gd-EOB-DTPA MRI sequence acquired five images: unenhanced, double arterial phase, portal phase, and 4 min after injection. Intracellular contrast uptake rate (UR) and extracellular volume (Ve) were calculated from DCE-MRI, along with the ratio of GSA radioactivity of liver to heart-plus-liver and per cent of cumulative uptake from 15-16 min (LHL15 and LU15, respectively) from GSA-scintigraphy. ICG retention at 15 min, Child-Pugh cirrhosis score (CPS) and postoperative Inuyama fibrosis criteria were also recorded. Statistical analysis was with Spearman rank correlation analysis. Comparing MRI parameters with the reference methods, significant correlations were obtained for UR and LHL15, LU15, ICG15 (all 0.4-0.6, P < 0.05); UR and CPS (-0.64, P < 0.001); Ve and Inuyama (0.44, P < 0.05). Measures of liver function obtained by routine Gd-EOB-DTPA DCE-MRI with tracer kinetic modelling may provide a suitable method for the evaluation of liver functional reserve. • Magnetic resonance imaging (MRI) provides new methods of measuring hepatic functional reserve. • DCE-MRI with Gd-EOB-DTPA offers the possibility of replacing scintigraphy. • The analysis method can be used for preoperative liver function evaluation.

  8. Synthesis of Tumor-avid Photosensitizer-Gd(III)DTPA conjugates: impact of the number of gadolinium units in T1/T2 relaxivity, intracellular localization, and photosensitizing efficacy.

    PubMed

    Goswami, Lalit N; White, William H; Spernyak, Joseph A; Ethirajan, Manivannan; Chen, Yihui; Missert, Joseph R; Morgan, Janet; Mazurchuk, Richard; Pandey, Ravindra K

    2010-05-19

    To develop novel bifunctional agents for tumor imaging (MR) and photodynamic therapy (PDT), certain tumor-avid photosensitizers derived from chlorophyll-a were conjugated with variable number of Gd(III)aminobenzyl DTPA moieties. All the conjugates containing three or six gadolinium units showed significant T(1) and T(2) relaxivities. However, as a bifunctional agent, the 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) containing 3Gd(III) aminophenyl DTPA was most promising with possible applications in tumor-imaging and PDT. Compared to HPPH, the corresponding 3- and 6Gd(III)aminobenzyl DTPA conjugates exhibited similar electronic absorption characteristics with a slightly decreased intensity of the absorption band at 660 nm. However, compared to HPPH, the excitation of the broad "Soret" band (near 400 nm) of the corresponding 3Gd(III)aminobenzyl-DTPA analogues showed a significant decrease in the fluorescence intensity at 667 nm.

  9. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Moghimi, Hamid Reza; Zohdiaghdam, Reza; Rafiei, Behrooz; Gorji, Ensieh

    2012-10-01

    Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner. As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal ( r 1) and transverse relaxivity ( r 2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r 2/ r 1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively. The achievement of new synthesis route of Gd2O3-DEG resulted in lower r 2/ r 1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r 2/ r 1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r 2/ r 1 ratio of previous PEGylation ( r 2/ r 1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.

  10. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma.

    PubMed

    Yamashita, Taro; Kitao, Azusa; Matsui, Osamu; Hayashi, Takehiro; Nio, Kouki; Kondo, Mitsumasa; Ohno, Naoki; Miyati, Tosiaki; Okada, Hikari; Yamashita, Tatsuya; Mizukoshi, Eishiro; Honda, Masao; Nakanuma, Yasuni; Takamura, Hiroyuki; Ohta, Tetsuo; Nakamoto, Yasunari; Yamamoto, Masakazu; Takayama, Tadatoshi; Arii, Shigeki; Wang, XinWei; Kaneko, Shuichi

    2014-11-01

    The survival of patients with hepatocellular carcinoma (HCC) is often individually different even after surgery for early-stage tumors. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) has been introduced recently to evaluate hepatic lesions with regard to vascularity and the activity of the organic anion transporter OATP1B3. Here we report that Gd-EOB-DTPA-enhanced MRI (EOB-MRI) in combination with serum alpha-fetoprotein (AFP) status reflects the stem/maturational status of HCC with distinct biology and prognostic information. Gd-EOB-DTPA uptake in the hepatobiliary phase was observed in ∼15% of HCCs. This uptake correlated with low serum AFP levels, maintenance of hepatocyte function with the up-regulation of OATP1B3 and HNF4A expression, and good prognosis. By contrast, HCC showing reduced Gd-EOB-DTPA uptake with high serum AFP levels was associated with poor prognosis and the activation of the oncogene FOXM1. Knockdown of HNF4A in HCC cells showing Gd-EOB-DTPA uptake resulted in the increased expression of AFP and FOXM1 and the loss of OATP1B3 expression accompanied by morphological changes, enhanced tumorigenesis, and loss of Gd-EOB-DTPA uptake in vivo. HCC classification based on EOB-MRI and serum AFP levels predicted overall survival in a single-institution cohort (n=70), and its prognostic utility was validated independently in a multi-institution cohort of early-stage HCCs (n=109). This noninvasive classification system is molecularly based on the stem/maturation status of HCCs and can be incorporated into current staging practices to improve management algorithms, especially in the early stage of disease. © 2014 by the American Association for the Study of Liver Diseases.

  11. Gd-EOB-DTPA-enhanced Magnetic Resonance Imaging and Alpha-fetoprotein Predict Prognosis of Early-Stage Hepatocellular Carcinoma

    PubMed Central

    Yamashita, Taro; Kitao, Azusa; Matsui, Osamu; Hayashi, Takehiro; Nio, Kouki; Kondo, Mitsumasa; Ohno, Naoki; Miyati, Tosiaki; Okada, Hikari; Yamashita, Tatsuya; Mizukoshi, Eishiro; Honda, Masao; Nakanuma, Yasuni; Takamura, Hiroyuki; Ohta, Tetsuo; Nakamoto, Yasunari; Yamamoto, Masakazu; Takayama, Tadatoshi; Arii, Shigeki; Wang, Xin Wei; Kaneko, Shuichi

    2014-01-01

    The survival of patients with hepatocellular carcinoma (HCC) is often individually different even after surgery for early-stage tumors. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) has been introduced recently to evaluate hepatic lesions with regard to vascularity and the activity of the organic anion transporter OATP1B3. Here, we report that Gd-EOB-DTPA-enhanced MRI (EOB-MRI) in combination with serum alpha-fetoprotein (AFP) status reflects the stem/maturational status of HCC with distinct biology and prognostic information. Gd-EOB-DTPA uptake in the hepatobiliary phase was observed in approximately 15% of HCCs. This uptake correlated with low serum AFP levels, maintenance of hepatocyte function with the up-regulation of OATP1B3 and HNF4A expression, and good prognosis. By contrast, HCC showing reduced Gd-EOB-DTPA uptake with high serum AFP levels was associated with poor prognosis and the activation of the oncogene FOXM1. Knockdown of HNF4A in HCC cells showing Gd-EOB-DTPA uptake resulted in the increased expression of AFP and FOXM1 and the loss of OATP1B3 expression accompanied by morphological changes, enhanced tumorigenesis, and loss of Gd-EOB-DTPA uptake in vivo. HCC classification based on EOB-MRI and serum AFP levels predicted overall survival in a single-institution cohort (n = 70), and its prognostic utility was validated independently in a multi-institution cohort of early-stage HCCs (n = 109). Conclusion: This non-invasive classification system is molecularly based on the stem/maturation status of HCCs and can be incorporated into current staging practices to improve management algorithms, especially in the early stage of disease. PMID:24700365

  12. Health economic assessment of Gd-EOB-DTPA MRI versus ECCM-MRI and multi-detector CT for diagnosis of hepatocellular carcinoma in China

    PubMed Central

    He, Xiaoning; Holtorf, Anke-Peggy; Rinde, Harald; Xie, Shuangshuang; Shen, Wen; Hou, Jiancun; Li, Xuehua; Li, Ziping; Lai, Jiaming; Wang, Yuting; Zhang, Lin; Wang, Jian; Li, Xuesong; Ma, Kuansheng; Ye, Feng; Ouyang, Han; Zhao, Hong

    2018-01-01

    Limited data exists in China on the comparative cost of gadolinium ethoxybenzyl diethylenetriamine magnetic resonance imaging (Gd-EOB-DTPA-MRI) with other imaging techniques. This study compared the total cost of Gd-EOB-DTPA-MRI with multidetector computed tomography (MDCT) and extracellular contrast media–enhanced MRI (ECCM-MRI) as initial imaging procedures in patients with suspected hepatocellular carcinoma (HCC). We developed a decision-tree model on the basis of the Chinese clinical guidelines for HCC, which was validated by clinical experts from China. The model compared the diagnostic accuracy and costs of alternative initial imaging procedures. Compared with MDCT and ECCM-MRI, Gd-EOB-DTPA-MRI imaging was associated with higher rates of diagnostic accuracy, i.e. higher proportions of true positives (TP) and true negatives (TN) with lower false positives (FP). Total diagnosis and treatment cost per patient after the initial Gd-EOB-DTPA-MRI evaluation was similar to MDCT (¥30,360 vs. ¥30,803) and lower than that reported with ECCM-MRI (¥30,360 vs. ¥31,465). Lower treatment cost after initial Gd-EOB-DTPA-MRI was driven by reduced utilization of confirmatory diagnostic procedures and unnecessary treatments. The findings reported that Gd-EOB-DTPA-MRI offered higher diagnostic accuracy compared with MDCT and ECCM-MRI at a comparable cost, which indicates Gd-EOB-DTPA-MRI could be the preferred initial imaging procedure for the diagnosis of HCC in China. PMID:29324837

  13. Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging

    PubMed Central

    Cabrera-García, Alejandro; Vidal-Moya, Alejandro; Bernabeu, Ángela; Pacheco-Torres, Jesús; Checa-Chavarria, Elisa; Fernández, Eduardo; Botella, Pablo

    2016-01-01

    We describe the synthesis, characterization and application as contrast agents in magnetic resonance imaging of a novel type of magnetic nanoparticle based on Gd-Si oxide, which presents high Gd3+ atom density. For this purpose, we have used a Prussian Blue analogue as the sacrificial template by reacting with soluble silicate, obtaining particles with nanorod morphology and of small size (75 nm). These nanoparticles present good biocompatibility and higher longitudinal and transversal relaxivity values than commercial Gd3+ solutions, which significantly improves the sensitivity of in vivo magnetic resonance images. PMID:28335240

  14. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Ie. V.; Kołodyńska, D.; Kozioł, M.; Gorbyk, P. P.

    2016-03-01

    The synthesis of the chitosan/magnetite nanocomposites is presented. Composites were prepared by co-precipitation of iron(II) and iron(III) salts by aqueous ammonia in the 0.1 % chitosan solution. It was shown that magnetite synthesis in the chitosan medium does not affect the magnetite crystal structure. The thermal analysis data showed 4.6 % of mass concentration of chitosan in the hybrid chitosan/magnetite composite. In the concentration range of initial Gd-DTPA solution up to 0.4 mmol/L, addition of chitosan to magnetite increases the adsorption capacity and affinity to Gd-DTPA complex. The Langmuir and Freundlich adsorption models were applied to describe adsorption processes. Nanocomposites were characterized by scanning electron microscopy (SEM), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and specific surface area determination (ASAP) methods.

  15. Investigating the stability of gadolinium based contrast agents towards UV radiation.

    PubMed

    Birka, Marvin; Roscher, Jörg; Holtkamp, Michael; Sperling, Michael; Karst, Uwe

    2016-03-15

    Since the 1980s, the broad application of gadolinium(Gd)-based contrast agents for magnetic resonance imaging (MRI) has led to significantly increased concentrations of Gd in the aqueous environment. Little is known about the stability of these highly polar xenobiotics under environmental conditions, in wastewater and in drinking water treatment. Therefore, the stability of frequently applied Gd-based MRI contrast agents towards UV radiation was investigated. The hyphenation of hydrophilic interaction liquid chromatography (HILIC) with inductively coupled plasma mass spectrometry (ICP-MS) and of HILIC with electrospray ionization mass spectrometry (ESI-MS) provided quantitative elemental information as well as structural information. The contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A showed a high stability in irradiation experiments applying a wavelength range from 220 nm to 500 nm. Nevertheless, the degradation of Gd-BOPTA as well as the formation of Gd-containing transformation products was observed by means of HILIC-ICP-MS. Matrix-dependent irradiation experiments showed a degradation of Gd-BOPTA down to 3% of the initial amount in purified water after 300 min, whereas the degradation was slowed down in drinking water and surface water. Furthermore, it was observed that the sum of species continuously decreased with proceeding irradiation in all matrices. After irradiation in purified water for 300 min only 16% of the sum of species was left. This indicates a release of Gd(III) ions from the complex in course of irradiation. HILIC-ESI-MS measurements revealed that the transformation products mostly resulted from O-dealkylation and N-dealkylation reactions. In good correlation with retention times, the majority of transformation products were found to be more polar than Gd-BOPTA itself. Based on accurate masses, sum formulas were obtained and structures could be proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Gd-EOB-DTPA-enhanced magnetic resonance imaging for bile duct intraductal papillary mucinous neoplasms

    PubMed Central

    Ying, Shi-Hong; Teng, Xiao-Dong; Wang, Zhao-Ming; Wang, Qi-Dong; Zhao, Yi-Lei; Chen, Feng; Xiao, Wen-Bo

    2015-01-01

    AIM: To investigate gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) of intraductal papillary mucinous neoplasms of the bile duct (IPMN-B). METHODS: The imaging findings of five cases of IPMN-B which were pathologically confirmed at our hospital between March 2012 and May 2013 were retrospectively analyzed. Three of these cases were diagnosed by duodenal endoscopy and biopsy pathology, and two cases were diagnosed by surgical pathology. All five patients underwent enhanced and non-enhanced computed tomography (CT), magnetic resonance cholangiopancreatography, and Gd-EOB-DTPA-enhanced MRI; one case underwent both Gd-EOB-DTPA-enhanced MRI and positron emission tomography-CT. The clinical data and imaging results for these cases were compared and are presented. RESULTS: Conventional imaging showed diffuse dilatation of bile ducts and multiple intraductal polypoid and papillary neoplasms or serrated changes along the bile ducts. In two cases, Gd-EOB-DTPA-enhanced MRI revealed dilated biliary ducts and intraductal tumors, as well as filling defects caused by mucin in the dilated bile ducts in the hepatobiliary phase. Gd-EOB-DTPA-enhanced MRI in one case clearly showed a low-signal tumor in the hepatobiliary phase, similar to what was seen by positron emission tomography-CT. In two patients, routine inspection was unable to discern whether the lesions were inflammation or tumors. However, Gd-EOB-DTPA-enhanced MRI revealed a pattern of gradual enhancement during the hepatobiliary phase, and the signal intensity of the lesions was lower than the surrounding liver parenchyma, suggesting tissue inflammation in both cases, which were confirmed by surgical pathology. CONCLUSION: Gd-EOB-DTPA-enhanced MRI reveals the intraductal mucin component of IPMN-B in some cases and the extent of tumor infiltration beyond the bile ducts in invasive cases. PMID:26167082

  17. Gd-EOB-DTPA-enhanced magnetic resonance imaging for bile duct intraductal papillary mucinous neoplasms.

    PubMed

    Ying, Shi-Hong; Teng, Xiao-Dong; Wang, Zhao-Ming; Wang, Qi-Dong; Zhao, Yi-Lei; Chen, Feng; Xiao, Wen-Bo

    2015-07-07

    To investigate gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) of intraductal papillary mucinous neoplasms of the bile duct (IPMN-B). The imaging findings of five cases of IPMN-B which were pathologically confirmed at our hospital between March 2012 and May 2013 were retrospectively analyzed. Three of these cases were diagnosed by duodenal endoscopy and biopsy pathology, and two cases were diagnosed by surgical pathology. All five patients underwent enhanced and non-enhanced computed tomography (CT), magnetic resonance cholangiopancreatography, and Gd-EOB-DTPA-enhanced MRI; one case underwent both Gd-EOB-DTPA-enhanced MRI and positron emission tomography-CT. The clinical data and imaging results for these cases were compared and are presented. Conventional imaging showed diffuse dilatation of bile ducts and multiple intraductal polypoid and papillary neoplasms or serrated changes along the bile ducts. In two cases, Gd-EOB-DTPA-enhanced MRI revealed dilated biliary ducts and intraductal tumors, as well as filling defects caused by mucin in the dilated bile ducts in the hepatobiliary phase. Gd-EOB-DTPA-enhanced MRI in one case clearly showed a low-signal tumor in the hepatobiliary phase, similar to what was seen by positron emission tomography-CT. In two patients, routine inspection was unable to discern whether the lesions were inflammation or tumors. However, Gd-EOB-DTPA-enhanced MRI revealed a pattern of gradual enhancement during the hepatobiliary phase, and the signal intensity of the lesions was lower than the surrounding liver parenchyma, suggesting tissue inflammation in both cases, which were confirmed by surgical pathology. Gd-EOB-DTPA-enhanced MRI reveals the intraductal mucin component of IPMN-B in some cases and the extent of tumor infiltration beyond the bile ducts in invasive cases.

  18. Detecting liver fibrosis with Gd-EOB-DTPA-enhanced MRI: A confirmatory study.

    PubMed

    Verloh, Niklas; Utpatel, Kirsten; Haimerl, Michael; Zeman, Florian; Beyer, Lukas; Fellner, Claudia; Brennfleck, Frank; Dahlke, Marc H; Stroszczynski, Christian; Evert, Matthias; Wiggermann, Philipp

    2018-04-18

    Strong correlations between the grade of fibrosis and cirrhosis, classified using the Ishak scoring system, and the uptake characteristics of Gd-EOB-DTPA with the relative enhancement (RE) of the liver parenchyma have been reported. To confirm the results of a retrospective analysis, patients undergoing liver surgery were prospectively examined with Gd-EOB-DTPA-enhanced liver 3 Tesla MRI to determine the degree of liver fibrosis. Correlations between the grade of fibrosis and cirrhosis, classified using the Ishak scoring system, and RE were investigated and compared with those derived from an initial retrospective study. After validating the cut-off values in the retrospective study (Ishak ≥ 1, RE-cut-off 0.90; Ishak ≥ 2, RE-cut-off 0.79; Ishak ≥ 4, RE-cut-off 0.60; and Ishak = 6, RE-cut-off 0.47), we showed that Gd-EOB-DTPA has a high sensitivity (≥86%) and a high positive predictive value (≥86%). These results support the use of Gd-EOB-DTPA-enhanced liver MRI as a non-invasive method for determining the degree of liver fibrosis and cirrhosis.

  19. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent.

    PubMed

    Makowski, Marcus R; Preissel, Anne; von Bary, Christian; Warley, Alice; Schachoff, Sylvia; Keithan, Alexandra; Cesati, Richard R; Onthank, David C; Schwaiger, Markus; Robinson, Simon P; Botnar, René M

    2012-07-01

    The aim of this study was to demonstrate the feasibility of high-resolution 3-dimensional aortic vessel wall imaging using a novel elastin-specific magnetic resonance contrast agent (ESMA) in a large animal model. The thoracic aortic vessel wall of 6 Landrace pigs was imaged using a novel ESMA and a nonspecific control agent. On day 1, imaging was performed before and after the administration of a nonspecific control agent, gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA; Bayer Schering AG, Berlin, Germany). On day 3, identical scans were repeated before and after the administration of a novel ESMA (Lantheus Medical Imaging, North Billerica, Massachusetts). Three-dimensional inversion recovery gradient echo delayed-enhancement imaging and magnetic resonance (MR) angiography of the thoracic aortic vessel wall were performed on a 1.5-T MR scanner (Achieva; Philips Medical Systems, the Netherlands). The signal-to-noise ratio and the contrast-to-noise ratio of arterial wall enhancement, including the time course of enhancement, were assessed for ESMA and Gd-DTPA. After the completion of imaging sessions, histology, electron microscopy, and inductively coupled plasma mass spectroscopy were performed to localize and quantify the gadolinium bound to the arterial vessel wall. Administration of ESMA resulted in a strong enhancement of the aortic vessel wall on delayed-enhancement imaging, whereas no significant enhancement could be measured with Gd-DTPA. Ninety to 100 minutes after the administration of ESMA, significantly higher signal-to-noise ratio and contrast-to-noise ratio could be measured compared with the administration of Gd-DTPA (45.7 ± 9.6 vs 13.2 ± 3.5, P < 0.05 and 41.9 ± 9.1 vs 5.2 ± 2.0, P < 0.05). A significant correlation (0.96; P < 0.01) between area measurements derived from ESMA scans and aortic MR angiography scans could be found. Electron microscopy and inductively coupled plasma mass spectroscopy confirmed the colocalization of ESMA with

  20. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent.

    PubMed

    Dewi, Novriana; Mi, Peng; Yanagie, Hironobu; Sakurai, Yuriko; Morishita, Yasuyuki; Yanagawa, Masashi; Nakagawa, Takayuki; Shinohara, Atsuko; Matsukawa, Takehisa; Yokoyama, Kazuhito; Cabral, Horacio; Suzuki, Minoru; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Nishiyama, Nobuhiro; Kataoka, Kazunori; Takahashi, Hiroyuki

    2016-04-01

    A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.

  1. Volume change and liver parenchymal signal intensity in Gd-EOB-DTPA-enhanced magnetic resonance imaging after portal vein embolization prior to hepatectomy.

    PubMed

    Akiba, Ayako; Murata, Satoru; Mine, Takahiko; Onozawa, Shiro; Sekine, Tetsuro; Amano, Yasuo; Kawano, Youichi; Uchida, Eiji; Kumita, Shin-ichiro

    2014-01-01

    To investigate the liver volume change and the potential of early evaluation by contrast-enhanced magnetic resonance imaging (MRI) using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) after portal vein embolization (PVE). Retrospective evaluations of computed tomography (CT) volumetry of total liver and nonembolized areas were performed before and 3 weeks after PVE in 37 cases. The percentage of future liver remnant (%FLR) and the change ratio of %FLR (%FLR ratio) were calculated. Prospective evaluation of signal intensities (SIs) was performed to estimate the role of Gd-EOB-DTPA-enhanced MRI as a predictor of hypertrophy in 16 cases. The SI contrast between embolized and nonembolized areas was calculated 1 week after PVE. The change in SI contrast before and after PVE (SI ratio) was also calculated in 11 cases. %FLR ratio significantly increased, and SI ratio significantly decreased (both P < 0.01). There were significant negative correlations between %FLR and SI contrast and between %FLR and SI ratio (both P < 0.01). Hypertrophy in the nonembolized area after PVE was indicated by CT volumetry, and measurement of SI contrast and SI ratio in Gd-EOB-DTPA-enhanced MRI early after PVE may be useful to predict the potential for hepatic hypertrophy.

  2. Synthesis and characterization of a porphyrazine-Gd(III) MRI contrast agent and in vivo imaging of a breast cancer xenograft model.

    PubMed

    Trivedi, Evan R; Ma, Zhidong; Waters, Emily A; Macrenaris, Keith W; Subramanian, Rohit; Barrett, Anthony G M; Meade, Thomas J; Hoffman, Brian M

    2014-01-01

    Porphyrazines (Pz), or tetraazaporphyrins, are being studied for their potential use in detection and treatment of cancer. Here, an amphiphilic Cu-Pz-Gd(III) conjugate has been prepared via azide-alkyne Huisgen cycloaddition or 'click' chemistry between an azide functionalized Pz and alkyne functionalized DOTA-Gd(III) analog for use as an MRI contrast agent. This agent, Cu-Pz-Gd(III), is synthesized in good yield and exhibits solution-phase ionic relaxivity (r1  = 11.5 mM(-1) s(-1)) that is approximately four times higher than that of a clinically used monomeric Gd(III) contrast agent, DOTA-Gd(III). Breast tumor cells (MDA-MB-231) associate with Cu-Pz-Gd(III) in vitro, where significant contrast enhancement (9.336 ± 0.335 contrast-to-noise ratio) is observed in phantom cell pellet MR images. This novel contrast agent was administered in vivo to an orthotopic breast tumor model in athymic nude mice and MR images were collected. The average T1 of tumor regions in mice treated with 50 mg kg(-1) Cu-Pz-Gd(III) decreased relative to saline-treated controls. Furthermore, the decrease in T1 was persistent relative to mice treated with the monomeric Gd(III) contrast agent. An ex vivo biodistribution study confirmed that Cu-Pz-Gd(III) accumulates in the tumors and is rapidly cleared, primarily through the kidneys. Differential accumulation and T1 enhancement by Cu-Pz-Gd(III) in the tumor's core relative to the periphery offer preliminary evidence that this agent would find application in the imaging of necrotic tissue. Copyright © 2014 John Wiley & Sons, Ltd.

  3. [Imaging and quantitative measurement of brain extracellular space using MRI Gd-DTPA tracer method].

    PubMed

    He, Qing-yuan; Han, Hong-bin; Xu, Fang-jing-wei; Yan, Jun-hao; Zeng, Jin-jin; Li, Xiao-gang; Fu, Yu; Peng, Yun; Chen, He; Hou, Chao; Xu, Xiao-juan

    2010-04-18

    To observe the diffusion of Gd-DTPA in brain extracellular space (ECS) by magnetic resonance imaging(MRI) and investigate the feasibility of ECS measurement by using MRI tracer method in vivo. 2 microL Gd-DTPA was introduced into ECS by caudate nucleus according to stereotaxic atlas in 8 Sprague Dawley(SD) rats (male, 280-320 g). The MRI scans were performed at 1 h, 3 h, 6 h, 9 h and 12 h respectively after administration. MRI appearances of Gd-DTPA diffusion and distribution was observed and compared. The MRI signal enhancement was measured at each time point. The neuroethology assessment was performed after MRI scanning at 12 h. The injection was accurate at the center of the caudate nucleus in 6 rats, while, at the capsula externa in other 2 rats. Gd-DTPA diffused isotropically after it was introduced into caudate nucleus, which spread into lateral cortex at 3 h. The MRI signal enhancement distributed mainly in the middle cerebral artery territory. A significant difference was found between the signal enhancement ratio at 1 h and that at 3 h in the original point of caudate nucleus (t=95.63, P<0.01), and the signal enhancement attenuated following the exponential power function y=1.7886x(-0.1776) (R2=0.94). In 2 rats with the injection point at capsula externa, Gd-DTPA diffused anisotropically along the fiber track of white matter during 1 h to 3 h, and spread into the lateral cortex at 6 h. The diffusion and clearance of Gd-DTPA in brain ECS could be monitored and measured quantitatively in vivo by MRI tracer method.

  4. Gd-EOB-DTPA-enhanced-MR imaging in the inflammation stage of nonalcoholic steatohepatitis (NASH) in mice.

    PubMed

    Yamada, Tomomi; Obata, Atsushi; Kashiwagi, Yuto; Rokugawa, Takemi; Matsushima, Shuuichi; Hamada, Tadateru; Watabe, Hiroshi; Abe, Kohji

    2016-07-01

    The purpose of this study is to investigate the correlation between the liver kinetics of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) and liver histopathology in a mouse model of NASH by using dynamic contrast-enhanced MRI. Twenty male C57/BL6 mice aged 8weeks were fed a methionine-choline-deficient (MCD) diet for 2, 4 and 6weeks (MCD groups: MCD 2w, 4w, or 6w). Gd-EOB-DTPA-enhanced MR imaging of the liver was performed at 2, 4 and 6weeks after the MCD feeding. The signal intensity of the liver was obtained from dynamic MR images and relative enhancement (RE), and the time to maximum RE (Tmax) and half-life of elimination RE (T1/2) were calculated. After MRI scan, histopathological scores of hepatic steatosis and inflammation and blood biochemistry data, such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, were obtained. Plasma AST and ALT levels were significantly increased in mice fed MCD. Histopathological scores indicated that steatohepatitis progressed with the MCD feeding period from 2 to 6weeks, but significant fibrosis was observed only in mice fed MCD for 6weeks. Gd-EOB-DTPA-enhanced MRI showed that Tmax was significantly prolonged in the livers of the 6-week group compared to the control group (control, 4.0±0.7min; MCD 6w, 12.1±1.6min), although there was no alteration in the 2- and 4-week groups. T1/2 was significantly prolonged in mice fed MCD for 4 and 6weeks compared to the control group (control, 19.9±2.0min; MCD 4w, 46.7±8.7min; MCD 6w, 65.4±8.8min). The parameters of Gd-EOB-DTPA kinetics (Tmax and T1/2) in the liver were positively correlated with the liver histopathological score (steatosis vs Tmax, rho=0.69, P=0.0007; inflammation vs Tmax, rho=0.66, P=0.00155; steatosis vs T1/2, rho=0.77, P<0.0001; inflammation vs T1/2, rho=0.73, P=0.0003). The liver kinetics of Gd-EOB-DTPA correlated well with the inflammation score in the mouse model of NASH, suggesting the possibility of

  5. PET imaging of tumor angiogenesis in mice with VEGF-A targeted 86Y-CHX-A″-DTPA-bevacizumab

    PubMed Central

    Nayak, Tapan K.; Garmestani, Kayhan; Baidoo, Kwamena E.; Milenic, Diane E.; Brechbiel, Martin W.

    2010-01-01

    Bevacizumab is a humanized monoclonal antibody that binds to tumor-secreted VEGF-A and inhibits tumor angiogenesis. In 2004, the antibody was approved by the United States FDA for the treatment of metastatic colorectal carcinoma in combination with chemotherapy. This report describes the preclinical evaluation of a radioimmunoconjugate, 86Y-CHX-A″-DTPA-bevacizumab, for potential use in PET imaging of VEGF-A tumor angiogenesis and as a surrogate marker for 90Y based radioimmunotherapy. Bevacizumab was conjugated to CHX-A″-DTPA and radiolabeled with 86Y. In vivo biodistribution and PET imaging studies were performed on mice bearing VEGF-A secreting human colorectal (LS-174T), human ovarian (SKOV-3) and VEGF-A negative human mesothelioma (MSTO-211H) xenografts. Biodistribution and PET imaging studies demonstrated high specific tumor uptake of the radioimmunoconjugate. In mice bearing VEGF-A secreting LS-174T, SKOV-3 and VEGF-A negative MSTO-211H tumors, the tumor uptake at 3 d post-injection (p.i) was 13.6 ± 1.5, 17.4 ± 1.7 and 6.8 ± 0.7 % ID/g, respectively. The corresponding tumor uptake in mice co-injected with 0.05 mg cold bevacizumab were 5.8 ± 1.3, 8.9 ± 1.9 and 7.4 ± 1.0 % ID/g, respectively at the same time point, demonstrating specific blockage of the target in VEGF-A secreting tumors. The LS-174T and SKOV3 tumors were clearly visualized by PET imaging after injecting 1.8–2.0 MBq 86Y-CHX-A″-DTPA-bevacizumab. Organ uptake quantified by PET closely correlated (r2=0.87, p=0.64, n=18) to values determined by biodistribution studies. This preclinical study demonstrates the potential of the radioimmunoconjugate, 86Y-CHX-A″-DTPA-bevacizumab, for non-invasive assessment of the VEGF-A tumor angiogenesis status and as a surrogate marker for 90Y-CHX-A″-DTPA-bevacizumab radioimmunotherapy. PMID:20473899

  6. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr; Lee, Yong Jin; Ko, In Ok

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyKmore » peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.« less

  7. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Ahrén, Maria; Selegård, Linnéa; Söderlind, Fredrik; Linares, Mathieu; Kauczor, Joanna; Norman, Patrick; Käll, Per-Olov; Uvdal, Kajsa

    2012-08-01

    Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4-5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r 1 and r 2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.

  8. Integrin αvβ3-targeted dynamic contrast-enhanced magnetic resonance imaging using a gadolinium-loaded polyethylene gycol-dendrimer-cyclic RGD conjugate to evaluate tumor angiogenesis and to assess early antiangiogenic treatment response in a mouse xenograft tumor model.

    PubMed

    Chen, Wei-Tsung; Shih, Tiffany Ting Fang; Chen, Ran-Chou; Tu, Shin-Yang; Hsieh, Wen-Yuen; Yang, Pang-Chyr

    2012-01-01

    The purpose of this study was to validate an integrin αvβ3-targeted magnetic resonance contrast agent, PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2, for its ability to detect tumor angiogenesis and assess early response to antiangiogenic therapy using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). Integrin αvβ3-positive U87 cells and control groups were incubated with fluorescein-labeled cRGD-conjugated dendrimer, and the cellular attachment of the dendrimer was observed. DCE MRI was performed on mice bearing KB xenograft tumors using either PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 or PEG-G3-(Gd-DTPA)6-(cRAD-DTPA)2. DCE MRI was also performed 2 hours after anti-integrin αvβ3 monoclonal antibody treatment and after bevacizumab treatment on days 3 and 6t. Using DCE MRI, the 30-minute contrast washout percentage was significantly lower in the cRGD-conjugate injection groups. The enhancement patterns were different between the two contrast injection groups. In the antiangiogenic therapy groups, a rapid increase in 30-minute contrast washout percentage was observed in both the LM609 and bevacizumab treatment groups, and this occurred before there was an observable decrease in tumor size. The integrin αvβ3 targeting ability of PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 in vitro and in vivo was demonstrated. The 30-minute contrast washout percentage is a useful parameter for examining tumor angiogenesis and for the early assessment of antiangiogenic treatment response.

  9. A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent.

    PubMed

    Lebdusková, Petra; Kotek, Jan; Hermann, Petr; Vander Elst, Luce; Muller, Robert N; Lukes, Ivan; Peters, Joop A

    2004-01-01

    A novel conjugate of a polysaccharide and a Gd(III) chelate with potential as contrast agent for magnetic resonance imaging (MRI) was synthesized. The structure of the chelate was derived from H5DTPA by replacing the central pendant arm by a phosphinic acid functional group, which was covalently bound to the polysaccharide inulin. On the average, each monosaccharide unit of the inulin was attached to approximately one (0.9) chelate moiety. The average molecular weight is 23110 and the average number of Gd3+ ions per molecule is 24. The ligand binds the Gd3+ ion in an octadentate fashion via three nitrogen atoms, four carboxylate oxygen atoms, and one P-O oxygen atom, and its first coordination sphere is completed by a water molecule. This compound shows promising properties for application as a contrast agent for MRI thanks to a favorable residence lifetime of this water molecule (170 ns at 298 K), a relatively long rotational correlation time (866 ps at 298 K), and the presence of two water molecules in the second coordination sphere of the Gd3+ ion. Furthermore, its stability toward transmetalation with Zn(II) is as high as that of the clinically used [Gd(DTPA)(H2O)]2-.

  10. Assessment of Gd-EOB-DTPA-enhanced MRI for HCC and dysplastic nodules and comparison of detection sensitivity versus MDCT.

    PubMed

    Inoue, Tatsuo; Kudo, Masatoshi; Komuta, Mina; Hayaishi, Sosuke; Ueda, Taisuke; Takita, Masahiro; Kitai, Satoshi; Hatanaka, Kinuyo; Yada, Norihisa; Hagiwara, Satoru; Chung, Hobyung; Sakurai, Toshiharu; Ueshima, Kazuomi; Sakamoto, Michiie; Maenishi, Osamu; Hyodo, Tomoko; Okada, Masahiro; Kumano, Seishi; Murakami, Takamichi

    2012-09-01

    We aimed to evaluate gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for the detection of hepatocellular carcinomas (HCCs) and dysplastic nodules (DNs) compared with dynamic multi-detector row computed tomography (MDCT), and to discriminate between HCCs and DNs. Eighty-six nodules diagnosed as HCC or DNs were retrospectively investigated. Gd-EOB-DTPA-enhanced MRI and dynamic MDCT were compared with respect to their diagnostic ability for hypervascular HCCs and detection sensitivity for hypovascular tumors. The ability of hepatobiliary images of Gd-EOB-DTPA-enhanced MRI to discriminate between these nodules was assessed. We also calculated the EOB enhancement ratio of the tumors. For hypervascular HCCs, the diagnostic ability of Gd-EOB-DTPA-enhanced MRI was significantly higher than that of MDCT for tumors less than 2 cm (p = 0.048). There was no difference in the detection of hypervascular HCCs between hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI (43/45: 96%) and dynamic MDCT (40/45: 89%), whereas the detection sensitivity of hypovascular tumors by Gd-EOB-DTPA-enhanced MRI was significantly higher than that by dynamic MDCT (39/41: 95% vs. 25/41: 61%, p = 0.001). EOB enhancement ratios were decreased in parallel with the degree of differentiation in DNs and HCCs, although there was no difference between DNs and hypovascular well-differentiated HCCs. The diagnostic ability of Gd-EOB-DTPA-enhanced MRI for hypervascular HCCs less than 2 cm was significantly higher than that of MDCT. For hypovascular tumors, the detection sensitivity of hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was significantly higher than that of dynamic Gd-EOB-DTPA-enhanced MRI and dynamic MDCT. It was difficult to distinguish between DNs and hypovascular well-differentiated HCCs based on the EOB enhancement ratio.

  11. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  12. Is 3-Tesla Gd-EOB-DTPA-Enhanced MRI with Diffusion-Weighted Imaging Superior to 64-Slice Contrast-Enhanced CT for the Diagnosis of Hepatocellular Carcinoma?

    PubMed Central

    Maiwald, Bettina; Lobsien, Donald; Kahn, Thomas; Stumpp, Patrick

    2014-01-01

    Objectives To compare 64-slice contrast-enhanced computed tomography (CT) with 3-Tesla magnetic resonance imaging (MRI) using Gd-EOB-DTPA for the diagnosis of hepatocellular carcinoma (HCC) and evaluate the utility of diffusion-weighted imaging (DWI) in this setting. Methods 3-phase-liver-CT was performed in fifty patients (42 male, 8 female) with suspected or proven HCC. The patients were subjected to a 3-Tesla-MRI-examination with Gd-EOB-DTPA and diffusion weighted imaging (DWI) at b-values of 0, 50 and 400 s/mm2. The apparent diffusion coefficient (ADC)-value was determined for each lesion detected in DWI. The histopathological report after resection or biopsy of a lesion served as the gold standard, and a surrogate of follow-up or complementary imaging techniques in combination with clinical and paraclinical parameters was used in unresected lesions. Diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values were evaluated for each technique. Results MRI detected slightly more lesions that were considered suspicious for HCC per patient compared to CT (2.7 versus 2.3, respectively). ADC-measurements in HCC showed notably heterogeneous values with a median of 1.2±0.5×10−3 mm2/s (range from 0.07±0.1 to 3.0±0.1×10−3 mm2/s). MRI showed similar diagnostic accuracy, sensitivity, and positive and negative predictive values compared to CT (AUC 0.837, sensitivity 92%, PPV 80% and NPV 90% for MRI vs. AUC 0.798, sensitivity 85%, PPV 79% and NPV 82% for CT; not significant). Specificity was 75% for both techniques. Conclusions Our study did not show a statistically significant difference in detection in detection of HCC between MRI and CT. Gd-EOB-DTPA-enhanced MRI tended to detect more lesions per patient compared to contrast-enhanced CT; therefore, we would recommend this modality as the first-choice imaging method for the detection of HCC and therapeutic decisions. However, contrast-enhanced CT was not inferior in our study, so

  13. Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases.

    PubMed

    Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M

    2012-07-01

    To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.

  14. Renal damages after extracorporeal shock wave lithotripsy evaluated by Gd-DTPA-enhanced dynamic magnetic resonance imaging.

    PubMed

    Umekawa, T; Kohri, K; Yamate, T; Amasaki, N; Ishikawa, Y; Takada, M; Iguchi, M; Kurita, T

    1992-01-01

    Renal damages after extracorporeal shock wave lithotripsy (ESWL) were evaluated by magnetic resonance imaging (MRI) including Gd-DTPA-enhanced dynamic MRI in 37 patients with renal stone by spin echo methods (T1 and T2-weighted scan) and small tip angle gradient echo method (T2-weighted scan). Sixty-eight percent of the patients had changes in the MRI findings after ESWL. The frequently observed findings were perirenal fluid collection (38%), loss of corticomedullary junction (35%), and increased signal intensity of muscle and other adjacent tissue (34%). Preoperative Gd-DTPA-enhanced dynamic MRI showed low intensity band which suggests Gd-DTPA secretion from the glomerulus into the renal tubulus. In all cases the low intensity band became unclear after ESWL because of renal contusion due to ESWL. MRI, including Gd-DTPA-enhanced dynamic MRI, is considered to be a good procedure for evaluation of renal damages due to ESWL.

  15. [Aerosolized gadolinium-DTPA for demonstration of pulmonary ventilation in magnetic resonance tomography].

    PubMed

    Haage, P; Adam, G; Misselwitz, B; Karaagac, S; Pfeffer, J G; Glowinski, A; Döhmen, S; Tacke, J; Günther, R W

    2000-04-01

    Magnetic resonance assessment of lung ventilation with aerosolized Gd-DTPA. Eleven experimental procedures were carried out in a domestic pig model. The intubated pigs were aerosolized for 30 minutes with an aqueous formulation of Gd-DTPA. The contrast agent aerosol was generated by a small particle aerosol generator. Imaging was performed on a 1.5 T MR imager using a T1-weighted turbo spin echo sequence with respiratory gating (TR 141 ms, TE 8.5 ms, 6 averages, slice thickness 10 mm). Pulmonary signal intensities before and after ventilation were measured in peripheral portions of both lungs. Immediately after ventilation with aerosolized Gd-DTPA, the signal intensity in both lungs increased significantly in all animals with values up to 237% above baseline (mean 139% +/- 48%), but with in some cases considerable regional intra- and interindividual intensity differences. Distinctive parenchymal enhancement was readily visualized in all eleven cases with good spatial resolution. The presented data indicate that Gd-DTPA in aerosolized form can be used to demonstrate pulmonary ventilation in large animals with lung volumes comparable to man. Further experimental trials are necessary to improve reproducibility and to define the scope of this method for depicting lung disease.

  16. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    PubMed

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  17. Tumor-Microenvironment Relaxivity-Changeable Gd-Loaded Poly(L-lysine)/Carboxymethyl Chitosan Nanoparticles as Cancer-Recognizable Magnetic Resonance Imaging Contrast Agents.

    PubMed

    Jiang, Dandan; Zhang, Xiaopeng; Yu, Dexin; Xiao, Yanan; Wang, Tianqi; Su, Zhihui; Liu, Yongjun; Zhang, Na

    2017-03-01

    Magnetic resonance imaging (MRI) contrast agents with tumor-microenvironment changeable relaxivity are effective to increase the sensitivity and selectivity of MRI in tumor diagnosis. In this study, pH-sensitive Gd-loaded Poly(L-lysine)/ Carboxymethyl Chitosan Nanoparticles (Gd-PCNPs) were developed as relaxivity-changeable MRI contrast agents based on the "on–off" switchable strategy. The "on–off" switchable nano-contrast agents were capable of releasing Gd3+ in response to physical stimulation, with structure transformed. Gd-PCNPs could responsively disassemble in an acidic tumor-microenvironment and increase the exchange of protons between water molecules and Gd3+ ions, thus selectively enhance the relaxivity in tumor area. Gd-PCNPs were self-assembled via electrostatic interaction between poly(L-lysine)-diethylenetriamine pentaacetic acid-gadolinium and pH-sensitive carboxymethyl chitosan (CMCS). Gd-PCNPs exhibited spherical shape with uniform particle size distribution (166.00 ± 1 .71 nm) and negative zeta potential (–13.2 ± 4.7 mV). The relaxivity of Gd-PCNPs increased from 6.618 mM–1 · s–1 to 10.008 mM–1 · s–1 when the pH values decrease from 7.4 to 6.0, which was higher than Magnevist® (3.924 mM–1 · s–1 at both pH 7.4 and 6.0 (p <0 05). The changeable relaxivity of Gd/PCNPs would result in enhanced tumor/normal tissue signal contrast, which was verified by in vivo MRI test. In vivo MRI test showed that the signal of Gd-PCNPs was significantly enhanced with prolonged imaging time in tumor tissue compared to Magnevist® (p <0 05). Furthermore, Gd-PCNPs exhibited unobvious in vitro cytotoxicity under the experimental concentrations in B16 cells. No obvious damage was observed in the different tissues of mice. These results indicated that the relaxivity-changeable Gd-PCNPs exhibited demonstrated sensitivity and selectivity in tumor diagnosis with a great potential as a novel MRI contrast agent.

  18. Hydrogels incorporating GdDOTA: towards highly efficient dual T1/T2 MRI contrast agents.

    PubMed

    Courant, Thomas; Roullin, Valérie Gaëlle; Cadiou, Cyril; Callewaert, Maïté; Andry, Marie Christine; Portefaix, Christophe; Hoeffel, Christine; de Goltstein, Marie Christine; Port, Marc; Laurent, Sophie; Elst, Luce Vander; Muller, Robert; Molinari, Michaël; Chuburu, Françoise

    2012-09-03

    Do not tumble dry: Gadolinium-DOTA encapsulated into polysaccharide nanoparticles (GdDOTA NPs) exhibited high relaxivity (r(1) =101.7 s(-1) mM(-1) per Gd(3+) ion at 37 °C and 20 MHz). This high relaxation rate is due to efficient Gd loading, reduced tumbling of the Gd complex, and the hydrogel nature of the nanoparticles. The efficacy of the nanoparticles as a T(1)/T(2) dual-mode contrast agent was studied in C6 cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. T1 mapping combined with Gd-EOB-DTPA-enhanced magnetic resonance imaging in predicting the pathologic grading of hepatocellular carcinoma.

    PubMed

    Chen, C Y; Chen, J; Xia, C C; Huang, Z X; Song, B

    2017-01-01

    The aim of this study was to investigate the value of Gd-EOB-DTPA-enhanced MRI on hepatobiliary phase (HBP) imaging and T1 mapping sequence in the differentiation of hepatocellular carcinoma (HCC). A total of 45 patients with HCC who were to undergo a resection were enrolled in this study. Gd-EOB-DTPA-enhanced magnetic resonance examination was performed prior to resection. T1 mapping was performed before and 20 min after injection of Gd-EOB-DTPA. T1 values of the lesions were measured on pre-contrast (T1p) and during HBP (T1-HBP) on T1 maps. The signal intensity, the diameter and the margin of HCC lesions on HBP images were analyzed. The reduction in T1 value (T1d) and the reduction rate (ΔT1%) of T1 mapping between pre-contrast and HBP were calculated. The Edmondson-Steiner classification of each lesion was made after surgery. The SPSS software package was used for statistical analysis and the analysis of receiver operator characteristic (ROC) curve and area under the curve (AUC) were carried out by using MedCalc software package. Mean values of T1p and T1-HBP were 1935.4±730.8 ms and 1257.1±529.1 ms, respectively. T1p accuracy (AUC = 0.685, p = 0.037) in predicting pathological grading was similar to that of T1-HBP (AUC = 0.751, p = 0.005). A T1p of 1648.2 ms or greater had a sensitivity and specificity of 85.19% and 61.11%, respectively. A T1-HBP of 1006 ms or greater had a sensitivity and specificity of 81.84% and 61.11%, respectively. The number of HCCs with a non-smooth tumor margin was 20 (44.4%), and a non-smooth tumor margin correlated moderately with the Edmondson-Steiner grade (Spearman r = 0.491, p = 0.041). There was no significant correlation between T1d, ΔT1%, HCC signal intensity on HBP image and lesion diameter with pathologic grading. T1 mapping in pre-contrast and HBP of Gd-EOB-DTPA-enhanced MRI, a non-smooth tumor margin in the HBP of Gd-EOB-DTPA-enhanced MRI, are useful in predicting the pathologic grading of HCC.

  20. Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis.

    PubMed

    Birka, Marvin; Wehe, Christoph A; Hachmöller, Oliver; Sperling, Michael; Karst, Uwe

    2016-04-01

    In recent decades, a significant amount of anthropogenic gadolinium has been released into the environment as a result of the broad application of contrast agents for magnetic resonance imaging (MRI). Since this anthropogenic gadolinium anomaly has also been detected in drinking water, it has become necessary to investigate the possible effect of drinking water purification on these highly polar microcontaminats. Therefore, a novel highly sensitive method for speciation analysis of gadolinium is presented. For that purpose, the hyphenation of hydrophilic interaction liquid chromatography (HILIC) and inductively coupled plasma-mass spectrometry (ICP-MS) was employed. In order to enhance the detection power, sample introduction was carried out by ultrasonic nebulization. In combination with a novel HILIC method using a diol-based stationary phase, it was possible to achieve superior limits of detection for frequently applied gadolinium-based contrast agents below 20pmol/L. With this method, the contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A were determined in concentrations up to 159pmol/L in samples from several waterworks in a densely populated region of Germany alongside the river Ruhr as well as from a waterworks near a catchment lake. Thereby, the direct impact of anthropogenic gadolinium species being present in the surface water on the amount of anthropogenic gadolinium in drinking water was shown. There was no evidence for the degradation of contrast agents, the release of Gd(3+) or the presence of further Gd species. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo.

    PubMed

    Rudin, Markus; McSheehy, Paul M J; Allegrini, Peter R; Rausch, Martin; Baumann, Diana; Becquet, Mike; Brecht, Karin; Brueggen, Josef; Ferretti, Stephane; Schaeffer, Fabienne; Schnell, Christian; Wood, Jeanette

    2005-08-01

    Assessment of tumour vascularity may characterize malignancy as well as predict responsiveness to anti-angiogenic therapy. Non-invasive measurement of tumour perfusion and blood vessel permeability assessed as the transfer constant, K(trans), can be provided by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Using the orthotopic murine tumour model B16/BL6 melanoma, the small contrast agent GdDOTA (DOTAREM(R); Guerbet, Paris) was applied to assess the vascular transfer constant, K(trans), and interstitial leakage space, whereas intravascular iron oxide nanoparticles (Endorem(R); Guerbet, Paris) were used to detect relative tumour blood volume (rTBV), and in one experiment blood flow index (BFI). No correlations were observed between these four parameters (r(2) always <0.05). The B16/BL6 primary tumour and lymph-node cervical (neck) metastases produced high levels of the permeability/growth factor, VEGF. To probe the model, the novel VEGF receptor (VEGF-R) tyrosine kinase inhibitor, PTK787/ZK222584 (PTK/ZK) was tested for anti-tumour efficacy and its effects on DCE-MRI measured parameters of tumour vascularity. Data from the non-invasive measure of tumour vascularity were compared with a histological measurement of vasculature using the DNA-staining dye H33342. PTK/ZK inhibited growth of the primary and, particularly, cervical tumour metastases following chronic treatment for 2 weeks (50 or 100 mg/kg daily) of 1-week-old tumours, or with 1 week of treatment against more established (2-week-old) tumours. After chronic treatment with PTK/ZK, DCE-MRI detected significant decreases in K(trans) and interstitial leakage space, but not rTBV of both primary tumours and cervical metastases. Histological data at this time-point showed a significant decrease in blood vessel density of the cervical metastases but not the primary tumours. However, in the cervical metastases, the mean blood vessel width was increased by 38%, suggesting overall no marked change in

  2. Health economic evaluation of Gd-EOB-DTPA MRI vs ECCM-MRI and multi-detector computed tomography in patients with suspected hepatocellular carcinoma in Thailand and South Korea.

    PubMed

    Lee, Jeong-Min; Kim, Myeong-Jin; Phongkitkarun, Sith; Sobhonslidsuk, Abhasnee; Holtorf, Anke-Peggy; Rinde, Harald; Bergmann, Karsten

    2016-08-01

    The effectiveness of treatment decisions and economic outcomes of using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) were compared with extracellular contrast media-enhanced MRI (ECCM-MRI) and multi-detector computed tomography (MDCT) as initial procedures in patients with suspected hepatocellular carcinoma (HCC) in South Korea and Thailand. A decision-tree model simulated the clinical pathway for patients with suspected HCC from the first imaging procedure to a confirmed treatment decision. Input data (probabilities and resource consumptions) were estimated and validated by clinical experts. Costs for diagnostic alternatives and related treatment options were derived from published sources, taking into account both payer's and hospital's perspectives. All experts from Korea and Thailand agreed that Gd-EOB-DTPA-MRI yields the highest diagnostic certainty and minimizes the need for additional confirmatory diagnostic procedures in HCC. In Korea, from the payer's perspective, total cost was USD $3087/patient to reach a confirmed treatment decision using Gd-EOB-DTPA-MRI (vs $3205/patient for MDCT and $3403/patient for ECCM-MRI). From the hospital's perspective, Gd-EOB-DTPA-MRI incurred the lowest cost ($2289/patient vs $2320/patient and $2528/patient, respectively). In Thailand, Gd-EOB-DTPA-MRI was the least costly alternative for the payer ($702/patient vs $931/patient for MDCT and $873/patient for ECCM-MRI). From the hospital's perspective, costs were $1106/patient, $1178/patient, and $1087/patient for Gd-EOB-DTPA-MRI, MDCT, and ECCM-MRI, respectively. Gd-EOB-DTPA-MRI as an initial imaging procedure in patients with suspected HCC provides better diagnostic certainty and relevant statutory health insurance cost savings in Thailand and Korea, compared with ECCM-MRI and MDCT.

  3. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity**

    PubMed Central

    Chen, Kuan-Ju; Wolahan, Stephanie M.; Wang, Hao; Hsu, Chao-Hsiung; Chang, Hsing-Wei; Durazo, Armando; Hwang, Lian-Pin; Garcia, Mitch A.; Jiang, Ziyue Karen; Wu, Lily

    2010-01-01

    We introduce a new category of nanoparticle-based T1 MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd3+·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD). A small library of Gd3+·DOTA-encapsulated supramolecular nanoparticles (Gd3+·DOTA⊂SNPs) was produced by systematically altering the molecular building block mixing ratios. A broad spectrum of relaxation rates was correlated to the resulting Gd3+·DOTA⊂SNP library. Consequently, an optimal synthetic formulation of Gd3+·DOTA⊂SNPs with an r1 of 17.3 s−1mM−1 (ca. 4-fold higher than clinical Gd3+ chelated complexes at high field strengths) was identified. T1-weighted imaging of Gd3+·DOTA⊂SNPs exhibits an enhanced sensitivity with a contrast-to-noise ratio (C/N ratio) ca. 3.6 times greater than that observed for free Gd3+·DTPA. A Gd3+·DOTA⊂SNPs solution was injected into foot pads of mice, and MRI was employed to monitor dynamic lymphatic drainage of the Gd3+·DOTA⊂SNPs-based CA. We observe an increase in signal intensity of the brachial lymph node in T1-weighted imaging after injecting Gd3+·DOTA⊂SNPs but not after injecting Gd3+·DTPA. The MRI results are supported by ICP-MS analysis ex vivo. These results show that Gd3+·DOTA⊂SNPs not only exhibits enhanced relaxivity and high sensitivity but also can serve as a potential tool for diagnosis of cancer metastasis. PMID:21167594

  4. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex.

    PubMed

    Lebdusková, Petra; Sour, Angélique; Helm, Lothar; Tóth, Eva; Kotek, Jan; Lukes, Ivan; Merbach, André E

    2006-07-28

    A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.

  5. Method for enhancing cell penetration of Gd3+-based MRI contrast agents by conjugation with hydrophobic fluorescent dyes.

    PubMed

    Yamane, Takehiro; Hanaoka, Kenjiro; Muramatsu, Yasuaki; Tamura, Keita; Adachi, Yusuke; Miyashita, Yasushi; Hirata, Yasunobu; Nagano, Tetsuo

    2011-11-16

    Gadolinium ion (Gd(3+)) complexes are commonly used as magnetic resonance imaging (MRI) contrast agents to enhance signals in T(1)-weighted MR images. Recently, several methods to achieve cell-permeation of Gd(3+) complexes have been reported, but more general and efficient methodology is needed. In this report, we describe a novel method to achieve cell permeation of Gd(3+) complexes by using hydrophobic fluorescent dyes as a cell-permeability-enhancing unit. We synthesized Gd(3+) complexes conjugated with boron dipyrromethene (BDP-Gd) and Cy7 dye (Cy7-Gd), and showed that these conjugates can be introduced efficiently into cells. To examine the relationship between cell permeability and dye structure, we further synthesized a series of Cy7-Gd derivatives. On the basis of MR imaging, flow cytometry, and ICP-MS analysis of cells loaded with Cy7-Gd derivatives, highly hydrophobic and nonanionic dyes were effective for enhancing cell permeation of Gd(3+) complexes. Furthermore, the behavior of these Cy7-Gd derivatives was examined in mice. Thus, conjugation of hydrophobic fluorescent dyes appears to be an effective approach to improve the cell permeability of Gd(3+) complexes, and should be applicable for further development of Gd(3+)-based MRI contrast agents.

  6. Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging.

    PubMed

    Silvério, Sara; Torres, Susana; Martins, André F; Martins, José A; André, João P; Helm, Lothar; Prata, M Isabel M; Santos, Ana C; Geraldes, Carlos F G C

    2009-06-28

    A novel bis-hydroxymethyl-substituted DTTA chelator N'-Bz-C(4,4')-(CH(2)OH)(2)-DTTA () and its DTPA analogue C(4,4')-(CH(2)OH)(2)-DTPA () were synthesized and characterized. A variable-temperature (1)H NMR spectroscopy study of the solution dynamics of their diamagnetic (La) and paramagnetic (Sm, Eu) Ln(3+) complexes showed them to be rigid when compared with analogous Ln(3+)-DTTA and Ln(3+)-DTPA complexes, as a result of their C(4,4')-(CH(2)OH)(2) ligand backbone substitution. The parameters that govern the water (1)H relaxivity of the [Gd()(H(2)O)(2)](-) and [Gd()(H(2)O)](2-) complexes were obtained by (17)O and (1)H NMR relaxometry. While the relaxometric behaviour of the [Gd()(H(2)O)](2-) complex is very similar to the parent [Gd(DTPA)(H(2)O)](2-) system, the [Gd()(H(2)O)(2)](-) complex displays higher relaxivity, due to the presence of two inner sphere water molecules and an accelerated, near optimal water exchange rate. The [Gd()(H(2)O)(2)](-) complex interacts weakly with human serum albumin (HSA), and its fully bound relaxivity is limited by slow water exchange, as monitored by (1)H NMR relaxometry. This complex interacts weakly with phosphate, but does not form ternary complexes with bidentate bicarbonate and l-lactate anions, indicating that the two inner-sphere water molecules of the [Gd()(H(2)O)(2)](-) complex are not located in adjacent positions in the coordination sphere of the Gd(3+) ion. The transmetallation reaction rate of [Gd()(H(2)O)(2)](-) with Zn(2+) in phosphate buffer solution (pH 7.0) was measured to be similar to that of the backbone unsubstituted [Gd(DTTA-Me)(H(2)O)(2)](-), but twice faster than for [Gd(DTPA-BMA)(H(2)O)]. The in vivo biodistribution studies of the (153)Sm(3+)-labelled ligand () in Wistar rats reveal slow blood elimination and short term fixation in various organs, indicating some dissociation. The bis-hydroxymethyl-substituted DTTA skeleton can be seen as a new lead for the synthesis of high relaxivity contrast agents

  7. Diagnostic value of Gd-EOB-DTPA-enhanced MR cholangiography in non-invasive detection of postoperative bile leakage.

    PubMed

    Kul, Melahat; Erden, Ayşe; Düşünceli Atman, Ebru

    2017-04-01

    To assess the diagnostic value of dynamic T 1 weighted (T1w) gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid (Gd-EOB-DTPA)-enhanced MR cholangiography (MRC) for the detection of active bile leaks. A total of 28 patients with suspected biliary leakage who underwent routine T 2 weighted (T2w) MRC and T1w GD-EOB-DTPA-enhanced MRC at our institution from February 2013 to June 2016 were included in this study. The image sets were retrospectively analyzed in consensus by three radiologists. T1w Gd-EOB-DTPA-enhanced MRC findings were correlated with clinical data, follow-up examinations and findings of invasive/surgical procedures. Patients with positive bile leak findings in Gd-EOB-DTPA-enhanced MRC were divided into hepatobiliary phase (HBP) (20-30 min) and delayed phase (DP) (60-390 min) group according to elapsed time between Gd-EOB-DTPA injection and initial bile leak findings in MRC images. These groups were compared in terms of laboratory test results (total bilirubin, liver enzymes) and the presence of bile duct dilatation in T2w MRC images. In each patient, visualization of bile ducts was sufficient in the HBP. The accuracy, sensitivity and specificity of dynamic Gd-EOB-DTPA-enhanced T1w MRC in the detection of biliary leaks were 92.9%, 90.5% and 100%, respectively (p < 0.001). 19 of 28 patients had bile leak findings in T1w Gd-EOB-DTPA-enhanced MRC [HBP group: N = 7 (36.8%), DP group: N = 12 (63.2%)]. There was no statistically significant difference in terms of laboratory test results and the presence of bile duct dilatation between HBP and DP group (p > 0.05). Three patients, each of them in DP group, showed normal laboratory test results and bile duct diameters. Dynamic T1w Gd-EOB-DTPA-enhanced MRC is a useful non-invasive diagnostic tool to detect bile leak. Advances in knowledge: Prolonged DP imaging may be required for bile leak detection even if visualization of biliary tree is sufficient in HBP and liver function tests

  8. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-André; Petoral, Rodrigo M., Jr.; Söderlind, Fredrik; Klasson, A.; Engström, Maria; Veres, Teodor; Käll, Per-Olof; Uvdal, Kajsa

    2007-10-01

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG-Gd2O3 and PEG-silane-SPGO (Gd2O3,< 40 nm diameter). The small and narrow size distribution of US-Gd2O3 was confirmed with TEM (~3 nm) and DLS. PEG-silane-US-Gd2O3 relaxation parameters were twice as high as for Gd-DTPA and the r2/r1 ratio was 1.4. PEG-silane-SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG-Gd2O3. Treatment of DEG-US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  9. Stability and trapping of magnetic resonance imaging contrast agents during high-intensity focused ultrasound ablation therapy.

    PubMed

    Hijnen, Nicole M; Elevelt, Aaldert; Grüll, Holger

    2013-07-01

    The purpose of this study was to investigate the use of Gd-DTPA shortly before magnetic resonance guided high-intensity focused ultrasound MR-HIFU thermal ablation therapy with respect to dissociation, trapping, and long-term deposition of gadolinium (Gd) in the body. Magnetic resonance-HIFU ablation treatment was conducted in vivo on both rat muscle and subcutaneous tumor (9L glioma) using a clinical 3T MR-HIFU system equipped with a small-animal coil setup. A human equivalent dose of gadopentetate dimeglumine (Gd-DTPA) (0.6 mmol/kg of body weight) was injected via a tail vein catheter just before ablation (≤5 minutes). Potential trapping of the contrast agent in the ablated area was visualized through the acquisition of R1 maps of the target location before and after therapy. The animals were sacrificed 2 hours or 14 days after the injection (n = 4 per group, a total of 40 animals). Subsequently, the Gd content in the tissue and carcass was determined using inductively coupled plasma techniques to investigate the biodistribution. Temporal trapping of Gd-DTPA in the coagulated tissue was observed on the R1 maps acquired within 2 hours after the ablation, an effect confirmed by the inductively coupled plasma analysis (3 times more Gd was found in the treated muscle volume than in the control muscle tissue). Two weeks after the therapy, the absolute amount of Gd present in the coagulated tissue was low compared with the amount present in the kidneys 14 days after the injection (ablated muscle, 0.009% ± 0.002% ID/g; kidney, 0.144% ± 0.165% ID/g). There was no significant increase in Gd content in the principal target organs for translocated Gdions (liver, spleen, and bone) or in the entire carcasses between the HIFU- and sham-treated animals. Finally, an in vivo relaxivity of 4.6 mmols was found in the HIFU-ablated volume, indicating intact Gd-DTPA. Magnetic resonance-HIFU treatment does not induce the dissociation of Gd-DTPA. In small-tissue volumes, no

  10. Gadolinium-Based Contrast Agents for MR Cancer Imaging

    PubMed Central

    Zhou, Zhuxian; Lu, Zheng-Rong

    2013-01-01

    Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730

  11. Functionalized multimodal ZnO@Gd2O3 nanosystems to use as perspective contrast agent for MRI

    NASA Astrophysics Data System (ADS)

    Babayevska, Nataliya; Florczak, Patryk; Woźniak-Budych, Marta; Jarek, Marcin; Nowaczyk, Grzegorz; Zalewski, Tomasz; Jurga, Stefan

    2017-05-01

    The main aim of this research was the synthesis of the multimodal hybrid ZnO@Gd2O3 nanostructures as prospective contrast agent for Magnetic Resonance Imaging (MRI) for bio-medical applications. The nanoparticles surface was functionalized by organosilicon compounds (OSC) then, by folic acid (FA) as targeting agent and doxorubicin (Dox) as chemotherapeutic agent. Doxorubicin and folic acid were attached to the nanoparticles surface by amino groups as well as due to attractive physical interactions. The morphology and crystallography of the nanostructures were studied by HRTEM and SAXS techniques. After ZnO nanoparticles surface modification by Gd3+ and annealing at 900 °C, ZnO@Gd2O3 nanostructures are polydispersed with size 30-100 nm. NMR (Nuclear Magnetic Resonance) studies of ZnO@Gd2O3 were performed on fractionated particles with size up to 50 nm. Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, zeta-potential measurements and energy dispersive X-ray analysis (EDX) showed that functional groups have been effectively bonded onto the nanoparticles surface. The high adsorption capacity of folic acid (up to 20%) and doxorubicin (up to 40%) on nanoparticles was reached upon 15 min of adsorption process in a temperature-dependent manner. The nuclear magnetic resonance (NMR) relaxation measurements confirmed that the obtained ZnO@Gd2O3 nanostructures could be good contrast agents, useful for magnetic resonance imaging.

  12. Contrast-enhanced peripheral MRA: technique and contrast agents.

    PubMed

    Nielsen, Yousef W; Thomsen, Henrik S

    2012-09-01

    In the last decade contrast-enhanced magnetic resonance angiography (CE-MRA) has gained wide acceptance as a valuable tool in the diagnostic work-up of patients with peripheral arterial disease. This review presents current concepts in peripheral CE-MRA with emphasis on MRI technique and contrast agents. Peripheral CE-MRA is defined as an MR angiogram of the arteries from the aortic bifurcation to the feet. Advantages of CE-MRA include minimal invasiveness and lack of ionizing radiation. The basic technique employed for peripheral CE-MRA is the bolus-chase method. With this method a paramagnetic MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic field strength of the MRI system, receiver coil configuration, use of parallel imaging, contrast bolus timing technique, and k-space filling strategies. Furthermore, it is possible to optimize peripheral CE-MRA using venous compression techniques, hybrid scan protocols, time-resolved imaging, and steady-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal insufficiency. Using optimized technique and a stable MRI contrast agent, peripheral CE-MRA is a safe procedure with diagnostic accuracy close to that of conventional catheter X

  13. Non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI as a predictor of outcomes for early-stage HCC.

    PubMed

    Toyoda, Hidenori; Kumada, Takashi; Tada, Toshifumi; Sone, Yasuhiro; Maeda, Atsuyuki; Kaneoka, Yuji

    2015-01-01

    In patients with hepatocellular carcinoma (HCC), gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) often identifies non-hypervascular hypointense hepatic nodules during the hepatobiliary phase, but their prognostic significance is unclear. We conducted a prospective observational study to investigate the impact of non-hypervascular hypointense hepatic nodules detected by Gd-EOB-DTPA-enhanced MRI on the outcome of patients with early-stage HCC. Post-treatment recurrence and survival rates were analyzed in 138 patients with non-recurrent, early-stage HCC [Barcelona Clinic Liver Cancer (BCLC) stage 0 or A] and Child-Pugh A liver function according to the presence of non-hypervascular hypointense nodules on pretreatment Gd-EOB-DTPA-enhanced MRI. Non-hypervascular hypointense hepatic nodules were detected in 51 (37.0%) patients with early-stage HCC on pretreatment Gd-EOB-DTPA-enhanced MRI. Recurrence rates were significantly higher in patients with non-hypervascular hypointense nodules (p < 0.0001). Based on a multivariate analysis, the presence of non-hypervascular hypointense hepatic nodules on Gd-EOB-DTPA-enhanced MRI was independently associated with an increased recurrence rate, independent of tumor progression or treatment (p = 0.0005). The survival rate was significantly lower in patients with non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI (p = 0.0108). In patients with early-stage typical HCC (BCLC 0 or A), the presence of concurrent non-hypervascular hypointense hepatic nodules in the hepatobiliary phase of pretreatment Gd-EOB-DTPA-enhanced MRI is an indicator of higher likelihood of recurrence after treatment and may be a marker for unfavorable outcome.

  14. Gd-EOB-DTPA-enhanced MRI is better than MDCT in decision making of curative treatment for hepatocellular carcinoma.

    PubMed

    Yoo, Sun Hong; Choi, Jong Young; Jang, Jeong Won; Bae, Si Hyun; Yoon, Seung Kew; Kim, Dong Goo; Yoo, Young Kyoung; Rha, Sung Eun; Lee, Young Joon; Jung, Eun Sun

    2013-09-01

    We assessed the change in the therapeutic decision among curative treatments after adding Gd-EOB-DTPA-enhanced MRI to triple-phase MDCT for patients with early-stage HCC. This study retrospectively investigated two groups: 33 pathologically confirmed HCC patients after liver transplantation in group 1; 34 HCC patients without pathology in group 2. In group 1, we simulated the therapeutic decision-making process by pretransplant MDCT and Gd-EOB-DTPA-enhanced MRI. In group 2, including the 34 early-stage HCC patients consecutively enrolled, we investigated the change of therapeutic decision after adding Gd-EOB-DTPA-enhanced MRI to MDCT. In the simulation from group 1, after adding Gd-EOB-DTPA-enhanced MRI, 33.3% (11/33 patients) of treatment decisions were changed from the decision based on MDCT alone. Among 22 patients considered eligible for resection and 33 patients for radiofrequency ablation, the therapeutic decision was changed for 10 patients in the surgical group and 4 patients for the RFA group (45.5 and 12.1%). In group 2, the rate of change in the therapeutic decision after adding Gd-EOB-DTPA-enhanced MRI to MDCT was 41.2% (14/34 patients). In group 1 with explants pathology, the median diameter of HCCs not detected by MDCT but detected by Gd-EOB-DTPA-enhanced MRI was 1.15 cm (0.3-3.0 cm). The median diameter of HCCs seen only in the explanted liver was 1.0 cm (0.3-1.7 cm), and 60.7% of them were well-differentiated HCCs. This study suggests that performing Gd-EOB-DTPA-enhanced MRI before deciding on curative treatment for early-stage HCC may improve the accuracy of treatment decision for early-stage HCC.

  15. Can the biliary enhancement of Gd-EOB-DTPA predict the degree of liver function?

    PubMed

    Okada, Masahiro; Ishii, Kazunari; Numata, Kazushi; Hyodo, Tomoko; Kumano, Seishi; Kitano, Masayuki; Kudo, Masatoshi; Murakami, Takamichi

    2012-06-01

    Excretion of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the bile may be related to liver function, because of elimination from the liver after preferential uptake by hepatocytes. The purpose of this study was to investigate the relation between liver and biliary enhancement in patients with or without liver dysfunction, and to compare the tumor-to-liver contrast in these patients. Forty patients [group 1: normal liver and Child-Pugh class A in 20 patients, group 2: Child-Pugh class B in 18 patients and Child-Pugh C in 2] were evaluated. All patients underwent MR imaging of the liver using a 1.5-Tesla system. T1-weighted 3D images were obtained at 5, 10, 15 and 20 minutes after Gd-EOB-DTPA injection. The relation between group 3 (total bilirubin <1.8 mg/dL) and group 4 (total bilirubin ≥1.8 mg/dL) was investigated at 20 minutes. Liver and biliary signals were measured, and compared between groups 1 and 2 or groups 3 and 4. Tumor-to-liver ratio was also evaluated between groups 1 and 2. Scheffe's post-hoc test after two-way repeated-measures ANOVA and Pearson's correlation test were used for statistical analysis. Liver enhancement showed significant difference at all time points between groups 1 and 2. Biliary enhancement did not show a significant difference between groups 1 and 2 at 5 minutes, but did at 10, 15 and 20 minutes. At 20 minutes, significant differences between groups 3 and 4 were seen for liver and biliary enhancement. At all time points, liver enhancement correlated with biliary enhancement in both groups. At 5 minutes and 20 minutes, statistical differences between groups 1 and 2 were seen for tumor-to-liver ratio. The degree of biliary enhancement has a close correlation to that of liver enhancement. It is especially important that insufficient liver enhancement causes lower tumor-to-liver contrast in the hepatobiliary phase of Gd-EOB-DTPA.

  16. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    PubMed

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.

    PubMed

    Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J

    2012-10-05

    A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.

  18. Optimization of the reference region method for dual pharmacokinetic modeling using Gd-DTPA/MRI and (18) F-FDG/PET.

    PubMed

    Poulin, Éric; Lebel, Réjean; Croteau, Étienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2015-02-01

    The combination of MRI and positron emission tomography (PET) offers new possibilities for the development of novel methodologies. In pharmacokinetic image analysis, the blood concentration of the imaging compound as a function of time, [i.e., the arterial input function (AIF)] is required for MRI and PET. In this study, we tested whether an AIF extracted from a reference region (RR) in MRI can be used as a surrogate for the manually sampled (18) F-FDG AIF for pharmacokinetic modeling. An MRI contrast agent, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) and a radiotracer, (18) F-fluorodeoxyglucose ((18) F-FDG), were simultaneously injected in a F98 glioblastoma rat model. A correction to the RR AIF for Gd-DTPA is proposed to adequately represent the manually sampled AIF. A previously published conversion method was applied to convert this AIF into a (18) F-FDG AIF. The tumor metabolic rate of glucose (TMRGlc) calculated with the manually sampled (18) F-FDG AIF, the (18) F-FDG AIF converted from the RR AIF and the (18) F-FDG AIF converted from the corrected RR AIF were found not statistically different (P>0.05). An AIF derived from an RR in MRI can be accurately converted into a (18) F-FDG AIF and used in PET pharmacokinetic modeling. © 2014 Wiley Periodicals, Inc.

  19. Differences in perilymphatic space enhancement and adverse inflammatory reaction after intratympanic injection of two different gadolinium agents: A 9.4-T magnetic resonance imaging study.

    PubMed

    Park, Mina; Lee, Ho Sun; Kim, Hyeonjin; Oh, Seung Ha; Lee, Jun Ho; Suh, Myung-Whan

    2016-03-01

    To compare the inner ear enhancement after intratympanic injection of two widely used gadolinium (Gd) agents by 9.4 T micro-magnetic resonance imaging (MRI) and to investigate the effects of Gd on the inner ear. Twelve ears of six rats received intratympanic administration of 1/5 diluted Gd agents: gadoterate meglumine (Gd-DTPA) for the left ear and gadodiamide (Gd-DTPA-BMA) for the right ear. MRI was performed every 30 min from 1 to 4 h after administration. The normalized signal intensity was evaluated by quantitative analysis at each cochlear fluid compartment. Eight, six, and seven ears treated with Gd-DTPA, Gd-DPTA-BMA, and nothing as controls, respectively, were processed for histological evaluation after MRI. After hematoxylin & eosin staining, adverse inflammatory reactions were evaluated for turbid aggregation and lymphocytes. The perilymphatic enhancement of Gd-DTPA was superior to that of Gd-DTPA-BMA regardless of cochlear turn, compartment, and time point. Inflammatory reactions were found in 4/8 (50.0%) and 4/6 (66.6%) ears administered Gd-DTPA and Gd-DTPA-BMA, respectively. Regardless of the contrast agent used, inflammatory reactions were most definite in the scala tympani of the basal turn, i.e., near the round window. Slightly greater inflammatory reactions were observed in ears injected with Gd-DTPA-BMA compared to Gd-DTPA although the difference was not statistically significant. No inflammatory reaction was observed in any of the seven controls. The auditory brainstem response threshold was 11.8 ± 2.5 dB SPL before IT Gd injection and it did not change for up to 5 days (15.4 ± 6.6 dB SPL) post-injection. Gd-DTPA was superior to Gd-DTPA-BMA for visualization of the inner ear. Administration of diluted Gd agents intratympanically may induce considerable inflammatory reactions in the inner ear. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hybrid core shell nanoparticles entrapping Gd-DTPA and 18F-FDG for simultaneous PET/MRI acquisitions.

    PubMed

    Vecchione, Donatella; Aiello, Marco; Cavaliere, Carlo; Nicolai, Emanuele; Netti, Paolo Antonio; Torino, Enza

    2017-09-01

    Although there has been an improvement in the hardware and software of the PET/MRI system, the development of the nanoprobes exploiting the simultaneous acquisition of the bimodal data is still under investigation. Moreover, few studies on biocompatible and clinically relevant probes are available. This work presents a core-shell polymeric nanocarrier with improved relaxometric properties for simultaneous PET/MRI acquisitions. Core-shell nanoparticles entrapping the Gd-DTPA and 18 F-FDG are obtained by a complex coacervation. The boosting of r 1 of the entrapped Gd-DTPA up to five-times compared with 'free Gd-DTPA', is confirmed by the PET/MRI scan. The sorption of 18 F-FDG into the nanoparticles is studied and designed to be integrated downstream for the production of the tracer.

  1. Development of a Gd(III)-based receptor-induced magnetization enhancement (RIME) contrast agent for β-glucuronidase activity profiling.

    PubMed

    Chen, Shih-Hsien; Kuo, Yu-Ting; Singh, Gyan; Cheng, Tian-Lu; Su, Yu-Zheng; Wang, Tzu-Pin; Chiu, Yen-Yu; Lai, Jui-Jen; Chang, Chih-Ching; Jaw, Twei-Shiun; Tzou, Shey-Cherng; Liu, Gin-Chung; Wang, Yun-Ming

    2012-11-19

    β-Glucuronidase is a key lysosomal enzyme and is often overexpressed in necrotic tumor masses. We report here the synthesis of a pro receptor-induced magnetization enhancement (pro-RIME) magnetic resonance imaging (MRI) contrast agent ([Gd(DOTA-FPβGu)]) for molecular imaging of β-glucuronidase activity in tumor tissues. The contrast agent consists of two parts, a gadolinium complex and a β-glucuronidase substrate (β-d-glucopyranuronic acid). The binding association constant (KA) of [Gd(DOTA-FPβGu)] is 7.42 × 10(2), which is significantly lower than that of a commercially available MS-325 (KA = 3.0 × 10(4)) RIME contrast agent. The low KA value of [Gd(DOTA-FPβGu)] is due to the pendant β-d-glucopyranuronic acid moiety. Therefore, [Gd(DOTA-FPβGu)] can be used for detection of β-glucuronidase through RIME modulation. The detail mechanism of enzymatic activation of [Gd(DOTA-FPβGu)] was elucidated by LC-MS. The kinetics of β-glucuronidase catalyzed hydrolysis of [Eu(DOTA-FPβGu)] at pH 7.4 best fit the Miechalis-Menten kinetic mode with Km = 1.38 mM, kcat = 3.76 × 10(3), and kcat/Km = 2.72 × 10(3) M(-1) s(-1). The low Km value indicates high affinity of β-glucuronidase for [Gd(DOTA-FPβGu)] at physiological pH. Relaxometric studies revealed that T1 relaxivity of [Gd(DOTA-FPβGu)] changes in response to the concentration of β-glucuronidase. Consistent with the relaxometric studies, [Gd(DOTA-FPβGu)] showed significant change in MR image signal in the presence of β-glucuronidase and HSA. In vitro and in vivo MR images demonstrated appreciable differences in signal enhancement in the cell lines and tumor xenografts in accordance to their expression levels of β-glucuronidase.

  2. Defining response to anti-VEGF therapies in neovascular AMD.

    PubMed

    Amoaku, W M; Chakravarthy, U; Gale, R; Gavin, M; Ghanchi, F; Gibson, J; Harding, S; Johnston, R L; Kelly, S P; Kelly, S; Lotery, A; Mahmood, S; Menon, G; Sivaprasad, S; Talks, J; Tufail, A; Yang, Y

    2015-06-01

    The introduction of anti-vascular endothelial growth factor (anti-VEGF) has made significant impact on the reduction of the visual loss due to neovascular age-related macular degeneration (n-AMD). There are significant inter-individual differences in response to an anti-VEGF agent, made more complex by the availability of multiple anti-VEGF agents with different molecular configurations. The response to anti-VEGF therapy have been found to be dependent on a variety of factors including patient's age, lesion characteristics, lesion duration, baseline visual acuity (VA) and the presence of particular genotype risk alleles. Furthermore, a proportion of eyes with n-AMD show a decline in acuity or morphology, despite therapy or require very frequent re-treatment. There is currently no consensus as to how to classify optimal response, or lack of it, with these therapies. There is, in particular, confusion over terms such as 'responder status' after treatment for n-AMD, 'tachyphylaxis' and 'recalcitrant' n-AMD. This document aims to provide a consensus on definition/categorisation of the response of n-AMD to anti-VEGF therapies and on the time points at which response to treatment should be determined. Primary response is best determined at 1 month following the last initiation dose, while maintained treatment (secondary) response is determined any time after the 4th visit. In a particular eye, secondary responses do not mirror and cannot be predicted from that in the primary phase. Morphological and functional responses to anti-VEGF treatments, do not necessarily correlate, and may be dissociated in an individual eye. Furthermore, there is a ceiling effect that can negate the currently used functional metrics such as >5 letters improvement when the baseline VA is good (ETDRS>70 letters). It is therefore important to use a combination of both the parameters in determining the response.The following are proposed definitions: optimal (good) response is defined as when there

  3. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA.

    PubMed

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Saito, Shigeyoshi; Nishiura, Motoko

    2013-12-01

    The purpose of this study was to develop a simple and inexpensive system for controlling body temperature in small animal experiments using magnetic resonance imaging (MRI) and to investigate the effect of body temperature on the kinetic behavior of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the liver. In our temperature-control system, body temperature was controlled using a feedback-regulated heated or cooled air flow generated by two Futon dryers. The switches of the two Futon dryers were controlled using a digital temperature controller, in which the rectal temperature of a mouse measured by an optical fiber thermometer was used as the input. In experimental studies, male ICR mice aged 8weeks old were used and allocated into 5 groups (39-, 36-, 33-, 30-, and 27-degree groups, n=10), in which the body temperature was maintained at 39 °C, 36 °C, 33 °C, 30 °C, and 27 °C, respectively, using our system. The dynamic contrast-enhanced MRI (DCE-MRI) data were acquired with an MRI system for animal experiments equipped with a 1.5-Tesla permanent magnet, for approximately 43min, after the injection of Gd-EOB-DTPA into the tail vein. After correction of the image shift due to the temperature-dependent drift of the Larmor frequency using the gradient-based image registration method with robust estimation of displacement parameters, the kinetic behavior of Gd-EOB-DTPA was analyzed using an empirical mathematical model. With the use of this approach, the upper limit of the relative enhancement (A), the rates of contrast uptake (α) and washout (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum relative enhancement (REmax), the time to REmax (Tmax), and the elimination half-life of the contrast agent (T1/2) were calculated. The body temperature of mice could be controlled well by use of our system. Although there were no significant differences in α, AUC, and q among groups, there

  4. Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated human serum albumin nanoparticles in T1 magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Hübner, Frank; Waidmann, Oliver; Zeuzem, Stefan; Korf, Horst-Werner; Terfort, Andreas; Gelperina, Svetlana; Vogl, Thomas J; Kreuter, Jörg; Piiper, Albrecht

    2015-02-10

    Nanoparticle (NP)-based contrast agents that enable high resolution anatomic T1-weighted magnetic resonance imaging (MRI) offer the prospect of improving differential diagnosis of liver tumors such as hepatocellular carcinoma (HCC). In the present study, we investigated the possibility of employing novel non-toxic human serum albumin nanoparticles conjugated with Gd-DTPA and rhodamine 123 (Gd-Rho-HSA-NPs) for the detection of HCC by T1-weighted MRI. In addition, the influence of surface coating of the NPs with poloxamine 908, which alters the absorptive behavior of NPs and changes their distribution between the liver and tumor was examined. MRI of transgenic mice with endogenously formed HCCs following intravenous injection of Gd-Rho-HSA-NPs revealed a strong negative contrast of the tumors. Contrasting of the HCCs by NP-enhanced MRI required less Gd as compared to gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid-enhanced MRI, which currently provides the most sensitive detection of HCC in patients. Immunohistochemical analyses revealed that the Gd-Rho-HSA-NPs were localized to macrophages, which were - similar to HCC in patients - fewer in number in HCC as compared to the liver tissue, which is in agreement with the negative contrasting of HCC in Gd-Rho-HSA-NP-enhanced MRI. Poloxamine-coated NPs showed lower accumulation in the tumor macrophages and caused a longer lasting enhancement of the MRI signal. These data indicate that Gd-Rho-HSA-NPs enable sensitive detection of HCC by T1-weighted MRI in mice with endogenous HCC through their uptake by macrophages. Poloxamine coating of the NPs delayed the tumor localization of the NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Validation of diffuse optical tomography using a bi-functional optical-MRI contrast agent and a hybrid MRI-DOT system

    NASA Astrophysics Data System (ADS)

    Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin

    2013-03-01

    Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"

  6. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    PubMed

    Jo, Dong Hyun; Park, Sung Wook; Cho, Chang Sik; Powner, Michael B; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun

    2015-01-01

    Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.

  7. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice

    PubMed Central

    Powner, Michael B.; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun

    2015-01-01

    Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of “whitening” of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants. PMID:26226015

  8. Detection of liver metastasis: is diffusion-weighted imaging needed in Gd-EOB-DTPA-enhanced MR imaging for evaluation of colorectal liver metastases?

    PubMed

    Tajima, Taku; Akahane, Masaaki; Takao, Hidemasa; Akai, Hiroyuki; Kiryu, Shigeru; Imamura, Hiroshi; Watanabe, Yasushi; Kokudo, Norihiro; Ohtomo, Kuni

    2012-10-01

    We compared diagnostic ability for detecting hepatic metastases between gadolinium ethoxy benzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) on a 1.5-T system, and determined whether DWI is necessary in Gd-EOB-DTPA-enhanced MRI for diagnosing colorectal liver metastases. We assessed 29 consecutive prospectively enrolled patients with suspected metachronous colorectal liver metastases; all patients underwent surgery and had preoperative Gd-EOB-DTPA-enhanced MRI. Overall detection rate, sensitivity for detecting metastases and benign lesions, positive predictive value, and diagnostic accuracy (Az value) were compared among three image sets [unenhanced MRI (DWI set), Gd-EOB-DTPA-enhanced MRI excluding DWI (EOB set), and combined set]. Gd-EOB-DTPA-enhanced MRI yielded better overall detection rate (77.8-79.0 %) and sensitivity (87.1-89.4 %) for detecting metastases than the DWI set (55.9 % and 64.7 %, respectively) for one observer (P < 0.001). No statistically significant difference was seen between the EOB and combined sets, although several metastases were newly detected on additional DWI. Gd-EOB-DTPA-enhanced MRI yielded a better overall detection rate and higher sensitivity for detecting metastases compared with unenhanced MRI. Additional DWI may be able to reduce oversight of lesions in Gd-EOB-DTPA-enhanced 1.5-T MRI for detecting colorectal liver metastases.

  9. Adverse effects of anticancer agents that target the VEGF pathway.

    PubMed

    Chen, Helen X; Cleck, Jessica N

    2009-08-01

    Antiangiogenesis agents that target the VEGF/VEGF receptor pathway have become an important part of standard therapy in multiple cancer indications. With expanded clinical experience with this class of agents has come the increasing recognition of the diverse adverse effects related to disturbance of VEGF-dependent physiological functions and homeostasis in the cardiovascular and renal systems, as well as wound healing and tissue repair. Although most adverse effects of VEGF inhibitors are modest and manageable, some are associated with serious and life-threatening consequences, particularly in high-risk patients and in certain clinical settings. This Review examines the toxicity profiles of anti-VEGF antibodies and small-molecule inhibitors. The potential mechanisms of the adverse effects, risk factors, and the implications for selection of patients and management are discussed.

  10. In Vitro Evaluation of Gd(3+)-Anionic Linear Globular Dendrimer-Monoclonal Antibody: Potential Magnetic Resonance Imaging Contrast Agents for Prostate Cancer Cell Imaging.

    PubMed

    Mirzaei, Mehdi; Mehravi, Bita; Ardestani, Mehdi Shafiee; Ziaee, Seyed Amir Mohsen; Pourghasem, Peyman

    2015-12-01

    Early stage prostate cancer diagnosis is of high global interest. Magnetic resonance imaging (MRI) is a non-invasive modality for early cancer diagnosis, in particular for prostate cancer detection. The research aim is to synthesize a nanodendrimer and its conjugate with C595 monoclonal antibody (mAb C595), against prostate cancer, followed by its chelating with Gd(3+). Anti-MUC-1 mAb C595 was conjugated to an anionic linear globular dendrimer (ALGDG2). The polyethylene glycol core and citric acid shell were synthesized followed by loading with Gd(3+) to make novel contrast agents for functional MRI. The in vitro behavior and MRI parameters of the nanoconjugate were investigated performing several studies such as cell toxicity and TNF-alpha evaluations. The investigation of magnetic resonance imaging parameters indicated how well nanoconjugate performs in (1)H-NMR and (17)O-NMR in vitro. Results showed a potential specific MRI activity by improving the swelling responses cell binding. The MTT (2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide) assay demonstrated that this contrast agent had significant cytotoxicity on prostate cancer cells. These results showed that Gd(3+)-ALGDG2-C595 is a potential prostate molecular imaging agent and could be considered as an ideal functional nanoprobe. Additionally, further investigations by clinical trials are in the pipeline.

  11. Gd3+-DTPA-bis (N-methylamine) - anionic linear globular Dendrimer-G1; a more efficient MRI contrast media.

    PubMed

    Ghalandarlaki, N; Mohammadi, T D; Agha Babaei, R; Tabasi, M A; Keyhanvar, P; Mehravi, B; Yaghmaei, P; Cohan, R A; Ardestani, M S

    2014-02-01

    By advancing of molecular imaging techniques, magnetic resonance imaging (MRI) is becoming an increasingly important tool in early diagnosis. Researchers have found new ways to increase contrast of MRI images.Therefore some types of drug known as contrast media are produced. Contrast media improve the visibility of internal body structures in MRI images. Gadodiamide (Omniscan®) is one of these contrast media which is produced commercially and used clinically. In this study Gadodiamide was first synthesized and then qualitative and quantitative methods were carried out to ensure the proper synthesis of this drug then to increase the efficiency of this contrast medium use dendrimer that is one kind of nano particle. This dendrimer has a polyethylene glycol (PEG) core and citric acid branches. After dendrimer attached to Gadodiamide to ensure the proper efficient connection between them the stability studies were carried out and cytotoxicity of the drug was evaluated. Finally, after ensuring the non-toxicity of the drug, in vivo studies (injected into mice) MR imaging was performed to examine the impact of synthesis drug on the resolution of image.The result obtained from this study demonstrated that the attachment of Gadodiamide to dendrimer reduces its cytotoxicity and also improved resolution of image. Also the new contrast media (Gd3+-DTPA- bis [N-methylamine] - Dendrimer) - unlike Omniscan® - is biodegradable and able to enter the HEPG2 cell line. The results confirm the hypothesis that using dendrimer to synthesize this new nano contrast medium increases its effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Design, synthesis and evaluation of a new Mn - Contrast agent for MR imaging of myocardium based on the DTPA-phenylpentadecanoic acid complex

    NASA Astrophysics Data System (ADS)

    Belyanin, Maxim L.; Stepanova, Elena V.; Valiev, Rashid R.; Filimonov, Victor D.; Usov, Vladimir Y.; Borodin, Oleg Y.; Ågren, Hans

    2016-11-01

    In the present paper we describe the first synthesis and evaluation of a novel Mn (II) complex (DTPA-PPDA Mn (II)) which contains a C-15 fatty acid moiety that has high affinity to the heart muscle. The complexation energy of DTPA-PPDA Mn (II) evaluated by quantum chemistry methodology indicates that it essentially exceeds the corresponding value for the known DTPA Mn (II) complex. Molecular docking revealed that the affinity of the designed complex to the heart-type transport protein H-FABP well exceeds that of lauric acid. Phantom experiments in low-field MRI the designed contrast agent provides MR imaging comparable to gadopentetic acid.

  13. Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating.

    PubMed

    Warsi, Muhammad Farooq; Adams, Ralph W; Duckett, Simon B; Chechik, Victor

    2010-01-21

    Monolayer-protected, Gd(3+)-functionalised gold nanoparticles with enhanced spin-lattice relaxivity (r(1)) were prepared; adsorption of polyelectrolytes on these materials further increased r(1) and ligand exchange with a biotin-derivatised disulfide led to a prototype avidin-targeted contrast agent.

  14. Induction of sister chromatid exchange in the presence of gadolinium-DTPA and its reduction by dimethyl sulfoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Etsuo; Fukuda, Hozumi; Shibuya, Hitoshi

    The authors investigate the frequency of sister chromatid exchange (SCE) after the addition of gadolinium (Gd)-DTPA to venous blood samples. Venous blood was obtained from nonsmokers. Samples were incubated with Gd-DTPA alone or in combination with mitomycin C, cytarabine, and dimethyl sulfoxide (DMSO), and then evaluated for SCEs. The frequency of SCE increased with the concentration of Gd-DTPA and as each chemotherapeutic agent was added. Sister chromatid exchange frequencies were lower when the blood was treated with a combination of Gd-DTPA and DMSO compared with Gd-DTPA alone. The increase in frequency of SCE seen after the addition of Gd-DTPA wasmore » decreased by the addition of DMSO, indicating the production of hydroxyl radicals. The effect likely is dissociation-related. 14 refs., 6 tabs.« less

  15. Toward the Prediction of Water Exchange Rates in Magnetic Resonance Imaging Contrast Agents: A Density Functional Theory Study.

    PubMed

    Regueiro-Figueroa, Martín; Platas-Iglesias, Carlos

    2015-06-18

    We present a theoretical investigation of Gd-Owater bonds in different complexes relevant as contrast agents in magnetic resonance imaging (MRI). The analysis of the Ln-Owater distances, electron density (ρBCP), and electron localization function (ELF) at the bond critical points of [Ln(DOTA)(H2O)](-) and [Ln(DTPA-BMA)(H2O)] indicates that the strength of the Ln-Owater bonds follows the order DTPA-BMA > DOTA (M isomer) > DOTA (m isomer). The ELF values decrease along the 4f period as the Ln-Owater bonds get shorter, in line with the labile capping bond phenomenon. Extension of these calculations to other Gd(3+) complexes allowed us to correlate the experimentally observed water exchange rates and the calculated ρBCP and ELF values. The water exchange reaction becomes faster as the Gd-Owater bonds are weakened, which is reflected in longer bond distances and lower values of ρBCP and ELF. DKH2 calculations show that the two coordinated water molecules may also have significantly different (17)O hyperfine coupling constants (HFCCs).

  16. Solute Transport of Negatively Charged Contrast Agents Across Articular Surface of Injured Cartilage.

    PubMed

    Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M

    2017-04-01

    Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P < 0.05 for iodine and Gd-DTPA; and 76% increase after 10 min for diatrizoate, P < 0.05). Effective partition coefficients were unaffected in mechanically injured cartilage. Mechanical injury reduced PG content and collagen integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.

  17. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations.

    PubMed

    Granata, Vincenza; Cascella, Marco; Fusco, Roberta; dell'Aprovitola, Nicoletta; Catalano, Orlando; Filice, Salvatore; Schiavone, Vincenzo; Izzo, Francesco; Cuomo, Arturo; Petrillo, Antonella

    2016-01-01

    Background and Purpose. Contrast media (CM) for magnetic resonance imaging (MRI) may determine the development of acute adverse reactions. Objective was to retrospectively assess the frequency and severity of adverse reactions associated with gadolinium-based contrast agents (GBCAs) injection in patients who underwent MRI. Material and Methods. At our center 10608 MRI examinations with CM were performed using five different GBCAs: Gd-BOPTA (MultiHance), Gd-DTPA (Magnevist), Gd-EOBDTPA (Primovist), Gd-DOTA (Dotarem), and Gd-BTDO3A (Gadovist). Results. 32 acute adverse reactions occurred, accounting for 0.3% of all administration. Twelve reactions were associated with Gd-DOTA injection (0.11%), 9 with Gd-BOPTA injection (0.08%), 6 with Gd-BTDO3A (0.056%), 3 with Gd-EOB-DTPA (0.028%), and 2 with Gd-DTPA (0.018%). Twenty-four reactions (75.0%) were mild, four (12.5%) moderate, and four (12.5%) severe. The most severe reactions were seen associated with use of Gd-BOPTA, with 3 severe reactions in 32 total reactions. Conclusion. Acute adverse reactions are generally rare with the overall adverse reaction rate of 0.3%. The most common adverse reactions were not severe, consisting in skin rash and hives.

  18. Multi-modal magnetic resonance imaging and histology of vascular function in xenografts using macromolecular contrast agent hyperbranched polyglycerol (HPG-GdF).

    PubMed

    Baker, Jennifer H E; McPhee, Kelly C; Moosvi, Firas; Saatchi, Katayoun; Häfeli, Urs O; Minchinton, Andrew I; Reinsberg, Stefan A

    2016-01-01

    Macromolecular gadolinium (Gd)-based contrast agents are in development as blood pool markers for MRI. HPG-GdF is a 583 kDa hyperbranched polyglycerol doubly tagged with Gd and Alexa 647 nm dye, making it both MR and histologically visible. In this study we examined the location of HPG-GdF in whole-tumor xenograft sections matched to in vivo DCE-MR images of both HPG-GdF and Gadovist. Despite its large size, we have shown that HPG-GdF extravasates from some tumor vessels and accumulates over time, but does not distribute beyond a few cell diameters from vessels. Fractional plasma volume (fPV) and apparent permeability-surface area product (aPS) parameters were derived from the MR concentration-time curves of HPG-GdF. Non-viable necrotic tumor tissue was excluded from the analysis by applying a novel bolus arrival time (BAT) algorithm to all voxels. aPS derived from HPG-GdF was the only MR parameter to identify a difference in vascular function between HCT116 and HT29 colorectal tumors. This study is the first to relate low and high molecular weight contrast agents with matched whole-tumor histological sections. These detailed comparisons identified tumor regions that appear distinct from each other using the HPG-GdF biomarkers related to perfusion and vessel leakiness, while Gadovist-imaged parameter measures in the same regions were unable to detect variation in vascular function. We have established HPG-GdF as a biocompatible multi-modal high molecular weight contrast agent with application for examining vascular function in both MR and histological modalities. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg

    2014-05-01

    Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.

    PubMed

    Burtea, Carmen; Laurent, Sophie; Murariu, Oltea; Rattat, Dirk; Toubeau, Gérard; Verbruggen, Alfons; Vansthertem, David; Vander Elst, Luce; Muller, Robert N

    2008-04-01

    The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal

  1. Evaluation of biliary ductal anatomy in potential living liver donors: comparison between MRCP and Gd-EOB-DTPA-enhanced MRI.

    PubMed

    Santosh, D; Goel, A; Birchall, I W; Kumar, A; Lee, K H; Patel, V H; Low, G

    2017-10-01

    To compare magnetic resonance cholangiopancreatography (MRCP) and Gd-EOB-DTPA-enhanced MRI in the evaluation of the biliary anatomy in potential living liver donors (LLDs). A retrospective study was conducted in a tertiary care liver transplant center after obtaining ethics and institutional approvals. A total of 42 potential LLD MRI examinations were performed between November 2013 and March 2016. All patients underwent a standard MRI protocol which included MRCP and Gd-EOB-DTPA-enhanced MRI sequences in a single session. Three abdominal MR radiologists independently reviewed the studies and completed a customized data collection sheet for each MR sequence. The readers subjectively scored the bile duct visualization on each MR sequence on a Likert scale and classified the biliary anatomic configuration. Statistical analysis was performed using intraclass correlation coefficient and the McNemar Chi-square (χ 2 ) test. The 42 potential LLDs included 22 males and 20 females with an age range of 18-60 years. There was 'good' or 'excellent' inter-reader agreement on either MRI examination for the visualization of the first- and second-order ducts and the majority of third-order ducts. 'Good' inter-reader agreement on Gd-EOB-DTPA-enhanced MRI and 'fair' inter-reader agreement on MRCP was noted for the left third-order medial duct. There was significantly better visualization of the cystic duct, left hepatic duct, and right second-order ducts on Gd-EOB-DTPA-enhanced MRI compared with MRCP. A 12.6% improvement in classifying the biliary branch pattern was also observed on Gd-EOB-DTPA-enhanced MRI compared with MRCP (P = 0.03). Gd-EOB-DTPA-enhanced MRI provides additional diagnostic confidence over MRCP in the evaluation of the biliary ductal anatomy in potential LLDs.

  2. The MRI-measured arterial input function resulting from a bolus injection of Gd-DTPA in a rat model of stroke slightly underestimates that of Gd-[14C]DTPA and marginally overestimates the blood-to-brain influx rate constant determined by Patlak plots

    PubMed Central

    Nagaraja, Tavarekere N.; Karki, Kishor; Ewing, James R.; Divine, George W.; Fenstermacher, Joseph D.; Patlak, Clifford S.; Knight, Robert A.

    2009-01-01

    The hypothesis that the arterial input function (AIF) of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) injected by intravenous (iv) bolus and measured by the change in the T1-relaxation rate (ΔR1; R1=1/T1) of superior sagittal sinus blood (AIF-I) approximates the AIF of 14C-labeled Gd-DTPA measured in arterial blood (AIF*) was tested in a rat stroke model (n=13). Contrary to the hypothesis, the initial part of the ΔR1-time curve was underestimated, and the area under the normalized curve for AIF-I was about 15% lower than that for AIF*, the reference AIF. Hypothetical AIF’s for Gd-DTPA (AIF-II) were derived from the AIF* values and averaged to obtain AIF-III. Influx rate constants (Ki) and proton distribution volumes at zero time (Vp+Vo) were estimated with Patlak plots of AIF-I, -II and -III and tissue ΔR1 data. For the regions of interest, the Ki’s estimated with AIF-I were slightly but not significantly higher than those obtained with AIF-II and AIF-III. In contrast, Vp+Vo was significantly higher when calculated with AIF-I. Similar estimates of Ki and Vp+Vo were obtained with AIF-II and AIF-III. In summary, AIF-I underestimated the reference AIF (AIF*); this shortcoming had little effect on the Ki calculated by Patlak plot but produced a significant overestimation of Vp+Vo. PMID:20512853

  3. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  4. Tumor surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy

    PubMed Central

    Sitohy, Basel; Nagy, Janice A.; Shih, Shou-Ching; Dvorak, Harold F.

    2011-01-01

    Anti-vascular therapy directed against VEGF or its receptors has been successful when administered at early stages of tumor vessel growth, but is less effective when administered later. Tumor blood vessels are heterogeneous, so vessel subpopulations may differ in their requirements for tumor cell-secreted VEGF and in their susceptibility to anti-VEGF/VEGFR therapy. Human cancers contain several distinct blood vessel types, including mother vessels (MV), glomeruloid microvascular proliferations (GMP), vascular malformations (VM), feeding arteries (FA) and draining veins (DV), all of which can be generated in mice in the absence of tumor cells using expression vectors for VEGF-A164. In this study, we investigated the sensitivity of each of these vessel types to anti-VEGF therapy with aflibercept ® (VEGF Trap), a potent inhibitor of VEGF-A164. Administering VEGF Trap treatment before or shortly after injection of a recombinant VEGF-A164 expressing adenovirus could prevent or regress tumor-free neovasculature, but it was progressively less effective if initiated at later times. Early-forming MVs and GMPs in which the lining endothelial cells expressed high levels of VEGFR-2 were highly susceptible to blockade by VEGF Trap. In contrast, late-forming VMs, FAs, and DVs that expressed low levels of VEGFR-2 were largely resistant. Together, our findings define the susceptibility of different blood vessel subtypes to anti-VEGF therapy, offering a possible explanation for the limited effectiveness of anti-VEGF-A/VEGFR treatment of human cancers, which are typically present for months to years before discovery and are largely populated by late-forming blood vessels. PMID:21937680

  5. Gd-EOB-DTPA-enhanced 3.0-Tesla MRI findings for the preoperative detection of focal liver lesions: Comparison with iodine-enhanced multi-detector computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Hyong-Hu; Goo, Eun-Hoe; Im, In-Chul; Lee, Jae-Seung; Kim, Moon-Jib; Kwak, Byung-Joon; Chung, Woon-Kwan; Dong, Kyung-Rae

    2012-12-01

    The safety of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic-acid (Gd-EOB-DTPA) has been confirmed, but more study is needed to assess the diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in patients with a hepatocellular carcinoma (HCC) for whom surgical treatment is considered or with a metastatic hepatoma. Research is also needed to examine the rate of detection of hepatic lesions compared to multi-detector computed tomography (MDCT), which is used most frequently to localize and characterize a HCC. Gd-EOB-DTPA-enhanced MRI and iodine-enhanced MDCT imaging were compared for the preoperative detection of focal liver lesions. The clinical usefulness of each method was examined. The current study enrolled 79 patients with focal liver lesions who preoperatively underwent MRI and MDCT. In these patients, there was less than one month between the two diagnostic modalities. Imaging data were taken before and after contrast enhancement in both methods. To evaluate the images, we analyzed the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) in the lesions and the liver parenchyma. To compare the sensitivity of the two methods, we performed a quantitative analysis of the percentage signal intensity of the liver (PSIL) on a high resolution picture archiving and communication system (PACS) monitor (paired-samples t-test, p < 0.05). The enhancement was evaluated based on a consensus of four observers. The enhancement pattern and the morphological features during the arterial and the delayed phases were correlated between the Gd-EOB-DTPA-enhanced MRI findings and the iodine-enhanced MDCT by using an adjusted x2 test. The SNRs, CNRs, and PSIL all had a greater detection rate in Gd-EOB-DTPA enhanced MRI than in iodine-enhanced MDCT. Hepatocyte-selective uptake was observed 20 minutes after the injection in the focal nodular hyperplasia (FNH, 9/9), adenoma (9/10), and highly-differentiated HCC (grade G1, 27/30). Rim

  6. Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Bolskar, Robert D.

    With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or "gadofullerenes" are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivoT1-weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.

  7. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-10-01

    We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.

  8. Comparison of Different Magnetic Resonance Cholangiography Techniques in Living Liver Donors Including Gd-EOB-DTPA Enhanced T1-Weighted Sequences

    PubMed Central

    Kinner, Sonja; Steinweg, Verena; Maderwald, Stefan; Radtke, Arnold; Sotiropoulos, Georgios; Forsting, Michael; Schroeder, Tobias

    2014-01-01

    Objectives Preoperative evaluation of potential living liver donors (PLLDs) includes the assessment of the biliary anatomy to avoid postoperative complications. Aim of this study was to compare T2-weighted (T2w) and Gd-EOB-DTPA enhanced T1-weighted (T1w) magnetic resonance cholangiography (MRC) techniques in the evaluation of PLLDs. Materials and Methods 30 PLLDs underwent MRC on a 1.5 T Magnetom Avanto (Siemens, Erlangen, Germany) using (A) 2D T2w HASTE (Half Fourier Acquisition Single Shot Turbo Spin Echo) fat saturated (fs) in axial plane, (B) 2D T2w HASTE fs thick slices in coronal plane, (C) free breathing 3D T2w TSE (turbo spin echo) RESTORE (high-resolution navigator corrected) plus (D) maximum intensity projections (MIPs), (E) T2w SPACE (sampling perfection with application optimized contrasts using different flip angle evolutions) plus (F) MIPs and (G) T2w TSE BLADE as well as Gd-EOB-DTPA T1w images without (G) and with (H) inversion recovery. Contrast enhanced CT cholangiography served as reference imaging modality. Two independent reviewers evaluated the biliary tract anatomy on a 5-point scale subjectively and objectively. Data sets were compared using a Mann-Whitney-U-test. Kappa values were also calculated. Results Source images and maximum intensity projections of 3D T2w TSE sequences (RESTORE and SPACE) proved to be best for subjective and objective evaluation directly followed by 2D HASTE sequences. Interobserver variabilities were good to excellent (k = 0.622–0.804). Conclusions 3D T2w sequences are essential for preoperative biliary tract evaluation in potential living liver donors. Furthermore, our results underline the value of different MRCP sequence types for the evaluation of the biliary anatomy in PLLDs including Gd-EOB-DTPA enhanced T1w MRC. PMID:25426932

  9. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  10. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium

    NASA Astrophysics Data System (ADS)

    Nam, I. F.; Zhuk, V. V.

    2015-04-01

    Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mM/kg of body weight, male mice - 1.4 mM/kg, female rats - 2.8 mM/kg, male rats - 5.6 mM/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mM/kg, male mice - 0.7 mM/kg, male and female rats - 0.7 mM/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic.

  12. Tissue gadolinium deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Sato, Tomohiro; Tamada, Tsutomu; Watanabe, Shigeru; Nishimura, Hirotake; Kanki, Akihiko; Noda, Yasufumi; Higaki, Atsushi; Yamamoto, Akira; Ito, Katsuyoshi

    2015-06-01

    This study was undertaken to quantify tissue gadolinium (Gd) deposition in hepatorenally impaired rats exposed to gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by means of inductively coupled plasma mass spectrometry (ICP-MS) and to compare differences in Gd distribution among major organs as possible triggers for nephrogenic systemic fibrosis. Five hepatorenally impaired rats (5/6-nephrectomized, with carbon-tetrachloride-induced liver fibrosis) were injected with Gd-EOB-DTPA. Histological assessment was conducted and Gd content of the skin, liver, kidneys, lungs, heart, spleen, diaphragm, and femoral muscle was measured by inductively coupled plasma mass spectrometry (ICP-MS) at 7 days after last injection. In addition, five renally impaired rats were injected with Gd-EOB-DTPA and the degree of tissue Gd deposition was compared with that in the hepatorenally impaired rats. ICP-MS analysis revealed significantly higher Gd deposition in the kidneys, spleen, and liver (p = 0.009-0.047) in the hepatorenally impaired group (42.6 ± 20.1, 17.2 ± 6.1, 8.4 ± 3.2 μg/g, respectively) than in the renally impaired group (17.2 ± 7.7, 5.4 ± 2.1, 2.8 ± 0.7 μg/g, respectively); no significant difference was found for other organs. In the hepatorenally impaired group, Gd was predominantly deposited in the kidneys, followed by the spleen, liver, lungs, skin, heart, diaphragm, and femoral muscle. Histopathological investigation revealed hepatic fibrosis in the hepatorenally impaired group. Compared with renally impaired rats, tissue Gd deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA was significantly increased in the kidneys, spleen, and liver, probably due to the impairment of the dual excretion pathways of the urinary and biliary systems.

  13. Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique.

    PubMed

    Onuki, Yoshinori; Jacobs, Igor; Artemov, Dmitri; Kato, Yoshinori

    2010-09-01

    A direct evaluation of the in vivo release profile of drugs from carriers is a clinical demand in drug delivery systems, because drug release characterized in vitro correlates poorly with in vivo release. The purpose of this study is to demonstrate the in vivo applicability of the dual MR contrast technique as a useful tool for noninvasive monitoring of the stability and the release profile of drug carriers, by visualizing in vivo release of the encapsulated surrogate MR contrast agent from carriers and its subsequent intratumoral distribution profile. The important aspect of this technique is that it incorporates both positive and negative contrast agents within a single carrier. GdDTPA, superparamagnetic iron oxide nanoparticles, and 5-fluorouracil were encapsulated in nano- and microspheres composed of poly(D,L-lactide-co-glycolide), which was used as a model carrier. In vivo studies were performed with orthotopic xenograft of human breast cancer. The MR-based technique demonstrated here has enabled visualization of the delivery of carriers, and release and intratumoral distribution of the encapsulated positive contrast agent. This study demonstrated proof-of-principle results for the noninvasive monitoring of in vivo release and distribution profiles of MR contrast agents, and thus, this technique will make a great contribution to the field. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Anti-VEGF/VEGFR therapy for cancer: Reassessing the target

    PubMed Central

    Sitohy, Basel; Nagy, Janice A.; Dvorak, Harold F.

    2012-01-01

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed anti-angiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor/vascular endothelial growth factor (VEGF-A) as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and we here call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least six well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All six types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A164. Once formed, four of the six types lose their VEGF-A dependency and so their responsiveness to anti-VEGF/VEGFR therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels. PMID:22508695

  15. Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers for Use As Smart MRI Contrast Agents.

    PubMed

    Zhu, Liping; Yang, Yuan; Farquhar, Kirsten; Wang, Jingjing; Tian, Chixia; Ranville, James; Boyes, Stephen G

    2016-02-01

    Despite recent advances in the understanding of fundamental cancer biology, cancer remains the second most common cause of death in the United States. One of the primary factors indicative of high cancer morbidity and mortality and aggressive cancer phenotypes is tumors with a low extracellular pH (pHe). Thus, the ability to measure tumor pHe in vivo using noninvasive and accurate techniques that also provide high spatiotemporal resolution has become increasingly important and is of great interest to researchers and clinicians. In an effort to develop a pH-responsive magnetic resonance imaging (MRI) contrast agent (CA) that has the potential to be used to measure tumor pHe, well-defined pH-responsive polymers, synthesized via reversible addition-fragmentation chain transfer polymerization, were attached to the surface of gadolinium-based nanoparticles (GdNPs) via a "grafting to" method after reduction of the thiocarbonylthio end groups. The successful modification of the GdNPs was verified by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and dynamic light scattering. The performance of the pH-responsive polymer modified GdNPs was then evaluated for potential use as smart MRI CAs via monitoring the relaxivity changes with changing environmental pH. The results suggested that the pH-responsive polymers can be used to effectively modify the GdNPs surface to prepare a smart contrast agent for MRI.

  16. Blood-pool contrast agent for pre-clinical computed tomography

    NASA Astrophysics Data System (ADS)

    Cruje, Charmainne; Tse, Justin J.; Holdsworth, David W.; Gillies, Elizabeth R.; Drangova, Maria

    2017-03-01

    Advances in nanotechnology have led to the development of blood-pool contrast agents for micro-computed tomography (micro-CT). Although long-circulating nanoparticle-based agents exist for micro-CT, they are predominantly based on iodine, which has a low atomic number. Micro-CT contrast increases when using elements with higher atomic numbers (i.e. lanthanides), particularly at higher energies. The purpose of our work was to develop and evaluate a lanthanide-based blood-pool contrast agent that is suitable for in vivo micro-CT. We synthesized a contrast agent in the form of polymer-encapsulated Gd nanoparticles and evaluated its stability in vitro. The synthesized nanoparticles were shown to have an average diameter of 127 +/- 6 nm, with good size dispersity. Particle size distribution - evaluated by dynamic light scattering over the period of two days - demonstrated no change in size of the contrast agent in water and saline. Additionally, our contrast agent was stable in a mouse serum mimic for up to 30 minutes. CT images of the synthesized contrast agent (containing 27 mg/mL of Gd) demonstrated an attenuation of over 1000 Hounsfield Units. This approach to synthesizing a Gd-based blood-pool contrast agent promises to enhance the capabilities of micro-CT imaging.

  17. Anti-VEGF therapy in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula.

    PubMed

    Seibel, Ira; Hager, Annette; Duncker, Tobias; Riechardt, Aline I; Nürnberg, Daniela; Klein, Julian P; Rehak, Matus; Joussen, Antonia M

    2016-04-01

    The purpose of this study was to describe the anatomical and functional outcome of vascular endothelial growth factor inhibitor (anti-VEGF) treatment in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula. Clinical records from patients seen between 2012 and 2013 at a single academic center were reviewed to identify PEHCR patients receiving anti-VEGF therapy due to disease-associated changes involving the macula. Affected eyes were either treated with consecutive intravitreal injections of anti-VEGF or vitrectomy combined with anti-VEGF followed by pro re nata injections. The mean age of the patients was 76 years (range 70-89 years). In all nine eyes, visual acuity was reduced due to central subretinal fluid. On average, three anti-VEGF injections (range 2-5 injections) were required initially to achieve complete resolution of macular subretinal fluid. In three eyes, subretinal fluid reappeared after an average of 10 months (range 5-16 months), and an average of 2.5 anti-VEGF injections (range 2-3 injections) were necessary to attain complete resolution of macular subretinal fluid a second time. Median visual acuity at the visit before the first injection was 1.0 logMAR (range 2.1-0.4 logMAR) and increased to 0.8 logMAR (range 2-0.1 logMAR) at the last visit. Results of this study show that for cases in which PEHCR becomes symptomatic due to macular involvement, anti-VEGF treatment may have drying potential. Although vision was improved in some patients, it remained limited in cases with long-term macular involvement, precluding any definitive functional conclusion. However, we believe that the use of anti-VEGF agents should be recommended in PEHCR that threatens the macula. Due to its often self-limiting course, peripheral lesions should be closely observed. Larger studies are needed in order to provide clear evidence of the efficacy of anti-VEGF therapy in PEHCR.

  18. Hepatic Hemangiomas: Factors Associated with Pseudo Washout Sign on Gd-EOB-DTPA-enhanced MR Imaging.

    PubMed

    Tateyama, Akihiro; Fukukura, Yoshihiko; Takumi, Koji; Shindo, Toshikazu; Kumagae, Yuichi; Nakamura, Fumihiko

    2016-01-01

    Our study aim was to clarify the characteristics of hemangiomas with pseudo washout sign (PWS) by comparing their features with those of hemangiomas without PWS on gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) imaging. We evaluated the features of hemangiomas on Gd-EOB-DTPA-enhanced MR imaging of 70 hepatic hemangiomas in 31 patients, investigating the presence of peripheral or central nodular enhancement, diffuse enhancement, and arterioportal shunt during the arterial phase, fill-in enhancement during the portal venous phase, and PWS, which is low signal intensity during the late phase. We visually assessed the intensity of contrast enhancement of the lesion during the arterial, portal venous, late, and hepatobiliary phases using a 4-grade scale and used the Fisher exact and Mann-Whitney U tests to compare hemangiomas with and without PWS. We observed PWS in 33 (47%) of 70 hemangiomas, which were significantly smaller than the hemangiomas without PWS (17.4 mm ± 20.3 versus 30.1 mm ± 28.5; P = 0.005); more frequent diffuse enhancement in hemangiomas with PWS than those without (21.2% versus 2.7%; P = 0.026); and no significant differences in nodular enhancement (P = 0.231), arterioportal shunt (P = 0.403), or fill-in enhancement (P = 0.357) between hemangiomas with and without PWS. Visually determined grades of tumor contrast enhancement were significantly lower in hemangiomas with PWS during the portal venous (P = 0.007) and late (P < 0.001) phases. Small hemangiomas tend to decrease in signal intensity during the portal venous phase and show PWS during the late phase.

  19. Combinatorial treatment with topical NSAIDs and anti-VEGF for age-related macular degeneration, a meta-analysis

    PubMed Central

    Wang, Wei; Ding, Xiaoyan

    2017-01-01

    Inflammation is a key pathogenic factor in age-related macular degeneration (AMD). However, the clinical importance of combining anti-VEGF agents and topical NSAIDs to reduce inflammation remains unclear. In this study, we systematically reviewed clinical trials comparing combined treatment versus anti-VEGF alone in AMD patients. We quantified treatment effects via meta-analysis. The pooled weighted mean difference (WMD, -0.91, 95%CI: -1.39 to -0.42, P = 0.0003) demonstrates that combined treatment may reduce required anti-VEGF injection number, probably by means of decreasing central retina thickness (CRT) (WMD = -22.9, 95% CI: -41.20 to -4.59, P = 0.01). The best corrected visual acuity (BCVA) did not change significantly between these two groups (WMD = - 0.01, 95%CI: -0.23 to 0.20, P = 0.90). Topical NSAIDs slightly increased the incidence of foreign body sensation (Odds Ratio [OR] = 2.63, 95%Cl: 1.06 to 6.52, P = 0.76). Combining topical NSAIDs and anti-VEGF agents may provide a new strategy for AMD treatment. PMID:28985220

  20. Gadolinium Accumulation in the Deep Cerebellar Nuclei and Globus Pallidus After Exposure to Linear but Not Macrocyclic Gadolinium-Based Contrast Agents in a Retrospective Pig Study With High Similarity to Clinical Conditions.

    PubMed

    Boyken, Janina; Frenzel, Thomas; Lohrke, Jessica; Jost, Gregor; Pietsch, Hubertus

    2018-05-01

    The aim of this retrospective study was to determine the gadolinium (Gd) concentration in different brain areas in a pig cohort that received repeated administration of Gd-based contrast agents (GBCAs) at standard doses over several years, comparable with a clinical setting. Brain tissue was collected from 13 Göttingen mini pigs that had received repeated intravenous injections of gadopentetate dimeglumine (Gd-DTPA; Magnevist) and/or gadobutrol (Gadovist). The animals have been included in several preclinical imaging studies since 2008 and received cumulative Gd doses ranging from 7 to 129 mmol per animal over an extended period. Two animals with no history of administration of GBCA were included as controls. Brain autopsies were performed not earlier than 8 and not later than 38 months after the last GBCA application. Tissues from multiple brain areas including cerebellar and cerebral deep nuclei, cerebellar and cerebral cortex, and pons were analyzed for Gd using inductively coupled plasma mass spectrometry. Of the 13 animals, 8 received up to 48 injections of gadobutrol and Gd-DTPA and 5 received up to 29 injections of gadobutrol only. In animals that had received both Gd-DTPA and gadobutrol, a median (interquartile range) Gd concentration of 1.0 nmol/g tissue (0.44-1.42) was measured in the cerebellar nuclei and 0.53 nmol/g (0.29-0.62) in the globus pallidus. The Gd concentration in these areas in gadobutrol-only animals was 50-fold lower with median concentrations of 0.02 nmol/g (0.01-0.02) for cerebellar nuclei and 0.01 nmol/g (0.01-0.01) for globus pallidus and was comparable with control animals with no GBCA history. Accordingly, in animals that received both GBCAs, the amount of residual Gd correlated with the administered dose of Gd-DTPA (P ≤ 0.002) but not with the total Gd dose, consisting of Gd-DTPA and gadobutrol. The Gd concentration in cortical tissue and in the pons was very low (≤0.07 nmol/g tissue) in all animals analyzed. Multiple exposure

  1. Ultrasmall biomolecule-anchored hybrid GdVO4 nanophosphors as a metabolizable multimodal bioimaging contrast agent.

    PubMed

    Dong, Kai; Ju, Enguo; Liu, Jianhua; Han, Xueli; Ren, Jinsong; Qu, Xiaogang

    2014-10-21

    Multimodal molecular imaging has recently attracted much attention on disease diagnostics by taking advantage of individual imaging modalities. Herein, we have demonstrated a new paradigm for multimodal bioimaging based on amino acids-anchored ultrasmall lanthanide-doped GdVO4 nanoprobes. On the merit of special metal-cation complexation and abundant functional groups, these amino acids-anchored nanoprobes showed high colloidal stability and excellent dispersibility. Additionally, due to typical paramagnetic behaviour, high X-ray mass absorption coefficient and strong fluorescence, these nanoprobes would provide a unique opportunity to develop multifunctional probes for MRI, CT and luminescence imaging. More importantly, the small size and biomolecular coatings endow the nanoprobes with effective metabolisability and high biocompatibility. With the superior stability, high biocompatibility, effective metabolisability and excellent contrast performance, amino acids-capped GdVO4:Eu(3+) nanocastings are a promising candidate as multimodal contrast agents and would bring more opportunities for biological and medical applications with further modifications.

  2. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review

    PubMed Central

    Yang, Shiqi; Zhao, Jingke; Sun, Xiaodong

    2016-01-01

    As a progressive chronic disease, age-related macular degeneration (AMD) is the leading cause of irreversible vision impairment worldwide. Experimental and clinical evidence has demonstrated that vascular endothelial growth factor (VEGF) plays a vital role in the formation of choroidal neovascularization. Intravitreal injections of anti-VEGF agents have been recommended as a first-line treatment for neovascular AMD. However, persistent fluid or recurrent exudation still occurs despite standardized anti-VEGF therapy. Patients suffering from refractory or recurrent neovascular AMD may develop mechanisms of resistance to anti-VEGF therapy, which results in a diminished therapeutic effect. Until now, there has been no consensus on the definitions of refractory neovascular AMD and recurrent neovascular AMD. This article aims at clarifying these concepts to evaluate the efficacy of switching drugs, which contributes to making clinical decision more scientifically. Furthermore, insight into the causes of resistance to anti-VEGF therapy would be helpful for developing possible therapeutic approaches, such as combination therapy and multi-target treatment that can overcome this resistance. PMID:27330279

  3. Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides.

    PubMed

    de Cogan, Felicity; Hill, Lisa J; Lynch, Aisling; Morgan-Warren, Peter J; Lechner, Judith; Berwick, Matthew R; Peacock, Anna F A; Chen, Mei; Scott, Robert A H; Xu, Heping; Logan, Ann

    2017-05-01

    To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.

  4. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections.

    PubMed

    Levin, Ariana M; Rusu, Irene; Orlin, Anton; Gupta, Mrinali P; Coombs, Peter; D'Amico, Donald J; Kiss, Szilárd

    2017-01-01

    The aim of this study is to report peripheral reperfusion of ischemic areas of the retina on ultra-widefield fluorescein angiography (UWFA) following anti-vascular endothelial growth factor (VEGF) intravitreal injections in patients treated for diabetic retinopathy. This study is a retrospective review of 16 eyes of 15 patients with diabetic retinopathy, who received anti-VEGF intravitreal injections and underwent pre- and postinjection UWFA. The main outcome measured was the presence of reperfusion in postinjection UWFA images in areas of the retina that demonstrated nonperfusion in preinjection images. Images were analyzed for reperfusion qualitatively and quantitatively by two graders. Twelve of 16 eyes (75%) or 11 of 15 patients (73.3%) demonstrated reperfusion following anti-VEGF injection. On UWFA, reperfusion was detected both within the field of 7-standard field (7SF) fluorescein angiography and in the periphery outside the 7SF. Four of 16 eyes or 4 of 15 patients did not demonstrate reperfusion, one of which had extensive scarring from prior panretinal photocoagulation. In patients with diabetic retinopathy, treatment with anti-VEGF agents can be associated with reperfusion of areas of nonperfusion, as demonstrated by UWFA.

  5. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging and Multidetector-Row Computed Tomography for the Diagnosis of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

    PubMed

    Ye, Feng; Liu, Jun; Ouyang, Han

    2015-08-01

    The purpose of this meta-analysis was to compare the diagnostic accuracy of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and multidetector-row computed tomography (MDCT) for hepatocellular carcinoma (HCC).Medline, Cochrane, EMBASE, and Google Scholar databases were searched until July 4, 2014, using combinations of the following terms: gadoxetic acid disodium, Gd-EOB-DTPA, multidetector CT, contrast-enhanced computed tomography, and magnetic resonance imaging. Inclusion criteria were as follows: confirmed diagnosis of primary HCC by histopathological examination of a biopsy specimen; comparative study of MRI using Gd-EOB-DTPA and MDCT for diagnosis of HCC; and studies that provided quantitative outcome data. The pooled sensitivity and specificity of the 2 methods were compared, and diagnostic accuracy was assessed with alternative-free response receiver-operating characteristic analysis.Nine studies were included in the meta-analysis, and a total of 1439 lesions were examined. The pooled sensitivity and specificity for 1.5T MRI were 0.95 and 0.96, respectively, for 3.0T MRI were 0.91 and 0.96, respectively, and for MDCT were 0.74 and 0.93, respectively. The pooled diagnostic odds ratio for 1.5T and 3.0T MRI was 242.96, respectively, and that of MDCT was 33.47. To summarize, Gd-EOB-DTPA-enhanced MRI (1.5T and 3.0T) has better diagnostic accuracy for HCC than MDCT.

  6. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    PubMed Central

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  7. Structural, kinetic, and thermodynamic characterization of the interconverting isomers of MS-325, a gadolinium(III)-based magnetic resonance angiography contrast agent.

    PubMed

    Tyeklar, Zoltan; Dunham, Stephen U; Midelfort, Katarina; Scott, Daniel M; Sajiki, Hirano; Ong, Karen; Lauffer, Randall B; Caravan, Peter; McMurry, Thomas J

    2007-08-06

    The amphiphilic gadolinium complex MS-325 ((trisodium-{(2-(R)-[(4,4-diphenylcyclohexyl) phosphonooxymethyl] diethylenetriaminepentaacetato) (aquo)gadolinium(III)}) is a contrast agent for magnetic resonance angiography (MRA). MS-325 comprises a GdDTPA core with an appended phosphodiester moiety linked to a diphenylcyclohexyl group to facilitate noncovalent binding to serum albumin and extension of the plasma half-life in vivo. The chiral DTPA ligand (R) was derived from L-serine, and upon complexation with gadolinium, forms two interconvertible diastereomers, denoted herein as isomers A and B. X-ray crystallography of the tris(ethylenediamine)cobalt(III) salt derivative of isomer A revealed a structure in the polar acentric space group P32. The structure consisted of three independent molecules of the gadolinium complex in the asymmetric unit along with three Delta-[Co(en)3]3+ cations, and it represents an unusual example of spontaneous Pasteur resolution of the cobalt cation. The geometry of the coordination core was best described as a distorted trigonal prism, and the final R factor was 5.6%. The configuration of the chiral central nitrogen of the DTPA core was S. The Gd-water (2.47-2.48 A), the Gd-acetate oxygens (2.34-2.42 A), and the Gd-N bond distances (central N, 2.59-2.63 A; terminal N, 2.74-2.80 A) were similar to other reported GdDTPA structures. The structurally characterized single crystal was one of two interconvertable diastereomers (isomers A and B) that equilibrated to a ratio of 1.81 to 1 at pH 7.4 and were separable at elevated pH by ion-exchange chromatography. The rate of isomerization was highly pH dependent: k1 = (1.45 +/- 0.08) x 102[H+] + (4.16 +/- 0.30) x 105[H+]2; k-1 = (2.57 +/- 0.17) x 102[H+] + (7.54 +/- 0.60) x 105[H+]2.

  8. Feasibility of gadoteric acid for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at the wrist and knee and comparison with Gd-DTPA.

    PubMed

    Rehnitz, Christoph; Klaan, Bastian; Do, Thuy; Barié, Alexander; Kauczor, Hans-Ulrich; Weber, Marc-André

    2017-11-01

    To assess the feasibility of gadoteric acid for delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and to compare the dGEMRIC values obtained using gadoteric acid with those obtained by an equimolar dose of Gd-DTPA. At 3T, dGEMRIC of the wrist was performed twice using a T 1 -weighted 3D-volumetric interpolated breath-hold examination sequence in 16 healthy volunteers (10 women; mean age 26.0 years) using gadoteric acid first and Gd-DTPA 3 weeks later. In addition, 24 patients with knee pain were examined using gadoteric acid (n = 12; seven women; mean age 45.8 years) or Gd-DTPA (n = 12; four women; mean age 47.1 years). T 1 values, the relative decrease in T 1 , and the delta R1 were compared using t-tests. Interobserver agreement was assessed using the intraclass correlation (ICC) between two independent readers. At the wrist, there was no significant difference in delta R1 values (0.34 ± 0.10/s, 95% confidence interval [0.30;0.38]/s for gadoteric acid and 0.32 ± 0.09 [0.29;0.35]/s for Gd-DTPA, P = 0.24) or the relative decrease in T 1 (0.25 ± 0.06 [0.29;0.35] msec for gadoteric acid and 0.24 ± 0.05 [0.22;0.27] msec for Gd-DTPA, P = 0.35). High observer agreement was found at precontrast (ICC = 0.87, P < 0.001) and postcontrast (ICC = 0.89, P < 0.001). Similarly, at the knee, there was no significant difference in delta R1 (0.39 ± 0.18 [0.32;0.47]/s for gadoteric acid and 0.41 ± 0.09 [0.38;0.45]/s for Gd-DTPA, P = 0.59) or the relative decrease in T 1 (0.30 ± 0.10 [0.26;0.34] msec for gadoteric acid and 0.33 ± 0.05 [0.30;0.35] msec for Gd-DTPA, P = 0.28). High ICCs of 0.96 (P < 0.01) were noted both at precontrast and postcontrast. dGEMRIC using gadoteric acid is feasible and yields comparable values when compared with Gd-DTPA. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1433-1440. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Anti-VEGF/VEGFR therapy for cancer: reassessing the target.

    PubMed

    Sitohy, Basel; Nagy, Janice A; Dvorak, Harold F

    2012-04-15

    Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.

  10. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    PubMed Central

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  11. Assessment of sequence dependent geometric distortion in contrast-enhanced MR images employed in stereotactic radiosurgery treatment planning.

    PubMed

    Pappas, Eleftherios P; Seimenis, Ioannis; Dellios, Dimitrios; Kollias, Georgios; Lampropoulos, Kostas I; Karaiskos, Pantelis

    2018-06-25

    This work focuses on MR-related sequence dependent geometric distortions, which are associated with B 0 inhomogeneity and patient-induced distortion (susceptibility differences and chemical shift effects), in MR images used in stereotactic radiosurgery (SRS) applications. Emphasis is put on characterizing distortion at target brain areas identified by gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) paramagnetic contrast agent uptake. A custom-made phantom for distortion detection was modified to accommodate two small cylindrical inserts, simulating small brain targets. The inserts were filled with Gd-DTPA solutions of various concentrations (0-20 mM). The phantom was scanned at 1.5 T unit using both the reversed read gradient polarity (to determine the overall distortion as reflected by the inserts centroid offset) and the field mapping (to determine B 0 inhomogeneity related distortion in the vicinity of the inserts) techniques. Post-Gd patient images involving a total of 10 brain metastases/targets were also studied using a similar methodology. For the specific imaging conditions, contrast agent presence was found to evidently affect phantom insert position, with centroid offset extending up to 0.068 mm mM -1 (0.208 ppm mM -1 ). The Gd-DTPA induced distortion in patient images was of the order of 0.5 mm for the MRI protocol used, in agreement with the phantom results. Total localization uncertainty of metastases-targets in patient images ranged from 0.35 mm to 0.87 mm, depending on target location, with an average value of 0.54 mm (2.24 ppm). This relative wide range of target localization uncertainty results from the fact that the B 0 inhomogeneity distortion vector in a specific location may add to or partly counterbalance Gd-DTPA induced distortion, thus increasing or decreasing, respectively, the total sequence dependent distortion. Although relatively small, the sequence dependent distortion in Gd-DTPA enhanced brain images can be

  12. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent.

    PubMed

    Santra, Santimukul; Jativa, Samuel D; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J Manuel

    2012-08-28

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.

  13. Cost and Selection of Ophthalmic Anti-Vascular Endothelial Growth Factor Agents.

    PubMed

    Li, Emily; Greenberg, Paul B; Voruganti, Indu; Krzystolik, Magdalena G

    2016-05-02

    Anti-vascular endothelial growth factor (anti-VEGF) drugs - ranibizumab, aflibercept, and off-label bevacizumab - are vital to the treatment of common retinal diseases, including exudative age-related macular degeneration (AMD), diabetic macular edema (DME), and macular edema (ME) associated with retinal vein occlusion (RVO). Given the high prevalence of AMD and retinal vascular diseases, anti-VEGF agents represent a large cost burden to the United States (US) healthcare system. Although ranibizumab and aflibercept are 30-fold more expensive per injection than bevacizumab, the two more costly medications are commonly used in the US, even though all three have been shown to be effective and safe for treatment of these retinal diseases. We investigated the availability and content of professional ophthalmic guidelines on cost consideration in the selection of anti-VEGF agents. We found that current professional guidelines were limited in availability and lacked specific guidance on cost-based anti-VEGF drug selection. This represents a missed opportunity to encourage the practice of value-based medicine. [Full article available at http://rimed.org/rimedicaljournal-2016-05.asp, free with no login].

  14. NMR relaxometric properties and cytotoxicity of Gd2O3 nanoparticle suspensions in an organic liquid

    NASA Astrophysics Data System (ADS)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2014-10-01

    Gd2O3 nanoparticles and their agglomerates from approximately 10 to 80 nm in size suspended in an organic liquid were synthesized via polyol route. The reaction between diethylene glycol and added acetic acid, which occurred simultaneously with the synthesis of Gd2O3 nanoparticles, was catalyzed by sodium bisulfate to transform as much as possible diethylene glycol in corresponding ester at the end of complete reaction. The produced nanosized material of gadolinium oxide was investigated by TEM, DLS, FTIR spectroscopy, and NMR relaxometry. Biological evaluation of this material was done by MTT and crystal violet assays to determine the cell viability. Longitudinal and transverse relaxivities of water-diluted Gd2O3 nanoparticle suspensions estimated to be r 1 = 13.6 and r 2 = 14.7 s-1 mM-1 are about three times higher compared to the relaxivities obtained for standard contrast agent Gd-DTPA (Magnevist). Good MRI signal intensities of the water-diluted Gd2O3 nanoparticle suspensions were recorded in the Gd concentration range 0.2-0.3 mM for which the suspensions were not toxic exhibiting simultaneously higher signal intensities than those for Magnevist in the Gd concentration range 0.4-1 mM for which this standard contrast agent was not toxic. These properties make the produced Gd2O3 nanoparticle material promising for potential application as MRI contrast agent.

  15. Liver enhancement in healthy dogs after gadoxetic acid administration during dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Borusewicz, P; Stańczyk, E; Kubiak, K; Spużak, J; Glińska-Suchocka, K; Jankowski, M; Nicpoń, J; Podgórski, P

    2018-05-01

    Dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) consists of acquisition of native baseline images, followed by a series of acquisitions performed during and after administration of a contrast medium. DCE-MRI, in conjunction with hepatobiliary-specific contrast media, such as gadoxetic acid (GD-EOB-DTPA), allows for precise characterisation of the enhancement pattern of the hepatic parenchyma following administration of the contrast agent. The aim of the study was to assess the pattern of temporal resolution contrast enhancement of the hepatic parenchyma following administration of GD-EOB-DTPA and to determine the optimal time window for post-contrast assessment of the liver. The study was carried out on eight healthy beagle dogs. MRI was performed using a 1.5T scanner. The imaging protocol included T1 weighted (T1-W) gradient echo (GRE), T2 weighted (T2-W) turbo spin echo (TSE) and dynamic T1-W GRE sequences. The dynamic T1-W sequence was performed using single 10mm thick slices. Regions of interest (ROIs) were chosen and the signal intensity curves were calculated for quantitative image analysis. The mean time to peak for all dogs was 26min. The plateau phase lasted on average 21min. A gradual decrease in the signal intensity of the hepatic parenchyma was observed in all dogs. A DCE-MRI enhancement pattern of the hepatic parenchyma was evident in dogs following the administration of a GD-EOB-DTPA, establishing baseline data for an optimal time window between 26 and 41min after administration of the contrast agent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Investigation of cyano-bridged coordination nanoparticles Gd3+/[Fe(CN)6]3-/d-mannitol as T1-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Perrier, M.; Gallud, A.; Ayadi, A.; Kennouche, S.; Porredon, C.; Gary-Bobo, M.; Larionova, J.; Goze-Bac, Ch.; Zanca, M.; Garcia, M.; Basile, I.; Long, J.; de Lapuente, J.; Borras, M.; Guari, Y.

    2015-07-01

    Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity.Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity. Electronic supplementary information (ESI) available: Experimental details and procedures, toxicological data, physical characterization. See DOI: 10.1039/c5nr01557j

  17. Ocular pharmacokinetic study using T₁ mapping and Gd-chelate- labeled polymers.

    PubMed

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S Kevin; Jeong, Eun-Kee

    2011-12-01

    Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4-1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Usefulness of T(1) mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time.

  18. [Systemic safety following intravitreal injections of anti-VEGF].

    PubMed

    Baillif, S; Levy, B; Girmens, J-F; Dumas, S; Tadayoni, R

    2018-03-01

    The goal of this manuscript is to assess data suggesting that intravitreal injection of anti-vascular endothelial growth factors (anti-VEGFs) could result in systemic adverse events (AEs). The class-specific systemic AEs should be similar to those encountered in cancer trials. The most frequent AE observed in oncology, hypertension and proteinuria, should thus be the most common expected in ophthalmology, but their severity should be lower because of the much lower doses of anti-VEGFs administered intravitreally. Such AEs have not been frequently reported in ophthalmology trials. In addition, pharmacokinetic and pharmacodynamic data describing systemic diffusion of anti-VEGFs should be interpreted with caution because of significant inconsistencies reported. Thus, safety data reported in ophthalmology trials and pharmacokinetic/pharmacodynamic data provide robust evidence that systemic events after intravitreal injection are very unlikely. Additional studies are needed to explore this issue further, as much remains to be understood about local and systemic side effects of anti-VEGFs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Gd-EOB-DTPA-enhanced MRI for monitoring future liver remnant function after portal vein embolization and extended hemihepatectomy: A prospective trial.

    PubMed

    Geisel, Dominik; Raabe, Philip; Lüdemann, Lutz; Malinowski, Maciej; Stockmann, Martin; Seehofer, Daniel; Pratschke, Johann; Hamm, Bernd; Denecke, Timm

    2017-07-01

    To evaluate changes in liver function after right portal vein embolization (PVE) and extended right hemihepatectomy using gadolinium ethoxybenzyl-DTPA-enhanced (Gd-EOB-DTPA) MRI. In this prospective trial, 37 patients undergoing PVE were examined before and 14 and 28 days after PVE and 10 days after extended hemihepatectomy using Gd-EOB-DTPA-enhanced MRI. Lobar volume, kinetic growth rate (KGR), relative enhancement (RE) as well as hepatocellular uptake index (HUI) and fat signal fraction (FSF) were calculated for each lobe. RE of the left liver lobe (LLL) was steadily increasing after PVE and decreased to 0.48 ± 0.19 10 days after surgery, which is significantly lower than 14 days and 28 days post PVE (P < 0.05). KGR was 14.06 ± 9.82%/week for the period from PVE to 14 days after PVE. HUI of the LLL increased steadily after PVE and was significantly higher at both 14 and 28 days after PVE compared to pre PVE (P < 0.05). HUI of the residual liver after surgery was lower than before. Gd-EOB-DTPA-enhanced MRI may be used to monitor the functional increase in the FLR after PVE and to depict the intraoperative liver injury leading to a decrease in liver remnant function. • The most significant FLR volume increase happens within the first 14 days. • No MRI parameter was able to predict the success of FLR growth. • Our data suggest an early resection about 14 days after PVE. • Routine Gd-EOB-DTPA-enhanced MRI might be suitable to replace ICG-test.

  20. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy

    PubMed Central

    Perez Horta, Zulmarie; Goldberg, Jacob L; Sondel, Paul M

    2016-01-01

    Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy. PMID:27485082

  1. Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd(3+)-DTPA chelate complexes.

    PubMed

    Yulikov, Maxim; Lueders, Petra; Warsi, Muhammad Farooq; Chechik, Victor; Jeschke, Gunnar

    2012-08-14

    Nanosized gold particles were functionalised with two types of paramagnetic surface tags, one having a nitroxide radical and the other one carrying a DTPA complex loaded with Gd(3+). Selective measurements of nitroxide-nitroxide, Gd(3+)-nitroxide and Gd(3+)-Gd(3+) distances were performed on this system and information on the distance distribution in the three types of spin pairs was obtained. A numerical analysis of the dipolar frequency distributions is presented for Gd(3+) centres with moderate magnitudes of zero-field splitting, in the range of detection frequencies and resonance fields where the high-field approximation is only roughly valid. The dipolar frequency analysis confirms the applicability of DEER for distance measurements in such complexes and gives an estimate for the magnitudes of possible systematic errors due to the non-ideality of the measurement of the dipole-dipole interaction.

  2. Renal toxicity of anticancer agents targeting vascular endothelial growth factor (VEGF) and its receptors (VEGFRs).

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Liguigli, Wanda; Porta, Camillo

    2017-04-01

    Since angiogenesis plays a key role in tumor growth, progression and metastasization, anti-vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) agents have been developed over the years as anticancer agents, and have changed, for the better, the natural history of a number of cancer types. In the present review, the renal safety profile of presently available agents targeting either VEGF or VEGFRs will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, renal toxicity (especially, but not exclusively, hypertension and proteinuria) are quite commonly observed with these agents, and may be increased by the concomitant use of cytoxic chemotherapeutics. Despite all the above, kidney impairment or dialysis must not be regarded di per se as reasons not to administer or to stop an active anticancer treatment, especially considering the possibility of a significant survival improvement in many cancer patients treated with these agents.

  3. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    PubMed

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  4. Removal of choroidal neovascular membrane in a case of macular hole after anti-VEGF therapy for age-related macular degeneration.

    PubMed

    Hirata, Akira; Hayashi, Ken; Murata, Kazuhisa; Nakamura, Kei-Ichiro

    2018-03-01

    The formation of macular hole after receiving anti-vascular endothelial growth factor (anti-VEGF) therapy is rare. We report a case of macular hole that occurred after intravitreal injection of an anti-VEGF agent for age-related macular degeneration (AMD) in a patient, who underwent vitrectomy combined with choroidal neovascularization (CNV) removal. A 64-year-old female with AMD affecting her right eye received an intravitreal injection of an anti-VEGF agent. After treatment, we identified a full thickness macular hole (MH) that was associated with the rapid resolution of the macular edema and contraction of the CNV. After performing vitrectomy combined with CNV removal, the MH closed and her visual acuity improved. Examination of the removed CNV revealed a network of microvessels devoid of pericytes. and Importance: The present findings suggest that rapid resolution of macular edema and contraction of the CNV and/or mild increase in the vitreous traction after anti-VEGF therapy could potentially cause MH. CNV removal via the MH may be an acceptable procedure, if the MH remains open, the CNV is of the classic type, and it spares a central portion of the fovea.

  5. Is There a Relationship Between Use of Anti-Vascular Endothelial Growth Factor Agents and Atrophic Changes in Age-Related Macular Degeneration Patients?

    PubMed

    Kaynak, Süleyman; Kaya, Mahmut; Kaya, Derya

    2018-04-01

    Choroidal neovascularization due to age-related macular degeneration (AMD) is currently treated successfully with anti-vascular endothelial growth factor (VEGF) intravitreal agents. Emerging evidence suggests that anti-VEGF treatment may potentially increase development of geographic atrophy. However, there is not yet direct proof of a causal relationship between geographic atrophy and use of anti-VEGF agents in neovaskuler AMD. The aim of this review is to discuss the evidence concerning the association between anti-VEGF therapy and progression of geographic atrophy.

  6. Relative diffusion of paramagnetic metal complexes of MRI contrast agents in an isotropic hydrogel medium.

    PubMed

    Weerakoon, Bimali Sanjeevani; Osuga, Toshiaki

    2017-03-01

    The observation of molecular diffusion by means of magnetic resonance imaging (MRI) is significant in the evaluation of the metabolic activity of living tissues. Series of MRI examinations were conducted on a diffusion model to study the behaviour of the diffusion process of different-molecular-weight (MW) paramagnetic MRI contrast agents in an isotropic agar hydrogel medium. The model consisted of a solidified 1 % agar gel with an initial concentration of 0.5 mmol/L contrast solution layered on top of the gel. The diffusion process was monitored at pre-determined time intervals of immediately, 1, 6, 9, 23, and 48 h after introduction of the contrast agents onto the agar gel with a T1-weighted spin-echo (SE) pulse sequence. Three types of paramagnetic contrast agents, Gd-DTPA with a MW of 547.57 g/mol, Prohance with a MW of 558.69 g/mol and MnCl 2 with a MW of 125.84 g/mol, resulted in an approximate average diffusional displacement ratio of 1:1:2 per hour, respectively, within 48 h of the experiment. Therefore, the results of this study supported the hypothesis that the rate of the diffusion process of MRI contrast agents in the agar hydrogel medium is inversely related to their MWs. However, more repetitions are necessary under various types of experimental conditions and also with various types of contrast media of different MWs for further confirmation and validation of these results.

  7. Comparison of contrast-enhanced ultrasonograpy with Gd-EOB-DTPA-enhanced MRI in the diagnosis of liver metastasis from colorectal cancer.

    PubMed

    Shiozawa, Kazue; Watanabe, Manabu; Ikehara, Takashi; Matsukiyo, Yasushi; Kogame, Michio; Kikuchi, Yoshinori; Otsuka, Yuichiro; Kaneko, Hironori; Igarashi, Yoshinori; Sumino, Yasukiyo

    2017-03-04

    To compare contrast-enhanced ultrasonography (CEUS) using Sonazoid with Gd-EOB-DTPA-enhanced MRI (EOB-MRI) in the diagnosis of liver metastases in patients with colorectal cancer. A total of 69 patients diagnosed with or suspected of having liver metastasis were enrolled. These hepatic lesions were diagnosed by histopathological examination after surgical resection or based on follow-up using various imaging modalities. The diagnostic accuracies of CEUS and EOB-MRI were compared. One hundred thirty-three lesions were detected. Of these lesions, 109 were diagnosed as liver metastases. Of the 133 lesions, 90.2% were detected on CEUS, and 98.5% on EOB-MRI. One hundred nine lesions were diagnosed as liver metastasis. The areas under the receiver operating characteristic curve for diagnosis were 0.906 and 0.851 on CEUS and EOB-MRI, respectively (p = 0.41). Sensitivity, specificity, positive predictive value (PPV), negative predictive value, and overall accuracy were 90.8%, 84.5%, 97.1%, 67.1%, and 90.2%, respectively, for CEUS, and 95.4%, 70.8%, 93.7%, 77.3%, and 91%, respectively, for EOB-MRI. CEUS has a higher specificity and PPV for the diagnosis of liver metastasis than EOB-MRI. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:138-144, 2017. © 2016 The Authors Journal of Clinical Ultrasound Published by Wiley Periodicals, Inc.

  8. Assessment of Myocardial Remodeling Using an Elastin/Tropoelastin Specific Agent with High Field Magnetic Resonance Imaging (MRI).

    PubMed

    Protti, Andrea; Lavin, Begoña; Dong, Xuebin; Lorrio, Silvia; Robinson, Simon; Onthank, David; Shah, Ajay M; Botnar, Rene M

    2015-08-13

    Well-defined inflammation, proliferation, and maturation phases orchestrate the remodeling of the injured myocardium after myocardial infarction (MI) by controlling the formation of new extracellular matrix. The extracellular matrix consists mainly of collagen but also fractions of elastin. It is thought that elastin is responsible for maintaining elastic properties of the myocardium, thus reducing the risk of premature rupture. An elastin/tropoelastin-specific contrast agent (Gd-ESMA) was used to image tropoelastin and mature elastin fibers for in vivo assessment of extracellular matrix remodeling post-MI. Gd-ESMA enhancement was studied in a mouse model of myocardial infarction using a 7 T MRI scanner and results were compared to those achieved after injection of a nonspecific control contrast agent, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). In the infarcted tissue, Gd-ESMA uptake (measured as R1 relaxation rate) steadily increased from day 3 to day 21 as a result of the synthesis of elastin/tropoelastin. R1 values were in good agreement with histological findings. A similar R1 behavior was observed in the remote myocardium. No mature cross-linked elastin was found at any time point. In contrast, Gd-DTPA uptake was only observed in the infarct with no changes in R1 values between 3 and 21 days post-MI. We demonstrate the feasibility of in vivo imaging of extracellular matrix remodeling post-MI using a tropoelastin/elastin binding MR contrast agent, Gd-ESMA. We found that tropoelastin is the main contributor to the increased MRI signal at late stages of MI where its augmentation in areas of infarction was in good agreement with the R1 increase. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Development and validation of a predictor of insufficient enhancement during the hepatobiliary phase of Gd-EOB-DTPA-enhanced magnetic resonance imaging.

    PubMed

    Cui, Enming; Long, Wansheng; Luo, Liangping; Hu, Maoqing; Huang, Liebin; Chen, Xiangmeng

    2017-10-01

    Background Insufficient enhancement of liver parenchyma negatively affects diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI). Currently, there is no reliable method for predicting insufficient enhancement during the hepatobiliary phase (HBP) in Gd-EOB-DTPA-enhanced MRI. Purpose To develop a predictor for insufficient enhancement of liver parenchyma during HBP in Gd-EOB-DTPA-enhanced MRI. Material and Methods In order to formulate a HBP enhancement test (HBP-ET), clinical factors associated with relative enhancement ratio (RER) of liver parenchyma were retrospectively determined from the datasets of 156 patients (Development group) who underwent Gd-EOB-DTPA-enhanced MRI between November 2012 and May 2015. The independent clinical factors were identified by Pearson's correlation and multiple stepwise regression analysis; the performance of HBP-ET was compared to Child-Pugh score (CPS), Model for End-stage Liver Disease score (MELD), and total bilirubin (TBIL) using receiver operating characteristic (ROC) curve analysis. The datasets of 52 patients (Validation group), which were examined between June 2015 and Oct 2015, were applied to validate the HBP-ET. Results Six biochemical parameters independently influenced RER and were used to develop HBP-ET. The mean HBP-ET score of patients with insufficient enhancement was significantly higher than that of patients with sufficient enhancement ( P < 0.001) in both the Development and Validation groups. HBP-ET (area under the curve [AUC] = 0.895) had better performance in predicting insufficient enhancement than CPS (AUC = 0.707), MELD (AUC = 0.798), and TBIL (AUC = 0.729). Conclusion The HBP-ET is more accurate than routine indicators in predicting insufficient enhancement during HBP, which is valuable to aid clinical decisions.

  10. Non-hypervascular hypointense nodules detected by Gd-EOB-DTPA-enhanced MRI are a risk factor for recurrence of HCC after hepatectomy.

    PubMed

    Toyoda, Hidenori; Kumada, Takashi; Tada, Toshifumi; Niinomi, Takuro; Ito, Takanori; Sone, Yasuhiro; Kaneoka, Yuji; Maeda, Atsuyuki

    2013-06-01

    The gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) often depicts non-hypervascular hypointense hepatic nodules during the hepatobiliary phase in patients with hepatocellular carcinoma (HCC). It is unclear whether the presence of these nodules is associated with HCC recurrence after hepatectomy. We conducted a prospective observational study to investigate the impact of the presence of non-hypervascular hypointense hepatic nodules on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI on the recurrence of HCC after hepatectomy. A total of 77 patients who underwent hepatectomy for primary, non-recurrent, hypervascular HCC were prospectively followed up after hepatectomy. Post-operative recurrence rates were compared according to the presence of non-hypervascular hypointense nodules on preoperative Gd-EOB-DTPA-enhanced MRI. Recurrence rates after hepatectomy were higher in patients with non-hypervascular hypointense nodules (risk ratio 1.9396 [1.3615-2.7222]) and the presence of non-hypervascular hypointense nodules was an independent factor associated with postoperative recurrence (risk ratio 2.1767 [1.5089-3.1105]) along with HCC differentiation and portal vein invasion. While no differences were found in the rate of intrahepatic metastasis recurrence based on the preoperative presence of non-hypervascular hypointense hepatic nodules, the rate of multicentric recurrence was significantly higher in patients with preoperative non-hypervascular hypointense hepatic nodules. Patients with preoperative non-hypervascular hypointense hepatic nodules detected during the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI are at higher risk of HCC recurrence after hepatectomy, mainly due to multicentric recurrence. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Immune Rejection after Pancreatic Islet Cell Transplantation: In Vivo Dual Contrast-enhanced MR Imaging in a Mouse Model

    PubMed Central

    Wang, Ping; Schuetz, Christian; Ross, Alana; Dai, Guangping; Markmann, James F.

    2013-01-01

    Purpose: To detect adoptively transferred immune attack in a mouse model of islet cell transplantation by using a long-circulating paramagnetic T1 contrast agent, a protected graft copolymer (PGC) that is covalently linked to gadolinium–diethylenetriaminepentaacetic acid with fluorescein isothiocyanate (Gd-DTPA-F), which accumulates in the sites of inflammation that are characterized by vascular disruption. Materials and Methods: All animal experiments were performed in compliance with institutional guidelines and approved by the subcommittee on research animal care. Six nonobese diabetic severe combined immunodeficiency mice received transplanted human islet cells under the kidney capsule and adoptively transferred 5 × 106 splenocytes from 6-week-old nonobese diabetic mice. These mice also served as control subjects for comparison of pre- and postadoptive transfer MR imaging results. Mice that received phosphate-buffered saline solution only were included as nonadoptive-transfer control subjects (n = 2). In vivo magnetic resonance (MR) imaging was performed before and 17 hours after intravenous injections of PGC-Gd-DTPA-F, followed by histologic examination. Statistical differences were analyzed by means of a paired Student t test and repeated two-way analysis of variance. Results: MR imaging results showed significantly greater accumulation of PGC-Gd-DTPA-F in the graft area after immune attack initiated by adoptive transfer of splenocytes compared with that of the same area before the transfer (T1, 137.2 msec ± 39.3 and 239.5 msec ± 17.6, respectively; P < .001). These results were confirmed at histologic examination, which showed considerable leakage of the contrast agent into the islet cell interstitium. Conclusion: PGC-Gd-DTPA-F–enhanced MR imaging allows for the in vivo assessment of vascular damage of the graft T cell challenge. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12121129/-/DC1 PMID:23264346

  12. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis.

    PubMed Central

    Filippi, M; Campi, A; Martinelli, V; Colombo, B; Yousry, T; Canal, N; Scotti, G; Comi, G

    1995-01-01

    This study was performed to evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) increases the sensitivity of brain MRI for detecting enhancing lesions in patients with primary progressive multiple sclerosis (PPMS). T1 weighted brain MRI was obtained for 10 patients with PPMS in two sessions. In the first session, one scan was obtained five to seven minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, one scan before and two scans five to seven minutes and one hour after the injection of 0.3 mmol/kg Gd-DTPA (triple dose) were obtained. Four enhancing lesions were detected in two patients when the standard dose of Gd-DTPA was used. The numbers of enhancing lesions increased to 13 and the numbers of patients with such lesions to five when the triple dose of Gd-DTPA was used and to 14 and six in the one hour delayed scans. The mean contrast ratio for enhancing lesions detected with the triple dose of Gd-DTPA was higher than those for lesions present in both the standard dose (P < 0.0009) and the one hour delayed scans (P = 0.04). These data indicate that with a triple dose of Gd-DTPA many more enhancing lesions can be detected in patients with PPMS. This is important both for planning clinical trials and for detecting the presence of inflammation in vivo in the lesions of such patients. Images PMID:8530944

  13. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    PubMed Central

    2010-01-01

    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd. PMID:21170410

  14. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang

    2010-12-01

    Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.

  15. Dll4 Blockade Potentiates the Anti-Tumor Effects of VEGF Inhibition in Renal Cell Carcinoma Patient-Derived Xenografts

    PubMed Central

    Miles, Kiersten Marie; Seshadri, Mukund; Ciamporcero, Eric; Adelaiye, Remi; Gillard, Bryan; Sotomayor, Paula; Attwood, Kristopher; Shen, Li; Conroy, Dylan; Kuhnert, Frank; Lalani, Alshad S.; Thurston, Gavin; Pili, Roberto

    2014-01-01

    Background The Notch ligand Delta-like 4 (Dll4) is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF) and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC). Methods and Results Severe combined immunodeficiency (SCID) mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI) examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36–62%) that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38–54%) and ziv-aflibercept (46%). Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72–80% growth inhibition), including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model. Conclusions Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC. PMID:25393540

  16. Glaucoma filtration surgery following sustained elevation of intraocular pressure secondary to intravitreal anti-VEGF injections.

    PubMed

    Skalicky, Simon E; Ho, Ivan; Agar, Ashish; Bank, Allan

    2012-07-01

    To document cases of sustained elevation of intraocular pressure (IOP) while receiving intravitreal anti-vascular endothelial growth factor (VEGF) agents and subsequent management. A retrospective series of all cases managed by the authors and colleagues was performed. Six patients developed sustained elevated IOP; five received ranibizumab and one bevacizumab. Four received unilateral and two received bilateral injections. Two had preexisting primary open-angle glaucoma and one had pseudoexfoliative glaucoma, all with stable IOP prior to anti-VEGF treatment. Angles were open in all cases. Peak IOP averaged 43 mm Hg (range: 34 to 60 mm Hg). The mean number of injections preceding the IOP increase was 10 (range: 1 to 20). Four patients required trabeculectomy, one selective laser trabeculoplasty, and one multiple topical medications. A sustained increase in IOP requiring glaucoma filtering surgery is a rare but important treatment complication for patients receiving intravitreal anti-VEGF therapy, especially those with preexisting glaucoma or glaucoma risk factors. Copyright 2012, SLACK Incorporated.

  17. Ocular Pharmacokinetic Study Using T1 Mapping and Gd-Chelate-Labeled Polymers

    PubMed Central

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S. Kevin

    2011-01-01

    Purpose Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Methods Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Results Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4–1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Conclusions Usefulness of T1 mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time. PMID:21691891

  18. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Fenfen; Zhi, Debo; Luo, Yufeng; Zhang, Jiqian; Nan, Xiang; Zhang, Yunjiao; Zhou, Wei; Qiu, Bensheng; Wen, Longping; Liang, Gaolin

    2016-06-01

    T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future.T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes

  19. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases.

    PubMed

    Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori

    2010-11-01

    To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.

  20. Selective modification of NMR relaxation time in human colorectal carcinoma by using gadolinium-diethylenetriaminepentaacetic acid conjugated with monoclonal antibody 19-9.

    PubMed Central

    Curtet, C; Tellier, C; Bohy, J; Conti, M L; Saccavini, J C; Thedrez, P; Douillard, J Y; Chatal, J F; Koprowski, H

    1986-01-01

    Monoclonal antibody 19-9 (mAb 19-9) against human colon adenocarcinoma was conjugated with gadolinium X diethylenetriaminepentaacetic acid (Gd X DTPA) and used as a contrast agent in nuclear magnetic resonance (NMR) in an effort to improve tumor target selectivity in nude mice. The data indicate that Gd X DTPA-mAb 19-9 in solution decreased the T1 relaxation of water protons at 90 MHz in direct proportion to the gadolinium concentration, and this effect was greater than in Gd X DTPA solutions. T1 relaxation time at 90 MHz, measured in tumors removed from nude mice 24 hr after injection of Gd X DTPA-mAb 19-9 (Gd, 20 mumol/kg; 16 DTPA molecules per mAb molecule), was significantly decreased (by 15%) as compared with the control group. Similar results were obtained in tumors from mice injected with Gd X DTPA-mAb 19-9 solutions in which Gd was used at 2, 6, or 10 mumol/kg (16 DTPA molecules per mAb molecule). These doses are lower than those commonly used for Gd X DTPA (10-100 mumol/kg) as contrast agent. Tumor localization by the Gd X DTPA-mAb 19-9 complex containing radioactive Gd (0.3 microCi/microgram of 153Gd) to confirm scintigraphy revealed significant concentrations of the complex (5% of the injected dose per gram of tissue) in the tumor. Scan images recorded in planar scintigraphy at day 5 showed good visualization of tumors. Images PMID:3459174

  1. Enhancements in hepatobiliary imaging: the spectrum of gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid usages in hepatobiliary magnetic resonance imaging.

    PubMed

    Channual, Stephanie; Pahwa, Anokh; Lu, David S; Raman, Steven S

    2016-09-01

    Gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a unique hepatocyte-specific contrast agent approved for clinical use in the United States in 2008. Gd-EOB-DTPA-enhanced MR has shown to improve detection and characterization of hepatic lesions. Gd-EOB-DTPA is now being routinely used in daily clinical practice worldwide. Therefore, it is important for radiologists to be familiar with the potential uses and pitfalls of Gd-EOB-DTPA, which extends beyond the assessment of focal hepatic lesions. The purpose of this article is to review the various usages of Gd-EOB-DTPA in hepatobiliary MR imaging.

  2. Staging of colorectal liver metastases after preoperative chemotherapy. Diffusion-weighted imaging in combination with Gd-EOB-DTPA MRI sequences increases sensitivity and diagnostic accuracy.

    PubMed

    Macera, Annalisa; Lario, Chiara; Petracchini, Massimo; Gallo, Teresa; Regge, Daniele; Floriani, Irene; Ribero, Dario; Capussotti, Lorenzo; Cirillo, Stefano

    2013-03-01

    To compare the diagnostic accuracy and sensitivity of Gd-EOB-DTPA MRI and diffusion-weighted (DWI) imaging alone and in combination for detecting colorectal liver metastases in patients who had undergone preoperative chemotherapy. Thirty-two consecutive patients with a total of 166 liver lesions were retrospectively enrolled. Of the lesions, 144 (86.8 %) were metastatic at pathology. Three image sets (1, Gd-EOB-DTPA; 2, DWI; 3, combined Gd-EOB-DTPA and DWI) were independently reviewed by two observers. Statistical analysis was performed on a per-lesion basis. Evaluation of image set 1 correctly identified 127/166 lesions (accuracy 76.5 %; 95 % CI 69.3-82.7) and 106/144 metastases (sensitivity 73.6 %, 95 % CI 65.6-80.6). Evaluation of image set 2 correctly identified 108/166 (accuracy 65.1 %, 95 % CI 57.3-72.3) and 87/144 metastases (sensitivity of 60.4 %, 95 % CI 51.9-68.5). Evaluation of image set 3 correctly identified 148/166 (accuracy 89.2 %, 95 % CI 83.4-93.4) and 131/144 metastases (sensitivity 91 %, 95 % CI 85.1-95.1). Differences were statistically significant (P < 0.001). Notably, similar results were obtained analysing only small lesions (<1 cm). The combination of DWI with Gd-EOB-DTPA-enhanced MRI imaging significantly increases the diagnostic accuracy and sensitivity in patients with colorectal liver metastases treated with preoperative chemotherapy, and it is particularly effective in the detection of small lesions.

  3. Platinum(II)-gadolinium(III) complexes as potential single-molecular theranostic agents for cancer treatment.

    PubMed

    Zhu, Zhenzhu; Wang, Xiaoyong; Li, Tuanjie; Aime, Silvio; Sadler, Peter J; Guo, Zijian

    2014-11-24

    Theranostic agents are emerging multifunctional molecules capable of simultaneous therapy and diagnosis of diseases. We found that platinum(II)-gadolinium(III) complexes with the formula [{Pt(NH3)2Cl}2GdL](NO3)2 possess such properties. The Gd center is stable in solution and the cytoplasm, whereas the Pt centers undergo ligand substitution in cancer cells. The Pt units interact with DNA and significantly promote the cellular uptake of Gd complexes. The cytotoxicity of the Pt-Gd complexes is comparable to that of cisplatin at high concentrations (≥0.1 mM), and their proton relaxivity is higher than that of the commercial magnetic resonance imaging (MRI) contrast agent Gd-DTPA. T1-weighted MRI on B6 mice demonstrated that these complexes can reveal the accumulation of platinum drugs in vivo. Their cytotoxicity and imaging capabilities make the Pt-Gd complexes promising theranostic agents for cancer treatment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Self-Assembled Nanomicelles as MRI Blood-Pool Contrast Agent.

    PubMed

    Babič, Andrej; Vorobiev, Vassily; Xayaphoummine, Céline; Lapicorey, Gaëlle; Chauvin, Anne-Sophie; Helm, Lothar; Allémann, Eric

    2018-01-26

    Gadolinium-loaded nanomicelles show promise as future magnetic resonance imaging (MRI) contrast agents (CAs). Their increased size and high gadolinium (Gd) loading gives them an edge in proton relaxivity over smaller molecular Gd-complexes. Their size and stealth properties are fundamental for their long blood residence time, opening the possibility for use as blood-pool contrast agents. Using l-tyrosine as a three-functional scaffold we synthesized a nanostructure building block 8. The double C18 aliphatic chain on one side, Gd-1,4,7,10-tetraazacyclododecane-1-4-7-triacetic acid (Gd-DO3A) with access to bulk water in the center and 2 kDa PEG on the hydrophilic side gave the amphiphilic properties required for the core-shell nanomicellar architecture. The self-assembly into Gd-loaded monodispersed 10-20 nm nanomicelles occurred spontaneously in water. These nanomicelles (Tyr-MRI) display very high relaxivity at 29 mm -1  s -1 at low field strength and low cytotoxicity. Good contrast enhancement of the blood vessels and the heart together with prolonged circulation time in vivo, makes Tyr-MRI an excellent candidate for a new supramolecular blood-pool MRI CA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    PubMed

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were

  6. Simultaneous monitoring of multiple contrast agents using a hybrid MR-DOT system

    NASA Astrophysics Data System (ADS)

    Gulsen, Gultekin; Unlu, Mehmet Burcin; Birgul, Ozlem; Nalcioglu, Orhan

    2007-02-01

    Frequency domain diffuse optical tomography (DOT) is a recently emerging technique that uses arrays of sources and detectors to obtain spatially dependent optical parameters of tissue. Here, we describe the design of a hybrid MR-DOT system for dynamic imaging cancer. The combined system acquires both MR and optical data simultaneously. The performance of the system is tested with phantom and in-vivo studies. Gd-DTPA and ICG was used for this purpose and the enhancement kinetics of both agents are recorded using the hybrid system.

  7. Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater.

    PubMed

    Telgmann, Lena; Wehe, Christoph A; Birka, Marvin; Künnemeyer, Jens; Nowak, Sascha; Sperling, Michael; Karst, Uwe

    2012-11-06

    The fate of Gadolinium (Gd)-based contrast agents for magnetic resonance imaging (MRI) during sewage treatment was investigated. The total concentration of Gd in influent and effluent 2 and 24 h composite samples was determined by means of isotope dilution analysis. The balancing of Gd input and output of a sewage plant over seven days indicated that approximately 10% of the Gd is removed during treatment. Batch experiments simulating the aeration tank of a sewage treatment plant confirmed the Gd complex removal during activated sludge treatment. For speciation analysis of the Gd complexes in wastewater samples, high performance liquid chromatography (HPLC) was hyphenated to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Separation of the five predominantly used contrast agents was carried out on a new hydrophilic interaction liquid chromatography stationary phase in less than 15 min. A limit of detection (LOD) of 0.13 μg/L and a limit of quantification of 0.43 μg/L could be achieved for the Gd chelates without having to apply enrichment techniques. Speciation analysis of the 24 h composite samples revealed that 80% of the Gd complexes are present as Gd-BT-DO3A in the sampled treatment plant. The day-of-week dependent variation of the complex load followed the variation of the total Gd load, indicating a similar behavior. The analysis of sewage sludge did not prove the presence of anthropogenic Gd. However, in the effluent of the chamber filter press, which was used for sludge dewatering, two of the contrast agents and three other unknown Gd species were observed. This indicates that species transformation took place during anaerobic sludge treatment.

  8. Effects of Anti-VEGF on Predicted Antibody Biodistribution: Roles of Vascular Volume, Interstitial Volume, and Blood Flow

    PubMed Central

    Boswell, C. Andrew; Ferl, Gregory Z.; Mundo, Eduardo E.; Bumbaca, Daniela; Schweiger, Michelle G.; Theil, Frank-Peter; Fielder, Paul J.; Khawli, Leslie A.

    2011-01-01

    Background The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences. Methodology/Principal Findings Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF) antibody (10 mg/kg) 24 h prior to assay. Anti-VEGF had no significant effect (p>0.05) on the fractional vascular volumes of any tissues studied; these findings were further supported by single photon emission computed tomographic imaging. In addition, apart from a borderline significant increase (p = 0.048) in mean hepatic blood flow, no significant anti-VEGF-induced differences were observed (p>0.05) in two additional physiological parameters, interstitial fluid volume and the organ blood flow rate, measured using indium-111-pentetate and rubidium-86 chloride, respectively. Areas under the concentration-time curves generated by a physiologically-based pharmacokinetic model changed substantially (>25%) in several tissues when model parameters describing compartmental volumes and blood flow rates were switched from literature to our experimentally derived values. However, negligible changes in predicted tissue exposure were observed when comparing simulations based on parameters measured in naïve versus anti-VEGF-administered mice. Conclusions/Significance These observations may foster an enhanced understanding of anti-VEGF effects in murine tissues and, in particular, may be useful in modeling antibody uptake alone or in combination with anti-VEGF. PMID:21436893

  9. The hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the evaluation of hepatic fibrosis and early liver cirrhosis in a rat model: an experimental study.

    PubMed

    Ma, Chunmei; Liu, Ailian; Wang, Yuanyuan; Geng, Xiaoling; Hao, Li; Song, Qingwei; Sun, Bo; Wang, Heqing; Zhao, Gang

    2014-07-17

    To evaluate the hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the early diagnosis of hepatic fibrosis and cirrhosis and assessment of liver function in a rat model. In 2 groups of SD rats, liver fibrosis was induced in experimental animals by repetitive carbon tetrachloride injections, while the control group received saline injections. Five experimental rats and 2 control rats were randomly selected at weeks 4, 8, 12. One week after carbon tetrachloride administration, MRI (FIRM T1WI) scan was performed. Gd-EOB-DTPA (0.08mL) was injected into the rat's tail vein and hepatocyte phase images were obtained after 20min. The pre-enhanced phase and hepatocyte phase signal intensities (SI) were measured, and the relative contrast enhancement index (RCEI) was calculated. ANOVA analysis (LSD) of RCEI values in controls (n=6), hepatic fibrosis (n=7), and histopathologically-determined early cirrhosis group (n=6) was performed. RECI values showed a decreasing trend in the control group, hepatic fibrosis and early cirrhosis groups (1.11±0.43, 0.96±0.22, and 0.57±0.33, respectively). While the difference between the control and early cirrhosis groups was statistically significant (p=0.013), there was no significant difference in the hepatic fibrosis group vs the control (p=0.416) and the hepatic fibrosis group vs the early cirrhosis group (p=0.054). Hepatocyte phase RCEI values obtained with Gd-EOB-DTPA-enhanced MRI scan indicate liver injury in hepatic fibrosis and early cirrhosis. RCEI values are helpful for early diagnosis of liver cirrhosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis.

    PubMed Central

    Filippi, M; Capra, R; Campi, A; Colombo, B; Prandini, F; Marcianò, N; Gasparotti, R; Comi, G

    1996-01-01

    OBJECTIVES--To evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) or delayed MRI increase the number, size, and conspicuousness of enhancing lesions in patients with benign multiple sclerosis. METHODS--T1 weighted brain MRI was carried out on 20 patients with benign multiple sclerosis (expanded disability status scale < 3 with a disease duration > 10 years) in two sessions. In the first session, one scan was obtained before and two scans five to seven minutes and 20-30 minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, the same procedure was repeated with 0.3 mmol/kg Gd-DTPA (triple dose). RESULTS--Nine enhancing lesions were found in seven patients (35%) using the standard dose of Gd-DTPA. The numbers of enhancing lesions increased to 13 (P = 0.03) and the number of patients with such lesions to eight (40%) on the delayed standard dose scans. On the early triple dose scans, we found 19 enhancing lesions in 10 patients (50%). The number of enhancing lesions was significantly higher (P = 0.01) than that obtained with the early standard dose. The number of enhancing lesions was 18 and the number of "active" patients 11 (55%) on the delayed triple dose scans. The enhancing areas increased progressively from the early standard dose scans to the delayed triple dose scans. The contrast ratios of the lesions detected in early standard dose scans was lower than those of lesions present in the early (P = 0.01) and delayed (P = 0.04) triple dose scans. CONCLUSIONS--More enhancing lesions were detected in patients with benign multiple sclerosis with both delay of MRI and the use of triple dose of Gd-DTPA suggesting that the amount of inflammation in the lesions of such patients is mild and heterogeneous. Images PMID:8778257

  11. Measuring hepatic functional reserve using T1 mapping of Gd-EOB-DTPA enhanced 3T MR imaging: A preliminary study comparing with 99mTc GSA scintigraphy and signal intensity based parameters.

    PubMed

    Nakagawa, Masataka; Namimoto, Tomohiro; Shimizu, Kie; Morita, Kosuke; Sakamoto, Fumi; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Shiraishi, Shinya; Yamashita, Yasuyuki

    2017-07-01

    To determine the utility of liver T1-mapping on gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance (MR) imaging for the measurement of liver functional reserve compared with the signal intensity (SI) based parameters, technetium-99m-galactosyl serum albumin ( 99m Tc-GSA) scintigraphy and indocyanine green (ICG) clearance. This retrospective study included 111 patients (Child-Pugh-A 90; -B 21) performed with both Gd-EOB-DTPA enhanced liver MR imaging and 99m Tc-GSA (76 patients with ICG). Receiver operating characteristic (ROC) curve analysis was performed to compare diagnostic performances of T1-relaxation-time parameters [pre-(T1pre) and post-contrast (T1hb) Gd-EOB-DTPA], SI based parameters [relative enhancement (RE), liver-to-muscle-ratio (LMR), liver-to-spleen-ratio (LSR)] and 99m Tc-GSA scintigraphy blood clearance index (HH15)] for Child-Pugh classification. Pearson's correlation was used for comparisons among T1-relaxation-time parameters, SI-based parameters, HH15 and ICG. A significant difference was obtained for Child-Pugh classification with T1hb, ΔT1, all SI based parameters and HH15. T1hb had the highest AUC followed by RE, LMR, LSR, ΔT1, HH15 and T1pre. The correlation coefficients with HH15 were T1pre 0.22, T1hb 0.53, ΔT1 -0.38 of T1 relaxation parameters; RE -0.44, LMR -0.45, LSR -0.43 of SI-based parameters. T1hb was highest for correlation with HH15. The correlation coefficients with ICG were T1pre 0.29, T1hb 0.64, ΔT1 -0.42 of T1 relaxation parameters; RE -0.50, LMR -0.61, LSR -0.58 of SI-based parameters; 0.64 of HH15. Both T1hb and HH15 were highest for correlation with ICG. T1 relaxation time at post-contrast of Gd-EOB-DTPA (T1hb) was strongly correlated with ICG clearance and moderately correlated HH15 with 99m Tc-GSA. T1hb has the potential to provide robust parameter of liver functional reserve. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Equilibrium and NMR studies on GdIII, YIII, CuII and ZnII complexes of various DTPA-N,N''-bis(amide) ligands. Kinetic stabilities of the gadolinium(III) complexes.

    PubMed

    Jászberényi, Zoltán; Bányai, István; Brücher, Ernö; Király, Róbert; Hideg, Kálmán; Kálai, Tamás

    2006-02-28

    Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) < ML(1) < ML(2). NMR studies of the diamagnetic YL(0) show the presence of four diastereomers formed by changing the chirality of the terminal nitrogens of their enantiomers. At 323 K, the enantiomerization process, involving the racemization of central nitrogen, falls into the fast exchange range. By the assignment and interpretation of 1H and 13C NMR spectra, the fractions of the diastereomers were found to be equal at pH = 5.8 for YL(0). The kinetic stabilities of GdL(0), GdL(1) and GdL(2) have been characterized by the rates of the exchange reactions occurring between the complexes and Eu3+, Cu2+ or Zn2+. The rates of reaction with Eu3+ are independent of the [Eu3+] and increase with increasing [H+], indicating the rate determining role of the proton assisted dissociation of complexes. The rates of reaction with Cu2+ and Zn2+ increase with rising metal ion concentration, which shows that the exchange can take place with direct attack of Cu2+ or Zn2+ on the complex, via the formation of a dinuclear intermediate. The rates of the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes decrease with increasing number of the n-butyl substituents, which is presumably the result of steric hindrance hampering the formation or dissociation of the intermediates. The kinetic stabilities of GdL(0) and Gd

  13. Investigation of a potential macromolecular MRI contrast agent prepared from PPI (G = 2, polypropyleneimine, generation 2) dendrimer bifunctional chelates

    NASA Astrophysics Data System (ADS)

    Wang, Jianxin Steven

    The long-term objective is to develop magnetic resonance (MR) contrast agents that actively and passively target tumors for diagnosis and therapy. Many diagnostic imaging techniques for cancer lack specificity. A dendrimer based magnetic resonance imaging contrast agent has been developed with large proton relaxation enhancements and high molecular relaxivities. A new type of linear dendrimer based MRI contrast agent that is built from the polypropyleneimine and polyamidoamine dendrimers in which free amines have been conjugated to the chelate DTPA, which further formed the complex with Gadolinium (Gd) was studied. The specific research goals were to test the hypothesis that a linear chelate with macromolecular agents can be used in vitro and in vivo. This work successfully examined the adequacy and viability of the application for this agent in vitro and in vivo. A small animal whole body counter was designed and constructed to allow us to monitor biodistribution and kinetic mechanisms using a radioisotope labeled complex. The procedures of metal labeling, separation and purification have been established from this work. A biodistribution study has been performed using radioisotope induced organ/tissue counting and gamma camera imaging. The ratio of percentage of injected dose per gram organ/tissue for kidney and liver is 3.71 from whole body counter and 3.77 from the gamma camera. The results suggested that retention of Gd (III) is too high and a more kinetically stable chelate should be developed. The pharmacokinetic was evaluated in the whole animal model with the whole body clearance, and a kinetics model was developed. The pharmacokinetic results showed a bi-exponential decay in the animal model with two component excretion constants 1.43e(-5) and 0.0038511, which give half-lives of 3 hours and 33.6 days, respectively. Magnetic resonance imaging of this complex resulted in a 52% contrast enhancement in the rat kidney following the agents' administration in

  14. In vivo detection of c-Met expression in a rat C6 glioma model.

    PubMed

    Towner, R A; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T(1) relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and 'normal'brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas.

  15. In vivo detection of c-Met expression in a rat C6 glioma model

    PubMed Central

    Towner, RA; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    Abstract The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T1 relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and ‘normal’brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas. PMID:18194445

  16. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  17. Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core-shell nanoparticles for possible application as multimodal contrast agents.

    PubMed

    Baziulyte-Paulaviciene, Dovile; Karabanovas, Vitalijus; Stasys, Marius; Jarockyte, Greta; Poderys, Vilius; Sakirzanovas, Simas; Rotomskis, Ricardas

    2017-01-01

    Upconverting nanoparticles (UCNPs) are promising, new imaging probes capable of serving as multimodal contrast agents. In this study, monodisperse and ultrasmall core and core-shell UCNPs were synthesized via a thermal decomposition method. Furthermore, it was shown that the epitaxial growth of a NaGdF 4 optical inert layer covering the NaGdF 4 :Yb,Er core effectively minimizes surface quenching due to the spatial isolation of the core from the surroundings. The mean diameter of the synthesized core and core-shell nanoparticles was ≈8 and ≈16 nm, respectively. Hydrophobic UCNPs were converted into hydrophilic ones using a nonionic surfactant Tween 80. The successful coating of the UCNPs by Tween 80 has been confirmed by Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), photoluminescence (PL) spectra and magnetic resonance (MR) T1 relaxation measurements were used to characterize the size, crystal structure, optical and magnetic properties of the core and core-shell nanoparticles. Moreover, Tween 80-coated core-shell nanoparticles presented enhanced optical and MR signal intensity, good colloidal stability, low cytotoxicity and nonspecific internalization into two different breast cancer cell lines, which indicates that these nanoparticles could be applied as an efficient, dual-modal contrast probe for in vivo bioimaging.

  18. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism

    PubMed Central

    Yang, Yunlong; Zhang, Yin; Iwamoto, Hideki; Hosaka, Kayoko; Seki, Takahiro; Andersson, Patrik; Lim, Sharon; Fischer, Carina; Nakamura, Masaki; Abe, Mitsuhiko; Cao, Renhai; Skov, Peter Vilhelm; Chen, Fang; Chen, Xiaoyun; Lu, Yongtian; Nie, Guohui; Cao, Yihai

    2016-01-01

    The impact of discontinuation of anti-VEGF cancer therapy in promoting cancer metastasis is unknown. Here we show discontinuation of anti-VEGF treatment creates a time-window of profound structural changes of liver sinusoidal vasculatures, exhibiting hyper-permeability and enlarged open-pore sizes of the fenestrated endothelium and loss of VE-cadherin. The drug cessation caused highly leaky hepatic vasculatures permit tumour cell intravasation and extravasation. Discontinuation of an anti-VEGF antibody-based drug and sunitinib markedly promotes liver metastasis. Mechanistically, host hepatocyte, but not tumour cell-derived vascular endothelial growth factor (VEGF), is responsible for cancer metastasis. Deletion of hepatocyte VEGF markedly ablates the ‘off-drug'-induced metastasis. These findings provide mechanistic insights on anti-VEGF cessation-induced metastasis and raise a new challenge for uninterrupted and sustained antiangiogenic therapy for treatment of human cancers. PMID:27580750

  19. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy.

    PubMed

    Liu, Jian; Ohta, Shin-Ichi; Sonoda, Akinaga; Yamada, Masatoshi; Yamamoto, Masaya; Nitta, Norihisa; Murata, Kiyoshi; Tabata, Yasuhiko

    2007-01-22

    A novel photosensitizer with magnetic resonance imaging (MRI) activity was designed from fullerene (C(60)) for efficient photodynamic therapy (PDT) of tumor. After chemical conjugation of polyethylene glycol (PEG) to C(60) (C(60)-PEG), diethylenetriaminepentaacetic acid (DTPA) was subsequently introduced to the terminal group of PEG to prepare PEG-conjugated C(60) (C(60)-PEG-DTPA). The C(60)-PEG-DTPA was mixed with gadolinium acetate solution to obtain Gd(3+)-chelated C(60)-PEG (C(60)-PEG-Gd). Following intravenous injection of C(60)-PEG-Gd into tumor-bearing mice, the PDT anti-tumor effect and the MRI tumor imaging were evaluated. The similar O(2)(*-)generation was observed with or without Gd(3+) chelation upon light irradiation. Both of the C(60)-PEG-Gd and Magnevist(R) aqueous solutions exhibited a similar MRI activity. When intravenously injected into tumor-bearing mice, the C(60)-PEG-Gd maintained an enhanced MRI signal at the tumor tissue for a longer time period than Magnevist(R). Injection of C(60)-PEG-Gd plus light irradiation showed significant tumor PDT effect although the effect depended on the timing of light irradiation. The PDT efficacy of C(60)-PEG-Gd was observed at the time when the tumor accumulation was detected by the enhanced intensity of MRI signal. This therapeutic and diagnostic hybrid system is a promising tool to enhance the PDT efficacy for tumor.

  20. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.

    PubMed

    Boehm-Sturm, Philipp; Haeckel, Akvile; Hauptmann, Ralf; Mueller, Susanne; Kuhl, Christiane K; Schellenberger, Eyk A

    2018-02-01

    Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents. The T1 contrast effects of the two chelates were compared with those of gadopentetate dimeglumine in blood serum phantoms at 1.5 T, 3 T, and 7 T. For in vivo studies, a human breast cancer cell line (MDA-231) was implanted in five mice per group. The dynamic contrast effects of the chelates were compared by performing DCE MR imaging with intravenous application of Fe-DTPA or Fe-tCDTA on day 1 and DCE MR imaging in the same tumors with gadopentetate dimeglumine on day 2. Quantitative DCE maps were generated with software and were compared by means of a one-tailed Pearson correlation test. Results Relaxivities in serum (0.94 T at room temperature) of Fe-tCDTA (r1 = 2.2 mmol -1 · sec -1 , r2 = 2.5 mmol -1 · sec -1 ) and Fe-DTPA (r1 = 0.9 mmol -1 · sec -1 , r2 = 0.9 mmol -1 · sec -1 ) were approximately twofold and fivefold lower, respectively, compared with those of gadopentetate dimeglumine (r1 = 4.1 mmol -1 · sec -1 , r2 = 4.8 mmol -1 · sec -1 ). Used at moderately higher concentrations, however, iron chelates generated similar contrast effects at T1-weighted MR imaging in vitro in serum, in vivo in blood, and for DCE MR imaging of breast cancer xenografts. The volume transfer constant values for Fe-DTPA and Fe-tCDTA in the same tumors correlated well with those observed for gadopentetate dimeglumine (Fe-tCDTA Pearson R, 0.99; P = .0003; Fe-DTPA Pearson R, 0.97; P

  1. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging

    PubMed Central

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-01-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280

  2. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    PubMed

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Psychological impact of anti-VEGF treatments for wet macular degeneration-a review.

    PubMed

    Senra, Hugo; Ali, Zaria; Balaskas, Konstantinos; Aslam, Tariq

    2016-10-01

    To review the current literature on the psychological impact of anti-VEGF treatments for wet age-related macular degeneration (wAMD), in terms of patients' experiences of receiving these treatments, and the impact of these treatments for patients' mental health and quality of life. We critically analyzed current literature evaluating psychological impact of anti-VEGF treatments for wAMD. Primary searches of PubMed, Science Direct, and Web of Science were conducted in July and August of 2015. We reviewed all papers on the topic published until August 5, 2015. Our literature search found 14 papers addressing the psychological impact of anti-VEGF treatments for wAMD. Results highlighted potential anxieties and experiences of pain caused by receiving regular intravitreal injections. A positive visual outcome of anti-VEGF therapy is associated with positive vision-related QOL outcomes, although such association seems to be dependent on improvements on visual acuity. In the literature reviewed, patients receiving anti-VEGF treatments showed a prevalence rate of depression between 20 and 26 %. Although anti-VEGF treatments can cause some anxiety and being experienced as a stressful event, especially in the beginning of the treatment, preliminary findings suggest a potential benefit for long-term vision-related quality of life. Further longitudinal and qualitative research should bring more evidence on the positive and negative effects of these treatments on patients' long-term mental health.

  4. [High resolution functional magnetic resonance tomography with Gd-DTPA eyedrops in diagnosis of lacrimal apparatus diseases].

    PubMed

    Hoffmann, K T; Anders, N; Hosten, N; Holschbach, A; Walkow, T; Sörensen, R; Hartmann, C; Felix, R

    1998-08-01

    Both dacryocystography and dacryoscintigraphy are well established in the evaluation of stenoses of the lacrimal drainage system. They provide limited information about the ductal anatomy itself and about periductal structures. MR imaging was evaluated for its capability to directly visualize the lacrimal drainage system in detail and simultaneously provide functional characterization of dacryostenosis. Twenty-seven lacrimal drainage systems of 23 patients suffering from epiphora were examined in an MR unit before and after conjunctival and intravenous application of Gd-DTPA using a surface coil. Dacryostenosis was found in 23 of 27 lacrimal systems. Stenoses were localized to the canalicular (n = 3), saccular (n = 8), and ductal (n = 12) level, and were classified as stenosis or occlusion. MR imaging with conjunctival contrast application allows within one examination both detailed morphological and functional assessment of the lacrimal drainage system with depiction of surrounding structures. Limitations arise mainly from demands on technical and patient-related preconditions.

  5. Increase in left liver lobe function after preoperative right portal vein embolisation assessed with gadolinium-EOB-DTPA MRI.

    PubMed

    Geisel, Dominik; Lüdemann, Lutz; Keuchel, Thomas; Malinowski, Maciej; Seehofer, Daniel; Stockmann, Martin; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2013-09-01

    To prospectively evaluate the early development of regional liver function after right portal vein embolisation (PVE) with Gd-EOB-DTPA-enhanced MRI in patients scheduled for extended right hemihepatectomy. Ten patients who received a PVE before an extended hemihepatectomy were examined before and 14 days after PVE using Gd-EOB-DTPA-enhanced MRI of the liver. In these sequences representative region of interest measurements were performed in the embolised right (RLL) and the non-embolised left liver lobe (LLL). The volume as well as hepatic uptake index (HUI) was calculated independently for each lobe. Relative enhancement 14 days after PVE decreased in the RLL and increased significantly in the LLL (P < 0.05). Average hepatic uptake index (HUI) for RLL was significantly lower 14 days after PVE than before PVE (P < 0.05) and significantly higher for LLL (P < 0.05). A significant shift of contrast uptake from the right to the left liver lobe can be depicted as early as 14 days after right PVE by using Gd-EOB-DTPA-enhanced MRI, which could reflect the redirected portal venous blood flow and the rapid utilisation of a hepatic functional reserve. • Preoperative portal vein embolisation (PVE) is widely performed before right-sided hepatic resection. • PVE increases intravenous contrast medium uptake in the left lobe of liver. • The hepatic uptake index for the left liver lobe increases rapidly after PVE. • Left liver lobe function increase may be visualised by Gd-EOB-DTPA-enhanced MRI.

  6. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression

  7. Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer.

    PubMed

    Huang, Xin; Fan, Chengqi; Zhu, Huanhuan; Le, Wenjun; Cui, Shaobin; Chen, Xin; Li, Wei; Zhang, Fulei; Huang, Yong; Sh, Donglu; Cui, Zheng; Shao, Chengwei; Chen, Bingdi

    2018-01-01

    Pancreatic cancer (PC) has a poor prognosis with high mortality, due to the lack of effective early diagnostic and prognostic tools. In order to target and diagnose PC, we developed a dual-modal imaging probe using Glypican-1 (GPC-1) antibody conjugated with Gd-Au nanoclusters (NCs; Gd-Au-NC-GPC-1). GPC-1 is a type of cell surface heparan sulfate proteoglycan, which is often highly expressed in PC. The probe was successfully prepared with a hydrodynamic diameter ranging from 13.5 to 24.4 nm. Spectral characteristics showed absorption at 280 nm and prominent emission at 650 nm. Confocal microscopic imaging showed effective detection of GPC-1 highly expressed PC cells by Gd-Au-NC-GPC-1, which was consistent with flow cytometry results. In vitro relaxivity characterization demonstrated that the r1 value of the probe was 17.722 s -1 mM -1 Gd, which was almost 4 times higher compared with that of Gd-diethylenetriaminepentacetate (DTPA; r1 value =4.6 s -1 mM -1 Gd). Gd-Au-NC-GPC-1 exhibited similar magnetic resonance (MR) signals when compared to Gd-DTPA even at lower Gd concentrations. Much higher MR signals were registered in PC cells (COLO-357) compared with normal cells (293T). Furthermore, Gd-Au-NC-GPC-1 could effectively detect PC cells in vivo by dual-modal fluorescence imaging/magnetic resonance imaging (FI/MRI) at 30 minutes postinjection. In addition, Gd-Au-NC-GPC-1 did not show significant biotoxicity to normal cells at tested concentrations both in vitro and in vivo. Gd-Au-NC-GPC-1 has demonstrated to be a promising dual-modal FI/MRI contrast agent for targeted diagnosis of PC.

  8. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles.

    PubMed

    Klasson, Anna; Ahrén, Maria; Hellqvist, Eva; Söderlind, Fredrik; Rosén, Anders; Käll, Per-Olov; Uvdal, Kajsa; Engström, Maria

    2008-01-01

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s(-1) mm(-1) for cell culture medium. The r2 was 17.4 and 12.9 s(-1) mm(-1), respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (p(r1) = 0.36), but r2 was significantly different for the two different series (p(r2) = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells. Copyright 2008 John Wiley & Sons, Ltd.

  9. Vascular endothelial growth factor (VEGF) inhibition--a critical review.

    PubMed

    Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-03-01

    Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.

  10. The target sign in colorectal liver metastases: an atypical Gd-EOB-DTPA "uptake" on the hepatobiliary phase of MR imaging.

    PubMed

    Granata, Vincenza; Catalano, Orlando; Fusco, Roberta; Tatangelo, Fabiana; Rega, Daniela; Nasti, Guglielmo; Avallone, Antonio; Piccirillo, Mauro; Izzo, Francesco; Petrillo, Antonella

    2015-10-01

    To describe the MRI findings in colorectal cancer liver metastases using gadoxetic acid (Gd-EOB-DTPA), with special emphasis on the target feature seen on the hepatobiliary phase. The medical records of 45 colorectal cancer patients with an overall number of 150 liver metastases were reviewed. All patients underwent Gd-EOB-DTPA-enhanced MRI before any kind of treatment. We retrospectively evaluated, for each lesion, the signal intensity on the T1-weighted, T2-weighted, and diffusion-weighted images. Additionally, the enhancement pattern during the arterial-, portal-, equilibrium-, and hepatobiliary-phase was assessed. Fourteen lesions had a pathological correlation. Lesions size was 5-40 mm (mean 15 mm). All metastases were hypointense on T1-w imaging. Ninety-nine lesions (66%) had a central area of very high signal intensity on T2-w imaging. Fifty-one metastases (34%) were hyperintense on the T2-w images. In DWI, all lesions had a restricted diffusion. The mean ADC value was 1.31 × 10(-3) mm(2)/s (range 1.10-1.45 × 10(-3) mm(2)/s). During the arterial-phase imaging, 61 lesions (41%) showed a rim enhancement, while 89 lesions (59%) appeared as hypointense. All lesions had low signal intensity in the portal and equilibrium phase. Thirty-nine percent of the lesions also showed an enhancing rim on the portal-phase images. During the hepatobiliary phase, 80 lesions (53.3%) were hypointense, while 70 lesions (46.7%) had a target appearance. A number of metastases show an atypical contrast medium uptake during the hepatobiliary phase of gadoxetic acid-enhanced MRI, consisting in a target appearance.

  11. WE-H-207A-08: Characterization of a Broad-Spectrum Cancer Targeted MRI Contrast Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunnquell, C; Zhang, R; Pinchuk, A

    Purpose: To characterize the relaxation properties and tumor targeting capabilities of a novel alkylphosphocholine (APC) analog MR contrast agent, Gd-DO3A-404. Methods: Relaxivities were measured via T1 and T2 mapping of Gd-DO3A-404 with inversion recovery and spin echo pulse sequences, respectively. Uptake was characterized in flank xenograft models of non-small cell lung cancer (A549) and glioma (U87) and compared with uptake of Dotarem. Mice (N=3 per model per agent) were delivered 2.34 moles contrast intravenously. T1-weighted MRI and T1 maps were acquired pre-contrast and at multiple time points up to seven days post-contrast. For Dotarem imaging, T1-weighted MRI was performed atmore » multiple time points from one minute to one day. Results: Relaxivities of Gd-DO3A-404 in plasma were r1=5.74 and r2=20.4 s-1/mm at 4.7T, comparing favorably to clinical contrast agent Dotarem (r1=3.3, r2=4.7). Specific, sustained uptake of Gd-DO3A-404 was observed in U87 and A549. The ratio of tumor:muscle T1-weighted signal increased from 1.24 pre-contrast to 2.12 twenty-four hours post-contrast in U87 and from 1.14 to 2.16 (same time points) in A549. Significant signal enhancement was maintained until 7 and 4 days post-contrast in U87 and A549, respectively. In comparison, uptake and washout of Dotarem in U87 occurred over the course of fifteen minutes. The ratio of tumor:muscle T1-weighted signal increased only 59% as much as Gd-DO3A-404, ranging from 1.15 pre-contrast to a maximum of 1.67 five minutes post-contrast. Significant signal enhancement from Dotarem was not sustained beyond one hour post-contrast. Conclusion: These results indicate that with favorable relaxation characteristics and sustained signal-enhancing uptake in multiple tumor models, Gd-DO3A-404 has great potential as a tumor-targeting MR contrast agent. As part of a library of APC analogs labeled with PET/optical tracers and therapeutic radionuclides, Gd-DO3A-404 further expands theranostic capabilities

  12. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging.

    PubMed

    Boult, Jessica K R; Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A; Jones, Chris; Robinson, Simon P

    2016-11-01

    High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co-option in regions of invasive growth (in which the blood-brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd-DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)-enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k-means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA-MB-231 LM2-4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd-DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA-MB-231 LM2-4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA-MB-231 LM2-4 tumours on T 2 -weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1 ) were predominantly located at the tumour margins, regions of MDA-MB-231 LM2-4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties

  13. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    NASA Astrophysics Data System (ADS)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  14. Therapy response assessment after radioembolization of patients with hepatocellular carcinoma--comparison of MR imaging with gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid and gadobutrol.

    PubMed

    Schelhorn, Juliane; Best, Jan; Reinboldt, Marcus P; Gerken, Guido; Ruhlmann, Marcus; Lauenstein, Thomas C; Antoch, Gerald; Kinner, Sonja

    2015-07-01

    To compare the utility of gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid (Gd-EOB-DTPA), a liver-specific magnetic resonance (MR) imaging contrast agent, versus gadobutrol for treatment response evaluation of hepatocellular carcinoma (HCC) after radioembolization. This prospective study included 50 patients with HCC undergoing radioembolization. All patients underwent contrast-enhanced computed tomography (CT) and MR imaging with gadobutrol and Gd-EOB-DTPA on 2 consecutive days before radioembolization and 30 days, 90 days, 180 days, and 270 days after radioembolization. The standard of reference indicating tumor progression was CT combined with either α-fetoprotein or γ-glutamyltransferase. Gadobutrol-enhanced MR imaging, Gd-EOB-DTPA-enhanced MR imaging without late phase imaging (Gd-EOB-DTPA-), and Gd-EOB-DTPA-enhanced MR imaging with late phase imaging (Gd-EOB-DTPA+) were evaluated by 2 radiologists in consensus using a 4-point scale: 1 = definitely no tumor progression; 2 = probably no tumor progression; 3 = probably tumor progression; 4 = definitely tumor progression. Diagnostic accuracy was assessed with receiver operating characteristic analysis. Tumor progression was detected in 14 of 82 study visits according to the reference standard. Pairwise comparison of the area under the curve showed a tendency toward a larger area under the curve for Gd-EOB-DTPA+ compared with gadobutrol (P = .056). Sensitivity and specificity were higher in Gd-EOB-DTPA+ (0.929 and 0.971) than in Gd-EOB-DTPA- (0.786 and 0.941) or gadobutrol (0.643 and 0.956). In 2 cases, tumor progression was detected by Gd-EOB-DTPA+ and by an increase in α-fetoprotein, but not by CT, gadobutrol, or Gd-EOB-DTPA-. Gd-EOB-DTPA+ MR imaging was not inferior to gadobutrol-enhanced MR imaging in therapy response evaluation after radioembolization and may allow a more accurate detection of early HCC recurrence in single cases. Copyright © 2015 SIR. Published by Elsevier Inc. All rights

  15. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi

    2013-05-01

    Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.

  16. Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma.

    PubMed

    Noebauer-Huhmann, Iris M; Szomolanyi, Pavol; Juras, Vladimír; Kraff, Oliver; Ladd, Mark E; Trattnig, Siegfried

    2010-09-01

    PURPOSE/INTRODUCTION: The aim of this study was to determine the T1 relaxivities (r1) of 8 gadolinium (Gd)-based MR contrast agents in human blood plasma at 7 Tesla, compared with 3 Tesla. Eight commercially available Gd-based MR contrast agents were diluted in human blood plasma to concentrations of 0, 0.25, 0.5, 1, and 2 mmol/L. In vitro measurements were performed at 37 degrees C, on a 7 Tesla and on a 3 Tesla whole-body magnetic resonance imaging scanner. For the determination of T1 relaxation times, Inversion Recovery Sequences with inversion times from 0 to 3500 ms were used. The relaxivities were calculated. The r1 relaxivities of all agents, diluted in human blood plasma at body temperature, were lower at 7 Tesla than at 3 Tesla. The values at 3 Tesla were comparable to those published earlier. Notably, in some agents, a minor negative correlation of r1 with a concentration of up to 2 mmol/L could be observed. This was most pronounced in the agents with the highest protein-binding capacity. At 7 Tesla, the in vitro r1 relaxivities of Gd-based contrast agents in human blood plasma are lower than those at 3 Tesla. This work may serve as a basis for the application of Gd-based MR contrast agents at 7 Tesla. Further studies are required to optimize the contrast agent dose in vivo.

  17. Hepatic reaction dose for parenchymal changes on Gd-EOB-DTPA-enhanced magnetic resonance images after stereotactic body radiation therapy for hepatocellular carcinoma.

    PubMed

    Jung, Jinhong; Yoon, Sang Min; Cho, Byungchul; Choi, Young Eun; Kwak, Jungwon; Kim, So Yeon; Lee, Sang-Wook; Ahn, Seung Do; Choi, Eun Kyung; Kim, Jong Hoon

    2016-02-01

    The present study evaluated the threshold dose for hepatic parenchymal changes on gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) images after stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma (HCC). Twenty patients with available data of follow-up MR images acquired 2-4 months after completion of SBRT were selected among the registered patients. SBRT was performed using multiple coplanar and non-coplanar beams with energies of 6 or 15 MV. All patients were treated with doses of 45 Gy administered in three fractions over 3 consecutive days. For image registration between planning computed tomography (CT) and MR images, landmark-based rigid body registration was performed using MIM software. Seventeen patients were included in the analysis. The median discrepancies between planning CT and MR images in the left-right, anterior-posterior and superior-inferior directions were 1.38 mm, 1.24 mm and 1.72 mm, respectively. The median D50 value for the defect in the hepatobiliary phase of Gd-EOB-DTPA-enhanced MR images after SBRT was 19.8 Gy (range, 14.2-28.7 Gy), with R(2) values ranging from 0.76 to 0.99. The threshold dose for parenchymal changes in the hepatobiliary phase of Gd-EOB-DTPA-enhanced MR images performed 2-4 months after 45 Gy of SBRT in three fractions was approximately 20 Gy. Our results provide the basis for further research on the functional loss of liver parenchyma after SBRT. © 2015 The Royal Australian and New Zealand College of Radiologists.

  18. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms.

    PubMed

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Khazak, Vladimir; El-Deiry, Wafik S

    2018-01-22

    Small molecule ONC201 is an investigational anti-tumor agent that upregulates intra-tumoral TRAIL expression and the integrated stress response pathway. A Phase I clinical trial using ONC201 therapy in advanced cancer patients has been completed and the drug has progressed into Phase II trials in several cancer types. Colorectal cancer (CRC) remains one of the leading causes of cancer worldwide and metastatic disease has a poor prognosis. Clinical trials in CRC and other tumor types have demonstrated that therapeutics targeting the vascular endothelial growth factor (VEGF) pathway, such as bevacizumab, are effective in combination with certain chemotherapeutic agents. We investigated the potential combination of VEGF inhibitors such as bevacizumab and its murine-counterpart; along with other anti-angiogenic agents and ONC201 in both CRC xenograft and patient-derived xenograft (PDX) models. We utilized non-invasive imaging and immunohistochemistry to determine potential mechanisms of action. Our results demonstrate significant tumor regression or complete tumor ablation in human xenografts with the combination of ONC201 with bevacizumab, and in syngeneic MC38 colorectal cancer xenografts using a murine VEGF-A inhibitor. Imaging demonstrated the impact of this combination on decreasing tumor growth and tumor metastasis. Our results indicate that ONC201 and anti-angiogenic agents act through distinct mechanisms while increasing tumor cell death and inhibiting proliferation. With the use of both a murine VEGF inhibitor in syngeneic models, and bevacizumab in human cell line-derived xenografts, we demonstrate that ONC201 in combination with anti-angiogenic therapies such as bevacizumab represents a promising approach for further testing in the clinic for the treatment of CRC.

  19. Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion.

    PubMed Central

    van der Wall, E E; van Dijkman, P R; de Roos, A; Doornbos, J; van der Laarse, A; Manger Cats, V; van Voorthuisen, A E; Matheijssen, N A; Bruschke, A V

    1990-01-01

    The diagnostic value of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in patients treated by thrombolysis for acute myocardial infarction was assessed in 27 consecutive patients who had a first acute myocardial infarction (14 anterior, 13 inferior) and who underwent thrombolytic treatment and coronary arteriography within 4 hours of the onset of symptoms. Magnetic resonance imaging was performed 93 hours (range 15-241) after the onset of symptoms. A Philips Gyroscan (0.5 T) was used, and spin echo measurements (echo time 30 ms) were made before and 20 minutes after intravenous injection of 0.1 mmol/kg gadolinium-DTPA. In all patients contrast enhancement of the infarcted areas was seen after Gd-DTPA. The signal intensities of the infarcted and normal values were used to calculate the intensity ratios. Mean (SD) intensity ratios after Gd-DTPA were significantly increased (1.15 (0.17) v 1.52 (0.29). Intensity ratios were higher in the 17 patients who underwent magnetic resonance imaging more than 72 hours after the onset of symptoms than in the 10 who underwent magnetic resonance imaging earlier, the difference being significantly greater after administration of Gd-DTPA (1.38 (0.12) v 1.61 (0.34). When patients were classified according to the site and size of the infarcted areas, or to reperfusion (n = 19) versus non-reperfusion (n = 8), the intensity ratios both before and after Gd-DTPA did not show significant differences. Magnetic resonance imaging with Gd-DTPA improved the identification of acutely infarcted areas, but with current techniques did not identify patients in whom thrombolytic treatment was successful. Images PMID:2310640

  20. Optimizing Anti-VEGF Treatment Outcomes for Patients with Neovascular Age-Related Macular Degeneration.

    PubMed

    Wykoff, Charles C; Clark, W Lloyd; Nielsen, Jared S; Brill, Joel V; Greene, Laurence S; Heggen, Cherilyn L

    2018-02-01

    The introduction of anti-vascular endothelial growth factor (anti-VEGF) drugs to ophthalmology has revolutionized the treatment of neovascular age-related macular degeneration (nAMD). Despite this significant progress, gaps and challenges persist in the diagnosis of nAMD, initiation of treatment, and management of frequent intravitreal injections. Thus, nAMD remains a leading cause of blindness in the United States. To present current knowledge, evidence, and expert perspectives on anti-VEGF therapies in nAMD to support managed care professionals and providers in decision making and collaborative strategies to overcome barriers to optimize anti-VEGF treatment outcomes among nAMD patients. Three anti-VEGF therapies currently form the mainstay of treatment for nAMD, including 2 therapies approved by the FDA for treatment of nAMD (aflibercept and ranibizumab) and 1 therapy approved by the FDA for oncology indications and used off-label for treatment of nAMD (bevacizumab). In clinical trials, each of the 3 agents maintained visual acuity (VA) in approximately 90% or more of nAMD patients over 2 years. However, in long-term and real-world settings, significant gaps and challenges in diagnosis, treatment, and management pose barriers to achieving optimal outcomes for patients with nAMD. Many considerations, including individual patient characteristics, on-label versus off-label treatment, repackaging, and financial considerations, add to the complexity of nAMD decision making and management. Many factors may contribute to additional challenges leading to suboptimal long-term outcomes among nAMD patients, such as delays in diagnosis and/or treatment approval and initiation, individual patient response to different anti-VEGF therapies, lapses in physician regimentation of anti-VEGF injection and monitoring, and inadequate patient adherence to treatment and monitoring. These latter factors highlight the considerable logistical, emotional, and financial burdens of long

  1. Tumor-penetrating Peptide Conjugated and Doxorubicin Loaded T1-T2 Dual Mode MRI Contrast Agents Nanoparticles for Tumor Theranostics

    PubMed Central

    Gao, Lipeng; Yu, Jing; Liu, Yang; Zhou, Jinge; Sun, Lei; Wang, Jing; Zhu, Jianzhong; Peng, Hui; Lu, Weiyue; Yu, Lei; Yan, Zhiqiang; Wang, Yiting

    2018-01-01

    The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. Methods: In this study, a tumor-penetrating peptide RGERPPR (RGE) modified, Gd-DTPA conjugated, and doxorubicin (DOX) loaded Fe3O4@SiO2@mSiO2 nanoparticle drug delivery system (Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs) was prepared for tumor theranostics. Results: The Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs showed a z-average hydrodynamic diameter of about 90 nm, and a pH-sensitive DOX release profile. The 3 T MRI results confirmed the relaxivity of the NPs (r1 = 6.13 mM-1S-1, r2 = 36.89 mM-1S-1). The in vitro cellular uptake and cytotoxicity assays on U87MG cells confirmed that the conjugation of RGERPPR played a significant role in increasing the cellular uptake and cytotoxicity of the NPs. The near-infrared fluorescence in vivo imaging results showed that the NPs could be significantly accumulated in the U87MG tumor tissue, which should result from the mediation of the tumor-penetrating peptide RGERPPR. The MRI results showed that the NPs offered a T1-T2 dual mode contrast imaging effect which would lead to a more precise diagnosis. Compared with unmodified NPs, the RGE-modified NPs showed significantly enhanced MR imaging signal in tumor tissue and antitumor effect, which should also be attributed to the tumor penetrating ability of RGERPPR peptide. Furthermore, the Hematoxylin and Eosin (H&E) staining and TUNEL assay proved that the NPs produced obvious cell apoptosis in tumor tissue. Conclusions: These results indicated that Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs are an effective targeted delivery system for tumor theranostics, and should have a potential value in the personalized treatment of tumor. PMID:29290795

  2. Graphene Oxide and Gadolinium-Chelate Functionalized Poly(lactic acid) Nanocapsules Encapsulating Perfluorooctylbromide for Ultrasound/Magnetic Resonance Bimodal Imaging Guided Photothermal Ablation of Cancer.

    PubMed

    Li, Zhenglin; Ke, Hengte; Wang, Jinrui; Miao, Zhaohua; Yue, Xiuli

    2016-03-01

    This paper successfully fabricated a novel multifunctional theranostic agent (PFOB@PLA/GO/Gd-DTPA NCs) by loading perfluorooctylbromide (PFOB) into poly(lactic acid) (PLA) nanocapsules (NCs) followed by surface functionalization with graphene oxide (GO) and gadolinium-chelate (Gd-DTPA). It was found that the resulting nanoagent could serve as a contrast agent simultaneously to enhance ultrasound (US) and magnetic resonance imaging (MRI). Benefiting from the strong absorption in the near infrared (NIR) region, the nanocapsules could efficiently kill cancer cells under NIR laser irradiation. Thus, such a single theranostic agent with the combination of realtime US imaging and high-resolution MR imaging could achieve great therapeutic effectiveness without systemic damage to the body. In addition, the cytotoxicity assay on HUVEC cells revealed a good biocompatibility of PFOB@PLA/GO/Gd-DTPA NCs, showing that the versatile nanocapsule system may hold great potential as an effective nanoplatform for contrast enhanced imaging guided photothermal therapy.

  3. Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases.

    PubMed

    Rahbari, Nuh N; Kedrin, Dmitriy; Incio, Joao; Liu, Hao; Ho, William W; Nia, Hadi T; Edrich, Christina M; Jung, Keehoon; Daubriac, Julien; Chen, Ivy; Heishi, Takahiro; Martin, John D; Huang, Yuhui; Maimon, Nir; Reissfelder, Christoph; Weitz, Jurgen; Boucher, Yves; Clark, Jeffrey W; Grodzinsky, Alan J; Duda, Dan G; Jain, Rakesh K; Fukumura, Dai

    2016-10-12

    The survival benefit of anti-vascular endothelial growth factor (VEGF) therapy in metastatic colorectal cancer (mCRC) patients is limited to a few months because of acquired resistance. We show that anti-VEGF therapy induced remodeling of the extracellular matrix with subsequent alteration of the physical properties of colorectal liver metastases. Preoperative treatment with bevacizumab in patients with colorectal liver metastases increased hyaluronic acid (HA) deposition within the tumors. Moreover, in two syngeneic mouse models of CRC metastasis in the liver, we show that anti-VEGF therapy markedly increased the expression of HA and sulfated glycosaminoglycans (sGAGs), without significantly changing collagen deposition. The density of these matrix components correlated with increased tumor stiffness after anti-VEGF therapy. Treatment-induced tumor hypoxia appeared to be the driving force for the remodeling of the extracellular matrix. In preclinical models, we show that enzymatic depletion of HA partially rescued the compromised perfusion in liver mCRCs after anti-VEGF therapy and prolonged survival in combination with anti-VEGF therapy and chemotherapy. These findings suggest that extracellular matrix components such as HA could be a potential therapeutic target for reducing physical barriers to systemic treatments in patients with mCRC who receive anti-VEGF therapy. Copyright © 2016, American Association for the Advancement of Science.

  4. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

    PubMed

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G

    2015-08-19

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.

  5. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  6. Diffusion of anti-VEGF injections in the Portuguese National Health System

    PubMed Central

    Marques, Ana Patrícia; Macedo, António Filipe; Perelman, Julian; Aguiar, Pedro; Rocha-Sousa, Amândio; Santana, Rui

    2015-01-01

    Objectives To analyse the temporal and geographical diffusion of antivascular endothelial growth factor (anti-VEGF) interventions, and its determinants in a National Health System (NHS). Setting NHS Portuguese hospitals. Participants All inpatient and day cases related to eye diseases at all Portuguese public hospitals for the period 2002–2012 were selected on the basis of four International Classification of Diseases 9th revision, Clinical Modification (ICD-9-CM) codes for procedures: 1474, 1475, 1479 and 149. Primary and secondary outcome measures We measured anti-VEGF treatment rates by year and county. The determinants of the geographical diffusion were investigated using generalised linear modelling. Results We analysed all hospital discharges from all NHS hospitals in Portugal (98 408 hospital discharges corresponding to 57 984 patients). National rates of hospitals episodes for the codes for procedures used were low before anti-VEGF approval in 2007 (less than 12% of hospital discharges). Between 2007 and 2012, the rates of hospital episodes related to the introduction of anti-VEGF injections increased by 27% per year. Patients from areas without ophthalmology departments received fewer treatments than those from areas with ophthalmology departments. The availability of an ophthalmology department in the county increased the rates of hospital episodes by 243%, and a 100-persons greater density per km2 raised the rates by 11%. Conclusions Our study shows a large but unequal diffusion of anti-VEGF treatments despite the universal coverage and very low copayments. The technological innovation in ophthalmology may thus produce unexpected inequalities related to financial constraints unless the implementation of innovative techniques is planned and regulated. PMID:26597866

  7. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents

    DOE PAGES

    Rees, Julian A.; Deblonde, Gauthier J. -P.; An, Dahlia D.; ...

    2018-03-13

    Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. Here, to address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, amore » ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.« less

  8. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, Julian A.; Deblonde, Gauthier J. -P.; An, Dahlia D.

    Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. Here, to address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, amore » ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.« less

  9. In vivo characterization of a smart MRI agent that displays an inverse response to calcium concentration.

    PubMed

    Mamedov, Ilgar; Canals, Santiago; Henig, Jörg; Beyerlein, Michael; Murayama, Yusuke; Mayer, Hermann A; Logothetis, Nikos K; Angelovski, Goran

    2010-12-15

    Contrast agents for magnetic resonance imaging (MRI) that exhibit sensitivity toward specific ions or molecules represent a challenging but attractive direction of research. Here a Gd(3+) complex linked to an aminobis(methylenephosphonate) group for chelating Ca(2+) was synthesized and investigated. The longitudinal relaxivity (r(1)) of this complex decreases during the relaxometric titration with Ca(2+) from 5.76 to 3.57 mM(-1) s(-1) upon saturation. The r(1) is modulated by changes in the hydration number, which was confirmed by determination of the luminescence emission lifetimes of the analogous Eu(3+) complex. The initial in vivo characterization of this responsive contrast agent was performed by means of electrophysiology and MRI experiments. The investigated complex is fully biocompatible, having no observable effect on neuronal function after administration into the brain ventricles or parenchyma. Distribution studies demonstrated that the diffusivity of this agent is significantly lower compared with that of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA).

  10. Synthesis and physicochemical characterization of carbon backbone modified [Gd(TTDA)(H2O)]2- derivatives.

    PubMed

    Chang, Ya-Hui; Chen, Chiao-Yun; Singh, Gyan; Chen, Hsing-Yin; Liu, Gin-Chung; Goan, Yih-Gang; Aime, Silvio; Wang, Yun-Ming

    2011-02-21

    (A)) for [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are 1.1 × 10(2) and 1.5 × 10(3), respectively. Although the K(A) value for [Gd(Bz-CB-TTDA)(H(2)O)](2-) is lower than that of MS-325 (K(A) = 3.0 × 10(4)), the r(1)(b) value, r(1)(b) = 66.7 mM(-1) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-), is significantly higher than that of MS-325 (r(1)(b) = 47.0 mM(-1) s(-1)). As measured by the Zn(II) transmetalation process, the kinetic stabilities of [Gd(CB-TTDA)(H(2)O)](2-), [Gd(Bz-CB-TTDA)(H(2)O)](2-), and [Gd(DTPA)(H(2)O)](2-) are similar and are significantly higher than that of [Gd(DTPA-BMA)(H(2)O)](2-). High thermodynamic and kinetic stability and optimized lipophilicity of [Gd(CB-TTDA)(H(2)O)](2-) make it a favorable blood pool contrast agent for MRI.

  11. Synthesis and characterization of a smart contrast agent sensitive to calcium.

    PubMed

    Dhingra, Kirti; Maier, Martin E; Beyerlein, Michael; Angelovski, Goran; Logothetis, Nikos K

    2008-08-07

    A novel first-generation Ca2+ sensitive contrast agent, Gd-DOPTRA has been synthesized and characterized. The agent shows approximately 100% relaxivity enhancement upon addition of Ca2+. The agent is selective and sensitive to Ca2+ also in the presence of Mg2+ and Zn2+. The relaxivity studies carried out in physiological fluids prove the prospects of the agent for in vivo measurements.

  12. Emodin-Loaded Magnesium Silicate Hollow Nanocarriers for Anti-Angiogenesis Treatment through Inhibiting VEGF

    PubMed Central

    Ren, Hua; Zhu, Chao; Li, Zhaohui; Yang, Wei; Song, E

    2014-01-01

    The applications of anti-VEGF (vascular endothelial growth factor) treatment in ophthalmic fields to inhibit angiogenesis have been widely documented in recent years. However, the hydrophobic nature of many agents makes its delivery difficult in practice. Therefore, the aim of the present study was to introduce a new kind of hydrophobic drug carrier by employing nanoparticles with a hollow structure inside. Followed by the synthesis and characterization of magnesium silicate hollow spheres, cytotoxicity was evaluated in retina capillary endothelial cells. The loading and releasing capacity were tested by employing emodin, and the effect on VEGF expression was performed at the gene and protein level. Finally, an investigation on angiogenesis was carried on fertilized chicken eggs. The results indicated that the magnesium silicate nanoparticles had low toxicity. Emodin–MgSiO3 can inhibit the expression of both VEGF gene and protein effectively. Angiogenesis of eggs was also reduced significantly. Based on the above results, we concluded that magnesium silicate hollow spheres were good candidates as drug carriers with enough safety. PMID:25250911

  13. Acute neurovascular events in cancer patients receiving anti-vascular endothelial growth factor agents: Clinical experience in Paris University Hospitals.

    PubMed

    Tlemsani, Camille; Mir, Olivier; Psimaras, Dimitri; Vano, Yann-Alexandre; Ducreux, Michel; Escudier, Bernard; Rousseau, Benoit; Loirat, Delphine; Ceccaldi, Bernard; André, Thierry; Goldwasser, François; Ricard, Damien

    2016-10-01

    Despite the increasing and broadening use of agents targeting the vascular endothelial growth factor (VEGF) pathway, little is known on their acute neurovascular toxicities. This retrospective, multi-centre study examined the characteristics of patients with solid tumours who experienced an ischaemic or haemorrhagic stroke, a transient ischaemic accident (TIA) or a posterior reversible encephalopathy syndrome (PRES) while under anti-VEGF and until 8 weeks after termination of treatment and evaluated their management in our institutions from 2004 to 2014. Patients with newly diagnosed or progressive cerebral metastases at the time of the acute neurovascular event were excluded. Thirty-four patients (55.9% men) were identified, and experienced either ischaemic stroke (n = 18), PRES (n = 9), TIA (n = 6) or haemorrhagic stroke (n = 1). At initiation of anti-VEGF agents, 64.7% of patients had previous cardiovascular risk factors, and 52.9% had hypertension. Eight patients (23.5%) had received cerebral radiotherapy, five of which concomitantly to anti-VEGF treatment. Six (17%) patients died in the 8 weeks following the acute neurovascular event, and only 55.9% recovered their initial neurological status. Overall, 1-year and 2-year survival rates after the acute neurovascular event were 67.9% and 50%, respectively. When anti-VEGF agents were reintroduced (n = 6), severe vascular toxicity recurred in two patients. Neurovascular events under VEGF treatments are potentially severe, and the management of comorbid conditions has to be improved. A prospective collection of data and standardised management of such events is therefore being structured in our institutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model.

    PubMed

    Fries, Peter; Runge, Val M; Bücker, Arno; Schürholz, Hellmut; Reith, Wolfgang; Robert, Philippe; Jackson, Carney; Lanz, Titus; Schneider, Günther

    2009-04-01

    The aim of this study was to evaluate lesion enhancement (LE) and contrast-to-noise ratio (CNR) properties of P846, a new intermediate sized, high relaxivity Gd-based contrast agent at 3 Tesla in a rat brain glioma model, and to compare this contrast agent with a high relaxivity, macromolecular compound (P792), and a standard extracellular Gd-chelate (Gd-DOTA). Seven rats with experimental induced brain glioma were evaluated using 3 different contrast agents, with each MR examination separated by at least 24 hours. The time between injections assured sufficient clearance of the agent from the tumor, before the next examination. P792 (Gadomelitol, Guerbet, France) and P846 (a new compound from Guerbet Research) are macromolecular and high relaxivity contrast agents with no protein binding, and were compared with the extracellular agent Gd-DOTA (Dotarem, Guerbet, France). T1w gradient echo sequences (TR/TE 200 milliseconds/7.38 milliseconds, flip angle = 90 degrees , acquisition time: 1:42 minutes:sec, voxel size: 0.2 x 0.2 x 2.0 mm, FOV = 40 mm, acquisition matrix: 256 x 256) were acquired before and at 5 consecutive time points after each intravenous contrast injection in the identical slice orientation, using a dedicated 4-channel head array animal coil. The order of contrast media injection was randomized, with however Gd-DOTA used either as the first or second contrast agent. Contrast agent dose was adjusted to compensate for the different T1 relaxivities of the 3 agents. Signal-to-noise ratio, CNR, and LE were evaluated using region-of-interest analysis. A veterinary histopathologist confirmed the presence of a glioma in each subject, after completion of the imaging study. P792 showed significantly less LE as compared with Gd-DOTA within the first 7 minutes after contrast agent injection (P < 0.05) with, however, reaching comparable LE values at 9 minutes after injection (P = 0.07). However, P792 provided significantly less CNR as compared with Gd-DOTA (P < 0

  15. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    NASA Astrophysics Data System (ADS)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  16. NOTE: A positive contrast, tri-modality tissue marker for breast tumour localization

    NASA Astrophysics Data System (ADS)

    Li, Yangmei; Xiong Wang, Jian; Holloway, Claire; Plewes, Donald B.

    2007-02-01

    A new interstitial breast localization marker is proposed which exhibits positive contrast in T1-weighted MRI, ultrasound and x-ray mammography. Unlike previous markers which provide MRI contrast on the basis of a susceptibility-induced signal void, this marker provides a clear positive contrast without any loss of signal or spatial distortion. The marker is composed of 400 µm diameter copper microspheres suspended in a Gd-DTPA-doped gel matrix. Optimal contrast in T1-weighted spoiled gradient recalled MRI was found to occur with the addition of 10 mM Gd-DTPA. Ultrasound contrast was generated on the basis of scattering from the copper microspheres. X-ray contrast was provided by the high x-ray attenuation properties of the copper microspheres. The study demonstrates potential suitability of the marker for use as a breast localization marker based on ex vivo studies of chicken breast.

  17. Clinical usefulness of the ablative margin assessed by magnetic resonance imaging with Gd-EOB-DTPA for radiofrequency ablation of hepatocellular carcinoma.

    PubMed

    Koda, Masahiko; Tokunaga, Shiho; Okamoto, Toshiaki; Hodozuka, Masanori; Miyoshi, Kennichi; Kishina, Manabu; Fujise, Yuki; Kato, Jun; Matono, Tomomitsu; Sugihara, Takaaki; Oyama, Kenji; Hosho, Keiko; Okano, Jun-ichi; Murawaki, Yoshikazu; Kakite, Suguru; Yamashita, Eijiro

    2015-12-01

    The aim of this study was to investigate the feasibility of ablative margin (AM) grading by magnetic resonance imaging (MRI) with Gd-EOB-DTPA administered prior to radiofrequency ablation (RFA), and to identify factors for achieving a sufficient AM and predictors for local tumor progression. A total of 124 hepatocellular carcinomas (HCCs) were treated by RFA after Gd-EOB-DTPA administration. MRI and enhanced CT were performed within seven hours and one month after RFA. The AM assessment was categorized using three grades: AM (+), low-intensity area with continuous high-intensity rim; AM zero, low-intensity area with discontinuous high-intensity rim; and AM (-), low-intensity area extends beyond the high-intensity rim. Patients were followed and local tumor progression was observed. AM (+), AM zero, AM (-), and indeterminate were found in 34, 33, 26, and 31 nodules, respectively. The overall agreement rate between MRI and enhanced CT for the diagnosis of AM was 56.8%. The κ coefficient was 0.326 (p<0.001), indicating moderate agreement. Multivariate logistic regression analysis showed that a significant factor for the achievement of AM (+) on MRI was no contiguous vessels. The cumulative local tumor progression rates (0% at 1, 2, and 3 years) in 33 AM (+) nodules were significantly lower than those (3.6%, 11.5%, and 18.3% at 1, 2, and 3 years respectively) in 32 AM zero nodules. A multivariate Cox proportional hazards model identified tumor size as an independent predictor for local tumor progression. Gd-EOB-DTPA-MRI enabled an early assessment of RFA effectiveness in the majority ofHCC nodules. Local tumor progression was not detected in AM (+) nodules during the follow-up. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Polymeric contrast agents for medical imaging.

    PubMed

    Torchilin, V P

    2000-09-01

    Synthetic polymers and co-polymers are described, to be used as carriers of reporter groups for gamma-, magnetic resonance (MR), and computed tomography (CT) imaging. Those compounds include polychelating and amphiphilic polymers and serve as key components of various contrast agents. Single terminus-activated polychelating polymers were synthesized using poly-L-lysine (PLL) as a main chain and chelating moieties (such as diethylene triamine pentaacetic acid or DTPA) as side groups. These polymers were used for the modification of diagnostic monoclonal antibodies to increase their load with reporter metal atoms. As a result, better images within shorter time intervals were obtained in animal experiments. The application of liposomes and micelles as carriers for diagnostic imaging agents in experimental and clinical medicine is considered. The load of liposomes and micelles with contrast agents for gamma- and MR imaging (MRI) was sharply increased by using polychelating polymers additionally modified on one end with a hydrophobic phospholipid residue to give amphiphilic polymers. Such polymers easily incorporate the liposome membrane or micelle core and provide better loading of liposomes and micelles with reporter metals and, consequently, better and faster imaging of various physiological compartments, such as lymphatic and vascular systems. A block-copolymer of methoxy-poly(ethylene glycol) (MPEG) and iodine-substituted PLL was synthesized to prepare long-circulating contrast agent for CT imaging of the blood pool. In the aqueous solution, this copolymer forms stable and heavily loaded with iodine (up to 30% of iodine by weight) micelles. These micelle were successfully used for CT visualization of the vascular network in experimental animals. General trends in developing contrast polymers are discussed.

  19. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.

    PubMed

    Nwe, K; Bernardo, M; Regino, C A S; Williams, M; Brechbiel, M W

    2010-08-15

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N',N',N'',N''-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex(R) G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1, respectively. Molar relaxivity measured at pH 7.4, 22 degrees C, and 3T are comparable (29.5 vs 26.9 mM(-1)s(-1)), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t(1/2)=16 vs 29 min). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. Published by Elsevier Ltd.

  20. Application of a biodegradable macromolecular contrast agent in dynamic contrast enhanced MRI for assessing the efficacy of indocyanine green enhanced photothermal cancer therapy

    PubMed Central

    Feng, Yi; Emerson, Lyska; Jeong, Eun-Kee; Parker, Dennis L.; Lu, Zheng-Rong

    2009-01-01

    Purpose To investigate the effectiveness of a polydisulfide-based biodegradable macromolecular contrast agent, (Gd-DTPA)-cystamine copolymers (GDCC), in assessing the efficacy of indocyanine green enhanced photothermal cancer therapy using dynamic contrast enhanced MRI (DCE-MRI). Materials and Methods Breast cancer xenografts in mice were injected with indocyanine green and irradiated with laser. The efficacy was assessed using DCE-MRI with GDCC of 40 KDa (GDCC-40) at 4 hours and 7 days after the treatment. The uptake of GDCC-40 by the tumors was fit to a two-compartment model to obtain tumor vascular parameters, including fractional plasma volume (fPV), endothelium transfer coefficient (KPS), and permeability surface area product (PS). Results GDCC-40 resulted in similar tumor vascular parameters at three doses with larger standard deviations at lower doses. The values of fPV, KPS and PS of the treated tumors were smaller (p < 0.05) than those of untreated tumors at 4 hours after the treatment and recovered to pretreatment values (p > 0.05) at 7 days after the treatment. Conclusion DCE-MRI with GDCC-40 is effective for assessing tumor early response to dye-enhanced photothermal therapy and detecting tumor relapse after the treatment. GDCC-40 has a potential to non-invasively monitor anticancer therapies with DCE-MRI. PMID:19629979

  1. Effect of intravenous gadolinium-DTPA on diffusion-weighted imaging for prostate lesions and normal tissue at 3.0-Tesla magnetic resonance imaging.

    PubMed

    Liu, Xiaohang; Zhou, Liangping; Peng, Weijun; Qian, Min

    2011-06-01

    Post-contrast diffusion-weighted imaging (DWI) is occasionally necessary when the results of the pre-contrast DWI differ from that of the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), however, the effects of contrast material on DWI image and apparent diffusion coefficient (ADC) values have not been fully examined. To assess whether the administration of gadolinium-DTPA (Gd-DTPA) significantly affects the DWI of prostate lesions or normal tissue at the 3.0 Tesla magnetic resonance imaging (3.0 T MRI). Fifty-one patients with 52 prostate lesions, including 32 prostate cancer (25 in the peripheral zone [PZ] and seven that could not be confidently located) and 20 benign lesions (11 in PZ and nine in central grand [CG]), underwent echo-planar imaging (EPI)-DWI with b values of 0, 1000 s/mm(2) before and after administration of Gd-DTPA at 3.0 T MRI. Regions of interest (ROI) were drawn in all lesions, 42 normal PZ, 44 CG tissue and air to calculate the signal-to-noise ratio (SNR) and ADC values of lesions and normal tissue, and contrast-to-noise ratio (CNR) of lesions for pre- and post-contrast images. Statistical differences between pre- and post-contrast data were assessed by use of a paired t test. No significant differences between pre- and post-contrast images were found in the CNR of lesions and SNR of all the tissue except CG, which showed a statistically significant decline (9.6%, p < 0.0001) in SNR after contrast relative to the pre-contrast images. The post-contrast ADC values were statistically significantly lower than pre-contrast for prostate cancer (0.80 ± 0.11 mm(2)/s Vs 0.89 ± 0.12 mm(2)/s, p < 0.0001) and benign lesions (1.14 ± 0.30 mm(2)/s vs. 1.2 ± 0.29 mm(2)/s, p < 0.0001). No significant differences were detected for normal tissue. The administration of Gd-DTPA can slightly affect the DWI image quality of the prostate and reduce the ADC value of lesions at 3.0T MRI. Applications of post-contrast DWI require caution in

  2. Gadolinium-Functionalized Peptide Amphiphile Micelles for Multimodal Imaging of Atherosclerotic Lesions

    PubMed Central

    2016-01-01

    The leading causes of morbidity and mortality globally are cardiovascular diseases, and nanomedicine can provide many improvements including disease-specific targeting, early detection, and local delivery of diagnostic agents. To this end, we designed fibrin-binding, peptide amphiphile micelles (PAMs), achieved by incorporating the targeting peptide cysteine-arginine-glutamic acid-lysine-alanine (CREKA), with two types of amphiphilic molecules containing the gadoliniuim (Gd) chelator diethylenetriaminepentaacetic acid (DTPA), DTPA-bis(stearylamide)(Gd), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(poly(ethylene glycol) (PEG))-2000]-DTPA(Gd) (DSPE-PEG2000-DTPA(Gd)). The material characteristics of the resulting nanoparticle diagnostic probes, clot-binding properties in vitro, and contrast enhancement and safety for dual, optical imaging–magnetic resonance imaging (MRI) were evaluated in the atherosclerotic mouse model. Transmission electron micrographs showed a homogenous population of spherical micelles for formulations containing DSPE-PEG2000-DTPA(Gd), whereas both spherical and cylindrical micelles were formed upon mixing DTPA-BSA(Gd) and CREKA amphiphiles. Clot-binding assays confirmed DSPE-PEG2000-DTPA(Gd)-based CREKA micelles targeted clots over 8-fold higher than nontargeting (NT) counterpart micelles, whereas no difference was found between CREKA and NT, DTPA-BSA(Gd) micelles. However, in vivo MRI and optical imaging studies of the aortas and hearts showed fibrin specificity was conferred by the peptide ligand without much difference between the nanoparticle formulations or shapes. Biodistribution studies confirmed that all micelles were cleared through both the reticuloendothelial system and renal clearance, and histology showed no signs of necrosis. In summary, these studies demonstrate the successful synthesis, and the molecular imaging capabilities of two types of CREKA-Gd PAMs for atherosclerosis. Moreover, we demonstrate the differences in

  3. Treatment outcome of anti-angiogenesis through VEGF-pathway in the management of gastric cancer: a systematic review of phase II and III clinical trials.

    PubMed

    Mawalla, Brian; Yuan, Xianglin; Luo, Xiaoxiao; Chalya, Phillip L

    2018-01-12

    Advanced gastric cancer poses a therapeutic challenge worldwide. In randomised clinical trials, anti-VEGF has been reported as an essential agent for the treatment of advanced gastric cancer. This review aims at assessing the treatment outcome of anti-angiogenesis therapy through the VEGF pathway in the management of patients with advanced gastric cancer. During this review, 38 clinical trials were identified. Of these, 30 clinical trials were excluded, leaving eight trials of phase II and III. Ramucirumab, as a second line treatment of advanced gastric cancer, decreases the risk of disease progression (37-52%) and death (19-22%). Compare ramucirumab and bevacizumab in combination with traditional chemotherapy; ramucirumab has shown to improve progression-free survival and overall survival. Apatinib tyrosine kinase inhibitor combined with traditional chemotherapy has shown to improve overall response rate and progression-free survival with marginal improvements in overall survival. Chemotherapy, in combination with anti-VEGF drugs, in the management of advanced gastric cancer significantly improves the outcome of overall response rate, progression-free survival and overall survival when compared to chemotherapy alone. Therefore, we recommend that anti-VEGF drugs are the drugs of choice in the management of patients with advanced gastric cancer.

  4. Comparative Safety and Tolerability of Anti-VEGF therapy in Age-Related Macular Degeneration

    PubMed Central

    Modi, Yasha S.; Tanchon, Carley; Ehlers, Justis P

    2015-01-01

    Neovascular age-related macular degeneration (NVAMD) is one of the leading causes of blindness. Over the last decade, the treatment of NVAMD has been revolutionized by the development intravitreal anti-vascular endothelial growth factor (VEGF) therapies. Several anti-VEGF medications are used for the treatment of NVAMD. The safety and tolerability of these medications deserve review given the high prevalence of NVAMD and the significant utilization of these medications. Numerous large randomized clinical trials have not shown any definitive differential safety relative to ocular or systemic safety of these medications. Intravitreal anti-VEGF therapy does appear to impact systemic VEGF levels, but the implications of these changes remain unclear. One unique safety concern relates drug compounding and the potential risks of contamination, specifically for bevacizumab. Continued surveillance for systemic safety concerns, particularly for rare events is merited. Overall these medications are well tolerated and effective in the treatment of NVAMD. PMID:25700714

  5. Avidin-dendrimer-(1B4M-Gd)(254): a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI.

    PubMed

    Kobayashi, H; Kawamoto, S; Saga, T; Sato, N; Ishimori, T; Konishi, J; Ono, K; Togashi, K; Brechbiel, M W

    2001-01-01

    Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium ((157,155)Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)(254) (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with (153)Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)(256) (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103% ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28% ID/g, p < 0.001) and G6Gd (30% ID/g, p < 0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1

  6. P16.31THERANOSTIC APPLICATION OF WATER-SOLUBLE GADOLINIUM FULLERENE (GD@FUL) IN EXPERIMENTAL GLIOMA MODEL

    PubMed Central

    Shevtsov, M.; Nikolaev, B.; Marchenko, Y.; Yakovleva, L.; Dobrodumov, A.; Török, G.; Pitkin, E.; Lebedev, V.

    2014-01-01

    Glioblastoma multiforme (GMB) is a highly invasive brain tumour with poor prognosis. Alternative treatments offering a better outcome are needed. Novel approach could be based on gadofullerenes that can be used as diagnostic MR imaging contrast agent and as a therapeutic drug. Water soluble gadofullerene Gd@Ful with composition Gd@C82(OH)x x ≥20 was synthesized for theranostic study. Nanosuspensions of Gd@Ful were used for magnetic relaxation measurements in vitro and for MR imaging of a rat with intracranially implanted C6 glioma. Gd@Ful was shown to reduce proton relaxation times in vitro, and provide dual contrast of T1- and T2-weighted images in a rat brain tumour model after paramagnetic intravenous delivery. Magnetic relaxation times and relaxivity of water protons under action of Gd@Ful were strongly shortened due to cluster formation and increase of motional correlation times of protons in the vicinity of the fulleren cage. The Gd@Ful administration promoted the improvement of glioma contrast enhancement at T2-weighted images due to accumulation of paramagnetic substance at the tumour site. The contrast efficiency of Gd@Ful corresponds to the characteristics of negative contrast agent. Retention of the Gd@Ful in the C6 glioma provides not only the tumor contrast enhancement but also has a high therapeutic relevance. We observed the increased survival rates in animals that were intravenously administered with Gd@Ful. Thus, in experimental group the survival was 75% higher then in the control group, constituting 34.2 ± 9.94 and 19.5 ± 3.02 days respectively (P < 0.001). The Gd@Ful solution is shown to be a contrast enhancer with high anti-tumour therapeutic potency.

  7. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol-1 L s-1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  8. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung

    PubMed Central

    Murphy, Sean V.; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-01-01

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a ‘proof-of-concept’ experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. PMID:26546729

  9. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung.

    PubMed

    Murphy, Sean V; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-04-15

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the ​in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Dimethyl sulfoxide (DMSO) as a potential contrast agent for brain tumors.

    PubMed

    Delgado-Goñi, T; Martín-Sitjar, J; Simões, R V; Acosta, M; Lope-Piedrafita, S; Arús, C

    2013-02-01

    Dimethyl sulfoxide (DMSO) is commonly used in preclinical studies of animal models of high-grade glioma as a solvent for chemotherapeutic agents. A strong DMSO signal was detected by single-voxel MRS in the brain of three C57BL/6 control mice during a pilot study of DMSO tolerance after intragastric administration. This led us to investigate the accumulation and wash-out kinetics of DMSO in both normal brain parenchyma (n=3 control mice) by single-voxel MRS, and in 12 GL261 glioblastomas (GBMs) by single-voxel MRS (n=3) and MRSI (n=9). DMSO accumulated differently in each tissue type, reaching its highest concentration in tumors: 6.18 ± 0.85 µmol/g water, 1.5-fold higher than in control mouse brain (p<0.05). A faster wash-out was detected in normal brain parenchyma with respect to GBM tissue: half-lives of 2.06 ± 0.58 and 4.57 ± 1.15 h, respectively. MRSI maps of time-course DMSO changes revealed clear hotspots of differential spatial accumulation in GL261 tumors. Additional MRSI studies with four mice bearing oligodendrogliomas (ODs) revealed similar results as in GBM tumors. The lack of T(1) contrast enhancement post-gadolinium (gadopentetate dimeglumine, Gd-DTPA) in control mouse brain and mice with ODs suggested that DMSO was fully able to cross the intact blood-brain barrier in both normal brain parenchyma and in low-grade tumors. Our results indicate a potential role for DMSO as a contrast agent for brain tumor detection, even in those tumors 'invisible' to standard gadolinium-enhanced MRI, and possibly for monitoring heterogeneities associated with progression or with therapeutic response. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    PubMed

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  12. Evaluation of intraaxial enhancing brain tumors on magnetic resonance imaging: intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for visualization and assessment, and implications for surgical intervention.

    PubMed

    Kuhn, Matthew J; Picozzi, Piero; Maldjian, Joseph A; Schmalfuss, Ilona M; Maravilla, Kenneth R; Bowen, Brian C; Wippold, Franz J; Runge, Val M; Knopp, Michael V; Wolansky, Leo J; Gustafsson, Lars; Essig, Marco; Anzalone, Nicoletta

    2007-04-01

    The goal in this article was to compare 0.1 mmol/kg doses of gadobenate dimeglumine (Gd-BOPTA) and gadopentetate dimeglumine, also known as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), for enhanced magnetic resonance (MR) imaging of intraaxial brain tumors. Eighty-four patients with either intraaxial glioma (47 patients) or metastasis (37 patients) underwent two MR imaging examinations at 1.5 tesla, one with Gd-BOPTA as the contrast agent and the other with Gd-DTPA. The interval between fully randomized contrast medium administrations was 2 to 7 days. The T1-weighted spin echo and T2-weighted fast spin echo images were acquired before administration of contrast agents and T1-weighted spin echo images were obtained after the agents were administered. Acquisition parameters and postinjection acquisition times were identical for the two examinations in each patient. Three experienced readers working in a fully blinded fashion independently evaluated all images for degree and quality of available information (lesion contrast enhancement, lesion border delineation, definition of disease extent, visualization of the lesion's internal structures, global diagnostic preference) and quantitative enhancement (that is, the extent of lesion enhancement after contrast agent administration compared with that seen before its administration [hereafter referred to as percent enhancement], lesion/brain ratio, and contrast/noise ratio). Differences were tested with the Wilcoxon signed-rank test. Reader agreement was assessed using kappa statistics. Significantly better diagnostic information/imaging performance (p < 0.0001, all readers) was obtained with Gd-BOPTA for all visualization end points. Global preference for images obtained with Gd-BOPTA was expressed for 42 (50%), 52 (61.9%), and 56 (66.7%) of 84 patients (readers 1, 2, and 3, respectively) compared with images obtained with Gd-DTPA contrast in four (4.8%), six (7.1%), and three (3.6%) of 84 patients. Similar

  13. Widespread anthropogenic Gd anomalies in waters. Preliminary results on a small Mediterranean drainage basin (Thau Lagoon, France)

    NASA Astrophysics Data System (ADS)

    ELBAZ-POULICHET, F.; SEIDEL, J.

    2001-05-01

    Recent evidence of perturbation of REE signature marked by pronounced positive Gd anomalies have been found in surface waters of densely populated and industrialised regions, in Germany and Japan. This study presents REE data in water from a small Mediterranean basin (the Thau lagoon) located on the southwestern French Mediterranean coast, which is a densely populated region.. Positive Gd anomalies (up to 5) are observed in the major river feeding the lagoon and in the lagoon where the highest values are encountered in the close vicinity of the continental sources. The systematic and concomitant observation of similar anomalies, in sewage treatment plant effluents, suggests that they have an anthropogenic origin. The suspended load does not display any Gd anomaly indicating that the Gd input occurs mainly in the dissolved phase. In addition, the appearance of Gd anomaly is not accompanied by an overall increase of REE concentrations. The gadopentetic acid, Gd(DTPA)2- used as a contrasting agent in magnetic resonance imaging could account for such anomalies but remains to be confirmed. Finally positive Gd anomalies appear a common feature in waters of densely populated regions with high standard of living . These anomalies may have an application in water resource management as a tracer of anthropogenic impacts.

  14. A pyrophosphate-responsive gadolinium(III) MRI contrast agent.

    PubMed

    Surman, Andrew J; Bonnet, Célia S; Lowe, Mark P; Kenny, Gavin D; Bell, Jimmy D; Tóth, Eva; Vilar, Ramon

    2011-01-03

    This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd(3+) and Eu(3+) , DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln(3+) /anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide "arms" of these ligands, and the interaction of the resulting Gd-Zn(2) complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5'-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H(2) O and D(2) O, (17) O and (31) P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo.

    PubMed

    Shazeeb, Mohammed S; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A

    2012-01-01

    Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd)) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd)) have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO) activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd) (1) improves solubility in water; (2) acts as a substrate for both horseradish peroxidase and MPO enzymes; (3) induces cross-linking of proteins in the presence of MPO; (4) produces oxidation products, which bind to plasma proteins; and (5) unlike bis-5HT-DTPA(Gd), does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MRI) in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. Bis-HTrp-DTPA(Gd) should offer improvements for MRI of MPO-mediated inflammation in vivo, especially in high-field MRI, which requires a higher dose of contrast agent.

  16. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent.

    PubMed

    Yang, Meicheng; Gao, Lipeng; Liu, Kai; Luo, Chunhua; Wang, Yiting; Yu, Lei; Peng, Hui; Zhang, Wen

    2015-01-01

    Core/shell/shell structured Fe3O4/SiO2/Gd2O(CO3)2 nanoparticles were successfully synthesized. Their properties as a new type of T1-T2 dual model contrast agent for magnetic resonance imaging were investigated. Due to the introduce of a separating SiO2 layer, the magnetic coupling between Gd2O(CO3)2 and Fe3O4 could be modulated by the thickness of SiO2 layer and produce appropriate T1 and T2 signal. Additionally, the existence of Gd(3+) enhances the transverse relaxivity of Fe3O4 possibly because of the magnetic coupling between Gd(3+) and Fe3O4. The Fe3O4/SiO2/Gd2O(CO3)2 nanoparticles exhibit good biocompatibility, showing great potential for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.

    PubMed

    Huang, Haitao; Yue, Tao; Xu, Ke; Golzarian, Jafar; Yu, Jiahui; Huang, Jin

    2015-07-01

    Gd(III) chelate is currently used as positive magnetic resonance imaging (MRI) contrast agent in clinical diagnosis, but generally induces the risk of nephrogenic systemic fibrosis (NSF) due to the dissociated Gd(3+) from Gd(III) chelates. To develop a novel positive MRI contrast agent with low toxicity and high sensitivity, ultrasmall MnO nanoparticles were PEGylated via catechol-Mn chelation and conjugated with cRGD as active targeting function to tumor. Particularly, the MnO nanoparticles with a size of ca. 5nm were modified by α,β-poly(aspartic acid)-based graft polymer containing PEG and DOPA moieties and, meanwhile, conjugated with cRGD to produce the contrast agent with a size of ca. 100nm and a longitudinal relaxivity (r1) of 10.2mM(-1)S(-1). Such nanoscaled contrast agent integrated passive- and active-targeting function to tumor, and its efficient accumulation behavior in tumor was verified by in vivo distribution study. At the same time, the PEG moiety played a role of hydrophilic coating to improve the biocompatibility and stability under storing and physiological conditions, and especially might guarantee enough circulation time in blood. Moreover, in vivo MRI revealed a good and long-term effect of enhancing MRI signal for as-fabricated contrast agent while cell viability assay proved its acceptable cytotoxicity for MRI application. On the whole, the as-fabricated PEGylated and cRGD-functionalized contrast agent based on ultrasmall MnO nanoparticles showed a great potential to the T1-weighted MRI diagnosis of tumor. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Effects of anti-VEGF on pharmacokinetics, biodistribution, and tumor penetration of trastuzumab in a preclinical breast cancer model.

    PubMed

    Pastuskovas, Cinthia V; Mundo, Eduardo E; Williams, Simon P; Nayak, Tapan K; Ho, Jason; Ulufatu, Sheila; Clark, Suzanna; Ross, Sarajane; Cheng, Eric; Parsons-Reponte, Kathryn; Cain, Gary; Van Hoy, Marjie; Majidy, Nicholas; Bheddah, Sheila; dela Cruz Chuh, Josefa; Kozak, Katherine R; Lewin-Koh, Nicholas; Nauka, Peter; Bumbaca, Daniela; Sliwkowski, Mark; Tibbitts, Jay; Theil, Frank-Peter; Fielder, Paul J; Khawli, Leslie A; Boswell, C Andrew

    2012-03-01

    Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography-X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes.

  19. Fluorescent and scattering contrast agents in a mouse model of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Winkler, Amy M.; Rice, Photini F. S.; Troutman, Timothy S.; Backer, Marina V.; Backer, Joseph M.; Drezek, Rebekah A.; Romanowski, Marek; Barton, Jennifer K.

    2008-02-01

    In previous work we have demonstrated the utility of laser-induced fluorescence (LIF) and optical coherence tomography (OCT) to identify adenoma in mouse models of colorectal cancer with high sensitivity and specificity. However, improved sensitivity to early disease, as well as the ability to distinguish confounders (e.g. fecal contamination, natural variations in mucosal thickness), is desired. In this study, we investigated the signal enhancement of fluorescent and scattering contrast agents in the colons of AOM-treated mice. The fluorescent tracer scVEGF/Cy, targeted to receptors for vascular endothelial growth factor, was visualized on a dual modality OCT/LIF endoscopic system with 1300-nm center wavelength OCT source and 635-nm LIF excitation. Scattering agents were tested with an 890-nm center wavelength endoscopic OCT system. Agents included nanoshells, 120-nm in diameter, and nanorods, 20-nm in diameter by 80-nm in length. Following imaging, colons were excised. Tissue treated with fluorophore was imaged on an epifluorescence microscope. Histological sections were obtained and stained with H&E and silver enhancer to verify disease and identify regions of gold uptake, respectively. Non-specific signal enhancement was observed with the scattering contrast agents. Specificity for adenoma was seen with the scVEGF/Cy dye.

  20. [Anti-VEGF therapy resistance in neovascular age-related macular degeneration].

    PubMed

    Budzinskaya, M V; Plyukhova, A A; Sorokin, P A

    With account to the increase in the elderly population in most of the developed countries, the WHO defines age-related macular degeneration (AMD) as one of the main causes of blindness in the world. A large percentage of disability is accounted for by exudative, or neovascular, form of AMD. Today, a total of 5 anti-VEGF drugs exist that are recommended for treatment of exudative AMD: pegaptanib, ranibizumab, bevacizumab, aflibercept, and conbercept. Despite significant progress in the treatment of neovascular AMD yielded by the introduction into clinical practice of anti-VEGF drugs, some patients report a lack (down to complete lack) of response with standard treatment patterns and even a decrease in treatment efficacy after repeated intravitreal injections.

  1. Gadolinium-DTPA enhanced magnetic resonance imaging of bone cysts in patients with rheumatoid arthritis.

    PubMed Central

    Gubler, F M; Algra, P R; Maas, M; Dijkstra, P F; Falke, T H

    1993-01-01

    OBJECTIVES--To examine the contents of intraosseous cysts in patients with rheumatoid arthritis (RA) through the signal intensity characteristics on gadolinium-DTPA (Gd-DTPA) enhanced magnetic resonance imaging. METHODS--The hand or foot joints of nine patients with the cystic form of RA (where the initial radiological abnormality consisted of intraosseous cysts without erosions) were imaged before and after intravenous administration of Gd-DTPA. A 0.6 unit, T1 weighted spin echo and T2* weighted gradient echo were used to obtain images in at least two perpendicular planes. RESULTS--Most cysts showed a low signal intensity on the non-enhanced T1 weighted (spin echo) images and a high signal intensity on the T2* weighted (gradient echo) images, consistent with a fluid content. No cyst showed an enhancement of signal intensity on the T1 weighted images after intravenous administration of Gd-DTPA, whereas synovium hyperplasia at the site of bony erosions did show an increased signal intensity after Gd-DTPA. Magnetic resonance imaging detected more cysts (as small as 2 mm) than plain films, and the cysts were located truly intraosseously. In six patients no other joint abnormalities were identified by magnetic resonance imaging; the three other patients also showed, after Gd-DTPA administration, an enhanced synovium at the site of bony erosions. CONCLUSIONS--It is suggested that intraosseous bone cysts in patients with RA do not contain hyperaemic synovial proliferation. The bone cysts in patients with the cystic form of RA may be the only joint abnormality. Images PMID:8257207

  2. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI†

    PubMed Central

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing

    2017-01-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 ± 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 ± 0.1 × 10−22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM−1 s−1 and r2 of 37.9 mM−1 s−1 per Gd (55.2 and 75.8 mM−1 s−1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM−1 s−1 per Gd (188.0 mM−1 s−1 per molecule) and r1 of 18.6 mM−1 s−1 per Gd (37.2 mM−1 s−1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI. PMID:26961235

  3. Hepatic function imaging using dynamic Gd-EOB-DTPA enhanced MRI and pharmacokinetic modeling.

    PubMed

    Ning, Jia; Yang, Zhiying; Xie, Sheng; Sun, Yongliang; Yuan, Chun; Chen, Huijun

    2017-10-01

    To determine whether pharmacokinetic modeling parameters with different output assumptions of dynamic contrast-enhanced MRI (DCE-MRI) using Gd-EOB-DTPA correlate with serum-based liver function tests, and compare the goodness of fit of the different output assumptions. A 6-min DCE-MRI protocol was performed in 38 patients. Four dual-input two-compartment models with different output assumptions and a published one-compartment model were used to calculate hepatic function parameters. The Akaike information criterion fitting error was used to evaluate the goodness of fit. Imaging-based hepatic function parameters were compared with blood chemistry using correlation with multiple comparison correction. The dual-input two-compartment model assuming venous flow equals arterial flow plus portal venous flow and no bile duct output better described the liver tissue enhancement with low fitting error and high correlation with blood chemistry. The relative uptake rate Kir derived from this model was found to be significantly correlated with direct bilirubin (r = -0.52, P = 0.015), prealbumin concentration (r = 0.58, P = 0.015), and prothrombin time (r = -0.51, P = 0.026). It is feasible to evaluate hepatic function by proper output assumptions. The relative uptake rate has the potential to serve as a biomarker of function. Magn Reson Med 78:1488-1495, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Fluorescence-tagged amphiphilic brush copolymer encapsulated Gd2O3 core-shell nanostructures for enhanced T 1 contrast effect and fluorescent imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fenghe; Peng, Erwin; Liu, Feng; Li, Pingjing; Fong Yau Li, Sam; Xue, Jun Min

    2016-10-01

    To obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity. To overcome this challenge, fluorescence-tagged amphiphilic brush copolymer (AFCP) encapsulated Gd2O3 NPs were proposed as suitable T 1 contrast agents. Such a coating layer provided (i) superior aqueous stability, (ii) biocompatibility, as well as (iii) multi-modality (conjugation with fluorescence dye). The polymeric coating layer thickness was simply adjusted by varying the phase-transfer parameters. By reducing the coating thickness, i.e. the distance between the paramagnetic centre and surrounding water protons, the r 1 relaxivity could be enhanced. In contrast, a thicker polymeric layer coating prevents Gd3+ ions leakage, thus improving its biocompatibility. Therefore, it is important to strike a balance between the biocompatibility and the r 1 relaxivity behaviour. Lastly, by conjugating fluorescence moiety, an additional imaging modality was enabled, as demonstrated from the cell-labelling experiment.

  5. Aptamer-Targeted Magnetic Resonance Imaging Contrast Agents and Their Applications.

    PubMed

    Zhang, Yajie; Zhang, Tingting; Liu, Min; Kuang, Ye; Zu, Guangyue; Zhang, Kunchi; Cao, Yi; Pei, Renjun

    2018-06-01

    Magnetic resonance imaging is a powerful diagnostic technology with high spatial resolution and non-invasion. The contrast agents have significant effect on the resolution of the MR imaging. However, the commercial contrast agents (CAs) usually consist of individual Gd3+ chelated with a low molecular weight acyclic or cyclic ligand, and these small-molecule CAs are usually subjected to nonspecificity, thus leading to rapid renal clearance and modest contrast enhancement for tumor imaging. In recent years, the nanostructured materials conjugated with aptamers were widely used and opened a new door in biomedical imaging due to excellent specificity, non-immunogenicity, easily synthesis and chemical modification of aptamers. This review summarizes all kinds of aptamertargeted MRI CAs and their applications.

  6. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents

    PubMed Central

    Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin

    2018-01-01

    Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097

  7. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo

    PubMed Central

    Shazeeb, Mohammed S.; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A.

    2013-01-01

    Bis-phenylamides and bis-hydroxyindolamides of DTPA(Gd) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, bis-5HT-DTPA(Gd) has been used to image localized inflammation in animal models by detecting neutrophil derived myeloperoxidase (MPO) activity at the inflammation site. However, in other pre-clinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here, we report a novel MPO sensing probe obtained by replacing the reducing substrate serotonin (5HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using NMR spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd): 1) improves solubility in water; 2) acts as a substrate for both HRP and MPO enzymes; 3) induces cross linking of proteins in the presence of MPO; 4) produces oxidation products which bind to plasma proteins and; 5) unlike bis-5HT-DTPA(Gd), does not follow first order reaction kinetics. In vivo MR imaging in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to five days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. In conclusion, bis-HTrp-DTPA(Gd) should offer improvements for MR imaging of MPO-mediated inflammation in vivo especially in high-field MRI, which requires higher dose of contrast agent. PMID:22954188

  8. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates

    PubMed Central

    Nwe, K.; Bernardo, M; Regino, C. A. S.; Williams, M; Brechbiel, M. W.

    2010-01-01

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex® G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1 respectively. Molar relaxivity measured at pH 7.4, 22°C, and 3T are comparable (29.5 vs. 26.9 mM−1s−1), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t1/2 = 16 vs. 29 min.). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. PMID:20663676

  9. A functional bioassay to determine the activity of anti-VEGF antibody therapy in blood of patients with cancer.

    PubMed

    Wentink, Madelon Q; Broxterman, Henk J; Lam, Siu W; Boven, Epie; Walraven, Maudy; Griffioen, Arjan W; Pili, Roberto; van der Vliet, Hans J; de Gruijl, Tanja D; Verheul, Henk M W

    2016-10-11

    Only a small proportion of patients respond to anti-VEGF therapy, pressing the need for a reliable biomarker that can identify patients who will benefit. We studied the biological activity of anti-VEGF antibodies in patients' blood during anti-VEGF therapy by using the Ba/F3-VEGFR2 cell line, which is dependent on VEGF for its growth. Serum samples from 22 patients with cancer before and during treatment with bevacizumab were tested for their effect on proliferation of Ba/F3-VEGFR2 cells. Vascular endothelial growth factor as well as bevacizumab concentrations in serum samples from these patients were determined by enzyme linked immunosorbent assay (ELISA). The hVEGF-driven cell proliferation was effectively blocked by bevacizumab (IC 50 3.7 μg ml -1 ; 95% CI 1.7-8.3 μg ml -1 ). Cell proliferation was significantly reduced when patients' serum during treatment with bevacizumab was added (22-103% inhibition compared with pre-treatment). Although bevacizumab levels were not related, on-treatment serum VEGF levels were correlated with Ba/F3-VEGFR2 cell proliferation. We found that the neutralising effect of anti-VEGF antibody therapy on the biological activity of circulating VEGF can be accurately determined with a Ba/F3-VEGFR2 bioassay. The value of this bioassay to predict clinical benefit of anti-VEGF antibody therapy needs further clinical evaluation in a larger randomised cohort.

  10. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma.

    PubMed

    Martini, Maurizio; de Pascalis, Ivana; D'Alessandris, Quintino Giorgio; Fiorentino, Vincenzo; Pierconti, Francesco; Marei, Hany El-Sayed; Ricci-Vitiani, Lucia; Pallini, Roberto; Larocca, Luigi Maria

    2018-05-10

    Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment.

  11. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2.

    PubMed

    Incio, Joao; Ligibel, Jennifer A; McManus, Daniel T; Suboj, Priya; Jung, Keehoon; Kawaguchi, Kosuke; Pinter, Matthias; Babykutty, Suboj; Chin, Shan M; Vardam, Trupti D; Huang, Yuhui; Rahbari, Nuh N; Roberge, Sylvie; Wang, Dannie; Gomes-Santos, Igor L; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Tolaney, Sara M; Krop, Ian E; Duda, Dan G; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K

    2018-03-14

    Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Trace element analysis of human urine collected after administration of Gd-based MRI contrast agents: characterizing spectral interferences using inorganic mass spectrometry

    PubMed Central

    Steuerwald, Amy J.; Parsons, Patrick J.; Arnason, John G.; Chen, Zhen; Peterson, C. Matthew; Louis, Germaine M. Buck

    2013-01-01

    Analysis of human urine is commonly used in biomonitoring studies to assess exposure to essential (e.g., Cu, Zn, Se) and non-essential (Pb, Cd, Pt) trace elements. These data are also used in epidemiological studies to evaluate potential associations between trace element exposure and various health outcomes within a population. Today most trace element analyses are typically performed using quadrupole-based inductively coupled plasma mass spectrometry (Q-ICP-MS). However, there is always the potential for spectral interferences with Q-ICP-MS instrumentation, especially when analyzing human specimens that may contain medications and other exogenous substances. Moreover, such xenobiotics may be unknown to the investigators. In a recent study focusing on environmental exposures and endometriosis: Endometriosis: Natural History, Diagnosis, and Outcomes (ENDO Study), urine specimens (n=619) were collected from participating women upon enrollment into the study or prior to surgery or pelvic magnetic resonance imaging (MRI), and analyzed for 21 trace elements by Q-ICP-MS. Here we report on some anomalous results observed for Se and Pt with elevated concentrations up to several orders of magnitude greater than what might be expected based on established reference intervals. Further investigations using Sector Field (SF-) ICP-MS instrumentation led to identification of doubly charged and polyatomic gadolinium (Gd) species traced to a Gd-based contrast agent that was administered to some subjects just prior to urine collection. Specifically, interferences from Gd2+ and several minor polyatomics were identified as interferences on all of the major isotopes of Se including 74Se, 76Se, 77Se, 78Se, 80Se, and 82Se. While trace amounts of Pt were present in the urine, a number of Gd-containing polyatomic species were also evident as major interferences on all isotopes of Pt (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt), including Gd-chlorides, Gd-argides, and Gd-oxides. These

  13. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma.

    PubMed

    Keunen, Olivier; Johansson, Mikael; Oudin, Anaïs; Sanzey, Morgane; Rahim, Siti A Abdul; Fack, Fred; Thorsen, Frits; Taxt, Torfinn; Bartos, Michal; Jirik, Radovan; Miletic, Hrvoje; Wang, Jian; Stieber, Daniel; Stuhr, Linda; Moen, Ingrid; Rygh, Cecilie Brekke; Bjerkvig, Rolf; Niclou, Simone P

    2011-03-01

    Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large- and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with an induction of hypoxia-inducible factor 1α and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.

  14. Comparison of Contrast-Enhanced Ultrasound and Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid-Enhanced MRI for the Diagnosis of Macroscopic Type of Hepatocellular Carcinoma.

    PubMed

    Iwamoto, Takayuki; Imai, Yasuharu; Kogita, Sachiyo; Igura, Takumi; Sawai, Yoshiyuki; Fukuda, Kazuto; Yamaguchi, Yoshitaka; Matsumoto, Yasushi; Nakahara, Masanori; Morimoto, Osakuni; Seki, Yasushi; Ohashi, Hiroshi; Fujita, Norihiko; Kudo, Masatoshi; Takehara, Tetsuo

    We compared the efficacy of contrast-enhanced ultrasound sonography (CEUS) with sonazoid and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI for the assessment of macroscopic classification of nodular hepatocellular carcinoma (HCC). Seventy-seven consecutive patients with 79 surgically resected HCCs who underwent both preoperative CEUS and Gd-EOB-DTPA-enhanced MRI were enrolled in this retrospective study. Based on the macroscopic diagnosis of resected specimens, nodules were categorized into the simple nodular (SN) and non-SN type HCC. Two hepatologists independently assessed image datasets of the post-vascular phase of CEUS and hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to compare their diagnostic performance. Gd-EOB-DTPA-enhanced MRI enabled the evaluation of macroscopic classification in a significantly larger number of nodules than CEUS (78/79 (98.7%) vs. 70/79 (88.6%), p < 0.05). Of 70 nodules that could be evaluated by both modalities, 41 and 29 nodules were pathologically categorized as SN and non-SN, respectively. The areas under the receiver operating characteristic curve (AUC) for non-SN did not differ between CEUS and Gd-EOB-DTPA-enhanced MRI (reader 1: 0.748 for CEUS, 0.808 for MRI; reader 2: 0.759 for CEUS, 0.787 for MRI). The AUC of combined CEUS and Gd-EOB-DTPA-enhanced MRI for SN HCC was 0.855 (reader 1) and 0.824 (reader 2), indicating higher AUC values for the combined modalities. The diagnostic performance for macroscopic classification of nodular HCC of CEUS was comparable with that of Gd-EOB-DTPA-enhanced MRI, although some HCCs could not be evaluated by CEUS owing to lower detectability. The combination of the 2 modalities had a more accurate diagnostic performance. © 2016 S. Karger AG, Basel.

  15. VEGF-ablation therapy reduces drug delivery and therapeutic response in ECM-dense tumors.

    PubMed

    Röhrig, F; Vorlová, S; Hoffmann, H; Wartenberg, M; Escorcia, F E; Keller, S; Tenspolde, M; Weigand, I; Gätzner, S; Manova, K; Penack, O; Scheinberg, D A; Rosenwald, A; Ergün, S; Granot, Z; Henke, E

    2017-01-05

    The inadequate transport of drugs into the tumor tissue caused by its abnormal vasculature is a major obstacle to the treatment of cancer. Anti-vascular endothelial growth factor (anti-VEGF) drugs can cause phenotypic alteration and maturation of the tumor's vasculature. However, whether this consistently improves delivery and subsequent response to therapy is still controversial. Clinical results indicate that not all patients benefit from antiangiogenic treatment, necessitating the development of criteria to predict the effect of these agents in individual tumors. We demonstrate that, in anti-VEGF-refractory murine tumors, vascular changes after VEGF ablation result in reduced delivery leading to therapeutic failure. In these tumors, the impaired response after anti-VEGF treatment is directly linked to strong deposition of fibrillar extracellular matrix (ECM) components and high expression of lysyl oxidases. The resulting condensed, highly crosslinked ECM impeded drug permeation, protecting tumor cells from exposure to small-molecule drugs. The reduced vascular density after anti-VEGF treatment further decreased delivery in these tumors, an effect not compensated by the improved vessel quality. Pharmacological inhibition of lysyl oxidases improved drug delivery in various tumor models and reversed the negative effect of VEGF ablation on drug delivery and therapeutic response in anti-VEGF-resistant tumors. In conclusion, the vascular changes after anti-VEGF therapy can have a context-dependent negative impact on overall therapeutic efficacy. A determining factor is the tumor ECM, which strongly influences the effect of anti-VEGF therapy. Our results reveal the prospect to revert a possible negative effect and to potentiate responsiveness to antiangiogenic therapy by concomitantly targeting ECM-modifying enzymes.

  16. Comparative evaluation of three-dimensional Gd-EOB-DTPA-enhanced MR fusion imaging with CT fusion imaging in the assessment of treatment effect of radiofrequency ablation of hepatocellular carcinoma.

    PubMed

    Makino, Yuki; Imai, Yasuharu; Igura, Takumi; Hori, Masatoshi; Fukuda, Kazuto; Sawai, Yoshiyuki; Kogita, Sachiyo; Fujita, Norihiko; Takehara, Tetsuo; Murakami, Takamichi

    2015-01-01

    To assess the feasibility of fusion of pre- and post-ablation gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) to evaluate the effects of radiofrequency ablation (RFA) of hepatocellular carcinoma (HCC), compared with similarly fused CT images This retrospective study included 67 patients with 92 HCCs treated with RFA. Fusion images of pre- and post-RFA dynamic CT, and pre- and post-RFA Gd-EOB-DTPA-MRI were created, using a rigid registration method. The minimal ablative margin measured on fusion imaging was categorized into three groups: (1) tumor protruding outside the ablation zone boundary, (2) ablative margin 0-<5.0 mm beyond the tumor boundary, and (3) ablative margin ≥5.0 mm beyond the tumor boundary. The categorization of minimal ablative margins was compared between CT and MR fusion images. In 57 (62.0%) HCCs, treatment evaluation was possible both on CT and MR fusion images, and the overall agreement between them for the categorization of minimal ablative margin was good (κ coefficient = 0.676, P < 0.01). MR fusion imaging enabled treatment evaluation in a significantly larger number of HCCs than CT fusion imaging (86/92 [93.5%] vs. 62/92 [67.4%], P < 0.05). Fusion of pre- and post-ablation Gd-EOB-DTPA-MRI is feasible for treatment evaluation after RFA. It may enable accurate treatment evaluation in cases where CT fusion imaging is not helpful.

  17. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wang, Guannan; Zhang, Xuanjun; Skallberg, Andreas; Liu, Yaxu; Hu, Zhangjun; Mei, Xifan; Uvdal, Kajsa

    2014-02-01

    Uniform, highly water-dispersible and ultra-small Fe3O4 nanoparticles were synthesized via a modified one-step coprecipitation approach. The prepared Fe3O4 nanoparticles not only show good magnetic properties, long-term stability in a biological environment, but also exhibit good biocompatibility in cell viability and hemolysis assay. Due to the ultra-small sized and highly water-dispersibility, they exhibit excellent relaxivity properties, the 1.7 nm sized Fe3O4 nanoparticles reveal a low r2/r1 ratio of 2.03 (r1 = 8.20 mM-1 s-1, r2 = 16.67 mM-1 s-1) and the 2.2 nm sized Fe3O4 nanoparticles also appear to have a low r2/r1 ratio of 4.65 (r1 = 6.15 mM-1 s-1, r2 = 28.62 mM-1 s-1). This demonstrates that the proposed ultra-small Fe3O4 nanoparticles have great potential as a new type of T1 magnetic resonance imaging contrast agents. Especially, the 2.2 nm sized Fe3O4 nanoparticles, have a competitive r1 value and r2 value compared to commercial contrasting agents such as Gd-DTPA (r1 = 4.8 mM-1 s -1), and SHU-555C (r2 = 69 mM-1 s-1). In vitro and in vivo imaging experiments, show that the 2.2 nm sized Fe3O4 nanoparticles exhibit great contrast enhancement, long-term circulation, and low toxicity, which enable these ultra-small sized Fe3O4 nanoparticles to be promising as T1 and T2 dual contrast agents in clinical settings.Uniform, highly water-dispersible and ultra-small Fe3O4 nanoparticles were synthesized via a modified one-step coprecipitation approach. The prepared Fe3O4 nanoparticles not only show good magnetic properties, long-term stability in a biological environment, but also exhibit good biocompatibility in cell viability and hemolysis assay. Due to the ultra-small sized and highly water-dispersibility, they exhibit excellent relaxivity properties, the 1.7 nm sized Fe3O4 nanoparticles reveal a low r2/r1 ratio of 2.03 (r1 = 8.20 mM-1 s-1, r2 = 16.67 mM-1 s-1) and the 2.2 nm sized Fe3O4 nanoparticles also appear to have a low r2/r1 ratio of 4.65 (r1 = 6.15 mM-1 s

  18. A new contrast media for functional MR urography: Gd-MAG3.

    PubMed

    Algin, Oktay

    2011-07-01

    Tc-99m-MAG3 (tubular agent) provides high imaging quality and extraction efficiency; and has become one of the most widely used agent for scintigraphic examinations of urinary system pathologies and renal transplants. Recently, it was reported that functional magnetic resonance urography (FMRU) can be sufficient in detection of urinary tract obstruction, renal artery stenosis, calculation of kidney functions and evaluation of renal transplants. However the pharmacokinetics of magnetic resonance (MR) contrast-media used in FMRU and Tc-99m-MAG3 differs from each other. This may cause discordant results between the FMRU and most of the scintigraphic studies. To our knowledge, there is no contrast-media which is specific for FMRU. A kidney specific contrast material can be developed for FMRU studies as well. MAG3 is a good candidate for this chelation. In conclusion, MR imaging (MRI) will be the most useful and important technique for morphologic-functional evaluation of urinary system. FMRU examinations performed with MAG3 chelated gadolinium can be sufficient for the complete evaluation of urinary tract even in patients with impaired renal functions ("all in one MRI"). MRI has some important advantages including no risk for radiation exposure, high temporal and spatial resolution, no need for nephrotoxic contrast agent; besides being a fast and feasible technique. Gadolinium-containing contrast agents may cause a life-threatening adverse reaction known as nephrogenic systemic fibrosis in patients with severe renal impairment, but Gd-MAG3 may reduce the risk of nephrogenic systemic fibrosis due to its higher extraction capacity and other features. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Contrast agent enhanced pQCT of articular cartilage

    NASA Astrophysics Data System (ADS)

    Kallioniemi, A. S.; Jurvelin, J. S.; Nieminen, M. T.; Lammi, M. J.; Töyräs, J.

    2007-02-01

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n = 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r = -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally

  20. Phosphorylated VEGFR2 and hypertension: potential biomarkers to indicate VEGF-dependency of advanced breast cancer in anti-angiogenic therapy.

    PubMed

    Fan, Minhao; Zhang, Jian; Wang, Zhonghua; Wang, Biyun; Zhang, Qunlin; Zheng, Chunlei; Li, Ting; Ni, Chen; Wu, Zhenhua; Shao, Zhimin; Hu, Xichun

    2014-01-01

    The efficacy of anti-VEGF agents probably lies on VEGF-dependency. Apatinib, a specific tyrosine kinase inhibitor that targets VEGF receptor 2, was assessed in patients with advanced breast cancer (ABC) (ClinicalTrials.gov NCT01176669 and NCT01653561). This substudy was to explore the potential biomarkers for VEGF-dependency in apatinib-treated breast cancer. Eighty pretreated patients received apatinib 750 or 500 mg/day orally in 4-week cycles. Circulating biomarkers were measured using a multiplex assay, and tissue biomarkers were identified with immunostaining. Baseline characteristics and adverse events (AEs) were included in the analysis. Statistical confirmation of independent predictive factors for anti-tumor efficacy was performed using Cox and Logistic regression models. Median progression-free survival (PFS) was 3.8 months, and overall survival (OS) was 10.6 months, with 17.5 % of objective response rate. Prominent AEs (≥60 %) were hypertension, hand-foot skin reaction (HFSR), and proteinuria. Higher tumor phosphorylated VEGFR2 (p-VEGFR2) expressions (P = 0.001), higher baseline serum soluble VEGFR2 (P = 0.031), hypertension (P = 0.011), and HFSR (P = 0.018) were significantly related to longer PFS, whereas hypertension (P = 0.002) and HFSR (P = 0.001) were also related to OS. Based on multivariate analysis, only p-VEGFR2 (adjusted HR, 0.40; P = 0.013) and hypertension (adjusted HR, 0.58; P = 0.038) were independent predictive factors for both PFS and clinical benefit rate. Apatinib had substantial antitumor activity in ABC and manageable toxicity. p-VEGFR2 and hypertension may be surrogate predictors of VEGF-dependency of breast cancer, which may identify an anti-angiogenesis sensitive population.

  1. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulatingmore » the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.« less

  2. Anti-VEGF treatment patterns and associated health care costs in Switzerland: findings using real-world claims data.

    PubMed

    Reich, Oliver; Bachmann, Lucas M; Faes, Livia; Böhni, Sophie C; Bittner, Mario; Howell, Jeremy P; Thiel, Michael A; Rapold, Roland; Schmid, Martin K

    2015-01-01

    differences in patient characteristics. Contrary to the recommendations regarding frequency of injections and the results of clinical studies, aflibercept and ranibizumab are used in a similar fashion in Switzerland, resulting in similar total health care expenditures for both these anti-VEGF agents.

  3. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viabilitymore » was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.« less

  4. Quantification and Assessment of the Chemical Form of Residual Gadolinium in the Brain After Repeated Administration of Gadolinium-Based Contrast Agents

    PubMed Central

    Frenzel, Thomas; Apte, Chirag; Jost, Gregor; Schöckel, Laura; Lohrke, Jessica; Pietsch, Hubertus

    2017-01-01

    Objective Multiple clinical and preclinical studies have reported a signal intensity increase and the presence of gadolinium (Gd) in the brain after repeated administration of Gd-based contrast agents (GBCAs). This bioanalytical study in rat brain tissue was initiated to investigate whether the residual Gd is present as intact GBCA or in other chemical forms by using tissue fractionation and chromatography. Materials and Methods Rats were divided randomly in 6 groups of 10 animals each. They received 10 daily injections of 2.5 mmol/kg bodyweight of 1 of 5 different GBCAs: linear GBCAs such as gadodiamide (Omniscan; GE Healthcare), gadopentetate dimeglumine (Gd-DTPA, Magnevist; Bayer), or gadobenate dimeglumine (Multihance; Bracco) and macrocyclic GBCAs such as gadobutrol (Gadovist; Bayer) and gadoterate meglumine (Gd-DOTA, Dotarem; Guerbet) or saline. On days 3 and 24 after the last injection (p.i.), 5 randomly chosen animals of each group were killed by exsanguination, and their brains were excised and divided into cerebrum, pons, and cerebellum. The brain sections were homogenized by sonication in ice-cold buffer at pH 7.4. Soluble and insoluble fractions were separated by centrifugation, and the soluble fractions were further separated by gel permeation chromatography (GPC). The Gd concentration in all tissue fractions and in the GPC eluate was measured by inductively coupled plasma–mass spectrometry. In a recovery control experiment, all GBCAs were spiked to blank brain tissue and more than 94% recovery of Gd in the tissue fractions was demonstrated. Results Only traces of the administered Gd were found in the rat brain tissue on day 3 and day 24 p.i. In the animals treated with macrocyclic GBCAs, Gd was found only in the soluble brain fraction and was present solely as low molecular weight molecules, most likely the intact GBCA. In the animals treated with linear GBCAs Gd was found to a large extent in the insoluble tissue fraction. The Gd concentration in

  5. Anti-vascular endothelial growth factor for neovascular glaucoma

    PubMed Central

    Simha, Arathi; Braganza, Andrew; Abraham, Lekha; Samuel, Prasanna; Lindsley, Kristina

    2014-01-01

    Background Neovascular glaucoma (NVG) is a potentially blinding secondary glaucoma. It is caused by the formation of abnormal new blood vessels which prevent normal drainage of aqueous from the anterior segment of the eye. Anti-vascular endothelial growth factor (anti-VEGF) agents are specific inhibitors of the primary mediators of neovascularization. Studies have reported the effectiveness of anti-VEGFs for the control of intraocular pressure (IOP) in NVG. Objectives To compare the IOP lowering effects of intraocular anti-VEGF agents to no anti-VEGF treatment, as an adjunct to existing modalities for the treatment of NVG. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2012, Issue 12), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE, (January 1950 to January 2013), EMBASE (January 1980 to January 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov/) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 January 2013. Selection criteria We included randomized controlled trials (RCTs) and quasi-RCTs of people treated with anti-VEGF agents for NVG. Data collection and analysis Two authors independently assessed the search results for trials to be included in the review. Discrepancies were resolved by discussion with a third author. Since no trial met our inclusion criteria, no assessment of risk of bias or meta-analysis was undertaken. Main results No RCTs were found that met the inclusion criteria for this review. Two RCTs of anti-VEGF agents for treating NVG were not included in the

  6. VEGF-ablation therapy reduces drug delivery and therapeutic response in ECM-dense tumors

    PubMed Central

    Röhrig, F; Vorlová, S; Hoffmann, H; Wartenberg, M; Escorcia, F E; Keller, S; Tenspolde, M; Weigand, I; Gätzner, S; Manova, K; Penack, O; Scheinberg, D A; Rosenwald, A; Ergün, S; Granot, Z; Henke, E

    2017-01-01

    The inadequate transport of drugs into the tumor tissue caused by its abnormal vasculature is a major obstacle to the treatment of cancer. Anti-vascular endothelial growth factor (anti-VEGF) drugs can cause phenotypic alteration and maturation of the tumor's vasculature. However, whether this consistently improves delivery and subsequent response to therapy is still controversial. Clinical results indicate that not all patients benefit from antiangiogenic treatment, necessitating the development of criteria to predict the effect of these agents in individual tumors. We demonstrate that, in anti-VEGF-refractory murine tumors, vascular changes after VEGF ablation result in reduced delivery leading to therapeutic failure. In these tumors, the impaired response after anti-VEGF treatment is directly linked to strong deposition of fibrillar extracellular matrix (ECM) components and high expression of lysyl oxidases. The resulting condensed, highly crosslinked ECM impeded drug permeation, protecting tumor cells from exposure to small-molecule drugs. The reduced vascular density after anti-VEGF treatment further decreased delivery in these tumors, an effect not compensated by the improved vessel quality. Pharmacological inhibition of lysyl oxidases improved drug delivery in various tumor models and reversed the negative effect of VEGF ablation on drug delivery and therapeutic response in anti-VEGF-resistant tumors. In conclusion, the vascular changes after anti-VEGF therapy can have a context-dependent negative impact on overall therapeutic efficacy. A determining factor is the tumor ECM, which strongly influences the effect of anti-VEGF therapy. Our results reveal the prospect to revert a possible negative effect and to potentiate responsiveness to antiangiogenic therapy by concomitantly targeting ECM-modifying enzymes. PMID:27270432

  7. Gadolinium as a Neutron Capture Therapy Agent

    NASA Astrophysics Data System (ADS)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd

  8. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    PubMed

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-07

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.

  9. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    PubMed

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates. Copyright © 2015 Elsevier Inc. All rights

  10. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy.

    PubMed

    Zhu, Rongrong; Wang, Zhaoqi; Liang, Peng; He, Xiaolie; Zhuang, Xizhen; Huang, Ruiqi; Wang, Mei; Wang, Qigang; Qian, Yechang; Wang, Shilong

    2017-11-01

    Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and is highly expressed in carcinoma, which make it an important target for tumor targeting therapy. Neuroblastoma is the main cause for cancer-related death in children. Like most solid tumors, it is also accompanied with the overexpression of VEGF. Doxorubicin Hydrochloride (DOX), a typical chemotherapeutic agent, exhibits efficient anticancer activities for various cancers. However, DOX, without targeting ability, usually causes severe damage to normal tissues. To overcome the shortages, we designed a novel nano-composite, which is Bevacizumab (Bev) modified SiO 2 @LDH nanoparticles (SiO 2 @LDH-Bev), loading with DOX to achieve targeting ability and curative efficiency. SiO 2 @LDH-DOX and SiO 2 @LDH-Bev-DOX nanoparticles were synthesized and the physicochemical properties were characterized by TEM detection, Zeta potential analysis, FTIR, Raman and XPS analysis. Then in vitro and in vivo anti-neuroblastoma efficiency, targeting ability and mechanisms of anti-carcinoma and anti-angiogenesis of SiO 2 @LDH-Bev-DOX were explored. Our results indicated that we obtained the core-shell structure SiO 2 @LDH-Bev with an average diameter of 253±10nm and the amount of conjugated Bev was 4.59±0.38μg/mg SiO 2 @LDH-Bev. SiO 2 @LDH-Bev-DOX could improve the cellular uptake and the targeting effect of DOX to brain and tumor, enhance the anti-neuroblastoma and anti-angiogenesis efficiency both in vitro and in vivo, and alleviate side effects of DOX sharply, especially hepatic injury. In addition, we also demonstrated that angiogenesis inhibitory effect was mediated by DOX and VEGF triggered signal pathways, including PI3K/Akt, Raf/MEK/ERK, and adhesion related pathways. In summary, SiO 2 @LDH-Bev could be a potential VEGF targeting nanocarrier applied in VEGF positive cancer therapy. This paper explored that a novel core-shell structure nanomaterial SiO 2 @LDH and modified SiO 2 @LDH with

  11. A VEGF-dependent gene signature enriched in mesenchymal ovarian cancer predicts patient prognosis.

    PubMed

    Yin, Xia; Wang, Xiaojie; Shen, Boqiang; Jing, Ying; Li, Qing; Cai, Mei-Chun; Gu, Zhuowei; Yang, Qi; Zhang, Zhenfeng; Liu, Jin; Li, Hongxia; Di, Wen; Zhuang, Guanglei

    2016-08-08

    We have previously reported surrogate biomarkers of VEGF pathway activities with the potential to provide predictive information for anti-VEGF therapies. The aim of this study was to systematically evaluate a new VEGF-dependent gene signature (VDGs) in relation to molecular subtypes of ovarian cancer and patient prognosis. Using microarray profiling and cross-species analysis, we identified 140-gene mouse VDGs and corresponding 139-gene human VDGs, which displayed enrichment of vasculature and basement membrane genes. In patients who received bevacizumab therapy and showed partial response, the expressions of VDGs (summarized to yield VDGs scores) were markedly decreased in post-treatment biopsies compared with pre-treatment baselines. In contrast, VDGs scores were not significantly altered following bevacizumab treatment in patients with stable or progressive disease. Analysis of VDGs in ovarian cancer showed that VDGs as a prognostic signature was able to predict patient outcome. Correlation estimation of VDGs scores and molecular features revealed that VDGs was overrepresented in mesenchymal subtype and BRCA mutation carriers. These findings highlighted the prognostic role of VEGF-mediated angiogenesis in ovarian cancer, and proposed a VEGF-dependent gene signature as a molecular basis for developing novel diagnostic strategies to aid patient selection for VEGF-targeted agents.

  12. Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases.

    PubMed

    Ng, Eugene W M; Adamis, Anthony P

    2006-10-01

    Vascular endothelial growth factor (VEGF) is a central regulator of both physiological and pathological angiogenesis. Pegaptanib, a 28-nucleotide RNA aptamer specific for the VEGF(165) isoform, binds to it in the extracellular space, leaving other isoforms unaffected, and inhibits such key VEGF actions as promotion of endothelial cell proliferation and survival, and vascular permeability. Pegaptanib already has been examined as a treatment for two diseases associated with ocular neovascularization, age-related macular degeneration (AMD) and diabetic macular edema (DME). Preclinical studies have shown that VEGF(165) alone mediates pathological ocular neovascularization and that its inactivation by pegaptanib inhibits the choroidal neovascularization observed in patients with neovascular AMD. In contrast, physiological vascularization, which is supported by the VEGF(121) isoform, is unaffected by this inactivation of VEGF(165). In addition, animal model studies have shown that intravitreous injection of pegaptanib can inhibit the breakdown of the blood-retinal barrier characteristic of diabetes and even can reverse this damage to some degree. These preclinical findings formed the basis for randomized controlled trials examining the efficacy of pegaptanib as a therapy for AMD and DME. The VEGF Inhibition Study in Ocular Neovascularization (VISION) trial comprising two replicate, pivotal phase 3 studies, demonstrated that intravitreous injection of pegaptanib resulted in significant clinical benefit, compared with sham injection, for all prespecified clinical end points, irrespective of patient demographics or angiographic subtype, and led to pegaptanib's approval as a treatment for AMD. A phase 2 trial has provided support for the efficacy of intravitreous pegaptanib in the treatment of DME.

  13. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    PubMed Central

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  14. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p < 3.323E-08) and 200 μL dose (p < 0.0007396). Discussion: In this preliminary study, the 150 μL Gd-DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  15. Complex imaging features of accidental cerebral intraventricular gadolinium administration.

    PubMed

    Nayak, Nita B; Huang, Jimmy C; Hathout, Gasser M; Shaba, Wisam; El-Saden, Suzie M

    2013-05-01

    Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) is a contrast agent commonly used for enhancing MRI. In this paper, the authors report on 2 cases of postoperative inadvertent administration of Gd-DTPA directly into a ventriculostomy tubing side port that was mistaken for intravenous tubing. Both cases demonstrated a low signal on MRI throughout the ventricular system and dependent portions of the subarachnoid spaces, which was originally believed to be CSF with areas of T1 shortening in the nondependent portions of the subarachnoid spaces, and misinterpreted as basal leptomeningeal enhancement and meningitis. The authors propose that the appearance of profound T1 hypointensity within the ventricles and diffuse susceptibility artifact along the ependyma is pathognomonic of intraventricular Gd-DTPA and should be recognized.

  16. In-vitro Gd-DTPA Relaxometry Studies in Oxygenated Venous Human Blood and Aqueous Solution at 3 and 7T

    PubMed Central

    Kalavagunta, Chaitanya; Michaeli, Shalom; Metzger, Gregory J.

    2014-01-01

    In-vitro T1 and T2* relaxivities (r1 and r2*) of Gd-DTPA (GaD) in oxygenated human venous blood (OVB) and aqueous solution (AS) at 3T and 7T were calculated. GaD concentrations ([GaD]) in OVB and AS were prepared in the range 0–5 mM. All measurements were acquired at 37±2 °C. At both 3T and 7T, a linear relationship was observed between [GaD] and R1 in both AS and OVB. At 7T, r1 in AS decreased by 7.5% (p = 0.045) while there was a negligible change in OVB. With respect to R2*, a linear relationship with [GaD] was only observed in AS, while a more complex relationship was observed in OVB; quadratic below and linear above 2 mM at both field strengths. There was a significant increase of over four-fold in r2* with GaD in OVB at 7T (for [GaD] above 2mM, p ≪0.01) as compared to 3T. Furthermore, in comparison to r1, r2* in AS was less than two-fold higher at both field strengths while in OVB it was ~twenty-fold and ~ninety-fold higher at 3T and 7T, respectively. This observation emphasizes the importance of r2* knowledge at high magnetic fields, ≥3T. The comparison between r1 and r2* presented in this work is crucial in the design and optimization of high field MRI studies making use of paramagnetic contrast agents. This is especially true in multiple compartment systems such as blood where r2* dramatically increases while r1 remains relatively constant with increasing magnetic field strength. PMID:24523062

  17. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles.

    PubMed

    Xiao, Ning; Gu, Wei; Wang, Hao; Deng, Yunlong; Shi, Xin; Ye, Ling

    2014-03-01

    To overcome the negative contrast limitations of iron oxide-based contrast agents and to improve the biocompatibility of Gd-chelate contrast agents, PEGylated Gd-doped iron oxide (PEG-GdIO) NPs as a T1-T2 dual-modal contrast agent were synthesized by the polyol method. The transverse relaxivity (r2) and longitudinal relaxivity (r1) of PEG-GdIO were determined to be 66.9 and 65.9 mM(-1) s(-1), respectively. The high r1 value and low r2/r1 ratio make PEG-GdIO NPs suitable as a T1-T2 dual-modal contrast agent. The in vivo MRI demonstrated a brighter contrast enhancement in T1-weighted image and a simultaneous darken effect in T2-weighted MR image compared to the pre-contrast image in the region of glioma. Furthermore, the biocompatibility of PEG-GdIO NPs was confirmed by the in vitro MTT cytotoxicity and in vivo histological analyses (H&E). Therefore, PEG-GdIO NPs hold great potential in T1-T2 dual-modal imaging for the diagnosis of brain glioma. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Ultra-wide range field-dependent measurements of the relaxivity of Gd1−xEuxVO4 nanoparticle contrast agents using a mechanical sample-shuttling relaxometer

    PubMed Central

    Chou, Ching-Yu; Abdesselem, Mouna; Bouzigues, Cedric; Chu, Minglee; Guiga, Angelo; Huang, Tai-Huang; Ferrage, Fabien; Gacoin, Thierry; Alexandrou, Antigoni; Sakellariou, Dimitris

    2017-01-01

    The current trend for Magnetic Resonance Imaging points towards higher magnetic fields. Even though sensitivity and resolution are increased in stronger fields, T1 contrast is often reduced, and this represents a challenge for contrast agent design. Field-dependent measurements of relaxivity are thus important to characterize contrast agents. At present, the field-dependent curves of relaxivity are usually carried out in the field range of 0 T to 2 T, using fast field cycling relaxometers. Here, we employ a high-speed sample shuttling device to switch the magnetic fields experienced by the nuclei between virtually zero field, and the center of any commercial spectrometer. We apply this approach on rare-earth (mixed Gadolinium-Europium) vanadate nanoparticles, and obtain the dispersion curves from very low magnetic field up to 11.7 T. In contrast to the relaxivity profiles of Gd chelates, commonly used for clinical applications, which display a plateau and then a decrease for increasing magnetic fields, these nanoparticles provide maximum contrast enhancement for magnetic fields around 1–1.5 T. These field-dependent curves are fitted using the so-called Magnetic Particle (MP) model and the extracted parameters discussed as a function of particle size and composition. We finally comment on the new possibilities offered by this approach. PMID:28317892

  19. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments.

    PubMed

    Nwe, Kido; Huang, Ching-Hui; Tsourkas, Andrew

    2013-10-24

    Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.

  20. Synthesis and characterization of Na(Gd0.5Lu0.5)F4: Nd3+,a core-shell free multifunctional contrast agent.

    PubMed

    Mimun, L Christopher; Ajithkumar, G; Rightsell, Chris; Langloss, Brian W; Therien, Michael J; Sardar, Dhiraj K

    2017-02-25

    Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm 2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 shows the characteristic emission bands of Gd 3+ and Nd 3+ with the strongest emission peak at 1064 nm due to Nd 3+ . Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.

  1. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents.

    PubMed

    Cao, Chun-Yan; Shen, Ying-Ying; Wang, Jian-Dong; Li, Li; Liang, Gao-Lin

    2013-01-01

    Herein we developed a new "smart" Gd-based MR contrast agent (i.e., 1) which is susceptive to furin, a protease overexpressed in tumor. Under the action of furin, 1 condenses to form dimers (1-Ds) and the latter self-assemble into gadolinium nanparticles (Gd-NPs). Relaxivity of 1-D is more than 2 folds of those of 1 and magnevist at 1.5 T, and 1.4 folds of that of 1 at 3 T. Intracellular condensation of 1 in furin-overexpressed MDA-MB-468 cells was proven with direct two-photon laser microscopy (TPLM) fluorescence imaging of the cells incubated with the europium analog of 1 (i.e., 2). Intracellular Gd-NPs of 1 were uncovered and characterized for the first time. MRI of MDA-MB-468 tumors showed that 1 has enhanced MR contrast within the tumors than that of its scrambled control 1-Scr.

  2. Synergistically combined gene delivery for enhanced VEGF secretion and anti-apoptosis

    PubMed Central

    Won, Young-Wook; Lee, Minhyung; Kim, Hyun Ah; Nam, Kihoon; Bull, David A.; Kim, Sung Wan

    2013-01-01

    With current pharmacological treatments, preventing the remodeling of the left ventricle and the progression to heart failure is a difficult task. Gene therapy is considered to provide a direct treatment to the long-term complications of ischemic heart diseases. Although current gene therapies that use single molecular targets seem potentially possible, they have not achieved a success in the treatment of ischemic diseases. With an efficient polymeric gene carrier, PAM-ABP, we designed a synergistically combined gene delivery strategy to enhance vascular endothelial growth factor (VEGF) secretion and prolong anti-apoptotic effects. A hypoxia-inducible plasmid expressing both hypoxia-inducible heme oxygenase-1 (HO-1) and the Src homology domain-2 containing tyrosine phosphatase-1 microRNA (miSHP 1) and a hypoxia-responsive VEGF plasmid were combined in this study. The positive feedback circuit between HO-1 and VEGF, and the negative regulatory role of SHP-1 in angiogenesis enhance VEGF secretion synergistically. The synergy in VEGF secretion as a consequence of the gene combination and the prolonged HO-1 activity was confirmed in hypoxic cardiomyocytes and cardiomyocyte apoptosis under hypoxia, and was decreased synergistically. These results suggest that the synergistic combination of VEGF, HO-1, and miSHP-1 may be promising for the clinical treatment of ischemic diseases. PMID:24007285

  3. Effect of intravenous gadolinium-DTPA on diffusion-weighted imaging of brain tumors: a short temporal interval assessment.

    PubMed

    Li, Xiang; Qu, Jin-Rong; Luo, Jun-Peng; Li, Jing; Zhang, Hong-Kai; Shao, Nan-Nan; Kwok, Keith; Zhang, Shou-Ning; Li, Yan-le; Liu, Cui-Cui; Zee, Chi-Shing; Li, Hai-Liang

    2014-09-01

    To determine the effect of intravenous administration of gadolinium (Gd) contrast medium (Gd-DTPA) on diffusion-weighted imaging (DWI) for the evaluation of normal brain parenchyma vs. brain tumor following a short temporal interval. Forty-four DWI studies using b values of 0 and 1000 s/mm(2) were performed before, immediately after, 1 min after, 3 min after, and 5 min after the administration of Gd-DTPA on 62 separate lesions including 15 meningioma, 17 glioma and 30 metastatic lesions. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values of the brain tumor lesions and normal brain tissues were measured on pre- and postcontrast images. Statistical analysis using paired t-test between precontrast and postcontrast data were obtained on three brain tumors and normal brain tissue. The SNR and CNR of brain tumors and the SNR of normal brain tissue showed no statistical differences between pre- and postcontrast (P > 0.05). The ADC values on the three cases of brain tumors demonstrated significant initial increase on the immediate time point (P < 0.01) and decrease on following the 1 min time point (P < 0.01) after contrast. Significant decrease of ADC value was still found at 3min and 5min time point in the meningioma group (P < 0.01) with gradual normalization over time. The ADC values of normal brain tissues demonstrated significant initial elevation on the immediately postcontrast DWI sequence (P < 0.01). Contrast medium can cause a slight but statistically significant change on the ADC value within a short temporal interval after the contrast administration. The effect is both time and lesion-type dependent. © 2013 Wiley Periodicals, Inc.

  4. A novel model of persistent retinal neovascularization for the development of sustained anti-VEGF therapies.

    PubMed

    Li, Yong; Busoy, Joanna Marie; Zaman, Ben Alfyan Achirn; Tan, Queenie Shu Woon; Tan, Gavin Siew Wei; Barathi, Veluchamy Amutha; Cheung, Ning; Wei, Jay Ji-Ye; Hunziker, Walter; Hong, Wanjin; Wong, Tien Yin; Cheung, Chui Ming Gemmy

    2018-05-28

    Anti-vascular endothelial growth factor (VEGF) therapies lead to a major breakthrough in treatment of neovascular retinal diseases such as age-related macular degeneration or diabetic retinopathy. Current management of these conditions require regular and frequent intravitreal injections to prevent disease recurrence once the effect of the injected drug wears off. This has led to a pressing clinical need of developing sustained release formulations or therapies with longer duration. A major drawback in developing such therapies is that the currently available animal models show spontaneous regression of vascular leakage. They therefore not only fail to recapitulate retinal vascular disease in humans, but also prevent to discern if regression is due to prolonged therapeutic effect or simply reflects spontaneous healing. Here, we described the development of a novel rabbit model of persistent retinal neovascularization (PRNV). Retinal Müller glial are essential for maintaining the integrity of the blood-retinal barrier. Intravitreal injection of DL-alpha-aminoadipic acid (DL-AAA), a selective retinal glial (Müller) cell toxin, results in persistent vascular leakage for up to 48 weeks. We demonstrated that VEGF concentrations were significantly increased in vitreous suggesting VEGF plays a significant role in mediating the leakage observed. Intravitreal administration of anti-VEGF drugs (e.g. bevacizumab, ranibizumab and aflibercept) suppresses vascular leakage for 8-10 weeks, before recurrence of leakage to pre-treatment levels. All three anti-VEGF drugs are very effective in re-ducing angiographic leakage in PRNV model, and aflibercept demonstrated a longer duration of action compared with the others, reminiscent of what is observed with these drugs in human in the clinical setting. Therefore, this model provides a unique tool to evaluate novel anti-VEGF formulations and therapies with respect to their duration of action in comparison to the currently used drugs

  5. Shall we stay, or shall we switch? Continued anti-VEGF therapy versus early switch to dexamethasone implant in refractory diabetic macular edema.

    PubMed

    Busch, Catharina; Zur, Dinah; Fraser-Bell, Samantha; Laíns, Inês; Santos, Ana Rita; Lupidi, Marco; Cagini, Carlo; Gabrielle, Pierre-Henry; Couturier, Aude; Mané-Tauty, Valérie; Giancipoli, Ermete; Ricci, Giuseppe D'Amico; Cebeci, Zafer; Rodríguez-Valdés, Patricio J; Chaikitmongkol, Voraporn; Amphornphruet, Atchara; Hindi, Isaac; Agrawal, Kushal; Chhablani, Jay; Loewenstein, Anat; Iglicki, Matias; Rehak, Matus

    2018-05-05

    To compare functional and anatomical outcomes of continued anti-vascular endothelial growth factor (VEGF) therapy versus dexamethasone (DEX) implant in eyes with refractory diabetic macular edema (DME) after three initial anti-VEGF injections in a real-world setting. To be included in this retrospective multicenter, case-control study, eyes were required: (1) to present with early refractory DME, as defined by visual acuity (VA) gain ≤ 5 letters or reduction in central subfield thickness (CST) ≤ 20%, after a loading phase of anti-VEGF therapy (three monthly injections) and (2) to treat further with (a) anti-VEGF therapy or (b) DEX implant. Main outcome measures were change in visual acuity (VA) and central subfield thickness (CST) at 12 months. Due to imbalanced baseline characteristics, a matched anti-VEGF group was formed by only keeping eyes with similar baseline characteristics as those in the DEX group. A total of 110 eyes from 105 patients were included (anti-VEGF group: 72 eyes, DEX group: 38 eyes). Mean change in VA at 12 months was - 0.4 ± 10.8 letters (anti-VEGF group), and + 6.1 ± 10.6 letters (DEX group) (P = 0.004). Over the same period, mean change in CST was + 18.3 ± 145.9 µm (anti-VEGF group) and - 92.8 ± 173.6 µm (DEX group) (P < 0.001). Eyes in the DEX group were more likely to gain ≥ 10 letters (OR 3.71, 95% CI 1.19-11.61, P = 0.024) at month 12. In a real-world setting, eyes with DME considered refractory to anti-VEGF therapy after three monthly injections which were switched to DEX implant and had better visual and anatomical outcomes at 12 months than those that continued treatment with anti-VEGF therapy.

  6. A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex.

    PubMed

    Xu, Weichen; Lu, Yi

    2011-05-07

    We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast. © The Royal Society of Chemistry 2011

  7. Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents

    NASA Astrophysics Data System (ADS)

    Jin, Miao; Li, Wanjing; Spillane, Dominic E. M.; Geraldes, Carlos F. G. C.; Williams, Gareth R.; Bligh, S. W. Annie

    2016-03-01

    A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10-12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.

  8. Evaluation of gadolinium-EOB-DTPA uptake after portal vein embolization: value of an increased flip angle.

    PubMed

    Geisel, Dominik; Lüdemann, Lutz; Wagner, Clemens; Stelter, Lars; Grieser, Christian; Malinowski, Maciej; Stockmann, Martin; Seehofer, Daniel; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2014-03-01

    The optimal sequence for Gd-EOB-DTPA uptake measurement in the liver with the purpose of liver function measurement is still not defined. To prospectively evaluate the effect of an increased flip angle (FA) of a T1-weighted fat-saturated 3D sequence for the measurement of hepatocyte uptake of Gd-EOB-DTPA magnetic resonance imaging (MRI) after right portal vein embolization (PVE). Ten patients who received a PVE prior to an extended hemihepatectomy were examined 14 days after PVE using Gd-EOB-DTPA enhanced MRI of the liver using the standard FA of 10° and the increased FA of 30°. Relative enhancement of the right liver lobe (RLL) was 0.52 ± 0.12 for 10° and 1.41 ± 0.39 for 30°. Relative enhancement of the left liver lobe (LLL) was 0.58 ± 0.11 for 10° and 2.05 ± 0.61 for 30°. Relative enhancement of the RLL was significantly higher for 30° than for 10° (P = 0.009) and significantly higher in the 30° than in the 10° sequences (P = 0.005) for the LLL. A flip angle of 30° increases the contrast between liver partitions with and without portal venous embolization. Thereby, the sensitivity for differences in uptake intensity is increased. This could be of value for a more exact determination of differences in regional liver function and, consequently, the estimation of the future remnant liver function.

  9. A Manganese Alternative to Gadolinium for MRI Contrast

    PubMed Central

    Gale, Eric M.; Atanasova, Iliyana P.; Blasi, Francesco; Ay, Ilknur; Caravan, Peter

    2016-01-01

    Contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used to diagnose soft tissue and vascular abnormalities. However safety concerns limit the use of iodinated and gadolinium- (Gd) based CT and MRI contrast media in renally compromised patients. With an estimated 14% of the US population suffering from chronic kidney disease (CKD), contrast media compatible with renal impairment is sorely needed. We present the new manganese(II) complex [Mn(PyC3A)(H2O)]- as a Gd alternative. [Mn(PyC3A)(H2O)]- is amongst the most stable Mn(II) complexes at pH 7.4 (log KML = 11.40). In the presence of 25 mol equiv. Zn at pH 6.0, 37 °C, [Mn(PyC3A)(H2O)]- is 20-fold more resistant to dissociation than [Gd(DTPA)(H2O)]2-. Relaxivity of [Mn(PyC3A)(H2O)]- in blood plasma is comparable to commercial Gd contrast agents. Biodistribution analysis confirms that [Mn(PyC3A)(H2O)]- clears via a mixed renal/ hepatobiliary pathway with >99% elimination by 24h. [Mn(PyC3A)(H2O)]- was modified to form a bifunctional chelator and 4 chelates were conjugated to a fibrin-specific peptide to give Mn-FBP. Mn-FBP binds the soluble fibrin fragment DD(E) with Kd = 110 nM. Per Mn relaxivity of Mn-FBP is 4-fold greater than [Mn(PyC3A)(H2O)]- and increases 60% in the presence of fibrin, consistent with binding. Mn-FBP provided equivalent thrombus enhancement to the state of the art Gd analog, EP-2104R, in a rat model of arterial thrombosis. Mn metabolite analysis reveals no evidence of dechelation and the probe was >99% eliminated after 24 hr. [Mn(PyC3A)(H2O)]- is a lead development candidate for an imaging probe that is compatible with renally compromised patients. PMID:26588204

  10. Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Cachard, Christian; Basset, Olivier

    While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.

  11. A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion

    NASA Astrophysics Data System (ADS)

    Horsfield, Mark A.; Thornton, John S.; Gill, Andrew; Jager, H. Rolf; Priest, Andrew N.; Morgan, Bruno

    2009-05-01

    A functional form for the vascular concentration of MRI contrast agent after intravenous bolus injection was developed that can be used to model the concentration at any vascular site at which contrast concentration can be measured. The form is based on previous models of blood circulation, and is consistent with previously measured data at long post-injection times, when the contrast agent is fully and evenly dispersed in the blood. It allows the first-pass and recirculation peaks of contrast agent to be modelled, and measurement of the absolute concentration of contrast agent at a single time point allows the whole time course to be rescaled to give absolute contrast agent concentration values. This measure of absolute concentration could be performed at a long post-injection time using either MRI or blood-sampling methods. In order to provide a model that is consistent with measured data, it was necessary to include both rapid and slow extravasation, together with excretion via the kidneys. The model was tested on T1-weighted data from the descending aorta and hepatic portal vein, and on T*2-weighted data from the cerebral arteries. Fitting of the model was successful for all datasets, but there was a considerable variation in fit parameters between subjects, which suggests that the formation of a meaningful population-averaged vascular concentration function is precluded.

  12. Liver-fat and liver-function indices derived from Gd-EOB-DTPA-enhanced liver MRI for prediction of future liver remnant growth after portal vein occlusion.

    PubMed

    Barth, Borna K; Fischer, Michael A; Kambakamba, Patryk; Lesurtel, Mickael; Reiner, Caecilia S

    2016-04-01

    To evaluate the use of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI)-derived fat- and liver function-measurements for prediction of future liver remnant (FLR) growth after portal vein occlusion (PVO) in patients scheduled for major liver resection. Forty-five patients (age, 59 ± 13.9 y) who underwent Gd-EOB-DTPA-enhanced liver MRI within 24 ± 18 days prior to PVO were included in this study. Fat-Signal-Fraction (FSF), relative liver enhancement (RLE) and corrected liver-to-spleen ratio (corrLSR) of the FLR were calculated from in- and out-of-phase (n=42) as well as from unenhanced T1-weighted, and hepatocyte-phase images (n=35), respectively. Kinetic growth rate (KGR, volume increase/week) of the FLR after PVO was the primary endpoint. Receiver operating characteristics analysis was used to determine cutoff values for prediction of impaired FLR-growth. FSF (%) showed significant inverse correlation with KGR (r=-0.41, p=0.008), whereas no significant correlation was found with RLE and corrLSR. FSF was significantly higher in patients with impaired FLR-growth than in those with normal growth (%FSF, 8.1 ± 9.3 vs. 3.0 ± 5.9, p=0.02). ROC-analysis revealed a cutoff-FSF of 4.9% for identification of patients with impaired FLR-growth with a specificity of 82% and sensitivity of 47% (AUC 0.71 [95%CI:0.54-0.87]). Patients with impaired FLR-growth according to the FSF-cutoff showed a tendency towards higher postoperative complication rates (posthepatectomy liver failure in 50% vs. 19%). Liver fat-content, but not liver function derived from Gd-EOB-DTPA-enhanced MRI is a predictor of FLR-growth after PVO. Thus, liver MRI could help in identifying patients at risk for insufficient FLR-growth, who may need re-evaluation of the therapeutic strategy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging

    NASA Astrophysics Data System (ADS)

    Jung, Suk Hyun; Na, Kyunga; Lee, Seul A.; Cho, Sun Hang; Seong, Hasoo; Shin, Byung Cheol

    2012-08-01

    Ultrasound-sensitive (sonosensitive) liposomes for tumor targeting have been studied in order to increase the antitumor efficacy of drugs and decrease the associated severe side effects. Liposomal contrast agents having Gd(III) are known as a nano-contrast agent system for the efficient and selective delivery of contrast agents into pathological sites. The objective of this study was to prepare Gd(III)-DOTA-modified sonosensitive liposomes (GdSL), which could deliver a model drug, doxorubicin (DOX), to a specific site and, at the same time, be capable of magnetic resonance (MR) imaging. The GdSL was prepared using synthesized Gd(III)-DOTA-1,2-distearoyl- sn-glycero-3-phosphoethanolamine lipid. Sonosensitivity of GdSL to 20-kHz ultrasound induced 33% to 40% of DOX release. The relaxivities ( r 1) of GdSL were 6.6 to 7.8 mM-1 s-1, which were higher than that of MR-bester®. Intracellular uptake properties of GdSL were evaluated according to the intensity of ultrasound. Intracellular uptake of DOX for ultrasound-triggered GdSL was higher than that for non-ultrasound-triggered GdSL. The results of our study suggest that the paramagnetic and sonosensitive liposomes, GdSL, may provide a versatile platform for molecular imaging and targeted drug delivery.

  14. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  15. Enhancing MRI of liver metastases with a zwitterionized biodegradable dendritic contrast agent.

    PubMed

    Zhou, Xiaoxuan; Ye, Mingzhou; Han, Yuxin; Tang, Jianbin; Qian, Yue; Hu, Hongjie; Shen, Youqing

    2017-07-25

    Metastasis is the main reason for cancer-associated mortality, and accurate diagnostic imaging of metastases is critical for the clinical administration and tailoring personalized treatments for metastatic tumors. However, magnetic resonance imaging of metastases in the liver is impeded by its low sensitivity because the currently used contrast agents accumulate in hepatocytes and Kupffer cells instead of cancer cells. Herein, a 4 th generation zwitterionized biodegradable dendritic contrast agent (DCA) with a size of ca. 9 nm and a longitudinal relaxivity of 15.7 mM -1 s -1 in terms of Gd was synthesized and used to enhance the MRI of liver metastasis. The DCA could remarkably enhance the MRI of metastasized tumors in the liver, because it could simultaneously reduce the background signal in the liver by avoiding uptake by hepatocytes and Kupffer cells through the zwitterionization and increase the signal in tumors through the enhanced permeability and retention effect. Moreover, in contrast to non-biodegradable DCA, this DCA showed minimal long-term Gd 3+ retention in all organs and tissues because it could be degraded into small fragments. The significant capability of enhancing the MRI of metastases in the liver plus its excellent biodegradability made this DCA a promising CA for metastatic tumor imaging.

  16. First-in-Human Phase I Study of Single-agent Vanucizumab, A First-in-Class Bispecific Anti-Angiopoietin-2/Anti-VEGF-A Antibody, in Adult Patients with Advanced Solid Tumors.

    PubMed

    Hidalgo, Manuel; Martinez-Garcia, Maria; Le Tourneau, Christophe; Massard, Christophe; Garralda, Elena; Boni, Valentina; Taus, Alvaro; Albanell, Joan; Sablin, Marie-Paule; Alt, Marie; Bahleda, Ratislav; Varga, Andrea; Boetsch, Christophe; Franjkovic, Izolda; Heil, Florian; Lahr, Angelika; Lechner, Katharina; Morel, Anthony; Nayak, Tapan; Rossomanno, Simona; Smart, Kevin; Stubenrauch, Kay; Krieter, Oliver

    2018-04-01

    Purpose: Vanucizumab is an investigational antiangiogenic, first-in-class, bispecific mAb targeting VEGF-A and angiopoietin-2 (Ang-2). This first-in-human study evaluated the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of vanucizumab in adults with advanced solid tumors refractory to standard therapies. Experimental Design: Patients received escalating biweekly (3-30 mg/kg) or weekly (10-30 mg/kg) intravenous doses guided by a Bayesian logistic regression model with overdose control. Results: Forty-two patients were treated. One dose-limiting toxicity, a fatal pulmonary hemorrhage from a large centrally located mediastinal mass judged possibly related to vanucizumab, occurred with the 19 mg/kg biweekly dose. Arterial hypertension (59.5%), asthenia (42.9%), and headache (31%) were the most common toxicities. Seventeen (41%) patients experienced treatment-related grade ≥3 toxicities. Toxicity was generally higher with weekly than biweekly dosing. A MTD of vanucizumab was not reached in either schedule. Pharmacokinetics were dose-linear with an elimination half-life of 6-9 days. All patients had reduced plasma levels of free VEGF-A and Ang-2; most had reductions in K TRANS (measured by dynamic contrast-enhanced MRI). Two patients (renal cell and colon cancer) treated with 30 mg/kg achieved confirmed partial responses. Ten patients were without disease progression for ≥6 months. A flat-fixed 2,000 mg biweekly dose (phamacokinetically equivalent to 30 mg/kg biweekly) was recommended for further investigation. Conclusions: Biweekly vanucizumab had an acceptable safety and tolerability profile consistent with single-agent use of selective inhibitors of the VEGF-A and Ang/Tie2 pathway. Vanucizumab modulated its angiogenic targets, impacted tumor vascularity, and demonstrated encouraging antitumor activity in this heterogeneous population. Clin Cancer Res; 24(7); 1536-45. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Differential effects of two MRI contrast agents on the integrity and distribution of rAAV2 and rAAV5 in the rat striatum

    PubMed Central

    Osting, Sue; Bennett, Antonette; Power, Shelby; Wackett, Jordan; Hurley, Samuel A; Alexander, Andrew L; Agbandje-Mckena, Mavis; Burger, Corinna

    2014-01-01

    Intraoperative magnetic resonance imaging (MRI) has been proposed as a method to optimize intracerebral targeting and for tracking infusate distribution in gene therapy trials for nervous system disorders. We thus investigated possible effects of two MRI contrast agents, gadoteridol (Gd) and galbumin (Gab), on the distribution and levels of transgene expression in the rat striatum and their effect on integrity and stability of recombinant adeno-associated virus (rAAV) particles. MRI studies showed that contrast agent distribution did not predict rAAV distribution. However, green fluorescent protein (GFP) immunoreactivity revealed an increase in distribution of rAAV5-GFP, but not rAAV2-GFP, in the presence of Gd when compared with viral vector injected alone. In contrast, Gab increased the distribution of rAAV2-GFP not rAAV5-GFP. These observations pointed to a direct effect of infused contrast agent on the rAAV particles. Negative-stain electron microscopy (EM), DNAase treatment, and differential scanning calorimetry (DSC) were used to monitor rAAV2 and rAAV5 particle integrity and stability following contrast agent incubation. EMs of rAAV2-GFP and rAAV5-GFP particles pretreated with Gd appear morphologically similar to the untreated sample; however, Gab treatment resulted in surface morphology changes and aggregation. A compromise of particle integrity was suggested by sensitivity of the packaged genome to DNAase treatment following Gab incubation but not Gd for both vectors. However, neither agent significantly affected particle stability when analyzed by DSC. An increase in Tm was observed for AAV2 in lactated Ringer’s buffer. These results thus highlight potential interactions between MRI contrast agents and AAV that might affect vector distribution and stability, as well as the stabilizing effect of lactated Ringer’s solution on AAV2. PMID:26015943

  18. VEGF inhibitors in metastatic renal cell carcinoma: current therapies and future perspective.

    PubMed

    Choueiri, Toni K

    2011-08-01

    Metastatic renal cell carcinoma (RCC) is predominantly refractory to treatment with traditional cytotoxic chemotherapies, and until recently management options were limited to immunotherapy, palliative care, or phase I trials. The past five years have witnessed a major change in the treatment of advanced RCC with the introduction of targeted therapies that derive their efficacy through affecting angiogenesis. The main class of agents involves drugs that target the vascular endothelial growth factor (VEGF). Several VEGF inhibitors are now approved for the treatment of metastatic RCC. The field is expanding rapidly with goals including 1) developing novel more potent and better tolerated agents and 2) defining the role of combination and sequential anti-VEGF regimens.

  19. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells.

    PubMed

    Fisher, Jonathan P H; Flutter, Barry; Wesemann, Florian; Frosch, Jennifer; Rossig, Claudia; Gustafsson, Kenth; Anderson, John

    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible.

  20. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells

    PubMed Central

    Fisher, Jonathan P H; Flutter, Barry; Wesemann, Florian; Frosch, Jennifer; Rossig, Claudia; Gustafsson, Kenth; Anderson, John

    2016-01-01

    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible. PMID:26942051

  1. Enzyme-Sensitive MR Imaging Targeting Myeloperoxidase Identifies Active Inflammation in Experimental Rabbit Atherosclerotic Plaques

    PubMed Central

    Ronald, John A.; Chen, John W.; Chen, Yuanxin; Hamilton, Amanda M.; Rodriguez, Elisenda; Reynolds, Fred; Hegele, Robert A.; Rogers, Kem A.; Querol, Manel; Bogdanov, Alexei; Weissleder, Ralph; Rutt, Brian K.

    2009-01-01

    Background Inflammation undermines the stability of atherosclerotic plaques, rendering them susceptible to acute rupture, the cataclysmic event that underlies clinical expression of this disease. Myeloperoxidase (MPO) is a central inflammatory enzyme secreted by activated macrophages, and is involved in multiple stages of plaque destabilization and patient outcome. We report here that a unique functional in vivo magnetic resonance (MR) agent can visualize MPO activity in atherosclerotic plaques in a rabbit model. Methods and Results We performed MR imaging of the thoracic aorta of New Zealand white (NZW) rabbits fed a cholesterol (n=11) or normal (n=4) diet up to 2 hours after injection of the MPO sensor bis-5HT-DTPA(Gd) (MPO(Gd)), the conventional agent, DTPA(Gd), or an MPO (Gd) analog, bis-tyr-DTPA(Gd), as controls. Delayed MPO(Gd) images (2 hour post injection) showed focal areas of increased contrast (>2-fold) in diseased wall, but not in normal wall (p=0.84), compared to both DTPA(Gd) (n=11; p<0.001) and bis-tyr-DTPA(Gd) (n=3; p<0.05). Biochemical assays confirmed that diseased wall possessed three-fold elevated MPO activity compared to normal wall (p<0.01). Areas detected by MPO(Gd) imaging co-localized and correlated with MPO-rich areas infiltrated by macrophages on histopathological evaluations (r=0.91, p<0.0001). While macrophages were the main source of MPO, not all macrophages secreted MPO, suggesting that distinct subpopulations contribute differently to atherogenesis and supporting our functional approach. Conclusions Our study represents a unique approach in the detection of inflammation in atherosclerotic plaques by examining macrophage function and the activity of an effector enzyme, to noninvasively provide both anatomic and functional information in vivo. PMID:19652086

  2. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells.

    PubMed

    Izuta, Hiroshi; Shimazawa, Masamitsu; Tsuruma, Kazuhiro; Araki, Yoko; Mishima, Satoshi; Hara, Hideaki

    2009-11-17

    Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis > bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  3. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    PubMed Central

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases. PMID:19917137

  4. Quantification and Assessment of the Chemical Form of Residual Gadolinium in the Brain After Repeated Administration of Gadolinium-Based Contrast Agents: Comparative Study in Rats.

    PubMed

    Frenzel, Thomas; Apte, Chirag; Jost, Gregor; Schöckel, Laura; Lohrke, Jessica; Pietsch, Hubertus

    2017-07-01

    Multiple clinical and preclinical studies have reported a signal intensity increase and the presence of gadolinium (Gd) in the brain after repeated administration of Gd-based contrast agents (GBCAs). This bioanalytical study in rat brain tissue was initiated to investigate whether the residual Gd is present as intact GBCA or in other chemical forms by using tissue fractionation and chromatography. Rats were divided randomly in 6 groups of 10 animals each. They received 10 daily injections of 2.5 mmol/kg bodyweight of 1 of 5 different GBCAs: linear GBCAs such as gadodiamide (Omniscan; GE Healthcare), gadopentetate dimeglumine (Gd-DTPA, Magnevist; Bayer), or gadobenate dimeglumine (Multihance; Bracco) and macrocyclic GBCAs such as gadobutrol (Gadovist; Bayer) and gadoterate meglumine (Gd-DOTA, Dotarem; Guerbet) or saline. On days 3 and 24 after the last injection (p.i.), 5 randomly chosen animals of each group were killed by exsanguination, and their brains were excised and divided into cerebrum, pons, and cerebellum. The brain sections were homogenized by sonication in ice-cold buffer at pH 7.4. Soluble and insoluble fractions were separated by centrifugation, and the soluble fractions were further separated by gel permeation chromatography (GPC). The Gd concentration in all tissue fractions and in the GPC eluate was measured by inductively coupled plasma-mass spectrometry. In a recovery control experiment, all GBCAs were spiked to blank brain tissue and more than 94% recovery of Gd in the tissue fractions was demonstrated. Only traces of the administered Gd were found in the rat brain tissue on day 3 and day 24 p.i. In the animals treated with macrocyclic GBCAs, Gd was found only in the soluble brain fraction and was present solely as low molecular weight molecules, most likely the intact GBCA. In the animals treated with linear GBCAs Gd was found to a large extent in the insoluble tissue fraction. The Gd concentration in the soluble fraction was comparable to the

  5. Graphene oxide-gadolinium (III) oxide nanoparticle composite: a novel MR contrast agent with high longitudinal and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Venkatesha, N.; Poojar, Pavan; Geethanath, Sairam; Srivastava, Chandan

    2014-12-01

    Production of bio-compatible contrast agent materials to enhance the sensitivity of the magnetic resonance imaging (MRI) technique is a highly active area in MRI related research. This work illustrates the potential of a new material: graphene oxide-gadolinium (III) oxide nanoparticle (GO-Gd2O3) composite in yielding both transverse (16.3 mM-1 s-1) and longitudinal relaxivity (40 mM-1 s-1) values which are significantly higher than the proton relaxivity values achieved using the gadolinium based contrast agents currently used in MRI. Such high proton relaxivity values can facilitate low dosage of GO-Gd2O3 composite for obtaining both T1 and T2 weighted high signal-to-noise ratio images in MRI.

  6. Single ocular injection of a sustained-release anti-VEGF delivers 6 months pharmacokinetics and efficacy in a primate laser CNV model

    PubMed Central

    Adamson, Peter; Wilde, Thomas; Dobrzynski, Eric; Sychterz, Caroline; Polsky, Rodd; Kurali, Edit; Haworth, Richard; Tang, Chi-Man; Korczynska, Justyna; Cook, Fiona; Papanicolaou, Irene; Tsikna, Lemy; Roberts, Chris; Hughes-Thomas, Zoe; Walford, James; Gibson, Daniel; Warrack, John; Smal, Jos; Verrijk, Ruud; Miller, Paul E.; Nork, T. Michael; Prusakiewicz, Jeffery; Streit, Timothy; Sorden, Steven; Struble, Craig; Christian, Brian; Catchpole, Ian R.

    2017-01-01

    A potent anti-vascular endothelial growth factor (VEGF) biologic and a compatible delivery system were co-evaluated for protection against wet age-related macular degeneration (AMD) over a 6month period following a single intravitreal (IVT) injection. The anti-VEGF molecule is dimeric, containing two different anti-VEGF domain antibodies (dAb) attached to a human IgG1 Fc region: a dual dAb. The delivery system is based on microparticles of PolyActive™ hydrogel co-polymer. The molecule was evaluated both in vitro for potency against VEGF and in ocular VEGF-driven efficacy modelsin vivo. The dual dAb is highly potent, showing a lower IC50 than aflibercept in VEGF receptor binding assays (RBAs) and retaining activity upon release from microparticles over 12 months in vitro. Microparticles released functional dual dAb in rabbit and primate eyes over 6 months at sufficient levels to protect Cynomolgus against laser-induced grade IV choroidal neovascularisation (CNV). This demonstrates proof of concept for delivery of an anti-VEGF molecule within a sustained-release system, showing protection in a pre-clinical primate model of wet AMD over 6 months. Polymer breakdown and movement of microparticles in the eye may limit development of particle-based approaches for sustained release after IVT injection. PMID:27810558

  7. Gadolinium-enhanced 7.0 T magnetic resonance imaging assessment of the aqueous inflow in rat eyes in vivo.

    PubMed

    Li, Lu; Yuan, Yuxiang; Chen, Liwen; Li, Mu; Ji, Pingting; Gong, Jieling; Zhao, Yin; Zhang, Hong

    2017-09-01

    The goal of this study was to calculate the anterior chamber volume and assess aqueous inflow in rat eyes in vivo, under anesthetic condition. Gadolinium-contrast agent (Gd-DTPA, 234.5 mg/ml) was administered to Sprague-Dawley rat eyes via anterior chamber injection or instillation of 234.5 or 117.25 mg/ml Gd-DTPA in 0.2% azone as eye drops, and changes of Gd signal visualized by 7.0 T magnetic resonance imaging (MRI). The safety of local application of Gd-DTPA and azone were performed after MRI scanning. The anterior chamber injection of Gd-DTPA (234.5 mg/ml) group was used for anterior chamber volume and aqueous inflow calculating. Serial changes in Gd-DTPA relative concentration in the anterior chamber was determined based on the initial Gd signal gray values and the initial relative concentration of Gd-DTPA after anterior chamber Gd-DTPA injection. The mean aqueous inflow in rat eyes in vivo was assessed based on changes in Gd-DTPA relative concentration and the anterior chamber volume. Eye drops of Gd-DTPA (234.5 mg/ml) in 0.2% azone readily allowed safe assessment of the aqueous inflow by 7.0 T MRI. Under anesthetic condition in vivo, the mean anterior chamber volume (ACV) in rats was 8493.6 ± 657.4 μm 3 , no differences were observed in the aqueous inflow measured by topical instillation of 234.5 mg/ml Gd-DTPA in 0.2% azone (0.182 ± 0.011 μl/min) between that measured by anterior chamber injection (0.165 ± 0.041 μl/min, P > 0.05), Timolol reduced aqueous inflow to 0.124 ± 0.020 μl/min (P < 0.05). Our results indicated that Gd-enhanced 7.0 T MRI allows evaluation of the Gd signal variation and anterior chamber volume in rats in vivo. The aqueous inflow calculation via non-invasive local application of 234.5 mg/ml Gd-DTPA can be assessed by the variability of relative concentration of Gd-DTPA in anterior chamber and ACV in vivo, under anesthetic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics.

    PubMed

    Lovett, Michael L; Wang, Xiaoqin; Yucel, Tuna; York, Lyndsey; Keirstead, Marc; Haggerty, Linda; Kaplan, David L

    2015-09-01

    Silk hydrogels were formulated with anti-vascular endothelial growth factor (anti-VEGF) therapeutics for sustained ocular drug delivery. Using silk fibroin as a vehicle for delivery, bevacizumab-loaded hydrogel formulations demonstrated sustained release of 3 months or greater in experiments in vitro as well as in vivo using an intravitreal injection model in Dutch-belted rabbits. Using both standard dose (1.25mg bevacizumab/50 μL injection) and high dose (5.0mg bevacizumab/50 μL injection) hydrogel formulations, release concentrations were achieved at day 90 that were equivalent or greater than those achieved at day 30 with the positive standard dose control (single injection (50 μL) of 1.25mg bevacizumab solution), which is estimated to be the therapeutic threshold based on the current dosage administration schedule of 1 injection/month. These gels also demonstrated signs of biodegradation after 3 months, suggesting that repeated injections may be possible (e.g., one injection every 3-6 months or longer). Due to its pharmacokinetic and biodegradation profiles, this delivery system may be used to reduce the frequency of dosing for patients currently enduring treatment using bevacizumab or other anti-VEGF therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Fang; Li, Xiuli; Kong, Jian

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarianmore » cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.« less

  10. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging.

    PubMed

    Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R

    2015-01-01

    Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.

  11. Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment

    PubMed Central

    Ai, Bin; Bie, Zhixin; Zhang, Shuai; Li, Ailing

    2016-01-01

    Ovarian cancer is one of the gynecologic cancers with the highest mortality, wherein vascular endothelial growth factor (VEGF) is involved in regulating tumor vascularization, growth, migration, and invasion. VEGF-mediated angiogenesis in tumors has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Paclitaxel is a natural antitumor agent in the standard front-line treatment that has significant efficiency to treat advanced cancers, including ovarian cancer. Although platinum/paclitaxel-based chemotherapy has good response rates, most patients eventually relapse because the disease develops drug resistance. We aim to review the recent advances in paclitaxel treatment of ovarian cancer via antiangiogenesis. Single-agent therapy may be used in selected cases of ovarian cancer. However, to prevent drug resistance, drug combinations should be identified for optimal effectiveness and existing therapies should be improved. PMID:27648354

  12. [Role of VEGF in diseases of the retina].

    PubMed

    Barquet, Luis Arias

    2015-03-01

    Angiogenesis is the process through which new blood vessels are formed, based on preexisting vessels, and is the paradigm of diseases such as cancer and exudative ageassociated macular degeneration (ARMD). Several proangiogenic factors have been identified, such as vascular endothelial growth factor (VEGF), especially VEGF-A, which activates endothelial cells and promotes cell proliferation, migration, and an increase in vascular permeability. VEGF is also involved in the etiopathogenesis of other retinal diseases, such as diabetic macular edema and macular edema secondary to retinal vein occlusion. Likewise, there is increasing evidence that placental growth factor (PIGF) acts recepsynergetically with VEGF in promoting these diseases. Currently, the main treatment for these diseases are the anti-VEGF drugs, aflibercept, ranibizumab and bevacizumab. These agents differ in their molecular structure and mechanism of action. Copyright © 2015 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Anti-Angiogenics: Current Situation and Future Perspectives.

    PubMed

    Zirlik, Katja; Duyster, Justus

    2018-01-01

    Angiogenesis, the process leading to the formation of new blood vessels, is one of the hallmarks of cancer. Extensive studies established that i) vascular endothelial growth factor (VEGF) is a key driver of sprouting angiogenesis, ii) VEGF is overexpressed in most solid cancers, and iii) inhibition of VEGF can suppress tumor growth in animal models. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve the tumor of nutrients and oxygen, primarily through the blockade of VEGF/VEGF receptor signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, either alone or in combination with chemotherapy and other targeted therapies. However, inhibition of VEGF signaling is not effective in all cancers, and anti-angiogenics have often only limited impact on overall survival of cancer patients. This review focuses on the current status of FDA-approved anti-angiogenic antibodies and tyrosine kinase inhibitors and summarizes the progress and future directions of VEGF-targeted therapy. © 2018 S. Karger GmbH, Freiburg.

  14. Biologically-compatible gadolinium(at)(carbon nanostructures) as advanced contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sitharaman, Balaji

    2005-11-01

    Paramagnetic gadolinium-based carbon nanostructures are introduced as a new paradigm in high-performance magnetic resonance imaging (MRI) contrast agent (CA) design. Two Gd C60-based nanomaterials, Gd C60 [C(COOH)2]10 and Gd C60(OH)x are shown to have MRI efficacies (relaxivities) 5 to 20 times larger than any current Gd3+-based CA in clinical use. The first detailed and systematic physicochemical characterization was performed on these materials using the same experimental techniques usually applied to traditional Gd 3+-based CAs. Water-proton relaxivities were measured for the first time on these materials, as a function of magnetic field (5 x 10-4--9.4 T) to elucidate the different interaction mechanisms and dynamic processes influencing the relaxation behavior. These studies attribute the observed enhanced relaxivities completely to the "outer sphere" proton relaxation mechanism. These "outer sphere" relaxation effects are the largest reported for any Gd3+-based agent without inner-sphere water molecules. The proton relaxivities displayed a remarkable pH-dependency, increasing dramatically with decreasing pH (pH: 3--12). The increase in relaxivity resulted mainly from aggregation and subsequent three-order-of-magnitude increase in tauR, the rotational correlation time. Water-soluble fullerene materials (such as the neuroprotective fullerene drug, C3) readily cross cell membranes, suggesting an application for these gadofullerenes as the first intracellular, as well as pH-responsive MRI CAs. Studies performed at 60 MHz in the presence of phosphate-buffered saline (PBS, mice serum pH: 7.4) to mimic physiological conditions demonstrated that the aggregates can be disrupted by addition of salts, leading to a decrease in relaxivity. Biological fluids present a high salt concentration and should strongly modify the behavior of any fullerenes/metallofullerene-based drug in vivo. Gd C60[C(COOH)2]10 also showed enhanced relaxivity (23% increase) in the presence of the

  15. Anti-VEGF treatment of macular edema associated with retinal vein occlusion: patterns of use and effectiveness in clinical practice (ECHO study report 2)

    PubMed Central

    Jumper, J Michael; Dugel, Pravin U; Chen, Sanford; Blinder, Kevin J; Walt, John G

    2018-01-01

    Purpose To evaluate the efficacy, safety, and injection frequency of vascular endothelial growth factor (VEGF) antagonists in the treatment of macular edema secondary to retinal vein occlusion (RVO) in clinical practice. Patients and methods A multicenter retrospective study of the medical records of 165 patients (95 branch RVO, 70 central RVO) treated with at least three anti-VEGF injections in the study eye was conducted. Available data collected for at least 6 months after the first injection included Snellen best-corrected visual acuity (BCVA), central retinal thickness (CRT) by time-domain optical coherence tomography (TD-OCT) or spectral-domain optical coherence tomography (SD-OCT), anti-VEGF injections, other treatments/procedures for RVO, and adverse events. Results At baseline prior to anti-VEGF treatment, mean BCVA was 20/80 Snellen equivalent and mean CRT was 499 μm. Mean number of anti-VEGF injections received was 7.1 during the first year, 5.4 during the second year, and 5.9 during the third year; 51.3% (842/1,641) of injections were ranibizumab, 44.1% (724/1,641) were bevacizumab, and 4.6% (75/1,641) were aflibercept. One in five patients received concomitant focal laser treatment. The percentage of patients achieving both BCVA of 20/40 or better and CRT ≤250 μm on TD-OCT or ≤300 μm on SD-OCT at the same visit (primary endpoint) was 26.1% (30/115) after the first anti-VEGF injection and ranged from 20.0% (7/35) to 36.7% (11/30) after the first 16 injections. After each anti-VEGF injection from the 1st to the 16th, <60% of patients achieved 20/40 or better BCVA and ≤70% of patients achieved CRT ≤250 μm on TD-OCT or ≤300 μm on SD-OCT. The most common treatment-related adverse event was blurry or cloudy vision. Conclusion In this real-world study, a mean of five to seven anti-VEGF injections was administered yearly, and the response to anti-VEGF therapy was suboptimal in many patients. Anti-VEGF therapy was well tolerated. PMID:29662298

  16. Physical characteristics of lanthanide complexes that act as magnetization transfer (MT) contrast agents

    NASA Astrophysics Data System (ADS)

    Zhang, Shanrong; Sherry, A. Dean

    2003-02-01

    Rapid water exchange is normally considered a prerequisite for efficient Gd3+-based MRI contrast agents. Yet recent measures of exchange rates in some Gd3+ complexes have shown that water exchange can become limiting when such complexes are attached to larger macromolecular structures. A new class of lanthanide complexes that display unusually slow water exchange (bound water lifetimes (τM298) > 10 μs) has recently been reported. This apparent disadvantage may be taken advantage of by switching the metal ion from gadolinium(III) to a lanthanide that shifts the bound water resonance substantially away from bulk water. Given appropriate water exchange kinetics, one can then alter the intensity of the bulk water signal by selective presaturation of this highly shifted, Ln3+-bound water resonance. This provides the basis of a new method to alter MR image contrast in tissue. We have synthesized a variety of DOTA-tetra(amide) ligands to evaluate as potential magnetization transfer (MT) contrast agents and found that the bound water lifetimes in these complexes are sensitive to both ligand structure (a series of Eu3+ complexes have τM298 values that range from 1 to 1300 μs) and the identity of the paramagnetic Ln3+ cation (from 3 to 800 μs for a single ligand). This demonstrates that it may be possible either to fine-tune the ligand structure or to select proper lanthanide cation to create an optimal MT agent for any clinical imaging field.

  17. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers

    PubMed Central

    Xue, Shenghui; Qiao, Jingjuan; Pu, Fan; Cameron, Mathew; Yang, Jenny J.

    2014-01-01

    Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd3+ with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd3+ MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications. PMID:23335551

  18. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI.

    PubMed

    Granato, Luigi; Vander Elst, Luce; Henoumont, Celine; Muller, Robert N; Laurent, Sophie

    2018-02-01

    Thanks to the understanding of the relationships between the residence lifetime τ M of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τ R of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L 1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL 1 )x with intent to slow down the rotational correlation time (τ R ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL 1 ) showed a slight decrease of the τ M value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τ R  = 33,700 ps), which results in an enhanced proton relaxivity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  19. Drug-carrying microbubbles as a theranostic tool in convection-enhanced delivery for brain tumor therapy.

    PubMed

    Chen, Pin-Yuan; Yeh, Chih-Kuang; Hsu, Po-Hung; Lin, Chung-Yin; Huang, Chiung-Yin; Wei, Kuo-Chen; Liu, Hao-Li

    2017-06-27

    Convection-enhanced delivery (CED) is a promising technique for infusing a therapeutic agent through a catheter with a pressure gradient to create bulk flow for improving drug spread into the brain. So far, gadopentetate dimeglumine (Gd-DTPA) is the most commonly applied surrogate agent for predicting drug distribution through magnetic resonance imaging (MRI). However, Gd-DTPA provides only a short observation duration, and concurrent infusion provides an indirect measure of the exact drug distribution. In this study, we propose using microbubbles as a contrast agent for MRI monitoring, and evaluate their use as a drug-carrying vehicle to directly monitor the infused drug. Results show that microbubbles can provide excellent detectability through MRI relaxometry and accurately represent drug distribution during CED infusion. Compared with the short half-life of Gd-DTPA (1-2 hours), microbubbles allow an extended observation period of up to 12 hours. Moreover, microbubbles provide a sufficiently high drug payload, and glioma mice that underwent a CED infusion of microbubbles carrying doxorubicin presented considerable tumor growth suppression and a significantly improved survival rate. This study recommends microbubbles as a new theranostic tool for CED procedures.

  20. Early versus late GD-DTPA MRI enhancement in experimental glioblastomas.

    PubMed

    Farace, Paolo; Tambalo, Stefano; Fiorini, Silvia; Merigo, Flavia; Daducci, Alessandro; Nicolato, Elena; Conti, Giamaica; Degrassi, Anna; Sbarbati, Andrea; Marzola, Pasquina

    2011-03-01

    To compare early versus late enhancement in two glioblastoma models characterized by different infiltrative/edematous patterns. Three weeks after inoculation into nude mice of U87MG and U251 cells, T1-weighted images were acquired early (10.5 min), intermediate (21 min) and late (30.5 min) after a bolus injection of Gd-DTPA at 300 μ mol/kg dosage. EARLY(TH) and LATE(TH) were the corresponding volumes with an enhancement higher than a threshold TH, defined by the mean (μ) and standard deviation (σ) on a contralateral healthy area. ADD(TH) was the enhancing volume found in LATE(TH) but not in EARLY(TH). T2 imaging of both tumors was performed, and T2 mapping of U251. In all tumors, LATE(TH) was significantly higher than EARLY(TH) for TH ranging from μ+σ to μ+5σ. The ADD(TH) /EARLY(TH) ratio was not significantly different when U251 and U87MG tumors were compared. In the U87MG tumors, some enhancement was observed outside the regularly demarcated T2-hyperintense area. In the U251 tumors, irregularly T2 demarcated, a large portion of ADD(μ+3σ) had normal T2 values. At histology, U251 showed a higher infiltrative pattern than U87MG. In these models, the increase over time in the enhancing volume did not depend on the different infiltrative/edematous patterns and was not closely related with edema. Copyright © 2011 Wiley-Liss, Inc.

  1. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging.

    PubMed

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T1-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2'-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T1-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. In vivo immunotoxicity evaluation of Gd2O3 nanoprobes prepared by laser ablation in liquid for MRI preclinical applications

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Guan, Xiaoying; Luo, Ningqi; Yang, Fanwen; Chen, Dihu; Peng, Ye; Zhu, Jixiang; He, Fupo; Li, Li; Chen, Xiaoming

    2014-09-01

    Gd2O3 nanoprobes prepared by laser ablation in liquid can be used as magnetic resonance imaging contrast agent. However, their immunotoxicity in vivo remains unknown. In this article, the in vitro biocompatibility of the Gd2O3 nanoprobe was evaluated in terms of cell uptake, cell viability, and apoptosis. In vivo immunotoxicity was detected by monitoring the levels of the immunity mediator, cluster of differentiation (CD) markers in Balb/c mice. The results show that no in vitro cytotoxicity was observed, and no significant changes in the expression levels of CD206 and CD69 between the nanoprobe-injected group and the Gd-DTPA group in mice were observed. Importantly, the immunotoxicity data revealed significant differences in the expression levels of CD40, CD80, CD11b, and reactive oxygen species. In addition, transmission electron microscopy images showed that few Gd2O3 nanoprobes were localized in phagosomes by the endocytic pathway. In conclusion, the toxic effects of our Gd2O3 nanoprobe may be due to endocytosis during which the microstructure or ultrastructure of cells is slightly damaged and induces the generation of an oxidative stress reaction that further stimulates the innate immune response. Therefore, it is important to use a sensitive assay for the in vivo immunotoxicity measurements to evaluate the risk assessment of Gd2O3-based biomaterials at the molecular level.

  3. A choline derivate-modified nanoprobe for glioma diagnosis using MRI

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen

    2013-04-01

    Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.

  4. Laser-induced thermotherapy for the treatment of liver metastasis. Correlation of gadolinium-DTPA-enhanced MRI with histomorphologic findings to determine criteria for follow-up monitoring.

    PubMed

    Germer, C; Isbert, C M; Albrecht, D; Ritz, J P; Schilling, A; Roggan, A; Wolf, K J; Müller, G; Buhr, H

    1998-11-01

    To evaluate gadolinium (Gd)-diethylenetriamine-pentaacetic-acid (DTPA)-enhanced magnetic resonance imaging (MRI) for follow-up monitoring of laser-induced thermotherapy (LITT) and to determine a useful examination schedule. LITT of the liver was performed in 55 rabbits using a neodymium: yttrium-aluminum-garnet (Nd:YAG) laser (4-W power output, 840-s exposure time). Gd-DTPA MRI and histologic examinations were performed at different times (0-168 days). Laser-induced lesions underwent regeneration and volume size reduction (69% after 168 days). The correlation coefficient (MR vs. macroscopic analysis) for the mean lesion diameter was r = 0.96. Histology of lesions comprised the four zones that correlated best with MRI findings. Coagulation necroses immediately after LITT was seen as an area of no enhancement on Gd-DTPA MRI. Circular enhancement was first seen 72-96 h after LITT, which was due to early mesenchymal proliferation. Gd-DTPA MRI is a good monitoring procedure for LITT. MRI should be performed 24 and 96 h after LITT.

  5. Preclinical Testing Oncolytic Vaccinia Virus Strain GLV-5b451 Expressing an Anti-VEGF Single-Chain Antibody for Canine Cancer Therapy

    PubMed Central

    Adelfinger, Marion; Bessler, Simon; Frentzen, Alexa; Cecil, Alexander; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Szalay, Aladar A.

    2015-01-01

    Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for canine cancer therapy. Here we describe, for the first time, the characterization and the use of VACV strain GLV-5b451 expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as therapeutic agent against different canine cancers. Cell culture data demonstrated that GLV-5b451 efficiently infected and destroyed all four tested canine cancer cell lines including: mammary carcinoma (MTH52c), mammary adenoma (ZMTH3), prostate carcinoma (CT1258), and soft tissue sarcoma (STSA-1). The GLV-5b451 virus-mediated production of GLAF-2 antibody was observed in all four cancer cell lines. In addition, this antibody specifically recognized canine VEGF. Finally, in canine soft tissue sarcoma (CSTS) xenografted mice, a single systemic administration of GLV-5b451 was found to be safe and led to anti-tumor effects resulting in the significant reduction and substantial long-term inhibition of tumor growth. A CD31-based immuno-staining showed significantly decreased neo-angiogenesis in GLV-5b451-treated tumors compared to the controls. In summary, these findings indicate that GLV-5b451 has potential for use as a therapeutic agent in the treatment of CSTS. PMID:26205404

  6. Polyetherimide-grafted Fe3O4@SiO2 nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging

    PubMed Central

    Li, Tingting; Shen, Xue; Chen, Yin; Zhang, Chengchen; Yan, Jie; Yang, Hong; Wu, Chunhui; Zeng, Hongjun; Liu, Yiyao

    2015-01-01

    Engineering a safe and high-efficiency delivery system for efficient RNA interference is critical for successful gene therapy. In this study, we designed a novel nanocarrier system of polyethyleneimine (PEI)-modified Fe3O4@SiO2, which allows high efficient loading of VEGF small hairpin (sh)RNA to form Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites for VEGF gene silencing as well as magnetic resonance (MR) imaging. The size, morphology, particle stability, magnetic properties, and gene-binding capacity and protection were determined. Low cytotoxicity and hemolyticity against human red blood cells showed the excellent biocompatibility of the multifunctional nanocomposites, and also no significant coagulation was observed. The nanocomposites maintain their superparamagnetic property at room temperature and no appreciable change in magnetism, even after PEI modification. The qualitative and quantitative analysis of cellular internalization into MCF-7 human breast cancer cells by Prussian blue staining and inductively coupled plasma atomic emission spectroscopy analysis, respectively, demonstrated that the Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could be easily internalized by MCF-7 cells, and they exhibited significant inhibition of VEGF gene expression. Furthermore, the MR cellular images showed that the superparamagnetic iron oxide core of our Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could also act as a T2-weighted contrast agent for cancer MR imaging. Our data highlight multifunctional Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites as a potential platform for simultaneous gene delivery and MR cell imaging, which are promising as theranostic agents for cancer treatment and diagnosis in the future. PMID:26170664

  7. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    PubMed

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  8. Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis.

    PubMed

    Uchio, Eiichi; Fuchigami, Aki; Kadonosono, Kazuaki; Hayashi, Akio; Ishiko, Hiroaki; Aoki, Koki; Ohno, Shigeaki

    2007-09-01

    Around one million people are affected by adenoviral keratoconjunctivitis a year in Japan, and it is recognized as one of the major pathogens of ophthalmological nosocomial infection worldwide. Although cidofovir can be used systemically for immunocompromised patients with disseminated adenoviral infection, no specific anti-adenoviral agent has been established for the treatment of adenoviral infection. We evaluated the anti-adenoviral effect of anti-HIV (human immunodeficiency virus) agents in this study. Five anti-HIV agents (zalcitabine, stavudine, nevirapine, indinavir and amprenavir) were subjected to in vitro evaluation. A549 cells were used for viral cell culture, and adenovirus serotypes 3, 4, 8, 19 and 37 were used. After calculating CC(50) (50% cytotoxic concentration) of each agent by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we cultured adenovirus with the agents for seven days and quantitatively measured extracted adenoviral DNA by real-time PCR. Among the anti-HIV drugs, zalcitabine and stavudine, both nucleoside reverse transcriptase inhibitors, showed significant anti-adenoviral activity. In contrast, nevirapine, a non-nucleoside reverse transcriptase inhibitor, and indinavir and amprenavir, which are both protease inhibitors, were ineffective against adenovirus. These results indicate that zalcitabine and stavudine are possible candidates for the local and systemic treatment of adenoviral infection, and the anti-adenoviral effect might depend on the pharmacological properties of anti-HIV agents. The chemical properties on the clinical safety for systemic and local application need to be determined in order to for these drugs to be accepted for the treatment of adenovirus in clinical settings.

  9. The use of intravitreal anti-vascular endothelial growth factor injection and its complications in Chiang Mai University Hospital.

    PubMed

    Kunavisarut, Paradee; Saenpen, Nithiracht; Ittipunkul, Nimitr; Patikulsila, Direk; Choovuthayakorn, Janejit; Watanachai, Nawat; Pathanapitoon, Kessara

    2013-11-01

    To report the use of intravitreal (IVT) injections of anti-vascular endothelial growth factor agents (anti-VEGF) and its complications. The authors performed a retrospective review of consecutive patients treated with IVT injection of anti-VEGF between May 2006 and December 2010 at Chiang Mai University Hospital. Demographic data and complications were registered. The present study included 1,006 eyes of 878 patients. Mean age was 60 years (range 1 month to 91 years). Mean follow-up time was 12 months (range 1 month to 54 months). Total injections were 2,077 given as 47, 210, 399, 575, and 846 injection per year between 2006 and 2010, respectively. Anti-VEGF agents were bevacizumab (1,878; 90.42%), ranibizumab (190; 9.15%), and pegaptanib (9; 0.43%). Indications for injection based on primary diagnosis were neovascular macular degeneration (38.5%), diabetic retinopathy (38%), and retinal vein occlusion (15.9%). The incidence of endophthalmitis was 0.048% (1/2,077) for all injections and 0.053% (1/1878)for bevacizumab. The use of IVT injections of anti-VEGF is increasing, especially the use of bevacizumab. Incidence of ocular and systemic complications after IVT injection of anti- VEGF was low with no significant difference among the three anti-VEGFs agents.

  10. Multivalent Protein Polymer MRI Contrast Agents: Controlling Relaxivity via Modulation of Amino Acid Sequence

    PubMed Central

    Karfeld-Sulzer, Lindsay S.; Waters, Emily A.; Davis, Nicolynn E.; Meade, Thomas J.; Barron, Annelise E.

    2010-01-01

    Magnetic Resonance Imaging (MRI) is a noninvasive imaging modality with high spatial and temporal resolution. Contrast agents (CAs) are frequently used to increase the contrast between tissues of interest. To increase the effectiveness of MR agents, small molecule CAs have been attached to macromolecules. We have created a family of biodegradable, macromolecular CAs based on protein polymers, allowing control over the CA properties. The protein polymers are monodisperse, random coil, and contain evenly spaced lysines that serve as reactive sites for Gd(III) chelates. The exact sequence and length of the protein can be specified, enabling controlled variation in lysine spacing and molecular weight. Relaxivity could be modulated by changing protein polymer length and lysine spacing. Relaxivities of up to ∼14 mM-1s-1 per Gd(III) and ∼461 mM-1s-1 per conjugate were observed. These CAs are biodegradable by incubation with plasmin, such that they can be easily excreted after use. They do not reduce cell viability, a prerequisite for future in vivo studies. The protein polymer CAs can be customized for different clinical diagnostic applications, including biomaterial tracking, as a balanced agent with high relaxivity and appropriate molar mass. PMID:20420441

  11. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.

    PubMed

    El-Aarag, Bishoy Y A; Kasai, Tomonari; Zahran, Magdy A H; Zakhary, Nadia I; Shigehiro, Tsukasa; Sekhar, Sreeja C; Agwa, Hussein S; Mizutani, Akifumi; Murakami, Hiroshi; Kakuta, Hiroki; Seno, Masaharu

    2014-08-01

    Inhibition of angiogenesis is currently perceived as a promising strategy in the treatment of cancer. The anti-angiogenicity of thalidomide has inspired a second wave of research on this teratogenic drug. The present study aimed to investigate the anti-proliferative and anti-angiogenic activities of two thalidomide dithiocarbamate analogs by studying their anti-proliferative effects on human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cell lines. Their action on the expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 was also assessed. Furthermore, their effect on angiogenesis was evaluated through wound healing, migration, tube formation, and nitric oxide (NO) assays. Results illustrated that the proliferation of HUVECs and MDA-MB-231 cells was not significantly affected by thalidomide at 6.25-100μM. Thalidomide failed to block angiogenesis at similar concentrations. By contrast, thalidomide dithiocarbamate analogs exhibited significant anti-proliferative action on HUVECs and MDA-MB-231 cells without causing cytotoxicity and also showed powerful anti-angiogenicity in wound healing, migration, tube formation, and NO assays. Thalidomide analogs 1 and 2 demonstrated more potent activity to suppress expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 than thalidomide. Analog 1 consistently, showed the highest potency and efficacy in all the assays. Taken together, our results support further development and evaluation of novel thalidomide analogs as anti-tumor and anti-angiogenic agents. Copyright © 2014. Published by Elsevier B.V.

  12. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo.

    PubMed

    Rennel, E S; Varey, A H R; Churchill, A J; Wheatley, E R; Stewart, L; Mather, S; Bates, D O; Harper, S J

    2009-10-06

    The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.

  13. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  14. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovrebo, Kirsti Marie; Ellingsen, Christine; Galappathi, Kanthi

    2012-05-01

    Purpose: Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested as a useful noninvasive method for characterizing the physiologic microenvironment of tumors. In the present study, we investigated whether Gd-DTPA-based DCE-MRI has the potential to provide biomarkers for hypoxia-associated metastatic dissemination. Methods and Materials: C-10 and D-12 melanoma xenografts were used as experimental tumor models. Pimonidazole was used as a hypoxia marker. A total of 60 tumors were imaged, and parametric images of K{sup trans} (volume transfer constant of Gd-DTPA) and v{sub e} (fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of themore » DCE-MRI series. The host mice were killed immediately after DCE-MRI, and the primary tumor and the lungs were resected and prepared for histologic assessment of the fraction of pimonidazole-positive hypoxic tissue and the presence of lung metastases, respectively. Results: Metastases were found in 11 of 26 mice with C-10 tumors and 14 of 34 mice with D-12 tumors. The primary tumors of the metastatic-positive mice had a greater fraction of hypoxic tissue (p = 0.00031, C-10; p < 0.00001, D-12), a lower median K{sup trans} (p = 0.0011, C-10; p < 0.00001, D-12), and a lower median v{sub e} (p = 0.014, C-10; p = 0.016, D-12) than the primary tumors of the metastatic-negative mice. Conclusions: These findings support the clinical attempts to establish DCE-MRI as a method for providing biomarkers for tumor aggressiveness and suggests that primary tumors characterized by low K{sup trans} and low v{sub e} values could have a high probability of hypoxia-associated metastatic spread.« less

  15. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer

    PubMed Central

    Gerstner, Elizabeth R.; Duda, Dan G.; di Tomaso, Emmanuelle; Ryg, Peter A.; Loeffler, Jay S.; Sorensen, A. Gregory; Ivy, Percy; Jain, Rakesh K.; Batchelor, Tracy T.

    2016-01-01

    Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites. PMID:19333229

  16. Synthesis and evaluation of nanoglobular macrocyclic Mn(II) chelate conjugates as non-gadolinium(III) MRI contrast agents.

    PubMed

    Tan, Mingqian; Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Parker, Dennis L; Lu, Zheng-Rong

    2011-05-18

    Because of the recent observation of the toxic side effects of Gd(III) based MRI contrast agents in patients with impaired renal function, there is strong interest on developing alternative contrast agents for MRI. In this study, macrocyclic Mn(II) chelates were conjugated to nanoglobular carriers, lysine dendrimers with a silsesquioxane core, to synthesize non-Gd(III) based MRI contrast agents. A generation 3 nanoglobular conjugate of Mn(II)-1,4,7-triaazacyclononane-1,4,7-triacetate-GA amide (G3-NOTA-Mn) was also synthesized and evaluated. The per ion T(1) and T(2) relaxivities of G2, G3, G4 nanoglobular Mn(II)-DOTA monoamide conjugates decreased with increasing generation of the carriers. The T(1) relaxivities of G2, G3, and G4 nanoglobular Mn(II)-DOTA conjugates were 3.3, 2.8, and 2.4 mM(-1) s(-1) per Mn(II) chelate at 3 T, respectively. The T(1) relaxivity of G3-NOTA-Mn was 3.80 mM(-1) s(-1) per Mn(II) chelate at 3 T. The nanoglobular macrocyclic Mn(II) chelate conjugates showed good in vivo stability and were readily excreted via renal filtration. The conjugates resulted in much less nonspecific liver enhancement than MnCl(2) and were effective for contrast-enhanced tumor imaging in nude mice bearing MDA-MB-231 breast tumor xenografts at a dose of 0.03 mmol Mn/kg. The nanoglobular macrocyclic Mn(II) chelate conjugates are promising nongadolinium based MRI contrast agents.

  17. Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions.

    PubMed

    Menahem, Adi; Dror, Ishai; Berkowitz, Brian

    2016-02-01

    The release of pharmaceuticals and personal care products (PPCPs) to the soil-water environment necessitates understanding of PPCP transport behavior under conditions that account for dynamic flow and varying redox states. This study investigates the transport of two organometallic PPCPs, Gd-DTPA and roxarsone (arsenic compound) and their metal salts (Gd(NO3)3, AsNaO2); Gd-DTPA is used widely as a contrasting agent for MRI, while roxarsone is applied extensively as a food additive in the broiler poultry industry. Here, we present column experiments using sand and Mediterranean red sandy clay soil, performed under several redox conditions. The metal salts were almost completely immobile. In contrast, transport of Gd-DTPA and roxarsone was affected by the soil type. Roxarsone was also affected by the different redox conditions, showing delayed breakthrough curves as the redox potential became more negative due to biological activity (chemically-strong reducing conditions did not affect the transport). Mechanisms that include adsorptive retardation for aerobic and nitrate-reducing conditions, and non-adsorptive retardation for iron-reducing, sulfate-reducing and biologically-strong reducing conditions, are suggested to explain the roxarsone behavior. Gd-DTPA is found to be a stable complex, with potential for high mobility in groundwater systems, whereas roxarsone transport through groundwater systems is affected by redox environments, demonstrating high mobility under aerobic and nitrate-reducing conditions and delayed transport under iron-reducing, sulfate-reducing and biologically-strong reducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin

    PubMed Central

    2012-01-01

    internalized into 231-H2N cells and translocates to the nucleus. 111In-BnDTPA-F3 has a potent cytotoxic effect in vitro and an anti-tumor effect in mice bearing 231-H2N xenografts despite modest total tumor accumulation. PMID:22348532

  19. 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin.

    PubMed

    Cornelissen, Bart; Waller, Andrew; Target, Carol; Kersemans, Veerle; Smart, Sean; Vallis, Katherine A

    2012-02-20

    to the nucleus. 111In-BnDTPA-F3 has a potent cytotoxic effect in vitro and an anti-tumor effect in mice bearing 231-H2N xenografts despite modest total tumor accumulation.

  20. Ferrimagnetic susceptibility contrast agents.

    PubMed

    Bach-Gansmo, T

    1993-01-01

    Contrast agents based on superparamagnetic particles have been in clinical development for more than 5 years, and the complexity of their effects is still not elucidated. The relaxivities are frequently used to give an idea of their efficacy, but these parameters can only be used if they are concentration independent. For large superparamagnetic systems, the evolution of the transverse magnetization is biexponential, after an initial loss of magnetization. Both these characteristics of large superparamagnetic systems should lead to prudence in using the relaxivities as indicators of contrast medium efficacy. Susceptibility induced artefacts have been associated with the use of superparamagnetic contrast agents since the first imaging evaluation took place. The range of concentrations where good contrast effect was achieved without inducing artefacts, as well as blurring and metal artefacts were evaluated. The influence of motion on the induction of artefacts was studied, and compared to the artefacts induced by a paramagnetic agent subject to motion. With a suitable concentration of a negative contrast agent, a signal void could be achieved in the region prone to motion, and no artefacts were induced. If the concentration was too high, a displacement of the region close to the contrast agent was observed. The artefacts occurred in a volume surrounding the contrast agent, i.e., also outside the imaging plane. In comparison a positive, paramagnetic contrast agent induced heavy artefacts in the phase encoding direction, appearing as both high intensity regions and black holes, in a mosaic pattern. Clinical trials of the oral contrast agent OMP for abdominal MR imaging showed this agent to be safe and efficacious. OMP increased the diagnostic efficacy of abdominal MR imaging in 2 of 3 cases examined, with a significant decrease in motion artefacts. Susceptibility contrast agents may also be of use in the evaluation of small lesions in the liver. Particulate material

  1. Magnetic resonance and confocal imaging of solute penetration into the lens reveals a zone of restricted extracellular space diffusion.

    PubMed

    Vaghefi, Ehsan; Walker, Kerry; Pontre, Beau P; Jacobs, Marc D; Donaldson, Paul J

    2012-06-01

    It has been proposed that in the absence of blood supply, the ocular lens operates an internal microcirculation system that delivers nutrients to internalized fiber cells faster and more efficiently than would occur by passive diffusion alone. To visualize the extracellular space solute fluxes potentially generated by this system, bovine lenses were organ cultured in artificial aqueous humor (AAH) for 4 h in the presence or absence of two gadolinium-based contrast agents, ionic Gd(3+), or a chelated form of Gd(3+), Gd-diethylenetriamine penta-acetic acid (Gd-DTPA; mol mass = 590 Da). Contrast reagent penetration into the lens core was monitored in real time using inversion recovery-spin echo (IR-SE) magnetic resonance imaging (MRI), while steady-state accumulation of [Gd-DTPA](-2) was also determined by calculating T1 values. After incubation, lenses were fixed and cryosectioned, and sections were labeled with the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal microscopy using standard and reflectance imaging modalities to visualize the fluorescent WGA label and gadolinium reagents, respectively. Real-time IR-SE MRI showed rapid penetration of Gd(3+) into the outer cortex of the lens and a subsequent bloom of signal in the core. These two areas of signal were separated by an area in the inner cortex that limited entry of Gd(3+). Similar results were obtained for Gd-DTPA, but the penetration of the larger negatively charged molecule into the core could only be detected by calculating T1 values. The presence of Gd-DTPA in the extracellular space of the outer cortex and core, but its apparent absence from the inner cortex was confirmed using reflectance imaging of equatorial sections. In axial sections, Gd-DTPA was associated with the sutures, suggesting these structures provide a pathway from the surface, across the inner cortex barrier to the lens core. Our studies have revealed inner and outer boundaries of a zone within which a

  2. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  3. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas.

    PubMed

    Roskoski, Robert

    2017-06-01

    One Von Hippel-Lindau (VHL) tumor suppressor gene is lost in most renal cell carcinomas while the nondeleted allele exhibits hypermethylation-induced inactivation or inactivating somatic mutations. As a result of these genetic modifications, there is an increased production of VEGF-A and pro-angiogenic growth factors in this disorder. The important role of angiogenesis in the pathogenesis of renal cell carcinomas and other tumors has focused the attention of investigators on the biology of VEGFs and VEGFR1-3 and to the development of inhibitors of the intricate and multifaceted angiogenic pathways. VEGFR1-3 contain an extracellular segment with seven immunoglobulin-like domains, a transmembrane segment, a juxtamembrane segment, a protein kinase domain with an insert of about 70 amino acid residues, and a C-terminal tail. VEGF-A stimulates the activation of preformed VEGFR2 dimers by the auto-phosphorylation of activation segment tyrosines followed by the phosphorylation of additional protein-tyrosines that recruit phosphotyrosine binding proteins thereby leading to signalling by the ERK1/2, AKT, Src, and p38 MAP kinase pathways. VEGFR1 modulates the activity of VEGFR2, which is the chief pathway in vasculogenesis and angiogenesis. VEGFR3 and its ligands (VEGF-C and VEGF-D) are involved primarily in lymphangiogenesis. Small molecule VEGFR1/2/3 inhibitors including axitinib, cabozantinib, lenvatinib, sorafenib, sunitinib, and pazopanib are approved by the FDA for the treatment of renal cell carcinomas. Most of these agents are type II inhibitors of VEGFR2 and inhibit the so-called DFG-Asp out inactive enzyme conformation. These drugs are steady-state competitive inhibitors with respect to ATP and like ATP they form hydrogen bonds with the hinge residues that connect the small and large protein kinase lobes. Bevacizumab, a monoclonal antibody that binds to VEGF-A, is also approved for the treatment of renal cell carcinomas. Resistance to these agents invariably occurs

  4. Classification of diabetic macular oedema using ultra-widefield angiography and implications for response to anti-VEGF therapy.

    PubMed

    Xue, Kanmin; Yang, Elizabeth; Chong, N Victor

    2017-05-01

    To characterise differential pathogeneses of diabetic macular oedema (DMO) using ultra-widefield fluorescein angiography (UWFA) and evaluate responses to anti-vascular endothelial growth factor (anti-VEGF) therapy. Ninety-nine eyes (73 consecutive patients) with anti-VEGF naïve DMO underwent UWFA and optical coherence tomography, of which 60 with central retinal thickness (CRT) >400 μm received monthly intravitreal ranibizumab injections. Best-corrected visual acuity (BCVA) and CRT were measured at baseline and after three injections. After excluding tractional factors, DMO was categorised into three types based on UWFA: (A) microaneurysm driven (49%), (B) peripheral ischaemia (37%) and (C) neovascularisation (15%). While all three types showed similar mean CRT (p=0.257), types B and C were associated with more diffuse oedema, which extended beyond the 6.0 mm central macula (p=0.0034). Following anti-VEGF treatment, all three types showed improvement in CRT and BCVA, which reached statistical significance for types A and B. A positive correlation was found between the Peripheral Ischaemia Index and improvement in CRT (slope=2.09, R 2 =0.1169, p=0.0151) but not BCVA (slope=-0.00037, R 2 =0.001149, p=0.8152). UWFA facilitates the detection of peripheral ischaemia, which is associated with a significant proportion of DMO. While this group of DMO responded well to anti-VEGF therapy, it remains to be determined whether addressing the peripheral ischaemia may reduce recurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Optimizing contrast agents with respect to reducing beam hardening in nonmedical X-ray computed tomography experiments.

    PubMed

    Nakashima, Yoshito; Nakano, Tsukasa

    2014-01-01

    Iodine is commonly used as a contrast agent in nonmedical science and engineering, for example, to visualize Darcy flow in porous geological media using X-ray computed tomography (CT). Undesirable beam hardening artifacts occur when a polychromatic X-ray source is used, which makes the quantitative analysis of CT images difficult. To optimize the chemistry of a contrast agent in terms of the beam hardening reduction, we performed computer simulations and generated synthetic CT images of a homogeneous cylindrical sand-pack (diameter, 28 or 56 mm; porosity, 39 vol.% saturated with aqueous suspensions of heavy elements assuming the use of a polychromatic medical CT scanner. The degree of cupping derived from the beam hardening was assessed using the reconstructed CT images to find the chemistry of the suspension that induced the least cupping. The results showed that (i) the degree of cupping depended on the position of the K absorption edge of the heavy element relative to peak of the polychromatic incident X-ray spectrum, (ii) (53)I was not an ideal contrast agent because it causes marked cupping, and (iii) a single element much heavier than (53)I ((64)Gd to (79)Au) reduced the cupping artifact significantly, and a four-heavy-element mixture of elements from (64)Gd to (79)Au reduced the artifact most significantly.

  6. Semi-automatic detection of Gd-DTPA-saline filled capsules for colonic transit time assessment in MRI

    NASA Astrophysics Data System (ADS)

    Harrer, Christian; Kirchhoff, Sonja; Keil, Andreas; Kirchhoff, Chlodwig; Mussack, Thomas; Lienemann, Andreas; Reiser, Maximilian; Navab, Nassir

    2008-03-01

    Functional gastrointestinal disorders result in a significant number of consultations in primary care facilities. Chronic constipation and diarrhea are regarded as two of the most common diseases affecting between 2% and 27% of the population in western countries 1-3. Defecatory disorders are most commonly due to dysfunction of the pelvic floor or the anal sphincter. Although an exact differentiation of these pathologies is essential for adequate therapy, diagnosis is still only based on a clinical evaluation1. Regarding quantification of constipation only the ingestion of radio-opaque markers or radioactive isotopes and the consecutive assessment of colonic transit time using X-ray or scintigraphy, respectively, has been feasible in clinical settings 4-8. However, these approaches have several drawbacks such as involving rather inconvenient, time consuming examinations and exposing the patient to ionizing radiation. Therefore, conventional assessment of colonic transit time has not been widely used. Most recently a new technique for the assessment of colonic transit time using MRI and MR-contrast media filled capsules has been introduced 9. However, due to numerous examination dates per patient and corresponding datasets with many images, the evaluation of the image data is relatively time-consuming. The aim of our study was to develop a computer tool to facilitate the detection of the capsules in MRI datasets and thus to shorten the evaluation time. We present a semi-automatic tool which provides an intensity, size 10, and shape-based 11,12 detection of ingested Gd-DTPA-saline filled capsules. After an automatic pre-classification, radiologists may easily correct the results using the application-specific user interface, therefore decreasing the evaluation time significantly.

  7. Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma

    PubMed Central

    Kroesen, Michiel; Büll, Christian; Gielen, Paul R.; Brok, Ingrid C.; Armandari, Inna; Wassink, Melissa; Looman, Maaike W. G.; Boon, Louis; den Brok, Martijn H.; Hoogerbrugge, Peter M.; Adema, Gosse J.

    2016-01-01

    ABSTRACT Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients. PMID:27471639

  8. Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma.

    PubMed

    Kroesen, Michiel; Büll, Christian; Gielen, Paul R; Brok, Ingrid C; Armandari, Inna; Wassink, Melissa; Looman, Maaike W G; Boon, Louis; den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J

    2016-06-01

    Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients.

  9. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.

    PubMed

    Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo

    2009-07-21

    Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a

  10. A novel blood-pooling MR contrast agent: Carboxymethyl-diethylaminoethyl dextran magnetite.

    PubMed

    Sonoda, Akinaga; Nitta, Norihisa; Tsuchiya, Keiko; Nitta-Seko, Ayumi; Ohta, Shinichi; Otani, Hideji; Murata, Kiyoshi

    2016-12-01

    Gadofosveset trisodium is available as a prolonged pooling vascular contrast agent for magnetic resonance imaging. As gadolinium (Gd)-based agents may increase the risk for nephrogenic systemic fibrosis in patients with severe renal insufficiency, the present study synthesized carboxymethyl-diethylaminoethyl dextran magnetite (CMEADM) particles as a blood-pooling, non-Gd‑based contrast agent. CMEADM particles carry a negative or positive charge due to the binding of amino and carboxyl groups to the hydroxyl group of dextran. The present study evaluated whether the degree of charge alters the blood‑pooling time. The evaluation was performed by injecting four groups of three Japanese white rabbits each with CMEADM‑, CMEADM2‑, CMEADM+ (surface charges: ‑10.4, ‑41.0 and +9.6 mV, respectively) or with ultrasmall superparamagnetic iron oxide (USPIO; ‑11.5 mV). The relative signal intensity (SIrel) of each was calculated using the following formula: SIrel = (SI post‑contrast ‑ SI pre‑contrast / SI pre‑contrast) x 100. Following injection with the CMEADMs, but not with USPIO, the in vivo pooling time was prolonged to >300 min. No significant differences were attributable to the electric charge among the CMEADM‑, CMEADM2‑ or and CMEADM+ particles when analyzed with analysis of variance and Tukey's HSD test. Taken together, all three differently‑charged CMEADM2 particles exhibited prolonged vascular enhancing effects, compared with the USPIO. The degree of charge of the contrast agents used in the present study did not result in alteration of the prolonged blood pooling time.

  11. Use of hepatobiliary phase images in Gd-EOB-DTPA-enhanced MRI of breast cancer hepatic metastasis to predict response to chemotherapy.

    PubMed

    Lee, Hyun Ji; Lee, Chang Hee; Kim, Jeong Woo; Park, Yang Shin; Lee, Jongmee; Kim, Kyeong Ah

    To determine the prognostic value of Gd-EOB-DTPA MRI findings of liver metastasis from breast cancer. 29 metastatic lesions from 12 breast cancer patients who received chemotherapy were retrospectively reviewed. We evaluated hepatobiliary phase of the lesions and classified them as a "target" or "non-target" appearance. The relationship of appearance or SI ratio with tumor response was analyzed. A non-target appearance was more frequent in disease control group than in non-control group [14/18 (77.8%) vs. 4/18 (22.2%)], and it was associated with a better response [p=0.048]. HBP analysis may be useful to predict the response to chemotherapy and survival. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Prediction of high-stage liver fibrosis using ADC value on diffusion-weighted imaging and quantitative enhancement ratio at the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI at 1.5 T.

    PubMed

    Harada, Taiyo L; Saito, Kazuhiro; Araki, Yoichi; Matsubayashi, Jun; Nagao, Toshitaka; Sugimoto, Katsutoshi; Tokuuye, Koichi

    2018-05-01

    Background Recently, diffusion-weighted imaging (DWI) and quantitative enhancement ratio measured at the hepatobiliary phase (HBP) of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) has been established as an effective method for evaluating liver fibrosis. Purpose To evaluate which is a more favorable surrogate marker in predicting high-stage liver fibrosis, apparently diffusion coefficient (ADC) value or quantitative enhancement ratio measured on HBP. Material and Methods Eighty-three patients with 99 surgically resected hepatic lesions were enrolled in this study. DWI was performed with b-values of 100 and 800 s/mm 2 . Regions of interest were set on ADC map, and the HBP of Gd-EOB-DTPA-enhanced MRI, to calculate ADC value, liver-to-muscle ratio (LMR), liver-to-spleen ratio (LSR), and contrast enhancement index (CEI) of liver. We compared these parameters between low-stage fibrosis (F0, F1, and F2) and high-stage fibrosis (F3 and F4). Receiver operating characteristic analysis was performed to compare the diagnostic performance when distinguishing low-stage fibrosis from high-stage fibrosis. Results LMR and CEI were significantly lower at high-stage fibrosis than at the low stage ( P < 0.01 and P = 0.04, respectively), whereas LSR did not show a significant difference ( P = 0.053). No significant difference was observed in diagnostic performance between LMR and CEI ( P = 0.185). The best sensitivity and specificity, when an LMR of 2.80 or higher was considered to be low-stage fibrosis, were 82.4% and 75.6%, respectively. ADC value showed no significant differences among fibrosis grades ( P = 0.320). Conclusion LMR and CEI were both adequate surrogate parameters to distinguish high-stage fibrosis from low-stage fibrosis.

  13. Hepatobiliary MRI: Signal intensity based assessment of liver function correlated to 13C-Methacetin breath test.

    PubMed

    Haimerl, Michael; Probst, Ute; Poelsterl, Stefanie; Beyer, Lukas; Fellner, Claudia; Selgrad, Michael; Hornung, Matthias; Stroszczynski, Christian; Wiggermann, Philipp

    2018-06-13

    Gadoxetic acid (Gd-EOB-DTPA) is a paramagnetic MRI contrast agent with raising popularity and has been used for evaluation of imaging-based liver function in recent years. In order to verify whether liver function as determined by real-time breath analysis using the intravenous administration of 13 C-methacetin can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using signal intensity (SI) values. 110 patients underwent Gd-EOB-DTPA-enhanced 3-T MRI and, for the evaluation of liver function, a 13 C-methacetin breath test ( 13 C-MBT). SI values from before (SI pre ) and 20 min after (SI post ) contrast media injection were acquired by T1-weighted volume-interpolated breath-hold examination (VIBE) sequences with fat suppression. The relative enhancement (RE) between the plain and contrast-enhanced SI values was calculated and evaluated in a correlation analysis of 13 C-MBT values to SI post and RE to obtain a SI-based estimation of 13 C-MBT values. The simple regression model showed a log-linear correlation of 13 C-MBT values with SI post and RE (p < 0.001). Stratified by 3 different categories of 13 C-MBT readouts, there was a constant significant decrease in both SI post (p ≤ 0.002) and RE (p ≤ 0.033) with increasing liver disease progression as assessed by the 13 C-MBT. Liver function as determined using real-time 13 C-methacetin breath analysis can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using SI-based indices.

  14. Antitumoral activity and toxicity of PEG-coated and PEG-folate-coated pH-sensitive liposomes containing ¹⁵⁹Gd-DTPA-BMA in Ehrlich tumor bearing mice.

    PubMed

    Soares, Daniel Crístian Ferreira; Cardoso, Valbert Nascimento; de Barros, André Luís Branco; de Souza, Cristina Maria; Cassali, Geovanni Dantas; de Oliveira, Mônica Cristina; Ramaldes, Gilson Andrade

    2012-01-23

    In the present study, PEG-coated pH-sensitive and PEG-folate-coated pH-sensitive liposomes containing the ¹⁵⁹Gd-DTPA-BMA were prepared and radiolabeled through neutron activation technique, aiming to study the in vivo antitumoral activity and toxicity on mice bearing a previously-developed solid Ehrlich tumor. The treatment efficacy was verified through tumoral volume increase and histomorphometry studies. The toxicity of formulations was investigated through animal weight variations, as well as hematological and biochemical tests. The results showed that after 31 days of treatment, animals treated with radioactive formulations had a lower increase in tumor volume and a significantly higher percentage of necrosis compared with controls revealed by histomorphometry studies. Furthermore, mice treated with radioactive formulations exhibited lower weight gain without significant hematological or biochemical changes, except for toxicity to hepatocytes which requires more detailed studies. From the results obtained to date, we believe that the radioactive formulations can be considered potential therapeutic agents for cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Experience of Anti-VEGF Treatment and Clinical Levels of Depression and Anxiety in Patients With Wet Age-Related Macular Degeneration.

    PubMed

    Senra, Hugo; Balaskas, Konstantinos; Mahmoodi, Neda; Aslam, Tariq

    2017-05-01

    To investigate detailed patient experiences specific to receiving vascular endothelial growth factor inhibitors (anti-VEGF) for wet age-related macular degeneration (wAMD), and to acquire a snapshot of the frequency of clinically significant levels of depression, anxiety, and posttraumatic stress among patients and levels of burden in patients' carers. Observational cross-sectional mixed-methods study. Three hundred patients with wAMD receiving anti-VEGF treatment and 100 patient carers were recruited. Qualitative data on patients' experience of treatment were collected using a structured survey. Standardized validated questionnaires were used to quantify clinically significant levels of anxiety, depression, and posttraumatic stress, as well as cognitive function and carers' burden. Qualitative data showed that 56% of patients (n = 132) reported anxiety related to anti-VEGF treatment. The main sources of anxiety were fear of going blind owing to intravitreal injections and concerns about treatment effectiveness, rather than around pain. From validated questionnaires, 17% of patients (n = 52) showed clinical levels of anxiety and 12% (n = 36) showed clinical levels of depression. Depression levels, but not anxiety, were significantly higher in patients who received up to 3 injections compared with patients who received from 4 to 12 injections (analysis of variance [ANOVA] P = .027) and compared with patients who received more than 12 injections (ANOVA P = .001). Anti-VEGF treatment is often experienced with some anxiety related to treatment, regardless of the number of injections received. Clinical levels of depression seem to be more frequent in patients at early stages of anti-VEGF treatment. Strategies to improve patient experience of treatment and minimize morbidity are suggested. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood-brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury.

    PubMed

    Shiraishi, Kouichi; Wang, Zuojun; Kokuryo, Daisuke; Aoki, Ichio; Yokoyama, Masayuki

    2017-05-10

    Blood-brain barrier (BBB) opening is a key phenomenon for understanding ischemia-reperfusion injuries that are directly linked to hemorrhagic transformation. The recombinant human tissue-type plasminogen activator (rtPA) increases the risk of symptomatic intracranial hemorrhages. Recent imaging technologies have advanced our understanding of pathological BBB disorders; however, an ongoing challenge in the pre-"rtPA treatment" stage is the task of developing a rigorous method for hemorrhage-risk assessments. Therefore, we examined a novel method for assessment of rtPA-extravasation through a hyper-permeable BBB. To examine the image diagnosis of rtPA-extravasation for a rat transient occlusion-reperfusion model, in this study we used a polymeric micelle MRI contrast-agent (Gd-micelles). Specifically, we used two MRI contrast agents at 1h after reperfusion. Gd-micelles provided very clear contrast images in 15.5±10.3% of the ischemic hemisphere at 30min after i.v. injection, whereas a classic gadolinium chelate MRI contrast agent provided no satisfactorily clear images. The obtained images indicate both the hyper-permeable BBB area for macromolecules and the distribution area of macromolecules in the ischemic hemisphere. Owing to their large molecular weight, Gd-micelles remained in the ischemic hemisphere through the hyper-permeable BBB. Our results indicate the feasibility of a novel clinical diagnosis for evaluating rtPA-related hemorrhage risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A novel small molecule ameliorates ocular neovascularisation and synergises with anti-VEGF therapy.

    PubMed

    Sulaiman, Rania S; Merrigan, Stephanie; Quigley, Judith; Qi, Xiaoping; Lee, Bit; Boulton, Michael E; Kennedy, Breandán; Seo, Seung-Yong; Corson, Timothy W

    2016-05-05

    Ocular neovascularisation underlies blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. These diseases cause irreversible vision loss, and provide a significant health and economic burden. Biologics targeting vascular endothelial growth factor (VEGF) are the major approach for treatment. However, up to 30% of patients are non-responsive to these drugs and they are associated with ocular and systemic side effects. Therefore, there is a need for small molecule ocular angiogenesis inhibitors to complement existing therapies. We examined the safety and therapeutic potential of SH-11037, a synthetic derivative of the antiangiogenic homoisoflavonoid cremastranone, in models of ocular neovascularisation. SH-11037 dose-dependently suppressed angiogenesis in the choroidal sprouting assay ex vivo and inhibited ocular developmental angiogenesis in zebrafish larvae. Additionally, intravitreal SH-11037 (1 μM) significantly reduced choroidal neovascularisation (CNV) lesion volume in the laser-induced CNV mouse model, comparable to an anti-VEGF antibody. Moreover, SH-11037 synergised with anti-VEGF treatments in vitro and in vivo. Up to 100 μM SH-11037 was not associated with signs of ocular toxicity and did not interfere with retinal function or pre-existing retinal vasculature. SH-11037 is thus a safe and effective treatment for murine ocular neovascularisation, worthy of further mechanistic and pharmacokinetic evaluation.

  18. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability

    NASA Astrophysics Data System (ADS)

    Ni, Kaiyuan; Zhao, Zhenghuan; Zhang, Zongjun; Zhou, Zijian; Yang, Li; Wang, Lirong; Ai, Hua; Gao, Jinhao

    2016-02-01

    High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy

  19. Contrast echocardiography: new agents.

    PubMed

    Miller, Andrew P; Nanda, Navin C

    2004-04-01

    In this report, we review the history, rationale, current status and future directions of contrast agents in echocardiography. First, we discuss the historic development of contrast agents through a review of important physical principles of microbubbles in ultrasonography. Second, we identify attributes of an ideal contrast agent and review those that are currently available or in the "pipeline" for clinical use. Third, we review indications for contrast echocardiography, including endocardial border detection, perfusion quantification and reperfusion assessment, and validate these observations by comparisons with other imaging modalities. Then, we briefly review different methodologies of performing a contrast study, including interrupted, real-time and a hybrid modality. Finally, we identify novel future applications of the newest contrast agents. These newer concepts in contrast echocardiography should form a foundation for nearly limitless application of echocardiography in improved anatomical assessment, perfusion imaging and even special applications, such as detection of vascular inflammation and site-specific drug delivery.

  20. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    NASA Astrophysics Data System (ADS)

    Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael

    2015-01-01

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  1. Anti-vascular endothelial growth factor for control of wound healing in glaucoma surgery.

    PubMed

    Cheng, Jin-Wei; Cheng, Shi-Wei; Wei, Rui-Li; Lu, Guo-Cai

    2016-01-15

    Trabeculectomy is performed as a treatment for glaucoma to lower intraocular pressure (IOP). The surgical procedure involves creating a channel through the wall of the eye. However scarring during wound healing can block this channel which will lead to the operation failing. Anti-vascular endothelial growth factor (VEGF) agents have been proposed to slow down healing response and scar formation. To assess the effectiveness of anti-VEGF therapies administered by subconjunctival injection for the outcome of trabeculectomy at 12 months follow-up and to examine the balance of benefit and harms when compared to any other anti-scarring agents or no additional anti-scarring agents. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2015, Issue 10), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2015), EMBASE (January 1980 to November 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 12 November 2015. We included randomised controlled trials (RCTs) of anti-VEGF therapies administered by subconjunctival injection compared to any other anti-scarring agents or no additional anti-scarring agents (no treatment or placebo) in trabeculectomy surgery. We used standard methodological procedures expected by Cochrane. Our primary outcome was successful trabeculectomy at 12 months after surgery which was defined as achieving a target IOP (usually no more than 21 mm Hg) without any additional intervention. Other outcomes included: qualified success (achieving target IOP with or without additional intervention), mean IOP and adverse events. We included five

  2. VEGF-Trap: a VEGF blocker with potent antitumor effects.

    PubMed

    Holash, Jocelyn; Davis, Sam; Papadopoulos, Nick; Croll, Susan D; Ho, Lillian; Russell, Michelle; Boland, Patricia; Leidich, Ray; Hylton, Donna; Burova, Elena; Ioffe, Ella; Huang, Tammy; Radziejewski, Czeslaw; Bailey, Kevin; Fandl, James P; Daly, Tom; Wiegand, Stanley J; Yancopoulos, George D; Rudge, John S

    2002-08-20

    Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors. The highest-affinity VEGF blocker described to date is a soluble decoy receptor created by fusing the first three Ig domains of VEGF receptor 1 to an Ig constant region; however, this fusion protein has very poor in vivo pharmacokinetic properties. By determining the requirements to maintain high affinity while extending in vivo half life, we were able to engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties. This VEGF-Trap effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors. VEGF-Trap-mediated blockade may be superior to that achieved by other agents, such as monoclonal antibodies targeted against the VEGF receptor.

  3. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera's key metabolite Withaferin A.

    PubMed

    Saha, Sanjib; Islam, Md Khirul; Shilpi, Jamil A; Hasan, Shihab

    2013-01-01

    Angiogenesis, or new blood vessel formation from existing one, plays both beneficial and detrimental roles in living organisms in different aspects. Vascular endothelial growth factor (VEGF), a signal protein, well established as key regulator of vasculogenesis and angiogenesis. VEGF ensures oxygen supply to the tissues when blood supply is not adequate, or tissue environment is in hypoxic condition. Limited expression of VEGF is necessary, but if it is over expressed, then it can lead to serious disease like cancer. Cancers that have ability to express VEGF are more efficient to grow and metastasize because solid cancers cannot grow larger than a limited size without adequate blood and oxygen supply. Anti-VEGF drugs are already available in the market to control angiogenesis, but they are often associated with severe side-effects like fetal bleeding and proteinuria in the large number of patients. To avoid such side-effects, new insight is required to find potential compounds as anti-VEGF from natural sources. In the present investigation, molecular docking studies were carried out to find the potentiality of Withaferin A, a key metabolite of Withania somnifera, as an inhibitor of VEGF. Molecular Docking studies were performed in DockingServer and SwissDock. Bevacizumab, a commercial anti-VEGF drug, was used as reference to compare the activity of Withaferin A. X-ray crystallographic structure of VEGF, was retrieved from Protein Data Bank (PDB), and used as drug target protein. Structure of Withaferin A and Bevacizumab was obtained from PubChem and ZINC databases. Molecular visualization was performed using UCSF Chimera. Withaferin A showed favorable binding with VEGF with low binding energy in comparison to Bevacizumab. Molecular Docking studies also revealed potential protein-ligand interactions for both Withaferin A and Bevacizumab. Conclusively our results strongly suggest that Withaferin A is a potent anti-VEGF agent as ascertained by its potential

  4. Identification and characterization of gadolinium(III) complexes in biological tissue extracts.

    PubMed

    Kahakachchi, Chethaka L; Moore, Dennis A

    2010-07-01

    The gadolinium species present in a rat kidney following intravenous administration of a gadolinium-based magnetic resonance contrast agent (Optimark™, Gadoversetamide injection) to a rat was examined in the present study. The major gadolinium species in the supernatant of the rat kidney tissue extracts was determined by reversed-phase liquid chromatography with online inductively coupled plasma optical emission spectrometry (HPLC-ICP-OES). The identity of the compound was established by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) detection. The principal gadolinium(III) complex in a rat kidney tissue extract was identified as Gd-DTPA-BMEA 24 Hrs and 7 days after a single intravenous injection of Optimark™ (gadoversetamide; Gd-DTPA-BMEA) at a dose of 5 mmol Gd/kg body weight. The study demonstrated for the first time the feasibility of the use of two complementary techniques, HPLC-ICP-OES and HPLC-ESI-MS to study the in vivo behavior of gadolinium-based magnetic resonance contrast media.

  5. Influence of MRI contrast media on histamine release from mast cells.

    PubMed

    Kun, Tomasz; Jakubowski, Lucjusz

    2012-07-01

    Mast cells, owing to diversity of secreted mediators, play a crucial role in the regulation of inflammatory response. Together with basophils, mast cells constitute a central pathogenetic element of anaphylactic (IgE-dependent) and anaphylactoid (IgE-independent) reactions. In severe cases, generalized degranulation of mast cells may cause symptoms of anaphylactic shock. The influence of the classical, iodine-based contrast media on mastocyte degranulation has been fully described. Our objective was to determine the influence of the gadolinium-based MRI contrast media on histamine release from mast cells and to compare the activity of ionic and non-ionic preparations of contrast media. To determine the intensity of mast cell degranulation, we used an experimental model based on mastocytes isolated from rat peritoneal fluid. Purified suspensions of mast cells were incubated with various concentrations of Gd-DTPA and Gd-DTPA-BMA, and solutions of PEG 600 which served as a non-toxic osmotic stimulus. The intensity of mast cell activation was presented as mean percentage of histamine released from cells after incubation. The obtained results demonstrate that both ionic and non-ionic preparations of the MRI contrast media are able to induce mast cell degranulation in vitro. It was also proved that the non-ionic MRI contrast media stimulate mast cells markedly more weakly than ionic contrast media at identical concentration. The aforementioned results may suggest a more profitable safety profile of the non-ionic contrast preparations. We may also conclude that triggering of mast cell degranulation after incubation with the solutions of MRI contrast media results from non-specific osmotic stimulation and direct toxicity of free ionic residues.

  6. Evaluation of Focal Liver Reaction after Proton Beam Therapy for Hepatocellular Carcinoma Examined Using Gd-EOB-DTPA Enhanced Hepatic Magnetic Resonance Imaging.

    PubMed

    Takamatsu, Shigeyuki; Yamamoto, Kazutaka; Maeda, Yoshikazu; Kawamura, Mariko; Shibata, Satoshi; Sato, Yoshitaka; Terashima, Kazuki; Shimizu, Yasuhiro; Tameshige, Yuji; Sasaki, Makoto; Asahi, Satoko; Kondou, Tamaki; Kobayashi, Satoshi; Matsui, Osamu; Gabata, Toshifumi

    2016-01-01

    Proton beam therapy (PBT) achieves good local control for hepatocellular carcinoma (HCC), and toxicity tends to be lower than for photon radiotherapy. Focal liver parenchymal damage in radiotherapy is described as the focal liver reaction (FLR); the threshold doses (TDs) for FLR in the background liver have been analyzed in stereotactic ablative body radiotherapy and brachytherapy. To develop a safer approach for PBT, both TD and liver volume changes are considered clinically important in predicting the extent of damage before treatment, and subsequently in reducing background liver damage. We investigated appearance time, TDs and volume changes regarding FLR after PBT for HCC. Patients who were treated using PBT and were followed up using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA MRI) after PBT were enrolled. Sixty-eight lesions in 58 patients were eligible for analysis. MRI was acquired at the end of treatment, and at 1, 2, 3 and 6 months after PBT. We defined the FLR as a clearly depicted hypointense area on the hepatobiliary phase of Gd-EOB-DTPA MRI, and we monitored TDs and volume changes in the FLR area and the residual liver outside of the FLR area. FLR was depicted in all lesions at 3 months after PBT. In FLR expressed as the 2-Gy equivalent dose (α/β = 3 Gy), TDs did not differ significantly (27.0±6.4 CGE [10 fractions [Fr] vs. 30.5±7.3 CGE [20 Fr]). There were also no correlations between the TDs and clinical factors, and no significant differences between Child-Pugh A and B scores. The volume of the FLR area decreased and the residual liver volume increased, particularly during the initial 3 months. This study established the FLR dose for liver with HCC, which might be useful in the prediction of remnant liver volume for PBT.

  7. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration.

    PubMed

    Solomon, Sharon D; Lindsley, Kristina; Vedula, Satyanarayana S; Krzystolik, Magdalena G; Hawkins, Barbara S

    2014-08-29

    Age-related macular degeneration (AMD) is the most common cause of uncorrectable severe vision loss in people aged 55 years and older in the developed world. Choroidal neovascularization (CNV) secondary to neovascular AMD accounts for most AMD-related severe vision loss. Anti-vascular endothelial growth factor (anti-VEGF) agents, injected intravitreally, aim to block the growth of abnormal blood vessels in the eye to prevent vision loss and, in some instances, improve vision. To investigate: (1) the ocular and systemic effects of, and quality of life associated with, intravitreally injected anti-VEGF agents (pegaptanib, ranibizumab, and bevacizumab) for the treatment of neovascular AMD compared with no anti-VEGF treatment; and (2) the relative effects of one anti-VEGF agent compared with another when administered in comparable dosages and regimens. We searched Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 3), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to March 2014), EMBASE (January 1980 to March 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to March 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We used no date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 27 March 2014. We included randomized controlled trials (RCTs) that evaluated pegaptanib, ranibizumab, or bevacizumab versus each other or a control treatment (e.g., sham treatment or photodynamic therapy). All trials followed participants for at least one year. Two review authors independently screened records, extracted data, and

  8. Nuclear magnetic resonance study of Gd-based nanoparticles to tag boron compounds in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Corti, M.; Bonora, M.; Borsa, F.; Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S.; Zonta, C.; Clerici, A. M.; Cansolino, L.; Ferrari, C.; Dionigi, P.; Porta, A.; Zanoni, G.; Vidari, G.

    2011-04-01

    We report the investigation of new organic complexes containing a magnetic moment (Gd-based molecular nanomagnets), which can serve the double purpose of acting as boron neutron capture therapy (BNCT) agents, and at the same time act as contrast agents to detect the molecule in the tissue by a proton magnetic resonance imaging (MRI). We also explore the possibility of monitoring the concentration of the BNCT agent directly via proton and boron NMR relaxation. The absorption of 10B-enriched molecules inside tumoral liver tissues has been shown by NMR measurements and confirmed by α spectroscopy. A new molecular Gd-tagged nanomagnet and BNCT agent (GdBPA) has been synthesized and characterized measuring its relaxivity R1 between 10 kHz and 66 MHz, and its use as a contrast agent in MRI has been demonstrated. The NMR-based evidence of the absorption of GdBPA into living tumoral cells is also shown.

  9. Use of a Genetically Engineered Protein for the Design of a Multivalent MRI Contrast Agent

    PubMed Central

    Karfeld, Lindsay S.; Bull, Steve R.; Davis, Nicolynn E.; Meade, Thomas J.; Barron, Annelise E.

    2008-01-01

    The majority of clinically used contrast agents (CAs) for magnetic resonance imaging have low relaxivities and thus require high concentrations for signal enhancement. Research has turned to multivalent, macromolecular CAs to increase CA efficiency. However, previously developed macromolecular CAs do not provide high relaxivities, have limited biocompatibility, and/or do not have a structure that is readily modifiable to tailor to particular applications. We report a new family of multivalent, biomacromolecular, genetically engineered protein polymer-based CAs; the protein backbone contains evenly spaced lysines that are derivatized with gadolinium (Gd(III)) chelators. The protein's length and repeating amino acid sequence are genetically specified. We reproducibly obtained conjugates with an average of 8 – 9 Gd(III) chelators per protein. These multivalent CAs reproducibly provide a high relaxivity of 7.3 mM-1s-1 per Gd(III) and 62.6 mM-1s-1 per molecule. Furthermore, they can be incorporated into biomaterial hydrogels via chemical crosslinking of remaining free lysines, and provide a dramatic contrast enhancement. Thus, these protein polymer CAs could be a useful tool for following the evolution of tissue engineering scaffolds. PMID:17927227

  10. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models.

    PubMed

    Ciamporcero, Eric; Miles, Kiersten Marie; Adelaiye, Remi; Ramakrishnan, Swathi; Shen, Li; Ku, ShengYu; Pizzimenti, Stefania; Sennino, Barbara; Barrera, Giuseppina; Pili, Roberto

    2015-01-01

    Alternative pathways to the VEGF, such as hepatocyte growth factor or HGF/c-met, are emerging as key players in tumor angiogenesis and resistance to anti-VEGF therapies. The aim of this study was to assess the effects of a combination strategy targeting the VEGF and c-met pathways in clear cell renal cell carcinoma (ccRCC) models. Male SCID mice (8/group) were implanted with 786-O tumor pieces and treated with either a selective VEGF receptor tyrosine kinase inhibitor, axitinib (36 mg/kg, 2×/day); a c-met inhibitor, crizotinib (25 mg/kg, 1×/day); or combination. We further tested this drug combination in a human ccRCC patient-derived xenograft, RP-R-01, in both VEGF-targeted therapy-sensitive and -resistant models. To evaluate the resistant phenotype, we established an RP-R-01 sunitinib-resistant model by continuous sunitinib treatment (60 mg/kg, 1×/day) of RP-R-01-bearing mice. Treatment with single-agent crizotinib reduced tumor vascularization but failed to inhibit tumor growth in either model, despite also a significant increase of c-met expression and phosphorylation in the sunitinib-resistant tumors. In contrast, axitinib treatment was effective in inhibiting angiogenesis and tumor growth in both models, with its antitumor effect significantly increased by the combined treatment with crizotinib, independently from c-met expression. Combination treatment also induced prolonged survival and significant tumor growth inhibition in the 786-O human RCC model. Overall, our results support the rationale for the clinical testing of combined VEGF and HGF/c-met pathway blockade in the treatment of ccRCC, both in first- and second-line setting. ©2014 American Association for Cancer Research.

  11. Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs

    PubMed Central

    Meng, Gang; Xu, Chun; Song, Yong; Wei, Jiwu

    2015-01-01

    Short interfering RNA (siRNA) targeting angiogenic factors and further inhibiting tumor angiogenesis, is one of the potent antitumor candidates for lung cancer treatment. However, this strategy must be combined with other therapeutics like chemotherapy. In this study, we designed a 5′-triphosphate siRNA targeting VEGF (ppp-VEGF), and showed that ppp-VEGF exerted three distinct antitumor effects: i) inhibition of tumor angiogenesis by silencing VEGF, ii) induction of innate immune responses by activating RIG-I signaling pathway, and thus activate antitumor immunity, iii) induction of apoptosis. In a subcutaneous model of murine lung cancer, ppp-VEGF displayed a potent antitumor effect. Our results provide a multifunctional antitumor molecule that may overcome the shortages of traditional antiangiogenic agents. PMID:26336994

  12. One year results of anti-VEGF treatment in pigment epithelial detachment secondary to macular degeneration.

    PubMed

    Yüksel, Harun; Türkcü, Fatih M; Sahin, Alparslan; Sahin, Muhammed; Cinar, Yasin; Cingü, Abdullah K; Ari, Seyhmus; Caça, Ihsan

    2013-01-01

    Pigment epithelial detachment (PED) may be seen in all stages of age-related macular degeneration (ARMD) and may lead to poor prognosis. In this study, we retrospectively examined the effect of anti-VEGF treatments in ARMD patients with vascularized PED. Medical records of 15 patients with PED secondary to ARMD were reviewed retrospectively. The diagnosis of PED was made with fundoscopy, fundus fluorescein angiography and optical coherence tomography. Patients were treated with intravitreal ranibizumab or/and bevacizumab and followed up for a minimum of one year. PED height and best corrected visual acuity (BCVA) was obtained before the first intravitreal anti-VEGF injection and again at the 1st, 3rd, 6th and 12th month after the injection. The mean baseline BCVA was 0.71 ± 0.48 logarithm of the minimal angle of resolution (logMAR) unit and the mean baseline PED height was 361 ± 153 µ. The mean injection count per eye was 3.9 ± 2.9. There was a significant reduce in mean PED height (247 ± 177 µ) also in 2 eyes PED completely resolved at the end of the follow up period. The mean BCVA at 12th month (0,69 ± 0,37) were not different from the baseline record. This retrospective case series showed that intravitreal anti-VEGF therapy preserved vision and reduced PED height in PED patients in a one-year follow-up period.

  13. A smart magnetic resonance contrast agent for selective copper sensing.

    PubMed

    Que, Emily L; Chang, Christopher J

    2006-12-20

    We describe the synthesis and properties of Copper-Gad-1 (CG1), a new type of smart magnetic resonance (MR) sensor for selective detection of copper. CG1 is composed of a gadolinium contrast agent core tethered to copper-selective recognition motif. Cu2+-induced modulation of inner-sphere water access to the Gd3+ center provides a sensing mechanism for reporting Cu2+ levels by reading out changes in longitudinal proton relaxivity values. CG1 features good selectivity for Cu2+ over abundant biological cations and a 41% increase in relaxivity upon Cu2+ binding and is capable of detecting micromolar changes in Cu2+ concentrations in aqueous media.

  14. In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Wang, Chung-Hao; Huang, Yao-Jhang; Chang, Chia-Wei; Hsu, Wen-Ming; Peng, Ching-An

    2009-08-01

    Despite aggressive multimodality therapy, most neuroblastoma-bearing patients relapse and survival rate remains poor. Exploration of alternative therapeutic modalities is needed. Carbon nanotubes (CNTs), revealing optical absorbance in the near-infrared region, warrant their merits in photothermal therapy. In order to specifically target disialoganglioside (GD2) overexpressed on the surface of neuroblastoma stNB-V1 cells, GD2 monoclonal antibody (anti-GD2) was conjugated to acidified CNTs. To examine the fate of anti-GD2 bound CNTs after incubation with stNB-V1 cells, rhodamine B was labeled on carboxylated CNTs functionalized with and without anti-GD2. Our results illustrated that anti-GD2-linked CNTs were extensively internalized by neuroblastoma cells via GD2-mediated endocytosis. In addition, we showed that anti-GD2 bound CNTs were not ingested by PC12 cells without GD2 expression. After anti-GD2 conjugated CNTs were incubated with neuroblastoma cells for 6 h and endocytosed by the cells, CNT-laden neuroblastoma cells were further irradiated with an 808 nm near-infrared (NIR) laser with intensity ramping from 0.6 to 6 W cm-2 for 10 min which was then maintained at 6 W cm-2 for an additional 5 min. Post-NIR laser exposure, and after being examined by calcein-AM dye, stNB-V1 cells were all found to undergo necrosis, while non-GD2 expressing PC12 cells all remained viable. Based on the in vitro study, CNTs bound with anti-GD2 have the potential to be utilized as a therapeutic thermal coupling agent that generates heat sufficient to selectively kill neuroblastoma cells under NIR laser light exposure.

  15. Development of Gd3N@C80 encapsulated redox nanoparticles for high-performance magnetic resonance imaging.

    PubMed

    Gao, Zhenyu; Nakanishi, Yusuke; Noda, Shoko; Omachi, Haruka; Shinohara, Hisanori; Kimura, Hiroyuki; Nagasaki, Yukio

    As novel magnetic resonance imaging (MRI) contrast agent, gadofullerene encapsulated redox nanoparticles (Gd 3 NPs) were prepared by encapsulation of Gd 3 N@C 80 in the core of core-shell-type polymer micelles composed of original polyamine with a reactive oxygen species (ROS)-scavenging ability. Because Gd 3 NPs possess biocompatible PEG shell with a smaller size (ca. 50 nm), they had high colloidal stability in a physiological environment, and showed low cytotoxicity. Specific accumulation of Gd 3 NPs in a tumor was confirmed in tumor-bearing mice after systemic administration. The tumor/muscle (T/M) ratio of the Gd ion reached five at 7.5 h after the administration. T 1 -weighted MRI signal enhancement of the T/M ratio increased by 8% at 6 h postinjection of Gd 3 NPs (Gd dose:14.35 μmol/kg). Although Gd 3 NPs showed a tendency for extended blood circulation, they did not have severe adverse effects, probably due to the confinement of Gd in a hydrophobic fullerene in addition to the ROS-scavenging capacity of these nanoparticles. In sharp contrast, systemic administration of Gd-chelate nanoparticles (GdCNPs) to mice disrupts liver function, increases leukocyte counts, and destroys spleen and skin tissues. Leaking of Gd ions from GdCNPs may cause such adverse effects. Based on these results, we expect that Gd 3 NPs is high-performance MRI contrast agents for tumor diagnosis.

  16. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging

    PubMed Central

    2008-01-01

    Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972

  17. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.

    PubMed

    Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter

    2015-02-22

    Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of

  18. Biocompatibility of Gd-Loaded Chitosan-Hyaluronic Acid Nanogels as Contrast Agents for Magnetic Resonance Cancer Imaging

    PubMed Central

    Gheran, Cecilia Virginia; Rigaux, Guillaume; Callewaert, Maité; Berquand, Alexandre; Chuburu, Françoise; Voicu, Sorina Nicoleta; Dinischiotu, Anca

    2018-01-01

    Although the research on nanogels incorporating Gd chelates for theranostic applications has grown exponentially in recent years, knowledge about their biocompatibility is limited. We compared the biocompatibility of Gd-loaded hyaluronic acid-chitosan-based nanogels (GdCA⊂CS-TPP/HA) with two chitosan concentrations (2.5 and 1.5 mg·mL−1 respectively) using SVEC4-10 murine lymph node endothelial cells. The sulforhodamine B method and released lactate dehydrogenase (LDH) activity were used as cell viability tests. Reactive oxygen species (ROS), reduced glutathione (GSH) and malondialdehyde (MDA) were measured by spectrophotometric and fluorimetric methods. Nrf-2 protein expression was evaluated by Western blot analysis and genotoxicity by alkaline comet assay. After 24 h, the cells viability was not affected by all types and doses of nanogels. The increase of ROS induced a low decrease of GSH concentration and a time-dependent raise of MDA one was produced by citric GdDOTA⊂CS-TPP/HA with a chitosan concentration of 1.5 mg·mL−1, at the highest dose applied. None of the tested nanogels induced changes in Nrf-2 protein expression. A slight but significant genotoxic effect was caused only by citric GdDOTA⊂CS-TPP/HA where CS concentration was 1.5 mg·mL−1. Our results showed a better biocompatibility with lymph node endothelial cells for Gd-loaded hyaluronic acid-chitosan based nanogels with a concentration in chitosan of 2.5 mg·mL−1. PMID:29597306

  19. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma.

    PubMed

    Peng, Hong; Zhang, Qiuyang; Li, Jiali; Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-03-29

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC.

  20. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-01-01

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC. PMID:26967384

  1. Serum Neutrophil Gelatinase-Associated Lipocalin and Urinary Kidney Injury Molecule-1 as Potential Biomarkers of Subclinical Nephrotoxicity After Gadolinium-Based and Iodinated-Based Contrast Media Exposure in Pediatric Patients with Normal Kidney Function

    PubMed Central

    Spasojević-Dimitrijeva, Brankica; Kotur-Stevuljević, Jelena; Đukić, Milan; Paripović, Dušan; Miloševski-Lomić, Gordana; Spasojević-Kalimanovska, Vesna; Pavićević, Polina; Mitrović, Jadranka; Kostić, Mirjana

    2017-01-01

    Background New renal biomarkers such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) show promise in early diagnosis of contrast media induced acute kidney injury (CI-AKI). The purpose of our study was to compare the subclinical nephrotoxicity (a condition without changes in standard renal biomarkers) of gadolinium-based contrast media (Gd-DTPA, gadopentetate dimeglumine) and iodinated-based contrast media (iopromide) in pediatric patients with normal kidney function. Material/Methods The first group (n=58) of patients included in the study were undergoing angiography with iopromide, and the second group (n=65) were undergoing magnetic resonance (MR) angiography/urography with Gd-DTPA administration. The concentrations of NGAL and KIM-1 were measured four times in the urine (pre-contrast, then at four hours, 24 hours, and 48 hours after contrast administration), and serum NGAL was measured at 0 (baseline), 24 hours, and 48 hours after contrast exposure. Results After 24 hours, serum NGAL increase of ≥25% was noticed in 32.6% of the patients in the iopromide group and in 25.45% of the patients in the gadolinium group, with significantly higher average percent of this increase in first group (62.23% vs. 36.44%, p=0.002). In the Gd-DTPA group, we observed a statistically significant increase in urinary KIM-1 24 hours after the procedure. Normalized urinary KIM-1, 24 hours after contrast exposure, was a better predictive factor for CI-AKI than other biomarkers (AUC 0.757, cut off 214 pg/mg, sensitivity 83.3%, specificity 54.2%, p=0.035). Conclusions In children with normal renal function, exposure to iodinated-based and gadolinium-based media might lead to subclinical nephrotoxicity, which could be detected using serum NGAL and urinary KIM-1. PMID:28874655

  2. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis.

    PubMed

    Alitalo, Annamari K; Proulx, Steven T; Karaman, Sinem; Aebischer, David; Martino, Stefania; Jost, Manuela; Schneider, Nicole; Bry, Maija; Detmar, Michael

    2013-07-15

    VEGF-C and VEGF-D were identified as lymphangiogenic growth factors and later shown to promote tumor metastasis, but their effects on carcinogenesis are poorly understood. Here, we have studied the effects of VEGF-C and VEGF-D on tumor development in the murine multistep chemical carcinogenesis model of squamous cell carcinoma by using a soluble VEGF-C/VEGF-D inhibitor. After topical treatment with a tumor initiator and repeated tumor promoter applications, transgenic mice expressing a soluble VEGF-C/VEGF-D receptor (sVEGFR-3) in the skin developed significantly fewer squamous cell tumors with a delayed onset when compared with wild-type mice or mice expressing sVEGFR-3 lacking the ligand-binding site. Epidermal proliferation was reduced in the carcinogen-treated transgenic skin, whereas epidermal keratinocyte proliferation in vitro was not affected by VEGF-C or VEGF-D, indicating indirect effects of sVEGFR-3 expression. Importantly, transgenic mouse skin was less sensitive to tumor promoter-induced inflammation, with reduced angiogenesis and blood vessel leakage. Cutaneous leukocytes, especially macrophages, were reduced in transgenic skin without major changes in macrophage polarization or blood monocyte numbers. Several macrophage-associated cytokines were also reduced in transgenic papillomas, although the dermal macrophages themselves did not express VEGFR-3. These findings indicate that VEGF-C/VEGF-D are involved in shaping the inflammatory tumor microenvironment that regulates early tumor progression. Our results support the use of VEGF-C/VEGF-D-blocking agents not only to inhibit metastatic progression, but also during the early stages of tumor growth. ©2013 AACR.

  3. Safety profile of topical VEGF neutralization at the cornea.

    PubMed

    Bock, Felix; Onderka, Jasmine; Rummelt, Carmen; Dietrich, Tina; Bachmann, Björn; Kruse, Friedrich E; Schlötzer-Schrehardt, Ursula; Cursiefen, Claus

    2009-05-01

    Bevacizumab eyedrops inhibit corneal neovascularization. The purpose of this study was to analyze the safety profile of VEGF-A neutralization at the ocular surface. Bevacizumab eyedrops (5 mg/mL) and an antimurine VEGF-A antibody (250 microg/mL) were applied to normal murine corneas five times a day for 7 and 14 days. Subsequently, corneas were analyzed for morphologic changes by light and electron microscopy. In a mouse model of corneal epithelial abrasion, the effects of topically applied anti-VEGF antibodies on epithelial wound healing were analyzed: the treatment group received bevacizumab (5 mg/mL) or the antimurine VEGF-A antibody (250 microg/mL) as eyedrops, and the control group received an equal volume of saline solution. After 12, 18, and 24 hours, corneas were photographed in vivo with and without fluorescein staining for morphometry. Afterwards the mice were killed, and eyes were removed for histology, immunohistochemistry with Ki67/DAPI, and electron microscopy. The effect of midterm anti-VEGF therapy on corneal nerve density was assessed by staining corneas treated with an FITC-conjugated anti-neurofilament antibody and morphometric analysis. Murine corneas treated with two different types of anti-VEGF antibody eyedrops did not show obvious corneal morphologic changes at the light and electron microscopic levels. Furthermore, anti-VEGF antibody eyedrops had no significant impact on the wound healing process after corneal epithelial injury or on normal murine corneal nerve fiber density. Topical neutralization of VEGF-A at the corneal surface does not have significant side effects on normal corneal epithelial wound healing, normal corneal integrity, or normal nerve fiber density. Therefore, anti-VEGF eyedrops seem to be a relatively safe option to treat corneal neovascularization.

  4. The key energy scales of Gd-based metallofullerene determined by resonant inelastic x-ray scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yu-Cheng; Wray, L. Andrew; Huang, Shih-Wen

    Endohedral metallofullerenes, formed by encaging Gd inside fullerenes like C 80, can exhibit enhanced proton relaxitivities compared with other Gd-chelates, making them the promising contrast agents for magnetic resonance imaging (MRI). However, the underlying key energy scales of Gd x Sc 3-xN@C 80 (x = 1–3) remain unclear. Here, we carry out resonant inelastic x-ray scattering (RIXS) experiments on Gd xSc 3-xN@C 80 at Gd N 4,5-edges to directly study the electronic structure and spin flip excitations of Gd 4f electrons. Compared with reference Gd 2O 3 and contrast agent Gadodiamide, the features in the RIXS spectra of all metallofullerenesmore » exhibit broader spectral lineshape and noticeable energy shift. Using atomic multiplet calculations, we have estimated the key energy scales such as the inter-site spin exchange field, intra-atomic 4f–4f Coulomb interactions, and spin-orbit coupling. The implications of these parameters to the 4f states of encapsulated Gd atoms are discussed.« less

  5. The key energy scales of Gd-based metallofullerene determined by resonant inelastic x-ray scattering spectroscopy

    DOE PAGES

    Shao, Yu-Cheng; Wray, L. Andrew; Huang, Shih-Wen; ...

    2017-08-15

    Endohedral metallofullerenes, formed by encaging Gd inside fullerenes like C 80, can exhibit enhanced proton relaxitivities compared with other Gd-chelates, making them the promising contrast agents for magnetic resonance imaging (MRI). However, the underlying key energy scales of Gd x Sc 3-xN@C 80 (x = 1–3) remain unclear. Here, we carry out resonant inelastic x-ray scattering (RIXS) experiments on Gd xSc 3-xN@C 80 at Gd N 4,5-edges to directly study the electronic structure and spin flip excitations of Gd 4f electrons. Compared with reference Gd 2O 3 and contrast agent Gadodiamide, the features in the RIXS spectra of all metallofullerenesmore » exhibit broader spectral lineshape and noticeable energy shift. Using atomic multiplet calculations, we have estimated the key energy scales such as the inter-site spin exchange field, intra-atomic 4f–4f Coulomb interactions, and spin-orbit coupling. The implications of these parameters to the 4f states of encapsulated Gd atoms are discussed.« less

  6. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma.

    PubMed

    Pritchard-Jones, R O; Dunn, D B A; Qiu, Y; Varey, A H R; Orlando, A; Rigby, H; Harper, S J; Bates, D O

    2007-07-16

    Malignant melanoma is the most lethal of the skin cancers and the UK incidence is rising faster than that of any other cancer. Angiogenesis - the growth of new vessels from preexisting vasculature - is an absolute requirement for tumour survival and progression beyond a few hundred microns in diameter. We previously described a class of anti-angiogenic isoforms of VEGF, VEGF(xxx)b, that inhibit tumour growth in animal models, and are downregulated in some cancers, but have not been investigated in melanoma. To determine whether VEGF(xxx)b expression was altered in melanoma, PCR and immunohistochemistry of archived human tumour samples were used. In normal epidermis and in a proportion of melanoma samples, VEGF(xxx)b staining was seen. Some melanomas had much weaker staining. Subsequent examination revealed that expression was significantly reduced in primary melanoma samples (both horizontal and vertical growth phases) from patients who subsequently developed tumour metastasis compared with those who did not (analysis of variance (ANOVA) P<0.001 metastatic vs nonmetastatic), irrespective of tumour thickness, while the surrounding epidermis showed no difference in expression. Staining for total VEGF expression showed staining in metastatic and nonmetastatic melanomas, and normal epidermis. An absence of VEGF(xxx)b expression appears to predict metastatic spread in patients with primary melanoma. These results suggest that there is a switch in splicing as part of the metastatic process, from anti-angiogenic to pro-angiogenic VEGF isoforms. This may form part of a wider metastatic splicing phenotype.

  7. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2015-09-01

    A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.

  8. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    PubMed

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  9. Engineered contrast agents in a single structure for T1-T2 dual magnetic resonance imaging.

    PubMed

    Cabrera-García, Alejandro; Checa-Chavarria, Elisa; Pacheco-Torres, Jesús; Bernabeu-Sanz, Ángela; Vidal-Moya, Alejandro; Rivero-Buceta, Eva; Sastre, Germán; Fernández, Eduardo; Botella, Pablo

    2018-04-05

    The development of contrast agents (CAs) for Magnetic Resonance Imaging (MRI) with T1-T2 dual-mode relaxivity requires the accurate assembly of T1 and T2 magnetic centers in a single structure. In this context, we have synthesized a novel hybrid material by monitoring the formation of Prussian Blue analogue Gd(H2O)4[Fe(CN)6] nanoparticles with tailored shape (from nanocrosses to nanorods) and size, and further protection with a thin and homogeneous silica coating through hydrolysis and polymerization of silicate at neutral pH. The resulting Gd(H2O)4[Fe(CN)6]@SiO2 magnetic nanoparticles are very stable in biological fluids. Interestingly, this combination of Gd and Fe magnetic centers closely packed in the crystalline network promotes a magnetic synergistic effect, which results in significant improvement of longitudinal relaxivity with regards to soluble Gd3+ chelates, whilst keeping the high transversal relaxivity inherent to the iron component. As a consequence, this material shows excellent activity as MRI CA, improving positive and negative contrasts in T1- and T2-weighted MR images, both in in vitro (e.g., phantom) and in vivo (e.g., Sprague-Dawley rats) models. In addition, this hybrid shows a high biosafety profile and has strong ability to incorporate organic molecules on the surface with variable functionality, displaying great potential for further clinical application.

  10. Subfoveal Choroidal Thickness in Eyes with Neovascular Age-Related Macular Degeneration Treated with Anti-Vascular Endothelial Growth Factor Agents.

    PubMed

    Kanadani, Tereza Cristina Moreira; Veloso, Carlos Eduardo; Nehemy, Márcio B

    2018-05-16

    We aimed to assess the subfoveal choroidal thickness (SFChT) and the effect of treatment with anti-vascular endothelial growth factor (anti-VEGF) agents on the SFChT in age-related macular degeneration (AMD) subtypes. We enrolled 128 eyes of 107 patients with neovascular AMD (60 women; 47 men; mean age, 73.6 ± 8.9 years), and prospectively evaluated the best-corrected visual acuity (BCVA) and SFChT at baseline and at 3, 6, and 12 months after treatment with anti-VEGF agents. Patients were assigned to the typical AMD, polypoidal choroidal vasculopathy (PCV), and retinal angiomatous proliferation (RAP) subgroups. In total, 85 (66.4%), 31 (24.2%), and 12 (9.4%) eyes were assigned to the typical AMD, PCV, and RAP subgroups, respectively. The baseline mean BCVA was 0.75 ± 0.26, 0.72 ± 0.21, and 0.77 ± 0.24 logMAR in the typical AMD, PCV, and RAP subgroups, respectively (p = 0.774). The mean baseline SFChT was 203.20 ± 35.80, 271.80 ± 24.50, and 182.93 ± 31.31 µm, respectively (p < 0.001). Mean SFChT significantly decreased from baseline to 3, 6, and 12 months after treatment. The RAP subtype presented a significantly higher decrease in SFChT compared to the other subtypes (p = 0.01). The percentage reduction in SFChT was not significantly correlated with the number of injections (r = -0.02; p = 0.823). No association was observed between baseline SFChT and final visual acuity at 12 months (r = 0.0; p = 0.586). SFChT was greatest in eyes with PCV and least in eyes with RAP. The reduction in SFChT after treatment was greater in the RAP cases. The decrease in SFChT after 12 months of anti-VEGF treatment was not associated with the number of injections and there was no correlation between the baseline SFChT and visual acuity in all AMD subtypes. © 2018 S. Karger AG, Basel.

  11. In vivo detection of inducible nitric oxide synthase in rodent gliomas.

    PubMed

    Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2010-03-01

    Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. (c) 2009 Elsevier Inc. All rights reserved.

  12. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  13. Outcome of 5-Year Treatment of Neovascular Age-Related Macular Degeneration With Intravitreal Anti-VEGF Using "Treat and Extend" Regimen.

    PubMed

    Jaki Mekjavic, Polona; Zaletel Benda, Polona

    2018-01-01

    The aim of this study is twofold. First , to evaluate the long-term outcome of anti-vascular endothelial growth factor (anti-VEGF) treatment in a clinical setting using the "treat-and-extend regimen" (TER) in patients with neovascular age-related macular degeneration (nAMD). Second , to determine the proportion of patients treated with anti-VEGF with good visual acuity (VA), i.e., vision sufficient to maintain a high level of independence. We conducted a single center retrospective review of patients with treatment-naive nAMD who were treated with anti-VEGF. Patients were treated with anti-VEGF intravitreal injections according to the TER. Patients started treatment with monthly injections of either bevacizumab (1.25 mg/0.05 mL) or ranibizumab (0.5 mg/0.05 mL) until there were no signs present of choroidal neovascularization (CNV) activity. CNV activity was determined from fundus examination and SD-OCT imaging. Follow-up administration of intravitreal injections was extended by 2-week intervals, up to a total of 14 weeks, provided no signs of CNV activity were detected. In some patients, the first treatment was replaced with aflibercept (2 mg/0.05 mL). On the basis of the inclusion criterion for the study, that patients had to be treated for 5 years, a total of 101 patients were included in the study. In all patients, one eye was treated for a 5-year period, and thus we studied 101 eyes. Best corrected VA was analyzed at baseline and each year during the 5-year follow-up. VA improved initially after year 1 of the treatment. VA decreased in the subsequent 4 years of treatment, but remained significantly higher from year 1 to year 3 of the treatment compared to baseline values. Patients with good VA followed a similar trend: the proportion increased in the first year, and thereafter gradually decreased during the course of the 5-year follow up. At year 5, the number of patients with good VA decreased to baseline values. TER with anti-VEGF for n

  14. Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas.

    PubMed

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; De Souza, Patricia Coutinho; Henry, Leah; Lupu, Florea; Silasi-Mansat, Robert; Ehrenshaft, Marilyn; Mason, Ronald P; Gomez-Mejiba, Sandra E; Ramirez, Dario C

    2013-12-01

    Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p<0.001) in MR signal intensity or a significant decrease (p<0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p<0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin-Gd-DTPA-biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p<0.001) and 3-nitrotyrosine (3-NT) (p<0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model. © 2013.

  15. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes

    NASA Astrophysics Data System (ADS)

    Hu, Fengqin; Zhao, Yong Sheng

    2012-09-01

    Magnetic resonance imaging (MRI) yields high spatially resolved contrast with anatomical details for diagnosis, deeper penetration depth and rapid 3D scanning. To improve imaging sensitivity, adding contrast agents accelerates the relaxation rate of water molecules, thereby greatly increasing the contrast between specific issues or organs of interest. Currently, the majority of T1 contrast agents are paramagnetic molecular complexes, typically Gd(iii) chelates. Various nanoparticulate T1 and T1/T2 contrast agents have recently been investigated as novel agents possessing the advantages of both the T1 contrast effect and nanostructural characteristics. In this minireview, we describe the recent progress of these inorganic nanoparticle-based MRI contrast agents. Specifically, we mainly report on Gd and Mn-based inorganic nanoparticles and ultrasmall iron oxide/ferrite nanoparticles.

  16. Comparison of efficacy between anti-vascular endothelial growth factor (VEGF) and laser treatment in Type-1 and threshold retinopathy of prematurity (ROP).

    PubMed

    Li, Zijing; Zhang, Yichi; Liao, Yunru; Zeng, Rui; Zeng, Peng; Lan, Yuqing

    2018-01-30

    Retinopathy of Prematurity (ROP) is one of the most common causes of childhood blindness worldwide. Comparisons of anti-VEGF and laser treatments in ROP are relatively lacking, and the data are scattered and limited. The objective of this meta-analysis is to compare the efficacy of both treatments in type-1 and threshold ROP. A comprehensive literature search on ROP treatment was conducted using PubMed and Embase up to March 2017 in all languages. Major evaluation indexes were extracted from the included studies by two authors. The fixed-effects and random-effects models were used to measure the pooled estimates. The test of heterogeneity was performed using the Q statistic. Ten studies were included in this meta-analysis. Retreatment incidence was significantly increased for anti-VEGF (OR 2.52; 95% CI 1.37 to 4.66; P = 0.003) compared to the laser treatment, while the incidences of eye complications (OR 0.29; 95% CI 0.10 to 0.82; P = 0.02) and myopia were significantly decreased with anti-VEGF compared to the laser treatment. However, there was no difference in the recurrence incidence (OR 1.86; 95% CI 0.37 to 9.40; P = 0.45) and time between treatment and retreatment (WMD 7.54 weeks; 95% CI 2.00 to 17.08; P = 0.12). This meta-analysis indicates that laser treatment may be more efficacious than anti-VEGF treatment. However, the results of this meta-analysis also suggest that laser treatment may cause more eye complications and increase myopia. Large-scale prospective RCTs should be performed to assess the efficacy and safety of anti-VEGF versus laser treatment in the future.

  17. MR of the small bowel with a biphasic oral contrast agent (polyethylene glycol): technical aspects and findings in patients affected by Crohn's disease.

    PubMed

    Laghi, Andrea; Paolantonio, Pasquale; Iafrate, Franco; Borrelli, Osvaldo; Dito, Lucia; Tomei, Ernesto; Cucchiara, Salvatore; Passariello, Roberto

    2003-01-01

    To report our experience using MR of the small bowel with polyethylene glycol (PEG) solution as an oral contrast agent in a population of adults and children with known Crohn's disease. 40 patients (29 males; 11 females), 15 adults (age range 24-52 years) and 25 children (age range 5-17 years), with known Crohn's disease, underwent MR of the small bowel using a supeconductive 1.5 T magnet, and polyethylene glycol solution as an oral contrast agent. The fixed amount of contrast agent was 750-1000 ml for adults and 10 ml/kg of body weight for children. The Crohn's Disease Activity Index (CDAI) was available in all patients. Our study protocol included the acquisition of T2-weighted half-Fourier single-shot turbo spin-echo (HASTE) sequences and true fast imaging in the steady-state precession (true-FISP) sequences, followed by the acquisition of "spoiled" 2D gradient echo T1-weighted sequences with fat suppression (FLASH, fast low-angle shot) or alternatively "spoiled" 3D (VIBE, volume interpolated breath-hold examination), acquired 70 seconds after intravenous administration of gadopentetate dimeglumine (Gd-DTPA) (0,1 mmol/kg). A specific MR score was created and calculated for each patient and was compared by means of the Spearman rank with CDAI. In all patients no significant side effects were observed and the MR examination was well tolerated even by paediatric patients. In all cases MR showed a small bowel wall thickening (> 4 mm) in the terminal ileum, with lumen stenosis in 26 patients. In 3 cases pathological segments proximal to the terminal ileum were observed and in another 3 cases caecal involvement was visible. The MR examination was able to show abnormalities of perivisceral fat tissue in 15 patients, mesenteric lymphadenopathy in 1 patient and abdominal abscess in 1 case. The Spearman rank showed a statistically significant correlation between CDAI and the MR score (r = 0.91, P = 0,0001). MR using PEG as an oral contrast agent could be considered a test

  18. Characterization of image heterogeneity using 2D Minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent.

    PubMed

    Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M

    2009-05-01

    A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.

  19. A Rare Form of Guillan Barre Syndrome: A Child Diagnosed with Anti-GD1a and Anti-GD1b Positive Pharyngeal-Cervical-Brachial Variant.

    PubMed

    Uysalol, Metin; Tatlı, Burak; Uzel, Nedret; Cıtak, Agop; Aygün, Erhan; Kayaoğlu, Semra

    2013-09-01

    Pharyngeal-cervical-brachial (PCB) variant is a rare form of Guillan-Barre Syndrome (GBS). Antibodies against other membrane proteins like GM1b and GD1a have been found only in a small number of patients with Guillan Barre syndrome variant. Here, we report a 5.5 year-old boy diagnosed early with positive GD1a and GD1b gangliosides of Guillan-Barre syndrome pharyngeal cervical-Brachial variant, who improved and recovered fully in a short period. This is in contrast to those whose recovery period prolongs in spite of early diagnosis and appropriate treatment and/or those who experience incomplete recovery. In summary, diagnosis of PCB variant of GBS should be considered in infants with sudden onset bulbar symptoms and muscle weakness, and it should be kept in mind that early diagnosis and appropriate treatment can give successful outcomes.

  20. Recurrent medulloblastoma: Frequency of tumor enhancement on Gd-DTPA MR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, N.; Mendelsohn, D.; Mulne, A.

    1990-05-01

    Thirty-two children with medulloblastoma were evaluated postoperatively with conventional and gadolinium-enhanced MR imaging. Eleven patients had abnormal cranial MR studies; nine of these had recurrent tumor. In six patients recurrent tumor enhanced with Gd, while in the other three patients recurrent tumor did not enhance. The remaining two patients had areas of abnormal Gd enhancement that were caused by radiation-induced breakdown of the blood-brain barrier rather than by recurrent tumor. This study shows that not all recurrent medulloblastoma enhances and that the absence of Gd enhancement does not necessarily indicate the absence of recurrent tumor.

  1. Recurrent medulloblastoma: Frequency of tumor enhancement on Gd-DTPA MR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, N.; Mendelsohn, D.; Mulne, A.

    1990-07-01

    Thirty-two children with medulloblastoma were evaluated postoperatively with conventional and gadolinium-enhanced MR imaging. Eleven patients had abnormal cranial MR studies; nine of these had recurrent tumor. In six patients recurrent tumor enhanced with Gd, while in the other three patients recurrent tumor did not enhance. The remaining two patients had areas of abnormal Gd enhancement that were caused by radiation-induced breakdown of the blood-brain barrier rather than by recurrent tumor. This study shows that not all recurrent medulloblastoma enhances and that the absence of Gd enhancement does not necessarily indicate the absence of recurrent tumor.

  2. NGF/anti-VEGF combined exposure protects RCS retinal cells and photoreceptors that underwent a local worsening of inflammation.

    PubMed

    Rocco, Maria Luisa; Balzamino, Bijorn Omar; Esposito, Graziana; Petrella, Carla; Aloe, Luigi; Micera, Alessandra

    2017-03-01

    Our previous study highlighted the potential nerve growth factor (NGF) effect on damaged photoreceptors from a rat model of spontaneous Retinitis Pigmentosa (RP). Herein, we tested the combined NGF/anti-vascular endothelial growth factor (αVEGF) effect on cultured retinal cells isolated from Royal College of Surgeons (RCS) rats receiving an intravitreal VEGF injection (iv-VEGF) to exacerbate retinal inflammation/neovascularization. RCS (n = 75) rats were equally grouped as untreated (n = 25), iv-saline (single saline intravitreal injection; n = 25) and iv-VEGF (single VEGF intravitreal injection; n = 25). Morphological and biochemical analysis or in vitro stimulations with the biomolecular investigation were carried out on explanted retinas. Isolated retinal cells were treated with NGF and αVEGF, either alone or in combination, for 6 days and cells were harvested for morphological and biomolecular analyses. Infiltrating inflammatory cells were detected in iv-VEGF exposed RCS retinas, indicative of exacerbated inflammation and neovascularization. In cell cultures, NGF/αVEGF significantly increased retinal cell survival as well as rhodopsin expression and neurite outgrowth in photoreceptors. Particularly, NGF/αVEGF upregulated Bcl-2 mRNA, downregulated Bax mRNA, upregulated trkA NGFR mRNA and finally upregulated both NGF mRNA and protein. These data confirm and extend our previous findings on NGF-photoreceptor crosstalk, highlighting that the NGF/αVEGF combination might be an interesting approach for improving neuroprotection of RCS retinal cells and likewise photoreceptors in the presence of neovascularization. Further studies are required to translate this in vitro approach into clinical practice.

  3. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Maalej, Nabil M.; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A.

    2015-05-01

    We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu3+ nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu3+ ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state 5D0 to the 7F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

  4. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging.

    PubMed

    Maalej, Nabil M; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A

    2015-01-01

    We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu(3+) nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu(3+) ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state (5)D0 to the (7)F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

  5. Role of β-Interferon Inducer (DEAE-Dextran) in Tumorigenesis by VEGF and NOTCH1 Inhibition along with Apoptosis Induction.

    PubMed

    Bakrania, Anita K; Variya, Bhavesh C; Patel, Snehal S

    2017-01-01

    As a novel target for breast cancer, interferon inducers have found its role as anti-angiogenic agents with diethylaminoethyl dextran (DEAE-Dextran) being a molecule used for centuries as a transfection agent. Our results herein offer an explanation for the emergence of DEAE-Dextran as an anti-tumor agent for TNBC with in-depth mechanistic approach as an anti-angiogenic molecule. DEAE-Dextran has found to possess cytotoxic activity demonstrated during the various in vitro cytotoxicity assays; moreover, as an anti-oxidant, DEAE-Dextran has shown to possess excellent reactive oxygen species scavenging activity. The interferon inducing capacity of DEAE-Dextran was determined qualitatively as well as quantitatively specifically demonstrating overexpression of β-interferon. As a measure of anti-proliferative activity, DEAE-Dextran exhibited reduced ki67, p53, and PCNA levels. Also, overexpression of CK5/6 and p63 in DEAE-Dextran treated animals indicated improvement in breast cell morphology along with an improvement in cell-cell adhesion by virtue of upregulation of β-catenin and E-cadherin. Anti-angiogenic property of DEAE-Dextran was concluded by the downregulation of CD31, VEGF, and NOTCH1 both in vivo and in vitro . Further, apoptosis due to DEAE-Dextran, initially determined by downregulation of Bcl2, was confirmed with flow cytometry. Overall, results are defensive of DEAE-Dextran as an emerging anti-tumor agent with mechanisms pertaining to β-interferon induction with probable VEGF and NOTCH1 inhibition as well as apoptosis which still needs to be studied in further depth.

  6. Role of β-Interferon Inducer (DEAE-Dextran) in Tumorigenesis by VEGF and NOTCH1 Inhibition along with Apoptosis Induction

    PubMed Central

    Bakrania, Anita K.; Variya, Bhavesh C.; Patel, Snehal S.

    2017-01-01

    As a novel target for breast cancer, interferon inducers have found its role as anti-angiogenic agents with diethylaminoethyl dextran (DEAE-Dextran) being a molecule used for centuries as a transfection agent. Our results herein offer an explanation for the emergence of DEAE-Dextran as an anti-tumor agent for TNBC with in-depth mechanistic approach as an anti-angiogenic molecule. DEAE-Dextran has found to possess cytotoxic activity demonstrated during the various in vitro cytotoxicity assays; moreover, as an anti-oxidant, DEAE-Dextran has shown to possess excellent reactive oxygen species scavenging activity. The interferon inducing capacity of DEAE-Dextran was determined qualitatively as well as quantitatively specifically demonstrating overexpression of β-interferon. As a measure of anti-proliferative activity, DEAE-Dextran exhibited reduced ki67, p53, and PCNA levels. Also, overexpression of CK5/6 and p63 in DEAE-Dextran treated animals indicated improvement in breast cell morphology along with an improvement in cell–cell adhesion by virtue of upregulation of β-catenin and E-cadherin. Anti-angiogenic property of DEAE-Dextran was concluded by the downregulation of CD31, VEGF, and NOTCH1 both in vivo and in vitro. Further, apoptosis due to DEAE-Dextran, initially determined by downregulation of Bcl2, was confirmed with flow cytometry. Overall, results are defensive of DEAE-Dextran as an emerging anti-tumor agent with mechanisms pertaining to β-interferon induction with probable VEGF and NOTCH1 inhibition as well as apoptosis which still needs to be studied in further depth. PMID:29311933

  7. Multifunctional rare-Earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents.

    PubMed

    Abdesselem, Mouna; Schoeffel, Markus; Maurin, Isabelle; Ramodiharilafy, Rivo; Autret, Gwennhael; Clément, Olivier; Tharaux, Pierre-Louis; Boilot, Jean-Pierre; Gacoin, Thierry; Bouzigues, Cedric; Alexandrou, Antigoni

    2014-11-25

    Collecting information on multiple pathophysiological parameters is essential for understanding complex pathologies, especially given the large interindividual variability. We report here multifunctional nanoparticles which are luminescent probes, oxidant sensors, and contrast agents in magnetic resonance imaging (MRI). Eu(3+) ions in an yttrium vanadate matrix have been demonstrated to emit strong, nonblinking, and stable luminescence. Time- and space-resolved optical oxidant detection is feasible after reversible photoreduction of Eu(3+) to Eu(2+) and reoxidation by oxidants, such as H2O2, leading to a modulation of the luminescence emission. The incorporation of paramagnetic Gd(3+) confers in addition proton relaxation enhancing properties to the system. We synthesized and characterized nanoparticles of either 5 or 30 nm diameter with compositions of GdVO4 and Gd0.6Eu0.4VO4. These particles retain the luminescence and oxidant detection properties of YVO4:Eu. Moreover, the proton relaxivity of GdVO4 and Gd0.6Eu0.4VO4 nanoparticles of 5 nm diameter is higher than that of the commercial Gd(3+) chelate compound Dotarem at 20 MHz. Nuclear magnetic resonance dispersion spectroscopy showed a relaxivity increase above 10 MHz. Complexometric titration indicated that rare-earth leaching is negligible. The 5 nm nanoparticles injected in mice were observed with MRI to concentrate in the liver and the bladder after 30 min. Thus, these multifunctional rare-earth vanadate nanoparticles pave the way for simultaneous optical and magnetic resonance detection, in particular, for in vivo localization evolution and reactive oxygen species detection in a broad range of physiological and pathophysiological conditions.

  8. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying

    2015-05-01

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  9. Synthesis, 99m Tc-labeling, and preliminary biological evaluation of DTPA-melphalan conjugates.

    PubMed

    Wang, Jianjun; Yang, Wenjiang; Xue, Jinquan; Zhang, Yanhua; Liu, Yu

    2017-12-01

    Melphalan (MFL) is a typical nitrogen mustard for the treatment of many types of cancer. For the purpose to develop novel 99m Tc-labeled tumor imaging agents with SPECT, MFL was directly labeled by 99m Tc using diethylene triamine pentacetate acid (DTPA) as bifunctional chelating agent. The novel ligands were successfully synthesized by conjugation of DTPA to MFL to get monosubstituted DTPA-MFL and bis-substituted DTPA-2MFL. Radiolabeling was performed in high yield to get 99m Tc-DTPA-MFL and 99m Tc-DTPA-2MFL, respectively, which were hydrophilic and stable at room temperature. The high initial tumor uptake with retention, good tumor/muscle ratios, and satisfactory scintigraphic images suggested the potential of 99m Tc-DTPA-MFL and 99m Tc-DTPA-2MFL for tumor imaging. However, the slow normal tissue clearance would be a great obstacle. Further modification on the linker and/or 99m Tc-chelate to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Preparation, spectroscopic and high field NMR relaxometry studies of gadolinium(III) complexes with the asymmetric tetraamine 1,4,7,11-tetraazaundecane

    NASA Astrophysics Data System (ADS)

    Hatzipanayioti, Despina; Veneris, Antonis

    2009-10-01

    The reaction of Gd(III) with asymmetric tetramine 1,4,7,11-tetraazaundecane (2,2,3-tet, L1) ligand has been studied via NMR spectroscopy. The ligand proton longitudinal relaxation rates ( R1) have been used to estimate the distances of these protons from the Gd(III) center, in Gd(III)- L1 reaction solutions, in H 2O/D 2O 5/1 mixtures. Two Gd(III) complexes [Gd(III)( L1)(NH 3)(H 2O) 4](CH 3COO) 3·2H 2O ( 1) and [Gd(III)( L1)(NH 3)(H 2O) 2]Cl 3·EtOH ( 2) have been isolated and characterized by elemental analyses, TGA, IR, NMR and relaxometry measurements. The NMR relaxation measurements of 2 in aqueous solutions have been performed, under various temperature or concentration conditions, and compared with those of the commercial contrast agents Gd(III)-DTPA and Gd(III)-DTPA-BMA. It has also been studied the influence of (i) the Gd(III) inner-sphere water molecule number ( q) alteration and (ii) the steric constraint enhancement on the metal site, over the relaxation rate values of the parent aqueous solution of Gd(III)-2,2,3-tet, and of the aqueous solutions of 2.

  11. A Rare Form of Guillan Barre Syndrome: A Child Diagnosed with Anti-GD1a and Anti-GD1b Positive Pharyngeal-Cervical-Brachial Variant

    PubMed Central

    Uysalol, Metin; Tatlı, Burak; Uzel, Nedret; Çıtak, Agop; Aygün, Erhan; Kayaoğlu, Semra

    2013-01-01

    Background: Pharyngeal-cervical-brachial (PCB) variant is a rare form of Guillan-Barre Syndrome (GBS). Antibodies against other membrane proteins like GM1b and GD1a have been found only in a small number of patients with Guillan Barre syndrome variant. Case Report: Here, we report a 5.5 year-old boy diagnosed early with positive GD1a and GD1b gangliosides of Guillan-Barre syndrome pharyngeal cervical-Brachial variant, who improved and recovered fully in a short period. This is in contrast to those whose recovery period prolongs in spite of early diagnosis and appropriate treatment and/or those who experience incomplete recovery. Conclusion: In summary, diagnosis of PCB variant of GBS should be considered in infants with sudden onset bulbar symptoms and muscle weakness, and it should be kept in mind that early diagnosis and appropriate treatment can give successful outcomes. PMID:25207134

  12. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents--effect of liposome size and internal gadolinium concentration.

    PubMed

    Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan

    2008-10-01

    Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.

  13. NaGdF4:Nd3+/Yb3+ Nanoparticles as Multimodal Imaging Agents

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco; Rightsell, Chris; Kumar, Ga; Giuliani, Jason; Monton, Car; Sardar, Dhiraj

    Medical imaging is a fundamental tool used for the diagnosis of numerous ailments. Each imaging modality has unique advantages; however, they possess intrinsic limitations. Some of which include low spatial resolution, sensitivity, penetration depth, and radiation damage. To circumvent this problem, the combination of imaging modalities, or multimodal imaging, has been proposed, such as Near Infrared Fluorescence imaging (NIRF) and Magnetic Resonance Imaging (MRI). Combining individual advantages, specificity and selectivity of NIRF with the deep penetration and high spatial resolution of MRI, it is possible to circumvent their shortcomings for a more robust imaging technique. In addition, both imaging modalities are very safe and minimally invasive. Fluorescent nanoparticles, such as NaGdF4:Nd3 +/Yb3 +, are excellent candidates for NIRF/MRI multimodal imaging. The dopants, Nd and Yb, absorb and emit within the biological window; where near infrared light is less attenuated by soft tissue. This results in less tissue damage and deeper tissue penetration making it a viable candidate in biological imaging. In addition, the inclusion of Gd results in paramagnetic properties, allowing their use as contrast agents in multimodal imaging. The work presented will include crystallographic results, as well as full optical and magnetic characterization to determine the nanoparticle's viability in multimodal imaging.

  14. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  15. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  16. Study on choroidal neovascularization with anti-VEGF treatment in the mouse retina using optical coherence tomography angiography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Jang Ryul; Choi, WooJhon; Kim, Jaeryung; Hong, Hye Kyong; Kim, Yongjoo; Hwang, Yoonha; Park, Sang Jun; Woo, Se Joon; Kim, Pilhan; Park, Kyu Hyung; Koh, Gou Young; Oh, Wang-Yuhl

    2017-02-01

    To understand the pathogenesis of ophthalmic disease, utilizing small animal models such as mouse is necessary because of their ease of maintenance and availability. For identifying pathophysiology and drug development of retinal diseases in mouse model, optical coherence tomography angiography (OCTA) is promising imaging modality visualizing not only microstructure but also microvasculature. In this study, we serially imaged 3D structure and angiography of laser-induced choroidal neovascularization (CNV) in the mouse retina with/without anti-VEGF treatment. Also, the volume changes of CNV and avascular region in choroid layer are measured for identifying effects of anti-VEGF. A lab-built high-speed OCTA prototype using the wavelength-swept laser centered at 1040 nm with 230 kHz A-scan rate acquired 3-D volumetric data consisted of 1024 x 1024 x 3 A-scans. The OCTA scanned 1.7 mm x 1.7 mm area around ONH. For obtaining angiography, amplitude decorrelation from 3 consecutive B-scans at each position was generated. Seven days after the laser photocoagulation at mouse retina for generation of the laser-induced CNV, intravitreal administration of Fc and VEGF-Trap was given in the therapeutic arm. The OCTA were performed at 6, 14, 21 and 35 days after laser photocoagulation. Vasculatures of inner retina, outer retina and choroid layers were separately visualized after RPE flattening and layer segmentation. To investigate therapeutic effects of anti-VEGF treatment, the relative area and volume of CNV in outer retina layer is measured. Also, total volume of avascular zone surrounding the laser injury site in choroid layer is also analyzed.

  17. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    PubMed Central

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  18. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S

    2016-03-01

    Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.

  19. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging

    PubMed Central

    Yan, Yuling; Sun, Xilin; Shen, Baozhong

    2017-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method. PMID:28415647

  20. Is DTPA a good competing chelating agent for Th(IV) in human serum and suitable in targeted alpha therapy?

    PubMed

    Le Du, Alicia; Sabatié-Gogova, Andrea; Morgenstern, Alfred; Montavon, Gilles

    2012-04-01

    The interaction between thorium and human serum components was studied using difference ultraviolet spectroscopy (DUS), ultrafiltration and high-pressure-anion exchange chromatography (HPAEC) with external inductively conducted plasma mass spectrometry (ICP-MS) analysis. Experimental data are compared with modelling results based on the law of mass action. Human serum transferrin (HSTF) interacts strongly with Th(IV), forming a ternary complex including two synergistic carbonate anions. This complex governs Th(IV) speciation under blood serum conditions. Considering the generally used Langmuir-type model, values of 10(33.5) and 10(32.5) were obtained for strong and weak sites, respectively. We showed that trace amounts of diethylene triamine pentaacetic acid (DTPA) cannot complex Th(IV) in the blood serum at equilibrium. Unexpectedly this effect is not related to the competition with HSTF but is due to the strong competition with major divalent metal ions for DTPA. However, Th-DTPA complex was shown to be stable for a few hours when it is formed before addition in the biological medium; this is related to the high kinetic stability of the complex. This makes DTPA a potential chelating agent for synthesis of (226)Th-labelled biomolecules for application in targeted alpha therapy. Copyright © 2011 Elsevier Inc. All rights reserved.