Science.gov

Sample records for contrast mri perfusion

  1. Value of Dynamic Susceptibility Contrast Perfusion MRI in the Acute Phase of Transient Global Amnesia

    PubMed Central

    Förster, Alex; Al-Zghloul, Mansour; Kerl, Hans U.; Böhme, Johannes; Mürle, Bettina; Groden, Christoph

    2015-01-01

    Purpose Transient global amnesia (TGA) is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET) or single-photon emission computed tomography (SPECT). In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI) in TGA in the acute phase. Methods From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF) and volume (CBV)) were generated and analyzed by use of Signal Processing In NMR-Software (SPIN). CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL). Results Five TGA patients were included (2 men, 3 women). On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus. Conclusions Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in

  2. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  3. Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI.

    PubMed

    Liu, Wei; Wang, Binquan; Wolfowitz, Rachel; Yeh, Ping-Hong; Nathan, Dominic E; Graner, John; Tang, Haiying; Pan, Hai; Harper, Jamie; Pham, Dzung; Oakes, Terrence R; French, Louis M; Riedy, Gerard

    2013-06-01

    Perfusion deficits in patients with mild traumatic brain injury (TBI) from a military population were characterized by dynamic susceptibility contrast perfusion imaging. Relative cerebral blood flow (rCBF) was calculated by a model-independent deconvolution approach from the tracer concentration curves following a bolus injection of gadolinium diethylenetriaminepentaacetate (Gd-DTPA) using both manually and automatically selected arterial input functions (AIFs). Linear regression analysis of the mean values of rCBF from selected regions of interest showed a very good agreement between the two approaches, with a regression coefficient of R = 0.88 and a slope of 0.88. The Bland-Altman plot also illustrated the good agreement between the two approaches, with a mean difference of 0.6 ± 12.4 mL/100 g/min. Voxelwise analysis of rCBF maps from both approaches demonstrated multiple clusters of decreased perfusion (p < 0.01) in the cerebellum, cuneus, cingulate and temporal gyrus in the group with mild TBI relative to the controls. MRI perfusion deficits in the cerebellum and anterior cingulate also correlated (p < 0.01) with neurocognitive results, including the mean reaction time in the Automated Neuropsychological Assessment Metrics and commission error and detection T-scores in the Continuous Performance Test, as well as neurobehavioral scores in the Post-traumatic Stress Disorder Checklist-Civilian Version. In conclusion, rCBF calculated using AIFs selected from an automated approach demonstrated a good agreement with the corresponding results using manually selected AIFs. Group analysis of patients with mild TBI from a military population demonstrated scattered perfusion deficits, which showed significant correlations with measures of verbal memory, speed of reaction time and self-report of stress symptoms. PMID:23456696

  4. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  5. Feasibility Study of Myocardial Perfusion and Oxygenation by Non-Contrast MRI: Comparison with PET Study in a Canine Model

    PubMed Central

    McCommis, Kyle S.; Zhang, Haosen; Herrero, Pilar; Gropler, Robert J.; Zheng, Jie

    2008-01-01

    The purpose of this study was to examine the feasibility of quantifying myocardial blood flow (MBF) and rate of myocardial oxygen consumption (MVO2) during pharmacologically induced stress without using a contrast agent. The former was measured by the arterial spin labeling (ASL) method and the later was obtained by measuring the oxygen extraction fraction (OEF) with the magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) effect and Fick's law. The MRI results were compared with the established positron emission tomography (PET) methods. Six mongrel dogs with induced acute moderate left coronary artery stenosis were scanned using a clinical PET and a 1.5T MRI system, in the same day. Regional MBF, myocardial OEF, and MVO2 were measured with both imaging modalities. Correlation coefficients (R2) of the three myocardial indexes (MBF, OEF, and MVO2) between MRI and PET methods ranged from 0.70 to 0.93. Bland-Altman statistics demonstrated that the estimated precision of the limits of agreement between MRI and PET measurements varied from 18% (OEF), to 37% (MBF), and 45% (MVO2). The detected changes in these indexes, at rest and during dobutamine stress, were similar between two image modalities. The proposed non-contrast MRI technique is a promising method to quantitatively assess myocardial perfusion and oxygenation. PMID:17566684

  6. Comparison of dynamic susceptibility contrast-MRI perfusion quantification methods in the presence of delay and dispersion

    NASA Astrophysics Data System (ADS)

    Maan, Bianca; Simões, Rita Lopes; Meijer, Frederick J. A.; Klaas Jan Renema, W.; Slump, Cornelis H.

    2011-03-01

    The perfusion of the brain is essential to maintain brain function. Stroke is an example of a decrease in blood flow and reduced perfusion. During ischemic stroke the blood flow to tissue is hampered due to a clot inside a vessel. To investigate the recovery of stroke patients, follow up studies are necessary. MRI is the preferred imaging modality for follow up because of the absence of radiation dose concerns, contrary to CT. Dynamic Susceptibility Contrast (DSC) MRI is an imaging technique used for measuring perfusion of the brain, however, is not standard applied in the clinical routine due to lack of immediate patient benefit. Several post processing algorithms are described in the literature to obtain cerebral blood flow (CBF). The quantification of CBF relies on the deconvolution of a tracer concentration-time curve in an arterial and a tissue voxel. There are several methods to obtain this deconvolution based on singular-value decomposition (SVD). This contribution describes a comparison between the different approaches as currently there is no best practice for (all) clinical relevant situations. We investigate the influence of tracer delay, dispersion and recirculation on the performance of the methods. In the presence of negative delays, the truncated SVD approach overestimates the CBF. Block-circulant and reformulated SVD are delay-independent. Due to its delay dependent behavior, the truncated SVD approach performs worse in the presence of dispersion as well. However all SVD approaches are dependent on the amount of dispersion. Moreover, we observe that the optimal truncation parameter varies when recirculation is added to noisy data, suggesting that, in practice, these methods are not immune to tracer recirculation. Finally, applying the methods to clinical data resulted in a large variability of the CBF estimates. Block-circulant SVD will work in all situations and is the method with the highest potential.

  7. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    PubMed Central

    Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  8. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation.

    PubMed

    Pelgrim, G J; Handayani, A; Dijkstra, H; Prakken, N H J; Slart, R H J A; Oudkerk, M; Van Ooijen, P M A; Vliegenthart, R; Sijens, P E

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  9. Clinical Neuroimaging Using Arterial Spin-Labeled Perfusion MRI

    PubMed Central

    Wolf, Ronald L.; Detre, John A.

    2007-01-01

    SUMMARY The two most common methods for measuring perfusion with MRI are based on dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL). Although clinical experience to date is much more extensive with DSC perfusion MRI, ASL methods offer several advantages. The primary advantages are that completely noninvasive absolute cerebral blood flow (CBF) measurements are possible with relative insensitivity to permeability, and that multiple repeated measurements can be obtained to evaluate one or more interventions or to perform perfusion-based functional MRI. ASL perfusion and perfusion-based fMRI methods have been applied in many clinical settings, including acute and chronic cerebrovascular disease, CNS neoplasms, epilepsy, aging and development, neurodegenerative disorders, and neuropsychiatric diseases. Recent technical advances have improved the sensitivity of ASL perfusion MRI, and increasing use is expected in the coming years. This review focuses on ASL perfusion MRI and applications in clinical neuroimaging. PMID:17599701

  10. Absolute quantification of cerebral blood flow in neurologically normal volunteers: dynamic-susceptibility contrast MRI-perfusion compared with computed tomography (CT)-perfusion.

    PubMed

    Ziegelitz, Doerthe; Starck, Göran; Mikkelsen, Irene K; Tullberg, Mats; Edsbagge, Mikael; Wikkelsö, Carsten; Forssell-Aronson, Eva; Holtås, Stig; Knutsson, Linda

    2009-07-01

    To improve the reproducibility of arterial input function (AIF) registration and absolute cerebral blood flow (CBF) quantification in dynamic-susceptibility MRI-perfusion (MRP) at 1.5T, we rescaled the AIF by use of a venous output function (VOF). We compared CBF estimates of 20 healthy, elderly volunteers, obtained by computed tomography (CT)-perfusion (CTP) and MRP on two consecutive days. MRP, calculated without the AIF correction, did not result in any significant correlation with CTP. The rescaled MRP showed fair to moderate correlation with CTP for the central gray matter (GM) and the whole brain. Our results indicate that the method used for correction of partial volume effects (PVEs) improves MRP experiments by reducing AIF-introduced variance at 1.5T. PMID:19253361

  11. Functional Lung MRI in Chronic Obstructive Pulmonary Disease: Comparison of T1 Mapping, Oxygen-Enhanced T1 Mapping and Dynamic Contrast Enhanced Perfusion

    PubMed Central

    Jobst, Bertram J.; Triphan, Simon M. F.; Sedlaczek, Oliver; Anjorin, Angela; Kauczor, Hans Ulrich; Biederer, Jürgen; Ley-Zaporozhan, Julia; Ley, Sebastian; Wielpütz, Mark O.

    2015-01-01

    Purpose Monitoring of regional lung function in interventional COPD trials requires alternative endpoints beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI) with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI. Materials and Methods 20 COPD patients (GOLD I-IV) underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung) at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1), oxygen-induced T1 shortening (ΔT1) and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach. Results Abnormal T1 and ΔT1 were highly prevalent in the patient cohort. T1 and ΔT1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80; p&0.001), and with each other (r = 0.80; p<0.001). In GOLD stages I and II ΔT1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1). The extent of T1 (r = 0.45; p<0.05), ΔT1 (r = 0.52; p<0.05) and perfusion abnormalities (r = 0.52; p<0.05) showed a moderate correlation with GOLD stage. Conclusion Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i.v. contrast. PMID:25822195

  12. Computational Fluid Dynamics Simulations of Contrast Agent Bolus Dispersion in a Coronary Bifurcation: Impact on MRI-Based Quantification of Myocardial Perfusion

    PubMed Central

    Schmidt, Regine; Graafen, Dirk; Weber, Stefan; Schreiber, Laura M.

    2013-01-01

    Contrast-enhanced first-pass magnetic resonance imaging (MRI) in combination with a tracer kinetic model, for example, MMID4, can be used to determine myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). Typically, the arterial input function (AIF) required for this methodology is estimated from the left ventricle (LV). Dispersion of the contrast agent bolus might occur between the LV and the myocardial tissue. Negligence of bolus dispersion could cause an error in MBF determination. The aim of this study was to investigate the influence of bolus dispersion in a simplified coronary bifurcation geometry including one healthy and one stenotic branch on the quantification of MBF and MPR. Computational fluid dynamics (CFD) simulations were combined with MMID4. Different inlet boundary conditions describing pulsatile and constant flows for rest and hyperemia and differing outflow conditions have been investigated. In the bifurcation region, the increase of the dispersion was smaller than inside the straight vessels. A systematic underestimation of MBF values up to −16.1% for pulsatile flow and an overestimation of MPR up to 7.5% were found. It was shown that, under the conditions considered in this study, bolus dispersion can significantly influence the results of quantitative myocardial MR-perfusion measurements. PMID:23533541

  13. Gadofullerene MRI contrast agents.

    PubMed

    Bolskar, Robert D

    2008-04-01

    A promising new class of MRI contrast-enhancing agents with high relaxivities is based on gadolinium-containing metallofullerenes, which are also termed gadofullerenes. Detailed study of the water-proton relaxivity properties and intermolecular nanoclustering behavior of gadofullerene derivatives has revealed valuable information about their relaxivity mechanisms and given a deeper understanding of this new class of paramagnetic contrast agent. Here, the latest findings on water-solubilized gadofullerene materials and how these findings relate to their future applications in MRI are reviewed and discussed. PMID:18373426

  14. AUR memorial award--1988. MRI enhancement of perfused tissues using chromium labeled red blood cells as an intravascular contrast agent

    SciTech Connect

    Eisenberg, A.D.; Conturo, T.E.; Price, R.R.; Holburn, G.E.; Partain, C.L.; James, A.E. Jr. )

    1989-10-01

    It has been demonstrated that chromium (Cr) labeling significantly decreases the relaxation times of packed red blood cells (RBCs). In this study, the spin-lattice relaxation time (T1) of human red cells was shortened from 836 ms to 29 ms and the spin-spin relaxation time (T2) shortened from 134 ms to 18 ms, when the cells were labeled at a Cr incubation concentration of 50 mM. Labeling of canine cells at 50 mM resulted in a T1 of 36 ms and a T2 of 26 ms. A labeling concentration of 10 mM produced similar relaxation enhancement, with uptake of 47% of the available Cr, and was determined to be optimal. The enhancement of longitudinal and transverse relaxation rates (1/T1,-1/T2) per amount of hemoglobin-bound Cr are 6.9 s-1 mM-1 and 9.8 s-1 mM-1 respectively, different from those of a pure Cr+3 solution. Labeling cells at 10 mM decreased the survival half-time in vivo from 16.6 days to 4.7 days in dogs. No difference in red cell survival was found with the use of hetero-transfusion versus auto-transfusion of labeled RBCs. Significant shortening of the T1 (912 ms to 266 ms, P = .03) and T2 (90 ms to 70 ms, P = .006) of spleen and the T1 (764 ms to 282 ms, P = .005) and the T2 (128 ms to 86 ms, P = .005) of liver occurred when 10% of the RBC mass of dogs was exchanged with Cr labeled cells. Liver and spleen spin density changes (P greater than 0.23) and muscle spin density and relaxation changes (P greater than 0.4) were insignificant. The in vivo T1 of a canine spleen which had been infarcted did not change following transfusion with labeled cells, where the T1 of liver did shorten. We believe this preliminary study suggests that Cr labeled red cells may have the potential to become an intravascular magnetic resonance imaging contrast agent.

  15. Myocardial perfusion imaging using contrast echocardiography.

    PubMed

    Pathan, Faraz; Marwick, Thomas H

    2015-01-01

    Microbubbles are an excellent intravascular tracer, and both the rate of myocardial opacification (analogous to coronary microvascular perfusion) and contrast intensity (analogous to myocardial blood volume) provide unique insights into myocardial perfusion. A strong evidence base has been accumulated to show comparability with nuclear perfusion imaging and incremental diagnostic and prognostic value relative to wall motion analysis. This technique also provides the possibility to measure myocardial perfusion at the bedside. Despite all of these advantages, the technique is complicated, technically challenging, and has failed to scale legislative and financial hurdles. The development of targeted imaging and therapeutic interventions will hopefully rekindle interest in this interesting modality. PMID:25817740

  16. Technological advances in MRI measurement of brain perfusion.

    PubMed

    Duyn, Jeff H; van Gelderen, Peter; Talagala, Lalith; Koretsky, Alan; de Zwart, Jacco A

    2005-12-01

    Measurement of brain perfusion using arterial spin labeling (ASL) or dynamic susceptibility contrast (DSC) based MRI has many potential important clinical applications. However, the clinical application of perfusion MRI has been limited by a number of factors, including a relatively poor spatial resolution, limited volume coverage, and low signal-to-noise ratio (SNR). It is difficult to improve any of these aspects because both ASL and DSC methods require rapid image acquisition. In this report, recent methodological developments are discussed that alleviate some of these limitations and make perfusion MRI more suitable for clinical application. In particular, the availability of high magnetic field strength systems, increased gradient performance, the use of RF coil arrays and parallel imaging, and increasing pulse sequence efficiency allow for increased image acquisition speed and improved SNR. The use of parallel imaging facilitates the trade-off of SNR for increases in spatial resolution. As a demonstration, we obtained DSC and ASL perfusion images at 3.0 T and 7.0 T with multichannel RF coils and parallel imaging, which allowed us to obtain high-quality images with in-plane voxel sizes of 1.5 x 1.5 mm(2). PMID:16267852

  17. Environmentally responsive MRI contrast agents

    PubMed Central

    Davies, Gemma-Louise; Kramberger, Iris; Davis, Jason J.

    2015-01-01

    Biomedical imaging techniques can provide a vast amount of anatomical information, enabling diagnosis and the monitoring of disease and treatment profile. MRI uniquely offers convenient, non-invasive, high resolution tomographic imaging. A considerable amount of effort has been invested, across several decades, in the design of non toxic paramagnetic contrast agents capable of enhancing positive MRI signal contrast. Recently, focus has shifted towards the development of agents capable of specifically reporting on their local biochemical environment, where a switch in image contrast is triggered by a specific stimulus/biochemical variable. Such an ability would not only strengthen diagnosis but also provide unique disease-specific biochemical insight. This feature article focuses on recent progress in the development of MRI contrast switching with molecular, macromolecular and nanoparticle-based agents. PMID:24040650

  18. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  19. Polycatechol Nanoparticle MRI Contrast Agents.

    PubMed

    Li, Yiwen; Huang, Yuran; Wang, Zhao; Carniato, Fabio; Xie, Yijun; Patterson, Joseph P; Thompson, Matthew P; Andolina, Christopher M; Ditri, Treffly B; Millstone, Jill E; Figueroa, Joshua S; Rinehart, Jeffrey D; Scadeng, Miriam; Botta, Mauro; Gianneschi, Nathan C

    2016-02-01

    Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN. These results suggest that control over soft nanoparticle shape will provide an avenue for optimization of particle-based contrast agents as biodiagnostics. The polycatechol nanoparticles are proposed as suitable for preclinical investigations into their viability as gadolinium-free, safe, and effective imaging agents for MRI contrast enhancement. PMID:26681255

  20. Contrast-enhanced perfusion magnetic resonance imaging for head and neck squamous cell carcinoma: a systematic review.

    PubMed

    Noij, Daniel P; de Jong, Marcus C; Mulders, Lieven G M; Marcus, Johannes T; de Bree, Remco; Lavini, Cristina; de Graaf, Pim; Castelijns, Jonas A

    2015-02-01

    This systematic review gives an extensive overview of the current state of perfusion-weighted magnetic resonance imaging (MRI) for head and neck squamous cell carcinoma (HNSCC). Pubmed and Embase were searched for literature until July 2014 assessing the diagnostic and prognostic performance of perfusion-weighted MRI in HNSCC. Twenty-one diagnostic and 12 prognostic studies were included for qualitative analysis. Four studies used a T2(∗) sequence for dynamic susceptibility (DSC)-MRI, 29 studies used T1-based sequences for dynamic contrast enhanced (DCE)-MRI. Included studies suffered from a great deal of heterogeneity in study methods showing a wide range of diagnostic and prognostic performance. Therefore we could not perform any useful meta-analysis. Perfusion-weighted MRI shows potential in some aspects of diagnosing HNSCC and predicting prognosis. Three studies reported significant correlations between hypoxia and tumor heterogeneity in perfusion parameters (absolute correlation coefficient |ρ|>0.6, P<0.05). Two studies reported synergy between perfusion-weighted MRI and positron emission tomography (PET) parameters. Four studies showed a promising role for response prediction early after the start of chemoradiotherapy. In two studies perfusion-weighted MRI was useful in the detection of residual disease. However more research with uniform study and analysis protocols with larger sample sizes is needed before perfusion-weighted MRI can be used in clinical practice. PMID:25467775

  1. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. PMID:23623332

  2. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma

    PubMed Central

    Wong, Kelvin K.; Fung, Steve H.; New, Pamela Z.; Wong, Stephen T. C.

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem. PMID:27531989

  3. Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma.

    PubMed

    Wong, Kelvin K; Fung, Steve H; New, Pamela Z; Wong, Stephen T C

    2016-01-01

    Dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is widely used in clinical settings for the radiological diagnosis of brain tumor. The signal change in brain tissue in gradient echo-based DSC PWI is much higher than in spin echo-based DSC PWI. Due to its exquisite sensitivity, gradient echo-based sequence is the preferred method for imaging of all tumors except those near the base of the skull. However, high sensitivity also comes with a dynamic range problem. It is not unusual for blood volume to increase in gene-mediated cytotoxic immunotherapy-treated glioblastoma patients. The increase of fractional blood volume sometimes saturates the MRI signal during first-pass contrast bolus arrival and presents signal truncation artifacts of various degrees in the tumor when a significant amount of blood exists in the image pixels. It presents a hidden challenge in PWI, as this signal floor can be either close to noise level or just above and can go no lower. This signal truncation in the signal intensity time course is a significant issue that deserves attention in DSC PWI. In this paper, we demonstrate that relative cerebral blood volume and relative cerebral blood flow (rCBF) are underestimated due to signal truncation in DSC perfusion, in glioblastoma patients. We propose the use of second-pass tissue residue function in rCBF calculation using least-absolute-deviation deconvolution to avoid the underestimation problem. PMID:27531989

  4. New imaging technology: measurement of myocardial perfusion by contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Thomas, J. D.

    2000-01-01

    Myocardial perfusion imaging has long been a goal for the non-invasive echocardiographic assessment of the heart. However, many factors at play in perfusion imaging have made this goal elusive. Harmonic imaging and triggered imaging with newer contrast agents have made myocardial perfusion imaging potentially practical in the very near future. The application of indicator dilution theory to the coronary circulation and bubble contrast agents is fraught with complexities and sources of error. Therefore, quantification of myocardial perfusion by non-invasive echocardiographic imaging requires further investigation in order to make this technique clinically viable.

  5. Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood-brain barrier opening after intra-arterial infusion.

    PubMed

    Song, Xiaolei; Walczak, Piotr; He, Xiaowei; Yang, Xing; Pearl, Monica; Bulte, Jeff Wm; Pomper, Martin G; McMahon, Michael T; Janowski, Mirosław

    2016-07-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. Predicted, focal opening of the BBB through intra-arterial infusion of hyperosmolar mannitol is feasible, but there is a need to facilitate imaging techniques (e.g. MRI) to guide interventional procedures and assess the outcomes. Here, we show that salicylic acid analogues (SAA) can depict the brain territory supplied by the catheter and detect the BBB opening, through chemical exchange saturation transfer (CEST) MRI. Hyperosmolar SAA solutions themselves are also capable of opening the BBB, and, when multiple SAA agents were co-injected, their locoregional perfusion could be differentiated. PMID:26980755

  6. Heterogeneity of cortical lesions in multiple sclerosis: an MRI perfusion study

    PubMed Central

    Peruzzo, Denis; Castellaro, Marco; Calabrese, Massimiliano; Veronese, Elisa; Rinaldi, Francesca; Bernardi, Valentina; Favaretto, Alice; Gallo, Paolo; Bertoldo, Alessandra

    2013-01-01

    In this study, dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) was used to quantify the cerebral blood flow (CBF), the cerebral blood volume (CBV), and the mean transit time (MTT) and to analyze the changes in cerebral perfusion associated with the cortical lesions in 44 patients with relapsing-remitting multiple sclerosis. The cortical lesions showed a statistically significant reduction in CBF and CBV compared with the normal-appearing gray matter, whereas there were no significant changes in the MTT. The reduced perfusion suggests a reduction of metabolism because of the loss of cortical neurons. A small population of outliers showing an increased CBF and/or CBV has also been detected. The presence of hyperperfused outliers may imply that perfusion could evolve during inflammation. These findings show that perfusion is altered in cortical lesions and that DSC-MRI can be a useful tool to investigate more deeply the evolution of cortical lesions in multiple sclerosis. PMID:23250108

  7. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability

    NASA Astrophysics Data System (ADS)

    Sourbron, S. P.; Buckley, D. L.

    2012-01-01

    The tracer-kinetic models developed in the early 1990s for dynamic contrast-enhanced MRI (DCE-MRI) have since become a standard in numerous applications. At the same time, the development of MRI hardware has led to increases in image quality and temporal resolution that reveal the limitations of the early models. This in turn has stimulated an interest in the development and application of a second generation of modelling approaches. They are designed to overcome these limitations and produce additional and more accurate information on tissue status. In particular, models of the second generation enable separate estimates of perfusion and capillary permeability rather than a single parameter Ktrans that represents a combination of the two. A variety of such models has been proposed in the literature, and development in the field has been constrained by a lack of transparency regarding terminology, notations and physiological assumptions. In this review, we provide an overview of these models in a manner that is both physically intuitive and mathematically rigourous. All are derived from common first principles, using concepts and notations from general tracer-kinetic theory. Explicit links to their historical origins are included to allow for a transfer of experience obtained in other fields (PET, SPECT, CT). A classification is presented that reveals the links between all models, and with the models of the first generation. Detailed formulae for all solutions are provided to facilitate implementation. Our aim is to encourage the application of these tools to DCE-MRI by offering researchers a clearer understanding of their assumptions and requirements.

  8. Diffusion and perfusion MRI of the lung and mediastinum.

    PubMed

    Henzler, Thomas; Schmid-Bindert, Gerald; Schoenberg, Stefan O; Fink, Christian

    2010-12-01

    With ongoing technical improvements such as multichannel MRI, systems with powerful gradients as well as the development of innovative pulse sequence techniques implementing parallel imaging, MRI has now entered the stage of a radiation-free alternative to computed tomography (CT) for chest imaging in clinical practice. Whereas in the past MRI of the lung was focused on morphological aspects, current MRI techniques also enable functional imaging of the lung allowing for a comprehensive assessment of lung disease in a single MRI exam. Perfusion imaging can be used for the visualization of regional pulmonary perfusion in patients with different lung diseases such as lung cancer, chronic obstructive lung disease, pulmonary embolism or for the prediction of postoperative lung function in lung cancer patients. Over the past years diffusion-weighted MR imaging (DW-MRI) of the thorax has become feasible with a significant reduction of the acquisition time, thus minimizing artifacts from respiratory and cardiac motion. In chest imaging, DW-MRI has been mainly suggested for the characterization of lung cancer, lymph nodes and pulmonary metastases. In this review article recent MR perfusion and diffusion techniques of the lung and mediastinum as well as their clinical applications are reviewed. PMID:20627435

  9. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion

    PubMed Central

    Gordon, Yaron; Partovi, Sasan; Müller-Eschner, Matthias; Amarteifio, Erick; Bäuerle, Tobias; Weber, Marc-André; Kauczor, Hans-Ulrich

    2014-01-01

    Introduction The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues’ temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990’s. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. Applications to peripheral perfusion DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). Review outline The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and

  10. Perfusion imaging with non-contrast ultrasound

    NASA Astrophysics Data System (ADS)

    Tierney, Jaime E.; Dumont, Douglas M.; Byram, Brett C.

    2016-04-01

    A Doppler ultrasound clutter filter that enables estimation of low velocity blood flow could considerably improve ultrasound as a tool for clinical diagnosis and monitoring, including for the evaluation of vascular diseases and tumor perfusion. Conventional Doppler ultrasound is currently used for visualizing and estimating blood flow. However, conventional Doppler is limited by frame rate and tissue clutter caused by involuntary movement of the patient or sonographer. Spectral broadening of the clutter due to tissue motion limits ultrasound's ability to detect blood flow less than about 5mm/s at an 8MHz center frequency. We propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.41mm/s. The proposed filter uses an adaptive demodulation scheme that decreases the bandwidth of the clutter. To test the performance of the adaptive demodulation method at removing sonographer hand motion, six volunteer subjects acquired data from a basic quality assurance phantom. Additionally, to test initial in vivo feasibility, an arterial occlusion reactive hyperemia study was performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2mm/s or greater. The hand motion study resulted in initial average bandwidths of 577Hz (28.5mm/s), which were decreased to 7.28Hz (0.36mm/s) at -60 dB at 3cm using our approach. The in vivo power Doppler study resulted in 15.2dB and 0.15dB dynamic ranges between the lowest and highest blood flow time points for the proposed filter and conventional 50Hz high pass filter, respectively.

  11. Detection of the brain response during a cognitive task using perfusion-based event-related functional MRI.

    PubMed

    Yee, S H; Liu, H L; Hou, J; Pu, Y; Fox, P T; Gao, J H

    2000-08-01

    Event-related (ER) fMRI has evoked great interest due to the ability to depict the dynamic features of human brain function during various cognitive tasks. Thus far, all cognitive ER-fMRI studies have been based on blood oxygenation level-dependent (BOLD) contrast techniques. Compared with BOLD-based fMRI techniques, perfusion-based fMRI is able to localize the region of neuronal activity more accurately. This report demonstrates, for the first time, the detection of the brain response to a cognitive task using high temporal resolution perfusion-based ER-fMRI. An English verb generation task was used in this study. Results show that perfusion-based ER-fMRI accurately depicts the activation in Broca's area. Average changes in regional relative cerebral blood flow reached a maximum value of 30.7% at approximately 6.5 s after the start of stimulation and returned to 10% of the maximum value at approximately 12.8 s. Our results show that perfusion-based ER-fMRI is a useful tool for cognitive neuroscience studies, providing comparable temporal resolution and better localization of brain function than BOLD ER-fMRI. PMID:10943717

  12. Perfusion and diffusion MRI of glioblastoma progression in a four-year prospective temozolomide clinical trial

    SciTech Connect

    Leimgruber, Antoine; Ostermann, Sandrine; Yeon, Eun Jo; Buff, Evelyn; Maeder, Philippe P.; Stupp, Roger; Meuli, Reto A. . E-mail: Reto.Meuli@chuv.ch

    2006-03-01

    Purpose: This study was performed to determine the impact of perfusion and diffusion magnetic resonance imaging (MRI) sequences on patients during treatment of newly diagnosed glioblastoma. Special emphasis has been given to these imaging technologies as tools to potentially anticipate disease progression, as progression-free survival is frequently used as a surrogate endpoint. Methods and Materials: Forty-one patients from a phase II temolozomide clinical trial were included. During follow-up, images were integrated 21 to 28 days after radiochemotherapy and every 2 months thereafter. Assessment of scans included measurement of size of lesion on T1 contrast-enhanced, T2, diffusion, and perfusion images, as well as mass effect. Classical criteria on tumor size variation and clinical parameters were used to set disease progression date. Results: A total of 311 MRI examinations were reviewed. At disease progression (32 patients), a multivariate Cox regression determined 2 significant survival parameters: T1 largest diameter (p < 0.02) and T2 size variation (p < 0.05), whereas perfusion and diffusion were not significant. Conclusion: Perfusion and diffusion techniques cannot be used to anticipate tumor progression. Decision making at disease progression is critical, and classical T1 and T2 imaging remain the gold standard. Specifically, a T1 contrast enhancement over 3 cm in largest diameter together with an increased T2 hypersignal is a marker of inferior prognosis.

  13. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  14. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  15. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  16. Susceptibility-Based Analysis Of Dynamic Gadolinium Bolus Perfusion MRI

    PubMed Central

    Bonekamp, David; Barker, Peter B.; Leigh, Richard; van Zijl, Peter C.M.; Li, Xu

    2014-01-01

    Purpose An algorithm is developed for the reconstruction of dynamic, gadolinium (Gd) bolus MR perfusion images of the human brain, based on quantitative susceptibility mapping (QSM). Methods The method is evaluated in 5 perfusion scans obtained from 4 different patients scanned at 3T, and compared to the conventional analysis based on changes in the transverse relaxation rate ΔR2* and to theoretical predictions. QSM images were referenced to ventricular CSF for each dynamic of the perfusion sequence. Results Images of cerebral blood flow and blood volume were successfully reconstructed from the QSM-analysis, and were comparable to those reconstructed using ΔR2*. The magnitudes of the Gd-associated susceptibility effects in gray and white matter were consistent with theoretical predictions. Conclusion QSM-based analysis may have some theoretical advantages compared to ΔR2*, including a simpler relationship between signal change and Gd concentration. However, disadvantages are its much lower contrast-to-noise ratio, artifacts due to respiration and other effects, and more complicated reconstruction methods. More work is required to optimize data acquisition protocols for QSM-based perfusion imaging. PMID:24604343

  17. MRI Contrasts in High Rank Rotating Frames

    PubMed Central

    Liimatainen, Timo; Hakkarainen, Hanne; Mangia, Silvia; Huttunen, Janne M.J.; Storino, Christine; Idiyatullin, Djaudat; Sorce, Dennis; Garwood, Michael; Michaeli, Shalom

    2014-01-01

    Purpose MRI relaxation measurements are performed in the presence of a fictitious magnetic field in the recently described technique known as RAFF (Relaxation Along a Fictitious Field). This method operates in the 2nd rotating frame (rank n = 2) by utilizing a non-adiabatic sweep of the radiofrequency effective field to generate the fictitious magnetic field. In the present study, the RAFF method is extended for generating MRI contrasts in rotating frames of ranks 1 ≤ n ≤ 5. The developed method is entitled RAFF in rotating frame of rank n (RAFFn). Methods RAFFn pulses were designed to generate fictitious fields that allow locking of magnetization in rotating frames of rank n. Contrast generated with RAFFn was studied using Bloch-McConnell formalism together with experiments on human and rat brains. Results Tolerance to B0 and B1 inhomogeneities and reduced specific absorption rate with increasing n in RAFFn were demonstrated. Simulations of exchange-induced relaxations revealed enhanced sensitivity of RAFFn to slow exchange. Consistent with such feature, an increased grey/white matter contrast was observed in human and rat brain as n increased. Conclusion RAFFn is a robust and safe rotating frame relaxation method to access slow molecular motions in vivo. PMID:24523028

  18. Groupwise registration of cardiac perfusion MRI sequences using normalized mutual information in high dimension

    NASA Astrophysics Data System (ADS)

    Hamrouni, Sameh; Rougon, Nicolas; Pr"teux, Françoise

    2011-03-01

    In perfusion MRI (p-MRI) exams, short-axis (SA) image sequences are captured at multiple slice levels along the long-axis of the heart during the transit of a vascular contrast agent (Gd-DTPA) through the cardiac chambers and muscle. Compensating cardio-thoracic motions is a requirement for enabling computer-aided quantitative assessment of myocardial ischaemia from contrast-enhanced p-MRI sequences. The classical paradigm consists of registering each sequence frame on a reference image using some intensity-based matching criterion. In this paper, we introduce a novel unsupervised method for the spatio-temporal groupwise registration of cardiac p-MRI exams based on normalized mutual information (NMI) between high-dimensional feature distributions. Here, local contrast enhancement curves are used as a dense set of spatio-temporal features, and statistically matched through variational optimization to a target feature distribution derived from a registered reference template. The hard issue of probability density estimation in high-dimensional state spaces is bypassed by using consistent geometric entropy estimators, allowing NMI to be computed directly from feature samples. Specifically, a computationally efficient kth-nearest neighbor (kNN) estimation framework is retained, leading to closed-form expressions for the gradient flow of NMI over finite- and infinite-dimensional motion spaces. This approach is applied to the groupwise alignment of cardiac p-MRI exams using a free-form Deformation (FFD) model for cardio-thoracic motions. Experiments on simulated and natural datasets suggest its accuracy and robustness for registering p-MRI exams comprising more than 30 frames.

  19. Factors in myocardial "perfusion" imaging with ultrafast MRI and Gd-DTPA administration.

    PubMed

    Burstein, D; Taratuta, E; Manning, W J

    1991-08-01

    Ultrafast magnetic resonance imaging (MRI) and first pass observation of an interstitial contrast agent are currently being used to study myocardial perfusion. Image intensity, however, is a function of several parameters, including the delivery of the contrast agent to the interstitium (coronary flow rate and diffusion into the interstitium) and the relaxation properties of the tissue (contrast agent concentration, proton exchange rates, and relative intra- and extracellular volume fractions). In this study, image intensity during gadopentetate dimeglumine (Gd-DTPA) administration with T1-weighted ultrafast MR imaging was assessed in an isolated heart preparation. With increasing Gd-DTPA concentration, the steady-state myocardial image intensity increased but the time to reach steady state remained unchanged, resulting in an increased slope of image intensity change. A range of physiologic perfusion pressures (and resulting coronary flow rates) had insignificant effects on kinetics of Gd-DTPA wash-in or steady-state image intensity, suggesting that diffusion of Gd-DTPA into the interstitium is the rate limiting step in image intensity change with this preparation. Following global ischemia and reperfusion, transmural differences in the slope of image intensity change were apparent. However, the altered steady-state image intensity (due to postischemic edema) makes interpretation of this finding difficult. The studies described here demonstrate that although Gd-DTPA administration combined with ultrafast imaging may be a sensitive indicator of perfusion abnormalities, factors other than perfusion will affect image intensity. Extensive studies will be required before image intensity with this protocol is fully understood. PMID:1775055

  20. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  1. Pattern of Hemodynamic Impairment in Multiple Sclerosis: Dynamic Susceptibility Contrast Perfusion MR Imaging at 3.0 T

    PubMed Central

    Adhya, Sumita; Johnson, Glyn; Herbert, Joseph; Jaggi, Hina; Babb, James S.; Grossman, Robert I.; Inglese, Matilde

    2006-01-01

    This study aimed to determine regional pattern of tissue perfusion in the normal-appearing white matter (NAWM) of patients with primary-progressive (PP), relapsing-remitting (RR) multiple sclerosis (MS) and healthy controls, and to investigate the association between perfusion abnormalities and clinical disability. Using dynamic susceptibility contrast (DSC) perfusion MRI at 3 Tesla, we studied twenty-two patients with clinically definite MS, eleven with PP-MS and eleven with RR-MS and eleven age- and gender-matched healthy volunteers. The MRI protocol included axial dual-echo, dynamic susceptibility contrast enhanced (DSC) T2*-weighted and post-contrast T1-weighted images. Absolute cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) were measured in the periventricular, frontal, occipital NAWM, and in the splenium of the corpus callosum. Compared to controls, CBF and CBV were significantly lower in all NAWM regions in both PP-MS patients (p values from <0.0001 to 0.001) and RR-MS (p values from <0.0001 to 0.020). Compared to RR-MS, PP-MS patients showed significantly lower CBF in the periventricular NAWM (p= 0.002) and lower CBV in the periventricular and frontal NAWM (p values: 0.0029 and 0.022). EDSS was significantly correlated with the periventricular CBF (r=−0.48, p=0.0016) and with the periventricular and frontal CBV (r=−0.42, p=0.015; r=−0.35, p=0.038, respectively). This study suggests that the hemodynamic abnormalities of NAWM have clinical relevance in patients with MS. DSC perfusion MRI might provide a relevant objective measure of disease activity and treatment efficacy. PMID:16996280

  2. Contrast Enhanced MRI in the Diagnosis of HCC

    PubMed Central

    Niendorf, Eric; Spilseth, Benjamin; Wang, Xiao; Taylor, Andrew

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide. Imaging plays a critical role in HCC screening and diagnosis. Initial screening of patients at risk for HCC is performed with ultrasound. Confirmation of HCC can then be obtained by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), due to the relatively high specificity of both techniques. This article will focus on reviewing MRI techniques for imaging HCC, felt by many to be the exam of choice for HCC diagnosis. MRI relies heavily upon the use of gadolinium-based contrast agents and while primarily extracellular gadolinium-based contrast agents are used, there is an emerging role of hepatobiliary contrast agents in HCC imaging. The use of other non-contrast enhanced MRI techniques for assessing HCC will also be discussed and these MRI strategies will be reviewed in the context of the pathophysiology of HCC to help understand the MR imaging appearance of HCC. PMID:26854161

  3. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty

    PubMed Central

    Anwander, H.; Cron, G. O.; Rakhra, K.

    2016-01-01

    Objectives Hips with metal-on-metal total hip arthroplasty (MoM THA) have a high rate of adverse local tissue reactions (ALTR), often associated with hypersensitivity reactions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures tissue perfusion with the parameter Ktrans (volume transfer constant of contrast agent). Our purpose was 1) to evaluate the feasibility of DCE-MRI in patients with THA and 2) to compare DCE-MRI in patients with MoM bearings with metal-on-polyethylene (MoP) bearings, hypothesising that the perfusion index Ktrans in hips with MoM THA is higher than in hips with MoP THA. Methods In this pilot study, 16 patients with primary THA were recruited (eight MoM, eight MoP). DCE-MRI of the hip was performed at 1.5 Tesla (T). For each patient, Ktrans was computed voxel-by-voxel in all tissue lateral to the bladder. The mean Ktrans for all voxels was then calculated. These values were compared with respect to implant type and gender, and further correlated with clinical parameters. Results There was no significant difference between the two bearing types with both genders combined. However, dividing patients by THA bearing and gender, women with MoM bearings had the highest Ktrans values, exceeding those of women with MoP bearings (0.067 min−1 versus 0.053 min−1; p-value < 0.05) and men with MoM bearings (0.067 min−1 versus 0.034 min−1; p-value < 0.001). Considering only the men, patients with MoM bearings had lower Ktrans than those with MoP bearings (0.034 min−1 versus 0.046 min−1; p < 0.05). Conclusion DCE-MRI is feasible to perform in tissues surrounding THA. Females with MoM THA show high Ktrans values in DCE-MRI, suggesting altered tissue perfusion kinematics which may reflect relatively greater inflammation. Cite this article: Dr P. E. Beaule. Perfusion MRI in hips with metal-on-metal and metal-on-polyethylene total hip arthroplasty: A pilot stud. Bone Joint Res 2016;5:73–79. DOI: 10

  4. Non-ECG-Gated Myocardial Perfusion MRI Using Continuous Magnetization-Driven Radial Sampling

    PubMed Central

    Sharif, Behzad; Dharmakumar, Rohan; Arsanjani, Reza; Thomson, Louise; Merz, C. Noel Bairey; Berman, Daniel S.; Li, Debiao

    2014-01-01

    Purpose Establishing a high-resolution non-ECG-gated first-pass perfusion (FPP) cardiac MRI technique may improve accessibility and diagnostic capability of FPP imaging. We propose a non-ECG-gated FPP imaging technique using continuous magnetization-driven golden-angle radial acquisition. The main purpose of this preliminary study is to evaluate whether, in the simple case of single-slice 2D imaging, adequate myocardial contrast can be obtained for accurate visualization of hypoperfused territories in the setting of myocardial ischemia. Methods A T1-weighted pulse sequence with continuous golden-angle radial sampling was developed for non-ECG-gated FPP imaging. A sliding-window scheme with no temporal acceleration was used to reconstruct 8 frames/second. Canines were imaged at 3T with and without coronary stenosis using the proposed scheme and a conventional magnetization-prepared ECG-gated FPP method. Results Our studies showed that the proposed non-ECG-gated method is capable of generating high-resolution (1.7×1.7×6 mm3) artifact-free FPP images of a single slice at high heart rates (92±21 beats/minute), while matching the performance of conventional FPP imaging in terms of hypoperfused-to-normal myocardial contrast-to-noise ratio (proposed: 5.18±0.70, conventional: 4.88±0.43). Furthermore, the detected perfusion defect areas were consistent with the conventional FPP images. Conclusion Non-ECG-gated FPP imaging using optimized continuous golden-angle radial acquisition achieves desirable image quality (i.e., adequate myocardial contrast, high spatial resolution, and minimal artifacts) in the setting of ischemia. PMID:24443160

  5. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans . PMID:25995102

  6. Dynamic contrast-enhanced ultrasound of slaughterhouse porcine livers in machine perfusion.

    PubMed

    Izamis, Maria-Louisa; Efstathiades, Andreas; Keravnou, Christina; Leen, Edward L; Averkiou, Michalakis A

    2014-09-01

    The aim of this study was to enable investigations into novel imaging and surgical techniques by developing a readily accessible, versatile liver machine perfusion system. Slaughterhouse pig livers were used, and dynamic contrast-enhanced ultrasound was introduced to optimize the procurement process and provide real-time perfusion monitoring. The system comprised a single pump, oxygenator, bubble trap and two flowmeters for pressure-controlled perfusion of the vessels using an off-the-shelf perfusate at room temperature. Successful livers exhibited homogeneous perfusion in both the portal vein and hepatic artery with dynamic contrast-enhanced ultrasound, which correlated with stable oxygen uptake, bile production and hepatic resistance and normal histology at the end of 3 h of perfusion. Dynamic contrast-enhanced ultrasound revealed perfusion abnormalities invisible to the naked eye, thereby providing context to the otherwise systemic biochemical/hemodynamic measurements and focal biopsy findings. The model developed here is a simple, cost-effective approach for stable ex vivo whole-organ machine perfusion. PMID:25023101

  7. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle

    PubMed Central

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  8. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    PubMed

    Hindel, Stefan; Sauerbrey, Anika; Maaß, Marc; Maderwald, Stefan; Schlamann, Marc; Lüdemann, Lutz

    2015-01-01

    The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the

  9. Characterization of bone perfusion by dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography in the Dunkin-Hartley guinea pig model of advanced osteoarthritis.

    PubMed

    Dyke, Jonathan P; Synan, Michael; Ezell, Paula; Ballon, Douglas; Racine, Jennifer; Aaron, Roy K

    2015-03-01

    This study characterizes changes in subchondral bone circulation in OA and examines relationships to bone structure and cartilage degeneration in Dunkin-Hartley guinea pigs. We have used dynamic contrast-enhanced MRI (DCE-MRI) and PET, with pharmacokinetic modeling, to characterize subchondral bone perfusion. Assessments are made of perfusion kinetics and vascular permeability by MRI, and blood volume and flow, and radionuclide incorporation into bone, by PET. These parameters are compared to cartilage lesion severity and bone histomorphometry. Assessments of intraosseous thrombi are made morphologically. Prolonged signal enhancement during the clearance phase of MRI correlated with OA severity and suggested venous stasis. Vascular permeability was not increased indicating that transvascular migration of contrast agent was not responsible for signal enhancement. Intraosseous thrombi were not observed. Decreased perfusion associated with severe OA was confirmed by PET and was associated with reduced radionuclide incorporation and osteoporosis. MRI and PET can be used to characterize kinetic parameters of circulation in OA and correlate them with subchondral bone metabolism of interest to the pathophysiology of OA. The significance of these observations may lie in alterations induced in the expression of cytokines by OA osteoblasts that are related to bone remodeling and cartilage breakdown. PMID:25410523

  10. Characterization of Bone Perfusion by Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Positron Emission Tomography in the Dunkin-Hartley Guinea Pig Model of Advanced Osteoarthritis

    PubMed Central

    Dyke, Jonathan P.; Synan, Michael; Ezell, Paula; Ballon, Douglas; Racine, Jennifer; Aaron, Roy K.

    2014-01-01

    Purpose This study characterizes changes in subchondral bone circulation in OA and examines relationships to bone structure and cartilage degeneration in Dunkin-Hartley guinea pigs. Methods We have used dynamic contrast-enhanced MRI (DCE-MRI) and PET, with pharmacokinetic modeling, to characterize subchondral bone perfusion. Assessments are made of perfusion kinetics and vascular permeability by MRI, and blood volume and flow, and radionuclide incorporation into bone, by PET. These parameters are compared to cartilage lesion severity and bone histomorphometry. Assessments of intraosseous thrombi are made morphologically. Results Prolonged signal enhancement during the clearance phase of MRI correlated with OA severity and suggested venous stasis. Vascular permeability was not increased indicating that transvascular migration of contrast agent was not responsible for signal enhancement. Intraosseous thrombi were not observed. Decreased perfusion associated with severe OA was confirmed by PET and was associated with reduced radionuclide incorporation and osteoporosis. Discussion MRI and PET can be used to characterize kinetic parameters of circulation in OA and correlate them with subchondral bone metabolism of interest to the pathophysiology of OA. The significance of these observations may lie in alterations induced in the expression of cytokines by OA osteoblasts that are related to bone remodeling and cartilage breakdown. PMID:25410523

  11. Novel design of multimodal MRI/NIR optical contrast agent

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Lin, Franck; Akers, Walter; Zheng, Jie; Teng, Bao; Vasalatiy, Olga; Griffiths, Gary L.; Gandjbakhche, Amir; Berezin, Mikhail Y.; Achilefu, Samuel

    2011-03-01

    We present a novel, dual modality gadolinium based MRI/near-infrared optical probe. Utilizing a fluorescent dye as a scaffold with attached Gd-chelating moiety, we demonstrated a substantial shortening of T1 relaxation time of water protons in vitro. The probe was compared to the commonly used MRI Gd-based contrast agents Magnevist® and Multihance® and showed superior contrast properties. The enhancement was due to strong albumin binding of the hydrophobic fluorophore and overall rigidification of the contrast agent. Due to the near-infrared optical properties of the probe and excellent MRI activity the proposed construct can be potentially utilized as a dual probe in multimodal MRI/NIR optical imaging.

  12. Optimal contrast enhancement liquid for dynamic MRI of swallowing.

    PubMed

    Ohkubo, M; Higaki, T; Nishikawa, K; Otonari-Yamamoto, M; Sugiyama, T; Ishida, R; Wakoh, M

    2016-09-01

    Several dynamic magnetic resonance imaging (MRI) techniques to observe swallowing and their parameters have been reported. Although these studies used several contrast enhancement liquids, no studies were conducted to investigate the most suitable liquids. The purpose of this study was to identify the optimal contrast enhancement liquid for dynamic MRI of swallowing. MRI was performed using a new sequence consisting of true fast imaging with steady-state precession, generalised auto-calibrating partially parallel acquisition and a keyhole imaging technique. Seven liquids were studied, including pure distilled water, distilled water with thickener at 10, 20 and 30 mg mL(-1) concentrations and oral MRI contrast medium at 1, 2 or 3 mg mL(-1) . Distilled water showed the highest signal intensity. There were statistically significant differences among the following contrast media: distilled water with thickener at 20 mg mL(-1) and the oral MRI contrast medium at 2 mg mL(-1) and 1 mg mL(-1) . It can be concluded that the optimal liquid for dynamic MRI of swallowing is a water-based substance that allows variations in viscosity. PMID:27328011

  13. Optimization of arterial spin labeling MRI for quantitative tumor perfusion in a mouse xenograft model.

    PubMed

    Rajendran, Reshmi; Liang, Jieming; Tang, Mei Yee Annie; Henry, Brian; Chuang, Kai-Hsiang

    2015-08-01

    Perfusion is an important biomarker of tissue function and has been associated with tumor pathophysiology such as angiogenesis and hypoxia. Arterial spin labeling (ASL) MRI allows noninvasive and quantitative imaging of perfusion; however, the application in mouse xenograft tumor models has been challenging due to the low sensitivity and high perfusion heterogeneity. In this study, flow-sensitive alternating inversion recovery (FAIR) ASL was optimized for a mouse xenograft tumor. To assess the sensitivity and reliability for measuring low perfusion, the lumbar muscle was used as a reference region. By optimizing the number of averages and inversion times, muscle perfusion as low as 32.4 ± 4.8 (mean ± standard deviation) ml/100 g/min could be measured in 20 min at 7 T with a quantification error of 14.4 ± 9.1%. Applying the optimized protocol, heterogeneous perfusion ranging from 49.5 to 211.2 ml/100 g/min in a renal carcinoma was observed. To understand the relationship with tumor pathology, global and regional tumor perfusion was compared with histological staining of blood vessels (CD34), hypoxia (CAIX) and apoptosis (TUNEL). No correlation was observed when the global tumor perfusion was compared with these pathological parameters. Regional analysis shows that areas of high perfusion had low microvessel density, which was due to larger vessel area compared with areas of low perfusion. Nonetheless, these were not correlated with hypoxia or apoptosis. The results suggest that tumor perfusion may reflect certain aspect of angiogenesis, but its relationship with other pathologies needs further investigation. PMID:26104980

  14. [MRI with dynamic contrast enhancement in brain tumors].

    PubMed

    Panfilenko, A F; Iakovlev, S A; Pozdniakov, A V; Tiumin, L A; Shcherbuk, A Iu

    2013-01-01

    Magnetic resonance imaging (MRI) is the leading method of radiation diagnosis of brain tumors. In conditions of the artificial contrast enhancement there are more clearly differentiated the boundaries of the tumor node on the back of peritumorous edema and identified structural features of the tumor. The purpose of this study was to examine indicators of the dynamics of accumulation and removal of contrast agents by brain tumors in MRI technique with dynamic contrast and identify opportunities of this method in the differential diagnosis of various types of tumors. PMID:23814831

  15. Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Floyd, Thomas F.; Durduran, Turgut; Zhou, Chao; Wang, Jiongjiong; Detre, John A.; Yodh, Arjun G.

    2007-02-01

    Calf blood flow was measured simultaneously in healthy human subjects (n = 7) during cuff inflation and deflation using near-infrared diffuse correlation spectroscopy (DCS) and arterial spin labeled perfusion MRI (ASL-MRI). The DCS and ASL-MRI data exhibited highly correlated absolute and relative dynamic flow responses in each individual (p < 0.001). Peak flow variations during hyperemia were also significantly correlated, though more for relative (p = 0.003) than absolute (p = 0.016) flow. Repeated measurement variation was less than 8% for both modalities. The results provide much needed quantitative blood flow validation of the diffuse optical correlation method in humans.

  16. Relationship among fMRI, contrast sensitivity and visual acuity.

    PubMed

    Leguire, L E; Algaze, A; Kashou, N H; Lewis, J; Rogers, G L; Roberts, C

    2011-01-01

    The purpose of this study was to ascertain whether visual acuity or contrast sensitivity function (CSF) is proportional to visual cortical function based on fMRI volume and level of activation or Z-score. Forced choice procedures were utilized to measure the monocular log minimal angle of resolution (logMAR) visual acuity and CSF. The CSF data were collapsed into a single index by the use of weighted mean contrast sensitivity (WMCS), being defined as the mean of the products of each spatial frequency multiplied by its corresponding contrast sensitivity. fMRI data had been obtained with a 1.5 T GE Signa scanner with visual stimuli including 1.0 and 2.0 c/deg vertical sinusoidal gratings. Subjects consisted of eight normal adults and five amblyopic patients, with the amblyopic subjects added to gauge whether the outcome was due to a restricted range of scores or the small number of study participants. In normal subjects, the fMRI volume and level of activation exhibited no statistically significant correlation with visual acuity at P<0.05. Statistically significant correlations were obtained between WMCS and fMRI volume (R=0.765, P=0.027) and fMRI level of activation (R=0.645, P=0.007), with right eye stimulation using the 1.0 c/deg grating. On the whole, statistically significant correlations between WMCS and fMRI parameters were maintained when subject age was held constant and when data from the five amblyopic subjects were included to expand the range of values and increase the number of data sets for analysis. fMRI volume and Z-score were more closely associated with the CSF, as defined by WMCS, than visual acuity. The results suggest that the CSF reflects the underlying visual cortical cells responsible for fMRI volume and the level of activation. PMID:21035430

  17. Mapping resting-state functional connectivity using perfusion MRI

    PubMed Central

    Chuang, Kai-Hsiang; van Gelderen, Peter; Merkle, Hellmut; Bodurka, Jerzy; Ikonomidou, Vasiliki N.; Koretsky, Alan P.; Duyn, Jeff H.; Talagala, S. Lalith

    2008-01-01

    Resting-state, low frequency (< 0.08 Hz) fluctuations of blood oxygenation level dependent (BOLD) magnetic resonance signal have been shown to exhibit high correlation among functionally connected regions. However, correlations of cerebral blood flow (CBF) fluctuations during the resting state have not been extensively studied. The main challenges of using arterial spin labeling perfusion magnetic resonance imaging to detect CBF fluctuations are low sensitivity, low temporal resolution, and contamination from BOLD. This work demonstrates CBF-based quantitative functional connectivity mapping by combining continuous arterial spin labeling (CASL) with a neck labeling coil and a multi-channel receiver coil to achieve high perfusion sensitivity. In order to reduce BOLD contamination, the CBF signal was extracted from the CASL signal time course by high frequency filtering. This processing strategy is compatible with sinc interpolation for reducing the timing mismatch between control and label images and has the flexibility of choosing an optimal filter cutoff frequency to minimize BOLD fluctuations. Most subjects studied showed high CBF correlation in bilateral sensorimotor areas with good suppression of BOLD contamination. Root-mean-square CBF fluctuation contributing to bilateral correlation was estimated to be 29% ± 19% (N = 13) of the baseline perfusion, while BOLD fluctuation was 0.26% ± 0.14% of the mean intensity (at 3T and 12.5 ms echo time). PMID:18314354

  18. Multiwalled carbon nanotube hybrids as MRI contrast agents

    PubMed Central

    Tomczyk, Mateusz Michał

    2016-01-01

    Summary Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories. PMID:27547627

  19. Multiwalled carbon nanotube hybrids as MRI contrast agents.

    PubMed

    Kuźnik, Nikodem; Tomczyk, Mateusz Michał

    2016-01-01

    Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories. PMID:27547627

  20. Dynamic Susceptibility Contrast MRI with Localized Arterial Input Functions

    PubMed Central

    Lee, J.J.; Bretthorst, G.L.; Derdeyn, C.P.; Powers, W.J.; Videen, T.O.; Snyder, A.Z.; Markham, J.; Shimony, J.S.

    2010-01-01

    Compared to gold-standard measurements of cerebral perfusion with positron emission tomography (PET) using H2[15O] tracers, measurements with dynamic susceptibility contrast (DSC) MR are more accessible, less expensive and less invasive. However, existing methods for analyzing and interpreting data from DSC MR have characteristic disadvantages that include sensitivity to incorrectly modeled delay and dispersion in a single, global arterial input function (AIF). We describe a model of tissue microcirculation derived from tracer kinetics which estimates for each voxel a unique, localized AIF (LAIF). Parameters of the model were estimated using Bayesian probability theory and Markov-chain Monte Carlo, circumventing difficulties arising from numerical deconvolution. Applying the new method to imaging studies from a cohort of fourteen patients with chronic, atherosclerotic, occlusive disease showed strong correlations between perfusion measured by DSC MR with LAIF and perfusion measured by quantitative PET with H2[15O]. Regression to PET measurements enabled conversion of DSC MR to a physiological scale. Regression analysis for LAIF gave estimates of a scaling factor for quantitation which described perfusion accurately in patients with substantial variability in hemodynamic impairment. PMID:20432301

  1. Medullary hemangioblastoma in a child with von Hippel-Lindau disease: vascular tumor perfusion depicted by arterial spin labeling and dynamic contrast-enhanced imaging.

    PubMed

    Goo, Hyun Woo; Ra, Young-Shin

    2015-07-01

    Medullary hemangioblastoma is very rare in children. Based on small nodular enhancement with peritumoral edema and without dilated feeding arteries on conventional MRI, hemangioblastoma, pilocytic astrocytoma, oligodendroglioma, and ganglioglioma were included in the differential diagnosis of the medullary tumor. In this case report, the authors emphasize the diagnostic value of arterial spin labeling and dynamic contrast-enhanced MRI in demonstrating vascular tumor perfusion of hemangioblastoma in a 12-year-old boy who was later found to have von Hippel-Lindau disease. PMID:25885801

  2. Chlorotoxin-modified macromolecular contrast agent for MRI tumor diagnosis.

    PubMed

    Huang, Rongqin; Han, Liang; Li, Jianfeng; Liu, Shuhuan; Shao, Kun; Kuang, Yuyang; Hu, Xing; Wang, Xuxia; Lei, Hao; Jiang, Chen

    2011-08-01

    Clinical diagnosis of cancers using magnetic resonance imaging (MRI) is highly dependent on contrast agents, especially for brain tumors which contain blood-brain barrier (BBB) at the early stage. However, currently mostly used low molecular weight contrast agents such as Gd-DTPA suffer from rapid renal clearance, non-specificity, and low contrast efficiency. The aim of this paper is to investigate the potential of a macromolecular MRI contrast agent based on dendrigraft poly-l-lysines (DGLs), using chlorotoxin (CTX) as a tumor-specific ligand. The contrast agent using CTX-modified conjugate as the main scaffold and Gd-DTPA as the payload was successfully synthesized. The results of fluorescent microscopy showed that the modification of CTX could markedly enhance the cellular uptake in C6 glioma and liver tumor cell lines, but not in normal cell line. Significantly increased accumulation of CTX-modified conjugate within glioma and liver tumor was further demonstrated in tumor-bearing nude mice using in vivo imaging system. The MRI results showed that the signal enhancement of mice treated with CTX-modified contrast reached peak level at 5 min for both glioma and liver tumor, 144.97% ± 19.54% and 158.69% ± 12.41%, respectively, significantly higher than that of unmodified counterpart and commercial control. And most importantly, the signal enhancement of CTX-modified contrast agent maintained much longer compared to that of controls, which might be useful for more exact diagnosis for tumors. CTX-modified dendrimer-based conjugate might be applied as an efficient MRI contrast agent for targeted and accurate tumor diagnosis. This finding is especially important for tumors such as brain glioma which is known hard to be diagnosed due to the presence of BBB. PMID:21531455

  3. Visualization of perfusion changes with laser speckle contrast imaging using the method of motion history image.

    PubMed

    Ansari, Mohammad Zaheer; Humeau-Heurtier, Anne; Offenhauser, Nikolas; Dreier, Jens P; Nirala, Anil Kumar

    2016-09-01

    Laser speckle contrast imaging (LSCI) is a real-time imaging modality reflecting microvascular perfusion. We report on the application of the motion history image (MHI) method on LSCI data obtained from the two hemispheres of a mouse. Through the generation of a single image, MHI stresses the microvascular perfusion changes. Our experimental results performed during a pinprick-triggered spreading depolarization demonstrate the effectiveness of MHI: MHI allows the visualization of perfusion changes without loss of resolution and definition. Moreover, MHI provides close results to the ones given by the generalized differences (GD) algorithm. However, MHI has the advantage of giving information on the temporal evolution of the perfusion variations, which GD does not. PMID:27321386

  4. Dynamic Contrast-Enhanced MRI Using a Macromolecular MR Contrast Agent (P792): Evaluation of Antivascular Drug Effect in a Rabbit VX2 Liver Tumor Model

    PubMed Central

    Park, Hee Sun; Lee, Jeong Min; Kim, Young Il; Woo, Sungmin; Yoon, Jung Hwan; Choi, Jin-Young; Choi, Byung Ihn

    2015-01-01

    Objective To evaluate the utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using macromolecular contrast agent (P792) for assessment of vascular disrupting drug effect in rabbit VX2 liver tumor models. Materials and Methods This study was approved by our Institutional Animal Care and Use Committee. DCE-MRI was performed with 3-T scanner in 13 VX2 liver tumor-bearing rabbits, before, 4 hours after, and 24 hours after administration of vascular disrupting agent (VDA), using gadomelitol (P792, n = 7) or low molecular weight contrast agent (gadoterate meglumine [Gd-DOTA], n = 6). P792 was injected at a of dose 0.05 mmol/kg, while that of Gd-DOTA was 0.2 mmol/kg. DCE-MRI parameters including volume transfer coefficient (Ktrans) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) of tumors were compared between the 2 groups at each time point. DCE-MRI parameters were correlated with tumor histopathology. Reproducibility in measurement of DCE-MRI parameters and image quality of source MR were compared between groups. Results P792 group showed a more prominent decrease in Ktrans and iAUC at 4 hours and 24 hours, as compared to the Gd-DOTA group. Changes in DCE-MRI parameters showed a weak correlation with histologic parameters (necrotic fraction and microvessel density) in both groups. Reproducibility of DCE-MRI parameters and overall image quality was not significantly better in the P792 group, as compared to the Gd-DOTA group. Conclusion Dynamic contrast-enhanced magnetic resonance imaging using a macromolecular contrast agent shows changes of hepatic perfusion more clearly after administration of the VDA. Gadolinium was required at smaller doses than a low molecular contrast agent. PMID:26357497

  5. A perfusion fMRI investigation of thematic and categorical context effects in the spoken production of object names.

    PubMed

    de Zubicaray, Greig; Johnson, Kori; Howard, David; McMahon, Katie

    2014-05-01

    The context in which objects are presented influences the speed at which they are named. We employed the blocked cyclic naming paradigm and perfusion functional magnetic resonance imaging (fMRI) to investigate the mechanisms responsible for interference effects reported for thematically and categorically related compared to unrelated contexts. Naming objects in categorically homogeneous contexts induced a significant interference effect that accumulated from the second cycle onwards. This interference effect was associated with significant perfusion signal decreases in left middle and posterior lateral temporal cortex and the hippocampus. By contrast, thematically homogeneous contexts facilitated naming latencies significantly in the first cycle and did not differ from heterogeneous contexts thereafter, nor were they associated with any perfusion signal changes compared to heterogeneous contexts. These results are interpreted as being consistent with an account in which the interference effect both originates and has its locus at the lexical level, with an incremental learning mechanism adapting the activation levels of target lexical representations following access. We discuss the implications of these findings for accounts that assume thematic relations can be active lexical competitors or assume mandatory involvement of top-down control mechanisms in interference effects during naming. PMID:24657924

  6. Dynamic subcortical blood flow during male sexual activity with ecological validity: a perfusion fMRI study.

    PubMed

    Georgiadis, Janniko R; Farrell, Michael J; Boessen, Ruud; Denton, Derek A; Gavrilescu, Maria; Kortekaas, Rudie; Renken, Remco J; Hoogduin, Johannes M; Egan, Gary F

    2010-03-01

    This study used arterial spin labeling (ASL) fMRI to measure brain perfusion in a group of healthy men under conditions that closely resembled customary sexual behavior. Serial perfusion measures for 30 min during two self-limited periods of partnered penis stimulation, and during post-stimulatory periods, revealed novel sexual activity-related cerebral blood flow (rCBF) changes, mainly in subcortical parts of the brain. Ventral pallidum rCBF was highest during the onset of penile erection, and lowest after the termination of penis stimulation. The perceived level of sexual arousal showed the strongest positive association with rCBF in the right basal forebrain. In addition, our results demonstrate that distinct subregions of the hypothalamus and cingulate cortex subserve opposite functions during human male sexual behavior. The lateral hypothalamus and anterior part of the middle cingulate cortex showed increased rCBF correlated with penile erection. By contrast, the anteroventral hypothalamus and subgenual anterior cingulate cortex exhibited rCBF changes correlated with penile detumescence after penile stimulation. Continuous rapid and high-resolution brain perfusion imaging during normal sexual activity has provided novel insights into the central mechanisms that control male sexual arousal. PMID:20006720

  7. Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

    PubMed Central

    Klibanov, Alexander L

    2013-01-01

    Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in US, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, carbohydrates) that ensure firm binding to the molecular markers of disease. PMID:23913363

  8. Low contrast medium and radiation dose for hepatic computed tomography perfusion of rabbit VX2 tumor

    PubMed Central

    Zhang, Cai-Yuan; Cui, Yan-Fen; Guo, Chen; Cai, Jing; Weng, Ya-Fang; Wang, Li-Jun; Wang, Deng-Bin

    2015-01-01

    AIM: To evaluate the feasibility of low contrast medium and radiation dose for hepatic computed tomography (CT) perfusion of rabbit VX2 tumor. METHODS: Eleven rabbits with hepatic VX2 tumor underwent perfusion CT scanning with a 24-h interval between a conventional tube potential (120 kVp) protocol with 350 mgI/mL contrast medium and filtered back projection, and a low tube potential (80 kVp) protocol with 270 mgI/mL contrast medium with iterative reconstruction. Correlation and agreement among perfusion parameters acquired by the conventional and low dose protocols were assessed for the viable tumor component as well as whole tumor. Image noise and tumor-to-liver contrast to noise ratio during arterial and portal venous phases were evaluated. RESULTS: A 38% reduction in contrast medium dose (360.1 ± 13.3 mgI/kg vs 583.5 ± 21.5 mgI/kg, P < 0.001) and a 73% decrease in radiation dose (1898.5 mGy • cm vs 6951.8 mGy • cm) were observed. Interestingly, there was a strong positive correlation in hepatic arterial perfusion (r = 0.907, P < 0.001; r = 0.879, P < 0.001), hepatic portal perfusion (r = 0.819, P = 0.002; r = 0.831, P = 0.002), and hepatic blood flow (r = 0.945, P < 0.001; r = 0.930, P < 0.001) as well as a moderate correlation in hepatic perfusion index (r = 0.736, P = 0.01; r = 0.636, P = 0.035) between the low dose protocol with iterative reconstruction and the conventional protocol for the viable tumor component and the whole tumor. These two imaging protocols provided a moderate but acceptable agreement for perfusion parameters and similar tumor-to-liver CNR during arterial and portal venous phases (5.63 ± 2.38 vs 6.16 ± 2.60, P = 0.814; 4.60 ± 1.27 vs 5.11 ± 1.74, P = 0.587). CONCLUSION: Compared with the conventional protocol, low contrast medium and radiation dose with iterative reconstruction has no significant influence on hepatic perfusion parameters for rabbits VX2 tumor. PMID:25954099

  9. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain.

    PubMed

    Welker, K; Boxerman, J; Kalnin, A; Kaufmann, T; Shiroishi, M; Wintermark, M

    2015-06-01

    MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice. PMID:25907520

  10. A spatially-distributed computational model to quantify behaviour of contrast agents in MR perfusion imaging

    PubMed Central

    Cookson, A.N.; Lee, J.; Michler, C.; Chabiniok, R.; Hyde, E.; Nordsletten, D.; Smith, N.P.

    2014-01-01

    Contrast agent enhanced magnetic resonance (MR) perfusion imaging provides an early, non-invasive indication of defects in the coronary circulation. However, the large variation of contrast agent properties, physiological state and imaging protocols means that optimisation of image acquisition is difficult to achieve. This situation motivates the development of a computational framework that, in turn, enables the efficient mapping of this parameter space to provide valuable information for optimisation of perfusion imaging in the clinical context. For this purpose a single-compartment porous medium model of capillary blood flow is developed which is coupled with a scalar transport model, to characterise the behaviour of both blood-pool and freely-diffusive contrast agents characterised by their ability to diffuse through the capillary wall into the extra-cellular space. A parameter space study is performed on the nondimensionalised equations using a 2D model for both healthy and diseased myocardium, examining the sensitivity of system behaviour to Peclet number, Damköhler number (Da), diffusivity ratio and fluid porosity. Assuming a linear MR signal response model, sample concentration time series data are calculated, and the sensitivity of clinically-relevant properties of these signals to the model parameters is quantified. Both upslope and peak values display significant non-monotonic behaviour with regard to the Damköhler number, with these properties showing a high degree of sensitivity in the parameter range relevant to contrast agents currently in use. However, the results suggest that signal upslope is the more robust and discerning metric for perfusion quantification, in particular for correlating with perfusion defect size. Finally, the results were examined in the context of nonlinear signal response, flow quantification via Fermi deconvolution and perfusion reserve index, which demonstrated that there is no single best set of contrast agent parameters

  11. What We Can Really Do with Bioresponsive MRI Contrast Agents.

    PubMed

    Angelovski, Goran

    2016-06-13

    Bioresponsive MRI contrast agents hold great promise for monitoring major physiological and pathological processes in a non-invasive manner. They are capable of altering the acquired MRI signal as a consequence of changes in their microenvironment, thus allowing real-time functional reporting in living organisms. Importantly, chemistry offers diverse solutions for the design of agents which respond to a great number of specific targets. However, the path to the successful utilization of these biomarkers in the desired functional MRI studies involves careful consideration of multiple scientific, technical, and practical issues across various research disciplines. This Minireview highlights the critical steps for planning and executing such multidisciplinary projects with an aim to substantially improve our knowledge of essential biological processes. PMID:27112329

  12. Surface Modified Gadolinium Phosphate Nanoparticles as MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Dumont, Matthieu F.; Baligand, Celine; Knowles, Elisabeth S.; Meisel, Mark W.; Walter, Glenn A.; Talham, Daniel R.

    2012-02-01

    Nanoparticles of GdPO4H2O were synthesized in a water/oil microemulsion using IGEPAL CO-520 as surfactant resulting in 50 nm to 100 nm particles that are dispersible and stable in water. Using surface modification chemistry previously established for zirconium phosphonate surfaces,ootnotetext J. Monot et al., J. Am. Chem. Soc. 130 (2008) 6243. the particles are directly modified with 5'-phosphate terminated oligonucleotides, and the specific interaction of the divalent phosphate with Gd^3+ sites at the surface is demonstrated. The ability of the modified nanoparticles to act as MRI contrast agents was determined by performing MR relaxivity measurements at 14 T. Solutions of nanopure water, Feridex and Omniscan (FDA cleared contrast agents) in 0.25% agarose were used for comparison and control purposes. MRI data confirm that GdPO4H2O nanoparticles have relaxivities (r1,r2) comparable to commercially available contrast agents.ootnotetext H. Hifumi et al., J. Am. Chem. Soc. 128 (2006) 15090. In addition, biofunctionalization of the surface of the nanoparticles does not prevent their function as MRI contrast agents.

  13. MRI contrast agent concentration and tumor interstitial fluid pressure.

    PubMed

    Liu, L J; Schlesinger, M

    2016-10-01

    The present work describes the relationship between tumor interstitial fluid pressure (TIFP) and the concentration of contrast agent for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We predict the spatial distribution of TIFP based on that of contrast agent concentration. We also discuss the cases for estimating tumor interstitial volume fraction (void fraction or porosity of porous medium), ve, and contrast volume transfer constant, K(trans), by measuring the ratio of contrast agent concentration in tissue to that in plasma. A linear fluid velocity distribution may reflect a quadratic function of TIFP distribution and lead to a practical method for TIFP estimation. To calculate TIFP, the parameters or variables should preferably be measured along the direction of the linear fluid velocity (this is in the same direction as the gray value distribution of the image, which is also linear). This method may simplify the calculation for estimating TIFP. PMID:27343032

  14. Absolute perfusion measurements and associated iodinated contrast agent time course in brain metastasis: a study for contrast-enhanced radiotherapy

    PubMed Central

    Obeid, Layal; Deman, Pierre; Tessier, Alexandre; Balosso, Jacques; Estève, François; Adam, Jean- François

    2014-01-01

    Contrast-enhanced radiotherapy is an innovative treatment that combines the selective accumulation of heavy elements in tumors with stereotactic irradiations using medium energy X-rays. The radiation dose enhancement depends on the absolute amount of iodine reached in the tumor and its time course. Quantitative, postinfusion iodine biodistribution and associated brain perfusion parameters were studied in human brain metastasis as key parameters for treatment feasibility and quality. Twelve patients received an intravenous bolus of iodinated contrast agent (CA) (40 mL, 4 mL/s), followed by a steady-state infusion (160 mL, 0.5 mL/s) to ensure stable intratumoral amounts of iodine during the treatment. Absolute iodine concentrations and quantitative perfusion maps were derived from 40 multislice dynamic computed tomography (CT) images of the brain. The postinfusion mean intratumoral iodine concentration (over 30 minutes) reached 1.94±0.12 mg/mL. Reasonable correlations were obtained between these concentrations and the permeability surface area product and the cerebral blood volume. To our knowledge, this is the first quantitative study of CA biodistribution versus time in brain metastasis. The study shows that suitable and stable amounts of iodine can be reached for contrast-enhanced radiotherapy. Moreover, the associated perfusion measurements provide useful information for the patient recruitment and management processes. PMID:24447951

  15. Revisiting an old friend: manganese-based MRI contrast agents

    PubMed Central

    Pan, Dipanjan; Caruthers, Shelton D.; Senpan, Angana; Schmieder, Ann H.; Wickline, Samuel A.; Lanza, Gregory M.

    2011-01-01

    Non-invasive cellular and molecular imaging techniques are emerging as a multidisciplinary field that offers promise in understanding the components, processes, dynamics and therapies of disease at a molecular level. Magnetic resonance imaging (MRI) is an attractive technique due to the absence of radiation and high spatial resolution which makes it advantageous over techniques involving radioisotopes. Typically paramagnetic and superparamagnetic metals are used as contrast materials for MR based techniques. Gadolinium has been the predominant paramagnetic contrast metal until the discovery and association of the metal with nephrogenic systemic fibrosis (NSF) in some patients with severe renal or kidney disease. Manganese was one of the earliest reported examples of paramagnetic contrast material for MRI because of its efficient positive contrast enhancement. In this review manganese based contrast agent approaches will be presented with a particular emphasis on nanoparticulate agents. We have discussed both classically used small molecule based blood pool contrast agents and recently developed innovative nanoparticle-based strategies highlighting a number of successful molecular imaging examples. PMID:20860051

  16. Intra-procedural Transcatheter Intraarterial Perfusion MRI as a Predictor of Tumor Response to Chemoembolization for Hepatocellular Carcinoma

    PubMed Central

    Wang, Dingxin; Gaba, Ron C.; Jin, Brian; Riaz, Ahsun; Lewandowski, Robert J.; Ryu, Robert K.; Sato, Kent T.; Ragin, Ann B.; Kulik, Laura M.; Mulcahy, Mary F.; Salem, Riad; Larson, Andrew C.; Omary, Reed A.

    2011-01-01

    Rationale and Objectives To prospectively test the hypothesis that transcatheter intraarterial perfusion magnetic resonance imaging (TRIP-MRI) measured semi-quantitative perfusion reductions during transcatheter arterial chemoembolization of hepatocellular carcinoma (HCC) are associated with tumor response. Materials and Methods Twenty eight patients (mean age 63 years; range 47–87 years) with 29 tumors underwent chemoembolization in a combined MR-interventional radiology suite. Intra-procedural tumor perfusion reductions during chemoembolization were monitored using TRIP-MRI. Pre- and post-–chemoembolization semi-quantitative area under the time-signal enhancement curve (AUC) tumor perfusion was measured. Mean tumor perfusion pre- and post-chemoembolization were compared using a paired t-test. Imaging follow-up was performed one to three months after chemoembolization. We studied the relationship between short-term tumor imaging response and intra-procedural perfusion reductions using univariate and multivariate analysis. Results Intra-procedural AUC perfusion value decreased significantly after chemoembolization (342.1 versus 158.6 arbitrary unit, P < 0.001). Twenty six patients with 27 HCCs (n = 27) had follow-up imaging at mean 39 days post-chemoembolization. Favorable response was present in 67% of these treated tumors according to necrosis criteria. 15 of 16 (94%) tumors with 25–75% perfusion reductions showed necrosis treatment response compared to only 3 of 11 (27%) tumors with perfusion reductions outside the above range (P = 0.001). Multivariate logistic regression indicated that intra-procedural tumor perfusion reduction and Child-Pugh class were independent factors associated significantly with tumor response (P = 0.012 and 0.047, respectively). Conclusion TRIP-MRI can successfully measure semi-quantitative changes in HCC perfusion during chemoembolization. Intra-procedural tumor perfusion reductions are associated with future tumor response. PMID

  17. Towards MRI T2 contrast agents of increased efficiency

    NASA Astrophysics Data System (ADS)

    Branca, Marlène; Marciello, Marzia; Ciuculescu-Pradines, Diana; Respaud, Marc; Morales, Maria del Puerto; Serra, Raphael; Casanove, Marie-José; Amiens, Catherine

    2015-03-01

    Magnetic nanoparticles can be efficient contrast agents for T2 weighted magnetic resonance imaging (MRI) after tuning of some key parameters such as size, surface state, colloidal stability and magnetization, thus motivating the development of new synthetic pathways. In this paper we report the effects of surface coating on the efficiency of two different types of iron based nanoparticles (NPs) as MRI contrast agents. Starting from well-defined hydrophobic iron oxide nanospheres and iron nanocubes of 13 nm size, we have used three methods to increase their hydrophilicity and transfer them into water: surface ligand modification, ligand exchange or encapsulation. The NPs obtained have been characterized by dynamic light scattering and transmission electron microscopy, and the relaxivities of their stable colloidal solutions in water have been determined. Among all samples prepared, iron nanocubes coated by silica display the highest relaxivity (r2) value: 628 s-1 mM-1.

  18. Comparison of Indocyanine Green Angiography and Laser Speckle Contrast Imaging for the Assessment of Vasculature Perfusion

    PubMed Central

    Towle, Erica L.; Richards, Lisa M.; Kazmi, S. M. Shams; Fox, Douglas J.; Dunn, Andrew K.

    2013-01-01

    BACKGROUND Assessment of the vasculature is critical for overall success in cranial vascular neurological surgery procedures. Although several methods of monitoring cortical perfusion intraoperatively are available, not all are appropriate or convenient in a surgical environment. Recently, 2 optical methods of care have emerged that are able to obtain high spatial resolution images with easily implemented instrumentation: indocyanine green (ICG) angiography and laser speckle contrast imaging (LSCI). OBJECTIVE To evaluate the usefulness of ICG and LSCI in measuring vessel perfusion. METHODS An experimental setup was developed that simultaneously collects measurements of ICG fluorescence and LSCI in a rodent model. A 785-nm laser diode was used for both excitation of the ICG dye and the LSCI illumination. A photothrombotic clot model was used to occlude specific vessels within the field of view to enable comparison of the 2 methods for monitoring vessel perfusion. RESULTS The induced blood flow change demonstrated that ICG is an excellent method for visualizing the volume and type of vessel at a single point in time; however, it is not always an accurate representation of blood flow. In contrast, LSCI provides a continuous and accurate measurement of blood flow changes without the need of an external contrast agent. CONCLUSION These 2 methods should be used together to obtain a complete understanding of tissue perfusion. PMID:22843129

  19. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    NASA Astrophysics Data System (ADS)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  20. Redox- and Hypoxia-Responsive MRI Contrast Agents

    PubMed Central

    Do, Quyen N.; Ratnakar, James S.; Kovács, Zoltán

    2014-01-01

    The development of responsive or “smart” magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd3+-based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  1. Redox- and hypoxia-responsive MRI contrast agents.

    PubMed

    Do, Quyen N; Ratnakar, James S; Kovács, Zoltán; Sherry, A Dean

    2014-06-01

    The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed. PMID:24825674

  2. Contrast-enhanced ultrasonography to assess blood perfusion of skeletal muscles in normal dogs.

    PubMed

    Oh, Juyeon; Jeon, Sunghoon; Choi, Jihye

    2015-07-01

    This study evaluated perfusion of skeletal muscle using contrast enhanced ultrasonography in humerus, radius, femur and tibia in normal dogs. Contrast enhanced ultrasonography for each region was performed after injecting 0.5 mL and 1 mL of contrast medium (SonoVue) in every dog. Blood perfusion was assessed quantitatively by measuring the peak intensity, time to the peak intensity and area under the curve from the time-intensity curve. Vascularization in skeletal muscle was qualitatively graded with a score of 0-3 according to the number of vascular signals. A parabolic shape of time-intensity curve was observed from muscles in normal dogs, and time to the peak intensity, the peak intensity and area under the curve of each muscle were not significantly different according to the appendicular regions examined and the dosage of contrast agent administered. This study reports that feasibility of contrast enhanced ultrasonography for assessment of the muscular perfusion in canine appendicular regions. PMID:25754794

  3. Contrast-enhanced ultrasonography to assess blood perfusion of skeletal muscles in normal dogs

    PubMed Central

    OH, Juyeon; JEON, Sunghoon; CHOI, Jihye

    2015-01-01

    This study evaluated perfusion of skeletal muscle using contrast enhanced ultrasonography in humerus, radius, femur and tibia in normal dogs. Contrast enhanced ultrasonography for each region was performed after injecting 0.5 mL and 1 mL of contrast medium (SonoVue) in every dog. Blood perfusion was assessed quantitatively by measuring the peak intensity, time to the peak intensity and area under the curve from the time–intensity curve. Vascularization in skeletal muscle was qualitatively graded with a score of 0–3 according to the number of vascular signals. A parabolic shape of time–intensity curve was observed from muscles in normal dogs, and time to the peak intensity, the peak intensity and area under the curve of each muscle were not significantly different according to the appendicular regions examined and the dosage of contrast agent administered. This study reports that feasibility of contrast enhanced ultrasonography for assessment of the muscular perfusion in canine appendicular regions. PMID:25754794

  4. Usefulness of contrast perfusion echocardiography for differential diagnosis of cardiac masses.

    PubMed

    Tang, Qiao-Ying; Guo, Ling-Dan; Wang, Wen-Xuan; Zhou, Wei; Liu, Ya-Ni; Liu, Hong-Yun; Li, Li; Deng, You-Bin

    2015-09-01

    The aim of this study was to assess the usefulness of contrast perfusion echocardiography in the differential diagnosis of different types of cardiac masses. Conventional echocardiography and contrast perfusion echocardiography were performed in 72 patients with cardiac masses. The degree of contrast enhancement of the mass and an adjacent section of myocardium after injection of contrast agent was determined by visual inspection and quantitative time-signal intensity curve analysis. The difference in maximal steady-state pixel intensity between the mass and the adjacent myocardium (ΔAmass-myocardium) was calculated. All masses had a pathologic diagnosis or resolved after anticoagulation. All 16 cardiac masses without enhancement on visual inspection were confirmed to be cardiac thrombi. Twenty-four masses with incomplete enhancement on visual inspection were recognized as benign tumors with validation methods. Of the 32 cardiac masses with complete enhancement, 30 were confirmed as malignant tumors and two as benign tumors with validation methods. The sensitivity and specificity of ΔAmass-myocardium in differentiating thrombi from tumors were 93% and 100%, respectively, and 100% and 97% in differentiating malignant tumors from benign tumors and thrombi. Both visual and quantitative assessment of degree of enhancement of cardiac masses in relation to the adjacent myocardium during contrast perfusion echocardiography had high diagnostic accuracy for differentiation of a thrombus from a tumor or a benign tumor from a malignant tumor. PMID:26087885

  5. An Exploratory Study Into the Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging or Perfusion Computed Tomography for Detection of Intratumoral Hypoxia in Head-and-Neck Cancer

    SciTech Connect

    Newbold, Kate Castellano, Isabel; Charles-Edwards, Elizabeth; Mears, Dorothy; Sohaib, Aslam; Leach, Martin; Rhys-Evans, Peter; Clarke, Peter; Fisher, Cyril; Harrington, Kevin; Nutting, Christopher

    2009-05-01

    Purpose: Hypoxia in patients with head-and-neck cancer (HNC) is well established and known to cause radiation resistance and treatment failure in the management of HNC. This study examines the role of parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) as surrogate markers of intratumoral hypoxia, defined by using the exogenous marker of hypoxia pimonidazole and the endogenous marker carbonic anhydrase 9 (CA9). Methods and Materials: Patients with HNC underwent preoperative DCE-MRI, perfusion CT, and pimonidazole infusion. Imaging parameters were correlated with pimonidazole and CA9 staining. The strength of correlations was tested by using a two-tailed Spearman's rank correlation coefficient. Results: Twenty-three regions of interest were analyzed from the 7 patients who completed the DCE-MRI studies. A number of statistically significant correlations were seen between DCE-MRI parameters (volume transfer between blood plasma and extracellular extravascular space [EES], volume of EES, rate constant between EES and blood plasma, time at arrival of contrast inflow, time to peak, average gradient, and time to onset) and areas with a pimonidazole score of 4. In the case of CA9 staining, only a weak correlation was shown with wash-in rate. There were no significant correlations between perfusion CT parameters and pimonidazole staining or CA9 expression. Conclusion: Intratumoral hypoxia in patients with HNC may be predicted by using DCE-MRI; however, perfusion CT requires further investigation.

  6. Rapid quantitative assessment of myocardial perfusion: spectral analysis of myocardial contrast echocardiographic images.

    PubMed

    Bae, Richard Y; Belohlavek, Marek; Greenleaf, James F; Seward, James B

    2002-01-01

    We described a novel rapid spectral analysis technique performed on raw digital in-phase quadrature (IQ) data that quantitatively differentiated perfused from nonperfused myocardium based on the simultaneous comparison of local fundamental and harmonic frequency band intensity levels. In open-chest pigs after ligation of the left anterior descending coronary artery (LAD) and continuous venous contrast infusion, the fundamental-to-harmonic intensity ratio (FHIR) for samples placed within the left ventricular (LV) cavity (10.8 +/- 1.7 dB) and perfused myocardium (13.7 +/- 1.6 dB) were significantly (P <.001) lower than for nonperfused myocardium (27.1 +/- 2.9 dB). In attenuated images, the FHIR for the LV cavity and perfused myocardium were also significantly (P <.05) lower than for the nonperfused myocardium (21.4 +/- 3.0 dB, 34.4 +/- 3.2 dB, and 40.2 +/- 4.4 dB, respectively). Spectral properties of contrast microbubbles, as characterized by the FHIR, allow for rapid quantitative assessment of myocardial perfusion from data contained in a single-image frame, without requiring background image subtraction and image averaging. PMID:11781556

  7. Biodegradable Polydisulfide Dendrimer Nanoclusters as MRI Contrast Agents

    PubMed Central

    Huang, Ching-Hui; Nwe, Kido; Zaki, Ajlan Al; Brechbiel, Martin W.; Tsourkas, Andrew

    2012-01-01

    Gd-conjugated dendrimer nanoclusters (DNCs) are a promising platform for the early detection of disease; however, their clinical utility is potentially limited due to safety concerns related to nephrogenic systemic fibrosis (NSF). In this paper, biodegradable DNCs were prepared with polydisulfide linkages between the individual dendrimers to facilitate excretion. Further, DNCs were labeled with pre-metalated Gd chelates to eliminate the risk of free Gd becoming entrapped in dendrimer cavities. The biodegradable polydisulfide DNCs possessed a circulation half-life of > 1.6 h in mice and produced significant contrast enhancement in the abdominal aorta and kidneys for as long as 4 h. The DNCs were reduced in circulation as a result of thiol-disulfide exchange and the degradation products were rapidly excreted via renal filtration. These agents demonstrated effective and prolonged in vivo contrast enhancement and yet minimized Gd tissue retention. Biodegradable polydisulfide DNCs represent a promising biodegradable macromolecular MRI contrast agent for magnetic resonance angiography and can potentially be further developed into target specific MRI contrast agents. PMID:23098069

  8. The Paramagnetic Pillared Bentonites as Digestive Tract MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Mojović, Miloš; Daković, Marko; Omerašević, Mia; Mojović, Zorica; Banković, Predrag; Milutinović-Nikolić, Aleksandra; Jovanović, Dušan

    The increased use of imaging techniques in diagnostic studies, such as MRI, has contributed to the development of the wide range of new materials which could be successfully used as image improving agents. However, there is a lack of such substances in the area of gastrointestinal tract MRI. Many of the traditionally popular relaxation altering agents show poor results and disadvantages provoking black bowel, side effects of diarrhea and the presence of artifacts arising from clumping. Paramagnetic species seem to be potentially suitable agents for these studies, but contrast opacification has been reported and less than 60% of the gastrointestinal tract magnetic resonance scans showed improved delineation of abdominal pathologies. The new solution has been proposed as zeolites or smectite clays (hectorite and montmorillonite) enclosing of paramagnetic metal ions obtained by ion-exchange methods. However, such materials have problems of leakage of paramagnetic ions causing the appearance of the various side-effects. In this study we show that Co+2 and Dy+3 paramagnetic-pillared bentonites could be successfully used as MRI digestive tract non-leaching contrast agents, altering the longitudinal and transverse relaxation times of fluids in contact with the clay minerals.

  9. Noninvasive assessment of tumor microenvironment using dynamic contrast enhanced MRI and 18F- fluoromisonidazole PET imaging in neck nodal metastases

    PubMed Central

    Jansen, Jacobus F. A.; Schöder, Heiko; Lee, Nancy Y.; Wang, Ya; Pfister, David. G.; Fury, Matthew G.; Stambuk, Hilda. E.; Humm, John L.; Koutcher, Jason A.; Shukla-Dave, Amita

    2009-01-01

    Purpose Pretreatment multimodality imaging can provide useful anatomical and functional data about tumors, including perfusion and possibly hypoxia status. The purpose of our study was to assess non-invasively the tumor microenvironment of neck nodal metastases in patients with head and neck (HN) cancer by investigating the relationship between tumor perfusion measured using Dynamic Contrast Enhanced MRI (DCE-MRI) and hypoxia measured by 18F-fluoromisonidazole (18F-FMISO) PET. Methods and Materials Thirteen newly diagnosed HN cancer patients with metastatic neck nodes underwent DCE-MRI and 18F-FMISO PET imaging prior to chemotherapy and radiation therapy. The matched regions of interests from both modalities were analyzed. To examine the correlations between DCE-MRI parameters and standard uptake value (SUV) measurements from 18F-FMISO PET, the non-parametric Spearman correlation coefficient was calculated. Furthermore, DCE-MRI parameters were compared between nodes with 18F-FMISO uptake and nodes with no 18F-FMISO uptake using Mann-Whitney U tests. Results For the 13 patients, a total of 18 nodes were analyzed. The nodal size strongly correlated with the 18F-FMISO SUV (ρ=0.74, p<0.001). There was a strong negative correlation between the median kep (ρ=−0.58, p=0.042) and the 18F-FMISO SUV. Hypoxic nodes (moderate to severe 18F-FMISO uptake) had significantly lower median Ktrans (p=0.049) and median kep (p=0.027) values than did non-hypoxic nodes (no 18F-FMISO uptake). Conclusion This initial evaluation of the preliminary results support the hypothesis that in metastatic neck lymph nodes, hypoxic nodes are poorly perfused (i.e., have significantly lower kep and Ktrans values) compared to non-hypoxic nodes. PMID:19906496

  10. The Role of Dynamic Contrast-Enhanced MRI in a Child with Sport-Induced Avascular Necrosis of the Scaphoid: A Case Report and Literature Review

    PubMed Central

    Jong, Bob; Tilman, Pieter

    2016-01-01

    Avascular necrosis (AVN) of the scaphoid in children is very rare and there is currently no consensus when conservative or operative treatment is indicated. A 10-year-old boy, practicing karate, presented with acute pain in his left wrist after falling on the outstretched hand. Imaging showed a scaphoid waist fracture with signs of an ongoing AVN. The diagnosis of AVN was confirmed with signal loss of the scaphoid on MRI T1. A dynamic contrast-enhanced MRI was performed for further assessment of the proximal pole vascularity and treatment planning. As dynamic contrast-enhanced MRI showed fair perfusion of the proximal pole, an adequate healing potential with conservative treatment was estimated. We achieved union and good function with cast immobilization for fourteen weeks. This case study showed dynamic contrast-enhanced MRI to be a valuable tool in assessing whether conservative or operative treatment is indicated to achieve union and good functional outcome. PMID:27529045

  11. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study

    PubMed Central

    Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J. J.; Wang, Meiyun; Zhou, Dong; Gong, Qiyong

    2016-01-01

    The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective. PMID:27374369

  12. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found

  13. Acute fracture of the neck of the femur. An assessment of perfusion of the head by dynamic MRI.

    PubMed

    Konishiike, T; Makihata, E; Tago, H; Sato, T; Inoue, H

    1999-07-01

    We performed dynamic MRI of the femoral head within 48 hours of injury on 22 patients with subcapital fracture of the neck of the femur and on a control group of 20 of whom ten were healthy subjects and ten were patients with an intertrochanteric fracture. Three MRI patterns emerged when the results between the fractured side and the contralateral femoral head were compared. In all of the control group and in those patients who had undisplaced fractures (Garden stages I and II), perfusion of the femoral head was considered to be at the same level as on the unaffected side. In patients with displaced fractures (Garden stages III and IV) almost all the femoral heads on the fractured side were impaired or totally avascular, although some had the same level of perfusion as the unaffected side. We conclude that dynamic MRI, a new non-invasive imaging technique, is useful for evaluating the perfusion of the femoral head. PMID:10463727

  14. Nitroxide-loaded hexosomes provide MRI contrast in vivo.

    PubMed

    Bye, Nicole; Hutt, Oliver E; Hinton, Tracey M; Acharya, Durga P; Waddington, Lynne J; Moffat, Bradford A; Wright, David K; Wang, Hong X; Mulet, Xavier; Muir, Benjamin W

    2014-07-29

    The purpose of this work was to synthesize and screen, for their effectiveness to act as T1-enhancing magnetic resonance imaging (MRI) contrast agents, a small library of nitroxide lipids incorporated into cubic-phase lipid nanoparticles (cubosomes). The most effective nitroxide lipid was then formulated into lower-toxicity lipid nanoparticles (hexosomes), and effective MR contrast was observed in the aorta and spleen of live rats in vivo. This new class of lower-toxicity lipid nanoparticles allowed for higher relaxivities on the order of those of clinically used gadolinium complexes. The new hexosome formulation presented herein was significantly lower in toxicity and higher in relaxivity than cubosome formulations previously reported by us. PMID:24979524

  15. Paramagnetic self-assembled nanoparticles as supramolecular MRI contrast agents.

    PubMed

    Besenius, Pol; Heynens, Joeri L M; Straathof, Roel; Nieuwenhuizen, Marko M L; Bomans, Paul H H; Terreno, Enzo; Aime, Silvio; Strijkers, Gustav J; Nicolay, Klaas; Meijer, E W

    2012-01-01

    Nanometer-sized materials offer a wide range of applications in biomedical technologies, particularly imaging and diagnostics. Current scaffolds in the nanometer range predominantly make use of inorganic particles, organic polymers or natural peptide-based macromolecules. In contrast we hereby report a supramolecular approach for the preparation of self-assembled dendritic-like nanoparticles for applications as MRI contrast agents. This strategy combines the benefits from low molecular weight imaging agents with the ones of high molecular weight. Their in vitro properties are confirmed by in vivo measurements: post injection of well-defined and meta-stable nanoparticles allows for high-resolution blood-pool imaging, even at very low Gd(III) doses. These dynamic and modular imaging agents are an important addition to the young field of supramolecular medicine using well-defined nanometer-sized assemblies. PMID:22539406

  16. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.

    PubMed

    Hart, Blaine L; Taheri, Saeid; Rosenberg, Gary A; Morrison, Leslie A

    2013-10-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22-76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E-6 to 9.63E-4 min(-1), mean 3.55E-4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E-4, not statistically different from mean WM Ki of 1.47E-4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects. PMID:24323376

  17. Modified Gadonanotubes as a promising novel MRI contrasting agent

    PubMed Central

    2013-01-01

    Background and purpose of the study Carbon nanotubes (CNTs) are emerging drug and imaging carrier systems which show significant versatility. One of the extraordinary characteristics of CNTs as Magnetic Resonance Imaging (MRI) contrasting agent is the extremely large proton relaxivities when loaded with gadolinium ion (Gdn3+) clusters. Methods In this study equated Gdn3+ clusters were loaded in the sidewall defects of oxidized multiwalled (MW) CNTs. The amount of loaded gadolinium ion into the MWCNTs was quantified by inductively coupled plasma (ICP) method. To improve water solubility and biocompatibility of the system, the complexes were functionalized using diamine-terminated oligomeric poly (ethylene glycol) via a thermal reaction method. Results Gdn3+ loaded PEGylated oxidized CNTs (Gdn3+@CNTs-PEG) is freely soluble in water and stable in phosphate buffer saline having particle size of about 200 nm. Transmission electron microscopy (TEM) images clearly showed formation of PEGylated CNTs. MRI analysis showed that the prepared solution represents 10% more signal intensity even in half concentration of Gd3+ in comparison with commerciality available contrasting agent Magnevist®. In addition hydrophilic layer of PEG at the surface of CNTs could prepare stealth nanoparticles to escape RES. Conclusion It was shown that Gdn3+@CNTs-PEG was capable to accumulate in tumors through enhanced permeability and retention effect. Moreover this system has a potential for early detection of diseases or tumors at the initial stages. PMID:23815852

  18. MRI Contrast from Relaxation Along a Fictitious Field (RAFF)

    PubMed Central

    Liimatainen, Timo; Sorce, Dennis J.; O’Connell, Robert; Garwood, Michael; Michaeli, Shalom

    2016-01-01

    A new method to measure rotating frame relaxation and to create contrast for MRI is introduced. The technique exploits relaxation along a fictitious field (RAFF) generated by amplitude- and frequency-modulated irradiation in a sub-adiabatic condition. Here, RAFF is demonstrated using a radiofrequency pulse based on sine and cosine amplitude and frequency modulations of equal amplitudes, which gives rise to a stationary fictitious magnetic field in a doubly rotating frame. According to dipolar relaxation theory, the RAFF relaxation time constant (TRAFF) was found to differ from laboratory frame relaxation times (T1 and T2) and rotating frame relaxation times (T1ρ and T2ρ). This prediction was supported by experimental results obtained from human brain in vivo and three different solutions. Results from relaxation mapping in human brain demonstrated the ability to create MRI contrast based on RAFF. The value of TRAFF was found to be insensitive to the initial orientation of the magnetization vector. Finally, as compared with adiabatic pulse trains of equal durations, RAFF required less radiofrequency power and therefore can be more readily used for rotating frame relaxation studies in humans. PMID:20740665

  19. MRI contrast from relaxation along a fictitious field (RAFF).

    PubMed

    Liimatainen, Timo; Sorce, Dennis J; O'Connell, Robert; Garwood, Michael; Michaeli, Shalom

    2010-10-01

    A new method to measure rotating frame relaxation and to create contrast for MRI is introduced. The technique exploits relaxation along a fictitious field (RAFF) generated by amplitude- and frequency-modulated irradiation in a subadiabatic condition. Here, RAFF is demonstrated using a radiofrequency pulse based on sine and cosine amplitude and frequency modulations of equal amplitudes, which gives rise to a stationary fictitious magnetic field in a doubly rotating frame. According to dipolar relaxation theory, the RAFF relaxation time constant (T(RAFF)) was found to differ from laboratory frame relaxation times (T(1) and T(2)) and rotating frame relaxation times (T(1ρ) and T(2ρ)). This prediction was supported by experimental results obtained from human brain in vivo and three different solutions. Results from relaxation mapping in human brain demonstrated the ability to create MRI contrast based on RAFF. The value of T(RAFF) was found to be insensitive to the initial orientation of the magnetization vector. In the RAFF method, the useful bandwidth did not decrease as the train length increased. Finally, as compared with an adiabatic pulse train of equal duration, RAFF required less radiofrequency power and therefore can be more readily used for rotating frame relaxation studies in humans. PMID:20740665

  20. T2∗ Measurement During First-Pass Contrast-Enhanced Cardiac Perfusion Imaging

    PubMed Central

    Kellman, Peter; Aletras, Anthony H.; Hsu, Li-yueh; McVeigh, Elliot R.; Arai, Andrew E.

    2007-01-01

    First-pass contrast-enhanced (CE) myocardial perfusion imaging will experience T2∗ effects at peak concentrations of contrast agent. A reduction in the signal intensity of left ventricular (LV) blood due to T2∗ losses may effect estimates of the arterial input function (AIF) used for quantitative perfusion measurement. Imaging artifacts may also result from T2∗ losses as well as off-resonance due to the bolus susceptibility. We hypothesized that T2∗ losses would not be significant for measurement of the AIF in full-dose studies using a short echo time (TE = 0.6 ms). The purpose of this study was to directly measure T2∗ in the LV cavity during first-pass perfusion. For single-dose Gd-DTPA (0.1 mmol/kg at 5 ml/s), the LV blood pool T2∗ had a mean value of 9 ms (N = 10) at peak enhancement. Distortion of the AIF due to T2∗ signal intensity loss will be less than 10% using TE = 0.6 ms. PMID:17029226

  1. Simultaneous detection of landmarks and key-frame in cardiac perfusion MRI using a joint spatial-temporal context model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens

    2011-03-01

    Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.

  2. Perfusion-Weighted MRI Parameters for Prediction of Early Progressive Infarction in Middle Cerebral Artery Occlusion

    PubMed Central

    Kim, Hoon; Kim, Yerim; Kim, Young Woo; Kim, Seong Rim

    2016-01-01

    Objective Early progressive infarction (EPI) is frequently observed and related to poor functional outcome in patients with middle cerebral artery (MCA) infarction caused by MCA occlusion. We evaluated the perfusion parameters of magnetic resonance imaging (MRI) as a predictor of EPI. Methods We retrospectively analyzed patients with acute MCA territory infarction caused by MCA occlusion. EPI was defined as a National Institutes of Health Stroke Scale increment ≥2 points during 24 hours despite receiving standard treatment. Regional parameter ratios, such as cerebral blood flow and volume (rCBV) ratio (ipsilateral value/contralateral value) on perfusion MRI were analyzed to investigate the association with EPI. Results Sixty-four patients were enrolled in total. EPI was present in 18 (28%) subjects and all EPI occurred within 3 days after hospitalization. Diabetes mellitus, rCBV ratio and regional time to peak (rTTP) ratio showed statically significant differences in both groups. Multi-variate analysis indicated that history of diabetes mellitus [odds ratio (OR), 6.13; 95% confidence interval (CI), 1.55–24.24] and a low rCBV ratio (rCBV, <0.85; OR, 6.57; 95% CI, 1.4–30.27) was significantly correlated with EPI. Conclusion The incidence of EPI is considerable in patients with acute MCA territory infarction caused by MCA occlusion. We suggest that rCBV ratio is a useful neuro-imaging parameter to predict EPI. PMID:27446514

  3. Accelerating free breathing myocardial perfusion MRI using multi coil radial k - t SLR

    NASA Astrophysics Data System (ADS)

    Goud Lingala, Sajan; DiBella, Edward; Adluru, Ganesh; McGann, Christopher; Jacob, Mathews

    2013-10-01

    The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data. Accelerated acquisition of free breathing MPI data can overcome some of these challenges. Recently, an algorithm termed as k - t SLR has been proposed to accelerate dynamic MRI by exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is to further improve k - t SLR and demonstrate its utility in considerably accelerating free breathing MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We perform k - t sampling experiments to compare different radial trajectories and determine the best sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably improve the algorithm’s convergence rate. The proposed algorithm is validated using free breathing rest and stress radial perfusion data sets from two normal subjects and one patient with ischemia. k - t SLR was observed to provide faithful reconstructions at high acceleration levels with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal constrained reconstruction and k - t SPARSE/SENSE.

  4. Perfusion MRI Indexes Variability in the Functional Brain Effects of Theta-Burst Transcranial Magnetic Stimulation

    PubMed Central

    Gratton, Caterina; Lee, Taraz G.; Nomura, Emi M.; D’Esposito, Mark

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is an important tool for testing causal relationships in cognitive neuroscience research. However, the efficacy of TMS can be variable across individuals and difficult to measure. This variability is especially a challenge when TMS is applied to regions without well-characterized behavioral effects, such as in studies using TMS on multi-modal areas in intrinsic networks. Here, we examined whether perfusion fMRI recordings of Cerebral Blood Flow (CBF), a quantitative measure sensitive to slow functional changes, reliably index variability in the effects of stimulation. Twenty-seven participants each completed four combined TMS-fMRI sessions during which both resting state Blood Oxygen Level Dependent (BOLD) and perfusion Arterial Spin Labeling (ASL) scans were recorded. In each session after the first baseline day, continuous theta-burst TMS (TBS) was applied to one of three locations: left dorsolateral prefrontal cortex (L dlPFC), left anterior insula/frontal operculum (L aI/fO), or left primary somatosensory cortex (L S1). The two frontal targets are components of intrinsic networks and L S1 was used as an experimental control. CBF changes were measured both before and after TMS on each day from a series of interleaved resting state and perfusion scans. Although TBS led to weak selective increases under the coil in CBF measurements across the group, individual subjects showed wide variability in their responses. TBS-induced changes in rCBF were related to TBS-induced changes in functional connectivity of the relevant intrinsic networks measured during separate resting-state BOLD scans. This relationship was selective: CBF and functional connectivity of these networks were not related before TBS or after TBS to the experimental control region (S1). Furthermore, subject groups with different directions of CBF change after TBS showed distinct modulations in the functional interactions of targeted networks. These results suggest

  5. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room

    PubMed Central

    Jekic, Mihaela; Foster, Eric L; Ballinger, Michelle R; Raman, Subha V; Simonetti, Orlando P

    2008-01-01

    Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed. PMID:18272005

  6. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  7. Type of MRI contrast, tissue gadolinium, and fibrosis

    PubMed Central

    Do, Catherine; Barnes, Jeffrey L.; Tan, Chunyan

    2014-01-01

    It has been presupposed that the thermodynamic stability constant (Ktherm) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-Ktherm gadodiamide with high-Ktherm gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-β production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-Ktherm chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects. PMID:25100280

  8. Type of MRI contrast, tissue gadolinium, and fibrosis.

    PubMed

    Do, Catherine; Barnes, Jeffrey L; Tan, Chunyan; Wagner, Brent

    2014-10-01

    It has been presupposed that the thermodynamic stability constant (K(therm)) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-K(therm) gadodiamide with high-K(therm) gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-β production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-K(therm) chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects. PMID:25100280

  9. Microfabricated High-Moment Micrometer-sized MRI Contrast Agents

    PubMed Central

    Zabow, Gary; Dodd, Stephen J.; Shapiro, Erik; Moreland, John; Koretsky, Alan P.

    2010-01-01

    While chemically synthesized superparamagnetic microparticles have enabled much new research based on MRI-tracking of magnetically labeled cells, signal-to-noise levels still limit the potential range of applications. Here it is shown how, through top-down microfabrication, contrast agent relaxivity can be increased several-fold, which should extend the sensitivity of such cell tracking studies. Microfabricated agents can benefit from both higher magnetic moments and higher uniformity than their chemically synthesized counterparts, implying increased label visibility and more quantitative image analyses. To assess the performance of microfabricated micrometer-sized contrast agent particles, analytic models and numerical simulations are developed and tested against new microfabricated agents described in this paper, as well as against results of previous imaging studies of traditional chemically synthesized microparticle agents. Experimental data showing signal effects of 500-nanometer thick, 2-micrometer diameter, gold-coated iron and gold-coated nickel disks verify the simulations. Additionally, it is suggested that measures of location better than the pixel resolution can be obtained and that these are aided using well-defined contrast agent particles achievable through microfabrication techniques. PMID:20928829

  10. Synthesis and characterization of magnetoliposomes for MRI contrast enhancement.

    PubMed

    Faria, M R; Cruz, M M; Gonçalves, M C; Carvalho, A; Feio, G; Martins, M B F

    2013-03-25

    This work assesses the characteristics of magnetoliposomes of soybean phosphatidylcholine (SPC):cholesterol (Chol) loaded with superparamagnetic iron oxide nanoparticles (IONPs) stabilized with tetramethylammonium hydroxide (TMAOH) and their capacity to enhance magnetic resonance imaging (MRI) contrast. Magnetoliposomes of SPC were used for comparative studies. IONPs and magnetoliposomes were characterized using transmission electron microscopy, dynamic light scattering, SQUID magnetometry, FTIR and MRI. The saturation magnetization at 10K was ~0.06 Am(2)/kg for SPC:Chol magnetoliposomes with 7 g iron oxide/mol of lipid and ~0.05 Am(2)/kg for SPC magnetoliposomes with 21 g iron oxide/mol of lipid. As these values are associated with the number of incorporated magnetic IONPs, the saturation magnetization is 1.2 times higher for magnetoliposomes of SPC:Chol as compared with magnetoliposomes of SPC alone. The behavior of temperature dependence in both cases is typical of superparamagnetic particles. FTIR spectra evidence the increase of magnetoliposome membrane ordering with the presence of Chol. Principal component analysis (PCA) applied to FTIR spectra evidenced a clear distinction between scores for SPC:Chol, and SPC magnetoliposomes and for SPC empty liposomes. PCA applied to FTIR data differentiate magnetoliposomes from empty liposomes. MR images of aqueous phantoms obtained with and without magnetoliposomes, clearly evidence their effect on T2 image weighting. PMID:23422275

  11. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Gao, Hao; Thayer, David; Luk, Alex L.; Gulsen, Gultekin

    2013-06-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully.

  12. A Manganese Alternative to Gadolinium for MRI Contrast.

    PubMed

    Gale, Eric M; Atanasova, Iliyana P; Blasi, Francesco; Ay, Ilknur; Caravan, Peter

    2015-12-16

    Contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used to diagnose soft tissue and vascular abnormalities. However, safety concerns limit the use of iodinated and gadolinium (Gd)-based CT and MRI contrast media in renally compromised patients. With an estimated 14% of the US population suffering from chronic kidney disease (CKD), contrast media compatible with renal impairment is sorely needed. We present the new manganese(II) complex [Mn(PyC3A)(H2O)](-) as a Gd alternative. [Mn(PyC3A)(H2O)](-) is among the most stable Mn(II) complexes at pH 7.4 (log KML = 11.40). In the presence of 25 mol equiv of Zn at pH 6.0, 37 °C, [Mn(PyC3A)(H2O)](-) is 20-fold more resistant to dissociation than [Gd(DTPA)(H2O)](2-). Relaxivity of [Mn(PyC3A)(H2O)](-) in blood plasma is comparable to commercial Gd contrast agents. Biodistribution analysis confirms that [Mn(PyC3A)(H2O)](-) clears via a mixed renal/hepatobiliary pathway with >99% elimination by 24 h. [Mn(PyC3A)(H2O)](-) was modified to form a bifunctional chelator and 4 chelates were conjugated to a fibrin-specific peptide to give Mn-FBP. Mn-FBP binds the soluble fibrin fragment DD(E) with Kd = 110 nM. Per Mn relaxivity of Mn-FBP is 4-fold greater than [Mn(PyC3A)(H2O)](-) and increases 60% in the presence of fibrin, consistent with binding. Mn-FBP provided equivalent thrombus enhancement to the state of the art Gd analogue, EP-2104R, in a rat model of arterial thrombosis. Mn metabolite analysis reveals no evidence of dechelation and the probe was >99% eliminated after 24 h. [Mn(PyC3A)(H2O)](-) is a lead development candidate for an imaging probe that is compatible with renally compromised patients. PMID:26588204

  13. Assessment of vessel permeability by combining dynamic contrast-enhanced and arterial spin labeling MRI.

    PubMed

    Liu, Ho-Ling; Chang, Ting-Ting; Yan, Feng-Xian; Li, Cheng-He; Lin, Yu-Shi; Wong, Alex M

    2015-06-01

    The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors. PMID:25880892

  14. Temporal Evolution of Ischemic Lesions in Nonhuman Primates: A Diffusion and Perfusion MRI Study

    PubMed Central

    Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Kempf, Doty; Nair, Govind; Wang, Silun; Muly, E. Chris; Zola, Stuart; Howell, Leonard

    2015-01-01

    Background and Purpose Diffusion-weighted imaging (DWI) and perfusion MRI were used to examine the spatiotemporal evolution of stroke lesions in adult macaques with ischemic occlusion. Methods Permanent MCA occlusion was induced with silk sutures through an interventional approach via the femoral artery in adult rhesus monkeys (n = 8, 10–21 years old). The stroke lesions were examined with high-resolution DWI and perfusion MRI, and T2-weighted imaging (T2W) on a clinical 3T scanner at 1–6, 48, and 96 hours post occlusion and validated with H&E staining. Results The stroke infarct evolved via a natural logarithmic pattern with the mean infarct growth rate = 1.38 ± 1.32 ml per logarithmic time scale (hours) (n = 7) in the hyperacute phase (1–6 hours). The mean infarct volume after 6 hours post occlusion was 3.6±2.8 ml (n = 7, by DWI) and increased to 3.9±2.9 ml (n = 5, by T2W) after 48 hours, and to 4.7±2.2ml (n = 3, by T2W) after 96 hours post occlusion. The infarct volumes predicted by the natural logarithmic function were correlated significantly with the T2W-derived lesion volumes (n = 5, r = 0.92, p = 0.01) at 48 hours post occlusion. The final infarct volumes derived from T2W were correlated significantly with those from H&E staining (r = 0.999, p < 0.0001, n = 4). In addition, the diffusion-perfusion mismatch was visible generally at 6 hours but nearly diminished at 48 hours post occlusion. Conclusion The infarct evolution follows a natural logarithmic pattern in the hyperacute phase of stroke. The logarithmic pattern of evolution could last up to 48 hours after stroke onset and may be used to predict the infarct volume growth during the acute phase of ischemic stroke. The nonhuman primate model, MRI protocols, and post data processing strategy may provide an excellent platform for characterizing the evolution of acute stroke lesion in mechanistic studies and therapeutic interventions of stroke disease. PMID:25659092

  15. Respiratory Motion-Compensated Radial Dynamic Contrast-Enhanced (DCE)-MRI of Chest and Abdominal Lesions

    PubMed Central

    Lin, Wei; Guo, Junyu; Rosen, Mark A.; Song, Hee Kwon

    2016-01-01

    Dynamic contrast-enhanced (DCE)-MRI is becoming an increasingly important tool for evaluating tumor vascularity and assessing the effectiveness of emerging antiangiogenic and antivascular agents. In chest and abdominal regions, however, respiratory motion can seriously degrade the achievable image quality in DCE-MRI studies. The purpose of this work is to develop a respiratory motion-compensated DCE-MRI technique that combines the self-gating properties of radial imaging with the reconstruction flexibility afforded by the golden-angle view-order strategy. Following radial data acquisition, the signal at k-space center is first used to determine the respiratory cycle, and consecutive views during the expiratory phase of each respiratory period (34–55 views, depending on the breathing rate) are grouped into individual segments. Residual intra-segment translation of lesion is subsequently compensated for by an autofocusing technique that optimizes image entropy, while intersegment translation (among different respiratory cycles) is corrected using 3D image correlation. The resulting motion-compensated, undersampled dynamic image series is then processed to reduce image streaking and to enhance the signal-to-noise ratio (SNR) prior to perfusion analysis, using either the k-space-weighted image contrast (KWIC) radial filtering technique or principal component analysis (PCA). The proposed data acquisition scheme also allows for high framerate arterial input function (AIF) sampling and free-breathing baseline T1 mapping. The performance of the proposed radial DCE-MRI technique is evaluated in subjects with lung and liver lesions, and results demonstrate that excellent pixelwise perfusion maps can be obtained with the proposed methodology. PMID:18956465

  16. Hexameric Mn(II) Dendrimer as MRI Contrast Agent

    PubMed Central

    Zhu, Jiang; Gale, Eric M.; Atanasova, Iliyana; Rietz, Tyson A.

    2014-01-01

    A Mn(II) chelating dendrimer was prepared as a contrast agent for MRI applications. The dendrimer comprises six tyrosine-derived [Mn(EDTA)(H2O)]2− moieties coupled to a cyclotriphosphazene core. Variable temperature 17O NMR revealed a single water co-ligand per Mn(II) that undergoes fast water exchange (kex = (3.0±0.1) × 108 s−1 at 37 °C). The 37 °C per Mn(II) relaxivity ranged from 8.2 to 3.8 mM−1s−1 from 0.47 to 11.7T, and is 6-fold higher on a per molecule basis. From this field dependence a rotational correlation time was estimated as 0.45±0.02 ns. The imaging and pharmacokinetic properties of the dendrimer were compared to clinically used [Gd(DTPA)(H2O)]2− in mice at 4.7T. On first pass, the higher per ion relaxivity of the dendrimer resulted in 2-fold greater blood signal than for [Gd(DTPA)(H2O)]2−. Blood clearance was fast and elimination occurred through both the renal and hepatobiliary routes. This Mn(II) containing dendrimer represents potential alternative to Gd-based contrast agents, especially in patients with chronic kidney disease where the use of current Gd-based agents may be contraindicated. PMID:25224391

  17. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    SciTech Connect

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  18. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    NASA Astrophysics Data System (ADS)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  19. Chemical Shift Induced Phase Errors in Phase Contrast MRI

    PubMed Central

    Middione, Matthew J.; Ennis, Daniel B.

    2012-01-01

    Phase contrast magnetic resonance imaging (PC-MRI) is subject to numerous sources of error, which decrease clinical confidence in the reported measures. This work outlines how stationary perivascular fat can impart a significant chemical shift induced PC-MRI measurement error using computational simulations, in vitro, and in vivo experiments. This chemical shift error does not subtract in phase difference processing, but can be minimized with proper parameter selection. The chemical shift induced phase errors largely depend on both the receiver bandwidth (BW) and the TE. Both theory and an in vivo comparison of the maximum difference in net forward flow between vessels with and without perivascular fat indicated that the effects of chemically shifted perivascular fat are minimized by the use of high BW (814 Hz/px) and an in-phase TE (HBW-TEIN). In healthy volunteers (N=10) HBW-TEIN significantly improves intrapatient net forward flow agreement compared to low BW (401 Hz/px) and a mid-phase TE as indicated by significantly decreased measurement biases and limits of agreement for the ascending aorta (1.8±0.5 mL vs. 6.4±2.8 mL, P=0.01), main pulmonary artery (2.0±0.9 mL vs. 11.9±5.8 mL, P=0.04), the left pulmonary artery (1.3±0.9 mL vs. 5.4±2.5 mL, P=0.003), and all vessels (1.7±0.8 mL vs. 7.2±4.4 mL, P=0.001). PMID:22488490

  20. PERIPATELLAR SYNOVITIS: COMPARISON BETWEEN NON-CONTRAST-ENHANCED AND CONTRAST-ENHANCED MRI AND ASSOCIATION WITH PAIN. THE MOST STUDY

    PubMed Central

    Crema, Michel D.; Felson, David T.; Roemer, Frank W.; Niu, Jingbo; Marra, Monica D.; Zhang, Yuqing; Lynch, John A.; El-Khoury, Georges Y.; Lewis, Cora E.; Guermazi, Ali

    2013-01-01

    Purpose To assess the diagnostic performance of signal changes in Hoffa's fat pad (HFP) assessed on non-contrast-enhanced (CE) MRI in detecting synovitis, and the association of pain with signal changes in Hoffa’s fat pad on non-CE MRI and peripatellar synovial thickness on CE MRI. Methods The Multicenter Osteoarthritis (MOST) Study is an observational study of individuals who have or are at high risk for knee OA. All subjects with available non-CE and CE MRIs were included. Signal changes in HFP were scored from 0 to 3 in 2 regions using non-CE MRI. Synovial thickness was scored from 0 to 2 on CE MRI in 5 peripatellar regions. Sensitivity, specificity and accuracy of HFP signal changes were calculated considering synovial thickness on CE MRI as the reference standard. We used logistic regression to assess the associations of HFP changes (non-CE MRI) and synovial thickness (CE MRI) with pain from walking up or down stairs, after adjusting for potential confounders. Results A total of 393 subjects were included. Sensitivity of infrapatellar and intercondylar signal changes in HFP was high (71% and 88%), but specificity was low (55% and 30%). No significant associations were found between HFP changes on non-CE MRI and pain. Grade 2 synovial thickness assessed on CE MRI was significantly associated with pain after adjustments for potential confounders. Conclusion Signal changes in HFP detected on non-CE MRI are a sensitive but non-specific surrogate for the assessment of synovitis. CE MRI identifies associations with pain better than non-CE MRI. PMID:23277189

  1. Dynamic contrast-enhanced MRI serves as a predictor of HIFU treatment outcome for uterine fibroids with hyperintensity in T2-weighted images

    PubMed Central

    ZHAO, WEN-PENG; CHEN, JIN-YUN; CHEN, WEN-ZHI

    2016-01-01

    The aim of the present study was to investigate the efficacy of dynamic contrast-enhanced magnetic resonance imaging (MRI) in predicting the outcome of using ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation for the treatment of uterine fibroids with T2 hyperintensity under MRI. A total of 131 uterine fibroids from 131 patients that appeared hyperintense under T2-weighted MRI were analyzed. The uterine fibroids were subjectively categorized into slight, irregular or regular enhancement groups, according to pretreatment dynamic contrast-enhanced MRI in the arterial phase within 60 sec after the injection of gadolinium. The non-perfused volume (NPV), which is indicative of successful ablation, was represented as the non-perfused area inside the uterine fibroids on enhanced MRI scans following treatment. Additionally, the treatment duration, treatment efficiency, sonication duration, energy efficiency ratio and any adverse events were recorded. The results indicated that the average NPV ratio for all the treated fibroids was 68.5%, while the average NPV ratios for fibroids with slight, irregular or regular enhancement were 84.7, 70.6 and 57.1%, respectively. Fibroids with regular enhancement were associated with the lowest NPV ratio and the lowest treatment efficiency, but exhibited the highest energy effect ratio and an elevated risk of severe adverse effects. The results of the present study indicate that hyperintense uterine fibroids with slight and irregular enhancement in the arterial phase of dynamic contrast-enhanced MRI are suitable for USgHIFU treatment. By contrast, uterine fibroids with regular enhancement were associated with the lowest treatment efficacy and safety. PMID:26889263

  2. Measurement of myocardial perfusion and infarction size using computer-aided diagnosis system for myocardial contrast echocardiography.

    PubMed

    Du, Guo-Qing; Xue, Jing-Yi; Guo, Yanhui; Chen, Shuang; Du, Pei; Wu, Yan; Wang, Yu-Hang; Zong, Li-Qiu; Tian, Jia-Wei

    2015-09-01

    Proper evaluation of myocardial microvascular perfusion and assessment of infarct size is critical for clinicians. We have developed a novel computer-aided diagnosis (CAD) approach for myocardial contrast echocardiography (MCE) to measure myocardial perfusion and infarct size. Rabbits underwent 15 min of coronary occlusion followed by reperfusion (group I, n = 15) or 60 min of coronary occlusion followed by reperfusion (group II, n = 15). Myocardial contrast echocardiography was performed before and 7 d after ischemia/reperfusion, and images were analyzed with the CAD system on the basis of eliminating particle swarm optimization clustering analysis. The myocardium was quickly and accurately detected using contrast-enhanced images, myocardial perfusion was quantitatively calibrated and a color-coded map calibrated by contrast intensity and automatically produced by the CAD system was used to outline the infarction region. Calibrated contrast intensity was significantly lower in infarct regions than in non-infarct regions, allowing differentiation of abnormal and normal myocardial perfusion. Receiver operating characteristic curve analysis documented that -54-pixel contrast intensity was an optimal cutoff point for the identification of infarcted myocardium with a sensitivity of 95.45% and specificity of 87.50%. Infarct sizes obtained using myocardial perfusion defect analysis of original contrast images and the contrast intensity-based color-coded map in computerized images were compared with infarct sizes measured using triphenyltetrazolium chloride staining. Use of the proposed CAD approach provided observers with more information. The infarct sizes obtained with myocardial perfusion defect analysis, the contrast intensity-based color-coded map and triphenyltetrazolium chloride staining were 23.72 ± 8.41%, 21.77 ± 7.8% and 18.21 ± 4.40% (% left ventricle) respectively (p > 0.05), indicating that computerized myocardial contrast echocardiography can

  3. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

    PubMed Central

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz

    2014-01-01

    Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are

  4. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    SciTech Connect

    Song, H; Liu, W; Ruan, D; Jung, S; Gach, M

    2014-06-15

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition. During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human

  5. SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI.

    PubMed

    Fischer, André; Weick, Stefan; Ritter, Christian O; Beer, Meinrad; Wirth, Clemens; Hebestreit, Helge; Jakob, Peter M; Hahn, Dietbert; Bley, Thorsten; Köstler, Herbert

    2014-08-01

    Obtaining functional information on the human lung is of tremendous interest in the characterization of lung defects and pathologies. However, pulmonary ventilation and perfusion maps usually require contrast agents and the application of electrocardiogram (ECG) triggering and breath holds to generate datasets free of motion artifacts. This work demonstrates the possibility of obtaining highly resolved perfusion-weighted and ventilation-weighted images of the human lung using proton MRI and the SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) technique. The SENCEFUL technique utilizes a two-dimensional fast low-angle shot (FLASH) sequence with quasi-random sampling of phase-encoding (PE) steps for data acquisition. After every readout, a short additional acquisition of the non-phase-encoded direct current (DC) signal necessary for self-gating was added. By sorting the quasi-randomly acquired data according to respiratory and cardiac phase derived from the DC signal, datasets of representative respiratory and cardiac cycles could be accurately reconstructed. By application of the Fourier transform along the temporal dimension, functional maps (perfusion and ventilation) were obtained. These maps were compared with dynamic contrast-enhanced (DCE, perfusion) as well as standard Fourier decomposition (FD, ventilation) reference datasets. All datasets were additionally scored by two experienced radiologists to quantify image quality. In addition, one initial patient examination using SENCEFUL was performed. Functional images of healthy volunteers and a patient diagnosed with hypoplasia of the left pulmonary artery and left-sided pulmonary fibrosis were successfully obtained. Perfusion-weighted images corresponded well to DCE-MRI data; ventilation-weighted images offered a significantly better depiction of the lung periphery compared with standard FD. Furthermore, the SENCEFUL technique hints at a potential clinical relevance by successfully detecting

  6. Simultaneous myocardial strain and dark-blood perfusion imaging using a displacement-encoded MRI pulse sequence.

    PubMed

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd'Hotel, Christophe; Lorenz, Christine H; Croisille, Pierre; Wen, Han

    2010-09-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in two to three myocardial slices were repeatedly acquired using a single-shot pulse sequence for 3 to 4 min, which covers a bolus infusion of Gadolinium contrast. The magnitudes of the images were T(1) weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n = 9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R(2) = 0.765, Bland-Altman standard deviation = 0.15 mL/min/g). In a group of ST-elevation myocardial infarction patients (n = 11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R(2) = 0.72), and the pixelwise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  7. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.

    PubMed

    Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C

    2016-03-01

    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. PMID:26661226

  8. Comparison of Partial Volume Effects in Arterial and Venous Contrast Curves in CT Brain Perfusion Imaging

    PubMed Central

    Riordan, Alan J.; Bennink, Edwin; Dankbaar, Jan Willem; Viergever, Max A.; Velthuis, Birgitta K.; Smit, Ewoud J.; de Jong, Hugo W. A. M.

    2014-01-01

    Purpose In brain CT perfusion (CTP), the arterial contrast bolus is scaled to have the same area under the curve (AUC) as the venous outflow to correct for partial volume effects (PVE). This scaling is based on the assumption that large veins are unaffected by PVE. Measurement of the internal carotid artery (ICA), usually unaffected by PVE due to its large diameter, may avoid the need for partial volume correction. The aims of this work are to examine i) the assumptions behind PVE correction and ii) the potential of selecting the ICA obviating correction for PVE. Methods The AUC of the ICA and sagittal sinus were measured in CTP datasets from 52 patients. The AUCs were determined by i) using commercial CTP software based on a Gaussian curve-fitting to the time attenuation curve, and ii) by simple integration of the time attenuation curve over a time interval. In addition, frames acquired up to 3 minutes after first bolus passage were used to examine the ratio of arterial and venous enhancement. The impact of selecting the ICA without PVE correction was illustrated by reporting cerebral blood volume (CBV) measurements. Results In 49 of 52 patients, the AUC of the ICA was significantly larger than that of the sagittal sinus (p = 0.017). Measured after the first pass bolus, contrast enhancement remained 50% higher in the ICA just after the first pass bolus, and 30% higher 3 minutes later. CBV measurements were significantly lowered when the ICA was used without PVE correction. Conclusions Contradicting the assumptions underlying PVE correction, contrast in the ICA was significantly higher than in the sagittal sinus, even 3 minutes after the first pass of the contrast bolus. PVE correction might lead to overestimation of CBV if the CBV is calculated using the AUC of the time attenuation curves. PMID:24858308

  9. Computational fluid dynamics modelling of perfusion measurements in dynamic contrast-enhanced computed tomography: development, validation and clinical applications

    NASA Astrophysics Data System (ADS)

    Peladeau-Pigeon, M.; Coolens, C.

    2013-09-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) is an imaging tool that aids in evaluating functional characteristics of tissue at different stages of disease management: diagnostic, radiation treatment planning, treatment effectiveness, and monitoring. Clinical validation of DCE-derived perfusion parameters remains an outstanding problem to address prior to perfusion imaging becoming a widespread standard as a non-invasive quantitative measurement tool. One approach to this validation process has been the development of quality assurance phantoms in order to facilitate controlled perfusion ex vivo. However, most of these systems fail to establish and accurately replicate physiologically relevant capillary permeability and exchange performance. The current work presents the first step in the development of a prospective suite of physics-based perfusion simulations based on coupled fluid flow and particle transport phenomena with the goal of enhancing the understanding of clinical contrast agent kinetics. Existing knowledge about a controllable, two-compartmental fluid exchange phantom was used to validate the computational fluid dynamics (CFD) simulation model presented herein. The sensitivity of CFD-derived contrast uptake curves to contrast injection parameters, including injection duration and flow rate, were quantified and found to be within 10% accuracy. The CFD model was employed to evaluate two commonly used clinical kinetic algorithms used to derive perfusion parameters: Fick's principle and the modified Tofts model. Neither kinetic model was able to capture the true transport phenomena it aimed to represent but if the overall contrast concentration after injection remained identical, then successive DCE-CT evaluations could be compared and could indeed reflect differences in regional tissue flow. This study sets the groundwork for future explorations in phantom development and pharmaco-kinetic modelling, as well as the development of novel contrast

  10. Changes in transmural distribution of myocardial perfusion assessed by quantitative intravenous myocardial contrast echocardiography in humans

    PubMed Central

    Fukuda, S; Muro, T; Hozumi, T; Watanabe, H; Shimada, K; Yoshiyama, M; Takeuchi, K; Yoshikawa, J

    2002-01-01

    Objective: To clarify whether changes in transmural distribution of myocardial perfusion under significant coronary artery stenosis can be assessed by quantitative intravenous myocardial contrast echocardiography (MCE) in humans. Methods: 31 patients underwent dipyridamole stress MCE and quantitative coronary angiography. Intravenous MCE was performed by continuous infusion of Levovist. Images were obtained from the apical four chamber view with alternating pulsing intervals both at rest and after dipyridamole infusion. Images were analysed offline by placing regions of interest over both endocardial and epicardial sides of the mid-septum. The background subtracted intensity versus pulsing interval plots were fitted to an exponential function, y = A (1 − e−βt), where A is plateau level and β is rate of rise. Results: Of the 31 patients, 16 had significant stenosis (> 70%) in the left anterior descending artery (group A) and 15 did not (group B). At rest, there were no differences in the A endocardial to epicardial ratio (A-EER) and β-EER between the two groups (mean (SD) 1.2 (0.6) v 1.2 (0.8) and 1.2 (0.7) v 1.1 (0.6), respectively, NS). During hyperaemia, β-EER in group A was significantly lower than that in group B (1.0 (0.5) v 1.4 (0.5), p < 0.05) and A-EER did not differ between the two groups (1.0 (0.5) v 1.2 (0.4), NS). Conclusions: Changes in transmural distribution of myocardial perfusion under significant coronary artery stenosis can be assessed by quantitative intravenous MCE in humans. PMID:12231594

  11. Preliminary Results on Different Impedance Contrast Agents for Pulmonary Perfusion Imaging with Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Pouliopoulos, J.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    Recent studies in animal models suggest that the use of small volume boluses of NaCl as an impedance contrast agent can significantly improve pulmonary perfusion imaging by Electrical Impedance Tomography (EIT). However, these studies used highly concentrated NaCl solution (20%) which may have adverse effects on the patients. In a pilot experiment, we address this problem by comparing a number of different Impedance Contrast Boluses (ICBs). Conductivity changes in the lungs of a sheep after the injection of four different ICBs were compared, including three NaCl-based ICBs and one glucose-based ICB. The following procedure was followed for each ICB. Firstly, ventilation was turned off to provide an apneic window of approximately 40s to image the conductivity changes due to the ICB. Each ICB was then injected through a pig-tail catheter directly into the right atrium. EIT images were acquired throughout the apnea to capture the conductivity change. For each ICB, the experiment was repeated three times. The three NaCl-based ICB exhibited similar behaviour in which following the injection of each of these ICBs, the conductivity of each lung predictably increased. The effect of the ICB of 5% glucose solution was inconclusive. A small decrease in conductivity in the left lung was observed in two out of three cases and none was discernible in the right lung.

  12. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    PubMed Central

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-01-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. PMID:16306271

  13. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    NASA Astrophysics Data System (ADS)

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-12-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex

  14. High-resolution wide-field imaging of perfused capillaries without the use of contrast agent

    PubMed Central

    Nelson, Darin A; Burgansky-Eliash, Zvia; Barash, Hila; Loewenstein, Anat; Barak, Adiel; Bartov, Elisha; Rock, Tali; Grinvald, Amiram

    2011-01-01

    Purpose: Assessment of capillary abnormalities facilitates early diagnosis, treatment, and follow-up of common retinal pathologies. Injected contrast agents like fluorescein are widely used to image retinal capillaries, but this highly effective procedure has a few disadvantages, such as untoward side effects, inconvenience of injection, and brevity of the time window for clear visualization. The retinal function imager (RFI) is a tool for monitoring retinal functions, such as blood velocity and oximetry, based on intrinsic signals. Here we describe the clinical use of hemoglobin in red blood cells (RBCs) as an intrinsic motion-contrast agent in the generation of detailed noninvasive capillary-perfusion maps (nCPMs). Patients and methods: Multiple series of nCPM images were acquired from 130 patients with diabetic retinopathy, vein occlusion, central serous retinopathy, age-related macular degeneration, or metabolic syndrome, as well as from 37 healthy subjects. After registration, pixel value distribution parameters were analyzed to locate RBC motion. Results: The RFI yielded nCPMs demonstrating microvascular morphology including capillaries in exquisite detail. Maps from the same subject were highly reproducible in repeated measurements, in as much detail and often better than that revealed by the very best fluorescein angiography. In patients, neovascularization and capillary nonperfusion areas were clearly observed. Foveal avascular zones (FAZ) were sharply delineated and were larger in patients with diabetic retinopathy than in controls (FAZ diameter: 641.5 ± 82.3 versus 463.7 ± 105 μm; P < 0.001). Also visible were abnormal vascular patterns, such as shunts and vascular loops. Conclusion: Optical imaging of retinal capillaries in human patients based on motion contrast is noninvasive, comfortable, safe, and can be repeated as often as required for early diagnosis, treatment guidance, and follow up of retinal disease progression. PMID:21887088

  15. Immobilized Contrast Enhanced (ICE) MRI: Gadolinium-based long-term MR Contrast Enhancement of the Vein Graft Vessel Wall*

    PubMed Central

    Mitsouras, Dimitris; Vemula, Praveen Kumar; Yu, Peng; Tao, Ming; Nguyen, Binh T.; Campagna, Christina M.; Karp, Jeffrey M.; Mulkern, Robert V.; Ozaki, C. Keith; Rybicki, Frank J.

    2010-01-01

    An implantable MR contrast agent that can be covalently immobilized on tissue during surgery has been developed. The rationale is that a durable increase in tissue contrast using an implantable contrast agent can enhance post-surgical tissue differentiation using MRI. For small vessel (e.g., vein graft) MRI, the direct benefit of such permanent “labeling” of the vessel wall by modification of its relaxation properties is to achieve more efficient imaging. This efficiency can be realized as either increased contrast leading to more accurate delineation of vessel wall and lesion tissue boundaries, or, faster imaging without penalizing contrast-to-noise ratio, or a combination thereof. We demonstrate, for the first time, stable long-term MRI enhancement using such an exogenous contrast mechanism based on immobilizing a modified Gd-DTPA complex on a human vein using a covalent amide bond. Signal enhancement due to the covalently immobilized contrast agent is demonstrated for excised human vein specimens imaged at 3T, and its long-term stability is demonstrated during a 4-month incubation period. PMID:20859994

  16. Perfusion Estimated With Rapid Dynamic Contrast-Enhanced Magnetic Resonance Imaging Correlates Inversely With Vascular Endothelial Growth Factor Expression and Pimonidazole Staining in Head-and-Neck Cancer: A Pilot Study

    SciTech Connect

    Donaldson, Stephanie B.; Betts, Guy; Bonington, Suzanne C.; Homer, Jarrod J.; Slevin, Nick J.; Kershaw, Lucy E.; Valentine, Helen; West, Catharine M.L.; Buckley, David L.

    2011-11-15

    Purpose: To analyze, in a pilot study, rapidly acquired dynamic contrast-enhanced (DCE)-MRI data with a general two-compartment exchange tracer kinetic model and correlate parameters obtained with measurements of hypoxia and vascular endothelial growth factor (VEGF) expression in patients with squamous cell carcinoma of the head and neck. Methods and Materials: Eight patients were scanned before surgery. The DCE-MRI data were acquired with 1.5-s temporal resolution and analyzed using the two-compartment exchange tracer kinetic model to obtain estimates of parameters including perfusion and permeability surface area. Twelve to 16 h before surgery, patients received an intravenous injection of pimonidazole. Samples taken during surgery were used to determine the level of pimonidazole staining using immunohistochemistry and VEGF expression using quantitative real-time polymerase chain reaction. Correlations between the biological and imaging data were examined. Results: Of the seven tumors fully analyzed, those that were poorly perfused tended to have high levels of pimonidazole staining (r = -0.79, p = 0.03) and VEGF expression (r = -0.82, p = 0.02). Tumors with low permeability surface area also tended to have high levels of hypoxia (r = -0.75, p = 0.05). Hypoxic tumors also expressed higher levels of VEGF (r = 0.82, p = 0.02). Conclusions: Estimates of perfusion obtained with rapid DCE-MRI data in patients with head-and-neck cancer correlate inversely with pimonidazole staining and VEGF expression.

  17. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast.

    PubMed

    Stüber, Carsten; Morawski, Markus; Schäfer, Andreas; Labadie, Christian; Wähnert, Miriam; Leuze, Christoph; Streicher, Markus; Barapatre, Nirav; Reimann, Katja; Geyer, Stefan; Spemann, Daniel; Turner, Robert

    2014-06-01

    During the last five years ultra-high-field magnetic resonance imaging (MRI) has enabled an unprecedented view of living human brain. Brain tissue contrast in most MRI sequences is known to reflect mainly the spatial distributions of myelin and iron. These distributions have been shown to overlap significantly in many brain regions, especially in the cortex. It is of increasing interest to distinguish and identify cortical areas by their appearance in MRI, which has been shown to be feasible in vivo. Parcellation can benefit greatly from quantification of the independent contributions of iron and myelin to MRI contrast. Recent studies using susceptibility mapping claim to allow such a separation of the effects of myelin and iron in MRI. We show, using post-mortem human brain tissue, that this goal can be achieved. After MRI scanning of the block with appropriate T1 mapping and T2* weighted sequences, we section the block and apply a novel technique, proton induced X-ray emission (PIXE), to spatially map iron, phosphorus and sulfur elemental concentrations, simultaneously with 1μm spatial resolution. Because most brain phosphorus is located in myelin phospholipids, a calibration step utilizing element maps of sulfur enables semi-quantitative ex vivo mapping of myelin concentration. Combining results for iron and myelin concentration in a linear model, we have accurately modeled MRI tissue contrasts. Conversely, iron and myelin concentrations can now be estimated from appropriate MRI measurements in post-mortem brain samples. PMID:24607447

  18. Detecting the subregion proceeding to infarction in hypoperfused cerebral tissue: a study with diffusion and perfusion weighted MRI.

    PubMed

    Liu, Y; Karonen, J O; Vanninen, R L; Nuutinen, J; Perkiö, J; Vainio, P A; Soimakallio, S; Aronen, H J

    2003-06-01

    Diffusion and perfusion weighted MRI have been widely used in ischaemic stroke. We studied 17 patients in whom ischaemic areas showed an ischaemic core, an area of infarct growth and hypoperfused but ultimately surviving tissue. Apparent diffusion coefficients (ADC) were measured on days 1, 2, and 8 in the three subregions and in contralateral control areas. Cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) were measured in these regions on day 1 perfusion maps. On day 1, the ischaemic core had very low ADC and CBF and increased MTT. The ADC in the ischaemic core gradually increased during the week. The area of infarct growth on day 1 had slightly but significantly decreased ADC (96% of control, P=0.028), moderately decreased CBF and increased MTT. On day 1 the hypoperfused but surviving tissue had slightly but significantly increased ADC (103% of control, P=0.001), mildly decreased CBF and increased CBV and MTT. The ADC of the area of infarct growth decreased to the same level as in the ischaemic core on days 2 and 8. That of surviving tissue was still above normal on day 2 (103% of control), but had returned to the normal level by day 8. Measurement of ADC combined with perfusion MRI may help distinguish different subregions in acutely hypoperfused brain. PMID:12750863

  19. [A Patient with Sinking Skin Flap Syndrome who Underwent Perfusion MRI before and after Cranioplasty].

    PubMed

    Kato, Akihito; Morishima, Hiroyuki; Nagashima, Goro

    2016-09-01

    Background:Sinking skin flap syndrome(SSFS)manifests as subjective symptoms, such as headache, dizziness, and undue fatigability, in addition to neurologic symptoms, such as hemiplegia, aphasia, and perceived failure, when the skin over a bone defect sinks in the weeks or months following a decompressive craniectomy. Indeed, these symptoms can improve after a cranioplasty. Case presentation:A 58-year-old woman presented with a disturbance of consciousness. She was found to have a subarachnoid hemorrhage due to a ruptured right middle cerebral artery aneurysm. She underwent a craniotomy with clipping of the affected artery and a decompressive craniectomy on the same day. Post-operatively, the disturbance of consciousness improved, but the left-sided paralysis persisted. She complained of intractable headaches, was disoriented, and a lack of spontaneity emerged as the skin over the bone defect sank. She underwent cranioplasty on the 43rd day after admission, and the symptoms resolved promptly after surgery. Rehabilitation was canceled at the onset of symptoms, but resumed after the symptoms improved. Based on perfusion MRI, the cerebral blood flow(CBF):cerebral blood volume(CBV)ratio of the affected side increased before and after surgery compared with the healthy side. A lumboperitoneal shunt was placed on the 52nd day after admission to manage the hydrocephalus. She was discharged from the hospital with higher brain dysfunction and a mild state of paralysis. Conclusion:The timing of cranioplasty in patients with SSFS has not yet been established, but surgery should be performed before symptoms appear because SSFS impairs rehabilitative efforts. PMID:27605477

  20. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol‑1 L s‑1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  1. Contrast enhanced ultrasound with quantitative perfusion analysis for objective characterization of pancreatic ductal adenocarcinoma: A feasibility study.

    PubMed

    D'Onofrio, Mirko; Canestrini, Stefano; Crosara, Stefano; De Robertis, Riccardo; Pozzi Mucelli, Roberto

    2014-03-28

    The aim of this study was to determine whether contrast enhanced ultrasound (CEUS) quantitative perfusion analysis allows an objective characterization of ductal adenocarcinoma (ADK) of the pancreas. Patients with pancreatic ADK underwent CEUS. All examinations were performed on an Acuson S2000 system (Siemens, Erlangen, Germany) after the iv administration of 2.4 mL contrast agent (SonoVue(®), Bracco, Milan, Italy). All lesions were pathologically proved. An operator manually drew different regions of interest within the tumor and the adjacent parenchyma to allow the quantitative perfusion analysis. The mean values of peak of enhancement, time to peak and ascending curve were calculated and compared using the Student's t test. The quantitative perfusion analysis was possible in all lesions. The mean values of the peak of enhancement, time to peak and ascending curve were 17.19%, 7.97 s and 159.52% s within the tumor and 33.57%, 8.89 s and 355.29% s within the adjacent parenchyma. The peak of enhancement and the ascending curve values were significantly different within the tumor and the adjacent parenchyma. Thus, CEUS allows the quantitative perfusion analysis of pancreatic ductal adenocarcinoma. PMID:24765238

  2. Contrast enhanced ultrasound with quantitative perfusion analysis for objective characterization of pancreatic ductal adenocarcinoma: A feasibility study

    PubMed Central

    D’Onofrio, Mirko; Canestrini, Stefano; Crosara, Stefano; Robertis, Riccardo De; Mucelli, Roberto Pozzi

    2014-01-01

    The aim of this study was to determine whether contrast enhanced ultrasound (CEUS) quantitative perfusion analysis allows an objective characterization of ductal adenocarcinoma (ADK) of the pancreas. Patients with pancreatic ADK underwent CEUS. All examinations were performed on an Acuson S2000 system (Siemens, Erlangen, Germany) after the iv administration of 2.4 mL contrast agent (SonoVue®, Bracco, Milan, Italy). All lesions were pathologically proved. An operator manually drew different regions of interest within the tumor and the adjacent parenchyma to allow the quantitative perfusion analysis. The mean values of peak of enhancement, time to peak and ascending curve were calculated and compared using the Student’s t test. The quantitative perfusion analysis was possible in all lesions. The mean values of the peak of enhancement, time to peak and ascending curve were 17.19%, 7.97 s and 159.52% s within the tumor and 33.57%, 8.89 s and 355.29% s within the adjacent parenchyma. The peak of enhancement and the ascending curve values were significantly different within the tumor and the adjacent parenchyma. Thus, CEUS allows the quantitative perfusion analysis of pancreatic ductal adenocarcinoma. PMID:24765238

  3. Bench-to-bedside review: contrast enhanced ultrasonography--a promising technique to assess renal perfusion in the ICU.

    PubMed

    Schneider, Antoine; Johnson, Lynne; Goodwin, Mark; Schelleman, Anthony; Bellomo, Rinaldo

    2011-01-01

    Acute kidney injury (AKI) is common in critically ill patients and associated with important morbidity and mortality. Although alterations in renal perfusion are thought to play a causative role in the pathogenesis of AKI, there is, to date, no reliable technique that allows the assessment of renal perfusion that is applicable in the ICU. Contrast-enhanced ultrasound (CEUS) is an ultrasound imaging technique that makes use of microbubble-based contrast agents. These microbubbles, when injected into the bloodstream, allow visualization of vascular structures and, with contrast-specific imaging modes, detection of blood flow at the capillary level. Some recent CEUS-derived approaches allow quantification of blood flow in several organs, including the kidney. Current generation ultrasound contrast agents have strong stability and safety profiles. Along with post-marketing surveillance, numerous studies report safe administration of these agents, including in critically ill patients. This review presents information on the physical principles underlying CEUS, the methods allowing blood flow quantification and the potential applications of CEUS in critical care nephrology, currently as a research tool but perhaps in the future as a way of monitoring renal perfusion. PMID:21586101

  4. Quantitative perfusion analysis in pancreatic contrast enhanced ultrasound (DCE-US): a promising tool for the differentiation between autoimmune pancreatitis and pancreatic cancer.

    PubMed

    Vitali, F; Pfeifer, L; Janson, C; Goertz, R S; Neurath, M F; Strobel, D; Wildner, D

    2015-10-01

    In the work-up of focal pancreatic lesions autoimmune pancreatitis (AIP) is a rare differential diagnosis to pancreatic cancer (PC) with similar clinical constellations. The aim of our study was to compare differences between proven AIP and PC using transabdominal dynamic contrast enhanced ultrasound (DCE-US). Therefore we recorded 3-minute-clips of CEUS examinations and analyzed perfusion parameters with VueBox®-quantification software. To obtain DCE-US Parameters, Regions-of-Interest were selected within the lesions and the surrounding pancreas parenchyma, serving as reference tissue. We compared 3 patients with AIP (mean age: 58 years; lesion mean size: 40 mm) to 17 patients with PC (mean age: 68 years; lesion mean size: 35.9 mm). Significant differences between PC and parenchyma could be found in the following parameters: Peak-Enhancement (PE), Wash-in-and-Wash-out-AUC, Wash-in Perfusion-Index. PE of AIP was comparable to normal parenchyma. The relation of PE between parenchyma and lesion (ΔPE) AIP and PC was significantly different [AIP: 0.21 (±0.06); PC: 0.81 (±0.1); p<0.01]. PE of neoplastic lesions was significantly lower as AIP and normal parenchyma (p<0.01). Therefore perfusion analysis in DCE-US can help to differentiate hypovascular PC from AIP presenting nearly isovascular time intensity curves. Diagnostic accuracy of DCE-US in this setting has to be validated in future prospective studies in comparison to CT and MRI. PMID:26480053

  5. A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment

    PubMed Central

    Granziera, C.; Daducci, A.; Donati, A.; Bonnier, G.; Romascano, D.; Roche, A.; Bach Cuadra, M.; Schmitter, D.; Klöppel, S.; Meuli, R.; von Gunten, A.; Krueger, G.

    2015-01-01

    Objectives The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). Methods Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. Results Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. Conclusion Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features. PMID:26236628

  6. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI.

    PubMed

    von Zur Muhlen, Constantin; Sibson, Nicola R; Peter, Karlheinz; Campbell, Sandra J; Wilainam, Panop; Grau, Georges E; Bode, Christoph; Choudhury, Robin P; Anthony, Daniel C

    2008-03-01

    Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-alpha, but not IL-1beta or lymphotoxin-alpha (LT-alpha), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-alpha injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies. PMID:18274670

  7. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI

    PubMed Central

    von zur Muhlen, Constantin; Sibson, Nicola R.; Peter, Karlheinz; Campbell, Sandra J.; Wilainam, Panop; Grau, Georges E.; Bode, Christoph; Choudhury, Robin P.; Anthony, Daniel C.

    2008-01-01

    Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-α, but not IL-1β or lymphotoxin-α (LT-α), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-α injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies. PMID:18274670

  8. Characterizing growth patterns in longitudinal MRI using image contrast

    NASA Astrophysics Data System (ADS)

    Vardhan, Avantika; Prastawa, Marcel; Vachet, Clement; Piven, Joseph; Gerig, Guido

    2014-03-01

    Understanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation-based analysis, particularly for distinguishing between normal and abnormal growth patterns.

  9. Contrast-enhanced diffuse optical tomography of brain perfusion in humans using ICG

    NASA Astrophysics Data System (ADS)

    Habermehl, Christina; Schmitz, Christoph; Steinbrink, Jens

    2012-02-01

    Regular monitoring of brain perfusion at the bedside in neurointensive care is desirable. Currently used imaging modalities are not suited for constant monitoring and often require a transport of the patient. Noninvasive near infrared spectroscopy (NIRS) in combination with an injection of a safe dye (indocyanine green, ICG) could serve as a quasi-continuous brain perfusion monitor. In this work, we evaluate prerequisites for the development of a brain perfusion monitor using continuous wave (cw) NIRS technique. We present results from a high-resolution diffuse optical tomography (HR-DOT) experiment in humans demonstrating the separation of signals from skin from the brain. This technique can help to monitor neurointensive care patients on a regular basis, detecting changes in cortical perfusion in time.

  10. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    PubMed Central

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  11. Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning

    ERIC Educational Resources Information Center

    Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.

    2006-01-01

    In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…

  12. Gd-HOPO Based High Relaxivity MRI Contrast Agents

    SciTech Connect

    Datta, Ankona; Raymond, Kenneth

    2008-11-06

    Tris-bidentate HOPO-based ligands developed in our laboratory were designed to complement the coordination preferences of Gd{sup 3+}, especially its oxophilicity. The HOPO ligands provide a hexadentate coordination environment for Gd{sup 3+} in which all he donor atoms are oxygen. Because Gd{sup 3+} favors eight or nine coordination, this design provides two to three open sites for inner-sphere water molecules. These water molecules rapidly exchange with bulk solution, hence affecting the relaxation rates of bulk water olecules. The parameters affecting the efficiency of these contrast agents have been tuned to improve contrast while still maintaining a high thermodynamic stability for Gd{sup 3+} binding. The Gd- HOPO-based contrast agents surpass current commercially available agents ecause of a higher number of inner-sphere water molecules, rapid exchange of inner-sphere water molecules via an associative mechanism, and a long electronic relaxation time. The contrast enhancement provided by these agents is at least twice that of commercial contrast gents, which are based on polyaminocarboxylate ligands.

  13. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  14. Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu.

    PubMed

    Sigg, Severin J; Santini, Francesco; Najer, Adrian; Richard, Pascal U; Meier, Wolfgang P; Palivan, Cornelia G

    2016-08-01

    Current magnetic resonance imaging (MRI) contrast agents often produce insufficient contrast for diagnosis of early disease stages, and do not sense their biochemical environments. Herein, we report a highly sensitive nanoparticle-based MRI probe with r1 relaxivity up to 51.7 ± 1.2 mM(-1) s(-1) (3T). Nanoparticles were co-assembled from Gd(3+) complexed to heparin-poly(dimethylsiloxane) copolymer, and a reduction-sensitive amphiphilic peptide serving to induce responsiveness to environmental changes. The release of the peptide components leads to a r1 relaxivity increase under reducing conditions and increases the MRI contrast. In addition, this MRI probe has several advantages, such as a low cellular uptake, no apparent cellular toxicity (tested up to 1 mM Gd(3+)), absence of an anticoagulation property, and a high shelf stability (no increase in free Gd(3+) over 7 months). Thus, this highly sensitive T1 MRI contrast nanoparticle system represents a promising probe for early diagnosis through possible accumulation and contrast enhancement within reductive extracellular tumour tissue. PMID:27435820

  15. Main applications of hybrid PET-MRI contrast agents: a review.

    PubMed

    Kiani, A; Esquevin, A; Lepareur, N; Bourguet, P; Le Jeune, F; Gauvrit, Jy

    2016-03-01

    In medical imaging, the continuous quest to improve diagnostic performance and optimize treatment strategies has led to the use of combined imaging modalities. Positron emission tomography (PET) and computed tomography (CT) is a hybrid imaging existing already for many years. The high spatial and contrast resolution of magnetic resonance imaging (MRI) and the high sensitivity and molecular information from PET imaging are leading to the development of this new hybrid imaging along with hybrid contrast agents. To create a hybrid contrast agent for PET-MRI device, a PET radiotracer needs to be combined with an MRI contrast agent. The most common approach is to add a radioactive isotope to the surface of a small superparamagnetic iron oxide (SPIO) particle. The resulting agents offer a wide range of applications, such as pH variation monitoring, non-invasive angiography and early imaging diagnosis of atherosclerosis. Oncology is the most promising field with the detection of sentinel lymph nodes and the targeting of tumor neoangiogenesis. Oncology and cardiovascular imaging are thus major areas of development for hybrid PET-MRI imaging systems and hybrid contrast agents. The aim is to combine high spatial resolution, high sensitivity, morphological and functional information. Future prospects include the use of specific antibodies and hybrid multimodal PET-MRI-ultrasound-fluorescence imaging with the potential to provide overall pre-, intra- and postoperative patient care. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26632007

  16. Focal Hepatic Hot Spot From Superior Vena Cava Occlusion Visualized on Ventilation/Perfusion Scintigraphy With Contrast-Enhanced CT Correlate.

    PubMed

    Lawrence, Michael; Schuster, David M

    2016-05-01

    A 57-year-old woman with superior vena cava stenosis from repeated central line placements underwent ventilation/perfusion scanning after presenting with pleuritic chest pain. The ventilation/perfusion scan was not characteristic for pulmonary embolus, but perfusion images demonstrated abnormal radiotracer activity within hepatic segment 4, along with extensive collateral vessels as seen on SPECT/CT. Two months later, the patient presented with similar complaints and had a chest CT with contrast to evaluate for pulmonary embolus. This showed occlusion of the superior vena cava and arterial enhancement within segment 4 in a similar distribution to the radiotracer in the perfusion scan. PMID:26825208

  17. Novel ways to noninvasively detect inflammation of the myocardium: contrast-enhanced MRI and myocardial contrast echocardiography

    PubMed Central

    van den Brink, M.R.; Geluk, C.A.; Lindner, J.R.; Velthuis, B.K.; Vonken, E.J.; Cramer, M.J.M.

    2003-01-01

    Both contrast-enhanced magnetic resonance imaging (CE-MRI) and myocardial contrast echocardiography (MCE) are promising tools to detect cardiac inflammation. CE-MRI can be used to characterise the location and extent of myocardial inflammation, since areas of abnormal signal enhancement associated with regional wall motion abnormalities reliably indicate areas of active myocarditis. In MCE, chemically composed microbubbles can be visualised by ultrasound and used to determine the status of the cardiac microvasculature. If there is any inflammation the microbubbles will be phagocytosed by neutrophils and monocytes, thus enabling the degree of inflammation to be assessed. These noninvasive techniques may allow early diagnosis and accurate evaluation of myocardial inflammation. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696203

  18. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyu; Yu, Mi Kyung; Lee, Tae Sup; Park, Jae Jun; Jeong, Yong Yeon; Jon, Sangyong

    2011-04-01

    We describe hybrid nanoparticles, composed of iron oxide and gold nanoparticles, as potential dual contrast agents for both computed tomography (CT) and magnetic resonance imaging (MRI). The hybrid nanoparticles are synthesized by thermal decomposition of mixtures of Fe-oleate and Au-oleylamine complexes. Using a nano-emulsion method, the nanoparticles are coated with amphiphilic poly(DMA-r-mPEGMA-r-MA) to impart water-dispersity and antibiofouling properties. An in vitro phantom study shows that the hybrid nanoparticles have high CT attenuation, because of the constituent gold nanoparticles, and afford a good MR signal, attributable to the contained iron oxide nanoparticles. Intravenous injection of the hybrid nanoparticles into hepatoma-bearing mice results in high contrast between the hepatoma and normal hepatic parenchyma in both CT and MRI. These results suggest that the hybrid nanoparticles may be useful as CT/MRI dual contrast agents for in vivo hepatoma imaging.

  19. Radiation protection issues in dynamic contrast-enhanced (perfusion) computed tomography.

    PubMed

    Brix, Gunnar; Lechel, Ursula; Nekolla, Elke; Griebel, Jürgen; Becker, Christoph

    2015-12-01

    Dynamic contrast-enhanced (DCE) CT studies are increasingly used in both medical care and clinical trials to improve diagnosis and therapy management of the most common life-threatening diseases: stroke, coronary artery disease and cancer. It is thus the aim of this review to briefly summarize the current knowledge on deterministic and stochastic radiation effects relevant for patient protection, to present the essential concepts for determining radiation doses and risks associated with DCE-CT studies as well as representative results, and to discuss relevant aspects to be considered in the process of justification and optimization of these studies. For three default DCE-CT protocols implemented at a latest-generation CT system for cerebral, myocardial and cancer perfusion imaging, absorbed doses were measured by thermoluminescent dosimeters at an anthropomorphic body phantom and compared with thresholds for harmful (deterministic) tissue reactions. To characterize stochastic radiation risks of patients from these studies, life-time attributable cancer risks (LAR) were estimated using sex-, age-, and organ-specific risk models based on the hypothesis of a linear non-threshold dose-response relationship. For the brain, heart and pelvic cancer studies considered, local absorbed doses in the imaging field were about 100-190 mGy (total CTDI(vol), 200 mGy), 15-30 mGy (16 mGy) and 80-270 mGy (140 mGy), respectively. According to a recent publication of the International Commission on Radiological Protection (ICRP Publication 118, 2012), harmful tissue reactions of the cerebro- and cardiovascular systems as well as of the lenses of the eye become increasingly important at radiation doses of more than 0.5 Gy. The LARs estimated for the investigated cerebral and myocardial DCE-CT scenarios are less than 0.07% for males and 0.1% for females at an age of exposure of 40 years. For the considered tumor location and protocol, the corresponding LARs are more than 6 times as high

  20. High-resolution renal perfusion mapping using contrast-enhanced ultrasonography in ischemia-reperfusion injury monitors changes in renal microperfusion.

    PubMed

    Fischer, Krisztina; Meral, F Can; Zhang, Yongzhi; Vangel, Mark G; Jolesz, Ferenc A; Ichimura, Takaharu; Bonventre, Joseph V

    2016-06-01

    Alterations in renal microperfusion play an important role in the development of acute kidney injury with long-term consequences. Here we used contrast-enhanced ultrasonography as a novel method for depicting intrarenal distribution of blood flow. After infusion of microbubble contrast agent, bubbles were collapsed in the kidney and postbubble destruction refilling was measured in various regions of the kidney. Local perfusion was monitored in vivo at 15, 30, 45, 60 minutes and 24 hours after 28 minutes of bilateral ischemia in 12 mice. High-resolution, pixel-by-pixel analysis was performed on each imaging clip using customized software, yielding parametric perfusion maps of the kidney, representing relative blood volume in each pixel. These perfusion maps revealed that outer medullary perfusion decreased disproportionately to the reduction in the cortical and inner medullary perfusion after ischemia. Outer medullary perfusion was significantly decreased by 69% at 60 minutes postischemia and remained significantly less (40%) than preischemic levels at 24 hours postischemia. Thus, contrast-enhanced ultrasonography with high-resolution parametric perfusion maps can monitor changes in renal microvascular perfusion in space and time in mice. This novel technique can be translated to clinical use in man. PMID:27165821

  1. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    SciTech Connect

    Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.; Sundfor, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-03-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  2. Quantification of myocardial perfusion based on signal intensity of flow sensitized MRI

    NASA Astrophysics Data System (ADS)

    Abeykoon, Sumeda B.

    The quantitative assessment of perfusion is important for early recognition of a variety of heart diseases, determination of disease severity and their cure. In conventional approach of measuring cardiac perfusion by arterial spin labeling, the relative difference in the apparent T1 relaxation times in response to selective and non-selective inversion of blood entering the region of interest is related to perfusion via a two-compartment tissue model. But accurate determination of T1 in small animal hearts is difficult and prone to errors due to long scan times. The purpose of this study is to develop a fast, robust and simple method to quantitatively assess myocardial perfusion using arterial spin labeling. The proposed method is based on signal intensities (SI) of inversion recovery slice-select, non-select and steady-state images. Especially in this method data are acquired at a single inversion time and at short repetition times. This study began by investigating the accuracy of assessment of perfusion using a two compartment system. First, determination of perfusion by T1 and SI were implemented to a simple, two-compartment phantom model. Mathematical model developed for full spin exchange models (in-vivo experiments) by solving a modified Bloch equation was modified to develop mathematical models (T1 and SI) for a phantom (zero spin exchange). The phantom result at different flow rates shows remarkable evidence of accuracy of the two-compartment model and SI, T1 methods: the SI method has less propagation error and less scan time. Next, twelve healthy C57BL/6 mice were scanned for quantitative perfusion assessment and three of them were repeatedly scanned at three different time points for a reproducibility test. The myocardial perfusion of healthy mice obtained by the SI-method, 5.7+/-1.6 ml/g/min, was similar (p=0.38) to that obtained by the conventional T1 method, 5.6+/- 2.3 ml/g/min. The reproducibility of the SI method shows acceptable results: the

  3. Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI

    SciTech Connect

    Zhang, Fan; Huang, Xinglu; Qian, Chunqi; Zhu, Lei; Hida, Naoki; Niu, Gang; Chen, Xiaoyuan

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer MR contrast agents exert influence on T{sub 1} or T{sub 2} relaxation time of the surrounding tissue. Black-Right-Pointing-Pointer Combined use of iron oxide and Gd-DTPA can improve the sensitivity/specificity of lesion detection. Black-Right-Pointing-Pointer Dual contrast MRI enhances the delineation of tumor borders and small lesions. Black-Right-Pointing-Pointer The effect of DC-MRI can come from the high paramagnetic susceptibility of Gd{sup 3+}. Black-Right-Pointing-Pointer The effect of DC-MRI can also come from the distinct pharmacokinetic distribution of SPIO and Gd-DTPA. -- Abstract: Purpose: The use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T{sub 1}) or transverse (T{sub 2}) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection. Procedures: With a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T{sub 2} weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Results: Based on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T{sub 2} relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to -4.12 {+-} 0.71. Dual contrast MRI also enhanced the

  4. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  5. Abdominal MRI without Enteral Contrast Accurately Detects Intestinal Fibrostenosis in Patients with Inflammatory Bowel Disease.

    PubMed

    Fisher, Jeremy G; Kalb, Bobby; Martin, Diego; Dhere, Tanvi; Perez, Sebastian D; Srinivasan, Jahnavi K

    2015-11-01

    Patients with inflammatory bowel disease (IBD) presenting for surgical evaluation require thorough small bowel surveillance as it improves accuracy of diagnosis (ulcerative colitis versus Crohn's) and differentiates those who may respond to nonoperative therapy, preserving bowel length. MRI has not been validated conclusively against histopathology in IBD. Most protocols require enteral contrast. This study aimed to 1) evaluate the accuracy of MRI for inflammation, fibrosis, and extraluminal complications and 2) compare MRI without enteral contrast to standard magnetic resonance enterography. Adults with Crohn's disease or ulcerative colitis who underwent abdominal MRI and surgery were retrospectively reviewed. Of 65 patients evaluated, 55 met inclusion criteria. Overall sensitivity and specificity of MRI for disease involvement localized by segment were 93 per cent (95% confidence interval = 89.4-95.0) and 95 per cent (95% confidence interval = 92.3-97.0), respectively (positive predictive value was 86%, negative predictive value was 98%). Sensitivity and specificity between MRI with and without oral and rectal contrast were similar (96% vs 91% and 99% vs 94%, P > 0.10). As were positive predictive value and negative predictive value (85% vs 96%, P = 0.16; 97% vs 99%, P = 0.42). Magnetic resonance is highly sensitive and specific for localized disease involvement and extraluminal abdominal sequelae of IBD. It accurately differentiates patients who have chronic transmural (fibrotic) disease and thus may require an operation from those with acute inflammation, whose symptoms may improve with aggressive medical therapy alone. MRI without contrast had comparable diagnostic yield to standard magnetic resonance enterography. PMID:26672581

  6. Comparison of myocardial contrast echocardiography with NC100100 and 99mTc sestamibi SPECT for detection of resting myocardial perfusion abnormalities in patients with previous myocardial infarction

    PubMed Central

    Jucquois, I; Nihoyannopoulos, P; D'Hondt, A; Roelants, V; Robert, A; Melin, J; Glass, D; Vanoverschelde, J

    2000-01-01

    OBJECTIVE—To determine whether myocardial contrast echocardiography (MCE) following intravenous injection of perfluorocarbon microbubbles permits identification of resting myocardial perfusion abnormalities in patients who have had a previous myocardial infarction.
PATIENTS AND INTERVENTIONS—22 patients (mean (SD) age 66 (11) years) underwent MCE after intravenous injection of NC100100, a novel perfluorocarbon containing contrast agent, and resting 99mTc sestamibi single photon emission computed tomography (SPECT). With both methods, myocardial perfusion was graded semiquantitatively as 1 = normal, 0.5 = mild defect, and 0 = severe defect.
RESULTS—Among the 203 normally contracting segments, 151 (74%) were normally perfused by SPECT and 145 (71%) by MCE. With SPECT, abnormal tracer uptake was mainly found among normally contracting segments from the inferior wall. By contrast, with MCE poor myocardial opacification was noted essentially among the normally contracting segments from the anterior and lateral walls. Of the 142 dysfunctional segments, 87 (61%) showed perfusion defects by SPECT, and 94 (66%) by MCE. With both methods, perfusion abnormalities were seen more frequently among akinetic than hypokinetic segments. MCE correctly identified 81/139 segments that exhibited a perfusion defect by SPECT (58%), and 135/206 segments that were normally perfused by SPECT (66%). Exclusion of segments with attenuation artefacts (defined as abnormal myocardial opacification or sestamibi uptake but normal contraction) by either MCE or SPECT improved both the sensitivity (76%) and the specificity (83%) of the detection of SPECT perfusion defects by MCE.
CONCLUSIONS—The data suggest that MCE allows identification of myocardial perfusion abnormalities in patients who have had a previous myocardial infarction, provided that regional wall motion is simultaneously taken into account.


Keywords: myocardial contrast echocardiography; NC100100

  7. Evaluation of liver parenchyma and perfusion using dynamic contrast-enhanced computed tomography and contrast-enhanced ultrasonography in captive green iguanas (Iguana iguana) under general anesthesia

    PubMed Central

    2014-01-01

    Background Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. Results An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. Conclusion CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions. PMID:24885935

  8. A patient-specific visualization tool for comprehensive analysis of coronary CTA and perfusion MRI data

    NASA Astrophysics Data System (ADS)

    Kirisli, H. A.; Gupta, V.; Kirschbaum, S.; Neefjes, L.; van Geuns, R. J.; Mollet, N.; Lelieveldt, B. P. F.; Reiber, J. H. C.; van Walsum, T.; Niessen, W. J.

    2011-03-01

    Cardiac magnetic resonance perfusion imaging (CMR) and computed tomography angiography (CTA) are widely used to assess heart disease. CMR is used to measure the global and regional myocardial function and to evaluate the presence of ischemia; CTA is used for diagnosing coronary artery disease, such as coronary stenoses. Nowadays, the hemodynamic significance of coronary artery stenoses is determined subjectively by combining information on myocardial function with assumptions on coronary artery territories. As the anatomy of coronary arteries varies greatly between individuals, we developed a patient-specific tool for relating CTA and perfusion CMR data. The anatomical and functional information extracted from CTA and CMR data are combined into a single frame of reference. Our graphical user interface provides various options for visualization. In addition to the standard perfusion Bull's Eye Plot (BEP), it is possible to overlay a 2D projection of the coronary tree on the BEP, to add a 3D coronary tree model and to add a 3D heart model. The perfusion BEP, the 3D-models and the CTA data are also interactively linked. Using the CMR and CTA data of 14 patients, our tool directly established a spatial correspondence between diseased coronary artery segments and myocardial regions with abnormal perfusion. The location of coronary stenoses and perfusion abnormalities were visualized jointly in 3D, thereby facilitating the study of the relationship between the anatomic causes of a blocked artery and the physiological effects on the myocardial perfusion. This tool is expected to improve diagnosis and therapy planning of early-stage coronary artery disease.

  9. Anisotropic MRI contrast reveals enhanced ionic transport in plastic crystals.

    PubMed

    Romanenko, Konstantin; Jin, Liyu; Madsen, Louis A; Pringle, Jennifer M; O'Dell, Luke A; Forsyth, Maria

    2014-11-01

    Organic ionic plastic crystals (OIPCs) are attractive as solid-state electrolytes for electrochemical devices such as lithium-ion batteries and solar and fuel cells. OIPCs offer high ionic conductivity, nonflammability, and versatility of molecular design. Nevertheless, intrinsic ion transport behavior of OIPCs is not fully understood, and their measured properties depend heavily on thermal history. Solid-state magnetic resonance imaging experiments reveal a striking image contrast anisotropy sensitive to the orientation of grain boundaries in polycrystalline OIPCs. Probing triethyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1222FSI) samples with different thermal history demonstrates vast variations in microcrystallite alignment. Upon slow cooling from the melt, microcrystallites exhibit a preferred orientation throughout the entire sample, leading to an order of magnitude increase in conductivity as probed using impedance spectroscopy. This investigation describes both a new conceptual window and a new characterization method for understanding polycrystalline domain structure and transport in plastic crystals and other solid-state conductors. PMID:25312993

  10. Superparamagnetic FePt nanoparticles as excellent MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Maenosono, Shinya; Suzuki, Toshimasa; Saita, Soichiro

    Chemically disordered face-centered cubic (fcc) FePt nanoparticles (NPs) with a mean diameter of 9 nm were synthesized via pyrolysis of iron(III) ethoxide and platinum(II) acetylacetonate. The surface ligands of these NPs were then exchanged from oleic acid to tetramethylammonium hydroxide (TMAOH) to measure the longitudinal ( T1) and transverse ( T2) proton relaxation times of aqueous dispersion of FePt NPs. Magnetic resonance relaxometry reveals that TMAOH-capped FePt NPs have a higher T2-shortening effect than conventional superparamagnetic iron oxide NPs, indicating that fcc-phase FePt NPs might be superior negative contrast agents for magnetic resonance imaging.

  11. Characterizing Galbumin as a high molecular weight contrast agent in MRI - A novel dual contrast agent protocol

    NASA Astrophysics Data System (ADS)

    Moosvi, Firas; Reinsberg, Stefan; Baker, Jennifer

    2009-05-01

    In studying cancer and tumours, traditional biochemical methods call for analyzing frozen cross sections of tumour tissues, staining and then fluorescently imaging them at high resolution. While this method has served its purpose for decades, situations and conditions are arising that require dynamic imaging in live animals. Recent advances in the field of Biophysics have allowed researchers the ability to correlate images taken with Magnetic Resonance Imaging (MRI) to those using high- resolution fluorescent microscopy. While live imaging is possible using MRI, it is certainly not possible to reproduce much of the biologically relevant data acquired by fluorescent microscopy. In this proposal, we set the stage for the biological problem, cover some basic tumour biology then outline the basic principles of imaging with NMR. Finally, we characterize the use of a new contrast agent, Galbumin, to conduct a pilot study for a new class of animal MRI experiments.Finally, we present a novel protocol for a dual contrast agent MR protocol to extract permeability and flow information to improve characterization of drug delivery. Our over-arching goal is to use the live imaging capabilities of MR, and combine them with traditional fluorescent microscopy techniques to get a more accurate biological picture of a tumour.

  12. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging

    PubMed Central

    Solomon, Eddy; Avni, Reut; Hadas, Ron; Raz, Tal; Garbow, Joel Richard; Bendel, Peter; Frydman, Lucio; Neeman, Michal

    2014-01-01

    Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools—and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids’ apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas. PMID:24969421

  13. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging.

    PubMed

    Solomon, Eddy; Avni, Reut; Hadas, Ron; Raz, Tal; Garbow, Joel Richard; Bendel, Peter; Frydman, Lucio; Neeman, Michal

    2014-07-15

    Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools--and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids' apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas. PMID:24969421

  14. Applications of optically detected MRI for enhanced contrast and penetration in metal

    NASA Astrophysics Data System (ADS)

    Ruangchaithaweesuk, Songtham; Yu, Dindi S.; Garcia, Nissa C.; Yao, Li; Xu, Shoujun

    2012-10-01

    We report quantitative measurements using optically detected magnetic resonance imaging (MRI) for enhanced pH contrast and flow inside porous metals. Using a gadolinium chelate as the pH contrast agent, we show the response is 0.6 s-1 mM-1 per pH unit at the ambient magnetic field for the pH range 6-8.5. A stopped flow scheme was used to directly measure T1 relaxation time to determine the relaxivity. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research.

  15. Correlation between myocardial dysfunction and perfusion impairment in diabetic rats with velocity vector imaging and myocardial contrast echocardiography.

    PubMed

    Wei, Zhangrui; Zhang, Haibin; Su, Haili; Zhu, Ting; Zhu, Yongsheng; Zhang, Jun

    2012-11-01

    The purpose of this study was to investigate whether myocardial systolic dysfunction and perfusion impairment occur in diabetic rats, and to assess their relationship using velocity vector imaging (VVI) and myocardial contrast echocardiography (MCE). Forty-six rats were randomly divided into either control or the diabetes mellitus (DM) groups. DM was induced by intraperitoneal administration of streptozotocin. Twelve weeks later, 39 survival rats underwent VVI and MCE in short-axis view at the middle level of the left ventricle, both at rest and after dipyridamole stress. VVI-derived contractile parameters included peak systolic velocity (Vs ), circumferential strain (εc ), strain rate (SRc ), and their reserves. MCE-derived perfusion parameters consisted of myocardial blood flow (MBF) and myocardial flow reserve (MFR). At rest, SRc in the DM group was significantly lower than in the control group, Vs , εc , and MBF did not differ significantly between groups. After dipyridamole stress, all VVI parameters and their reserves in the DM group were significantly lower than those in the control group, MBF and MFR were substantially lower than those in the control group, too. Meanwhile, significant correlations between VVI parameter reserves and MFR were observed in the DM group. Both myocardial systolic function and perfusion were impaired in DM rats. Decreased MFR could be an important contributor to the reduction in myocardial contractile reserve. PMID:22931118

  16. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.

    PubMed

    Jiang, Yin; Hao, Ying; Zhang, Yue; Liu, Jing; Wang, Xiaoying; Han, Jisheng; Fang, Jing; Zhang, Jue; Cui, Cailian

    2012-05-31

    Increasing neuroimaging studies have focused on the sustained after effects of acupuncture, especially for the changes of brain activities in rest. However, short-period stimuli have mostly been chosen in these works. The present study aimed to investigate how the resting state brain activities in healthy subjects were modulated by relatively long-period (30 min) acupuncture, a widely used modality in clinical practice. Transcutaneous electric acupoint stimulation (TEAS) or intermittent minimal TEAS (MTEAS) were given for 30 min to 40 subjects. Functional MRI (fMRI) data were collected including the pre-stimulation resting state and the post-stimulation resting state, using dual-echo arterial spin labeling (ASL) techniques, representing both cerebral blood flow (CBF) signals and blood oxygen-dependent level (BOLD) signals simultaneously. Following 30 min TEAS, but not MTEAS, the mean global CBF decreased, and a significant decrease of regional CBF was observed in SI, insula, STG, MOG and IFG. Functional connectivity analysis showed more secure and spatially extended connectivity of both the DMN and SMN after 30 min TEAS. Our results implied that modulation of the regional brain activities and network connectivity induced by thirty minute TEAS may associate with the acupuncture-related therapeutic effects. Furthermore, the resting state regional CBF quantified by ASL perfusion fMRI may serve as a potential biomarker in future acupuncture studies. PMID:22541167

  17. MRI contrast agent delivery using spore capsules: controlled release in blood plasma.

    PubMed

    Lorch, Mark; Thomasson, Matthew J; Diego-Taboada, Alberto; Barrier, Sylvain; Atkin, Stephen L; Mackenzie, Grahame; Archibald, Stephen J

    2009-11-14

    The exine coatings of spores can be used to encapsulate drug molecules. We have demonstrated that these microcapsules can be filled with a commercial gadolinium(III) MRI contrast agent (in this proof of concept study Gd-DTPA-BMA was used) which is slowly released in plasma due to enzymatic digestion of the capsule. PMID:19841803

  18. Azoimidazole functionalized Ni-porphyrins for molecular spin switching and light responsive MRI contrast agents.

    PubMed

    Heitmann, Gernot; Schütt, Christian; Gröbner, Jens; Huber, Lukas; Herges, Rainer

    2016-07-28

    Azo-N-methylimidazole functionalized Ni(ii)porphyrins were rationally designed and synthesized and their performance as molecular spin switches was investigated. They perform intramolecular light-driven coordination-induced spin state switching (LD-CISSS) in the presence of water and therefore are an important step towards spin switches for medicinal applications, particularly functional MRI contrast agents. PMID:27334263

  19. Mechanistic studies of Gd3+-based MRI contrast agents for Zn2+ detection: towards rational design.

    PubMed

    Bonnet, Célia S; Caillé, Fabien; Pallier, Agnès; Morfin, Jean-François; Petoud, Stéphane; Suzenet, Franck; Tóth, Éva

    2014-08-25

    A series of novel pyridine-based Gd(3+) complexes have been prepared and studied as potential MRI contrast agents for Zn(2+) detection. By independent assessment of molecular parameters affecting relaxivity, we could interpret the relaxivity changes observed upon Zn(2+) binding in terms of variations of the rotational motion. PMID:25116889

  20. Contrast-enhanced, real-time volumetric ultrasound imaging of tissue perfusion: preliminary results in a rabbit model of testicular torsion

    NASA Astrophysics Data System (ADS)

    Paltiel, H. J.; Padua, H. M.; Gargollo, P. C.; Cannon, G. M., Jr.; Alomari, A. I.; Yu, R.; Clement, G. T.

    2011-04-01

    Contrast-enhanced ultrasound (US) imaging is potentially applicable to the clinical investigation of a wide variety of perfusion disorders. Quantitative analysis of perfusion is not widely performed, and is limited by the fact that data are acquired from a single tissue plane, a situation that is unlikely to accurately reflect global perfusion. Real-time perfusion information from a tissue volume in an experimental rabbit model of testicular torsion was obtained with a two-dimensional matrix phased array US transducer. Contrast-enhanced imaging was performed in 20 rabbits during intravenous infusion of the microbubble contrast agent Definity® before and after unilateral testicular torsion and contralateral orchiopexy. The degree of torsion was 0° in 4 (sham surgery), 180° in 4, 360° in 4, 540° in 4, and 720° in 4. An automated technique was developed to analyze the time history of US image intensity in experimental and control testes. Comparison of mean US intensity rate of change and of ratios between mean US intensity rate of change in experimental and control testes demonstrated good correlation with testicular perfusion and mean perfusion ratios obtained with radiolabeled microspheres, an accepted 'gold standard'. This method is of potential utility in the clinical evaluation of testicular and other organ perfusion.

  1. Correlation of Perfusion MRI and 18F-FDG PET Imaging Biomarkers for Monitoring Regorafenib Therapy in Experimental Colon Carcinomas with Immunohistochemical Validation

    PubMed Central

    Eschbach, Ralf S.; Fendler, Wolfgang P.; Kazmierczak, Philipp M.; Hacker, Marcus; Rominger, Axel; Carlsen, Janette; Hirner-Eppeneder, Heidrun; Schuster, Jessica; Moser, Matthias; Havla, Lukas; Schneider, Moritz J.; Ingrisch, Michael; Spaeth, Lukas; Reiser, Maximilian F.; Nikolaou, Konstantin; Cyran, Clemens C.

    2015-01-01

    Objectives To investigate a multimodal, multiparametric perfusion MRI / 18F-fluoro-deoxyglucose-(18F-FDG)-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 17 (n = 10 therapy group; n = 7 control group) female athymic nude rats (Hsd:RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment protocol with regorafenib (10 mg/kg bodyweight) using a multimodal, multiparametric perfusion MRI/18F-FDG-PET imaging protocol. In perfusion MRI, quantitative parameters of plasma flow (PF, mL/100 mL/min), plasma volume (PV, %) and endothelial permeability-surface area product (PS, mL/100 mL/min) were calculated. In 18F-FDG-PET, tumor-to-background-ratio (TTB) was calculated. Perfusion MRI parameters were correlated with TTB and immunohistochemical assessments of tumor microvascular density (CD-31) and cell proliferation (Ki-67). Results Regorafenib significantly (p<0.01) suppressed PF (81.1±7.5 to 50.6±16.0 mL/100mL/min), PV (12.1±3.6 to 7.5±1.6%) and PS (13.6±3.2 to 7.9±2.3 mL/100mL/min) as well as TTB (3.4±0.6 to 1.9±1.1) between baseline and day 7. Immunohistochemistry revealed significantly (p<0.03) lower tumor microvascular density (CD-31, 7.0±2.4 vs. 16.1±5.9) and tumor cell proliferation (Ki-67, 434.0 ± 62.9 vs. 663.0 ± 98.3) in the therapy group. Perfusion MRI parameters ΔPF, ΔPV and ΔPS showed strong and significant (r = 0.67-0.78; p<0.01) correlations to the PET parameter ΔTTB and significant correlations (r = 0.57-0.67; p<0.03) to immunohistochemical Ki-67 as well as to CD-31-stainings (r = 0.49-0.55; p<0.05). Conclusions A multimodal, multiparametric perfusion MRI/PET imaging protocol allowed for non-invasive monitoring of regorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant

  2. Monitoring Cell Death in Regorafenib-Treated Experimental Colon Carcinomas Using Annexin-Based Optical Fluorescence Imaging Validated by Perfusion MRI

    PubMed Central

    Kazmierczak, Philipp M.; Burian, Egon; Eschbach, Ralf; Hirner-Eppeneder, Heidrun; Moser, Matthias; Havla, Lukas; Eisenblätter, Michel; Reiser, Maximilian F.; Nikolaou, Konstantin; Cyran, Clemens C.

    2015-01-01

    Objective To investigate annexin-based optical fluorescence imaging (OI) for monitoring regorafenib-induced early cell death in experimental colon carcinomas in rats, validated by perfusion MRI and multiparametric immunohistochemistry. Materials and Methods Subcutaneous human colon carcinomas (HT-29) in athymic rats (n = 16) were imaged before and after a one-week therapy with regorafenib (n = 8) or placebo (n = 8) using annexin-based OI and perfusion MRI at 3 Tesla. Optical signal-to-noise ratio (SNR) and MRI tumor perfusion parameters (plasma flow PF, mL/100mL/min; plasma volume PV, %) were assessed. On day 7, tumors underwent immunohistochemical analysis for tumor cell apoptosis (TUNEL), proliferation (Ki-67), and microvascular density (CD31). Results Apoptosis-targeted OI demonstrated a tumor-specific probe accumulation with a significant increase of tumor SNR under therapy (mean Δ +7.78±2.95, control: -0.80±2.48, p = 0.021). MRI detected a significant reduction of tumor perfusion in the therapy group (mean ΔPF -8.17±2.32 mL/100 mL/min, control -0.11±3.36 mL/100 mL/min, p = 0.036). Immunohistochemistry showed significantly more apoptosis (TUNEL; 11392±1486 vs. 2921±334, p = 0.001), significantly less proliferation (Ki-67; 1754±184 vs. 2883±323, p = 0.012), and significantly lower microvascular density (CD31; 107±10 vs. 182±22, p = 0.006) in the therapy group. Conclusions Annexin-based OI allowed for the non-invasive monitoring of regorafenib-induced early cell death in experimental colon carcinomas, validated by perfusion MRI and multiparametric immunohistochemistry. PMID:26393949

  3. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    SciTech Connect

    Deli, Martin; Mateiescu, Serban Busch, Martin; Becker, Jan Garmer, Marietta Groenemeyer, Dietrich

    2013-06-15

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  4. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-08-01

    Multimodal medical imaging is gaining increased popularity in the clinic. This stems from the fact that data acquired from different physical phenomena may provide complementary information resulting in a more comprehensive picture of the pathological state. In this context, nano-sized contrast agents may augment the potential sensitivity of each imaging modality and allow targeted visualization of physiological points of interest (e.g. tumours). In this study, 7 nm copper oxide nanoparticles (CuO NPs) were synthesized and characterized. Then, in vitro and phantom specimens containing CuO NPs ranging from 2.4 to 320 μg · mL-1 were scanned, using both 9.4 T MRI and through-transmission ultrasonic imaging. The results show that the CuO NPs induce shortening of the magnetic T1 relaxation time on the one hand, and increase the speed of sound and ultrasonic attenuation coefficient on the other. Moreover, these visible changes are NP concentration-dependent. The change in the physical properties resulted in a substantial increase in the contrast-to-noise ratio (3.4-6.8 in ultrasound and 1.2-19.3 in MRI). In conclusion, CuO NPs are excellent candidates for MRI-ultrasound dual imaging contrast agents. They offer radiation-free high spatial resolution scans by MRI, and cost-effective high temporal resolution scans by ultrasound.

  5. Synthesis and characterization of a redox- and light-sensitive MRI contrast agent

    PubMed Central

    Tu, Chuqiao; Osborne, Elizabeth A.; Louie, Angelique Y.

    2009-01-01

    A redox- and light-sensitive, T1-weighted magnetic resonance imaging (MRI) contrast agent which tethers a spiropyran(SP)/merocyanine(MC) motif to a Gd-DO3A moiety was synthesized and characterized. When in the dark, the probe is in its MC form which has an r1 relaxivity of 2.51 mM−1s−1 (60MHz, 37°C). After irradiation with visible light or mixing with NADH, the probe experiences an isomerization and the r1 relaxivity decreased 18% and 26%, respectively. Additionally, the signal intensity in MRI showed an observable decrease after the compound was mixed with NADH. PMID:20126289

  6. Assessment of Semiquantitative Parameters of Dynamic Contrast-Enhanced Perfusion MR Imaging in Differentiation of Subtypes of Renal Cell Carcinoma

    PubMed Central

    Abdel Razek, Ahmed Abdel Khalek; Mousa, Amani; Farouk, Ahmed; Nabil, Nancy

    2016-01-01

    Summary Background To assess semiquantitative parameters of dynamic contrast-enhanced perfusion MR imaging (DCE) in differentiation of subtypes of renal cell carcinoma (RCC). Material/Methods Prospective study conducted upon 34 patients (27 M, 7 F, aged 25–72 ys: mean 45 ys) with RCC. Abdominal dynamic contrast-enhanced gradient-recalled echo MR sequence after administration of gadopentetate dimeglumine was obtained. The time signal intensity curve (TIC) of the lesion was created with calculation of enhancement ratio (ER), and washout ratio (WR). Results The subtypes of RCC were as follows: clear cell carcinomas (n=23), papillary carcinomas (n=6), and chromophobe carcinomas (n=5). The mean ER of clear cell, papillary and chromophobe RCC were 188±49.7, 35±8.9, and 120±41.6 respectively. The mean WR of clear cell, papillary and chromophobe RCCs were 28.6±6.8, 47.6±5.7 and 42.7±10, respectively. There was a significant difference in ER (P=0.001) and WR (P=0.001) between clear cell RCC and other subtypes of RCC. The threshold values of ER and WR used for differentiating clear cell RCC from other subtypes of RCC were 142 and 38 with areas under the curve of 0.937 and 0.895, respectively. Conclusions We concluded that ER and WR are semiquantitative perfusion parameters useful in differentiation of clear cell RCC from chromophobe and papillary RCCs. PMID:27026793

  7. Reliability of contrast-enhanced ultrasound for the assessment of muscle perfusion in health and peripheral arterial disease.

    PubMed

    Thomas, Kate N; Cotter, James D; Lucas, Samuel J E; Hill, Brigid G; van Rij, André M

    2015-01-01

    We investigated the reliability of contrast-enhanced ultrasound (CEUS) in assessing calf muscle microvascular perfusion in health and disease. Response to a post-occlusive reactive hyperaemia test was repeated on two occasions >48 h apart in healthy young (28 ± 7 y) and elderly controls (70 ± 5 y), and in peripheral arterial disease patients (PAD, 69 ± 7 y; n = 10, 9 and 8 respectively). Overall, within-individual reliability was poor (coefficient of variation [CV] range: 15-87%); the most reliable parameter was time to peak (TTP, 15-48% CV). Nevertheless, TTP was twice as long in elderly controls and PAD compared to young (19.3 ± 10.4 and 22.0 ± 8.6 vs. 8.9 ± 6.2 s respectively; p < 0.01), and area under the curve for contrast intensity post-occlusion (a reflection of blood volume) was ∼50% lower in elderly controls (p < 0.01 versus PAD and young). Thus, CEUS assessment of muscle perfusion during reactive hyperaemia demonstrated poor reliability, yet still distinguished differences between PAD patients, elderly and young controls. PMID:25308937

  8. High temporal resolution dynamic contrast MRI in a high risk group for placenta accreta.

    PubMed

    Tanaka, Y O; Sohda, S; Shigemitsu, S; Niitsu, M; Itai, Y

    2001-06-01

    Antenatal diagnosis of placenta accreta with MR is not easy even now because T2-weighted images (T2WI) cannot differentiate chorionic villi from decidua basalis. We performed dynamic contrast MRI to study whether trophoblastic villi could be separately demonstrated from the decidua basalis, and whether the contrast resolution between the placenta and myometrium could improve compared to T2WI. Six pregnant women with prior cesarean section were examined at 34-38 gestational weeks. Sagittal T2-weighted images with fast spin echo sequences and dynamic contrast studies with fast field echo sequence every 10-14 s after contrast injection were performed. We analyzed the enhancing pattern of the placenta and compared the contrast between placenta and myometrium. We reviewed medical records to identify complications during the placental delivery and the complications of their newborns. In the early phase after contrast enhancement, multiple foci of the strong lobular enhancement were observed in all cases. Other parts of placenta were slowly but strongly enhanced following them. We speculated that the former corresponded to intervillous space and the latter decidua basalis. The contrast between placenta and myometrium tended to be distinct near the inner cervical os on both T2WI and dynamic contrast study. On the other hand, it was indistinct in the upper part of the uterine body on T2WI despite it was clearly demonstrated on dynamic contrast study. The placentae were delivered without any complication in all cases. Although two neonates showed fetal distress, none of the infant remained any sequelae at the time of the discharge. The other four were well although one of them complicated with meconium staining. As dynamic contrast MRI can differentiate chorionic villi and decidua basalis, and can provide excellent contrast between placenta and myometrium at anywhere within the uterus, it may be a promising technique for antepartum diagnosis of the placenta accreta. PMID

  9. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z. G.; Demir, H. V.

    2015-06-01

    We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 +/- 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin canting effect. As a proof-of-concept demonstration, we showed their potential as dual contrast agents for both T1- and T2-weighted MRI via phantom studies, in vivo imaging and relaxivity measurements. Therefore, these low-magnetization magnetite nanocubes, while being non-toxic and bio-compatible, hold great promise as excellent dual-mode T1 and T2 contrast agents for MRI.We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 +/- 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin

  10. Three-dimensional MRI perfusion maps: a step beyond volumetric analysis in mental disorders

    PubMed Central

    Fabene, Paolo F; Farace, Paolo; Brambilla, Paolo; Andreone, Nicola; Cerini, Roberto; Pelizza, Luisa; Versace, Amelia; Rambaldelli, Gianluca; Birbaumer, Niels; Tansella, Michele; Sbarbati, Andrea

    2007-01-01

    A new type of magnetic resonance imaging analysis, based on fusion of three-dimensional reconstructions of time-to-peak parametric maps and high-resolution T1-weighted images, is proposed in order to evaluate the perfusion of selected volumes of interest. Because in recent years a wealth of data have suggested the crucial involvement of vascular alterations in mental diseases, we tested our new method on a restricted sample of schizophrenic patients and matched healthy controls. The perfusion of the whole brain was compared with that of the caudate nucleus by means of intrasubject analysis. As expected, owing to the encephalic vascular pattern, a significantly lower time-to-peak was observed in the caudate nucleus than in the whole brain in all healthy controls, indicating that the suggested method has enough sensitivity to detect subtle perfusion changes even in small volumes of interest. Interestingly, a less uniform pattern was observed in the schizophrenic patients. The latter finding needs to be replicated in an adequate number of subjects. In summary, the three-dimensional analysis method we propose has been shown to be a feasible tool for revealing subtle vascular changes both in normal subjects and in pathological conditions. PMID:17229290

  11. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review

    PubMed Central

    Heye, Anna K.; Culling, Ross D.; Valdés Hernández, Maria del C.; Thrippleton, Michael J.; Wardlaw, Joanna M.

    2014-01-01

    There is increasing recognition of the importance of blood–brain barrier (BBB) disruption in aging, dementia, stroke and multiple sclerosis in addition to more commonly-studied pathologies such as tumors. Dynamic contrast-enhanced MRI (DCE-MRI) is a method for studying BBB disruption in vivo. We review pathologies studied, scanning protocols and data analysis procedures to determine the range of available methods and their suitability to different pathologies. We systematically review the existing literature up to February 2014, seeking studies that assessed BBB integrity using T1-weighted DCE-MRI techniques in animals and humans in normal or abnormal brain tissues. The literature search provided 70 studies that were eligible for inclusion, involving 417 animals and 1564 human subjects in total. The pathologies most studied are intracranial neoplasms and acute ischemic strokes. There are large variations in the type of DCE-MRI sequence, the imaging protocols and the contrast agents used. Moreover, studies use a variety of different methods for data analysis, mainly based on model-free measurements and on the Patlak and Tofts models. Consequently, estimated KTrans values varied widely. In conclusion, DCE-MRI is shown to provide valuable information in a large variety of applications, ranging from common applications, such as grading of primary brain tumors, to more recent applications, such as assessment of subtle BBB dysfunction in Alzheimer's disease. Further research is required in order to establish consensus-based recommendations for data acquisition and analysis and, hence, improve inter-study comparability and promote wider use of DCE-MRI. PMID:25379439

  12. Non-Ischemic Perfusion Defects due to Delayed Arrival of Contrast Material on Stress Perfusion Cardiac Magnetic Resonance Imaging after Coronary Artery Bypass Graft Surgery

    PubMed Central

    Kim, Yeo Koon; Park, Sang Joon; Cheon, Gi Jeong; Lee, Whal; Chung, Jin Wook; Park, Jae Hyung

    2014-01-01

    Herein we report about the adenosine stress perfusion MR imaging findings of a 50-year-old man who exhibited two different perfusion defects resulting from two different mechanisms after a coronary artery bypass surgery. An invasive coronary angiography confirmed that one perfusion defect at the mid-anterior wall resulted from an ischemia due to graft stenosis. However, no stenosis was detected on the graft responsible for the mid-inferior wall showing the other perfusion defect. It was assumed that the perfusion defect at the mid-inferior wall resulted from delayed perfusion owing to the long pathway of the bypass graft. The semiquantitative analysis of corrected signal-time curves supported our speculation, demonstrating that the rest-to-stress ratio index of the maximal slope of the myocardial territory in question was similar to those of normal myocardium, whereas that of myocardium with the stenotic graft showed a typical ischemic pattern. A delayed perfusion during long graft pathway in a post-bypass graft patient can mimick a true perfusion defect on myocardial stress MR imaging. Radiologists should be aware of this knowledge to avoid misinterpretation of graft and myocardial status in post bypass surgery patients. PMID:24644408

  13. [Abnormal cerebral blood flow distributions during the post-ictal phase of febrile status epilepticus in three pediatric patients measured by arterial spin labeling perfusion MRI].

    PubMed

    Hirano, Keiko; Fukuda, Tokiko

    2016-05-01

    The ability to visualize brain perfusion is important for identifying epileptic foci. We present three pediatric cases showing asymmetrical cerebral blood flow (CBF) distributions during the post-ictal phase of febrile status epilepticus measured by arterial spin labeling (ASL) perfusion MRI. During the acute phase, regional CBF measurements in the areas considered including epileptic foci were higher than in the corresponding area of the contralateral hemisphere, though the exact quantitative value varied between cases. We could not identify the correct epileptogenic foci, because those ASL images were taken after the prolonged and extraordinary activation of neurons in the affected area. During the recovery phase, the differences reduced and the average regional CBF measurement was 54.6 ± 6.1 ml/100 g per minute, which was a little less than the number of previous ASL studies. ASL perfusion MRI imaging provides a method for evaluating regional CBF by using magnetically labeled arterial blood water as an endogenous tracer. With this technique, we can repeatedly evaluate both the brain structure and the level of perfusion at the same time. ASL is noninvasive and easily accessible, and therefore it could become a routine tool for assessment of perfusion in daily practice of pediatric neurology. PMID:27349086

  14. Clustered breast microcalcifications: Evaluation by dynamic contrast-enhanced subtraction MRI

    SciTech Connect

    Gilles, R.; Tardivon, A.A.; Vanel, D.; Guinebretiere, J.M.; Arriagada, R.

    1996-01-01

    Our goal was to evaluate dynamic contrast-enhanced subtraction MRI in the diagnosis of isolated clustered calcifications of the breast. One hundred seventy-two patients underwent surgical biopsy for isolated clustered breast calcifications. Their mammograms showed round (n = 88) or linear/irregular (n = 84) microcalcifications. All patients had a preoperative Gd-DOTA-enhanced subtraction dynamic study. Any early contrast enhancement in the breast parenchyma concomitant with early enhancement of normal vessels was considered positive. Fifty-eight in situ carcinomas, 22 invasive carcinomas, and 92 benign lesions were found at histological analysis. Dynamic MR sequences showed early contrast enhancement in 76 of 80 malignant lesions (sensitivity 95%) and in 45 of 92 benign lesions (specificity 51%). Two invasive and two intraductal carcinomas did not show early contrast enhancement. Three independent observers agreed in rating early contrast enhancement in 143 of 172 lesions. Poor specificity limits the diagnostic accuracy of dynamic contrast-enhanced subtraction MRI in distinguishing benign from malignant microcalcifications on mammography. 8 refs., 2 figs., 2 tabs.

  15. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI

    NASA Astrophysics Data System (ADS)

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T 1-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T 1-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status.

  16. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI.

    PubMed

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B; Krishna, Murali C

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T(1)-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T(1)-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status. PMID:18006345

  17. Monitoring Redox-Sensitive Paramagnetic Contrast Agent by EPRI, OMRI and MRI

    PubMed Central

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T1-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T1 weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status. PMID:18006345

  18. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    PubMed Central

    Hou, Lin; Zhang, Huijuan; Wang, Yating; Wang, Lili; Yang, Xiaomin; Zhang, Zhenzhong

    2015-01-01

    A tumor-targeting carrier, hyaluronic acid (HA)-functionalized single-walled carbon nanotubes (SWCNTs), was explored to deliver magnetic resonance imaging (MRI) contrast agents (CAs) targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd)/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor. PMID:26213465

  19. The dynamic of FUS-induced BBB Opening in Mouse Brain assessed by contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Krause, Marie N.; Kleber, Susanne; Huber, Peter E.; Martin-Villalba, Ana; Bock, Michael

    2010-03-01

    Focused ultrasound (FUS) in combination with the administration of gas-filled microbubbles, can induce a localized and reversible opening of the blood brain barrier (BBB). Contrast enhanced magnetic resonance imaging (MRI) has been demonstrated as a precise tool to monitor such a local BBB disruption. However, the opening/closing mechanisms of the BBB with FUS are still largely unknown. In this ongoing project, we study the BBB opening dynamics in mouse brain comparing an interstitial and an intravascular MR contrast agent (CA). FUS in mouse brain was performed with an MRI compatible treatment setup (1.7 MHz fix-focus US transducer, f' = 68 mm, NA = 0.44; focus: 8.1 mm length; O/ = 1.1 mm) in a 1.5 T whole body MRI system. For BBB opening, forty 10 ms-long FUS-pulses were applied at a repetition rate of 1 Hz at 1 MPa. The i.v. administration of the micro bubbles (50 μl SonoVue®) was started simultaneously with FUS exposure. To analyze the BBB opening process, short-term and long-term MRI signal dynamics of the interstitial MR contrast agent Magnevist® and the intravascular CA Vasovist® (Bayer-Schering) were studied. To assess short-term signal dynamics, T1-weighted inversion recovery turbo FLASH images (1s) were repeatedly acquired. Repeated 3D FLASH acquisitions (90 s) were used to assess long-term MRI signal dynamics. The short-term MRI signal enhancements showed comparable time constants for both types of MR contrast agents: 1.1 s (interstitial) vs. 0.8 s (intravascular). This time constant may serve as a time constant of the BBB opening process with the given FUS exposure parameters. For the long-term signal dynamics the intravascular CA (62±10 min) showed a fife times greater time constant as the interstitial contrast agent (12±10 min). This might be explained by the high molecular weight (˜60 kDa) of the intravascular Vasovist due to its reversible binding to blood serum albumin resulting in a prolonged half-life in the blood stream compared to the

  20. De-enhancing the dynamic contrast-enhanced breast MRI for robust registration.

    PubMed

    Zheng, Yuanjie; Yu, Jingyi; Kambhamettu, Chandra; Englander, Sarah; Schnall, Mitchell D; Shen, Dinggang

    2007-01-01

    Dynamic enhancement causes serious problems for registration of contrast enhanced breast MRI, due to variable uptakes of agent on different tissues or even same tissues in the breast. We present an iterative optimization algorithm to de-enhance the dynamic contrast-enhanced breast MRI and then register them for avoiding the effects of enhancement on image registration. In particular, the spatially varying enhancements are modeled by a Markov Random Field, and estimated by a locally smooth function with boundaries using a graph cut algorithm. The de-enhanced images are then registered by conventional B-spline based registration algorithm. These two steps benefit from each other and are repeated until the results converge. Experimental results show that our two-step registration algorithm performs much better than conventional mutual information based registration algorithm. Also, the effects of tumor shrinking in the conventional registration algorithms can be effectively avoided by our registration algorithm. PMID:18051148

  1. Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium

    NASA Astrophysics Data System (ADS)

    Nam, I. F.; Zhuk, V. V.

    2015-04-01

    Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mM/kg of body weight, male mice - 1.4 mM/kg, female rats - 2.8 mM/kg, male rats - 5.6 mM/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mM/kg, male mice - 0.7 mM/kg, male and female rats - 0.7 mM/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic.

  2. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents

    PubMed Central

    Palekar, Rohun U; Jallouk, Andrew P; Lanza, Gregory M; Pan, Hua; Wickline, Samuel A

    2015-01-01

    As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease. PMID:26080701

  3. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Yazdani, Farshad; Fattahi, Bahare; Azizi, Najmodin

    2016-05-01

    The aim of this research was the preparation of functionalized magnetite nanoparticles to use as a liver targeting contrast agent in magnetic resonance imaging (MRI). For this purpose, Fe3O4 nanoparticles were synthesized via the co-precipitation method. The synthesized nanoparticles were coated with silica via the Stober method and finally the coated nanoparticles were functionalized with mebrofenin. Formation of crystalline magnetite particles was confirmed by X-ray diffraction (XRD) analysis. The Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analyzer (EDX) of the final product showed that silica had been effectively bonded onto the surface of the magnetite nanoparticles and the coated nanoparticles functionalized with mebrofenin. The magnetic resonance imaging of the functional nanoparticles showed that the Fe3O4-SiO2-mebrofenin composite is an effective MRI contrast agent for liver targeting.

  4. A responsive particulate MRI contrast agent for copper (I): a cautionary tale

    PubMed Central

    Smolensky, Eric D.; Marjańska, Małgorzata

    2013-01-01

    A responsive MION-based MRI contrast agent for the detection of copper(I) is presented. Induced agglomeration of azide and acetylene-functionalized magnetite nanoparticles via Cu(I) catalysed Huisgen cycloaddition leads to significant decrease in longitudinal relaxivity due to the slow exchange of water molecules trapped within the cluster with bulk solvent. Agglomeration leads to an initial two fold increase followed by a sharp and almost complete loss in transverse relaxivity for clusters larger than 200 nm in size. The decrease in r2 for clusters reaching the static dephasing regime has two significant implications for particulate responsive MRI contrast agents. First, the maximum increase in r2 is barely two fold, second, since r2 does not increase continuously with increasing cluster size, the r1/r2 ratio cannot be used to determine the concentration of an analyte ratiometrically. PMID:22585342

  5. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee

    2016-01-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions. PMID:27390537

  6. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee; Yang, Dong Hyun; Kim, Namkug

    2016-01-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions. PMID:27390537

  7. Detection of Sulfatase Enzyme Activity with a CatalyCEST MRI Contrast Agent.

    PubMed

    Sinharay, Sanhita; Fernández-Cuervo, Gabriela; Acfalle, Jasmine P; Pagel, Mark D

    2016-05-01

    A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0 ppm before enzyme activity, and a second CEST signal appears at δ=9.0 ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity. PMID:26956002

  8. Use of cine phase-contrast MRI in the assessment of distal splenorenal shunt function.

    PubMed

    Cabassa, Paolo; Ravanelli, Marco; Alberti, Daniele; Maroldi, Roberto

    2012-06-01

    Magnetic resonance imaging (MRI) features of a surgical splenorenal shunt in a 28-year-old girl are described. The woman underwent color doppler ultrasonography during follow up for the shunt, which was inconclusive. MR was used to investigate the function of the shunt. Velocity and flow direction in splanchnic vessels and in the shunt were evaluated using cine fast phase-contrast sequences. MR findings could be of help in the evaluation of patients undergoing surgical shunts during follow up. PMID:22405982

  9. XFM demonstrates preferential accumulation of a vanadyl-based MRI contrast agent in murine colonic tumors

    PubMed Central

    Mustafi, Devkumar; Ward, Jesse; Dougherty, Urszula; Bissonnette, Marc; Hart, John; Vogt, Stefan; Karczmar, Gregory S.

    2016-01-01

    Contrast agents that specifically enhance cancers on MRI would allow earlier detection. Vanadyl-based chelates (VCs) selectively enhance rodent cancers on MRI, suggesting selective uptake of VCs by cancers. Here we report X-ray fluorescence microscopy (XFM) of VC uptake by murine colon cancer. Colonic tumors in mice treated with azoxymethane/dextran sulfate sodium were identified by MRI. Then a gadolinium-based contrast agent and a VC were injected I.V.; mice were sacrificed and colons sectioned. VC distribution was sampled at 120 minutes after injection to evaluate the long term accumulation. Gadolinium distribution was sampled at 10 minutes after injection due to its rapid washout. XFM was performed on 72 regions of normal and cancerous colon from 5 normal mice and 4 cancer-bearing mice. XFM showed that all gadolinium was extracellular with similar concentrations in colon cancers and normal colon. In contrast, the average VC concentration was 2-fold higher in cancers vs. normal tissue (p<0.002). Cancers also contained numerous ‘hot spots’ with intracellular VC concentrations 6-fold higher than the concentration in normal colon (p<0.0001). No ‘hot spots’ were detected in normal colon. This is the first direct demonstration that VCs selectively accumulate in cancer cells, and thus may improve cancer detection. PMID:25813904

  10. Magnetic and relaxation properties of multifunctional polymer-based nanostructured bioferrofluids as MRI contrast agents.

    PubMed

    Amiri, Houshang; Bustamante, Rodney; Millán, Angel; Silva, Nuno J O; Piñol, Rafael; Gabilondo, Lierni; Palacio, Fernando; Arosio, Paolo; Corti, Maurizio; Lascialfari, Alessandro

    2011-12-01

    A series of maghemite/polymer composite ferrofluids with variable magnetic core size, which show a good efficiency as MRI contrast agents, are presented. These ferrofluids are biocompatible and can be proposed as possible platforms for multifunctional biomedical applications, as they contain anchoring groups for biofunctionalization, can incorporate fluorescent dyes, and have shown low cellular toxicity. The magnetic properties of the ferrofluids have been determined by means of magnetization and ac susceptibility measurements as a function of temperature and frequency. The NMR dispersion profiles show that the low frequency behavior of the longitudinal relaxivity r(1) is well described by the heuristic model of (1)H nuclear relaxation induced by superparamagnetic nanoparticles proposed by Roch and co-workers. The contrast efficiency parameter, i.e., the nuclear transverse relaxivity r(2), for samples with d > 10 nm assumes values comparable with or better than the ones of commercial samples, the best results obtained in particles with the biggest magnetic core, d = 15 nm. The contrast efficiency results are confirmed by in vitro MRI experiments at ν = 8.5 MHz, thus allowing us to propose a set of optimal microstructural parameters for multifunctional ferrofluids to be used in MRI medical diagnosis. PMID:21574179

  11. A self-calibrating PARACEST MRI contrast agent that detects esterase enzyme activity

    PubMed Central

    Li, Yuguo; Sheth, Vipul R.; Liu, Guanshu; Pagel, Mark D.

    2016-01-01

    The CEST effect of many PARACEST MRI contrast agents changes in response to a molecular biomarker. However, other molecular biomarkers or environmental factors can influence CEST, so that a change in CEST is not conclusive proof for detecting the biomarker. To overcome this problem, a second control CEST effect may be included in the same PARACEST agent, which is responsive to all factors that alter the first CEST effect except for the biomarker to be measured. To investigate this approach, a PARACEST MRI contrast agent was developed with one CEST effect that is responsive to esterase enzyme activity and a second control CEST effect. The ratio of the two CEST effects was independent of concentration and T1 relaxation, so that this agent was self-calibrating with respect to these factors. This ratiometric method was dependent on temperature and was influenced by MR coalescence as the chemical exchange rates approached the chemical shifts of the exchangable protons as temperature was increased. The two CEST effects also showed evidence of having different pH dependencies, so that this agent was not self-calibrating with respect to pH. Therefore, a self-calibrating PARACEST MRI contrast agent can more accurately detect a molecular biomarker such as esterase enzyme activity, as long as temperature and pH are within an acceptable physiological range and remain constant. PMID:21861282

  12. CONTRAST-ENHANCED ULTRASOUND ASSESSMENT OF IMPAIRED ADIPOSE TISSUE AND MUSCLE PERFUSION IN INSULIN-RESISTANT MICE

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Foster, Ted; Qi, Yue; Zhao, Yan; Peters, Dawn; Lindner, Jonathan R.

    2015-01-01

    Background In diabetes mellitus reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contributes to abnormal glucose homeostasis. Using contrast-enhanced ultrasound (CEU) we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance (IR) and correlates with glycemic control. Methods and Results Abdominal adipose tissue and skeletal muscle CEU perfusion imaging was performed in obese IR (db/db) mice at 11-12 or 14-16 weeks of age, and in control lean mice. Time-intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response over one hour was measured after insulin challenge (1 u/Kg, I.P.). Compared to control mice, db/db mice at 11-12 and 14-16 weeks had a higher glucose concentration area-under-the-curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively, p=0.0002), and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min/g, p=0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g, p=0.0017). The glucose area-under-the-curve correlated in a non-linear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF (r=0.81) and CBV (r=0.66). Adipocyte cell volume on histology was 25-fold higher in 14-16 week db/db versus control mice. Conclusions Abnormal adipose MBF and CBV in IR can be detected by CEU and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle appear to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response. PMID:25855669

  13. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma

    PubMed Central

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-01-01

    Abstract The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC). Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D∗, and f) and DCE-MRI parameters (Ktrans, Kep, and Ve) values and their percentage changes (Δ%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups. None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher Δ%D values than did the residual group (all P <0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P <0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively). IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and Δ%D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  14. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma.

    PubMed

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-08-01

    The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC).Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D*, and f) and DCE-MRI parameters (K, Kep, and Ve) values and their percentage changes (Δ%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups.None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher Δ%D values than did the residual group (all P <0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P <0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively).IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and Δ%D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  15. Effects of two different anesthetic protocols on cardiac flow measured by two dimensional phase contrast MRI

    PubMed Central

    Drees, Randi; Johnson, Rebecca A; Stepien, Rebecca L; Del Rio, Alejandro Munoz; François, Christopher J

    2014-01-01

    Companion animals are anesthetized or heavily sedated to comply for cardiac MRI and different anesthetic protocols are expected to have variable effects on functional parameters measured. This study compared two anesthetic protocols (Protocol A: Midazolam, fentanyl; Protocol B: Dexmedetomidine) for their effect on quantitative and qualitative analysis of blood flow through the aortic, pulmonic, mitral and tricuspid valves using 2D phase contrast (PC) MRI in dogs. Mean flow per heartbeat through the pulmonary artery (Qp) and aorta (Qs) was compared to right (RVSV) and left (LVSV) ventricular stroke volumes determined using 2D Cine balanced steady-state free precession MRI as a reference standard. Pulmonary to systemic flow ratio (Qp/Qs) was also calculated. Differences in flow and Qp/Qs values generated using 2D PC MRI were not different between the two anesthetic protocols (P=1). Mean differences between Qp and right ventricular stroke volume (RVSV) were 3.82 (95% limits of agreement: 3.62, −11.26) ml/beat and 1.9 (−7.86, 11.66) ml/beat for anesthesia protocols A and B, respectively. Mean differences between Qs and left ventricular stroke volume (LVSV) were 1.65 (−5.04, 8.34) ml/beat and 0.03 (−4.65, 4.72) ml/beat for anesthesia protocols A and B, respectively. Mild tricuspid or mitral reflux was seen in 2/10 dogs using 2D PC MRI. No aortic or pulmonic insufficiency was observed. This study provides baseline data for evaluation of cardiac blood flow using 2D PC MRI in dogs. Where as no significant difference of cardiac blood flow was found for the anesthetic protocols used, verification in clinically affected patients is desirable. PMID:25124271

  16. Vascular perfusion kinetics by contrast-enhanced ultrasound are related to synovial microvascularity in the joints of psoriatic arthritis.

    PubMed

    Fiocco, Ugo; Stramare, Roberto; Coran, Alessandro; Grisan, Enrico; Scagliori, Elena; Caso, Francesco; Costa, Luisa; Lunardi, Francesca; Oliviero, Francesca; Bianchi, Fulvia Chieco; Scanu, Anna; Martini, Veronica; Boso, Daniele; Beltrame, Valeria; Vezzù, Maristella; Cozzi, Luisella; Scarpa, Raffaele; Sacerdoti, David; Punzi, Leonardo; Doria, Andrea; Calabrese, Fiorella; Rubaltelli, Leopoldo

    2015-11-01

    The purpose of the study was to assess the relationship of the continuous mode contrast-enhanced harmonic ultrasound (CEUS) imaging with the histopathological and immunohistochemical (IHC) quantitative estimation of microvascular proliferation on synovial samples of patients affected by sustained psoriatic arthritis (PsA). A dedicated linear transducer was used in conjunction with a specific continuous mode contrast enhanced harmonic imaging technology with a second-generation sulfur hexafluoride-filled microbubbles C-agent. The examination was carried out within 1 week before arthroscopic biopsies in 32 active joints. Perfusional parameters were analyzed including regional blood flow (RBF); peak (PEAK) of the C-signal intensity, proportional to the regional blood volume (RBV); beta (β) perfusion frequency; slope (S), representing the inclination of the tangent in the origin; and the refilling time (RT), the reverse of beta. Arthroscopic synovial biopsies were targeted in the hypervascularity areas, as in the same knee recesses assessed by CEUS; the synovial cell infiltrate and vascularity (vessel density) was evaluated by IHC staining of CD45 (mononuclear cell) and CD31, CD105 (endothelial cell) markers, measured by computer-assisted morphometric analysis. In the CEUS area examined, the corresponding time-intensity curves demonstrated a slow rise time. Synovial histology showed slight increased layer lining thickness, perivascular lymphomonocyte cell infiltration, and microvascular remodeling, with marked vessel wall thickening with reduction of the vascular lumen. A significant correlation was found between RT and CD31+ as PEAK and CD105+ vessel density; RT was inversely correlated to RBF, PEAK, S, and β. The study demonstrated the association of the CEUS perfusion kinetics with the histopathological quantitative and morphologic estimation of synovial microvascular proliferation, suggesting that a CEUS imaging represents a reliable tool for the estimate of the

  17. Superparamagnetic And Paramagnetic MRI Contrast Agents: Application Of Rapid Magnetic Resonance Imaging To Assess Renal Function

    NASA Astrophysics Data System (ADS)

    Carvlin, Mark J.; Renshaw, Perry F.; Arger, Peter; Kundel, Harold L.; Dougherty, Larry; Axel, Leon; Kassab, Eleanor; Moore, Bethanne

    1988-06-01

    The paramagnetic chelate complex, gadolinium-diethylene-triamine-pentaacetic acid, Gd-DTPA, and superparamagnetic particles, such as those composed of dextran coated magnetite, function as magnetic resonance contrast agents by changing the relaxation rates, 1/T1 and 1/T2. The effects that these agents have upon MR signal intensity are determined by: the inherent biophysical properties of the tissue being imaged, the concentration of the contrast agent and the data acquisition scheme (pulse sequence parameters) employed. Following the time course of MR signal change in the first minutes after the injection of contrast agent(s) allows a dynamic assessment of organ functions in a manner analogous to certain nuclear medicine studies. In order to study renal function, sequential MR fast scan images, gradient echo (TR=35/TE=7 msec, flip angle=25 degrees), were acquired, one every 12 seconds, after intravenous injection of Gd-DTPA and/or dextran-magnetite. Gd-DTPA, which is freely filtered at the glomerulus and is neither secreted nor reabsorbed, provides information concerning renal perfusion, glomerular filtration and tubular concentrating ability. Dextran-magnetite (200 A diameter), which is primarily contained within the intravascular space shortly after injection, provides information on blood flow to and distribution within the kidney. The MR signal change observed after administration of contrast agents varied dramatically depending upon the agents injected and the imaging parameters used. Hence a broad range of physiolgic processes may be described using these techniques, i.e. contrast agent enhanced functional MR examinations.

  18. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    PubMed Central

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-01-01

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo. PMID:26694418

  19. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  20. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.

    PubMed

    Agner, Shannon C; Soman, Salil; Libfeld, Edward; McDonald, Margie; Thomas, Kathleen; Englander, Sarah; Rosen, Mark A; Chin, Deanna; Nosher, John; Madabhushi, Anant

    2011-06-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91. PMID:20508965

  1. MRI measurements of left ventricular systolic wall thickening compared to regional myocardial perfusion as determined by 201Tl SPECT in patients with coronary artery disease.

    PubMed

    Kleinhans, E; Altehoefer, C; Arnold, C; Buell, U; vom Dahl, J; Uebis, R

    1991-04-01

    Magnetic resonance imaging (MRI) of the left ventricle (LV) is an excellent method of measuring systolic wall thickening (SWT). The aim of the present study was (a) to describe a new approach for measurement of SWT and (b) to define the relationship between SWT and regional myocardial perfusion as determined by 201Tl SPECT. 79 patients -51 with and 28 without history of earlier myocardial infarction - underwent SPECT and, within the next two weeks. MRI. End-diastolic and end-systolic spin echo images were obtained by a reduced permutation technique. For MRI measurements, only long-axis sections through the LV in the equatorial plane were used. Slice orientation was selected according to the findings of SPECT, imaging the infarcted wall segment by single or double angulation. At 7 equidistant points around the LV wall SWT was measured and compared with the corresponding regional myocardial uptake values from SPECT in percent of maximal perfusion. Wall thickness of the anterior wall was normal. Because the majority of myocardial infarctions were posterior-inferior (55%), thickness of the posterior wall was markedly decreased. A close relationship of perfusion to SWT was found. Higher perfusion areas (greater than 50% of maximal TI uptake) corresponded with normal SWT (greater than 3.0 mm), a marked decrease of SWT (less than 1 mm) was found in areas with perfusion deficits (less than 40%). Thus, a 201TI uptake value at rest of 41-50% of the respective myocardial maximum acts as a threshold by discriminating normal from severely reduced SWT. PMID:2047242

  2. Decreased Brain and Placental Perfusion in Omphalopagus Conjoined Twins on Fetal MRI.

    PubMed

    Gorkem, Sureyya Burcu; Kutuk, Mehmet Serdar; Doganay, Selim; Gunes, Tamer; Yildiz, Karamehmet; Kucukaydin, Mustafa

    2016-01-01

    The aim of this study is to evaluate perfusional changes in brain and placenta of omphalopagus conjoined twins and to compare them with singleton fetuses by using diffusion weighted imaging and apparent diffusion coefficient. Fetal MRIs of 28-week-old omphalopagus conjoined twins with a shared liver with two separate gallbladders and portal and hepatic venous systems and three singleton fetuses with unilateral borderline ventriculomegaly at the same gestational week as control group were enrolled retrospectively. There was a significant decrease in ADC values of brain regions (p = 0.018) and placenta (p = 0.005) of conjoined twins compared to the control group. The decreased ADC values in placenta and brain regions in conjoined twins might be due to decreased placental perfusion compared to singleton pregnancy. Our results would be a keystone for future studies which will compare larger group of monochorionic multiple pregnancies with singleton pregnancies. PMID:27034830

  3. Decreased Brain and Placental Perfusion in Omphalopagus Conjoined Twins on Fetal MRI

    PubMed Central

    Kutuk, Mehmet Serdar; Doganay, Selim; Gunes, Tamer; Yildiz, Karamehmet; Kucukaydin, Mustafa

    2016-01-01

    The aim of this study is to evaluate perfusional changes in brain and placenta of omphalopagus conjoined twins and to compare them with singleton fetuses by using diffusion weighted imaging and apparent diffusion coefficient. Fetal MRIs of 28-week-old omphalopagus conjoined twins with a shared liver with two separate gallbladders and portal and hepatic venous systems and three singleton fetuses with unilateral borderline ventriculomegaly at the same gestational week as control group were enrolled retrospectively. There was a significant decrease in ADC values of brain regions (p = 0.018) and placenta (p = 0.005) of conjoined twins compared to the control group. The decreased ADC values in placenta and brain regions in conjoined twins might be due to decreased placental perfusion compared to singleton pregnancy. Our results would be a keystone for future studies which will compare larger group of monochorionic multiple pregnancies with singleton pregnancies. PMID:27034830

  4. Molecular imaging of EGFR/HER2 cancer biomarkers by protein MRI contrast agents

    PubMed Central

    Qiao, Jingjuan; Xue, Shenghui; Pu, Fan; White, Natalie; Jiang, Jie; Liu, Zhi-Ren

    2014-01-01

    Epidermal growth factor receptor (EGFR) and HER2 are major prognosis biomarkers and drug targets overexpressed in various types of cancer cells. There is a pressing need to develop MRI contrast agents capable of enhancing the contrast between normal tissues and tumors with high relaxivity, capable of targeting tumors, and with high intratumoral distribution and minimal toxicity. In this review, we first discuss EGFR signaling and its role in tumor progression as a major drug target. We then report our progress in the development of protein contrast agents with significant improvement of both r1 and r2 relaxivities, pharmacokinetics, in vivo retention time, and in vivo dose efficiency. Finally, we report our effort in the development of EGFR-targeted protein contrast agents with the capability to cross the endothelial boundary and with good tissue distribution across the entire tumor mass. The noninvasive capability of MRI to visualize spatially and temporally the intratumoral distribution as well as quantify the levels of EGFR and HER2 would greatly improve our ability to track changes of the biomarkers during tumor progression, monitor treatment efficacy, aid in patient selection, and further develop novel targeted therapies for clinical application. PMID:24366655

  5. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data

    PubMed Central

    2013-01-01

    Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/. PMID:24180558

  6. Water-Soluble Spinel Ferrites by a Modified Polyol Process as Contrast Agents in MRI

    SciTech Connect

    Basina, Georgia; Tzitzios, Vasilis; Niarchos, Dimitris; Li Wanfeng; Khurshid, Hafsa; Hadjipanayis, George; Mao Hui; Hadjipanayis, Costas

    2010-12-02

    Magnetic nanoparticles have recently been very attractive for biomedical applications. In this study, we have synthesized ferrite nanoparticles for application as contrast agents in MRI experiments. Fe{sub 3}O{sub 4} and MnFe{sub 2}O{sub 4} spinel ferrites with a mean size of 11-12 nm, were prepared by a modified polyol route in commercially available polyethylene glycol with molecular weight 600 (PEG-600). The reaction takes place in the presence of water soluble and non-toxic tri-block copolymer known as Pluronic registered F-127 (PEO{sub 100}-PPO{sub 65}-PEO{sub 100}). The nanoparticles have saturation magnetization values of 52 and 68 emu/g for MnFe{sub 2}O{sub 4} and Fe{sub 3}O{sub 4}, respectively. Both the Fe{sub 3}O{sub 4}, and MnFe{sub 2}O{sub 4} nanoparticles make stable solutions in water known as ferrofluids. Preliminary data demonstrated the capability of these nanoparticles to induce imaging contrast in T{sub 2} weighted MRI experiments, making these materials suitable for biomedical applications such as medical MRI.

  7. Why a standard contrast-enhanced MRI might be useful in intracranial internal carotid artery stenosis.

    PubMed

    Oeinck, Maximilian; Rozeik, Christoph; Wattchow, Jens; Meckel, Stephan; Schlageter, Manuel; Beeskow, Christel; Reinhard, Matthias

    2016-06-01

    In patients with ischemic stroke of unknown cause cerebral vasculitis is a rare but relevant differential diagnosis, especially when signs of intracranial artery stenosis are found and laboratory findings show systemic inflammation. In such cases, high-resolution T1w vessel wall magnetic resonance imaging (MRI; 'black blood' technique) at 3 T is preferentially performed, but may not be available in every hospital. We report a case of an 84-year-old man with right hemispheric transient ischemic attack and signs of distal occlusion in the right internal carotid artery (ICA) in duplex sonography. Standard MRI with contrast agent pointed the way to the correct diagnosis since it showed an intramural contrast uptake in the right ICA and both vertebral arteries. Temporal artery biopsy confirmed the suspected diagnosis of a giant cell arteritis and dedicated vessel wall MRI performed later supported the suspected intracranial large artery inflammation. Our case also shows that early diagnosis and immunosuppressive therapy may not always prevent disease progression, as our patient suffered several infarcts in the left middle cerebral artery (MCA) territory with consecutive high-grade hemiparesis of the right side within the following four months. PMID:26988083

  8. MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent

    PubMed Central

    Zhou, Zhuxian; Qutaish, Mohammed; Han, Zheng; Schur, Rebecca M.; Liu, Yiqiao; Wilson, David L.; Lu, Zheng-Rong

    2015-01-01

    Metastasis is the primary cause of death in breast cancer patients. Early detection of high-risk breast cancer, including micrometastasis, is critical in tailoring appropriate and effective interventional therapies. Increased fibronectin expression, a hallmark of epithelial-to-mesenchymal transition, is associated with high-risk breast cancer and metastasis. We have previously developed a penta-peptide CREKA (Cys-Arg-Glu-Lys-Ala)-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agent, CREKA-Tris(Gd-DOTA)3 (Gd-DOTA (4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecyl gadolinium), which binds to fibrin–fibronectin complexes that are abundant in the tumour microenvironment of fast-growing breast cancer. Here we assess the capability of CREKA-Tris(Gd-DOTA)3 to detect micrometastasis with MRI in co-registration with high-resolution fluorescence cryo-imaging in female mice bearing metastatic 4T1 breast tumours. We find that CREKA-Tris(Gd-DOTA)3 provides robust contrast enhancement in the metastatic tumours and enables the detection of micrometastases of size <0.5 mm, extending the detection limit of the current clinical imaging modalities. These results demonstrate that molecular MRI with CREKA-Tris(Gd-DOTA)3 may facilitate early detection of high-risk breast cancer and micrometastasis in the clinic. PMID:26264658

  9. GRPR-targeted Protein Contrast Agents for Molecular Imaging of Receptor Expression in Cancers by MRI

    PubMed Central

    Pu, Fan; Qiao, Jingjuan; Xue, Shenghui; Yang, Hua; Patel, Anvi; Wei, Lixia; Hekmatyar, Khan; Salarian, Mani; Grossniklaus, Hans E.; Liu, Zhi-Ren; Yang, Jenny J.

    2015-01-01

    Gastrin-releasing peptide receptor (GRPR) is differentially expressed on the surfaces of various diseased cells, including prostate and lung cancer. However, monitoring temporal and spatial expression of GRPR in vivo by clinical MRI is severely hampered by the lack of contrast agents with high relaxivity, targeting capability and tumor penetration. Here, we report the development of a GRPR-targeted MRI contrast agent by grafting the GRPR targeting moiety into a scaffold protein with a designed Gd3+ binding site (ProCA1.GRPR). In addition to its strong binding affinity for GRPR (Kd = 2.7 nM), ProCA1.GRPR has high relaxivity (r1 = 42.0 mM−1s−1 at 1.5 T and 25 °C) and strong Gd3+ selectivity over physiological metal ions. ProCA1.GRPR enables in vivo detection of GRPR expression and spatial distribution in both PC3 and H441 tumors in mice using MRI. ProCA1.GRPR is expected to have important preclinical and clinical implications for the early detection of cancer and for monitoring treatment effects. PMID:26577829

  10. Noninvasive MRI of β-cell function using a Zn2+-responsive contrast agent.

    PubMed

    Lubag, Angelo J M; De Leon-Rodriguez, Luis M; Burgess, Shawn C; Sherry, A Dean

    2011-11-01

    Elevation of postprandial glucose stimulates release of insulin from granules stored in pancreatic islet β-cells. We demonstrate here that divalent zinc ions coreleased with insulin from β-cells in response to high glucose are readily detected by MRI using the Zn(2+)-responsive T(1) agent, GdDOTA-diBPEN. Image contrast was significantly enhanced in the mouse pancreas after injection of a bolus of glucose followed by a low dose of the Zn(2+) sensor. Images of the pancreas were not enhanced by the agent in mice without addition of glucose to stimulate insulin release, nor were images enhanced in streptozotocin-treated mice with or without added glucose. These observations are consistent with MRI detection of Zn(2+) released from β-cells only during glucose-stimulated insulin secretion. Images of mice fed a high-fat (60%) diet over a 12-wk period and subjected to this same imaging protocol showed a larger volume of contrast-enhanced pancreatic tissue, consistent with the expansion of pancreatic β-cell mass during fat accumulation and progression to type 2 diabetes. This MRI sensor offers the exciting potential for deep-tissue monitoring of β-cell function in vivo during development of type 2 diabetes or after implantation of islets in type I diabetic patients. PMID:22025712

  11. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  12. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage.

    PubMed

    Silvast, Tuomo S; Kokkonen, Harri T; Jurvelin, Jukka S; Quinn, Thomas M; Nieminen, Miika T; Töyräs, Juha

    2009-11-21

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Ø = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist((R)), gadodiamide: Omniscan, ioxaglate: Hexabrix or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity. PMID:19864699

  13. Correction: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Correction for `Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents' by Roxanne Hachani et al., Nanoscale, 2015, DOI: 10.1039/c5nr03867g.

  14. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P.; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza

    2013-08-01

    Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI

  15. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P.; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza

    2013-08-01

    Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI

  16. Biocompatibility of ferritin-based nanoparticles as targeted MRI contrast agents.

    PubMed

    Charlton, Jennifer R; Pearl, Valeria M; Denotti, Anna R; Lee, Jonathan B; Swaminathan, Sundararaman; Scindia, Yogesh M; Charlton, Nathan P; Baldelomar, Edwin J; Beeman, Scott C; Bennett, Kevin M

    2016-08-01

    Ferritin is a naturally occurring iron storage protein, proposed as a clinically relevant nanoparticle with applications as a diagnostic and therapeutic agent. Cationic ferritin is a targeted, injectable contrast agent to measure kidney microstructure with MRI. Here, the toxicity of horse spleen ferritin is assessed as a step to clinical translation. Adult male mice received cationic, native and high dose cationic ferritin (CF, NF, or HDCF) or saline and were monitored for 3weeks. Transient weight loss occurred in the ferritin groups with no difference in renal function parameters. Ferritin-injected mice demonstrated a lower serum iron 3weeks after administration. In ferritin-injected animals pre-treated with hydrocortisone, there were no structural or weight differences in the kidneys, liver, lung, heart, or spleen. This study demonstrates a lack of significant detrimental effects of horse-derived ferritin-based nanoparticles at MRI-detectable doses, allowing further exploration of these agents in basic research and clinical diagnostics. PMID:27071333

  17. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    PubMed

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. PMID:26265140

  18. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents.

    PubMed

    Kulmala, K A M; Korhonen, R K; Julkunen, P; Jurvelin, J S; Quinn, T M; Kröger, H; Töyräs, J

    2010-10-01

    In contrast enhanced magnetic resonance imaging (MRI) and computed tomography (CT), the equilibrium distribution of anionic contrast agent is expected to reflect the fixed charged density (FCD) of articular cartilage. Diffusion is mainly responsible for the transport of contrast agents into cartilage. In osteoarthritis, cartilage composition changes at early stages of disease, and solute diffusion is most likely affected. Thus, investigation of contrast agent diffusion could enable new methods for imaging of cartilage composition. The aim of this study was to determine the diffusion coefficient of four contrast agents (ioxaglate, gadopentetate, iodide, gadodiamide) in bovine articular cartilage. The contrast agents were different in molecular size and charge. In peripheral quantitative CT experiments, penetration of contrast agent into the tissue was allowed either through the articular surface or through deep cartilage. To determine diffusion coefficients, a finite element model based on Fick's law was fitted to experimental data. Diffusion through articular surface was faster than through deep cartilage with every contrast agent. Iodide, being of atomic size, diffused into the cartilage significantly faster (q<0.05) than the other three contrast agents, for either transport direction. The diffusion coefficients of all clinical contrast agents (ioxaglate, gadopentetate and gadodiamide) were relatively low (142.8-253.7 μm(2)/s). In clinical diagnostics, such slow diffusion may not reach equilibrium and this jeopardizes the determination of FCD by standard methods. However, differences between diffusion through articular surface and deep cartilage, that are characterized by different tissue composition, suggest that diffusion coefficients may correlate with cartilage composition. Present method could therefore enable image-based assessment of cartilage composition by determination of diffusion coefficients within cartilage tissue. PMID:20594900

  19. Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior

    NASA Astrophysics Data System (ADS)

    Ma, Jianhua; Zhang, Hua; Gao, Yang; Huang, Jing; Liang, Zhengrong; Feng, Qianjing; Chen, Wufan

    2012-11-01

    Cerebral perfusion x-ray computed tomography (PCT) imaging, which detects and characterizes the ischemic penumbra, and assesses blood-brain barrier permeability with acute stroke or chronic cerebrovascular diseases, has been developed extensively over the past decades. However, due to its sequential scan protocol, the associated radiation dose has raised significant concerns to patients. Therefore, in this study we developed an iterative image reconstruction algorithm based on the maximum a posterior (MAP) principle to yield a clinically acceptable cerebral PCT image with lower milliampere-seconds (mA s). To preserve the edges of the reconstructed image, an edge-preserving prior was designed using a normal-dose pre-contrast unenhanced scan. For simplicity, the present algorithm was termed as ‘MAP-ndiNLM’. Evaluations with the digital phantom and the simulated low-dose clinical brain PCT datasets clearly demonstrate that the MAP-ndiNLM method can achieve more significant gains than the existing FBP and MAP-Huber algorithms with better image noise reduction, low-contrast object detection and resolution preservation. More importantly, the MAP-ndiNLM method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the MAP-Huber method.

  20. Iterative image reconstruction for cerebral perfusion CT using pre-contrast scan induced edge-preserving prior

    PubMed Central

    Ma, Jianhua; Zhang, Hua; Gao, Yang; Huang, Jing; Liang, Zhengrong; Feng, Qianjing; Chen, Wufan

    2012-01-01

    Cerebral perfusion X-ray computed tomography (PCT) imaging, which detects and characterizes the ischemic penumbra, and assesses blood-brain barrier permeability with acute stroke or chronic cerebrovascular diseases, has been developed extensively over the past decades. However, due to its sequential scan protocol, the associated radiation dose has raised significant concerns to patients. Therefore, in this study we developed an iterative image reconstruction algorithm based on the maximum a posterior (MAP) principle to yield a clinically acceptable cerebral PCT image with lower milliampere seconds (mAs). To preserve the edges of the reconstructed image, an edge-preserving prior was designed using a normal-dose pre-contrast unenhanced scan. For simplicity, the present algorithm was termed as “MAP-ndiNLM”. Evaluations with the digital phantom and the simulated low-dose clinical brain PCT datasets clearly demonstrate that the MAP-ndiNLM method can achieve more significant gains than the existing FBP and MAP-Huber algorithms with better image noise reduction, low-contrast object detection and resolution preservation. More importantly, the MAP-ndiNLM method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the MAP-Huber method. PMID:23104003

  1. Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging

    PubMed Central

    Yang, Hua; Qiao, Jingjuan; Pu, Fan; Jiang, Jie; Hubbard, Kendra; Hekmatyar, Khan; Langley, Jason; Salarian, Mani; Long, Robert C.; Bryant, Robert G.; Hu, Xiaoping Philip; Grossniklaus, Hans E.; Liu, Zhi-Ren; Yang, Jenny J.

    2015-01-01

    With available MRI techniques, primary and metastatic liver cancers that are associated with high mortality rates and poor treatment responses are only diagnosed at late stages, due to the lack of highly sensitive contrast agents without Gd3+ toxicity. We have developed a protein contrast agent (ProCA32) that exhibits high stability for Gd3+ and a 1011-fold greater selectivity for Gd3+ over Zn2+ compared with existing contrast agents. ProCA32, modified from parvalbumin, possesses high relaxivities (r1/r2: 66.8 mmol−1⋅s−1/89.2 mmol−1⋅s−1 per particle). Using T1- and T2-weighted, as well as T2/T1 ratio imaging, we have achieved, for the first time (to our knowledge), robust MRI detection of early liver metastases as small as ∼0.24 mm in diameter, much smaller than the current detection limit of 10–20 mm. Furthermore, ProCA32 exhibits appropriate in vivo preference for liver sinusoidal spaces and pharmacokinetics for high-quality imaging. ProCA32 will be invaluable for noninvasive early detection of primary and metastatic liver cancers as well as for monitoring treatment and guiding therapeutic interventions, including drug delivery. PMID:25971726

  2. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T₂ Contrast Agents for MRI.

    PubMed

    Martínez-González, Raquel; Estelrich, Joan; Busquets, Maria Antònia

    2016-01-01

    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T₂ relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these nanoparticles to enhance detection of alterations in soft tissues, we studied the MRI response of hydrophobic or hydrophilic SPIONs loaded into liposomes (magnetoliposomes) of different lipid composition obtained by sonication. These hybrid nanostructures were characterized by measuring several parameters such as size and polydispersity, and number of SPIONs encapsulated or embedded into the lipid systems. We then studied the influence of acyl chain length as well as its unsaturation, charge, and presence of cholesterol in the lipid bilayer at high field strength (7 T) to mimic the conditions used in preclinical assays. Our results showed a high variability depending on the nature of the magnetic particles. Focusing on the hydrophobic SPIONs, the cholesterol-containing samples showed a slight reduction in r₂, while unsaturation of the lipid acyl chain and inclusion of a negatively charged lipid into the bilayer appeared to yield a marked increase in negative contrast, thus rendering these magnetoliposomes suitable candidates as CAs, especially as a liver CA. PMID:27472319

  3. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    PubMed Central

    Martínez-González, Raquel; Estelrich, Joan; Busquets, Maria Antònia

    2016-01-01

    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these nanoparticles to enhance detection of alterations in soft tissues, we studied the MRI response of hydrophobic or hydrophilic SPIONs loaded into liposomes (magnetoliposomes) of different lipid composition obtained by sonication. These hybrid nanostructures were characterized by measuring several parameters such as size and polydispersity, and number of SPIONs encapsulated or embedded into the lipid systems. We then studied the influence of acyl chain length as well as its unsaturation, charge, and presence of cholesterol in the lipid bilayer at high field strength (7 T) to mimic the conditions used in preclinical assays. Our results showed a high variability depending on the nature of the magnetic particles. Focusing on the hydrophobic SPIONs, the cholesterol-containing samples showed a slight reduction in r2, while unsaturation of the lipid acyl chain and inclusion of a negatively charged lipid into the bilayer appeared to yield a marked increase in negative contrast, thus rendering these magnetoliposomes suitable candidates as CAs, especially as a liver CA. PMID:27472319

  4. Safety assessment of nanoparamagnetic contrast agents with different coatings for molecular MRI

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Saffari, Mojtaba; Zohdiaghdam, Reza; Gorji, Ensieh

    2013-04-01

    Despite the wide application of gadolinium as a contrast agent for magnetic resonance imaging (MRI), there is a serious lack of information on its toxicity. Gadolinium and gadolinium oxide (Gd-oxide) are used as contrast agents for magnetic resonance imaging (MRI). There are methods for reducing toxicity of these materials, such as core nanoparticles coating or conjugating. Therefore, for toxicity evaluation, we compared the viability of commercial contrast agents in MRI (Gd-DTPA) and three nanoparticles with the same core Gd2O3 and small particulate gadolinium oxide or SPGO (< 40 nm) but different coatings of diethyleneglycol (DEG) as Gd2O3-DEG and methoxy polyethylene glycol-silane (mPEG-silane: 550 and 2000 Dalton) as SPGO-mPEG-silane550 and SPGO-mPEG-silane2000, respectively, in the SK-MEL3 cell line, by light microscopy, MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity. The viability values were not statistically different between the three nanoparticles and Gd-DTPA. The MTT and LDH assay results showed that Gd2O3-DEG nanoparticles were more toxic than Gd-DTPA and other nanoparticles. Also, SPGO-mPEG-silane2000 was more biocompatible than other nanoparticles. The obtained results did not show any significant increase in cytotoxicity of the nanoparticles and Gd-DTPA, neither dose-dependent nor time-dependent. Therefore, DEG and PEG, due to their considerable properties and irregular sizes (different molecular weights), were selected as the useful surface covering materials of nanomagnetic particles that could reveal noticeable relaxivity and biocompatibility characteristics.

  5. Magnetic red blood cells as new contrast agents for MRI applications

    NASA Astrophysics Data System (ADS)

    Antonelli, Antonella; Sfara, Carla; Manuali, Elisabetta; Salamida, Sonia; Louin, Gaëlle; Magnani, Mauro

    2013-03-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have been produced and used successfully as potent contrast agents for Magnetic Resonance Imaging (MRI). However, a significant challenge associated with the biological application of SPIO-tracer agents is their behavior in vivo since their efficacy is often compromised due to a rapid recognition and clearance by the reticuloendothelial system (RES) which limits the applicability of such compounds in MRI. The advances in nanotechnology and molecular cell biology had lead to improve stability and biocompatibility of these nanoparticles, but despite a number of efforts, the SPIO half-life in blood circulation is very short. In this contest, the potential of red blood cells (RBCs) loaded with SPIO nanoparticles as a tracer material for MRI has been investigated in order to realize a blood pool tracer with longer blood retention time. Previously, we have proposed the encapsulation into RBCs of superparamagnetic iron oxide nanoparticles carboxydextran coated, such as Resovist contrast agent. This approach led to a nanoparticle reduction in uptake by the RES, increasing the blood circulation half-life of nanoparticles. Recently, the loading procedure was applied to a new contrast agent, the P904 ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles coated by hydrophilic derivatives of glucose, recently developed by Guerbet Laboratories. The results evidenced that this nanomaterial can be efficiently loaded into human and murine RBCs at concentrations ranging from 1.5 to 12 mM Fe. In vivo experiments performed in mice have showed an increased survival in the mouse vascular system of P904 encapsulated into RBCs respect to free P904 sample intravenously injected at the equivalent amounts.

  6. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    PubMed

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-01

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal. PMID:24005082

  7. Cardiac Amyloidosis: Typical Imaging Findings and Diffuse Myocardial Damage Demonstrated by Delayed Contrast-Enhanced MRI

    SciTech Connect

    Sueyoshi, Eijun Sakamoto, Ichiro; Okimoto, Tomoaki; Hayashi, Kuniaki; Tanaka, Kyouei; Toda, Genji

    2006-08-15

    Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.

  8. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging

    SciTech Connect

    Werner, Eric J.; Datta, Ankona; Jocher, Christoph J.; Raymond, Kenneth N.

    2008-01-15

    The desire to improve and expand the scope of clinical magnetic resonance imaging (MRI) has prompted the search for contrast agents of higher efficiency. The development of better agents requires consideration of the fundamental coordination chemistry of the gadolinium(III) ion and the parameters that affect its efficacy as a proton relaxation agent. In optimizing each parameter, other practical issues such as solubility and in vivo toxicity must also be addressed, making the attainment of safe, high-relaxivity agents a challenging goal. Here we present recent advances in the field, with an emphasis on the hydroxypyridinone family of Gd{sup III} chelates.

  9. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Jayaprabha, K. N.; Joy, P. A.

    2015-04-01

    Superparamagnetic iron oxide nanoparticles of size ~5 nm surface functionalized with ascorbic acid (vitamin C) form a stable dispersion in water with a hydrodynamic size of ~30 nm. The anti-oxidant property of ascorbic acid is retained after capping, as evidenced from the capability of converting methylene blue to its reduced leuco form. NMR relaxivity studies show that the ascorbic-acid-coated superparamagnetic iron oxide aqueous nanofluid is suitable as a contrast enhancement agent for MRI applications, coupled with the excellent biocompatibility and medicinal values of ascorbic acid.

  10. Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation

    NASA Astrophysics Data System (ADS)

    Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.

    2008-02-01

    Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.

  11. The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI

    PubMed Central

    Lee, Jae-Hyeok; Baek, Sun-Yong; Song, YoungKyu; Lim, Sujeong; Lee, Hansol; Nguyen, Minh Phuong; Kim, Eun-Joo; Huh, Gi Yeong; Chun, Se Young; Cho, HyungJoon

    2016-01-01

    High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl’s Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T. PMID:27596274

  12. Preparation of Amyloid Immuno-Nanoparticles as Potential MRI Contrast Agents for Alzheimer's Disease Diagnosis.

    PubMed

    Yin, Zhenyu; Yul, Tingting; Xu, Yun

    2015-09-01

    Alzheimer's disease (AD) is the most common form of dementia which is caused by accumulation in the brain of plaques made up of amyloid beta-peptide (Abeta). Research on nanosized systems indicated that nanoparticles (NPs) could pass across the blood-brain barrier (BBB) and improve the visibility of internal body structures in magnetic resonance imaging (MRI), which made it possible to aid the early diagnosis of AD. In this research study we synthesized magnetite nanoparticles by high-temperature solution-phase reaction, transferred into water based on a ligand exchange process and coated with meso-2,3-dimercaptosuccinic (DMSA). Subsequently, the anti-amyloid Abeta immunomagnetic nanoparticles (IMNPs) were prepared by grafting anti-amyloid antibodies on the surface of the DMSA-coated magnetic nanoparticles (MNPs). The enzyme linked immunosorbent assay (ELISA) method was introduced to evaluate the IMNPs activity and conjugation amount of antibodies. The biocompatibility of the IMNPs was tested by colony-forming assay. The results showed that the anti-amyloid Abeta IMNPs were biocompatible and biologically active, as well as effective in enhancing MRI solution, indicating that the IMNPs could be used as potential MRI contrast agents and targeted carriers for AD early diagnosis and therapy. PMID:26716196

  13. Self-assembled superparamagnetic nanoparticles as MRI contrast agents— A review

    NASA Astrophysics Data System (ADS)

    Su, Hong-Ying; Wu, Chang-Qiang; Li, Dan-Yang; Ai, Hua

    2015-12-01

    Recent progress of the preparation and applications of superparamagnetic iron oxide (SPIO) clusters as magnetic resonance imaging (MRI) probes is reviewed with regard to their applications in labeling and tracking cells in vivo, in diagnosis of cardiovascular diseases and tumors, and in drug delivery systems. Magnetic nanoparticles (NPs), especially SPIO nanoparticles, have long been used as MRI contrast agents and as an advantageous nanoplatform for drug delivery, taking advantage of their unique magnetic properties and ability to function at the molecular and cellular levels. Due to advances in nanotechnology, various means to control SPIO NPs’ size, composition, magnetization and relaxivity have been developed, as well as ways to usefully modify their surface. Recently, self-assembly of SPIO NP clusters in particulate carriers—such as polymeric micelles, vesicles, liposomes, and layer-by-layer (LbL) capsules—have been widely studied for application as ultrasensitive MRI probes, owing to their remarkably high spin-spin (T2) relaxivity and convenience for further functionalization. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107), and the Scientific Research Start-up Fund of Kunming University of Science and Technology (Grant No. KKSY201305089).

  14. Oral manganese as an MRI contrast agent for the detection of nociceptive activity.

    PubMed

    Jacobs, Kathleen E; Behera, Deepak; Rosenberg, Jarrett; Gold, Garry; Moseley, Michael; Yeomans, David; Biswal, Sandip

    2012-04-01

    The ability of divalent manganese to enter neurons via calcium channels makes manganese an excellent MRI contrast agent for the imaging of nociception, the afferent neuronal encoding of pain perception. There is growing evidence that nociceptive neurons possess increased expression and activity of calcium channels, which would allow for the selective accumulation of manganese at these sites. In this study, we show that oral manganese chloride leads to increased enhancement of peripheral nerves involved in nociception on T(1)-weighted MRI. Oral rather than intravenous administration was chosen for its potentially better safety profile, making it a better candidate for clinical translation with important applications, such as pain diagnosis, therapy and research. The spared nerve injury (SNI) model of neuropathic pain was used for the purposes of this study. SNI rats were given, sequentially, increasing amounts of manganese chloride (lowest, 2.29 mg/100 g weight; highest, 20.6 mg/100 g weight) with alanine and vitamin D(3) by oral gavage. Compared with controls, SNI rats demonstrated increased signal-to-background ratios on T(1)-weighted fast spin echo MRI, which was confirmed by and correlated strongly with spectrometry measurements of nerve manganese concentration. We also found the difference between SNI and control rats to be greater at 48 h than at 24 h after dosing, indicating increased manganese retention in addition to increased manganese uptake in nociceptive nerves. This study demonstrates that oral manganese is a viable method for the imaging of nerves associated with increased nociceptive activity. PMID:22447731

  15. Visualization of 3D geometric models of the breast created from contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken, III; Wang, Xiao Hui; Chang, Yuan-Hsiang; Chapman, Brian E.

    2002-05-01

    Contrast enhanced breast MRI is currently used as an adjuvant modality to x-ray mammography because of its ability to resolve ambiguities and determine the extent of malignancy. This study described techniques to create and visualize 3D geometric models of abnormal breast tissue. MRIs were performed on a General Electric 1.5 Tesla scanner using dual phased array breast coils. Image processing tasks included: 1) correction of image inhomogeneity caused by the coils, 2) segmentation of normal and abnormal tissue, and 3) modeling and visualization of the segmented tissue. The models were visualized using object-based surface rendering which revealed characteristics critical to differentiating benign from malignant tissue. Surface rendering illustrated the enhancement distribution and enhancement patterns. The modeling process condensed the multi-slice MRI data information and standardized its interpretation. Visualizing the 3D models should improve the radiologist's and/or surgeon's impression of the 3D shape, extent, and accessibility of the malignancy compared to viewing breast MRI data slice by slice.

  16. The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI.

    PubMed

    Lee, Jae-Hyeok; Baek, Sun-Yong; Song, YoungKyu; Lim, Sujeong; Lee, Hansol; Nguyen, Minh Phuong; Kim, Eun-Joo; Huh, Gi Yeong; Chun, Se Young; Cho, HyungJoon

    2016-01-01

    High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl's Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T. PMID:27596274

  17. Geometric feature-based multimodal image registration of contrast-enhanced cardiac CT with gated myocardial perfusion SPECT

    PubMed Central

    Woo, Jonghye; Slomka, Piotr J.; Dey, Damini; Cheng, Victor Y.; Hong, Byung-Woo; Ramesh, Amit; Berman, Daniel S.; Karlsberg, Ronald P.; Kuo, C.-C. Jay; Germano, Guido

    2009-01-01

    Purpose: Cardiac computed tomography (CT) and single photon emission computed tomography (SPECT) provide clinically complementary information in the diagnosis of coronary artery disease (CAD). Fused anatomical and physiological data acquired sequentially on separate scanners can be coregistered to accurately diagnose CAD in specific coronary vessels. Methods: A fully automated registration method is presented utilizing geometric features from a reliable segmentation of gated myocardial perfusion SPECT (MPS) volumes, where regions of myocardium and blood pools are extracted and used as an anatomical mask to de-emphasize the inhomogeneities of intensity distribution caused by perfusion defects and physiological variations. A multiresolution approach is employed to represent coarse-to-fine details of both volumes. The extracted voxels from each level are aligned using a similarity measure with a piecewise constant image model and minimized using a gradient descent method. The authors then perform limited nonlinear registration of gated MPS to adjust for phase differences by automatic cardiac phase matching between CT and MPS. For phase matching, they incorporate nonlinear registration using thin-plate-spline-based warping. Rigid registration has been compared with manual alignment (n=45) on 20 stress/rest MPS and coronary CTA data sets acquired from two different sites and five stress CT perfusion data sets. Phase matching was also compared to expert visual assessment. Results: As compared with manual alignment obtained from two expert observers, the mean and standard deviation of absolute registration errors of the proposed method for MPS were4.3±3.5, 3.6±2.6, and 3.6±2.1mm for translation and 2.1±3.2°, 0.3±0.8°, and 0.7±1.2° for rotation at site A and 3.8±2.7, 4.0±2.9, and 2.2±1.8mm for translation and 1.1±2.0°, 1.6±3.1°, and 1.9±3.8° for rotation at site B. The results for CT perfusion were 3.0±2.9, 3.5±2.4, and 2.8±1.0mm for translation and 3

  18. Nanosystems: From their design to characterization as advanced MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Sethi, Richa

    Ultra-short single-walled carbon nanotubes (US-tubes) have been previously shown to be efficient carriers of imaging agents. In particular, gadonanotubes (GNTs) synthesized by loading and nanoscale confinement of Gd 3+ ions within US-tubes have been established as high-performance MRI contrast agents (CAs) with efficiencies 40 to 90 times greater than the current clinical CAs. Using nuclear magnetic resonance dispersion (NMRD) and electron spin resonance (ESR) techniques, this work discusses the origin of the magnetic and proton relaxation behavior in MRI of the GNTs and related structures at low magnetic fields. The likely causes for the observed paramagnetism for these materials are explored and their effect on water proton relaxation is discussed. In addition, Gd3+ chelates, which are currently approved for clinical MRI use, provide relaxivities (or contrast enhancement) well below their theoretical limit, and they also lack tissue specificity. In this dissertation, using vascularly injectable mesoporous silicon nanoparticles (SiMPs), general methods for increasing the efficiency of Gd3+-based MRI CAs are described. Two different strategies have been successfully tested where Gd3+ chelates are either geometrically confined within the pores of SiMPs or covalently attached to the surface of SiMPs. For both the approaches, SiMPs with different pore sizes have been used to generate a dominant role in the resulting relaxivity. The nanoconstructs designed using these approaches have been shown to produce relaxivities that are many-fold greater than the free CAs in solution. This enhancement is attributed to the optimization of the molecular parameters that govern relaxivity. Co-loading the pores with a Gd3+-based CA and a fluorescently-labeled antibody has shown the potential of SiMP nanoconstructs as multimodal agents. The strategies outlined in this dissertation are general and can be successfully applied to any imaging agent and porous nanosystem. In summary, this

  19. Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI.

    PubMed

    Haribabu, Viswanathan; Farook, Abubacker Sulaiman; Goswami, Nirmalya; Murugesan, Ramachandran; Girigoswami, Agnishwar

    2016-05-01

    Magnetic resonance imaging has acquired importance as a major tool for diagnosis and staging of cancers in humans. Injection of certain imaging agents have proved to improve contrast between normal and cancer cells on magnetic resonance imaging (MRI). Using the principles of MR contrast imaging, we have designed a dual mode (T1 and T2) contrast agent based on folic acid functionalized manganese ferrite nanoparticles (MNP) entrapped in 3G polyamidoamide (PAMAM) dendrimers. The ratio of Mn:Fe was tuned to achieve optimal performance. This multifunctional nanocarrier system was developed for targeting cancer cells to produce both T1 and T2 contrast which in turn helps in better diagnosis and staging of cancer. FTIR spectroscopy, X-Ray diffraction, atomic absorption spectroscopy, UV-Visible spectroscopy, and dynamic light scattering measurements were employed to characterize the multifunctional system at different stages of engineering. The ratio of relaxivities r2 /r1 is 4.6 at 1.5 T for the MNP prepared with 0.5 molar ratio of Mn/Fe based on MR images obtained from phantom and tumor bearing mouse. The value of r2 /r1 shows that the 0.5 molar ratio of Mn/Fe can be used to prepare MNP for the production of dual mode contrast in MR imaging. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 817-824, 2016. PMID:26460478

  20. Gd(III) complexes intercalated into hydroxy double salts as potential MRI contrast agents.

    PubMed

    Jin, Miao; Spillane, Dominic E M; Geraldes, Carlos F G C; Williams, Gareth R; Bligh, S W Annie

    2015-12-21

    The ion exchange intercalation of two Gd-based magnetic resonance imaging contrast agents into hydroxy double salts (HDSs) is reported. The presence of Gd(3+) diethylenetriaminepentaacetate and Gd(3+) diethylenetriaminepenta(methylenephosphonate) complexes in the HDS lattice after intercalation was confirmed by microwave plasma-atomic emission spectroscopy. The structural aspects of the HDS-Gd composites were studied by X-ray diffraction, with the intercalates having an interlayer spacing of 14.5-18.6 Å. Infrared spectroscopy confirmed the presence of characteristic vibration peaks associated with the Gd(3+) complexes in the intercalation compounds. The proton relaxivities of the Gd(3+) complex-loaded composites were 2 to 5-fold higher in longitudinal relaxivity, and up to 10-fold higher in transverse relaxivity, compared to solutions of the pure complexes. These data demonstrate that the new composites reported here are potentially potent MRI contrast agents. PMID:26568157

  1. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang

    2010-12-01

    Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.

  2. Current concepts on magnetic resonance imaging (MRI) perfusion-diffusion assessment in acute ischaemic stroke: a review & an update for the clinicians.

    PubMed

    Roldan-Valadez, Ernesto; Lopez-Mejia, Mariana

    2014-12-01

    Recently, several medical societies published joint statements about imaging recommendations for acute stroke and transient ischaemic attack patients. In following with these published guidelines, we considered it appropriate to present a brief, practical and updated review of the most relevant concepts on the MRI assessment of acute stroke. Basic principles of the clinical interpretation of diffusion, perfusion, and MRI angiography (as part of a global MRI protocol) are discussed with accompanying images for each sequence. Brief comments on incidence and differential diagnosis are also included, together with limitations of the techniques and levels of evidence. The purpose of this article is to present knowledge that can be applied in day-to-day clinical practice in specialized stroke units or emergency rooms to attend patients with acute ischaemic stroke or transient ischaemic attack according to international standards. PMID:25758570

  3. A study of quantification of aortic compliance in mice using radial acquisition phase contrast MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Xuandong

    Spatiotemporal changes in blood flow velocity measured using Phase contrast Magnetic Resonance Imaging (MRI) can be used to quantify Pulse Wave Velocity (PWV) and Wall Shear Stress (WSS), well known indices of vessel compliance. A study was conducted to measure the PWV in the aortic arch in young healthy children using conventional phase contrast MRI and a post processing algorithm that automatically track the peak velocity in phase contrast images. It is shown that the PWV calculated using peak velocity-time data has less variability compared to that using mean velocity and flow. Conventional MR data acquisition techniques lack both the spatial and temporal resolution needed to accurately calculate PWV and WSS in in vivo studies using transgenic animal models of arterial diseases. Radial k-space acquisition can improve both spatial and temporal resolution. A major part of this thesis was devoted to developing technology for Radial Phase Contrast Magnetic Resonance (RPCMR) cine imaging on a 7 Tesla Animal scanner. A pulse sequence with asymmetric radial k-space acquisition was designed and implemented. Software developed to reconstruct the RPCMR images include gridding, density compensation and centering of k-Space that corrects the image ghosting introduced by hardware response time. Image processing software was developed to automatically segment the vessel lumen and correct for phase offset due to eddy currents. Finally, in vivo and ex vivo aortic compliance measurements were conducted in a well-established mouse model for atherosclerosis: Apolipoprotein E-knockout (ApoE-KO). Using RPCMR technique, a significantly higher PWV value as well as a higher average WSS was detected among 9 months old ApoE-KO mice compare to in wild type mice. A follow up ex-vivo test of tissue elasticity confirmed the impaired distensibility of aortic arteries among ApoE-KO mice.

  4. Interhemispheric Cerebral Blood Flow Balance during Recovery of Motor Hand Function after Ischemic Stroke—A Longitudinal MRI Study Using Arterial Spin Labeling Perfusion

    PubMed Central

    Missimer, John; Schroth, Gerhard; Hess, Christian W.; Sturzenegger, Matthias; Wang, Danny J. J.; Weder, Bruno; Federspiel, Andrea

    2014-01-01

    Background Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process. Objective To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery. Methods Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network. Results Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere. Conclusions Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information. PMID:25191858

  5. Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function.

    PubMed

    Xie, Luke; Layton, Anita T; Wang, Nian; Larson, Peder E Z; Zhang, Jeff L; Lee, Vivian S; Liu, Chunlei; Johnson, G Allan

    2016-01-15

    Dynamic contrast-enhanced (DCE) MRI can provide key insight into renal function. DCE MRI is typically achieved through an injection of a gadolinium (Gd)-based contrast agent, which has desirable T1 quenching and tracer kinetics. However, significant T2* blooming effects and signal voids can arise when Gd becomes very concentrated, especially in the renal medulla and pelvis. One MRI sequence designed to alleviate T2* effects is the ultrashort echo time (UTE) sequence. In the present study, we observed T2* blooming in the inner medulla of the mouse kidney, despite using UTE at an echo time of 20 microseconds and a low dose of 0.03 mmol/kg Gd. We applied quantitative susceptibility mapping (QSM) and resolved the signal void into a positive susceptibility signal. The susceptibility values [in parts per million (ppm)] were converted into molar concentrations of Gd using a calibration curve. We determined the concentrating mechanism (referred to as the concentrating index) as a ratio of maximum Gd concentration in the inner medulla to the renal artery. The concentrating index was assessed longitudinally over a 17-wk course (3, 5, 7, 9, 13, 17 wk of age). We conclude that the UTE-based DCE method is limited in resolving extreme T2* content caused by the kidney's strong concentrating mechanism. QSM was able to resolve and confirm the source of the blooming effect to be the large positive susceptibility of concentrated Gd. UTE with QSM can complement traditional magnitude UTE and offer a powerful tool to study renal pathophysiology. PMID:26447222

  6. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  7. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    NASA Astrophysics Data System (ADS)

    Jedlovszky-Hajdú, Angéla; Tombácz, Etelka; Bányai, István; Babos, Magor; Palkó, András

    2012-09-01

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide.

  8. A novel high temporal resolution phase contrast MRI technique for measuring mitral valve flows

    NASA Astrophysics Data System (ADS)

    Voorhees, Abram; Bohmann, Katja; McGorty, Kelly Anne; Wei, Timothy; Chen, Qun

    2005-11-01

    Mitral valve flow imaging is inherently difficult due to valve plane motion and high blood flow velocities, which can range from 200 cm/s to 700 cm/s under regurgitant conditions. As such, insufficient temporal resolution has hampered imaging of mitral valve flows using magnetic resonance imaging (MRI). A novel phase contrast MRI technique, phase contrast using phase train imaging (PCPTI), has been developed to address the high temporal resolution needs for imaging mitral valve flows. The PCPTI sequence provides the highest temporal resolution to-date (6 ms) for measuring in-plane and through-plane flow patterns, with each velocity component acquired in a separate breathhold. Tested on healthy human volunteers, comparison to a conventional retrogated PC-FLASH cine sequence showed reasonable agreement. Results from a more rigorous validation using digital particle image velocimetry technique will be presented. The technique will be demonstrated in vitro using a physiological flow phantom and a St. Jude Medical Masters Series prosthetic valve.

  9. Improved pH measurements with a single PARACEST MRI contrast agent

    PubMed Central

    Sheth, Vipul R.; Liu, Guanshu; Li, Yuguo; Pagel, Mark D.

    2016-01-01

    The measurement of extracellular pH has potential utility for assessing the therapeutic effects of pH-dependent and pH-altering therapies. A PARAmagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agent, Yb–DO3A–oAA, has two CEST effects that are dependent on pH. A ratio derived from these CEST effects was linearly correlated with pH throughout the physiological pH range. The pH can be measured with a precision of 0.21 pH units and an accuracy of 0.09 pH units. The pH measurement is independent of concentration and T1 relaxation times, but is dependent on temperature. Although MR coalescence affects the CEST measurements, especially at high pH, the ratiometric analysis of the CEST effects can account for incomplete saturation of the agent’s amide and amine that results from MR coalescence. Provided that an empirical calibration is determined with saturation conditions, magnetic field strength and temperature that can be used for subsequent studies, these results demonstrate that this single PARACEST MRI contrast agent can accurately measure pH. PMID:22344877

  10. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI: initial results in animals and healthy volunteers.

    PubMed

    Dregely, Isabel; Ruset, Iulian C; Mata, Jaime F; Ketel, Jeffrey; Ketel, Steve; Distelbrink, Jan; Altes, Talissa A; Mugler, John P; Wilson Miller, G; William Hersman, F; Ruppert, Kai

    2012-04-01

    Hyperpolarized xenon-129 is a noninvasive contrast agent for lung MRI, which upon inhalation dissolves in parenchymal structures, thus mirroring the gas-exchange process for oxygen in the lung. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI is an implementation of the XTC MRI technique in four dimensions (three spatial dimensions plus exchange time). The aim of this study was to evaluate the sensitivity of MXTC MRI for the detection of microstructural deformations of the healthy lung in response to gravity-induced tissue compression and the degree of lung inflation. MXTC MRI was performed in four rabbits and in three healthy human volunteers. Two lung function parameters, one related to tissue- to alveolar-volume ratio and the other to average septal-wall thickness, were determined regionally. A significant gradient in MXTC MRI parameters, consistent with gravity-induced lung tissue deformation in the supine imaging position, was found at low lung volumes. At high lung volumes, parameters were generally lower and the gradient in parameter values was less pronounced. Results show that MXTC MRI permits the quantification of subtle changes in healthy lung microstructure. Further, only structures participating in gas exchange are represented in MXTC MRI data, which potentially makes the technique especially sensitive to pathological changes in lung microstructure affecting gas exchange. PMID:22213334

  11. New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).

    PubMed

    Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid

    2013-09-01

    Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion. PMID:23980505

  12. A nano-sized PARACEST-fluorescence imaging contrast agent facilitates & validates in vivo CEST MRI detection of glioma

    PubMed Central

    Ali, Meser M; Bhuiyan, Mohammed PI; Janic, Branislava; Varma, Nadimpalli RS; Mikkelsen, Tom; Ewing, James R; Knight, Robert A; Pagel, Mark D; Arbab, Ali S

    2012-01-01

    Aim The authors have investigated the usefulness of in vivo chemical exchange saturation transfer MRI for detecting gliomas using a dual-modality imaging contrast agent. Materials & methods A paramagnetic chemical exchange saturation transfer MRI contrast agent, Eu-1,4,7,10-tetraazacclododecane-1,4,7,10-tetraacetic acid-Gly4 and a fluorescent agent, DyLight® 680, were conjugated to a generation 5 polyamidoamine dendrimer to create the dual-modality, nano-sized imaging contrast agent. Results The agent was detected with in vivo chemical exchange saturation transfer MRI in an U87 glioma model. These results were validated using in vivo and ex vivo fluorescence imaging. Conclusion This study demonstrated the merits of using a nano-sized imaging contrast agent for detecting gliomas and using a dual-modality agent for detecting gliomas at different spatial scales. PMID:22891866

  13. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs

    PubMed Central

    Zhang, Liang; Zhang, Zhongwei; Mason, Ralph P.; Sarkaria, Jann N.; Zhao, Dawen

    2015-01-01

    There is considerable interest in developing nanohybrids of imaging contrast agents and drugs for image-guided drug delivery. We have developed a strategy of utilizing manganese (Mn) to enhance the nano-encapsulation of arsenic trioxide (ATO). Formation of arsenite (As3+)-Mn precipitates in liposomes generates magnetic susceptibility effects, reflected as dark contrast on T2-weighted MRI. Intriguingly, following cell uptake, the As-Mn complex decomposes in response to low pH in endosome-lysosome releasing ionic As3+, the active form of ATO, and Mn2+, the T1 contrast agent that gives a bright signal. Glioblastoma (GBM) is well known for its high resistance to chemotherapy, e.g., temozolomide (TMZ). Building upon the previously established phosphatidylserine (PS)-targeted nanoplatform that has excellent GBM-targeting specificity, we now demonstrate the effectiveness of the targeted nanoformulated ATO for treating TMZ-resistant GBM cells and the ability of the convertible Mn contrast as a surrogate revealing the delivery and release of ATO. PMID:25962872

  14. In vivo confirmation of hydration based contrast mechanisms for terahertz medical imaging using MRI

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Sung, Shijun; Garritano, James; Nowroozi, Bryan; Tewari, Priyamvada; Ennis, Daniel B.; Alger, Jeffery; Grundfest, Warren; Taylor, Zachary

    2014-09-01

    Terahertz (THz) detection has been proposed and applied to a variety of medical imaging applications in view of its unrivaled hydration profiling capabilities. Variations in tissue dielectric function have been demonstrated at THz frequencies to generate high contrast imagery of tissue, however, the source of image contrast remains to be verified using a modality with a comparable sensing scheme. To investigate the primary contrast mechanism, a pilot comparison study was performed in a burn wound rat model, widely known to create detectable gradients in tissue hydration through both injured and surrounding tissue. Parallel T2 weighted multi slice multi echo (T2w MSME) 7T Magnetic Resonance (MR) scans and THz surface reflectance maps were acquired of a full thickness skin burn in a rat model over a 5 hour time period. A comparison of uninjured and injured regions in the full thickness burn demonstrates a 3-fold increase in average T2 relaxation times and a 15% increase in average THz reflectivity, respectively. These results support the sensitivity and specificity of MRI for measuring in vivo burn tissue water content and the use of this modality to verify and understand the hydration sensing capabilities of THz imaging for acute assessments of the onset and evolution of diseases that affect the skin. A starting point for more sophisticated in vivo studies, this preliminary analysis may be used in the future to explore how and to what extent the release of unbound water affects imaging contrast in THz burn sensing.

  15. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Zhongwei; Mason, Ralph P.; Sarkaria, Jann N.; Zhao, Dawen

    2015-05-01

    There is considerable interest in developing nanohybrids of imaging contrast agents and drugs for image-guided drug delivery. We have developed a strategy of utilizing manganese (Mn) to enhance the nano-encapsulation of arsenic trioxide (ATO). Formation of arsenite (As3+)-Mn precipitates in liposomes generates magnetic susceptibility effects, reflected as dark contrast on T2-weighted MRI. Intriguingly, following cell uptake, the As-Mn complex decomposes in response to low pH in endosome-lysosome releasing ionic As3+, the active form of ATO, and Mn2+, the T1 contrast agent that gives a bright signal. Glioblastoma (GBM) is well known for its high resistance to chemotherapy, e.g., temozolomide (TMZ). Building upon the previously established phosphatidylserine (PS)-targeted nanoplatform that has excellent GBM-targeting specificity, we now demonstrate the effectiveness of the targeted nanoformulated ATO for treating TMZ-resistant GBM cells and the ability of the convertible Mn contrast as a surrogate revealing the delivery and release of ATO.

  16. Usefulness of Subepicardial Hyperemia on Contrast-Enhanced First-Pass Magnetic Resonance Perfusion Imaging for Diagnosis of Acute Myocarditis.

    PubMed

    Zarka, Samuel; Bouleti, Claire; Arangalage, Dimitri; Chopra, Houzefa; Chillon, Sylvie; Henry-Feugeas, Marie-Cécile; Abtan, Jérémie; Juliard, Jean-Michel; Iung, Bernard; Vahanian, Alec; Laissy, Jean-Pierre; Ou, Phalla

    2016-08-01

    Hyperemia is a major criterion for the diagnosis of acute myocarditis on cardiac magnetic resonance imaging but its assessment is challenging and time consuming. We evaluated the usefulness of the contrast-enhanced first-pass perfusion (FPP) on magnetic resonance imaging for detecting subepicardial hyperemia in acute myocarditis. Forty-seven consecutive patients (mean age: 42 ± 15.6 years; 35 men) with a definite diagnosis of acute myocarditis according to the state-of-the-art guidelines were included and compared with 16 control subjects. FPP was evaluated by 2 blinded observers and compared with the reference late gadolinium enhancement. Detection of hyperemia was performed on both qualitative and quantitative methods. Relative increased signal intensity (SI) in the subepicardial hyperemic layer was measured with SI ratio (SI of the subepicardial layer/SI of the immediately adjacent subendocardial layer). Twenty-four patients (51%) with acute myocarditis exhibited subepicardial hyperemia, detected with a good interobserver reproducibility (kappa coefficient: 0.75). The SI in the myocardium of myocarditis patients was increased compared with controls (1.08 ± 0.03 vs 0.945 ± 0.04, p = 0.03) and the SI in myocarditis patients with hyperemia compared with those without hyperemia (1.22 ± 0.04 vs 0.94 ± 0.04, p <0.0001). Sensitivity, specificity, positive predictive, and negative predictive values of FPP for detecting hyperemia were 85%, 94%, 85%, and 93%, respectively. In conclusion, contrast-enhanced first-pass magnetic resonance imaging is a fast and useful method for assessing myocardial hyperemia in patients with acute myocarditis. PMID:27296557

  17. Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques

    PubMed Central

    Li, Ka-Loh; Ostergaard, Leif; Calamante, Fernando

    2014-01-01

    Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI. PMID:25246817

  18. Error Analysis of Cine Phase Contrast MRI Velocity Measurements used for Strain Calculation

    PubMed Central

    Jensen, Elisabeth R.; Morrow, Duane A.; Felmlee, Joel P.; Odegard, Gregory M.; Kaufman, Kenton R.

    2014-01-01

    Cine Phase Contrast (CPC) MRI offers unique insight into localized skeletal muscle behavior by providing the ability to quantify muscle strain distribution during cyclic motion. Muscle strain is obtained by temporally integrating and spatially differentiating CPC-encoded velocity. The aim of this study was to quantify measurement accuracy and precision and to describe error propagation into displacement and strain. Using an MRI-compatible jig to move a B-gel phantom within a 1.5T MRI bore, CPC-encoded velocities were collected. The three orthogonal encoding gradients (through plane, frequency, and phase) were evaluated independently in post-processing. Two systematic error types were corrected: eddy current-induced bias and calibration-type error. Measurement accuracy and precision were quantified before and after removal of systematic error. Through plane- and frequency-encoded data accuracy were within 0.4mm/s after removal of systematic error – a 70% improvement over the raw data. Corrected phase-encoded data accuracy was within 1.3mm/s. Measured random error was between 1 to 1.4mm/s, which followed the theoretical prediction. Propagation of random measurement error into displacement and strain was found to depend on the number of tracked time segments, time segment duration, mesh size, and dimensional order. To verify this, theoretical predictions were compared to experimentally calculated displacement and strain error. For the parameters tested, experimental and theoretical results aligned well. Random strain error approximately halved with a two-fold mesh size increase, as predicted. Displacement and strain accuracy were within 2.6mm and 3.3%, respectively. These results can be used to predict the accuracy and precision of displacement and strain in user-specific applications. PMID:25433567

  19. Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects

    NASA Astrophysics Data System (ADS)

    Yang, Lijiao; Zhou, Zijian; Liu, Hanyu; Wu, Changqiang; Zhang, Hui; Huang, Guoming; Ai, Hua; Gao, Jinhao

    2015-04-01

    Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly increase the T1 relaxivity with an enhanced positive contrast effect. EuIO nanocubes with 14 nm in diameter showed a high r1 value of 36.8 mM-1 s-1 with respect to total metal ions (Fe + Eu), which is about 3 times higher than that of Fe3O4 nanoparticles with similar size. Moreover, both r1 and r2 values of EuIO nanocubes can be tuned by varying their sizes and Eu doping ratios. After citrate coating, EuIO nanocubes can provide enhanced T1 and T2 contrast effects in small animals, particularly in the cardiac and liver regions. This work may provide an insightful strategy to design MRI contrast agents with both positive and negative contrast abilities for biomedical applications.Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly increase the T1 relaxivity with an enhanced positive contrast effect. EuIO nanocubes with 14 nm in diameter showed a high r1 value of 36.8 mM-1 s-1 with respect to total metal ions (Fe + Eu), which is about 3 times higher than that of Fe3O4 nanoparticles with similar size. Moreover, both r1 and r2 values of EuIO nanocubes can be tuned by varying their sizes and Eu doping ratios. After citrate coating, EuIO nanocubes can provide enhanced T1 and T2 contrast effects in small animals, particularly in the cardiac and liver

  20. TREG coated iron oxide nanoparticles as contrast agent for MRI in-vivo use

    NASA Astrophysics Data System (ADS)

    Gutierrez-Garcia, Eric; Hidalgo-Tobon, Silvia; Lopez, Ciro; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery; De Celis Alonso, Benito; Dies Suarez, Pilar; Obregon, Manuel; Perez-Pena, Mario; Platas-Neri, Diana; Mendez-Rojas, Miguel

    2014-11-01

    Super-paramagnetic iron oxide nanoparticles (SPIONs) are of interest due to their great potential applications in diverse fields such as biomedicine. In this work we have prepared SPION nanoparticles using the polyol technique and characterized the magnetic properties of them for MRI in-vivo use. Nanoparticle preparation: All reagents were purchased from commercial sources (Sigma-Aldrich, St. Louis, USA) Iron (III) acetylacetonate, [Fe(acac)3], was used as the iron oxide precursor and thermally decomposed at high temperatures in triethyleneglycol (TREG). Nano-sized magnetite particles were prepared by an adaptation of the method proposed by Wei Cai et al[1-3]. A healthy rabbit was scanned on a clinical 1.5 T Philips MR scanner. Images were taken in 2D mode with a mFFE sequence. Relaxation time T2 was obtained from the MR images using a Matlab algorithm where the signal intensity decay was calculated at each image and then adjusted to a mono-exponential curve. Images were obtained before contrast injection, 24 hours and 36 hours following SPIONs administration. Signal decay at different Echo times for the prepared magnetic SPIONs, before and after contrast injection was measured. It was visualized a concentration of the agent contrast in brain and liver and the results were compared with images obtained from histopathology.

  1. Positive Contrast MRI Techniques for Visualization of Iron-Loaded Hernia Mesh Implants in Patients

    PubMed Central

    Ciritsis, Alexander; Truhn, Daniel; Hansen, Nienke L.; Otto, Jens; Kuhl, Christiane K.; Kraemer, Nils A.

    2016-01-01

    Object In MRI, implants and devices can be delineated via susceptibility artefacts. To discriminate susceptibility voids from proton-free structures, different positive contrast techniques were implemented. The purpose of this study was to evaluate a pulse sequence-based positive contrast technique (PCSI) and a post-processing susceptibility gradient mapping algorithm (SGM) for visualization of iron loaded mesh implants in patients. Material and Methods Five patients with iron-loaded MR-visible inguinal hernia mesh implants were examined at 1.5 Tesla. A gradient echo sequence (GRE; parameters: TR: 8.3ms; TE: 4.3ms; NSA:2; FA:20°; FOV:350mm²) and a PCSI sequence (parameters: TR: 25ms; TE: 4.6ms; NSA:4; FA:20°; FOV:350mm²) with on-resonant proton suppression were performed. SGM maps were calculated using two algorithms. Image quality and mesh delineation were independently evaluated by three radiologists. Results On GRE, the iron-loaded meshes generated distinct susceptibility-induced signal voids. PCSI exhibited susceptibility differences including the meshes as hyperintense signals. SGM exhibited susceptibility differences with positive contrast. Visually, the different algorithms presented no significant differences. Overall, the diagnostic value was rated best in GRE whereas PCSI and SGM were barely “sufficient”. Conclusion Both “positive contrast” techniques depicted implanted meshes with hyperintense signal. SGM comes without additional acquisition time and can therefore be utilized in every patient. PMID:27192201

  2. Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Karahaliou, A.; Vassiou, K.; Skiadopoulos, S.; Kanavou, T.; Yiakoumelos, A.; Costaridou, L.

    2009-07-01

    The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960±0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.

  3. Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus

    PubMed Central

    Özarslan, Evren; Shepherd, Timothy M.; Koay, Cheng Guan; Blackband, Stephen J.; Basser, Peter J.

    2012-01-01

    Features of the diffusion-time dependence of the diffusion-weighted magnetic resonance imaging (MRI) signal provide a new contrast that could be altered by numerous biological processes and pathologies in tissue at microscopic length scales. An anomalous diffusion model, based on the theory of Brownian motion in fractal and disordered media, is used to characterize the temporal scaling (TS) characteristics of diffusion-related quantities, such as moments of the displacement and zero-displacement probabilities, in excised rat hippocampus specimens. To reduce the effect of noise in magnitude-valued MRI data, a novel numerical procedure was employed to yield accurate estimation of these quantities even when the signal falls below the noise floor. The power-law dependencies characterize the TS behavior in all regions of the rat hippocampus, providing unique information about its microscopic architecture. The relationship between the TS characteristics and diffusion anisotropy is investigated by examining the anisotropy of TS, and conversely, the TS of anisotropy. The findings suggest the robustness of the technique as well as the reproducibility of estimates. TS characteristics of the diffusion-weighted signals could be used as a new and useful marker of tissue microstructure. PMID:22306798

  4. Flow-based segmentation of the large thoracic arteries in tridirectional phase-contrast MRI

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Unterhinninghofen, Roland; Ley, Sebastian; Dillmann, Rüdiger

    2009-02-01

    Tridirectional Phase-Contrast (PC)-MRI sequences provide spatially and temporally resolved measurements of blood flow velocity vectors in the human body. Analyzing flow conditions based on these datasets requires prior segmentation of the vessels of interest. In view of decreased quality of morphology images in PC-MRI sequences, the flow data provides valuable information to support reliable segmentation. This work presents a semi-automatic approach for segmenting the large arteries utilizing both morphology and flow information. It consists of two parts, the extraction of a simplified vessel model based on vessel centerlines and diameters, and a following refinement of the resulting surface for each time frame. Vessel centerlines and diameters are extracted using an offset adaptive medialness function that estimates a voxel's likelihood of belonging to a vessel centerline. The resulting centerline model is manually post-processed to select the appropriate centerlines and link possible gaps. The surface described by the final centerline model is used to initialize a 3D level set segmentation of each time frame. Deformation velocities that depend on both morphology and flow information are proposed and a new approach to account for the curved shape of vessels is introduced. The described segmentation system has been successfully applied on a total of 22 datasets of the thoracic aorta and the pulmonary arteries. Resulting segmentations have been assessed by an expert radiologist and were considered to be very satisfactory.

  5. Amplifying the sensitivity of zinc(II) responsive MRI contrast agents by altering water exchange rates.

    PubMed

    Yu, Jing; Martins, André F; Preihs, Christian; Clavijo Jordan, Veronica; Chirayil, Sara; Zhao, Piyu; Wu, Yunkou; Nasr, Khaled; Kiefer, Garry E; Sherry, A Dean

    2015-11-11

    Given the known water exchange rate limitations of a previously reported Zn(II)-sensitive MRI contrast agent, GdDOTA-diBPEN, new structural targets were rationally designed to increase the rate of water exchange to improve MRI detection sensitivity. These new sensors exhibit fine-tuned water exchange properties and, depending on the individual structure, demonstrate significantly improved longitudinal relaxivities (r1). Two sensors in particular demonstrate optimized parameters and, therefore, show exceptionally high longitudinal relaxivities of about 50 mM(-1) s(-1) upon binding to Zn(II) and human serum albumin (HSA). This value demonstrates a 3-fold increase in r1 compared to that displayed by the original sensor, GdDOTA-diBPEN. In addition, this study provides important insights into the interplay between structural modifications, water exchange rate, and kinetic stability properties of the sensors. The new high relaxivity agents were used to successfully image Zn(II) release from the mouse pancreas in vivo during glucose stimulated insulin secretion. PMID:26462412

  6. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-07-01

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a

  7. Gadolinium-labeled dendronized gold nanoparticles as new targeted MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2010-04-01

    Early diagnosis is critical for positive outcome of cancer treatments. In many cases, lives would be saved if the tumor could be detected at a very early stage. Nanoparticles have the property of passively targeting tumor sites due to their enhanced permeation and retention (EPR) effect. Thus they can play a critical role in improving the ability to find cancer in its earliest and most treatable stages. Furthermore magnetic resonance imaging is one of the most precise techniques for cancer screening since it can show 3D images of the tumors. For a better enhancement of the sensitivity of this method, MRI contrast agent (DOTA)Gd was attached to poly(propylene imine) dendrons of third generation and the obtained dendrons were used for modification of gold nanoparticles.

  8. NOTE: Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study

    NASA Astrophysics Data System (ADS)

    Jansen, S. A.; Fan, X.; Medved, M.; Abe, H.; Shimauchi, A.; Yang, C.; Zamora, M.; Foxley, S.; Olopade, O. I.; Karczmar, G. S.; Newstead, G. M.

    2010-10-01

    Improvements in the reliable diagnosis of preinvasive ductal carcinoma in situ (DCIS) by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are needed. In this study, we present a new characterization of early contrast kinetics of DCIS using high temporal resolution (HiT) DCE-MRI and compare it with other breast lesions and normal parenchyma. Forty patients with mammographic calcifications suspicious for DCIS were selected for HiT imaging using T1-weighted DCE-MRI with ~7 s temporal resolution for 90 s post-contrast injection. Pixel-based and whole-lesion kinetic curves were fit to an empirical mathematical model (EMM) and several secondary kinetic parameters derived. Using the EMM parameterized and fitted concentration time curve for subsequent analysis allowed for calculation of kinetic parameters that were less susceptible to fluctuations due to noise. The parameters' initial area under the curve (iAUC) and contrast concentration at 1 min (C1 min) provided the highest diagnostic accuracy in the task of distinguishing pathologically proven DCIS from normal tissue. There was a trend for DCIS lesions with solid architectural pattern to exhibit a negative slope at 1 min (i.e. increased washout rate) compared to those with a cribriform pattern (p < 0.04). This pilot study demonstrates the feasibility of quantitative analysis of early contrast kinetics at high temporal resolution and points to the potential for such an analysis to improve the characterization of DCIS.

  9. Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent.

    PubMed

    Zhu, Donghua; White, R D; Hardy, Peter A; Weerapreeyakul, Natthida; Sutthanut, Khaetthareeya; Jay, Michael

    2006-04-01

    In this article, we use a nanotemplate engineering approach to prepare biodegradable nanoparticles composed of FDA-approved materials and possessing accessible gadolinium (Gd) atoms and demonstrate their potential as a Magnetic Resonance Imaging (MRI) contrast agent. Nanoparticles containing dimyristoyl phosphoethanolamine diethylene triamine penta acetate (PE-DTPA) were prepared using 3.5 mg of Brij 78, 2.0 mg of emulsifying wax and 0.5 mg of PE-DTPA/ml from a microemulsion precursor. After the addition of GdCl3, the presence of Gd on the surface of nanoparticles was characterized using inductively coupled plasma atomic emission spectroscopy and Scanning Transmission Electron Microscopy (STEM). The in vitro relaxivities of the PE-DTPA-Gd nanoparticles in different media were assessed at different field strengths. The conditional stability constant of Gd binding to the nanoparticles was determined using competitive spectrophotometric titration. Transmetallation kinetics of the gadolinium ion from PE-DTPA-Gd nanoparticles with zinc as the competing ionic was measured using the relaxivity evolution method. Nanoparticles with a diameter of approximately 130 nm possessing surface chelating functions were made from GRAS (Generally Regarded As Safe) materials. STEM demonstrated the uniform distribution of Gd3+ on the surface of the nanoparticles. The thermodynamic binding constant for Gd3+ to the nanoparticles was approximately 10(18) M(-1) and transmetallation studies with Zn2+ yielded kinetic constants K1 and K(-1) of 0.033 and 0.022 1/h, respectively, with an equilibrium constant of 1.5. A payload of approximately 10(5) Gd/nanoparticle was achieved; enhanced relaxivities were observed, including a pH dependence of the transverse relaxivity (r2). Nanoparticles composed of materials that have been demonstrated to be hemocompatible and enzymatically metabolized and possessing accessible Gd ions on their surface induce relaxivities in the bulk water signal that make them

  10. A design strategy for small molecule-based targeted MRI contrast agents: their application for detection of atherosclerotic plaques.

    PubMed

    Iwaki, Shimpei; Hokamura, Kazuya; Ogawa, Mikako; Takehara, Yasuo; Muramatsu, Yasuaki; Yamane, Takehiro; Hirabayashi, Kazuhisa; Morimoto, Yuji; Hagisawa, Kohsuke; Nakahara, Kazuhide; Mineno, Tomoko; Terai, Takuya; Komatsu, Toru; Ueno, Tasuku; Tamura, Keita; Adachi, Yusuke; Hirata, Yasunobu; Arita, Makoto; Arai, Hiroyuki; Umemura, Kazuo; Nagano, Tetsuo; Hanaoka, Kenjiro

    2014-11-21

    Gadolinium(III) ion (Gd(3+)) complexes are widely used as contrast agents in magnetic resonance imaging (MRI), and many attempts have been made to couple them to sensor moieties in order to visualize biological phenomena of interest inside the body. However, the low sensitivity of MRI has made it difficult to develop practical MRI contrast agents for in vivo imaging. We hypothesized that practical MRI contrast agents could be designed by targeting a specific biological environment, rather than a specific protein such as a receptor. To test this idea, we designed and synthesized a Gd(3+)-based MRI contrast agent, 2BDP3Gd, for visualizing atherosclerotic plaques by linking the Gd(3+)-complex to the lipophilic fluorophore BODIPY to stain lipid-rich environments. We found that 2BDP3Gd was selectively accumulated into lipid droplets of adipocytes at the cellular level. Atherosclerotic plaques in the aorta of Watanabe heritable hyperlipidemic (WHHL) rabbits were clearly visualized in T1-weighted MR images after intravenous injection of 2BDP3Gd in vivo. PMID:25186130

  11. Use of 3D DCE-MRI for the estimation of renal perfusion and glomerular filtration rate: an intrasubject comparison of FLASH and KWIC with a comprehensive framework for evaluation.

    PubMed

    Eikefjord, Eli; Andersen, Erling; Hodneland, Erlend; Zöllner, Frank; Lundervold, Arvid; Svarstad, Einar; Rørvik, Jarle

    2015-03-01

    OBJECTIVE. The purpose of this article is to compare two 3D dynamic contrast-enhanced (DCE) MRI measurement techniques for MR renography, a radial k-space weighted image contrast (KWIC) sequence and a cartesian FLASH sequence, in terms of intrasubject differences in estimates of renal functional parameters and image quality characteristics. SUBJECTS AND METHODS. Ten healthy volunteers underwent repeated breath-hold KWIC and FLASH sequence examinations with temporal resolutions of 2.5 and 2.8 seconds, respectively. A two-compartment model was used to estimate MRI-derived perfusion parameters and glomerular filtration rate (GFR). The latter was compared with the iohexol GFR and the estimated GFR. Image quality was assessed using a visual grading characteristic analysis of relevant image quality criteria and signal-to-noise ratio calculations. RESULTS. Perfusion estimates from FLASH were closer to literature reference values than were the KWIC sequences. In relation to the iohexol GFR (mean [± SD], 103 ± 11 mL/min/1.73 m(2)), KWIC produced significant underestimations and larger bias in GFR values (mean, 70 ± 30 mL/min/1.73 m(2); bias = -33.2 mL/min/1.73 m(2)) compared with the FLASH GFR (110 ± 29 mL/min/1.73 m(2); bias = 6.4 mL/min/1.73 m(2)). KWIC was statistically significantly (p < 0.005) more impaired by artifacts than was FLASH (AUC = 0.18). The average signal-enhancement ratio (delta ratio) in the cortex was significantly lower for KWIC (delta ratio = 0.99) than for FLASH (delta ratio = 1.40). Other visually graded image quality characteristics and signal-to-noise ratio measurements were not statistically significantly different. CONCLUSION. Using the same postprocessing scheme and pharmacokinetic model, FLASH produced more accurate perfusion and filtration parameters than did KWIC compared with clinical reference methods. Our data suggest an apparent relationship between image quality characteristics and the degree of stability in the numeric model

  12. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences

    PubMed Central

    Lucas, Rita; Dias, João Lopes; Cunha, Teresa Margarida

    2015-01-01

    PURPOSE We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. METHODS Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. RESULTS Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. CONCLUSION The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases. PMID:26200480

  13. Effects of size and location of regions of interest examined by use of contrast-enhanced ultrasonography on renal perfusion variables of dogs.

    PubMed

    Macrì, Francesco; Di Pietro, Simona; Liotta, Luigi; Piccionello, Angela Palumbo; Pugliese, Michela; De Majo, Massimo

    2016-08-01

    OBJECTIVE To determine effects of the size and location of regions of interest (ROIs) in the renal cortex of unsedated dogs on renal perfusion variables determined by use of contrast-enhanced ultrasonography (CEUS). ANIMALS 12 client-owned adult (1.5 to 2 years old) Labrador Retrievers (8 males and 4 females; mean ± SD body weight, 27 ± 1.6 kg). PROCEDURES Each dog received 2 bolus injections of sulfur hexafluoride during CEUS. Three small oval ROIs (area of each ROI, 0.11 cm(2)) located in a row with a distance of 1 mm between adjacent ROIs and 1 large oval ROI (area, 1 cm(2)) that encompassed the 3 smaller ROIs were manually drawn in the renal cortex. The ROIs were located at a depth of 1.5 to 2.0 cm in the near field of the renal cortex. Software analysis of time-intensity curves within each ROI was used to identify peak enhancement, time to peak enhancement, regional blood flow, and mean transit time. RESULTS The location and size of the ROIs of unsedated dogs did not cause significant differences in the mean values of the renal perfusion variables. CONCLUSIONS AND CLINICAL RELEVANCE The development of CEUS has provided a unique means for visually examining and quantifying tissue perfusion. Results of this study indicated that it was possible to use small or large ROIs during renal CEUS to evaluate renal perfusion in dogs. PMID:27463550

  14. CSI-EPT: A Contrast Source Inversion Approach for Improved MRI-Based Electric Properties Tomography.

    PubMed

    Balidemaj, Edmond; van den Berg, Cornelis A T; Trinks, Johan; van Lier, Astrid L H M W; Nederveen, Aart J; Stalpers, Lukas J A; Crezee, Hans; Remis, Rob F

    2015-09-01

    Electric properties tomography (EPT) is an imaging modality to reconstruct the electric conductivity and permittivity inside the human body based on B1(+) maps acquired by a magnetic resonance imaging (MRI) system. Current implementations of EPT are based on the local Maxwell equations and assume piecewise constant media. The accuracy of the reconstructed maps may therefore be sensitive to noise and reconstruction errors occur near tissue boundaries. In this paper, we introduce a multiplicative regularized CSI-EPT method (contrast source inversion-electric properties tomography) where the electric tissue properties are retrieved in an iterative fashion based on a contrast source inversion approach. The method takes the integral representations for the electromagnetic field as a starting point and the tissue parameters are obtained by iteratively minimizing an objective function which measures the discrepancy between measured and modeled data and the discrepancy in satisfying a consistency equation known as the object equation. Furthermore, the objective function consists of a multiplicative Total Variation factor for noise suppression during the reconstruction process. Finally, the presented implementation is able to simultaneously include more than one B1(+) data set acquired by complementary RF excitation settings. We have performed in vivo simulations using a female pelvis model to compute the B1(+) fields. Three different RF excitation settings were used to acquire complementary B1(+) fields for an improved overall reconstruction. Numerical results illustrate the improved reconstruction near tissue boundaries and the ability of CSI-EPT to reconstruct small tissue structures. PMID:25706578

  15. Comparison of Psychophysical, Electrophysiological, and fMRI Assessment of Visual Contrast Responses in Patients with Schizophrenia

    PubMed Central

    Calderone, Daniel J.; Martinez, Antígona; Zemon, Vance; Hoptman, Matthew J.; Hu, George; Watkins, Jade E.; Javitt, Daniel C.; Butler, Pamela D.

    2012-01-01

    Perception has been identified by the NIMH-sponsored Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) group as a useful domain for assessing cognitive deficits in patients with schizophrenia. Specific measures of contrast gain derived from recordings of steady-state visual evoked potentials (ssVEP) have demonstrated neural deficits within the visual pathways of patients with schizophrenia. Psychophysical measures of contrast sensitivity have also shown functional loss in these patients. In the current study, functional magnetic resonance imaging (fMRI) was used in conjunction with ssVEP and contrast sensitivity testing to elucidate the neural underpinnings of these deficits. During fMRI scanning, participants viewed 1) the same low and higher spatial frequency stimuli used in the psychophysical contrast sensitivity task, at both individual detection threshold contrast and at a high contrast; and 2) the same stimuli used in the ssVEP paradigm, which were designed to be biased toward either the magnocellular or parvocellular visual pathway. Patients showed significant impairment in contrast sensitivity at both spatial frequencies in the psychophysical task, but showed reduced occipital activation volume for low, but not higher, spatial frequency at the low and high contrasts tested in the magnet. As expected, patients exhibited selective deficits under the magnocellular-biased ssVEP condition. However, occipital lobe fMRI responses demonstrated the same general pattern for magnocellular- and parvocellular-biased stimuli across groups. These results indicate dissociation between the fMRI measures and the psychophysical/ssVEP measures. These latter measures appear to have greater value for the functional assessment of the contrast deficits explored here. PMID:23194815

  16. Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects.

    PubMed

    Yang, Lijiao; Zhou, Zijian; Liu, Hanyu; Wu, Changqiang; Zhang, Hui; Huang, Guoming; Ai, Hua; Gao, Jinhao

    2015-04-21

    Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly increase the T1 relaxivity with an enhanced positive contrast effect. EuIO nanocubes with 14 nm in diameter showed a high r1 value of 36.8 mM(-1) s(-1) with respect to total metal ions (Fe + Eu), which is about 3 times higher than that of Fe3O4 nanoparticles with similar size. Moreover, both r1 and r2 values of EuIO nanocubes can be tuned by varying their sizes and Eu doping ratios. After citrate coating, EuIO nanocubes can provide enhanced T1 and T2 contrast effects in small animals, particularly in the cardiac and liver regions. This work may provide an insightful strategy to design MRI contrast agents with both positive and negative contrast abilities for biomedical applications. PMID:25806860

  17. Contrast Affects fMRI Activity in Middle Temporal Cortex Related to Center–Surround Interaction in Motion Perception

    PubMed Central

    Turkozer, Halide B.; Pamir, Zahide; Boyaci, Huseyin

    2016-01-01

    As the size of a high contrast drifting Gabor patch increases, perceiving its direction of motion becomes harder. However, the same behavioral effect is not observed for a low contrast Gabor patch. Neuronal mechanisms underlying this size–contrast interaction are not well understood. Here using psychophysical methods and functional magnetic resonance imaging (fMRI), we investigated the neural correlates of this behavioral effect. In the behavioral experiments, motion direction discrimination thresholds were assessed for drifting Gabor patches with different sizes and contrasts. Thresholds increased significantly as the size of the stimulus increased for high contrast (65%) but did not change for low contrast (2%) stimuli. In the fMRI experiment, cortical activity was recorded while observers viewed drifting Gabor patches with different contrasts and sizes. We found that the activity in middle temporal (MT) area increased with size at low contrast, but did not change at high contrast. Taken together, our results show that MT activity reflects the size–contrast interaction in motion perception. PMID:27065922

  18. Improved parameter extraction and classification for dynamic contrast enhanced MRI of prostate

    NASA Astrophysics Data System (ADS)

    Haq, Nandinee Fariah; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi

    2014-03-01

    Magnetic resonance imaging (MRI), particularly dynamic contrast enhanced (DCE) imaging, has shown great potential in prostate cancer diagnosis and prognosis. The time course of the DCE images provides measures of the contrast agent uptake kinetics. Also, using pharmacokinetic modelling, one can extract parameters from the DCE-MR images that characterize the tumor vascularization and can be used to detect cancer. A requirement for calculating the pharmacokinetic DCE parameters is estimating the Arterial Input Function (AIF). One needs an accurate segmentation of the cross section of the external femoral artery to obtain the AIF. In this work we report a semi-automatic method for segmentation of the cross section of the femoral artery, using circular Hough transform, in the sequence of DCE images. We also report a machine-learning framework to combine pharmacokinetic parameters with the model-free contrast agent uptake kinetic parameters extracted from the DCE time course into a nine-dimensional feature vector. This combination of features is used with random forest and with support vector machine classi cation for cancer detection. The MR data is obtained from patients prior to radical prostatectomy. After the surgery, wholemount histopathology analysis is performed and registered to the DCE-MR images as the diagnostic reference. We show that the use of a combination of pharmacokinetic parameters and the model-free empirical parameters extracted from the time course of DCE results in improved cancer detection compared to the use of each group of features separately. We also validate the proposed method for calculation of AIF based on comparison with the manual method.

  19. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    SciTech Connect

    Tyagi, N; Wengler, K; Mazaheri, Y; Hunt, M; Deasy, J; Gollub, M

    2014-06-15

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*, the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.

  20. Towards Elimination of the Dark-Rim Artifact in First-Pass Myocardial Perfusion MRI: Removing Gibbs Ringing Effects Using Optimized Radial Imaging

    PubMed Central

    Sharif, Behzad; Dharmakumar, Rohan; LaBounty, Troy; Arsanjani, Reza; Shufelt, Chrisandra; Thomson, Louise; Merz, C. Noel Bairey; Berman, Daniel S.; Li, Debiao

    2014-01-01

    Purpose Subendocardial dark-rim artifacts (DRAs) remain a major concern in first-pass perfusion (FPP) myocardial MRI and may lower the diagnostic accuracy for detection of ischemia. A major source of the DRA is known to be the “Gibbs ringing” effect. We propose an optimized radial acquisition strategy aimed at eliminating ringing-induced DRAs in FPP. Theory and Methods By studying the underlying point spread function (PSF), we show that optimized radial sampling with a simple reconstruction method can eliminate the oscillations in the PSF that cause ringing artifacts. We conduct realistic MRI phantom experiments and in-vivo studies (n=12 healthy humans) to study the artifact behavior of the proposed acquisition scheme in comparison to a conventional Cartesian protocol. Results Simulations and phantom experiments verify the theoretical expectations. Our in-vivo studies show that optimized radial imaging is capable of significantly reducing DRAs in the early myocardial enhancement phase (during which the ringing effect is most prominent and may obscure perfusion defects) while providing equivalent resolution and similar image quality as conventional Cartesian imaging. Conclusion The developed technical framework and results demonstrate that, compared to conventional Cartesian techniques, optimized radial imaging with the proposed optimizations significantly reduces the prevalence and spatial extent of DRAs in FPP imaging. PMID:24030840

  1. Parallel Comparative Studies on Mouse Toxicity of Oxide Nanoparticle- and Gadolinium-Based T1 MRI Contrast Agents.

    PubMed

    Chen, Rui; Ling, Daishun; Zhao, Lin; Wang, Shuaifei; Liu, Ying; Bai, Ru; Baik, Seungmin; Zhao, Yuliang; Chen, Chunying; Hyeon, Taeghwan

    2015-12-22

    Magnetic resonance imaging (MRI) contrast agents with high relaxivity are highly desirable because they can significantly increase the accuracy of diagnosis. However, they can be potentially toxic to the patients. In this study, using a mouse model, we investigate the toxic effects and subsequent tissue damage induced by three T1 MRI contrast agents: gadopentetate dimeglumine injection (GDI), a clinically used gadolinium (Gd)-based contrast agent (GBCAs), and oxide nanoparticle (NP)-based contrast agents, extremely small-sized iron oxide NPs (ESIONs) and manganese oxide (MnO) NPs. Biodistribution, hematological and histopathological changes, inflammation, and the endoplasmic reticulum (ER) stress responses are evaluated for 24 h after intravenous injection. These thorough assessments of the toxic and stress responses of these agents provide a panoramic description of safety concerns and underlying mechanisms of the toxicity of contrast agents in the body. We demonstrate that ESIONs exhibit fewer adverse effects than the MnO NPs and the clinically used GDI GBCAs, providing useful information on future applications of ESIONs as potentially safe MRI contrast agents. PMID:26567968

  2. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  3. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  4. Differentiation of solid pancreatic tumors by using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Choi, Seung Joon; Kim, Hyung Sik; Park, Hyunjin

    2014-01-01

    Distinguishing among different solid pancreatic tumor types, pancreatic ductal adenocarcinomas, neuroendocrine tumors (NETs), and solid pseudopapillary tumors (SPTs) is important, as the treatment options are vastly different. This study compared characteristics of solid pancreatic tumors by using dynamic contrast enhanced magnetic resonance imaging (MRI). Fifty patients underwent MR imaging of pancreatic masses with a histopathology that was later confirmed as an adenocarcinoma (n = 27), a NET (n = 16), and a SPT (n = 7). For qualitative analysis, two reviewers evaluated the morphologic features of the tumors: locations, margins, shapes, contained products, pancreatic ductal dilatation, and grade of signal intensity (SI). For the quantitative analysis, all phases of the MR images were co-registered using proprietary image registration software; thus, a region of interest (ROI) defined on one phase could be re-applied in other phases. The following four ratios were considered: tumor-to-uninvolved pancreas SI ratio, percent SI change, tumor-touninvolved pancreas enhancement index, and arterial-to-delayed washout rate. The areas under the receiver operating characteristic (ROC) curves were assessed for the four ratios. Adenocarcinomas had ill-defined margins, irregular shapes, and ductal dilatation compared with NETs and SPTs (P < 0.001). The tumor-to-uninvolved pancreas ratio on all dynamic phases was significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). Percentage SI changes of pancreatic tumors on the pancreatic and the portal venous phases were significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). A significant difference between NETs and adenocarcinomas was also found with respect to the tumor-to-uninvolved pancreas enhancement index and arterial-to-delayed washout rate. The percentage SI changes in the pancreatic phase and the arterial-to-delayed washout rate best distinguished between adenocarcinomas and

  5. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high

  6. The impact of increased mean airway pressure on contrast-enhanced MRI measurement of regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional mean transit time (rMTT), and regional cerebrovascular resistance (rCVR) in human volunteers.

    PubMed

    Kolbitsch, C; Lorenz, I H; Hörmann, C; Schocke, M; Kremser, C; Zschiegner, F; Felber, S; Benzer, A

    2000-11-01

    Contrast-enhanced magnetic resonance imaging (MRI) measurement of cerebral perfusion is a diagnostic procedure increasingly gaining access to clinical practice not only in spontaneously breathing patients but also in mechanically ventilated patients. Effects of increased mean airway pressure on cerebral perfusion are entirely possible. Therefore, the present study used continuous positive airway pressure (CPAP) (12 cm H2O) to study the effects of increased mean airway pressure on cerebral perfusion in volunteers. CPAP significantly reduced regional cerebral blood flow (rCBF) and regional cerebral blood volume (rCBV) but increased regional mean transit time (rMTT) and regional cerebrovascular resistance (rCVR). Active vasoconstriction (e.g., arterial) and/or passive compression of capillary and/or venous vessel areas are the most likely underlying mechanisms. The number of interhemispheric differences in rCBF, rCBV, rMTT, and rCVR found at baseline rose when mean airway pressure was increased. These results, although obtained in volunteers, should be taken into consideration for the interpretation of contrast-enhanced MRI perfusion measurements in mechanically ventilated patients with an increased positive airway pressure. PMID:11098799

  7. DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis

    PubMed Central

    Li, Xia; Arlinghaus, Lori R.; Yankeelov, Thomas E.; Welch, E. Brian

    2015-01-01

    We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an estimated 10–20× speedup in run time compared to existing tools. To explain the observed trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit of small and large parameter values. We also demonstrate its use on an in vivo data set to measure performance on a realistic application. For a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as O(N1.9), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much faster than any other analysis package tested and produced comparable accuracy, even in the presence of noise. PMID:25922795

  8. Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle.

    PubMed

    Hurley, Katie R; Ring, Hattie L; Etheridge, Michael; Zhang, Jinjin; Gao, Zhe; Shao, Qi; Klein, Nathan D; Szlag, Victoria M; Chung, Connie; Reineke, Theresa M; Garwood, Michael; Bischof, John C; Haynes, Christy L

    2016-07-01

    Iron oxide nanoparticles have great potential as diagnostic and therapeutic agents in cancer and other diseases; however, biological aggregation severely limits their function in vivo. Aggregates can cause poor biodistribution, reduced heating capability, and can confound their visualization and quantification by magnetic resonance imaging (MRI). Herein, we demonstrate that the incorporation of a functionalized mesoporous silica shell can prevent aggregation and enable the practical use of high-heating, high-contrast iron oxide nanoparticles in vitro and in vivo. Unmodified and mesoporous silica-coated iron oxide nanoparticles were characterized in biologically relevant environments including phosphate buffered saline, simulated body fluid, whole mouse blood, lymph node carcinoma of prostate (LNCaP) cells, and after direct injection into LNCaP prostate cancer tumors in nude mice. Once coated, iron oxide nanoparticles maintained colloidal stability along with high heating and relaxivity behaviors (SARFe = 204 W/g Fe at 190 kHz and 20 kA/m and r1 = 6.9 mM(-1) s(-1) at 1.4 T). Colloidal stability and minimal nonspecific cell uptake allowed for effective heating in salt and agarose suspensions and strong signal enhancement in MR imaging in vivo. These results show that (1) aggregation can lower the heating and imaging performance of magnetic nanoparticles and (2) a coating of functionalized mesoporous silica can mitigate this issue, potentially improving clinical planning and practical use. PMID:26991550

  9. Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Jing, Fengying; Pei, Fengkui; Liu, Maili

    2003-09-01

    Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca 2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D 2O at 25°C and 9.4 T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9±5.6%, 57.8±7.4% at 65-85 min; kidney 144.9±14.5%, 199.9±25.4% at 10-30 min for PQPS-Gd-DTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.

  10. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents.

    PubMed

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguyen Thi Kim

    2016-02-14

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g(-1)). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM(-1) s(-1) and 185.58 mM(-1) s(-1) respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed. PMID:26460932

  11. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast.

    PubMed

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However, the data may have broader interest and, collectively, may form the basis for image contrast exploration and simulations based on a wide range of dMRI analysis strategies. PMID:27576023

  12. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast

    PubMed Central

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However, the data may have broader interest and, collectively, may form the basis for image contrast exploration and simulations based on a wide range of dMRI analysis strategies. PMID:27576023

  13. Efficiency of Non-Contrast-Enhanced Liver Imaging Sequences Added to Initial Rectal MRI in Rectal Cancer Patients

    PubMed Central

    Kwon, Gene-hyuk; Kim, Kyung Ah; Hwang, Seong Su; Park, Soo Youn; Kim, Hyun A.; Choi, Sun Young; Kim, Ji Woong

    2015-01-01

    Purpose The purpose of this study was to estimate the value of addition of liver imaging to initial rectal magnetic resonance imaging (MRI) for detection of liver metastasis and evaluate imaging predictors of a high risk of liver metastasis on rectal MRI. Methods We enrolled 144 patients who from October 2010 to May 2013 underwent rectal MRI with T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) (b values = 50, 500, and 900 s/mm2) of the liver and abdominopelvic computed tomography (APCT) for the initial staging of rectal cancer. Two reviewers scored the possibility of liver metastasis on different sets of liver images (T2WI, DWI, and combined T2WI and DWI) and APCT and reached a conclusion by consensus for different analytic results. Imaging features from rectal MRI were also analyzed. The diagnostic performances of CT and an additional liver scan to detect liver metastasis were compared. Multivariate logistic regression to determine independent predictors of liver metastasis among rectal MRI features and tumor markers was performed. This retrospective study was approved by the Institutional Review Board, and the requirement for informed consent was waived. Results All sets of liver images were more effective than APCT for detecting liver metastasis, and DWI was the most effective. Perivascular stranding and anal sphincter invasion were statistically significant for liver metastasis (p = 0.0077 and p = 0.0471), while extramural vascular invasion based on MRI (mrEMVI) was marginally significant (p = 0.0534). Conclusion The addition of non-contrast-enhanced liver imaging, particularly DWI, to initial rectal MRI in rectal cancer patients could facilitate detection of liver metastasis without APCT. Perivascular stranding, anal sphincter invasion, and mrEMVI detected on rectal MRI were important imaging predictors of liver metastasis. PMID:26348217

  14. SU-E-I-84: MRI Relaxation Properties of a Pre-Clinical Hypoxia-Sensitive MRI Contrast Agent

    SciTech Connect

    Yee, S; Wilson, G; Chavez, F

    2014-06-01

    Purpose: A possible hypoxia-sensitive MRI agent, hexamethyldisiloxane (HMDSO), has been tried to image oxygen level in proton-based MRI (Kodibagkar et al, NMR Biomed, 2008). The induced changes of T1 (or R1) value by the HMDSO as the oxygenation level changes are the principle that the hypoxia agent is based on: the R1 increases as the oxygen level increases. However, as reported previously, the range of R1 values (0.1–0.3 s-1, corresponding to 3–10 s of T1) is not in the range where a regular MRI technique can easily detect the change. In order for this agent to be widely applied in an MRI environment, more relaxation properties of this agent, including T1 in the rotating frame (T1rho) and T2, need to be explored. Here, the relaxation properties of this agent are explored. Methods: A phantom was made with HMDSO, water and mineral oil, each of which was prepared with oxygen and nitrogen, and was imaged in a 3T MRI system. The T1 properties were explored by the inversion recovery (TR=3000ms, TE=65ms) while varying the inversion time (TI), and also by the fast-field-echo (TR=2 ms, TE=2.8ms) while varying the flip angle (FA). T1rho was explored with a 5-pulse spin-locking technique (TR=5000ms, TE=10ms, spin-lock field=500Hz) while varying the spin-lock duration. T2 was explored with multi-shot TSE (TR=2500ms) while varying TE. Results: With the variable FA and TI, the signals of HMDSO with oxygen and nitrogen change in a similar way and do not respond well by the change of oxygen level, which confirms the large T1 value of HMDSO. The T1rho and T2, however, have a better sensitivity. Conclusion: For the possible pre-clinical hypoxia MRI agent (HMDSO), the detection of T1 (or R1) changes may be more challenging than the detection of other relaxation properties, particularly T2, as the oxygen level changes.

  15. Impact of uncertainty in longitudinal T1 measurements on quantification of dynamic contrast-enhanced MRI.

    PubMed

    Aryal, Madhava P; Chenevert, Thomas L; Cao, Yue

    2016-04-01

    The objective of this study was to assess the uncertainty in T1 measurement, by estimating the repeatability coefficient (RC) from two repeated scans, in normal appearing brain tissues employing two different T1 mapping methods. All brain MRI scans were performed on a 3 T MR scanner in 10 patients who had low grade/benign tumors and partial brain radiation therapy (RT) without chemotherapy, at pre-RT, 3 weeks into RT, end RT (6 weeks) and 11, 33, and 85 weeks after RT. T1-weighted images were acquired using (1) a spoiled gradient echo sequence with two flip angles (2FA: 5° and 15°) and (2) a progressive saturation recovery sequence (pSR) with five different TR values (100-2000 ms). Manually drawn volumes of interest (VOIs) included left and right normal putamen and thalamus in gray matter, and frontal and parietal white matter, which were distant from tumors and received a total of accumulated radiation doses less than 5 Gy at 3 weeks. No significant changes or even trends in mean T1 from pre-RT to 3 weeks into RT in these VOIs (p ≥ 0.11, Wilcoxon sign test) allowed us to calculate the repeatability statistics of between-subject means of squares, within-subject means of squares, F-score, and RC. The 2FA method produced RCs in the range of (9.7-11.7)% in gray matter and (12.2-14.5)% in white matter; while the pSR method led to RCs ranging from 10.9 to 17.9% in gray matter and 7.5 to 10.3% in white matter. The overall mean (±SD) RCs produced by the two methods, 12.0 (±1.6)% for 2FA and 12.0 (±3.8)% for pSR, were not significantly different (p = 0.97). A similar repeatability in T1 measurement produced by the time efficient 2FA method compared with the time consuming pSR method demonstrates that the 2FA method is desirable to integrate into dynamic contrast-enhanced MRI for rapid acquisition. PMID:27358934

  16. Use of Myometrium as an Internal Reference for Endometrial and Cervical Cancer on Multiphase Contrast-Enhanced MRI

    PubMed Central

    Lin, Chia-Ni; Liao, Yu-San; Chen, Wen-Chang; Wang, Yue-Sheng; Lee, Li-Wen

    2016-01-01

    Background Myometrial smooth muscle is normally within the field of view for the gynecological imaging. This study aimed to investigate the use of normal myometrium as an internal reference for endometrial and cervical cancer during multiphase contrast-enhanced magnetic resonance imaging (MCE-MRI) and to explore whether this information regarding tumor enhancement relative to the myometrium could be used to discriminate between endometrial and cervical cancer. Methods MRI images, before and after contrast enhancement, were analyzed in newly diagnosed cervical (n = 18) and endometrial cancer (n = 19) patients. Signal intensities (SIs) from tumor tissue and non-neoplastic myometrium were measured using imaging software. Results The relative signal for cervical cancer was approximately 30% higher than that of endometrial cancer after contrast administration. The area under receiver operating characteristic curve for SI, relative signal enhancement, and tumor to myometrium contrast ratio (as used to discriminate between cervical cancer and endometrial cancer) was 0.7807, 0.7456 and 0.7895, respectively. There was no difference in SI of the normal myometrium between endometrial and cervical cancer patients prior to and after contrast administration. Using non-tumorous myometrium as an internal reference, the tumor to myometrium contrast ratio was significantly higher in tumor tissue from cervical cancer compared with that from endometrial cancer at 25 s post contrast enhancement (p = 0.0016), with an optimal sensitivity of 72.22% and specificity of 84.21%. Conclusion With SI normalized to baseline or normal myometrium, tumor tissue from cervical cancer patients showed significant hyperintensity compared with that of tumor tissue from endometrial cancer patients after contrast enhancement, yielding acceptable performance. The use of the myometrium as an internal reference may provide an alternative method to analyze MCE-MRI data. PMID:27326456

  17. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung.

    PubMed

    Murphy, Sean V; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-04-15

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the ​in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. PMID:26546729

  18. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung

    PubMed Central

    Murphy, Sean V.; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-01-01

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a ‘proof-of-concept’ experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. PMID:26546729

  19. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI

    PubMed Central

    Freed, Melanie; de Zwart, Jacco A.; Hariharan, Prasanna; R. Myers, Matthew; Badano, Aldo

    2011-01-01

    Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml∕s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. Results: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml∕s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. Conclusions: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to

  20. Peri-infarct ischaemia assessed by cardiovascular MRI: comparison with quantitative perfusion single photon emission CT imaging

    PubMed Central

    Cochet, H; Bullier, E; Ragot, C; Gilbert, S H; Pucheu, Y; Laurent, F; Coste, P; Bordenave, L; Montaudon, M

    2014-01-01

    Objective: To develop a new method for the cardiac MR (CMR) quantification of peri-infarct ischaemia using fused perfusion and delayed–enhanced images and to evaluate this method using quantitative single photon emission CT (SPECT) imaging as a reference. Methods: 40 patients presenting with peri-infarct ischaemia on a routine stress 99mTc-SPECT imaging were recruited. Within 8 days of the SPECT study, myocardial perfusion was evaluated using stress adenosine CMR. Using fused perfusion and delayed–enhanced images, peri-infarct ischaemia was quantified as the percentage of myocardium with stress-induced perfusion defect that was adjacent to and larger than a scar. This parameter was compared with both the percent myocardium ischaemia (SD%) and the ischaemic total perfusion deficit (TPD). The diagnostic performance of CMR in detection of significant coronary artery stenosis (of ≥70%) was also determined. Results: On SPECT imaging, in addition to peri-infarct ischaemia, reversible perfusion abnormalities were detected in a remote zone in seven patients. In the 33 patients presenting with only peri-infarct ischaemia, the agreement between CMR peri-infarct ischaemia and both SD% and ischaemic TPD was excellent [intraclass coefficient of correlation (ICC) = 0.969 and ICC = 0.877, respectively]. CMR-defined peri-infarct ischaemia for the detection of a significant coronary artery stenosis showed an areas under receiver–operating characteristic curve of 0.856 (95% confidence interval, 0.680–0.939). The best cut-off value was 8.1% and allowed a 72% sensitivity, 96% specificity, 60% negative predictive value and 97% positive predictive value. Conclusion: This proof-of-concept study shows that CMR imaging has the potential as a test for quantification of peri-infarct ischaemia. Advances in knowledge: This study demonstrates the proof of concept of a commonly known intuitive idea, that is, evaluating the peri-infarct ischaemic burden by subtracting delayed

  1. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies.

    PubMed

    Hameeduddin, Ayshea; Sahdev, Anju

    2015-01-01

    Magnetic resonance imaging (MRI) has an established role in imaging pelvic gynaecological malignancies. It is routinely used in staging endometrial and cervical cancer, characterizing adnexal masses, selecting optimal treatment, monitoring treatment and detecting recurrent disease. MRI has also been shown to have an excellent performance and an evolving role in surveillance of patients after chemoradiotherapy in cervical cancer, post-trachelectomy, detecting early recurrence and planning exenterative surgery in isolated central recurrences in both cervical and endometrial cancer and in young patients on surveillance for medically managed endometrial cancer. However, conventional MRI still has limitations when the morphological appearance of early recurrent or residual disease overlaps with normal pelvic anatomy or treatment effects in the pelvis. In particular, after chemoradiotherapy for cervical cancer, distinguishing between radiotherapy changes and residual or early recurrent disease within the cervix or the vaginal vault can be challenging on conventional MRI alone. Therefore, there is an emerging need for functional imaging to overcome these limitations. The purpose of this paper is to discuss the emerging functional MRI techniques and their applications in predicting treatment response, detecting residual disease and early recurrent disease to optimize the treatment options available using diffusion-weighted imaging and dynamic contrast enhancement particularly in cervical and endometrial cancer. PMID:25889065

  2. Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI.

    PubMed

    Berdichevski, Alexandra; Shachaf, Yonatan; Wechsler, Roni; Seliktar, Dror

    2015-02-01

    We report on the use of magnetic resonance imaging (MRI)-based non-invasive monitoring to document the role of protein adjuvants in hydrogel implant integration in vivo. Polyethylene glycol (PEG) hydrogels were formed with different protein constituents, including albumin, fibrinogen and gelatin. The hydrogels were designed to exhibit similar material properties, including modulus, swelling and hydrolytic degradation kinetics. The in vivo resorption properties of these PEG-based hydrogels, which contained a tethered gadolinium contrast agent, were characterized by MRI and histology, and compared to their in vitro characteristics. MRI data revealed that PEG-Albumin implants remained completely intact throughout the experiments, PEG-Fibrinogen implants lost about 10% of their volume and PEG-Gelatin implants underwent prominent swelling and returned to their initial volume by day 25. Fully synthetic PEG-diacrylate (PEG-DA) control hydrogels lost about half of their volume after 25 days in vivo. Transverse MRI cross-sections of the implants revealed distinct mechanisms of the hydrogel's biodegradation: PEG-Fibrinogen and PEG-Albumin underwent surface erosion, whereas PEG-Gelatin and PEG-DA hydrogels mainly underwent bulk degradation. Histological findings substantiated the MRI data and demonstrated significant cellular response towards PEG-DA and PEG-Gelatin scaffolds with relatively low reaction towards PEG-Fibrinogen and PEG-Albumin hydrogels. These findings demonstrate that PEG-protein hydrogels can degrade via a different mechanism than PEG hydrogels, and that this difference can be linked to a reduced foreign body response. PMID:25542788

  3. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    SciTech Connect

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  4. Contrast adaptive total p-norm variation minimization approach to CT reconstruction for artifact reduction in reduced-view brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Won; Kim, Jong-Hyo

    2011-03-01

    Perfusion CT (PCT) examinations are getting more frequently used for diagnosis of acute brain diseases such as hemorrhage and infarction, because the functional map images it produces such as regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) may provide critical information in the emergency work-up of patient care. However, a typical PCT scans the same slices several tens of times after injection of contrast agent, which leads to much increased radiation dose and is inevitability of growing concern for radiation-induced cancer risk. Reducing the number of views in projection in combination of TV minimization reconstruction technique is being regarded as an option for radiation reduction. However, reconstruction artifacts due to insufficient number of X-ray projections become problematic especially when high contrast enhancement signals are present or patient's motion occurred. In this study, we present a novel reconstruction technique using contrast-adaptive TpV minimization that can reduce reconstruction artifacts effectively by using different p-norms in high contrast and low contrast objects. In the proposed method, high contrast components are first reconstructed using thresholded projection data and low p-norm total variation to reflect sparseness in both projection and reconstruction spaces. Next, projection data are modified to contain only low contrast objects by creating projection data of reconstructed high contrast components and subtracting them from original projection data. Then, the low contrast projection data are reconstructed by using relatively high p-norm TV minimization technique, and are combined with the reconstructed high contrast component images to produce final reconstructed images. The proposed algorithm was applied to numerical phantom and a clinical data set of brain PCT exam, and the resultant images were compared with those using filtered back projection (FBP) and conventional TV

  5. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI.

    PubMed

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J

    2016-07-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd(3+) contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd(3+) binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 ± 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 ± 0.1 × 10(-22) M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM(-1) s(-1) and r2 of 37.9 mM(-1) s(-1) per Gd (55.2 and 75.8 mM(-1) s(-1) per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM(-1) s(-1) per Gd (188.0 mM(-1) s(-1) per molecule) and r1 of 18.6 mM(-1) s(-1) per Gd (37.2 mM(-1) s(-1) per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI. PMID:26961235

  6. Dual-modal MRI contrast agent with aggregation-induced emission characteristic for liver specific imaging with long circulation lifetime.

    PubMed

    Chen, Yilong; Li, Min; Hong, Yuning; Lam, Jacky W Y; Zheng, Qichang; Tang, Ben Zhong

    2014-07-01

    We herein report a novel dual-modal MRI contrast agent, TPE-2Gd, for both magnetic and fluorescence imaging. TPE-2Gd consists of a hydrophobic tetraphenylethene (TPE) fluorophore and two hydrophilic gadolinium (Gd) diethylenetriaminepentaacetic acid moieties. As an amphiphilic molecule, TPE-2Gd aggregates into micelles at a high concentration in aqueous medium. These aggregates are highly emissive, showing an aggregation-induced emission (AIE) characteristic. TPE-2Gd is used as a fluorescent agent for cell imaging, which demonstrates negligible cytotoxicity and excellent photostability owing to its AIE property. As a magnetic resonance imaging (MRI) contrast agent, TPE-2Gd exhibits similar longitudinal relaxivity in water (R1,TPE-2Gd = 3.36 ± 0.10 s(-1) per mM of Gd(3+)) as those commercial agents (e.g., Magnevist, R1,magnevist = 3.70 ± 0.02 s(-1) per mM of Gd(3+)). Compared with Magnevist, the circulation lifetime of TPE-2Gd nanoaggregates in living rats is extended from 10 min to 1 h. With relatively high specificity to the liver, the MR imaging could remain hyperintense in liver even after 150 min post injection. These TPE-2Gd nanoparticles can be excreted gradually via renal filtration due to the disassembly of the nanoparticles into small molecules during circulation. TPE-2Gd could thus potentially be used as a liver specific MRI contrast agent for clinical diagnosis. PMID:24942209

  7. Functionalized single-walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for in vivo imaging.

    PubMed

    Doan, Bich-Thuy; Seguin, Johanne; Breton, Marie; Le Beherec, Ronan; Bessodes, Michel; Rodríguez-Manzo, Julio A; Banhart, Florian; Beloeil, Jean-Claude; Scherman, Daniel; Richard, Cyrille

    2012-01-01

    Single-walled carbon nanotubes (SWCNTs) containing traces of iron oxide were functionalized by noncovalent lipid-PEG or covalent carboxylic acid function to supply new efficient MRI contrast agents for in vitro and in vivo applications. Longitudinal (r(1)) and transversal (r(2)) water proton relaxivities were measured at 300 MHz, showing a stronger T(2) feature as an MRI contrast agent (r(2)/r(1)  = 190 for CO(2) H functionalisation). The r(2) relaxivity was demonstrated to be correlated to the presence of iron oxide in the SWNT-carboxylic function COOH, in comparison to iron-free ones. Biodistribution studies on mice after a systemic injection showed a negative MRI contrast in liver, suggesting the presence of the nanotubes in this organ until 48 h after i.v. injection. The presence of carbon nanotubes in liver was confirmed after ex vivo carbon extraction. Finally, cytotoxicity studies showed no apparent effect owing to the presence of the carbon nanotubes. The functionalized carbon nanotubes were well tolerated by the animals at the dose of 10 µg g(-1) body weight. PMID:22434627

  8. A dimensionless dynamic contrast enhanced MRI parameter for intra-prostatic tumour target volume delineation: initial comparison with histology

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Gibson, Eli; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; McKenzie, Charles A.; Bauman, Glenn S.; Ward, Aaron D.; Fenster, Aaron; Wong, Eugene

    2014-03-01

    Purpose: T2 weighted and diffusion weighted magnetic resonance imaging (MRI) show promise in isolating prostate tumours. Dynamic contrast enhanced (DCE)-MRI has also been employed as a component in multi-parametric tumour detection schemes. Model-based parameters such as Ktrans are conventionally used to characterize DCE images and require arterial contrast agent (CR) concentration. A robust parameter map that does not depend on arterial input may be more useful for target volume delineation. We present a dimensionless parameter (Wio) that characterizes CR wash-in and washout rates without requiring arterial CR concentration. Wio is compared to Ktrans in terms of ability to discriminate cancer in the prostate, as demonstrated via comparison with histology. Methods: Three subjects underwent DCE-MRI using gadolinium contrast and 7 s imaging temporal resolution. A pathologist identified cancer on whole-mount histology specimens, and slides were deformably registered to MR images. The ability of Wio maps to discriminate cancer was determined through receiver operating characteristic curve (ROC) analysis. Results: There is a trend that Wio shows greater area under the ROC curve (AUC) than Ktrans with median AUC values of 0.74 and 0.69 respectively, but the difference was not statistically significant based on a Wilcoxon signed-rank test (p = 0.13). Conclusions: Preliminary results indicate that Wio shows potential as a tool for Ktrans QA, showing similar ability to discriminate cancer in the prostate as Ktrans without requiring arterial CR concentration.

  9. Vibrational dynamics of zero-field-splitting hamiltonian in gadolinium-based MRI contrast agents from ab initio molecular dynamics.

    PubMed

    Lasoroski, Aurélie; Vuilleumier, Rodolphe; Pollet, Rodolphe

    2014-07-01

    The electronic relaxation of gadolinium complexes used as MRI contrast agents was studied theoretically by following the short time evolution of zero-field-splitting parameters. The statistical analysis of ab initio molecular dynamics trajectories provided a clear separation between static and transient contributions to the zero-field-splitting. For the latter, the correlation time was estimated at approximately 0.1 ps. The influence of the ligand was also probed by replacing one pendant arm of our reference macrocyclic complex by a bulkier phosphonate arm. In contrast to the transient contribution, the static zero-field-splitting was significantly influenced by this substitution. PMID:25005282

  10. Vibrational dynamics of zero-field-splitting hamiltonian in gadolinium-based MRI contrast agents from ab initio molecular dynamics

    SciTech Connect

    Lasoroski, Aurélie; Vuilleumier, Rodolphe; Pollet, Rodolphe

    2014-07-07

    The electronic relaxation of gadolinium complexes used as MRI contrast agents was studied theoretically by following the short time evolution of zero-field-splitting parameters. The statistical analysis of ab initio molecular dynamics trajectories provided a clear separation between static and transient contributions to the zero-field-splitting. For the latter, the correlation time was estimated at approximately 0.1 ps. The influence of the ligand was also probed by replacing one pendant arm of our reference macrocyclic complex by a bulkier phosphonate arm. In contrast to the transient contribution, the static zero-field-splitting was significantly influenced by this substitution.

  11. Quasi-Cubic Magnetite/Silica Core-Shell Nanoparticles as Enhanced MRI Contrast Agents for Cancer Imaging

    PubMed Central

    Cowell, Simon F.; Garg, Ashish; Eu, Peter; Bhargava, Suresh K.; Bansal, Vipul

    2011-01-01

    Development of magnetic resonance imaging (MRI) contrast agents that can be readily applied for imaging of biological tissues under clinical settings is a challenging task. This is predominantly due to the expectation of an ideal MR agent being able to be synthesized in large quantities, possessing longer shelf life, reasonable biocompatibility, tolerance against its aggregation in biological fluids, and high relaxivity, resulting in better contrast during biological imaging. Although a repertoire of reports address various aforementioned issues, the previously reported results are far from optimal, which necessitates further efforts in this area. In this study, we demonstrate facile large-scale synthesis of sub-100 nm quasi-cubic magnetite and magnetite/silica core-shell (Mag@SiO2) nanoparticles and their applicability as a biocompatible T2 contrast agent for MRI of biological tissues. Our study suggests that silica-coated magnetite nanoparticles reported in this study can potentially act as improved MR contrast agents by addressing a number of aforementioned issues, including longer shelf life and stability in biological fluids. Additionally, our in vitro and in vivo studies clearly demonstrate the importance of silica coating towards improved applicability of T2 contrast agents for cancer imaging. PMID:21747962

  12. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

    PubMed

    Calcagno, Claudia; Lobatto, Mark E; Dyvorne, Hadrien; Robson, Philip M; Millon, Antoine; Senders, Max L; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F; Black, Alexandra; Mulder, Willem J M; Fayad, Zahi A

    2015-10-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for

  13. Investigating the Influence of Flip Angle and k-Space Sampling on Dynamic Contrast-Enhanced MRI Breast Examinations

    PubMed Central

    Ledger, Araminta E.W.; Borri, Marco; Pope, Romney J.E.; Scurr, Erica D.; Wallace, Toni; Richardson, Cheryl; Usher, Marianne; Allen, Steven; Wilson, Robin M.; Thomas, Karen; deSouza, Nandita M.; Leach, Martin O.; Schmidt, Maria A.

    2014-01-01

    Rationale and Objectives To retrospectively investigate the effect of flip angle (FA) and k-space sampling on the performance of dynamic contrast-enhanced (DCE-) magnetic resonance imaging (MRI) breast sequences. Materials and Methods Five DCE-MRI breast sequences were evaluated (10°, 14°, and 18° FAs; radial or linear k-space sampling), with 7–10 patients in each group (n = 45). All sequences were compliant with current technical breast screening guidelines. Contrast agent (CA) uptake curves were constructed from the right mammary artery for each examination. Maximum relative enhancement, Emax, and time-to-peak enhancement, Tmax, were measured and compared between protocols (analysis of variance and Mann–Whitney). For each sequence, calculated values of maximum relative enhancement, Ecalc, were derived from the Bloch equations and compared to Emax. Fat suppression performance (residual bright fat and chemical shift artifact) was rated for each examination and compared between sequences (Fisher exact tests). Results Significant differences were identified between DCE-MRI sequences. Emax increased significantly at higher FAs and with linear k-space sampling (P < .0001; P = .001). Radial protocols exhibited greater Tmax than linear protocols at FAs of both 14° (P = .025) and 18° (P < .0001), suggesting artificially flattened uptake curves. Good correlation was observed between Ecalc and Emax (r = 0.86). Fat suppression failure was more pronounced at an FA of 18° (P = .008). Conclusions This retrospective approach is validated as a tool to compare and optimize breast DCE-MRI sequences. Alterations in FA and k-space sampling result in significant differences in CA uptake curve shape which could potentially affect diagnostic interpretation. These results emphasize the need for careful parameter selection and greater standardization of breast DCE-MRI sequences. PMID:25179563

  14. Automated segmentation of reference tissue for prostate cancer localization in dynamic contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Vos, Pieter C.; Hambrock, Thomas; Barentsz, Jelle O.; Huisman, Henkjan J.

    2010-03-01

    For pharmacokinetic (PK) analysis of Dynamic Contrast Enhanced (DCE) MRI the arterial input function needs to be estimated. Previously, we demonstrated that PK parameters have a significant better discriminative performance when per patient reference tissue was used, but required manual annotation of reference tissue. In this study we propose a fully automated reference tissue segmentation method that tackles this limitation. The method was tested with our Computer Aided Diagnosis (CADx) system to study the effect on the discriminating performance for differentiating prostate cancer from benign areas in the peripheral zone (PZ). The proposed method automatically segments normal PZ tissue from DCE derived data. First, the bladder is segmented in the start-to-enhance map using the Otsu histogram threshold selection method. Second, the prostate is detected by applying a multi-scale Hessian filter to the relative enhancement map. Third, normal PZ tissue was segmented by threshold and morphological operators. The resulting segmentation was used as reference tissue to estimate the PK parameters. In 39 consecutive patients carcinoma, benign and normal tissue were annotated on MR images by a radiologist and a researcher using whole mount step-section histopathology as reference. PK parameters were computed for each ROI. Features were extracted from the set of ROIs using percentiles to train a support vector machine that was used as classifier. Prospective performance was estimated by means of leave-one-patient-out cross validation. A bootstrap resampling approach with 10,000 iterations was used for estimating the bootstrap mean AUCs and 95% confidence intervals. In total 42 malignant, 29 benign and 37 normal regions were annotated. For all patients, normal PZ was successfully segmented. The diagnostic accuracy obtained for differentiating malignant from benign lesions using a conventional general patient plasma profile showed an accuracy of 0.64 (0.53-0.74). Using the

  15. Improvement of the Off-Resonance Saturation, an MRI sequence for positive contrast with SPM particles: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Delangre, S.; Vuong, Q. L.; Po, C.; Gallez, B.; Gossuin, Y.

    2016-04-01

    The SuperParaMagnetic particles (SPM particles) are used as contrast agents in MRI and produce negative contrast with conventional T2 or T2∗-weighted sequences. Unfortunately, the SPM particle detection on images acquired with such sequences is sometimes difficult because negative contrast can be created by artifacts such as air bubbles or calcification. To overcome this problem, new sequences as Off-Resonance Saturation (ORS) were developed to produce positive contrast with SPM particles. This work explores a new way to optimize the contrast generated by the ORS sequence by increasing the number of saturation pulses applied before the imaging sequence. This modified sequence is studied with numerical simulations and experiments on agarose gel phantoms. A theoretical model able to predict the contrast for different values of the sequence parameters is also developed. The results show that the contrast increases with the saturation pulses number with an optimal value of three saturation pulses in order to avoid artifacts and limit the Specific Absorption Rate (SAR) effect. The dependence of the contrast on the SPM particle concentration and sequence parameters is comparable to what was observed for the ORS sequence.

  16. SU-D-18C-04: The Feasibility of Quantifying MRI Contrast Agent in Pulsatile Flowing Blood Using DCE-MRI

    SciTech Connect

    N, Gwilliam M; J, Collins D; O, Leach M; R, Orton M

    2014-06-01

    Purpose: To assess the feasibility of accurately quantifying the concentration of MRI contrast agent (CA) in pulsatile flowing blood by measuring its T{sub 1}, as is common for the purposes of obtaining a patientspecific arterial input function (AIF). Dynamic contrast enhanced (DCE) - MRI and pharmacokinetic (PK) modelling is widely used to produce measures of vascular function but accurate measurement of the AIF undermines their accuracy. A proposed solution is to measure the T{sub 1} of blood in a large vessel using the Fram double flip angle method during the passage of a bolus of CA. This work expands on previous work by assessing pulsatile flow and the changes in T{sub 1} seen with a CA bolus. Methods: A phantom was developed which used a physiological pump to pass fluid of a known T{sub 1} (812ms) through the centre of a head coil of a clinical 1.5T MRI scanner. Measurements were made using high temporal resolution sequences suitable for DCE-MRI and were used to validate a virtual phantom that simulated the expected errors due to pulsatile flow and bolus of CA concentration changes typically found in patients. Results: : Measured and virtual results showed similar trends, although there were differences that may be attributed to the virtual phantom not accurately simulating the spin history of the fluid before entering the imaging volume. The relationship between T{sub 1} measurement and flow speed was non-linear. T{sub 1} measurement is compromised by new spins flowing into the imaging volume, not being subject to enough excitations to have reached steady-state. The virtual phantom demonstrated a range of recorded T{sub 1} for various simulated T{sub 1} / flow rates. Conclusion: T{sub 1} measurement of flowing blood using standard DCE-MRI sequences is very challenging. Measurement error is non-linear with relation to instantaneous flow speed. Optimising sequence parameters and lowering baseline T{sub 1} of blood should be considered.

  17. Association between dynamic contrast enhanced MRI imaging features and WHO histopathological grade in patients with invasive ductal breast cancer

    PubMed Central

    HUANG, JUAN; YU, JIANQUN; PENG, YULAN

    2016-01-01

    The present study aimed to investigate the dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and World Health Organization (WHO) histopathological grade in patients with invasive ductal breast cancer. A retrospective analysis on the results of DCE-MRI of 92 patients, who were diagnosed with invasive ductal breast cancer following surgery or biopsy, and these results were correlated with WHO histopathological grade. The statistical analysis demonstrated that the tumor size, shape and characteristics of early enhancement were associated with the WHO histopathological grade: The larger the lesion's long diameter, the higher the WHO histopathological grade; the WHO histopathological grades of round and oval masses were relatively lower, while those of lobulated and irregular masses were higher; and tumors with heterogeneous and ring-like enhancement exhibited higher WHO histopathological grades, while those of homogeneous enhancement were lower. The lesion's margin shape was not associated with the WHO histopathological grade. The present study demonstrates that features of DCE-MRI and WHO histopathological grade in patients with invasive ductal breast cancer are correlated, and these MRI features could be used to evaluate the biological behavior and prognosis of lesions. PMID:27123145

  18. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    SciTech Connect

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Rick E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and that (2) remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  19. Phase-contrast MRI and CFD modeling of apparent ³He gas flow in rat pulmonary airways.

    PubMed

    Minard, Kevin R; Kuprat, Andrew P; Kabilan, Senthil; Jacob, Richard E; Einstein, Daniel R; Carson, James P; Corley, Richard A

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized ³He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local ³He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent ³He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R²) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent ³He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements. PMID:22771528

  20. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    PubMed Central

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-01-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show 1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and 2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements. PMID:22771528

  1. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    NASA Astrophysics Data System (ADS)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  2. Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI

    PubMed Central

    Song, YoungKyu; Kang, Young Ji; Jung, Hoesu; Kim, Hansol; Kang, Sebyung; Cho, HyungJoon

    2015-01-01

    With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r1 relaxivity at low fields, but tend to lose this merit when used as T1 contrast agents (r1/r2 = 0.5 ~ 1), with their r1 decreasing and r2 increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r1 relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM−1s−1 and its r1/r2 ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength. PMID:26493381

  3. Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI.

    PubMed

    Song, YoungKyu; Kang, Young Ji; Jung, Hoesu; Kim, Hansol; Kang, Sebyung; Cho, HyungJoon

    2015-01-01

    With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r1 relaxivity at low fields, but tend to lose this merit when used as T1 contrast agents (r1/r2 = 0.5 ~ 1), with their r1 decreasing and r2 increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r1 relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r1/r2 ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength. PMID:26493381

  4. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    PubMed

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. PMID:26218648

  5. Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes.

    PubMed

    Mahmoudi, Morteza; Tachibana, Atsushi; Goldstone, Andrew B; Woo, Y Joseph; Chakraborty, Papia; Lee, Kayla R; Foote, Chandler S; Piecewicz, Stephanie; Barrozo, Joyce C; Wakeel, Abdul; Rice, Bradley W; Bell Iii, Caleb B; Yang, Phillip C

    2016-01-01

    Therapeutic delivery of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) represents a novel clinical approach to regenerate the injured myocardium. However, methods for robust and accurate in vivo monitoring of the iCMs are still lacking. Although superparamagnetic iron oxide nanoparticles (SPIOs) are recognized as a promising tool for in vivo tracking of stem cells using magnetic resonance imaging (MRI), their signal persists in the heart even weeks after the disappearance of the injected cells. This limitation highlights the inability of SPIOs to distinguish stem cell viability. In order to overcome this shortcoming, we demonstrate the use of a living contrast agent, magneto-endosymbionts (MEs) derived from magnetotactic bacteria for the labeling of iCMs. The ME-labeled iCMs were injected into the infarcted area of murine heart and probed by MRI and bioluminescence imaging (BLI). Our findings demonstrate that the MEs are robust and effective biological contrast agents to track iCMs in an in vivo murine model. We show that the MEs clear within one week of cell death whereas the SPIOs remain over 2 weeks after cell death. These findings will accelerate the clinical translation of in vivo MRI monitoring of transplanted stem cell at high spatial resolution and sensitivity. PMID:27264636

  6. In Vivo Visualization of Alzheimer’s Amyloid Plaques by MRI in Transgenic Mice Without a Contrast Agent

    PubMed Central

    Jack, Clifford R.; Garwood, Michael; Wengenack, Thomas M.; Borowski, Bret; Curran, Geoffrey L.; Lin, Joseph; Adriany, Gregor; Grohn, Olli H.J.; Grimm, Roger; Poduslo, Joseph F.

    2009-01-01

    One of the cardinal pathologic features of Alzheimer’s disease (AD) is formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop “human-like” plaques, providing a mechanism to study amyloid plaque biology in a controlled manner. Imaging of labeled plaques has been accomplished with other modalities, but only MRI has sufficient spatial and contrast resolution to visualize individual plaques non-invasively. Methods to optimize visualization of plaques in vivo in transgenic mice at 9.4 T using a spin echo sequence based on adiabatic pulses are described. Preliminary results indicate that a spin echo acquisition more accurately reflects plaque size, while a T2* weighted gradient echo sequence reflects plaque iron content not plaque size. In vivo MRI – ex vivo MRI – in vitro histological correlations are provided. Histologically verified plaques as small as 50 μm in diameter were visualized in the living animal. To our knowledge this work represents the first demonstration of non-invasive in vivo visualization of individual AD plaques without the use of a contrast agent. PMID:15562496

  7. Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes

    PubMed Central

    Mahmoudi, Morteza; Tachibana, Atsushi; Goldstone, Andrew B.; Woo, Y. Joseph; Chakraborty, Papia; Lee, Kayla R.; Foote, Chandler S.; Piecewicz, Stephanie; Barrozo, Joyce C.; Wakeel, Abdul; Rice, Bradley W.; Bell III, Caleb B.; Yang, Phillip C.

    2016-01-01

    Therapeutic delivery of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) represents a novel clinical approach to regenerate the injured myocardium. However, methods for robust and accurate in vivo monitoring of the iCMs are still lacking. Although superparamagnetic iron oxide nanoparticles (SPIOs) are recognized as a promising tool for in vivo tracking of stem cells using magnetic resonance imaging (MRI), their signal persists in the heart even weeks after the disappearance of the injected cells. This limitation highlights the inability of SPIOs to distinguish stem cell viability. In order to overcome this shortcoming, we demonstrate the use of a living contrast agent, magneto-endosymbionts (MEs) derived from magnetotactic bacteria for the labeling of iCMs. The ME-labeled iCMs were injected into the infarcted area of murine heart and probed by MRI and bioluminescence imaging (BLI). Our findings demonstrate that the MEs are robust and effective biological contrast agents to track iCMs in an in vivo murine model. We show that the MEs clear within one week of cell death whereas the SPIOs remain over 2 weeks after cell death. These findings will accelerate the clinical translation of in vivo MRI monitoring of transplanted stem cell at high spatial resolution and sensitivity. PMID:27264636

  8. Differential uptake of MRI contrast agents indicates charge-selective blood-brain interface in the crayfish.

    PubMed

    Otopalik, Adriane G; Shin, Jane; Beltz, Barbara S; Sandeman, David C; Kolodny, Nancy H

    2012-08-01

    This study provides a new perspective on the long-standing problem of the nature of the decapod crustacean blood-brain interface. Previous studies of crustacean blood-brain interface permeability have relied on invasive histological, immunohistochemical and electrophysiological techniques, indicating a leaky non-selective blood-brain barrier. The present investigation involves the use of magnetic resonance imaging (MRI), a method for non-invasive longitudinal tracking of tracers in real-time. Differential uptake rates of two molecularly distinct MRI contrast agents, namely manganese (Mn(II)) and Magnevist® (Gd-DTPA), were observed and quantified in the crayfish, Cherax destructor. Contrast agents were injected into the pericardium and uptake was observed with longitudinal MRI for approximately 14.5 h. Mn(II) was taken up quickly into neural tissue (within 6.5 min), whereas Gd-DTPA was not taken up into neural tissue and was instead restricted to the intracerebral vasculature or excreted into nearby sinuses. Our results provide evidence for a charge-selective intracerebral blood-brain interface in the crustacean nervous system, a structural characteristic once considered too complex for a lower-order arthropod. PMID:22526631

  9. Magnetic Resonance Imaging (MRI) with retrograde intralumen contrast enhancement of the rectum in diagnostics of rectovaginal fistulas after combination therapy of rectal cancer. Experience of application

    NASA Astrophysics Data System (ADS)

    Usova, A.; Frolova, I.; Afanasev, S.; Tarasova, A.; Molchanov, S.

    2016-02-01

    Experiment of use of MRI in diagnostics of rectovaginal fistulas after combination therapy of rectal cancer is shown on clinical examples. We used retrograde contrasting of a rectum with 150ml ultrasonic gel to make MRI more informative in case of low diagnostic efficiency of ultrasound, colonoscopy and gynecological examination.

  10. MRI

    MedlinePlus

    ... scan is an imaging test that uses powerful magnets and radio waves to create pictures of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  11. Dynamic Contrast-Enhanced MRI Kinetics of Invasive Breast Cancer: A Potential Prognostic Marker for Radiation Therapy

    SciTech Connect

    Loiselle, Christopher R.; Eby, Peter R.; DeMartini, Wendy B.; Peacock, Sue M.S.; Bittner, Nathan; Lehman, Constance D.; Kim, Janice N.

    2010-04-15

    Purpose: Our goal was to determine the correlations between dynamic contrast-enhanced MRI (DCE-MRI) kinetics of breast cancers and axillary nodal status (ANS) which may have prognostic value in designing radiation therapy recommendations. Methods and Materials: A retrospective review identified 167 consecutive patients treated with external beam radiotherapy for invasive breast cancer from Jan 1, 2006 to Nov 1, 2007. Patients with DCE-MRI kinetic data from our institution who underwent axillary surgical staging prior to chemotherapy were included. ANS was assessed as positive or negative by pathology record review. For each primary cancer, maximum tumor diameter and kinetic values for initial peak enhancement (PE), percent initial rapid enhancement (RE), and percent delayed washout enhancement (WE) were measured with a computer-aided evaluation program. Univariate, multivariate, and receiver operating characteristic curve analyses were performed according to the ANS. Results: Forty-six patients met study criteria, with 32 (70%) node-negative and 14 (30%) node-positive patients. Median PE was significantly greater in node-positive patients (209%) than in node-negative patients (138%, p = 0.0027). Similarly, median RE was significantly greater in node-positive patients (57%) than in node-negative patients (27%, p = 0.0436). WE was not different between groups (p = 0.9524). Median maximum tumor diameter was greater in node-positive patients (26 mm) than in node-negative patients (15 mm, p = 0.015). Multivariate analysis showed that only PE trended toward significance (p = 0.18). Conclusions: DCE-MRI kinetics of primary breast cancers correlate with ANS. Multivariate analysis demonstrates the correlation is not due simply to underlying lesion size. If validated prospectively, DCE-MRI kinetics may aid as a tool in selecting patients or designing fields for radiation therapy.

  12. pH-Responsive Theranostic Polymer-Caged Nanobins (PCNs): Enhanced Cytotoxicity and T1 MRI Contrast by Her2-Targeting

    PubMed Central

    Hong, Bong Jin; Swindell, Elden P.; MacRenaris, Keith W.; Hankins, Patrick L.; Chipre, Anthony J.; Mastarone, Daniel J.; Ahn, Richard W.; Meade, Thomas J.; O’Halloran, Thomas V.

    2014-01-01

    A PCN theranostic platform comprises a doxorubicin (DXR)-loaded liposomal core and an acid-sensitive polymer shell that is functionalized with Herceptin and GdIII-based MRI contrast agents. In vitro testing reveals a 14-fold increase in DXR-based cytotoxicity versus a non-targeted analogue and an 120-fold improvement in cellular GdIII–uptake in comparison with clinically approved DOTA-GdIII, leading to significant T1 MRI contrast enhancement. PMID:24516291

  13. Blood Pressure is Associated With Cerebral Blood Flow Alterations in Patients With T2DM as Revealed by Perfusion Functional MRI

    PubMed Central

    Xia, Wenqing; Rao, Hengyi; Spaeth, Andrea M.; Huang, Rong; Tian, Sai; Cai, Rongrong; Sun, Jie; Wang, Shaohua

    2015-01-01

    Abstract Type 2 diabetes mellitus (T2DM) and hypertension are both associated with cognitive impairment and brain function abnormalities. We investigated whether abnormal cerebral blood flow (CBF) patterns exists in T2DM patients and possible relationships between aberrant CBF and cognitive performance. Furthermore, we examined the influence of hypertension on CBF alterations in T2DM patients. T2DM patients (n = 38) and non-T2DM subjects (n = 40) were recruited from clinics, hospitals, and normal community health screenings. Cerebral blood flow images were collected and analyzed using arterial spin labeling perfusion functional magnetic resonance imaging (fMRI). Regions with major CBF differences between T2DM patients and non-T2DM controls were detected via 1-way ANOVA. The interaction effects between hypertension and T2DM for CBF alterations were also examined. Correlation analyses illustrated the association between CBF values and cognitive performance and between CBF and blood pressure. Compared with non-T2DM controls, T2DM patients exhibited decreased CBF, primarily in the visual area and the default mode network (DMN); decreased CBF in these regions was correlated with cognitive performance. There was a significant interaction effect between hypertension and diabetes for CBF in the precuneus and the middle occipital gyrus. Additionally, blood pressure correlated negatively with CBF in T2DM patients. T2DM patients exhibited reduced CBF in the visual area and DMN. Hypertension may facilitate a CBF decrease in the setting of diabetes. T2DM patients may benefit from blood pressure control to maintain their brain perfusion through CBF preservation. PMID:26632913

  14. Performance of simultaneous high temporal resolution quantitative perfusion imaging of bladder tumors and conventional multi-phase urography using a novel free-breathing continuously acquired radial compressed-sensing MRI sequence☆,☆☆

    PubMed Central

    Parikh, Nainesh; Ream, Justin M.; Zhang, Hoi Cheung; Block, Kai Tobias; Chandarana, Hersh; Rosenkrantz, Andrew B.

    2016-01-01

    Purpose To investigate the feasibility of high temporal resolution quantitative perfusion imaging of bladder tumors performed simultaneously with conventional multi-phase MR urography (MRU) using a novel free-breathing continuously acquired radial MRI sequence with compressed-sensing reconstruction. Methods: 22 patients with bladder lesions underwent MRU using GRASP (Golden-angle RAdial Sparse Parallel) acquisition. Multi-phase contrast-enhanced abdominopelvic GRASP was performed during free-breathing (1.4 × 1.4 × 3.0 mm3 voxel size; 3:44 min acquisition). Two dynamic datasets were retrospectively reconstructed by combining different numbers of sequentially acquired spokes into each dynamic frame: 110 spokes per frame for 25-s temporal resolution (serving as conventional MRU for clinical interpretation) and 8 spokes per frame for 1.7-s resolution. Using 1.7-s resolution images, ROIs were placed within bladder lesions and normal bladder wall, a femoral artery arterial input function was generated, and the Generalized Kinetic Model was applied. Results Biopsy/cystectomy demonstrated 16 bladder tumors (13 stage ≥ T2, 3 stage ≤ T1) and 6 benign lesions. All lesions were well visualized using 25-s clinical multi-phase images. Using 1.7-s resolution images, Ktrans was significantly higher in tumors (0.38 ± 0.24) than normal bladder (0.12 ± 0.02 = 8, p b 0.001) or benign lesions (0.15 ± 0.04, p = 0.033). Ratio between Ktrans of lesions and normal bladder was nearly double for tumors than benign lesions (4.3 ± 3.4 vs. 2.2 ± 1.6), and Ktrans was nearly double in stage ≥ T2 than stage ≤ T1 tumors (0.44 ± 0.24 vs. 0.24 ± 0.24), although these did not approach significance (p = 0.180–0.209), possibly related to small sample size. Conclusion GRASP allows simultaneous quantitative high temporal resolution perfusion of bladder lesions during clinical MRU examinations using only one contrast injection and without additional scan time. PMID:26740058

  15. T1-Weighted Dynamic Contrast-Enhanced MRI as a Noninvasive Biomarker of Epidermal Growth Factor Receptor vIII Status

    PubMed Central

    Arevalo-Perez, J.; Thomas, A.A.; Kaley, T.; Lyo, J.; Peck, K.K.; Holodny, A.I.; Mellinghoff, I.K.; Shi, W.; Zhang, Z.; Young, R.J.

    2016-01-01

    BACKGROUND AND PURPOSE Epidermal growth factor receptor variant III is a common mutation in glioblastoma, found in approximately 25% of tumors. Epidermal growth factor receptor variant III may accelerate angiogenesis in malignant gliomas. We correlated T1-weighted dynamic contrast-enhanced MR imaging perfusion parameters with epidermal growth factor receptor variant III status. MATERIALS AND METHODS Eighty-two consecutive patients with glioblastoma and known epidermal growth factor receptor variant III status who had dynamic contrast-enhanced MR imaging before surgery were evaluated. Volumes of interest were drawn around the entire enhancing tumor on contrast T1-weighted images and then were transferred onto coregistered dynamic contrast-enhanced MR imaging perfusion maps. Histogram analysis with normalization was performed to determine the relative mean, 75th percentile, and 90th percentile values for plasma volume and contrast transfer coefficient. A Wilcoxon rank sum test was applied to assess the relationship between baseline perfusion parameters and positive epidermal growth factor receptor variant III status. The receiver operating characteristic method was used to select the cutoffs of the dynamic contrast-enhanced MR imaging perfusion parameters. RESULTS Increased relative plasma volume and increased relative contrast transfer coefficient parameters were both significantly associated with positive epidermal growth factor receptor variant III status. For epidermal growth factor receptor variant III–positive tumors, relative plasma volume mean was 9.3 and relative contrast transfer coefficient mean was 6.5; for epidermal growth factor receptor variant III–negative tumors, relative plasma volume mean was 3.6 and relative contrast transfer coefficient mean was 3.7 (relative plasma volume mean, P < .001, and relative contrast transfer coefficient mean, P = .008). The predictive powers of relative plasma volume histogram metrics outperformed those of the

  16. One-step synthesis of gradient gadolinium ironhexacyanoferrate nanoparticles: a new particle design easily combining MRI contrast and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Li, Yichen; Li, Carissa H.; Talham, Daniel R.

    2015-03-01

    A one-step synthesis of Prussian blue nanoparticles possessing a concentration gradient of Gd3+ counterions, g-Gd-PB, has been developed, and the potential for the particles to perform as both MRI positive contrast agents and photothermal therapy agents is demonstrated. The synthesis of potassium/gadolinium ironhexacyanoferrate is performed under increasing concentration of Gd3+ ions forming particles with a higher concentration of gadolinium toward the outer layers. The proton relaxivity (r1) measured for the particles is 12.3 mM-1 s-1, and T1 weighted images of phantoms containing the particles show their potential as MRI contrast agents. In addition, the Prussian blue host can rapidly and efficiently convert energy from near-IR light into thermal energy, allowing g-Gd-PB to be used as a photothermal therapy agent. The photothermal properties are demonstrated by measuring temperature changes of particle suspensions under irradiation and by photothermal ablation of CCRF-CEM cancer cells.A one-step synthesis of Prussian blue nanoparticles possessing a concentration gradient of Gd3+ counterions, g-Gd-PB, has been developed, and the potential for the particles to perform as both MRI positive contrast agents and photothermal therapy agents is demonstrated. The synthesis of potassium/gadolinium ironhexacyanoferrate is performed under increasing concentration of Gd3+ ions forming particles with a higher concentration of gadolinium toward the outer layers. The proton relaxivity (r1) measured for the particles is 12.3 mM-1 s-1, and T1 weighted images of phantoms containing the particles show their potential as MRI contrast agents. In addition, the Prussian blue host can rapidly and efficiently convert energy from near-IR light into thermal energy, allowing g-Gd-PB to be used as a photothermal therapy agent. The photothermal properties are demonstrated by measuring temperature changes of particle suspensions under irradiation and by photothermal ablation of CCRF-CEM cancer

  17. Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Milej, Daniel; Janusek, Dariusz; Gerega, Anna; Wojtkiewicz, Stanislaw; Sawosz, Piotr; Treszczanowicz, Joanna; Weigl, Wojciech; Liebert, Adam

    2015-10-01

    The aim of the study was to determine optimal measurement conditions for assessment of brain perfusion with the use of optical contrast agent and time-resolved diffuse reflectometry in the near-infrared wavelength range. The source-detector separation at which the distribution of time of flights (DTOF) of photons provided useful information on the inflow of the contrast agent to the intracerebral brain tissue compartments was determined. Series of Monte Carlo simulations was performed in which the inflow and washout of the dye in extra- and intracerebral tissue compartments was modeled and the DTOFs were obtained at different source-detector separations. Furthermore, tests on diffuse phantoms were carried out using a time-resolved setup allowing the measurement of DTOFs at 16 source-detector separations. Finally, the setup was applied in experiments carried out on the heads of adult volunteers during intravenous injection of indocyanine green. Analysis of statistical moments of the measured DTOFs showed that the source-detector separation of 6 cm is recommended for monitoring of inflow of optical contrast to the intracerebral brain tissue compartments with the use of continuous wave reflectometry, whereas the separation of 4 cm is enough when the higher-order moments of DTOFs are available.

  18. fMRI contrast at high and ultrahigh magnetic fields: insight from complementary methods.

    PubMed

    Ciobanu, Luisa; Solomon, Eddy; Pyatigorskaya, Nadya; Roussel, Tangi; Le Bihan, Denis; Frydman, Lucio

    2015-06-01

    This manuscript examines the origins and nature of the function-derived activation detected by magnetic resonance imaging at ultrahigh fields using different encoding methods. A series of preclinical high field (7 T) and ultra-high field (17.2 T) fMRI experiments were performed using gradient echo EPI, spin echo EPI and spatio-temporally encoded (SPEN) strategies. The dependencies of the fMRI signal change on the strength of the magnetic field and on different acquisition and sequence parameters were investigated. Artifact-free rat brain images with good resolution in all areas, as well as significant localized activation maps upon forepaw stimulation, were obtained in a single scan using fully refocused SPEN sequences devoid of T2* effects. Our results showed that, besides the normal T2-weighted BOLD contribution that arises in spin-echo sequences, fMRI SPEN signals contain a strong component caused by apparent T1-related effects, demonstrating the potential of such technique for exploring functional activation in rodents and on humans at ultrahigh fields. PMID:25795340

  19. In vivo MRI characteristics of lipoma arborescens utilizing fat suppression and contrast administration

    SciTech Connect

    Chaljub, G.; Johnson, P.R.

    1996-01-01

    Lipoma arborescens or villous lipomatous proliferation of the synovium is a rare lesion. We describe the in vivo imaging characteristics of lipoma arborescens of the knee utilizing fat suppression techniques and contrast medium administration. As expected, the lesion demonstrated signal loss when utilizing fat suppression. In addition, no contrast enhancement was noted. When a synovial process demonstrates isointensity with subcutaneous fat on all pulse sequences and no contrast enhancement, lipoma arborescens should be the primary diagnosis consideration. 7 refs., 4 figs.

  20. Retrieval of Brain Tumors with Region-Specific Bag-of-Visual-Words Representations in Contrast-Enhanced MRI Images

    PubMed Central

    Huang, Meiyan; Yang, Wei; Yu, Mei; Lu, Zhentai; Feng, Qianjin; Chen, Wufan

    2012-01-01

    A content-based image retrieval (CBIR) system is proposed for the retrieval of T1-weighted contrast-enhanced MRI (CE-MRI) images of brain tumors. In this CBIR system, spatial information in the bag-of-visual-words model and domain knowledge on the brain tumor images are considered for the representation of brain tumor images. A similarity metric is learned through a distance metric learning algorithm to reduce the gap between the visual features and the semantic concepts in an image. The learned similarity metric is then used to measure the similarity between two images and then retrieve the most similar images in the dataset when a query image is submitted to the CBIR system. The retrieval performance of the proposed method is evaluated on a brain CE-MRI dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). The experimental results demonstrate that the mean average precision values of the proposed method range from 90.4% to 91.5% for different views (transverse, coronal, and sagittal) with an average value of 91.0%. PMID:23243462

  1. Angiogenic response of locally advanced breast cancer to neoadjuvant chemotherapy evaluated with parametric histogram from dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Chang, Yeun-Chung; Huang, Chiun-Sheng; Liu, Yi-Jui; Chen, Jyh-Horng; Lu, Yen-Shen; Tseng, Wen-Yih I.

    2004-08-01

    The aim of this study was to evaluate angiogenic compositions and tumour response in the course of neoadjuvant chemotherapy in patients with locally advanced breast cancer (LABC) using dynamic contrast-enhanced (DCE) MRI. Thirteen patients with LABC underwent serial DCE MRI during the course of chemotherapy. DCE MRI was quantified using a two-compartment model on a pixel-by-pixel basis. Analysis of parametric histograms of amplitude, exchange rate kout and peak enhancement over the whole tumour was performed. The distribution patterns of histograms were correlated with the tumour response. Initial kurtosis and standard deviation of amplitude before chemotherapy correlated with tumour response, r = 0.63 and r = 0.61, respectively. Comparing the initial values with the values after the first course of chemotherapy, tumour response was associated with a decrease in standard deviation of amplitude (r = 0.79), and an increase in kurtosis and a decrease in standard deviation of kout (r = 0.57 and 0.57, respectively). Comparing the initial values with the values after completing the chemotherapy, tumours with better response were associated with an increase in kurtosis (r = 0.62), a decrease in mean (r = 0.84) and standard deviation (r = 0.77) of amplitude, and a decrease in mean of peak enhancement (r = 0.71). Our results suggested that tumours with better response tended to alter their internal compositions from heterogeneous to homogeneous distributions and a decrease in peak enhancement after chemotherapy. Serial analyses of parametric histograms of DCE MRI-derived angiogenic parameters are potentially useful to monitor the response of angiogenic compositions of a tumour throughout the course of chemotherapy, and might predict tumour response early in the course.

  2. Assessment of metastatic liver disease in patients with primary extrahepatic tumors by contrast-enhanced sonography versus CT and MRI

    PubMed Central

    Dietrich, Christoph F; Kratzer, Wolfgang; Strobel, Deike; Danse, Etienne; Fessl, Robert; Bunk, Alfred; Vossas, Udo; Hauenstein, Karlheinz; Koch, Wilhelm; Blank, Wolfgang; Oudkerk, Matthijs; Hahn, Dietbert; Greis, Christian

    2006-01-01

    AIM: To evaluate contrast-enhanced ultrasonography (CEUS) using SonoVue® in the detection of liver metastases in patients with known extrahepatic primary tumors versus the combined gold standard comprising CT, MRI and clinical/histological data. METHODS: It is an international multicenter study, and there were 12 centres and 125 patients (64 males, 61 females, aged 59 ± 11 years) involved, with 102 patients per protocol. Primary tumors were colorectal in 35 %, breast in 27 %, pancreatic in 17 % and others in 21 %. CEUS using SonoVue® was employed with a low-mechanical-index technique and contrast-specific software using Siemens Elegra, Philips HDI 5000 and Acuson Sequoia; continuous scanning for at least five minutes. RESULTS: CEUS with SonoVue® increased significantly the number of focal liver lesions detected versus unenhanced sonography. In 31.4 % of the patients, more lesions were found after contrast enhancement. The total numbers of lesions detected were comparable with CEUS (55), triple-phase spiral CT (61) and MRI with a liver-specific contrast agent (53). Accuracy of detection of metastatic disease (i.e. at least one metastatic lesion) was significantly higher for CEUS (91.2 %) than for unenhanced sonography (81.4 %) and was similar to that of triple-phase spiral CT (89.2 %). In 53 patients whose CEUS examination was negative, a follow-up examination 3-6 mo later confirmed the absence of metastatic lesions in 50 patients (94.4 %). CONCLUSION: CEUS is proved to be reliable in the detection of liver metastases in patients with known extrahepatic primary tumors and suspected liver lesions. PMID:16586537

  3. Identifying metastatic breast tumors using textural kinetic features of a contrast based habitat in DCE-MRI

    NASA Astrophysics Data System (ADS)

    Chaudhury, Baishali; Zhou, Mu; Goldgof, Dmitry B.; Hall, Lawrence O.; Gatenby, Robert A.; Gillies, Robert J.; Drukteinis, Jennifer S.

    2015-03-01

    The ability to identify aggressive tumors from indolent tumors using quantitative analysis on dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) would dramatically change the breast cancer treatment paradigm. With this prognostic information, patients with aggressive tumors that have the ability to spread to distant sites outside of the breast could be selected for more aggressive treatment and surveillance regimens. Conversely, patients with tumors that do not have the propensity to metastasize could be treated less aggressively, avoiding some of the morbidity associated with surgery, radiation and chemotherapy. We propose a computer aided detection framework to determine which breast cancers will metastasize to the loco-regional lymph nodes as well as which tumors will eventually go on to develop distant metastses using quantitative image analysis and radiomics. We defined a new contrast based tumor habitat and analyzed textural kinetic features from this habitat for classification purposes. The proposed tumor habitat, which we call combined-habitat, is derived from the intersection of two individual tumor sub-regions: one that exhibits rapid initial contrast uptake and the other that exhibits rapid delayed contrast washout. Hence the combined-habitat represents the tumor sub-region within which the pixels undergo both rapid initial uptake and rapid delayed washout. We analyzed a dataset of twenty-seven representative two dimensional (2D) images from volumetric DCE-MRI of breast tumors, for classification of tumors with no lymph nodes from tumors with positive number of axillary lymph nodes. For this classification an accuracy of 88.9% was achieved. Twenty of the twenty-seven patients were analyzed for classification of distant metastatic tumors from indolent cancers (tumors with no lymph nodes), for which the accuracy was 84.3%.

  4. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing

    PubMed Central

    Budinsky, Lubos; Fabry, Ben

    2015-01-01

    The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods. PMID:26656497

  5. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity**

    PubMed Central

    Chen, Kuan-Ju; Wolahan, Stephanie M.; Wang, Hao; Hsu, Chao-Hsiung; Chang, Hsing-Wei; Durazo, Armando; Hwang, Lian-Pin; Garcia, Mitch A.; Jiang, Ziyue Karen; Wu, Lily

    2010-01-01

    We introduce a new category of nanoparticle-based T1 MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd3+·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD). A small library of Gd3+·DOTA-encapsulated supramolecular nanoparticles (Gd3+·DOTA⊂SNPs) was produced by systematically altering the molecular building block mixing ratios. A broad spectrum of relaxation rates was correlated to the resulting Gd3+·DOTA⊂SNP library. Consequently, an optimal synthetic formulation of Gd3+·DOTA⊂SNPs with an r1 of 17.3 s−1mM−1 (ca. 4-fold higher than clinical Gd3+ chelated complexes at high field strengths) was identified. T1-weighted imaging of Gd3+·DOTA⊂SNPs exhibits an enhanced sensitivity with a contrast-to-noise ratio (C/N ratio) ca. 3.6 times greater than that observed for free Gd3+·DTPA. A Gd3+·DOTA⊂SNPs solution was injected into foot pads of mice, and MRI was employed to monitor dynamic lymphatic drainage of the Gd3+·DOTA⊂SNPs-based CA. We observe an increase in signal intensity of the brachial lymph node in T1-weighted imaging after injecting Gd3+·DOTA⊂SNPs but not after injecting Gd3+·DTPA. The MRI results are supported by ICP-MS analysis ex vivo. These results show that Gd3+·DOTA⊂SNPs not only exhibits enhanced relaxivity and high sensitivity but also can serve as a potential tool for diagnosis of cancer metastasis. PMID:21167594

  6. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Rogers, Nicola J.; Hill-Casey, Fraser; Stupic, Karl F.; Six, Joseph S.; Lesbats, Clémentine; Rigby, Sean P.; Fraissard, Jacques; Pavlovskaya, Galina E.; Meersmann, Thomas

    2016-03-01

    Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a previously unexplored approach in the generation of hp 83Kr that can likewise be used for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29% for 83Kr and P = 63% for 129Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin-polarized 83Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized 129Xe.

  7. Pretreatment Dynamic Contrast-Enhanced MRI Improves Prediction of Early Distant Metastases in Patients With Nasopharyngeal Carcinoma

    PubMed Central

    Chin, Shy-Chyi; Lin, Chien-Yu; Huang, Bing-Shen; Tsang, Ngan-Ming; Fan, Kang-Hsing; Ku, Yi-Kang; Hsu, Cheng-Lung; Chan, Sheng-Chieh; Huang, Shiang-Fu; Li, Cheng-He; Tseng, Hsiao-Jung; Liao, Chun-Ta; Liu, Ho-Ling; Sung, Kyunghyun

    2016-01-01

    Abstract The identification of early distant metastases (DM) in patients with newly diagnosed, previously untreated nasopharyngeal carcinoma (NPC) plays an important role in selecting the most appropriate treatment approach. Here, we sought to investigate the predictive value of distinct MRI parameters for the detection of early DM. Between November 2010 and June 2011, a total of 51 newly diagnosed NPC patients were included. All of the study participants were followed until December 2014 at a single institution after completion of therapy. DM was defined as early when they were detected on pretreatment FDG-PET scans or within 6 months after initial diagnosis. The following parameters were tested for their ability to predict early DM: pretreatment FDG-PET standardized uptake value (SUV), MRI-derived AJCC tumor staging, tumor volume, and dynamic contrast-enhanced (DCE) values. The DCE-derived ve was defined as the volume fraction of the extravascular, extracellular space. Compared with patients without early DM, patients with early DM had higher SUV, tumor volume, DCE mean (median) ve, ve skewness, ve kurtosis, and the largest mean ve selected among sequential slices (P < 0.05). No differences were identified when early DM were defined only according to the results of pretreatment FDG-PET. Among different quantitative DCE parameters, the mean ve had the highest area under curve (AUC, 0.765). However, the AUCs of SUV, tumor volume, mean ve, ve skewness, ve kurtosis, or the largest mean ve selected among the sequential slices did not differ significantly from one another (P = 0.82). Taken together, our results suggest that DCE-derived ve may be a useful parameter in combination with SUV and tumor volume for predicting early DM. Dynamic contrast-enhanced MRI may be complementary to FDG-PET for selecting the most appropriate treatment approach in NPC patients. PMID:26871776

  8. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents.

    PubMed

    Rogers, Nicola J; Hill-Casey, Fraser; Stupic, Karl F; Six, Joseph S; Lesbats, Clémentine; Rigby, Sean P; Fraissard, Jacques; Pavlovskaya, Galina E; Meersmann, Thomas

    2016-03-22

    Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe. PMID:26961001

  9. One-step synthesis of gradient gadolinium ironhexacyanoferrate nanoparticles: a new particle design easily combining MRI contrast and photothermal therapy.

    PubMed

    Li, Yichen; Li, Carissa H; Talham, Daniel R

    2015-03-12

    A one-step synthesis of Prussian blue nanoparticles possessing a concentration gradient of Gd3+ counterions, g-Gd-PB, has been developed, and the potential for the particles to perform as both MRI positive contrast agents and photothermal therapy agents is demonstrated. The synthesis of potassium/gadolinium ironhexacyanoferrate is performed under increasing concentration of Gd3+ ions forming particles with a higher concentration of gadolinium toward the outer layers. The proton relaxivity (r1) measured for the particles is 12.3 mM(-1) s(-1), and T1 weighted images of phantoms containing the particles show their potential as MRI contrast agents. In addition, the Prussian blue host can rapidly and efficiently convert energy from near-IR light into thermal energy, allowing g-Gd-PB to be used as a photothermal therapy agent. The photothermal properties are demonstrated by measuring temperature changes of particle suspensions under irradiation and by photothermal ablation of CCRF-CEM cancer cells. PMID:25706057

  10. A prospective randomized comparison between two MRI studies of the small bowel in Crohn's disease, the oral contrast method and MR enteroclysis.

    PubMed

    Negaard, Anne; Paulsen, Vemund; Sandvik, Leiv; Berstad, Audun Elnaes; Borthne, Arne; Try, Kirsti; Lygren, Idar; Storaas, Tryggve; Klow, Nils-Einar

    2007-09-01

    The aim was to compare bowel distension and diagnostic properties of magnetic resonance imaging of the small bowel with oral contrast (MRI per OS) with magnetic resonance enteroclysis (MRE). Forty patients with suspected Crohn's disease (CD) were examined with both MRI methods. MRI per OS was performed with a 6% mannitol solution and MRE with nasojejunal intubation and a polyethylenglycol solution. MRI protocol consisted of balanced fast field echo (B-FFE), T2 and T1 sequences with and without gadolinium. Two experienced radiologists individually evaluated bowel distension and pathological findings including wall thickness (BWT), contrast enhancement (BWE), ulcer (BWU), stenosis (BWS) and edema (EDM). The diameter of the small bowel was smaller with MRI per OS than with MRE (difference jejunum: 0.55 cm, p < 0.001; ileum: 0.35 cm, p < 0.001, terminal ileum: 0.09 cm, p = 0.08). However, CD was diagnosed with high diagnostic accuracy (sensitivity, specificity, positive and negative predictive values: MRI per OS 88%, 89%, 89%, 89%; MRE 88%, 84%, 82%, 89%) and inter-observer agreement (MRI per OS k = 0.95; MRE k = 1). In conclusion, bowel distension was inferior in MRI per OS compared to MRE. However, both methods diagnosed CD with a high diagnostic accuracy and reproducibility. PMID:17483955

  11. Analysis of Blood Gadolinium in an Isotope Geochemist Following Contrast MRI

    NASA Astrophysics Data System (ADS)

    Wasylenki, L. E.

    2011-12-01

    Normal brain tissue does not have blood flowing throughout it; instead oxygen diffuses across a blood-brain barrier in order to oxygenate brain cells. Brain tumors, however, do grow blood supplies, so an abnormal distribution of blood in the brain is a key indicator of abnormal cell growth. But how is the distribution of blood in inside the brain observed? The lanthanide ion gadolinium(III) has unpaired 5f-shell electrons and is thus paramagnetic. As such, the presence of Gd causes the nuclei of nearby atoms to relax more quickly when excited to high-energy spin states by pulses of radio-frequency energy than they would without Gd nearby. The signal in magnetic resonance imaging correlates with this nuclear spin relaxation time, so gadolinium's presence in certain body tissues makes those tissues appear as bright areas on MRI images. Gadolinium is therefore commonly injected intravenously just prior to MRI imaging, so that the distribution of blood in and around the brain can be mapped. Gadolinium as a free ion is toxic, so it is injected in a relatively inert form, often as gadoversetamide, in which Gd is tightly bound in nine-fold coordination with N, C, and O. This compound is removed from the blood by the kidneys at a rate that is fast compared to the rate of breakdown of this compound in the blood, thus preventing release of toxic Gd in the bloodstream. But how quickly can the kidneys of an isotope geochemist remove Gd from blood? In this experiment, a single isotope geochemist's wristwatch was synchronized with that of the MRI technician and then left in a dressing room with all other magnetically susceptible objects until after the MRI. The time of intravenous injection of gadoversetamide into the isotopist was recorded by the technician and later transmitted verbally to the isotopist. Following the MRI session, blood samples were collected by self-fingerprick, in a Class 100 trace metal clean lab, from 47 to 281 minutes after intravenous injection. For each

  12. Use of Cationized Ferritin Nanoparticles to Measure Renal Glomerular Microstructure with MRI.

    PubMed

    Bennett, Kevin M; Beeman, Scott C; Baldelomar, Edwin J; Zhang, Min; Wu, Teresa; Hann, Bradley D; Bertram, John F; Charlton, Jennifer R

    2016-01-01

    Magnetic resonance imaging (MRI) is becoming important for whole-kidney assessment of glomerular morphology, both in vivo and ex vivo. MRI-based renal morphological measurements can be made in intact organs and allow direct measurements of every perfused glomerulus. Cationic ferritin (CF) is used as a superparamagnetic contrast agent for MRI. CF binds to the glomerular basement membrane after intravenous injection, allowing direct, whole-kidney measurements of glomerular number, volume, and volume distribution. Here we describe the production, testing, and use of CF as an MRI contrast agent for quantitative glomerular morphology in intact mouse, rat, and human kidneys. PMID:26676128

  13. Quantitative measurements of injections into porous media with contrast based MRI

    NASA Astrophysics Data System (ADS)

    Paulsen, J. L.; Donaldson, M. H.; Betancourt, S. S.; Song, Y.-Q.

    2011-09-01

    Porous flow occurs in a wide range of materials and applies to many commercially relevant applications such as oil recovery, chemical reactors and contaminant transport in soils. Typically, breakthrough and pressure curves of column floods are used in the laboratory characterization of these materials. These characterization methods lack the detail to easily and unambiguously resolve flow mechanisms with similar effects at the core scale that can dominate at the aquifer or oil field scale, as well as the effects of geometry that control the flow at interfaces as in a perforated well or the inlet of an improperly designed column. Non-invasive imaging techniques such as MRI have been shown to provide a far more detailed characterization of the properties of the solid matrix and flow, but usually focus on the intrinsic flow properties of porous media or matching a numerical model to a complex flow system. We show that these MRI techniques, utilizing paramagnetic tagging in combination with a carefully controlled and ideal flow system, can quantitatively characterize the effects of geometry and intrinsic flow properties for a point injection into a core. The use of a carefully controlled and 'idealized' system is essential to be able to isolate and match predicted effects from geometry and extract subtle flow processes omitted in the model that would be hidden in a more heterogeneous system. This approach provides not only a tool to understand the behavior of intentional boundary effects, but also one to diagnose the unintentional ones that often degrade the data from routine column flood measurements.

  14. Predicting response before initiation of neoadjuvant chemotherapy in breast cancer using new methods for the analysis of dynamic contrast enhanced MRI (DCE MRI) data

    NASA Astrophysics Data System (ADS)

    DeGrandchamp, Joseph B.; Whisenant, Jennifer G.; Arlinghaus, Lori R.; Abramson, V. G.; Yankeelov, Thomas E.; Cárdenas-Rodríguez, Julio

    2016-03-01

    The pharmacokinetic parameters derived from dynamic contrast enhanced (DCE) MRI have shown promise as biomarkers for tumor response to therapy. However, standard methods of analyzing DCE MRI data (Tofts model) require high temporal resolution, high signal-to-noise ratio (SNR), and the Arterial Input Function (AIF). Such models produce reliable biomarkers of response only when a therapy has a large effect on the parameters. We recently reported a method that solves the limitations, the Linear Reference Region Model (LRRM). Similar to other reference region models, the LRRM needs no AIF. Additionally, the LRRM is more accurate and precise than standard methods at low SNR and slow temporal resolution, suggesting LRRM-derived biomarkers could be better predictors. Here, the LRRM, Non-linear Reference Region Model (NRRM), Linear Tofts model (LTM), and Non-linear Tofts Model (NLTM) were used to estimate the RKtrans between muscle and tumor (or the Ktrans for Tofts) and the tumor kep,TOI for 39 breast cancer patients who received neoadjuvant chemotherapy (NAC). These parameters and the receptor statuses of each patient were used to construct cross-validated predictive models to classify patients as complete pathological responders (pCR) or non-complete pathological responders (non-pCR) to NAC. Model performance was evaluated using area under the ROC curve (AUC). The AUC for receptor status alone was 0.62, while the best performance using predictors from the LRRM, NRRM, LTM, and NLTM were AUCs of 0.79, 0.55, 0.60, and 0.59 respectively. This suggests that the LRRM can be used to predict response to NAC in breast cancer.

  15. Liver-specific agents for contrast-enhanced MRI: role in oncological imaging

    PubMed Central

    Thian, Yee Liang; Riddell, Angela M.

    2013-01-01

    Abstract Liver-specific magnetic resonance (MR) contrast agents are increasingly used in evaluation of the liver. They are effective in detection and morphological characterization of lesions, and can be useful for evaluation of biliary tree anatomy and liver function. The typical appearances and imaging pitfalls of various tumours at MR imaging performed with these agents can be understood by the interplay of pharmacokinetics of these contrast agents and transporter expression of the tumour. This review focuses on the applications of these agents in oncological imaging. PMID:24434892

  16. Validating a local Arterial Input Function method for improved perfusion quantification in stroke

    PubMed Central

    Willats, Lisa; Christensen, Soren; K Ma, Henry; A Donnan, Geoffrey; Connelly, Alan; Calamante, Fernando

    2011-01-01

    In bolus-tracking perfusion magnetic resonance imaging (MRI), temporal dispersion of the contrast bolus due to stenosis or collateral supply presents a significant problem for accurate perfusion quantification in stroke. One means to reduce the associated perfusion errors is to deconvolve the bolus concentration time-course data with local Arterial Input Functions (AIFs) measured close to the capillary bed and downstream of the arterial abnormalities causing dispersion. Because the MRI voxel resolution precludes direct local AIF measurements, they must be extrapolated from the surrounding data. To date, there have been no published studies directly validating these local AIFs. We assess the effectiveness of local AIFs in reducing dispersion-induced perfusion error by measuring the residual dispersion remaining in the local AIF deconvolved perfusion maps. Two approaches to locating the local AIF voxels are assessed and compared with a global AIF deconvolution across 19 bolus-tracking data sets from patients with stroke. The local AIF methods reduced dispersion in the majority of data sets, suggesting more accurate perfusion quantification. Importantly, the validation inherently identifies potential areas for perfusion underestimation. This is valuable information for the identification of at-risk tissue and management of stroke patients. PMID:21629260

  17. A potentially artifact-free oral contrast agent for gastrointestinal MRI.

    PubMed

    Liebig, T; Stoupis, C; Ros, P R; Ballinger, J R; Briggs, R W

    1993-11-01

    The combination of diamagnetic barium sulfate and superparamagnetic iron oxide (SPIO) in one suspension produces a macroscopic cancellation of positive and negative magnetic susceptibility components that can potentially eliminate susceptibility artifacts even with gradient echo pulse sequences. The relaxation properties that make the SPIO suspension a useful negative contrast agent are retained. PMID:8259066

  18. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. PMID:24211705

  19. Estimation of turbulent kinetic energy using 4D phase-contrast MRI: Effect of scan parameters and target vessel size.

    PubMed

    Ha, Hojin; Hwang, Dongha; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Baek, Jehyun; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-07-01

    Quantifying turbulence velocity fluctuation is important because it indicates the fluid energy dissipation of the blood flow, which is closely related to the pressure drop along the blood vessel. This study aims to evaluate the effects of scan parameters and the target vessel size of 4D phase-contrast (PC)-MRI on quantification of turbulent kinetic energy (TKE). Comprehensive 4D PC-MRI measurements with various velocity-encoding (VENC), echo time (TE), and voxel size values were carried out to estimate TKE distribution in stenotic flow. The total TKE (TKEsum), maximum TKE (TKEmax), and background noise level (TKEnoise) were compared for each scan parameter. The feasibility of TKE estimation in small vessels was also investigated. Results show that the optimum VENC for stenotic flow with a peak velocity of 125cm/s was 70cm/s. Higher VENC values overestimated the TKEsum by up to six-fold due to increased TKEnoise, whereas lower VENC values (30cm/s) underestimated it by 57.1%. TE and voxel size did not significantly influence the TKEsum and TKEnoise, although the TKEmax significantly increased as the voxel size increased. TKE quantification in small-sized vessels (3-5-mm diameter) was feasible unless high-velocity turbulence caused severe phase dispersion in the reference image. PMID:26968139

  20. Approaching the Kinetic Inertness of Macrocyclic Gadolinium(III)-Based MRI Contrast Agents with Highly Rigid Open-Chain Derivatives.

    PubMed

    Tircsó, Gyula; Regueiro-Figueroa, Martín; Nagy, Viktória; Garda, Zoltán; Garai, Tamás; Kálmán, Ferenc Krisztián; Esteban-Gómez, David; Tóth, Éva; Platas-Iglesias, Carlos

    2016-01-18

    A highly rigid open-chain octadentate ligand (H4 cddadpa) containing a diaminocylohexane unit to replace the ethylenediamine bridge of 6,6'-[(ethane-1,2 diylbis{(carboxymethyl)azanediyl})bis(methylene)]dipicolinic acid (H4 octapa) was synthesized. This structural modification improves the thermodynamic stability of the Gd(3+) complex slightly (log KGdL =20.68 vs. 20.23 for [Gd(octapa)](-) ) while other MRI-relevant parameters remain unaffected (one coordinated water molecule; relaxivity r1 =5.73 mm(-1)  s(-1) at 20 MHz and 295 K). Kinetic inertness is improved by the rigidifying effect of the diaminocylohexane unit in the ligand skeleton (half-life of dissociation for physiological conditions is 6 orders of magnitude higher for [Gd(cddadpa)](-) (t1/2 =1.49×10(5)  h) than for [Gd(octapa)](-) . The kinetic inertness of this novel chelate is superior by 2-3 orders of magnitude compared to non-macrocyclic MRI contrast agents approved for clinical use. PMID:26583317

  1. Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking

    PubMed Central

    Li, Li; Jiang, Wen; Luo, Kui; Song, Hongmei; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2013-01-01

    Stem cells hold great promise for the treatment of multiple human diseases and disorders. Tracking and monitoring of stem cells in vivo after transplantation can supply important information for determining the efficacy of stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be the most effective and safest non-invasive technique for stem cell tracking in living bodies. Commercial superparamagnetic iron oxide nanoparticles (SPIONs) in the aid of transfection agents (TAs) have been applied to labeling stem cells. However, owing to the potential toxicity of TAs, more attentions have been paid to develop novel SPIONs with specific surface coating or functional moieties which facilitate effective cell internalization in the absence of TAs. This review aims to summarize the recent progress in the design and preparation of SPIONs as cellular MRI probes, to discuss their applications and current problems facing in stem cell labeling and tracking, and to offer perspectives and solutions for the future development of SPIONs in this field. PMID:23946825

  2. Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains

    NASA Astrophysics Data System (ADS)

    Xie, Songbo; Zhang, Baolin; Wang, Lei; Wang, Jun; Li, Xuan; Yang, Gao; Gao, Fabao

    2015-01-01

    PEG and PEG/PEI modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) in poly (ethylene glycol) (PEG) containing poly (ethylene imine) (PEI) (0 or 0.3 g). PEG/PEI-SPIONs were coated with Tween 80 (PEG/PEI/Tween 80-SPIONs). Fourier transform infrared spectroscopy (FTIR) analyses indicated that PEG, PEG/PEI and PEG/PEI/Tween 80 were attached to the surfaces of the SPIONs. The PEG-SPIONs, PEG/PEI-SPIONs and PEG/PEI/Tween 80-SPIONs performed excellent colloidal stability in the phosphate buffered saline (PBS), and in deionized water with the mean hydrodynamic sizes of 19.5, 21.0, 24.0 nm and the zeta potentials of -5.0, 35.0, 19.0 mV, respectively. All the SPIONs showed low cytotoxicity assessed by the MTT assay. In vivo magnetic resonance imaging (MRI) of the Kunming (KM) mouse brains were performed, the PEG-SPIONs, PEG/PEI-SPIONs and PEG/PEI/Tween 80-SPIONs exhibited vascular imaging effects in bulbus olfactorius, frontal cortex, temporal, thalamus and brain stem of the mouse brains after 24 h intravenous injection of the nanoparticles. The SPIONs have potentials as MRI contrast agents in the mouse brains.

  3. Anatomical reconstructions of the human cardiac venous system using contrast-computed tomography of perfusion-fixed specimens.

    PubMed

    Spencer, Julianne; Fitch, Emily; Iaizzo, Paul A

    2013-01-01

    A detailed understanding of the complexity and relative variability within the human cardiac venous system is crucial for the development of cardiac devices that require access to these vessels. For example, cardiac venous anatomy is known to be one of the key limitations for the proper delivery of cardiac resynchronization therapy (CRT)(1) Therefore, the development of a database of anatomical parameters for human cardiac venous systems can aid in the design of CRT delivery devices to overcome such a limitation. In this research project, the anatomical parameters were obtained from 3D reconstructions of the venous system using contrast-computed tomography (CT) imaging and modeling software (Materialise, Leuven, Belgium). The following parameters were assessed for each vein: arc length, tortuousity, branching angle, distance to the coronary sinus ostium, and vessel diameter. CRT is a potential treatment for patients with electromechanical dyssynchrony. Approximately 10-20% of heart failure patients may benefit from CRT(2). Electromechanical dyssynchrony implies that parts of the myocardium activate and contract earlier or later than the normal conduction pathway of the heart. In CRT, dyssynchronous areas of the myocardium are treated with electrical stimulation. CRT pacing typically involves pacing leads that stimulate the right atrium (RA), right ventricle (RV), and left ventricle (LV) to produce more resynchronized rhythms. The LV lead is typically implanted within a cardiac vein, with the aim to overlay it within the site of latest myocardial activation. We believe that the models obtained and the analyses thereof will promote the anatomical education for patients, students, clinicians, and medical device designers. The methodologies employed here can also be utilized to study other anatomical features of our human heart specimens, such as the coronary arteries. To further encourage the educational value of this research, we have shared the venous models on our

  4. Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: relationship between structure and relaxivity.

    PubMed

    Csajbók, Eva; Bányai, István; Vander Elst, Luce; Muller, Robert N; Zhou, Wuzong; Peters, Joop A

    2005-08-01

    The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields. PMID:15929138

  5. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy

    PubMed Central

    Lim, Tze Yee; Stafford, R Jason; Kudchadker, Rajat J; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S; Frank, Steven J

    2014-01-01

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a CT image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic Resonance Imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 T and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures. PMID:24778352

  6. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy.

    PubMed

    Lim, Tze Yee; Stafford, R Jason; Kudchadker, Rajat J; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S; Frank, Steven J

    2014-05-21

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures. PMID:24778352

  7. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Lim, Tze Yee; Stafford, R. Jason; Kudchadker, Rajat J.; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S.; Frank, Steven J.

    2014-05-01

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures.

  8. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging.

    PubMed

    Martina, Marie-Sophie; Fortin, Jean-Paul; Ménager, Christine; Clément, Olivier; Barratt, Gillian; Grabielle-Madelmont, Cécile; Gazeau, Florence; Cabuil, Valérie; Lesieur, Sylviane

    2005-08-01

    Maghemite (gamma-Fe2O3) nanocrystals stable at neutral pH and in isotonic aqueous media were synthesized and encapsulated within large unilamellar vesicles of egg phosphatidylcholine (EPC) and distearoyl-SN-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000), 5 mol %), formed by film hydration coupled with sequential extrusion. The nonentrapped particles were removed by flash gel exclusion chromatography. The magnetic-fluid-loaded liposomes (MFLs) were homogeneous in size (195 +/- 33 hydrodynamic diameters from quasi-elastic light scattering). Iron loading was varied from 35 up to 167 Fe(III)/lipid mol %. Physical and superparamagnetic characteristics of the iron oxide particles were preserved after liposome encapsulation as shown by cryogenic transmission electron microscopy and magnetization curve recording. In biological media, MFLs were highly stable and avoided ferrofluid flocculation while being nontoxic toward the J774 macrophage cell line. Moreover, steric stabilization ensured by PEG-surface-grafting significantly reduced liposome association with the macrophages. The ratios of the transversal (r2) and longitudinal (r1) magnetic resonance (MR) relaxivities of water protons in MFL dispersions (6 < r2/r1 < 18) ranked them among the best T2 contrast agents, the higher iron loading the better the T2 contrast enhancement. Magnetophoresis demonstrated the possible guidance of MFLs by applying a magnetic field gradient. Mouse MR imaging assessed MFLs efficiency as contrast agents in vivo: MR angiography performed 24 h after intravenous injection of the contrast agent provided the first direct evidence of the stealthiness of PEG-ylated magnetic-fluid-loaded liposomes. PMID:16045355

  9. Biophysical features of MagA expression in mammalian cells: implications for MRI contrast

    PubMed Central

    Sengupta, Anindita; Quiaoit, Karina; Thompson, R. Terry; Prato, Frank S.; Gelman, Neil; Goldhawk, Donna E.

    2014-01-01

    We compared overexpression of the magnetotactic bacterial gene MagA with the modified mammalian ferritin genes HF + LF, in which both heavy and light subunits lack iron response elements. Whereas both expression systems have been proposed for use in non-invasive, magnetic resonance (MR) reporter gene expression, limited information is available regarding their relative potential for providing gene-based contrast. Measurements of MR relaxation rates in these expression systems are important for optimizing cell detection and specificity, for developing quantification methods, and for refinement of gene-based iron contrast using magnetosome associated genes. We measured the total transverse relaxation rate (R2*), its irreversible and reversible components (R2 and R2′, respectively) and the longitudinal relaxation rate (R1) in MDA-MB-435 tumor cells. Clonal lines overexpressing MagA and HF + LF were cultured in the presence and absence of iron supplementation, and mounted in a spherical phantom for relaxation mapping at 3 Tesla. In addition to MR measures, cellular changes in iron and zinc were evaluated by inductively coupled plasma mass spectrometry, in ATP by luciferase bioluminescence and in transferrin receptor by Western blot. Only transverse relaxation rates were significantly higher in iron-supplemented, MagA- and HF + LF-expressing cells compared to non-supplemented cells and the parental control. R2* provided the greatest absolute difference and R2′ showed the greatest relative difference, consistent with the notion that R2′ may be a more specific indicator of iron-based contrast than R2, as observed in brain tissue. Iron supplementation of MagA- and HF + LF-expressing cells increased the iron/zinc ratio approximately 20-fold, while transferrin receptor expression decreased approximately 10-fold. Level of ATP was similar across all cell types and culture conditions. These results highlight the potential of magnetotactic bacterial gene expression for

  10. Misleading changes of the signal intensity on opposed-phase MRI after injection of contrast medium

    SciTech Connect

    Heywang-Koebrunner, S.H.; Hoefer, H.; Spielmann, R.P.

    1996-03-01

    The effect of opposed-phase imaging on the interpretation of MR contrast studies is highlighted. A model calculation is performed. It demonstrates the change of signal intensity of an average tumor before and after application of Gd-DTPA on an in-phase and an opposed-phase image, depending on the percentage of fat within the voxels. The effect is then demonstrated, using a small cotton stick soaked with water or a solution of contrast agent representing a tumor before and after i.v. application of Gd-DTPA. If an average enhancing tumor, which is surrounded by fat, occupies less than 50-60% of the slice thickness, it becomes undetectable on opposed-phase images. The reason is that due to signal cancellation on the the opposed image, no signal change or even signal decrease results, while signal increase is visible on the in-phase image. In those areas of the body where significant partial volume of a tumor with fat may occur (such as for breast tumors growing along ducts, which are surrounded by fat), severe errors can result. Therefore we explicitly warn from using opposed-image sequences for MR contrast studies. 14 ref.s, 4 figs.

  11. Quantification of hepatic blood flow using a high-resolution phase-contrast MRI sequence with compressed sensing acceleration.

    PubMed

    Dyvorne, Hadrien A; Knight-Greenfield, Ashley; Besa, Cecilia; Cooper, Nancy; Garcia-Flores, Julio; Schiano, Thomas D; Markl, Michael; Taouli, Bachir

    2015-03-01

    OBJECTIVE. The objective of our study was to evaluate the performance of a high-spatial-resolution 2D phase-contrast (PC) MRI technique accelerated with compressed sensing for portal vein (PV) and hepatic artery (HA) flow quantification in comparison with a standard PC MRI sequence. SUBJECTS AND METHODS. In this prospective study, two PC MRI sequences were compared, one with parallel imaging acceleration and low spatial resolution (generalized autocalibrating partial parallel acquisition [GRAPPA]) and one with compressed sensing acceleration and high spatial resolution (sparse). Seventy-six patients were assessed, including 37 patients with cirrhosis. Two observers evaluated PC image quality. Quantitative analyses yielded a mean velocity, flow, and vessel area for the PV and HA and an arterial fraction. The PC techniques were compared using the paired Wilcoxon test and Bland-Altman statistics. The sensitivity of the flow parameters to the severity of cirrhosis was also assessed. RESULTS. Vessel delineation was significantly improved using the PC sparse sequence (p < 0.034). For both in vitro and in vivo measurements, PC sparse yielded lower estimates for vessel area and flow, and larger differences between PC GRAPPA and PC sparse were observed in the HA. PV velocity and flow were significantly lower in patients with cirrhosis on both PC sparse (p < 0.001 and p = 0.042, respectively) and PC GRAPPA (p < 0.001 and p = 0.005, respectively). PV velocity correlated negatively with Child-Pugh class (r = -0.50, p < 0.001), whereas the arterial fraction measured with PC sparse was higher in patients with Child-Pugh class B or C disease than in those with Child-Pugh class A disease, with a trend toward significance (p = 0.055). CONCLUSION. A high-spatial-resolution highly accelerated compressed sensing technique (PC sparse) allows total hepatic blood flow measurements obtained in 1 breath-hold, provides improved delineation of the hepatic vessels compared with a standard PC

  12. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents

  13. Surfactant-free Gd3+-ion-containing carbon nanotube MRI contrast agents for stem cell labeling

    NASA Astrophysics Data System (ADS)

    Gizzatov, Ayrat; Hernández-Rivera, Mayra; Keshishian, Vazrik; Mackeyev, Yuri; Law, Justin J.; Guven, Adem; Sethi, Richa; Qu, Feifei; Muthupillai, Raja; Cabreira-Hansen, Maria Da Graça; Willerson, James T.; Perin, Emerson C.; Ma, Qing; Bryant, Robert G.; Wilson, Lon J.

    2015-07-01

    There is an ever increasing interest in developing new stem cell therapies. However, imaging and tracking stem cells in vivo after transplantation remains a serious challenge. In this work, we report new, functionalized and high-performance Gd3+-ion-containing ultra-short carbon nanotube (US-tube) MRI contrast agent (CA) materials which are highly-water-dispersible (ca. 35 mg ml-1) without the need of a surfactant. The new materials have extremely high T1-weighted relaxivities of 90 (mM s)-1 per Gd3+ ion at 1.5 T at room temperature and have been used to safely label porcine bone-marrow-derived mesenchymal stem cells for MR imaging. The labeled cells display excellent image contrast in phantom imaging experiments, and TEM images of the labeled cells, in general, reveal small clusters of the CA material located within the cytoplasm with 109 Gd3+ ions per cell.There is an ever increasing interest in developing new stem cell therapies. However, imaging and tracking stem cells in vivo after transplantation remains a serious challenge. In this work, we report new, functionalized and high-performance Gd3+-ion-containing ultra-short carbon nanotube (US-tube) MRI contrast agent (CA) materials which are highly-water-dispersible (ca. 35 mg ml-1) without the need of a surfactant. The new materials have extremely high T1-weighted relaxivities of 90 (mM s)-1 per Gd3+ ion at 1.5 T at room temperature and have been used to safely label porcine bone-marrow-derived mesenchymal stem cells for MR imaging. The labeled cells display excellent image contrast in phantom imaging experiments, and TEM images of the labeled cells, in general, reveal small clusters of the CA material located within the cytoplasm with 109 Gd3+ ions per cell. Electronic supplementary information (ESI) available: NMRD profiles, the Fourier transforms of the EXAFS data, EXAFS curve fitting data, cell viability data. See DOI: 10.1039/c5nr02078f

  14. Positive contrast technique for the detection and quantification of superparamagnetic iron oxide nanoparticles in MRI.

    PubMed

    Zhao, Qun; Langley, Jason; Lee, Sunbok; Liu, Wei

    2011-06-01

    In vivo detection and quantification of cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles has been attracting increasing attention. In particular, positive contrast methods, such as susceptibility gradient mapping (SGM) and phase gradient mapping (PGM), have been proposed for the improved detection of SPIO nanoparticles. In this study, a different implementation of the PGM method is introduced; it calculates the phase gradient in the image space using a fast Fourier transform without the need for phase unwrapping. We first compared positive contrast generation between the PGM and SGM methods, which estimates the susceptibility gradient in k space through echo shift measurements. Next, PGM was applied to quantify SPIO concentrations by fitting the resulting phase gradient maps to those of a theoretical model. MR experiments were conducted using a 3-T magnet scanner to acquire two datasets: the first was acquired from a gelatin phantom with three SPIO-doped vials of different concentrations, and the second was obtained in vivo from a nude rat with SPIO-labeled C6 glioma cells implanted in the flanks. The sensitivity of the PGM and SGM methods was compared using various factors, including different SPIO concentrations, TEs and signal-to-noise ratios. Based on the theoretical model of an infinite cylinder, the results demonstrated that, without loss of spatial resolution, the PGM method presents positive contrast maps with a higher sensitivity than SGM at medium and low SPIO concentrations, whereas SGM is more sensitive than PGM at longer TEs. The quantification of SPIO concentrations using the phantom dataset was also reported. On the basis of the same infinite cylinder model, it was shown that the PGM method provides an accurate estimation of SPIO concentration. PMID:20931569

  15. Intracranial Hypertension as an Acute Complication of Aseptic Meningoencephalitis with Leptomeningeal Contrast Enhancement on FLAIR MRI

    PubMed Central

    Wolf, Marc E.; Eisele, Philipp; Schweizer, Yvonne; Alonso, Angelika; Gass, Achim; Hennerici, Michael G.; Szabo, Kristina

    2016-01-01

    We report a case of a 19-year-old woman who developed intracranial hypertension as an unusual clinical complication of severe aseptic meningoencephalitis probably due to a diminished cerebrospinal fluid reabsorption capacity or leptomeningeal transudation as a consequence of blood-brain barrier dysfunction. These severe inflammatory changes were accompanied by prominent leptomeningeal contrast enhancement best visualized on fluid-attenuated inversion recovery magnetic resonance imaging. In such a prolonged course, a continuous lumbar drainage might be a temporary option to provide rapid symptom relief to the patient. PMID:26889150

  16. A novel method for viability assessment by cinematographic and late contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Cockshott, Paul W.; Martin, Thomas N.; Foster, John E.; Elliott, Alex; Dargie, Henry; Groenning, Bjoern A.

    2004-04-01

    Using cardiac magnetic resonance (MR) imaging, a combination of late contrast enhanced MR (ceMR) and cinematographic (CINE) images, a myocardial viability score can be derived. At present this score is produced by visual evaluation of wall motion abnormalities in combination with presence or absence of late hyper enhancement (LE) on ceMR. We set out to develop and validate image processing techniques derived from stereo vision capable of reducing the observer dependence and improving accuracy in the diagnosis of viable myocardium.

  17. Intracranial Hypertension as an Acute Complication of Aseptic Meningoencephalitis with Leptomeningeal Contrast Enhancement on FLAIR MRI.

    PubMed

    Wolf, Marc E; Eisele, Philipp; Schweizer, Yvonne; Alonso, Angelika; Gass, Achim; Hennerici, Michael G; Szabo, Kristina

    2016-01-01

    We report a case of a 19-year-old woman who developed intracranial hypertension as an unusual clinical complication of severe aseptic meningoencephalitis probably due to a diminished cerebrospinal fluid reabsorption capacity or leptomeningeal transudation as a consequence of blood-brain barrier dysfunction. These severe inflammatory changes were accompanied by prominent leptomeningeal contrast enhancement best visualized on fluid-attenuated inversion recovery magnetic resonance imaging. In such a prolonged course, a continuous lumbar drainage might be a temporary option to provide rapid symptom relief to the patient. PMID:26889150

  18. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    SciTech Connect

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.; Botta, Mauro; Francis, Matthew B.; Aime, Silvio; Raymond, Kenneth N.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) there is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.

  19. Superparamagnetic iron oxide nanoparticles for MRI: contrast media pharmaceutical company R&D perspective.

    PubMed

    Corot, Claire; Warlin, David

    2013-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are a relatively large class of contrast agents for magnetic resonance imaging. According to their biodistribution, distinct classes of SPIO nanoparticles have been investigated for clinical applications either as macrophage imaging agents or blood pool agents. Contrast agents which are pharmaceutics followed the same development rules as therapeutic drugs. Several drawbacks such as clinical development difficulties, organization of market access and imaging technological developments have limited the widespread use of these products. SPIO nanoparticles that are composed of thousands iron atoms providing large T2* effects are particularly suitable for theranostic. Stem cell migration and immune cell trafficking, as well as targeted SPIO nanoparticles for molecular imaging studies are mainly at the stage of proof of concept. A major economic challenge in the development of molecular imaging associated with a therapeutic treatment/procedure is to define innovative business models compatible with the needs of all players taking into account that theranostic solutions are promising to optimize resource allocation and ensure that expensive treatments are prescribed to responding patients. PMID:23633290

  20. Gadolinium-containing MRI contrast agents: important variations on a theme for NSF.

    PubMed

    Kuo, Phillip H

    2008-01-01

    Millions of doses of gadolinium-based contrast agents (GBCAs) are administered annually to improve the clinical utility of magnetic resonance imaging. All the approved agents incorporate one atom of the rare earth metal gadolinium into a chelate to improve the safety of the ordinarily toxic free gadolinium. The undeniable epidemiologic link between GBCAs and nephrogenic systemic fibrosis (NSF) has prompted renewed investigation into the different chemical properties of the GBCAs despite their clinical interchangeability. Gadolinium-based contrast agents can be divided into different categories: linear versus macrocyclic structure, ionic versus nonionic, and non-protein-binding versus protein-binding agents. The GBCAs differ significantly with respect to transmetallation and kinetic and thermodynamic stability and therefore their propensity to release free gadolinium, which is hypothesized to induce NSF. That gadodiamide, with its susceptibility to transmetallation and relatively low thermodynamic and kinetic stability, is associated with the most cases of NSF supports this hypothesis. On the other hand, the greater stability of a macrocyclic agent hypothetically would confer a greater safety margin with regard to NSF. Because few published data on an experimental model of NSF exist, continuing vigilance is necessary to report new cases of NSF, especially with regard to the agents with small market share. PMID:18180006

  1. Hepatic schwannoma: imaging findings on CT, MRI and contrast-enhanced ultrasonography.

    PubMed

    Ota, Yu; Aso, Kazunobu; Watanabe, Kenji; Einama, Takahiro; Imai, Koji; Karasaki, Hidenori; Sudo, Ryuji; Tamaki, Yosui; Okada, Mituyoshi; Tokusashi, Yosihiko; Kono, Toru; Miyokawa, Naoyuki; Haneda, Masakazu; Taniguchi, Masahiko; Furukawa, Hiroyuki

    2012-09-21

    A primary benign schwannoma of the liver is extremely rare and is difficult to preoperatively discriminate from a malignant tumor. We compared the imaging and pathological findings, and examined the possibility of preoperatively diagnosing a benign liver schwannoma. A 72-year-old woman was admitted to our hospital because of a 4.6-cm mass in the liver. A malignant tumor was suspected, and a right hepatectomy was performed. After this, the diagnosis of a primary benign schwannoma of the liver was made through pathological examination. Contrast-enhanced ultrasonography (CEUS) with Sonazoid showed minute blood flows into the septum and solid areas of the tumor in the vascular phase; most likely due to increased arterial flow associated with infiltration of chronic inflammatory cells. In the postvascular phase, CEUS showed contrast defect of cystic areas and delayed enhancement of solid areas; most likely due to aggregation of siderophores. Because discriminating between a benign and malignant schwannoma of the liver is difficult, surgery is generally recommended. However, the two key findings from CEUS may be useful in discriminating ancient schwannoma by recognizing the hemorrhage involved in the secondary degeneration and aggregation of siderophores. PMID:23002371

  2. Hepatic schwannoma: Imaging findings on CT, MRI and contrast-enhanced ultrasonography

    PubMed Central

    Ota, Yu; Aso, Kazunobu; Watanabe, Kenji; Einama, Takahiro; Imai, Koji; Karasaki, Hidenori; Sudo, Ryuji; Tamaki, Yosui; Okada, Mituyoshi; Tokusashi, Yosihiko; Kono, Toru; Miyokawa, Naoyuki; Haneda, Masakazu; Taniguchi, Masahiko; Furukawa, Hiroyuki

    2012-01-01

    A primary benign schwannoma of the liver is extremely rare and is difficult to preoperatively discriminate from a malignant tumor. We compared the imaging and pathological findings, and examined the possibility of preoperatively diagnosing a benign liver schwannoma. A 72-year-old woman was admitted to our hospital because of a 4.6-cm mass in the liver. A malignant tumor was suspected, and a right hepatectomy was performed. After this, the diagnosis of a primary benign schwannoma of the liver was made through pathological examination. Contrast-enhanced ultrasonography (CEUS) with Sonazoid showed minute blood flows into the septum and solid areas of the tumor in the vascular phase; most likely due to increased arterial flow associated with infiltration of chronic inflammatory cells. In the postvascular phase, CEUS showed contrast defect of cystic areas and delayed enhancement of solid areas; most likely due to aggregation of siderophores. Because discriminating between a benign and malignant schwannoma of the liver is difficult, surgery is generally recommended. However, the two key findings from CEUS may be useful in discriminating ancient schwannoma by recognizing the hemorrhage involved in the secondary degeneration and aggregation of siderophores. PMID:23002371

  3. High relaxivity MRI contrast agents part 2: Optimization of inner- and second-sphere relaxivity

    PubMed Central

    Jacques, Vincent; Dumas, Stephane; Sun, Wei-Chuan; Troughton, Jeffrey S.; Greenfield, Matthew T.; Caravan, Peter

    2011-01-01

    Rationale and objectives The observed relaxivity of gadolinium based contrast agents has contributions from the water molecule(s) that bind directly to the gadolinium ion (inner-sphere water), long lived water molecules and exchangeable protons that make up the second-sphere of coordination, and water molecules that diffuse near the contrast agent (outer-sphere). Inner- and second-sphere relaxivity can both be increased by optimization of the lifetimes of the water molecules and protons in these coordination spheres, the rotational motion of the complex, and the electronic relaxation of the gadolinium ion. We sought to identify new high relaxivity contrast agents by systematically varying the donor atoms that bind directly to gadolinium to increase inner-sphere relaxivity and concurrently including substituents that influence the second-sphere relaxivity. Methods Twenty GdDOTA derivatives were prepared and their relaxivity determined in presence and absence of human serum albumin as a function of temperature and magnetic field. Data was analyzed to extract the underlying molecular parameters influencing relaxivity. Each compound had a common albumin-binding group and an inner-sphere donor set comprising the 4 tertiary amine N atoms from cyclen, an α-substituted acetate oxygen atom, two amide oxygen atoms, an inner-sphere water oxygen atom, and a variable donor group. Each amide nitrogen was substituted with different groups to promote hydrogen bonding with second-sphere water molecules. Results Relaxivites at 0.47T and 1.4T, 37 °C, in serum albumin ranged from 16.0 to 58.1 mM−1s−1 and from 12.3 to 34.8 mM−1s−1 respectively. The reduction of inner-sphere water exchange typical of amide donor groups could be offset by incorporating a phosphonate or phenolate oxygen atom donor in the first coordination sphere resulting in higher relaxivity. Amide nitrogen substitution with pendant phosphonate or carboxylate groups increased relaxivity by as much as 88

  4. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging

    PubMed Central

    Fox, Matthew S.; Gaudet, Jeffrey M.; Foster, Paula J.

    2015-01-01

    Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements. PMID:27042089

  5. Introduction of Peripheral Carboxylates to Decrease the Charge on Tm(3+) DOTAM-Alkyl Complexes: Implications for Detection Sensitivity and in Vivo Toxicity of PARACEST MRI Contrast Agents.

    PubMed

    Suchý, Mojmír; Milne, Mark; Elmehriki, Adam A H; McVicar, Nevin; Li, Alex X; Bartha, Robert; Hudson, Robert H E

    2015-08-27

    A series of structurally modified Tm(3+) DOTAM-alkyl complexes as potential PARACEST MRI contrast agents has been synthesized with the aim to decrease the overall positive charge associated with these molecules and increase their biocompatibility. Two types of structural modification have been performed, an introduction of terminal carboxylate arms to the alkyl side chains and a conjugation of one of the alkyl side chains with aspartic acid. Detailed evaluation of the magnetic resonance imaging chemical exchange contrast associated with the structurally modified contrast agents has been performed. In contrast to the acutely toxic Tm(3+) DOTAM-alkyl complexes, the structurally modified compounds were found to be tolerated well during in vivo MRI studies in mice; however, only the aspartic acid modified chelates produced an amide proton-based PARACEST signal. PMID:26214576

  6. Automated Determination of Arterial Input Function for Dynamic Susceptibility Contrast MRI from Regions around Arteries Using Independent Component Analysis

    PubMed Central

    Lai, Jui-Jen; Chang, Chin-Ching

    2016-01-01

    Purpose. Quantitative cerebral blood flow (CBF) measurement using dynamic susceptibility contrast- (DSC-) MRI requires accurate estimation of the arterial input function (AIF). The present work utilized the independent component analysis (ICA) method to determine the AIF in the regions adjacent to the middle cerebral artery (MCA) by the alleviated confounding of partial volume effect. Materials and Methods. A series of spin-echo EPI MR scans were performed in 10 normal subjects. All subjects received 0.2 mmol/kg Gd-DTPA contrast agent. AIFs were calculated by two methods: (1) the region of interest (ROI) selected manually and (2) weighted average of each component selected by ICA (weighted-ICA). The singular value decomposition (SVD) method was then employed to deconvolve the AIF from the tissue concentration time curve to obtain quantitative CBF values. Results. The CBF values calculated by the weighted-ICA method were 41.1 ± 4.9 and 22.1 ± 2.3 mL/100 g/min for cortical gray matter (GM) and deep white matter (WM) regions, respectively. The CBF values obtained based on the manual ROIs were 53.6 ± 12.0 and 27.9 ± 5.9 mL/100 g/min for the same two regions, respectively. Conclusion. The weighted-ICA method allowed semiautomatic and straightforward extraction of the ROI adjacent to MCA. Through eliminating the partial volume effect to minimum, the CBF thus determined may reflect more accurate physical characteristics of the T2⁎ signal changes induced by the contrast agent. PMID:27547451

  7. Automated Determination of Arterial Input Function for Dynamic Susceptibility Contrast MRI from Regions around Arteries Using Independent Component Analysis.

    PubMed

    Chen, Sharon; Tyan, Yu-Chang; Lai, Jui-Jen; Chang, Chin-Ching

    2016-01-01

    Purpose. Quantitative cerebral blood flow (CBF) measurement using dynamic susceptibility contrast- (DSC-) MRI requires accurate estimation of the arterial input function (AIF). The present work utilized the independent component analysis (ICA) method to determine the AIF in the regions adjacent to the middle cerebral artery (MCA) by the alleviated confounding of partial volume effect. Materials and Methods. A series of spin-echo EPI MR scans were performed in 10 normal subjects. All subjects received 0.2 mmol/kg Gd-DTPA contrast agent. AIFs were calculated by two methods: (1) the region of interest (ROI) selected manually and (2) weighted average of each component selected by ICA (weighted-ICA). The singular value decomposition (SVD) method was then employed to deconvolve the AIF from the tissue concentration time curve to obtain quantitative CBF values. Results. The CBF values calculated by the weighted-ICA method were 41.1 ± 4.9 and 22.1 ± 2.3 mL/100 g/min for cortical gray matter (GM) and deep white matter (WM) regions, respectively. The CBF values obtained based on the manual ROIs were 53.6 ± 12.0 and 27.9 ± 5.9 mL/100 g/min for the same two regions, respectively. Conclusion. The weighted-ICA method allowed semiautomatic and straightforward extraction of the ROI adjacent to MCA. Through eliminating the partial volume effect to minimum, the CBF thus determined may reflect more accurate physical characteristics of the T2(⁎) signal changes induced by the contrast agent. PMID:27547451

  8. Joint estimation of shape and deformation for the detection of lesions in dynamic contrast-enhanced breast MRI

    NASA Astrophysics Data System (ADS)

    Hong, Byung-Woo

    2013-11-01

    We propose a mathematical framework for simultaneously delineating the boundary of object and estimating its temporal motion in the application of lesion detection in a dynamic contrast-enhanced (DCE) breast MRI sequence where both the appearance and the shape of region of interest is assumed to change in time. A unified energy functional for a joint segmentation and registration is proposed based on the assumption that the statistical properties of dynamic intensity curves within a region of interest are homogeneous. Our algorithm is designed to provide the morphological properties of the enhanced region and its dynamic intensity profiles, called kinetic signatures, in the analysis of DCE imagery since these features are considered as significant cues in understanding images. The proposed energy comprises a combination of a segmentation energy and a registration energy. The segmentation energy is developed based on a convex formulation being insensitive to the initialization. The registration energy is designed to compensate motion artifacts that are usually involved in the temporal imaging procedure. The major objective of this work is to provide a mathematical framework for a joint segmentation and registration on a dynamic sequence of images, and we demonstrate the mutual benefit of the estimation of temporal deformations for the registration step and the localization of regions of interest for the segmentation step. The effectiveness of the developed algorithm has been demonstrated on a number of clinical DCE breast MRI data in the application of breast lesion detection and the results show its potential to improve the accuracy and the efficiency in the diagnosis of breast cancer.

  9. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols.

    PubMed

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O; Schmidt, Maria A

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials. PMID:26605957

  10. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  11. Joint estimation of shape and deformation for the detection of lesions in dynamic contrast-enhanced breast MRI.

    PubMed

    Hong, Byung-Woo

    2013-11-01

    We propose a mathematical framework for simultaneously delineating the boundary of object and estimating its temporal motion in the application of lesion detection in a dynamic contrast-enhanced (DCE) breast MRI sequence where both the appearance and the shape of region of interest is assumed to change in time. A unified energy functional for a joint segmentation and registration is proposed based on the assumption that the statistical properties of dynamic intensity curves within a region of interest are homogeneous. Our algorithm is designed to provide the morphological properties of the enhanced region and its dynamic intensity profiles, called kinetic signatures, in the analysis of DCE imagery since these features are considered as significant cues in understanding images. The proposed energy comprises a combination of a segmentation energy and a registration energy. The segmentation energy is developed based on a convex formulation being insensitive to the initialization. The registration energy is designed to compensate motion artifacts that are usually involved in the temporal imaging procedure. The major objective of this work is to provide a mathematical framework for a joint segmentation and registration on a dynamic sequence of images, and we demonstrate the mutual benefit of the estimation of temporal deformations for the registration step and the localization of regions of interest for the segmentation step. The effectiveness of the developed algorithm has been demonstrated on a number of clinical DCE breast MRI data in the application of breast lesion detection and the results show its potential to improve the accuracy and the efficiency in the diagnosis of breast cancer. PMID:24140912

  12. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols

    NASA Astrophysics Data System (ADS)

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O.; Schmidt, Maria A.

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials.

  13. Value of Dynamic Contrast-Enhanced MRI to Detect Local Tumor Recurrence in Primary Head and Neck Cancer Patients.

    PubMed

    Choi, Young Jun; Lee, Jeong Hyun; Sung, Yu Sub; Yoon, Ra Gyoung; Park, Ji Eun; Nam, Soon Yuhl; Baek, Jung Hwan

    2016-05-01

    Treatment failures in head and neck cancer patients are mainly related to locoregional tumor recurrence. The objective of the present study was to evaluate the diagnostic accuracy of model-free dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to detect local recurrence during the surveillance of head and neck cancer patients.Our retrospective study enrolled 24 patients with primary head and neck cancer who had undergone definitive treatment. Patients were grouped into local recurrence (n = 12) or posttreatment change (n = 12) groups according to the results of biopsy or clinicoradiologic follow-up. The types of time-signal intensity (TSI) curves were classified as follows: "progressive increment" as type I, "plateau" as type II, and "washout" as type III. TSI curve types and their parameters (i.e., wash-in, Emax, Tmax, area under the curve [AUC]60, AUC90, and AUC120) were compared between the 2 study groups.The distributions of TSI curve types for local recurrence versus posttreatment change were statistically significant (P < 0.001) (i.e., 0% vs 83.3% for type I, 58.3% vs 16.7% for type II, and 41.7% vs 0% for type III). There were statistically significant differences in Emax, Tmax, and all of the AUC parameters between 2 groups (P < 0.0083 [0.05/6]). Receiver operating characteristic (ROC) curve analyses indicated that the TSI curve type was the best predictor of local recurrence with a sensitivity of 100% (95% CI, 73.5-100.0) and a specificity of 83.3% (95% CI, 51.6-97.9) (cutoff with type II).Model-free DCE-MRI using TSI curves and TSI curve-derived parameters detects local recurrence in head and neck cancer patients with a high diagnostic accuracy. PMID:27175712

  14. Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise

    PubMed Central

    Majeed, Waqas; Avison, Malcolm J.

    2014-01-01

    Independent component analysis (ICA) has been successfully utilized for analysis of functional MRI (fMRI) data for task related as well as resting state studies. Although it holds the promise of becoming an unbiased data-driven analysis technique, a few choices have to be made prior to performing ICA, selection of a method for determining the number of independent components (nIC) being one of them. Choice of nIC has been shown to influence the ICA maps, and various approaches (mostly relying on information theoretic criteria) have been proposed and implemented in commonly used ICA analysis packages, such as MELODIC and GIFT. However, there has been no consensus on the optimal method for nIC selection, and many studies utilize arbitrarily chosen values for nIC. Accurate and reliable determination of true nIC is especially important in the setting where the signals of interest contribute only a small fraction of the total variance, i.e. very low contrast-to-noise ratio (CNR), and/or very focal response. In this study, we evaluate the performance of different model order selection criteria and demonstrate that the model order selected based upon bootstrap stability of principal components yields more reliable and accurate estimates of model order. We then demonstrate the utility of this fully data-driven approach to detect weak and focal stimulus-driven responses in real data. Finally, we compare the performance of different multi-run ICA approaches using pseudo-real data. PMID:24788636

  15. SU-D-303-03: Impact of Uncertainty in T1 Measurements On Quantification of Dynamic Contrast Enhanced MRI

    SciTech Connect

    Aryal, M; Cao, Y

    2015-06-15

    Purpose: Quantification of dynamic contrast enhanced (DCE) MRI requires native longitudinal relaxation time (T1) measurement. This study aimed to assess uncertainty in T1 measurements using two different methods. Methods and Materials: Brain MRI scans were performed on a 3T scanner in 9 patients who had low grade/benign tumors and partial brain radiotherapy without chemotherapy at pre-RT, week-3 during RT (wk-3), end-RT, and 1, 6 and 18 months after RT. T1-weighted images were acquired using gradient echo sequences with 1) 2 different flip angles (50 and 150), and 2) 5 variable TRs (100–2000ms). After creating quantitative T1 maps, average T1 was calculated in regions of interest (ROI), which were distant from tumors and received a total of accumulated radiation doses < 5 Gy at wk-3. ROIs included left and right normal Putamen and Thalamus (gray matter: GM), and frontal and parietal white matter (WM). Since there were no significant or even a trend of T1 changes from pre-RT to wk-3 in these ROIs, a relative repeatability coefficient (RC) of T1 as a measure of uncertainty was estimated in each ROI using the data pre-RT and at wk-3. The individual T1 changes at later time points were evaluated compared to the estimated RCs. Results: The 2-flip angle method produced small RCs in GM (9.7–11.7%) but large RCs in WM (12.2–13.6%) compared to the saturation-recovery (SR) method (11.0–17.7% for GM and 7.5–11.2% for WM). More than 81% of individual T1 changes were within T1 uncertainty ranges defined by RCs. Conclusion: Our study suggests that the impact of T1 uncertainty on physiological parameters derived from DCE MRI is not negligible. A short scan with 2 flip angles is able to achieve repeatability of T1 estimates similar to a long scan with 5 different TRs, and is desirable to be integrated in the DCE protocol. Present study was supported by National Institute of Health (NIH) under grant numbers; UO1 CA183848 and RO1 NS064973.

  16. Non-ionic Gd-based MRI contrast agents are optimal for encapsulation into phosphatidyldiglycerol-based thermosensitive liposomes.

    PubMed

    Hossann, Martin; Wang, Tungte; Syunyaeva, Zulfiya; Wiggenhorn, Michael; Zengerle, Anja; Issels, Rolf D; Reiser, Maximilian; Lindner, Lars H; Peller, Michael

    2013-02-28

    Thermosensitive liposomes (TSL) with encapsulated magnetic resonance imaging (MRI) longitudinal relaxation time (T(1)) contrast agents (CAs) have been proposed for MRI assisted interventional thermotherapy in solid tumors. Here the feasibility of 6 clinically approved CAs (Gd-DTPA, Gd-BOPTA, Gd-DOTA, Gd-BT-DO3A, Gd-DTPA-BMA, and Gd-HP-DO3A) for formulation into TSL was investigated. CAs were passively encapsulated with 323 mOs kg(-1) into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol 50/20/30 (mol/mol) TSL (DPPG(2)-TSL) to obtain stable formulations. T(1) relaxivity (r(1)) and diffusive permeability to water (P(d)) across the membrane were determined. Shelf life at 4°C was investigated by determining lysolipid content up to 10 weeks after preparation. All preparations were monodispersed with comparable small vesicle sizes (~135 nm). Neither zeta potential nor phase transition temperature (T(m)) was affected by the CA. The formulations showed an increase in r(1) in the temperature range between 38 and 44°C. This correlated with the phase transition. Change in r(1) (Δr(1)=r(1)(45.3°C)-r(1)(37.6°C)) and r(1) (TMRI signal at 30°C by increasing P(d). A high concentration of encapsulated CA is a prerequisite to achieve a sufficiently high Δr(1) during heat triggered CA release combined with a low r(1) at 37°C. Hence, the optimal CA is characterized by a non-ionic structure and a low contribution to osmolality. PMID:23246469

  17. Simultaneous in vivo pH and temperature mapping using a PARACEST-MRI contrast agent.

    PubMed

    McVicar, Nevin; Li, Alex X; Suchý, Mojmír; Hudson, Robert H E; Menon, Ravi S; Bartha, Robert

    2013-10-01

    Altered tissue temperature and/or pH is a common feature in pathological conditions, where metabolic demand exceeds oxygen supply such as in tumors and following stroke. Therefore, in vivo tissue temperature and pH may become valuable biomarkers for disease detection and the monitoring of disease progression or treatment response in conditions with altered metabolic demand. In this study, pH is measured using the amide protons of a thulium (Tm(3+)) complex with a DOTAM-Glycine-Lysine (ligand: Tm(3+)-DOTAM-Gly-Lys). The pH was uniquely determined from the linewidth of the asymmetry curve of the chemical exchange saturation transfer spectrum, independent of contrast agent concentration, or temperature for a given saturation pulse. pH maps with an inter-pixel standard deviation of less than 0.1 pH units were obtained in 10 mM Tm(3+)-DOTAM-Gly-Lys solutions with pH ranging from 6.0 to 8.0 pH units at 37°C. Temperature maps were simultaneously obtained using the chemical shift of the chemical exchange saturation transfer peak. Temperature and pH maps are demonstrated in the mouse leg (N = 3), where the mean and standard deviation for pH was 7.2 ± 0.2 pH unit and temperature was 37.4 ± 0.5°C. PMID:23165779

  18. Electrospun Contrast-Agent-Loaded Fibers for Colon-Targeted MRI.

    PubMed

    Jin, Miao; Yu, Deng-Guang; Wang, Xia; Geraldes, Carlos F G C; Williams, Gareth R; Bligh, S W Annie

    2016-04-01

    Magnetic resonance imaging is a diagnostic tool used for detecting abnormal organs and tissues, often using Gd(III) complexes as contrast-enhancing agents. In this work, core-shell polymer fibers have been prepared using coaxial electrospinning, with the intent of delivering gadolinium (III) diethylenetriaminepentaacetate hydrate (Gd(DTPA)) selectively to the colon. The fibers comprise a poly(ethylene oxide) (PEO) core loaded with Gd(DTPA), and a Eudragit S100 shell. They are homogeneous, with distinct core-shell phases. The components in the fibers are dispersed in an amorphous fashion. The proton relaxivities of Gd(DTPA) are preserved after electrospinning. To permit easy visualization of the release of the active ingredient from the fibers, analogous materials are prepared loaded with the dye rhodamine B. Very little release is seen in a pH 1.0 buffer, while sustained release is seen at pH 7.4. The fibers thus have the potential to selectively deliver Gd(DTPA) to the colon. Mucoadhesion studies reveal there are strong adhesive forces between porcine colon mucosa and PEO from the core, and the dye-loaded fibers can be successfully used to image the porcine colon wall. The electrospun core-shell fibers prepared in this work can thus be developed as advanced functional materials for effective imaging of colonic abnormalities. PMID:26899401

  19. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents

    PubMed Central

    Di Marco, Mariagrazia; Sadun, Claudia; Port, Marc; Guilbert, Irene; Couvreur, Patrick; Dubernet, Catherine

    2007-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) particles are maghemite or magnetite nanoparticles currently used as contrast agent in magnetic resonance imaging. The coatings surrounding the USPIO inorganic core play a major role in both the in vitro stability and, over all, USPIO’s in vivo fate. Different physicochemical properties such as final size, surface charge and coating density are key factors in this respect. Up to now no precise structure – activity relationship has been described to predict entirely the USPIOs stability, as well as their pharmacokinetics and their safety. This review is focused on both the classical and the latest available techniques allowing a better insight in the magnetic core structure and the organic surface of these particles. Concurrently, this work clearly shows the difficulty to obtain a complete physicochemical characterization of USPIOs particles owing to their small dimensions, reaching the analytical resolution limits of many commercial instruments. An extended characterization is therefore necessary to improve the understanding of the properties of USPIOs when dispersed in an aqueous environment and to set the specifications and limits for their conception. PMID:18203428

  20. The relationship between time to peak of fMRI-BOLD responses and difficulty of a task suggests neuronal origins to the BOLD contrast

    NASA Astrophysics Data System (ADS)

    Alonso, Benito De Celis

    2012-10-01

    Functional magnetic resonance imaging (fMRI) and its blood oxygen level contrast (BOLD) was used to study the response of the vibrissa system of rodents to different combinations of bilateral stimulations. We found that difficult tasks to perform, associated with longer neuronal periods, were correlated with larger times to peak (ttp) for the BOLD signal. This delay depended on number of vibrissa stimulated and the region of brain studied. By contrast, delay was not affected by which hemisphere was stimulated.

  1. Fractionated manganese injections: effects on MRI contrast enhancement and physiological measures in C57BL/6 mice.

    PubMed

    Grünecker, Barbara; Kaltwasser, Sebastian F; Peterse, Yorick; Sämann, Philipp G; Schmidt, Mathias V; Wotjak, Carsten T; Czisch, Michael

    2010-10-01

    Manganese-enhanced MRI (MEMRI) is an increasingly used imaging method in animal research, which enables improved T(1)-weighted tissue contrast. Furthermore accumulation of manganese in activated neurons allows visualization of neuronal activity. However, at higher concentrations manganese (Mn2+) exhibits toxic side effects that interfere with the animals' behaviour and well-being. Therefore, when optimizing MEMRI protocols, a compromise has to be found between minimizing side effects and intensifying image contrast. Recently, a low concentrated fractionated Mn2+ application scheme has been proposed as a promising alternative. In this study, we investigated effects of different fractionated Mn2+ dosing schemes on vegetative, behavioural and endocrine markers, and MEMRI signal contrast in C57BL/6N mice. Measurements of the animals' well-being included telemetric monitoring of body temperature and locomotion, control of weight and observation of behavioural parameters during the time course of the injection protocols. Corticosterone levels after Mn2+ application served as endocrine marker of the stress response. We compared three MnCl2  x 4H2O application protocols: 3 times 60 mg/kg with an inter-injection interval of 48 h, six times 30 mg/kg with an inter-injection interval of 48 h, and 8 times 30 mg/kg with an inter-injection interval of 24 h (referred to as 3 x 60/48, 6 x 30/48 and 8 x 30/24, respectively). Both the 6 x 30/48 and the 8 x 30/24 protocols showed attenuated effects on animals' well-being as compared to the 3 x 60/48 scheme. Best MEMRI signal contrast was observed for the 8 x 30/24 protocol. Together, these results argue for a fractionated application scheme such as 30 mg/kg every 24 h for 8 days to provide sufficient MEMRI signal contrast while minimizing toxic side effects and distress. PMID:20878969

  2. In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice

    PubMed Central

    Herrmann, Karl-Heinz; Reichenbach, Jürgen R.; Witte, Otto W.; Weih, Falk; Kretz, Alexandra; Haenold, Ronny

    2014-01-01

    The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or

  3. Renal effects of nabumetone, a COX-2 antagonist: impairment of function in isolated perfused rat kidneys contrasts with preserved renal function in vivo.

    PubMed

    Reichman, J; Cohen, S; Goldfarb, M; Shina, A; Rosen, S; Brezis, M; Karmeli, F; Heyman, S N

    2001-01-01

    The constitutive cyclooxygenase (COX)-1 enzyme has been considered the physiologically important isoform for prostaglandin synthesis in the normal kidney. It has, therefore, been suggested that selective inhibitors of the 'inducible' isoform (COX-2) may be free from renal adverse effects. We studied the renal effects of the predominantly COX-2 antagonist nabumetone in isolated perfused kidneys. As compared with controls, kidneys removed after in vivo administration of oral nabumetone (15 mg/kg) disclosed altered renal function with reduced glomerular filtration rate, filtration fraction, and urine volume and enhanced hypoxic outer medullary tubular damage. By contrast, renal function and morphology were not affected in vivo by nabumetone or its active metabolite 6-methoxy-2-naphthylacetic acid. The latter agent (10-20 mg/kg i.v.) did not significantly alter renal microcirculation, as opposed to a selective substantial reduction in medullary blood flow noted with the nonselective COX inhibitor indomethacin (5 mg/kg i.v.). In a rat model of acute renal failure, induced by concomitant administration of radiocontrast, nitric oxide synthase, and COX inhibitors, the decline in kidney function and the extent of hypoxic medullary damage with oral nabumetone (80 mg/kg) were comparable to a control group, and significantly less than those induced by indomethacin. In rats subjected to daily oral nabumetone for 3 consecutive weeks, renal function and morphology were preserved as well. Both nabumetone and 6-methoxy-2-naphthylacetic acid reduced renal parenchymal prostaglandin E2 to the same extent as indomethacin. It is concluded that while nabumetone adversely affects renal function and may intensify hypoxic medullary damage ex vivo, rat kidneys are not affected by this agent in vivo, both in acute and chronic studies. COX selectivity may not explain the renal safety of nabumetone. PMID:11701998

  4. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents

  5. Self-face evaluation and self-esteem in young females: an fMRI study using contrast effect.

    PubMed

    Oikawa, Hiraku; Sugiura, Motoaki; Sekiguchi, Atsushi; Tsukiura, Takashi; Miyauchi, Carlos Makoto; Hashimoto, Takashi; Takano-Yamamoto, Teruko; Kawashima, Ryuta

    2012-02-15

    Self-evaluation is affected by facial attractiveness, particularly in females, and may be related to self-esteem. Self-face evaluation is relative to the attractiveness of others ("contrast effect"). In this functional magnetic resonance imaging (fMRI) study, we examined both the neural correlates of self-face evaluation using the contrast effect and a neural relationship between self-face evaluation and self-esteem. We prepared the following three types of "target faces": one's own face (S), a close friend's face (F), and an unfamiliar face (O). They were randomly intermingled among same-sex unfamiliar foils during two block-types. Our intention was to evoke positive evaluations of target faces using unattractive foils in one block-type, and negative evaluations using attractive foils in the other. The posterior cingulate cortex (PCC) and ventral tegmental area (VTA) exhibited greater activation from the positive modulation for S than for O. Activation in these regions was positively correlated with self-esteem and showed the same tendency between S and F. PCC and VTA, which have been implicated in the processing of self-relatedness and reward, respectively, might play a role in the processing of positive self-face evaluation as self-referential stimuli and social rewards, respectively. These results suggested that the PCC and the VTA are the neural correlates of positive self-face evaluation, and that there is a neural relationship between self-face evaluation and self-esteem. The positive evaluation of a close friend's face might be perceived and processed in the same way as one's own face. PMID:22079451

  6. Dynamic contrast-enhanced MRI and CT provide comparable measurement of blood-brain barrier permeability in a rodent stroke model.

    PubMed

    Merali, Zamir; Wong, Teser; Leung, Jackie; Gao, Meah MingYang; Mikulis, David; Kassner, Andrea

    2015-10-01

    In the current management of acute ischemic stroke (AIS), clinical criteria are used to estimate the risk of hemorrhagic transformation (HT), which is a devastating early complication. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computed tomography (DCE-CT) may serve as physiologically-based decision making tools to more reliably assess the risk of HT. Before these tools can be properly validated, the comparability of the blood-brain barrier (BBB) permeability measurements they generate should be assessed. Sixteen rats were subjected to a transient middle cerebral artery occlusion before successively undergoing DCE-CT and DCE-MRI at 24-hours. BBB permeability (K(trans)) values were generated from both modalities. A correlation of R=0.677 was found (p<0.01) and the resulting relationship was [DCE-CT=(0.610*DCE-MRI)+4.140]. A variance components analysis found the intra-rat coefficient of variation to be 0.384 and 0.258 for K(trans) values from DCE-MRI and DCE-CT respectively. Permeability measures from DCE-CT were 22% higher than those from DCE-MRI. The results of this study demonstrate for the first time comparability between DCE-CT and DCE-MRI in the assessment of AIS. These results may provide a foundation for future clinical trials making combined use of these modalities. PMID:26117703

  7. Anemia rather than hypertension contributes to cerebral hyperperfusion in young adults undergoing hemodialysis: A phase contrast MRI study

    PubMed Central

    Zheng, Gang; Wen, Jiqiu; Yu, Wenkui; Li, Xue; Zhang, Zhe; Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Liu, Ya; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming

    2016-01-01

    Cerebral hyperperfusion, anemia and hypertension are common in patients with end-stage renal disease (ESRD). Young ESRD adults might afford a better hemodynamic tolerance; however, their cerebral vascular disorders are often overlooked. This phase-contrast MRI study investigated relationships between cerebral blood flow (CBF), anemia and hypertension in young adults undergoing hemodialysis (HD). Blood flows, velocities, and cross-sectional areas of bilateral internal carotid arteries and vertebral arteries were quantified on phase maps in 33 patients and 27 healthy controls. Cerebral oxygen delivery (COD) and vascular resistance were (CVR) were computed based on CBF, hemoglobin and mean arterial pressure (MAP). We found strong correlations among hemoglobin, MAP and CBF. Hemoglobin rather than MAP was directly related to CBF. COD was negatively related to MAP, while CVR was positively related to hemoglobin. The cross-sectional areas of arteries were increased which were directly associated with hemoglobin rather than MAP. HD patients were of elevated CBF, decreased COD and unchanged CVR. Although elevated CBF compensated anemia-induced hypoxia, COD of these patients was still lower. Anemia directly contributed to elevated CBF and hypertension affected CBF through anemia. Unaffected CVR of young patients probably indicated that they could maintain basic functions of cerebral circulation under multiple risk factors. PMID:26923866

  8. Anemia rather than hypertension contributes to cerebral hyperperfusion in young adults undergoing hemodialysis: A phase contrast MRI study.

    PubMed

    Zheng, Gang; Wen, Jiqiu; Yu, Wenkui; Li, Xue; Zhang, Zhe; Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Liu, Ya; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming

    2016-01-01

    Cerebral hyperperfusion, anemia and hypertension are common in patients with end-stage renal disease (ESRD). Young ESRD adults might afford a better hemodynamic tolerance; however, their cerebral vascular disorders are often overlooked. This phase-contrast MRI study investigated relationships between cerebral blood flow (CBF), anemia and hypertension in young adults undergoing hemodialysis (HD). Blood flows, velocities, and cross-sectional areas of bilateral internal carotid arteries and vertebral arteries were quantified on phase maps in 33 patients and 27 healthy controls. Cerebral oxygen delivery (COD) and vascular resistance were (CVR) were computed based on CBF, hemoglobin and mean arterial pressure (MAP). We found strong correlations among hemoglobin, MAP and CBF. Hemoglobin rather than MAP was directly related to CBF. COD was negatively related to MAP, while CVR was positively related to hemoglobin. The cross-sectional areas of arteries were increased which were directly associated with hemoglobin rather than MAP. HD patients were of elevated CBF, decreased COD and unchanged CVR. Although elevated CBF compensated anemia-induced hypoxia, COD of these patients was still lower. Anemia directly contributed to elevated CBF and hypertension affected CBF through anemia. Unaffected CVR of young patients probably indicated that they could maintain basic functions of cerebral circulation under multiple risk factors. PMID:26923866

  9. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent.

    PubMed

    Ray Chowdhuri, Angshuman; Bhattacharya, Dipsikha; Sahu, Sumanta Kumar

    2016-02-21

    The development of a novel multifunctional porous nanoplatform for targeted anticancer drug delivery with cell imaging and magnetic resonance imaging has been realised in the current work. Here we have developed a magnetic nanoscale metal organic frameworks (NMOF) for potential targeted drug delivery. These magnetic NMOFs were fabricated by incorporation of Fe3O4 nanoparticles into porous isoreticular metal organic frameworks (IRMOF-3). To achieve targeted drug delivery towards cancer cells specifically, folic acid was conjugated to the NMOF surface. Then, the fluorescent molecule rhodamine B isothiocyanate (RITC) was conjugated to the NMOFs for biological imaging applications. The synthesized magnetic NMOFs were fully characterised by FTIR, powder XRD, XPS, SQUID, TGA, TEM, FESEM, and DLS. The synthesized magnetic NMOFs were observed to be smaller than 100 nm and were found to be nontoxic towards human cervix adenocarcinoma (HeLa) and murine fibroblast (NIH3T3) cells according to cell viability assays. The cancer chemotherapy drug paclitaxel was conjugated to the magnetic NMOFs through hydrophobic interactions with a relatively high loading capacity. Moreover, these folic acid-conjugated magnetic NMOFs showed stronger T2-weighted MRI contrast towards the cancer cells, justifying their possible significance in imaging. PMID:26754449

  10. Facile non-hydrothermal synthesis of oligosaccharides coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effect

    PubMed Central

    Huang, Jing; Wang, Liya; Zhong, Xiaodong; Li, Yuancheng; Yang, Lily

    2014-01-01

    Ultrafine sub-5 nm magnetic iron oxide nanoparticles coated with oligosaccharides (SIO) with dual T1-T2 weighted contrast enhancing effect and fast clearance has been developed as magnetic resonance imaging (MRI) contrast agent. Excellent water solubility, biocompatibility and high stability of such sub-5 nm SIO nanoparticles were achieved by using the “in-situ polymerization” coating method, which enables glucose forming oligosaccharides directly on the surface of hydrophobic iron oxide nanocrystals. Reported ultrafine SIO nanoparticles exhibit a longitudinal relaxivity (r1) of 4.1 mM−1s−1 and a r1/r2 ratio of 0.25 at 3 T (clinical field strength), rendering improved T1 or “brighter” contrast enhancement in T1-weighted MRI in addition to typical T2 or “darkening” contrast of conventional iron oxide nanoparticles. Such dual contrast effect can be demonstrated in liver imaging with T2 “darkening” contrast in the liver parenchyma but T1 “bright” contrast in the hepatic vasculature. More importantly, this new class of ultrafine sub-5 nm iron oxide nanoparticles showed much faster body clearance than those with larger sizes, promising better safety for clinical applications. PMID:25181490

  11. Arterial Perfusion Imaging–Defined Subvolume of Intrahepatic Cancer

    SciTech Connect

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-05-01

    Purpose: To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression after RT. Methods and Materials: Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective, institutional review board–approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed before RT (pre-RT), after delivering ∼60% of the planned dose (mid-RT) and 1 month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results: Of the 24 tumors, 6 tumors in 5 patients progressed 5 to 21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors compared with the responsive tumors (P=.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median, −14%; range, −75% to 65%), whereas the progressive tumors had an increase of the subvolumes (median, 57%; range, −7% to 165%) (P=.003). Receiver operating characteristic analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve of 0.90. Conclusion: The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation

  12. Arterial Perfusion Imaging-Defined Subvolume of Intrahepatic Cancer

    PubMed Central

    Wang, Hesheng; Farjam, Reza; Feng, Mary; Hussain, Hero; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao, Yue

    2014-01-01

    Purpose To assess whether an increase in a subvolume of intrahepatic tumor with elevated arterial perfusion during radiation therapy (RT) predicts tumor progression post RT. Methods and Materials Twenty patients with unresectable intrahepatic cancers undergoing RT were enrolled in a prospective IRB-approved study. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) were performed prior to RT (pre-RT), after delivering ~60% of the planned dose (mid-RT) and one month after completion of RT to quantify hepatic arterial perfusion. The arterial perfusions of the tumors at pre-RT were clustered into low-normal and elevated perfusion by a fuzzy clustering-based method, and the tumor subvolumes with elevated arterial perfusion were extracted from the hepatic arterial perfusion images. The percentage changes in the tumor subvolumes and means of arterial perfusion over the tumors from pre-RT to mid-RT were evaluated for predicting tumor progression post-RT. Results Of the 24 tumors, 6 tumors in 5 patients progressed 5–21 months after RT completion. Neither tumor volumes nor means of tumor arterial perfusion at pre-RT were predictive of treatment outcome. The mean arterial perfusion over the tumors increased significantly at mid-RT in progressive tumors comparing to the responsive ones (p=0.006). From pre-RT to mid-RT, the responsive tumors had a decrease in the tumor subvolumes with elevated arterial perfusion (median: −14%, range: −75% – 65%), while the progressing tumors had an increase of the subvolumes (median: 57%, range: −7% – 165%) (p=0.003). Receiver operating characteristic (ROC) analysis of the percentage change in the subvolume for predicting tumor progression post-RT had an area under the curve (AUC) of 0.90. Conclusion The increase in the subvolume of the intrahepatic tumor with elevated arterial perfusion during RT has the potential to be a predictor for tumor progression post-RT. The tumor subvolume could be a radiation boost candidate

  13. Surveillance of HCC Patients after Liver RFA: Role of MRI with Hepatospecific Contrast versus Three-Phase CT Scan-Experience of High Volume Oncologic Institute.

    PubMed

    Granata, Vincenza; Petrillo, Mario; Fusco, Roberta; Setola, Sergio Venanzio; de Lutio di Castelguidone, Elisabetta; Catalano, Orlando; Piccirillo, Mauro; Albino, Vittorio; Izzo, Francesco; Petrillo, Antonella

    2013-01-01

    Purpose. To compare the diagnostic accuracy of hepatospecific contrast-enhanced MRI versus triple-phase CT scan after radiofrequency ablation (RFA) in hepatocellular carcinoma (HCC) patients. Methods. Thirty-four consecutive HCC patients (42 hepatic nodules) were treated with percutaneous RFA and underwent MR and CT scans. All patients were enrolled in a research protocol that included CT with iodized contrast medium injection and MR with hepatospecific contrast medium injection. All patients were restaged within four weeks and at 3 months from ablation. The images were reviewed by four different radiologists to evaluate tumor necrosis, residual or recurrence disease, and evidence of new foci. Results. Thirty-two nodules were necrotic after treatment; 10 showed residual disease. Six new HCCs were identified. At first month followup CT has identified 34 necrotic lesions and 8 residual diseases; no new foci were recognized. At MRI instead, 32 complete necrotic lesions were identified, 10 lesions showed residual disease, and 2 new HCCs were found. At three months, CT demonstrated 33 completely necrotic lesions, 9 residual diseases, and 2 new HCCs. MR showed 31 complete necrotic lesions, 11 cases of residual disease, and 6 new HCCs. Conclusions. Hepatospecific contrast-enhanced MRI is more effective than multiphase CT in assessment of HCC treated with RFA. PMID:24324487

  14. Dose dependence and temporal evolution of the T1 relaxation time and MRI contrast in the rat brain after subcutaneous injection of manganese chloride.

    PubMed

    Shazeeb, Mohammed Salman; Sotak, Christopher H

    2012-12-01

    Divalent manganese ion (Mn(2+)) is a widely used T(1) contrast agent in manganese-enhanced MRI studies to visualize functional neural tracts and anatomy in the brain in vivo. In animal studies, Mn(2+) is administered at a dose that will maximize the contrast, while minimizing its toxic effects. In rodents, systemic administration of Mn(2+) via intravenous injection has been shown to create unique MRI contrast in the brain at a maximum dose of 175 mg kg(-1). However, intravenous administration of Mn(2+) results in faster bioelimination of excess Mn(2+) from the plasma due to a steep concentration gradient between plasma and bile. By contrast, following subcutaneous injection (LD(50) value = 320 mg kg(-1)), Mn(2+) is released slowly into the bloodstream, thus avoiding immediate hepatic elimination resulting in prolonged accumulation of Mn(2+) in the brain via the choroid plexus than that obtained via intravenous administration. The goal of this study was to investigate MRI dose response of Mn(2+) in rat brain following subcutaneous administration of Mn(2+). Dose dependence and temporal dynamics of Mn(2+) after subcutaneous injection can prove useful for longitudinal in vivo studies that require brain enhancement to persist for a long period of time to visualize neuroarchitecture like in neurodegenerative disease studies. PMID:22294279

  15. Polyglycerol-grafted superparamagnetic iron oxide nanoparticles: highly efficient MRI contrast agent for liver and kidney imaging and potential scaffold for cellular and molecular imaging.

    PubMed

    Arsalani, Nasser; Fattahi, Hassan; Laurent, Sophie; Burtea, Carmen; Vander Elst, Luce; Muller, Robert N

    2012-01-01

    Polyglycerol as a water-soluble and biocompatible hyperbranched polymer was covalently grafted on the surface of superparamagnetic iron oxide nanoparticles. With this aim, superparamagnetic magnetite nanoparticles were prepared by coprecipitation in aqueous media, then the surface of nanoparticles was modified to introduce the reactive groups on the surface of nanoparticles. After that, polyglycerol was grafted on the surface of nanoparticles by ring-opening anionic polymerization of glycidol using n-bulyllithium as initiator. The magnetometry, relaxometry and phantom MRI experiments of this highly stable ferrofluid showed its high potential as a negative MRI contrast agent. Calculated r(1) and r(2) relaxivities at different magnetic fields were higher than the values reported for commercially available iron oxide contrast agents. The in vivo MRI studies showed that, after intravenous injection into mice, the particles produced a strong negative contrast in liver and kidneys, which persisted for 80 min (in liver) to 110 min (in kidneys). The negative contrast of the liver and kidneys weakened over the time, suggesting that polyglycerol coating renders the nanoparticles stealth and possibly optimal for renal excretion. PMID:22434631

  16. Water-soluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma

    PubMed Central

    Liang, Shuyan; Zhou, Qing; Wang, Min; Zhu, Yanhong; Wu, Qingzhi; Yang, Xiangliang

    2015-01-01

    Nanoparticles (NPs) are advantageous for the delivery of diagnosis agents to brain tumors. In this study, we attempted to develop an l-cysteine coated FePt (FePt-Cys) NP as MRI/CT imaging contrast agent for the diagnosis of malignant gliomas. FePt-Cys NPs were synthesized through a co-reduction route, which was characterized by transmission electron microscopy, high-resolution transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and dynamic light scattering. The MRI and CT imaging ability of FePt-Cys NPs was evaluated using different gliomas cells (C6, SGH44, U251) as the model. Furthermore, the biocompatibility of the as-synthesized FePt-Cys NPs was evaluated using three different cell lines (ECV304, L929, and HEK293) as the model. The results showed that FePt-Cys NPs displayed excellent biocompatibility and good MRI/CT imaging ability, thereby indicating promising potential as a dual MRI/CT contrast agent for the diagnosis of brain malignant gliomas. PMID:25848253

  17. Mn3[Co(CN)6]2@SiO2 Core-shell Nanocubes: Novel bimodal contrast agents for MRI and optical imaging

    PubMed Central

    Huang, Yimin; Hu, Lin; Zhang, Tingting; Zhong, Hao; Zhou, Jiajia; Liu, Zhenbang; Wang, Haibao; Guo, Zhen; Chen, Qianwang

    2013-01-01

    Nanoprobes with dual modal imaging of magnetic resonance imaging (MRI) and two-photon fluorescence (TPF) can serve as promising platforms for clinical diagnosis. A wide range of molecules and nanoparticles have been investigated as agents for contrast enhanced MRI and fluorescence imaging in cancer diagnosis. However, a single material with dual modal imaging of MRI and TPF is rarely reported. We found that Mn3[Co(CN)6]2 nanocubes can serve as agents for both T1- and T2-weighted MRI, and TPF imaging. The nanocubes coated with silica to form Mn3[Co(CN)6]2@SiO2 core-shell nanocubes were readily internalized by cells without showing cytotoxicity. In vitro tests, the core-shell nanocubes display relatively high longitudinal (r1) and transverse (r2) relaxivities, they also manifest a remarkable T1 and T2 contrast effects at in-vivo imaging of internal organs in Mice. Moreover, the core-shell nanocubes could offer high-resolution cell fluorescence imaging by two-photon excitation (720 nm) or by conventional fluorescence with 403- or 488-nm excitation. PMID:24026007

  18. A new ex vivo method to evaluate the performance of candidate MRI contrast agents: a proof-of-concept study

    PubMed Central

    2014-01-01

    Background Magnetic resonance imaging (MRI) plays an important role in tumor detection/diagnosis. The use of exogenous contrast agents (CAs) helps to improve the discrimination between lesion and neighbouring tissue, but most of the currently available CAs are non-specific. Assessing the performance of new, selective CAs requires exhaustive assays and large amounts of material. Accordingly, in a preliminary screening of new CAs, it is important to choose candidate compounds with good potential for in vivo efficiency. This screening method should reproduce as close as possible the in vivo environment. In this sense, a fast and reliable method to select the best candidate CAs for in vivo studies would minimize time and investment cost, and would benefit the development of better CAs. Results The post-mortem ex vivo relative contrast enhancement (RCE) was evaluated as a method to screen different types of CAs, including paramagnetic and superparamagnetic agents. In detail, sugar/gadolinium-loaded gold nanoparticles (Gd-GNPs) and iron nanoparticles (SPIONs) were tested. Our results indicate that the post-mortem ex vivo RCE of evaluated CAs, did not correlate well with their respective in vitro relaxivities. The results obtained with different Gd-GNPs suggest that the linker length of the sugar conjugate could modulate the interactions with cellular receptors and therefore the relaxivity value. A paramagnetic CA (GNP (E_2)), which performed best among a series of Gd-GNPs, was evaluated both ex vivo and in vivo. The ex vivo RCE was slightly worst than gadoterate meglumine (201.9 ± 9.3% versus 237 ± 14%, respectively), while the in vivo RCE, measured at the time-to-maximum enhancement for both compounds, pointed to GNP E_2 being a better CA in vivo than gadoterate meglumine. This is suggested to be related to the nanoparticule characteristics of the evaluated GNP. Conclusion We have developed a simple, cost-effective relatively high-throughput method for

  19. Contrast dispersion imaging for cancer localization.

    PubMed

    Mischi, Massimo; Wijkstra, Hessel

    2014-01-01

    Cancer growth is associated with angiogenic processes in many types of cancer. Several imaging strategies have therefore been developed that target angiogenesis as a marker for cancer localization. To this end, intravascular and extravascular tissue perfusion is typically assessed by dynamic contrast enhanced (DCE) ultrasound (US) and MRI. All the proposed strategies, however, overlook important changes in the microvascular architecture that result from angiogenic processes. To overcome these limitations, we have recently introduced a new imaging strategy that analyzes the intravascular dispersion kinetics of contrast agents spreading through the microvasculature. Contrast dispersion is mainly determined by microvascular multi-path trajectories, reflecting the underlying microvascular architecture. This paper reviews the results obtained for prostate cancer localization by US and MRI dispersion imaging, also presenting the latest new developments and future perspectives. PMID:25570935

  20. MRI Safety during Pregnancy

    MedlinePlus

    ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor wants to perform a magnetic resonance imaging (MRI) exam, there is a possibility that your ...

  1. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  2. Reproducibility of Kidney Perfusion Measurements With Arterial Spin Labeling at 1.5 Tesla MRI Combined With Semiautomatic Segmentation for Differential Cortical and Medullary Assessment

    PubMed Central

    Hammon, Matthias; Janka, Rolf; Siegl, Christian; Seuss, Hannes; Grosso, Roberto; Martirosian, Petros; Schmieder, Roland E.; Uder, Michael; Kistner, Iris

    2016-01-01

    Abstract Magnetic resonance imaging with arterial spin labeling (ASL) is a noninvasive approach to measure organ perfusion. The purpose of this study was to evaluate the reproducibility of ASL kidney perfusion measurements with semiautomatic segmentation, which allows separate quantification of cortical and medullary perfusion. The right kidneys of 14 healthy volunteers were examined 6 times on 2 occasions (3 times at each occasion). There was a 10-minute pause between each examination and a 14-day interval between the 2 occasions. Cortical, medullary, and whole kidney parenchymal perfusion was determined with customized semiautomatic segmentation software. Coefficient of variances (CVs) and intraclass correlations (ICCs) were calculated. Mean whole, cortical, and medullary kidney perfusion was 307.26 ± 25.65, 337.10 ± 34.83, and 279.61 ± 26.73 mL/min/100 g, respectively. On session 1, mean perfusion for the whole kidney, cortex, and medulla was 307.08 ± 26.91, 336.79 ± 36.54, and 279.60 ± 27.81 mL/min/100 g, respectively, and on session 2, 307.45 ± 24.65, 337.41 ± 33.48, and 279.61 ± 25.94 mL/min/100 g, respectively (P > 0.05; R2 = 0.60/0.59/0.54). For whole, cortical, and medullary kidney perfusion, the total ICC/CV were 0.97/3.43 ± 0.86%, 0.97/4.19 ± 1.33%, and 0.96/4.12 ± 1.36%, respectively. Measurements did not differ significantly and showed a very good correlation (P > 0.05; R2 = 0.75/0.76/0.65). ASL kidney measurements combined with operator-independent semiautomatic segmentation revealed high correlation and low variance of cortical, medullary, and whole kidney perfusion. PMID:26986143

  3. Reproducibility of Kidney Perfusion Measurements With Arterial Spin Labeling at 1.5 Tesla MRI Combined With Semiautomatic Segmentation for Differential Cortical and Medullary Assessment.

    PubMed

    Hammon, Matthias; Janka, Rolf; Siegl, Christian; Seuss, Hannes; Grosso, Roberto; Martirosian, Petros; Schmieder, Roland E; Uder, Michael; Kistner, Iris

    2016-03-01

    Magnetic resonance imaging with arterial spin labeling (ASL) is a noninvasive approach to measure organ perfusion. The purpose of this study was to evaluate the reproducibility of ASL kidney perfusion measurements with semiautomatic segmentation, which allows separate quantification of cortical and medullary perfusion.The right kidneys of 14 healthy volunteers were examined 6 times on 2 occasions (3 times at each occasion). There was a 10-minute pause between each examination and a 14-day interval between the 2 occasions. Cortical, medullary, and whole kidney parenchymal perfusion was determined with customized semiautomatic segmentation software. Coefficient of variances (CVs) and intraclass correlations (ICCs) were calculated.Mean whole, cortical, and medullary kidney perfusion was 307.26 ± 25.65, 337.10 ± 34.83, and 279.61 ± 26.73 mL/min/100 g, respectively. On session 1, mean perfusion for the whole kidney, cortex, and medulla was 307.08 ± 26.91, 336.79 ± 36.54, and 279.60 ± 27.81 mL/min/100 g, respectively, and on session 2, 307.45 ± 24.65, 337.41 ± 33.48, and 279.61 ± 25.94 mL/min/100 g, respectively (P > 0.05; R = 0.60/0.59/0.54). For whole, cortical, and medullary kidney perfusion, the total ICC/CV were 0.97/3.43 ± 0.86%, 0.97/4.19 ± 1.33%, and 0.96/4.12 ± 1.36%, respectively. Measurements did not differ significantly and showed a very good correlation (P > 0.05; R = 0.75/0.76/0.65).ASL kidney measurements combined with operator-independent semiautomatic segmentation revealed high correlation and low variance of cortical, medullary, and whole kidney perfusion. PMID:26986143

  4. Diagnostic Value of Semiquantitative Analysis of Dynamic Susceptibility Contrast Magnetic Resonance Imaging with GD-EOB-DTPA in Focal Liver Lesions Characterization: A Feasibility Study

    PubMed Central

    Colombo, Maddalena; Trattenero, Chiara; Bonaffini, Pietro Andrea; Talei Franzesi, Cammillo; Sironi, Sandro

    2015-01-01

    Purpose. To assess the diagnostic accuracy of dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSCE-MRI) in differentiation between benign and malignant liver lesions by assessment of tumoral perfusion parameters. Methods Materials. Seventy-three patients with known focal liver lesions, including 45 benign (16 FNH, 27 angiomas, and 2 abscesses) and 28 malignant ones (17 metastases, 9 HCCs, and 2 cholangiocarcinoma) underwent 1.5 T MRI upper abdominal study, with standard protocol that included dynamic contrast-enhanced sequences. On dedicated workstation, time-intensity curves were determined and the following perfusion parameters were calculated: relative arterial, venous and late enhancement (RAE, RVE, RLE), maximum enhancement (ME), relative enhancement (RE), and time to peak (TTP). Results. All diagnoses were established either by histopathology or imaging follow-up. Perfusion mean values calculated in benign lesions were RAE 33.8%, RVE 66.03%, RLE 80.63%, ME 776.00%, MRE 86.27%, and TTP 146.95 sec. Corresponding perfusion values calculated in malignant lesions were RAE 22.47%, RVE 40.54%, RLE 47.52%, ME 448.78%, MRE 49.85%, and TTP 183.79 sec. Statistical difference (p < 0.05) was achieved in all the perfusion parameters calculated, obtaining different cluster of perfusion kinetics between benign and malignant lesions. Conclusions. DSCE-MRI depicts kinetic differences in perfusion parameters among the different common liver lesions, related to tumour supply and microvascular characteristics. PMID:26064093

  5. Investigation of cyano-bridged coordination nanoparticles Gd(3+)/[Fe(CN)6](3-)/D-mannitol as T1-weighted MRI contrast agents.

    PubMed

    Perrier, M; Gallud, A; Ayadi, A; Kennouche, S; Porredon, C; Gary-Bobo, M; Larionova, J; Goze-Bac