Science.gov

Sample records for contrast-enhanced power doppler

  1. Power Doppler imaging as a basis for automated endocardial border detection during left ventricular contrast enhancement.

    PubMed

    Mor-Avi, V; Bednarz, J; Weinert, L; Sugeng, L; Lang, R M

    2000-08-01

    Echocardiographic evaluation of left ventricular (LV) systolic function relies on endocardial visualization, which can be improved when necessary using contrast enhancement. However, there is no method to automatically detect the endocardial boundary from contrast-enhanced images. We hypothesized that this could be achieved using harmonic power Doppler imaging. Twenty-two patients were studied in two protocols: (1) 11 patients with poorly visualized endocardium (> 3 contiguous segments not visualized) and (2) 11 consecutive patients referred for dobutamine stress echocardiography who were studied at rest and at peak dobutamine infusion. Patients were imaged in the apical four-chamber view using harmonic power Doppler mode (HP SONOS 5500) during LV contrast enhancement (Optison or Definity DMP115). Digital images were analyzed using custom software designed to automatically extract the endocardial boundary from power Doppler color overlays. LV cavity area was automatically measured frame-by-frame throughout the cardiac cycle, and fractional area change calculated and compared with those obtained by manually tracing the endocardial boundary in end-systolic and end-diastolic gray scale images. Successful border detection and tracking throughout the cardiac cycle was possible in 9 of 11 patients with poor endocardial definition and in 10 of 11 unselected patients undergoing dobutamine stress testing. Fractional area change obtained from power Doppler images correlated well with manually traced area changes (r = 0.82 and r = 0.97, in protocols 1 and 2, respectively). Harmonic power Doppler imaging with contrast may provide a simple method for semi-automated border detection and thus facilitate the objective evaluation of LV function both at rest and under conditions of stress testing. This methodology may prove to be particularly useful in patients with poorly visualized endocardium. PMID:11000587

  2. Hepatocellular Carcinoma Treated with Chemoembolization: Assessment with Contrast-Enhanced Doppler Ultrasonography

    SciTech Connect

    Catalano, Orlando; Esposito, Maria; Lobianco, Roberto; Cusati, Bianca; Altei, Francesco; Siani, Alfredo

    1999-11-15

    Purpose: To report our preliminary experience concerning the use of Doppler ultrasonography (DUS) techniques after intravenous injection of the galactose-based contrast agent Levovist in the assessment of hepatocellular carcinoma (HCC) treated with transcatheter arterial chemoembolization (TACE). The sonographic findings are correlated with those obtained using iodized oil (Lipiodol) helical computed tomography (CT). Methods: For 7 months we studied 28 patients with cirrhosis and HCC (a total of 43 nodules) who had undergone TACE between 18 and 30 days previously. The lesions were investigated with color Doppler ultrasonography (CDUS) and power Doppler ultrasonography (PDUS), before and after infusion of the echo-contrast agent (300 mg/ml, maximum 1 injection for each nodule, administered at constant velocity within 60-90 sec), and with helical Lipiodol-CT (0-7 days after DUS). In the retrospective analysis, special attention was given to the Doppler signals related to pulsatile intra- and perinodular flow and to the detection of new vessels after contrast agent injection. The signal intensity was graded as 0 (absent), 1 (low), 2 (medium), or 3 (high), while its distribution was classified as peripheral, central, or diffuse. Oily agent retention on CT scans was assessed as 0 (absent), I (<10%), II (<50%), III (>50%), or IV (homogeneous). These scores were awarded separately, without knowledge of the other judgments. Results: An hepatic global echo-enhancing effect was identified in all cases and always lasted long enough to allow an accurate analysis of all parenchymal lesions (at least 8 min). The signal scores could be evaluated in 39 of 43 HCCs, as follows: basal CDUS: grade 0 in 17 lesions, grade 1 in 16, grade 2 in 6; contrast-enhanced CDUS: grade 0 in 12 lesions, grade 1 in 10, grade 2 in 14, grade 3 in 3; basal PDUS: grade 0 in 15 lesions, grade 1 in 13, grade 2 in 9, grade 3 in 2; contrast-enhanced PDUS: grade 0 in 11 lesions, grade 1 in 9, grade 2 in 15

  3. Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography.

    PubMed

    Ying, M; Bhatia, K S S; Lee, Y P; Yuen, H Y; Ahuja, A T

    2013-01-01

    Assessment of neck lymph nodes is essential in patients with head and neck cancers for predicting the patient's prognosis and selecting the appropriate treatment. Ultrasonography is a useful imaging tool in the assessment of neck lymph nodes. Greyscale ultrasonography assesses the size, distribution, and internal architecture of lymph nodes. Doppler ultrasonography evaluates the intranodal vascular pattern and resistance of lymph nodes. Contrast-enhanced ultrasonography provides information on lymph node parenchymal perfusion. Elastography allows qualitative and quantitative assessment of lymph node stiffness. This article reviews the value of greyscale, Doppler and contrast-enhanced ultrasonography as well as elastography in the assessment of malignant nodes in the neck. PMID:24434158

  4. Doppler and Contrast-Enhanced Ultrasonography of Testicles in Adult Domestic Felines.

    PubMed

    de Brito, Mbs; Feliciano, Mar; Coutinho, L N; Uscategui, R R; Simões, Apr; Maronezi, M C; de Almeida, V T; Crivelaro, R M; Gasser, B; Pavan, L; Russiano, W R

    2015-10-01

    The objective was to characterize the vascular patterns of testicular blood flow of adult cats, measuring the systolic velocity (SV), diastolic velocity (DV), resistance index (RI), gate time (wash-in) peak enhancement and output time (wash-out) of the contrast and addition of tissue fill characteristics. Forty-five adult cats were selected, and the echotexture, echogenicity, size, contours and margins of testicles were assessed via ultrasound. By Doppler were evaluated the blood flow and determined of vascular index in testicular artery (SV, DV and RI) and via contrast-enhanced ultrasonography determine the time for phases: wash-in, wash-out and peak enhancement. Sonographic findings presented normal. Testicular artery was observed in the spermatic cord with tortuous patter and showed monophasic-patterned waves and low vascular resistance and with systolic peak evident. Values of indices vascular were as follows: SV = 6.73 cm/s, DV = 2.8 cm/s and RI = 0.54 for left testicles; and SV = 6.23 cm/s, DV = 2.77 cm/s and RI = 0.53 for right testicles. Contrast filled the subcapsular vascular structures and after a few seconds, a homogeneous moderate enhancement of the parenchyma, with parenchymal vessels still distinguishable and after the peak phase, a rapid homogeneous decrease in echogenicity. Values of time for contrast-enhanced ultrasonography were as follows: wash-in = 8.78 s, peak enhancement = 21.62 s and wash-out = 75.36 for left testicles; and wash-in = 10.76 s, peak enhancement = 21.50 s and wash-out = 81.81 for right testicles. Doppler and contrast-enhanced ultrasonography of the testicles in healthy adult cats was easily implemented and may provide baseline data for this organ to allow the use of these techniques as a diagnostic tool for evaluating testicular abnormalities in sick cats. PMID:26095687

  5. Can Doppler or contrast-enhanced ultrasound analysis add diagnostically important information about the nature of breast lesions?

    PubMed Central

    Stanzani, Daniela; Chala, Luciano F.; de Barros, Nestor; Cerri, Giovanni G.; Chammas, Maria Cristina

    2014-01-01

    OBJECTIVES: Despite evidence suggesting that Doppler ultrasonography can help to differentiate between benign and malignant breast lesions, it is rarely applied in clinical practice. The aim of this study was to determine whether certain vascular features of breast masses observed by duplex Doppler and color Doppler ultrasonography (before and/or after microbubble contrast injection) add information to the gray-scale analysis and support the Breast Imaging-Reporting and Data System (BI-RADS) classification. METHODS: Seventy solid lesions were prospectively evaluated with gray-scale ultrasonography, color Doppler ultrasonography, and contrast-enhanced ultrasonography. The morphological analysis and lesion vascularity were correlated with the histological results. RESULTS: Percutaneous core biopsies revealed that 25/70 (17.5%) lesions were malignant, while 45 were benign. Hypervascular lesions with tortuous and central vessels, a resistive index (RI)≥0.73 before contrast injection, and an RI≥0.75 after contrast injection were significantly predictive of malignancy (p<0.001). CONCLUSION: The combination of gray-scale ultrasonography data with unenhanced or enhanced duplex Doppler and color Doppler US data can provide diagnostically useful information. These techniques can be easily implemented because Doppler devices are already present in most health centers. PMID:24519198

  6. When is contrast-enhanced sonography preferable over conventional ultrasound combined with Doppler imaging in renal transplantation?

    PubMed Central

    Zeisbrich, Markus; Kihm, Lars P.; Drüschler, Felix; Zeier, Martin; Schwenger, Vedat

    2015-01-01

    Conventional ultrasound in combination with colour Doppler imaging is still the standard diagnostic procedure for patients after renal transplantation. However, while conventional ultrasound in combination with Doppler imaging can diagnose renal artery stenosis and vein thrombosis, it is not possible to display subtle microvascular tissue perfusion, which is crucial for the evaluation of acute and chronic allograft dysfunctions. In contrast, real-time contrast-enhanced sonography (CES) uses gas-filled microbubbles not only to visualize but also to quantify renal blood flow and perfusion even in the small renal arterioles and capillaries. It is an easy to perform and non-invasive imaging technique that augments diagnostic capabilities in patients after renal transplantation. Specifically in the postoperative setting, CES has been shown to be superior to conventional ultrasound in combination with Doppler imaging in uncovering even subtle microvascular disturbances in the allograft perfusion. In addition, quantitative perfusion parameters derived from CES show predictive capability regarding long-term kidney function. PMID:26413289

  7. Comparison of Different Methods of Valsalva Maneuver for Right-to-left Shunt Detection by Contrast-Enhanced Transcranial Doppler.

    PubMed

    Guo, Yu-Zhu; Gao, Yong-Sheng; Guo, Zhen-Ni; Niu, Peng-Peng; Yang, Yi; Xing, Ying-Qi

    2016-05-01

    We evaluated 298 patients for right-to-left shunt (RLS) detection by contrast-enhanced transcranial Doppler at rest state (RS), during the conventional Valsalva maneuver (CM), and during the modified Valsalva maneuver (BM: blowing into the connecting tube of a sphygmomanometer at 40 mm Hg for 10 s) in random order, and the degree of RLS along the time of the first microbubble occurrence was recorded. The positive rates were 21.8%, 36.9% and 47.3% for RS, CM and BM, respectively (p < 0.001). BM resulted in a significantly higher positive rate (p = 0.010), and there was a significant difference between the two different methods of VM in terms of the degree of RLS detection (p < 0.001). Further, the first microbubble occurred later during BM than CM (10.22 ± 3.77 s vs. 9.44 ± 4.36 s, p < 0.05). This modified maneuver is an alternative to the conventional one, especially for those who cannot perform the conventional maneuver adequately, but are highly suspected of having RLS. PMID:26928233

  8. Comparison of Vertebral Artery and Middle Cerebral Artery Monitoring for Right-to-left Shunt Detection by Contrast-enhanced Transcranial Doppler

    PubMed Central

    Guo, Yu-Zhu; Gao, Yong-Sheng; Guo, Zhen-Ni; Niu, Peng-Peng; Yang, Yi; Xing, Ying-qi

    2016-01-01

    Contrast-enhanced transcranial Doppler (c-TCD) is a reliable and reproducible method for right-to-left shunt (RLS) detection, with high sensitivity. Monitoring the middle cerebral artery (MCA) is an optimal choice, yet for patients with insufficient temporal bone windows or severe stenosis of carotid arteries, an alternative should be established. The aim of the present study was to further establish whether c-TCD with vertebral artery (VA) monitoring is as effective as MCA monitoring for RLS detection. We evaluated 194 subjects for RLS detection with VA and MCA monitoring simultaneously. There was no significant difference between the positive rates of VA and MCA monitoring for RLS detection. c-TCD with VA monitoring could be an alternative for RLS detection, with high sensitivity and specificity both at rest and during the Valsalva manoeuvre. PMID:27098054

  9. Comparison of Vertebral Artery and Middle Cerebral Artery Monitoring for Right-to-left Shunt Detection by Contrast-enhanced Transcranial Doppler.

    PubMed

    Guo, Yu-Zhu; Gao, Yong-Sheng; Guo, Zhen-Ni; Niu, Peng-Peng; Yang, Yi; Xing, Ying-Qi

    2016-01-01

    Contrast-enhanced transcranial Doppler (c-TCD) is a reliable and reproducible method for right-to-left shunt (RLS) detection, with high sensitivity. Monitoring the middle cerebral artery (MCA) is an optimal choice, yet for patients with insufficient temporal bone windows or severe stenosis of carotid arteries, an alternative should be established. The aim of the present study was to further establish whether c-TCD with vertebral artery (VA) monitoring is as effective as MCA monitoring for RLS detection. We evaluated 194 subjects for RLS detection with VA and MCA monitoring simultaneously. There was no significant difference between the positive rates of VA and MCA monitoring for RLS detection. c-TCD with VA monitoring could be an alternative for RLS detection, with high sensitivity and specificity both at rest and during the Valsalva manoeuvre. PMID:27098054

  10. Contrast-Enhanced Endoscopic Ultrasound

    PubMed Central

    Dietrich, Christoph F.; Sharma, M.; Hocke, M.

    2012-01-01

    The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) introduced guidelines on the use of contrast-enhanced ultrasound (CEUS) in 2004. This EFSUMB-document focused mainly on liver applications. However, new applications extending beyond the liver were developed thereafter. Increased interest in recent years in CEUS technique and in the application of CEUS in novel fields like endoscopic ultrasound (EUS) has revolutionized indications and applications. As a result, the EFSUMB initiated a new update of the guidelines in 2011 to include this additional knowledge. Some of the contrast-enhanced EUS (CE-EUS) indications are established, whereas others are preliminary; these latter indications are categorized as emergent CEUS applications since the available evidence is insufficient for general recommendation. This article focuses on the use of CE-EUS in various clinical settings. The reader will get an overview of current indications and possible applications of CE-EUS. This involves the introduction of different contrast studies including color Doppler techniques (known as contrast-enhanced high mechanical index endosonography or CEHMI-EUS) as well as more modern high-resolution contrast-enhanced techniques (known as contrast-enhanced low mechanical index endosonography or CELMI EUS). PMID:24949350

  11. Power Doppler imaging: clinical experience and correlation with color Doppler US and other imaging modalities.

    PubMed

    Hamper, U M; DeJong, M R; Caskey, C I; Sheth, S

    1997-01-01

    Power Doppler imaging has recently gained attention as an additional color flow imaging technique that overcomes some of the limitations of conventional color Doppler ultrasound (US). Limitations of conventional color Doppler US include angle dependence, aliasing, and difficulty in separating background noise from true flow in slow-flow states. Owing to its increased sensitivity to flow, power Doppler sonography is valuable in low-flow states and when optimal Doppler angles cannot be obtained. Longer segments of vessels and more individual vessels can be visualized with power Doppler US than with conventional color Doppler sonography. Power Doppler sonography increases diagnostic confidence when verifying or excluding testicular or ovarian torsion and confirming thrombosis or occlusion of vessels. Power Doppler sonography also improves evaluation of parenchymal flow and decreases examination times in technically challenging cases. Power Doppler US is a useful adjunct to mean-frequency color Doppler sonography, especially when color Doppler US cannot adequately obtain or display diagnostic information. PMID:9084086

  12. Three-dimensional power Doppler angiography

    NASA Astrophysics Data System (ADS)

    Guo, Zhenyu; Durand, Louis-Gilles; Holdsworth, David W.; Fenster, Aaron

    1997-05-01

    The purpose of the present study is to improve the quantification of peripheral arterial stenosis using 3D power Doppler angiography and investigate the potential of this technique for generating the arterial tree of the lower limb for surgery planning. Stenotic wall-less agar arteries were created to simulate the femoral and carotid arteries. 3D power Doppler angiograms of those arteries were generated under different hemodynamic conditions using a 3D ultrasound imaging system developed by the Life Imaging System Inc. The effect of multiple stenoses on the 3D power Doppler angiograms was investigated using the femoral arterial phantoms. Using the carotid arterial phantoms, 3D power Doppler angiograms of the carotid arteries were generated and compared with the known geometry. To image a whole lower limb arterial tree for lower limb salvage surgery planning, multiple scans are required to cover the entire field-of- view interested by using a water-coupled scanner. Preliminary in vivo test was performed using water-coupled scanning.

  13. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  14. Contrast enhancement and phase conjugation low-power optical signal in dynamic recording material based on bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Dukova, Tatjana V.; Vsevolodov, Nicolai N.

    1994-02-01

    Polymer films with fragments of the purple membranes containing protein bacteriorhodopsin (BR) have been used for the real-time optical information processing of low-power (several milliwatt) cw gas laser signals. The nonlinear recording media with BR have a potential in microscopic techniques for in-vivo diagnosis of the crystalline lens.

  15. Ultrasound Despeckling for Contrast Enhancement

    PubMed Central

    Tay, Peter C.; Garson, Christopher D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  16. Ultrasound despeckling for contrast enhancement.

    PubMed

    Tay, Peter C; Garson, Christopher D; Acton, Scott T; Hossack, John A

    2010-07-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  17. Contrast-enhanced refraction imaging

    NASA Astrophysics Data System (ADS)

    Hall, Christopher J.; Rogers, Keith D.; Lewis, Rob A.; Menk, Ralf Hendrik; Arfelli, Fulvia; Siu, Karen K.; Benci, A.; Kitchen, M.; Pillon, Alessandra; Rigon, Luigi; Round, Andrew J.; Hufton, Alan P.; Evans, Andrew; Pinder, Sarah E.; Evans, S.

    2004-01-01

    An attempt has been made, for the first time, to extend the capabilities of diffraction enhanced imaging (DEI) using low concentrations of a contrast agent. A phantom has been constructed to accommodate a systematic series of diluted bromine deoxyuridase (BrDU) samples in liquid form. This was imaged using a conventional DEI arrangement and at a range of energies traversing the Br K-edge. The images were analyzed to provide a quantitative measure of contrast as a function of X-ray energy and (BrDU) concentration. The results indicate that the particular experimental arrangement was not optimized to exploit the potential of this contrast enhancement and several suggestions are discussed to improve this further.

  18. Quantitative Analysis of Vascular Heterogeneity in Breast Lesions Using Contrast-Enhanced 3-D Harmonic and Subharmonic Ultrasound Imaging

    PubMed Central

    Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming

    2015-01-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933

  19. Contrast-enhanced ultrasound: The evolving applications

    PubMed Central

    Xu, Hui-Xiong

    2009-01-01

    Contrast-enhanced ultrasound (CEUS) is a major breakthrough for ultrasound imaging in recent years. By using a microbubble contrast agent and contrast-specific imaging software, CEUS is able to depict the micro- and macro-circulation of the targeted organ, which in turn leads to improved performance in diagnosis. Due to the special dual blood supply system in the liver, CEUS is particularly suitable for liver imaging. It is evident that CEUS facilitates improvement for characterization of focal liver lesions (FLLs), detection of liver malignancy, guidance for interventional procedures, and evaluation of treatment response after local therapies. CEUS has been demonstrated to be equal to contrast-enhanced computed tomography or magnetic resonance imaging for the characterization of FLLs. In addition, the applicability of CEUS has expanded to non-liver structures such as gallbladder, bile duct, pancreas, kidney, spleen, breast, thyroid, and prostate. The usefulness of CEUS in these applications is confirmed by extensive literature production. Novel applications include detecting bleeding sites and hematomas in patients with abdominal trauma, guiding percutaneous injection therapy and therefore achieving the goal of using interventional ultrasonography in managing splenic trauma, assessing the activity of Crohn’s disease, and detecting suspected endoleaks after endovascular abdominal aneurysm repair. Contrast-enhanced intraoperative ultrasound (US) and intracavitary use of CEUS have been developed and clinically studied. The potential use of CEUS involves sentinel lymph node detection, drug or gene delivery, and molecular imaging. In conclusion, the advent of CEUS has greatly enhanced the usefulness of US and even changed the status of US in clinical practice. The application of CEUS in the clinic is continuously evolving and it is expected that its use will be expanded further in the future. PMID:21160717

  20. Photoacoustic perfusion measurements: a comparison with power Doppler in phantoms

    NASA Astrophysics Data System (ADS)

    Heres, H. M.; Arabul, M. Ü.; Tchang, B. C.; van de Vosse, F. N.; Rutten, M. C.; Lopata, R. G.

    2015-03-01

    Ultrasound-based measurements using Doppler, contrast, and more recently photoacoustics (PA), have emerged as techniques for tissue perfusion measurements. In this study, the feasibility of in vitro perfusion measurements with a fully integrated, hand-held, photoacoustic probe was investigated and compared to Power Doppler (PD). Three cylindrical polyvinyl alcohol (PVA) phantoms were made (diameter = 15 mm) containing 100, 200 and 400 parallel polysulfone tubes (diameter = 0.2 mm), resulting in a perfused cross-sectional area of 1.8, 3.6 and 7.1% respectively. Each phantom was perfused with porcine blood (15 mL/min). Cross-sectional PA images (λ = 805nm, frame rate = 10Hz) and PD images (PRF = 750Hz) were acquired with a MyLab One and MyLab 70 scanner (Esaote, NL), respectively. Data were averaged over 70 frames. The average PA signal intensity was calculated in a region-of-interest of 4 mm by 6 mm. The percentage of colored PD pixels was measured in the entire phantom region. The average signal intensity of the PA images increased linearly with perfusion density, being 0.54 (+/- 0.01), 0.56 (+/- 0.01), 0.58 (+/- 0.01) with an average background signal of 0.53 in the three phantoms, respectively. For PD, the percentage of colored pixels in the phantom area (1.5% (+/- 0.2%), 4.4% (+/- 0.2%), 13.7% (+/- 0.8%)) also increased linearly. The preliminary results suggest that PA, like PD, is capable of detecting an increase of blood volume in tissue. In the future, in vivo measurements will be explored, although validation will be more complex.

  1. Contrast enhanced ultrasound of breast cancer

    PubMed Central

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  2. Contrast enhanced ultrasound of breast cancer.

    PubMed

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  3. Contrast Enhancement by Nonlinear Diffusion Filtering.

    PubMed

    Liang, Zhetong; Liu, Weijian; Yao, Ruohe

    2016-02-01

    To enhance the visual quality of an image that is degraded by uneven light, an effective method is to estimate the illumination component and compress it. Some previous methods have either defects of halo artifacts or contrast loss in the enhanced image due to incorrect estimation. In this paper, we discuss this problem and propose a novel method to estimate the illumination. The illumination is obtained by iteratively solving a nonlinear diffusion equation. During the diffusion process, surround suppression is embedded in the conductance function to specially enhance the diffusive strength in textural areas of the image. The proposed estimation method has the following two merits: 1) the boundary areas are preserved in the illumination, and thus halo artifacts are prevented and 2) the textural details are preserved in the reflectance to not suffer from illumination compression, which contributes to the contrast enhancement in the result. Experimental results show that the proposed algorithm achieves excellent performance in artifact removal and local contrast enhancement. PMID:26685234

  4. Image contrast enhancement using Chebyshev wavelet moments

    NASA Astrophysics Data System (ADS)

    Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.

    2015-12-01

    A new algorithm for image contrast enhancement in the Chebyshev moment transform (CMT) domain is introduced. This algorithm is based on a contrast measure that is defined as the ratio of high-frequency to zero-frequency content in the bands of CMT matrix. Our algorithm enables to enhance a large number of high-spatial-frequency coefficients, that are responsible for image details, without severely degrading low-frequency contributions. To enhance high-frequency Chebyshev coefficients we use a multifractal spectrum of scaling exponents (SEs) for Chebyshev wavelet moment (CWM) magnitudes, where CWMs are multiscale realization of Chebyshev moments (CMs). This multifractal spectrum is very well suited to extract meaningful structures on images of natural scenes, because these images have a multifractal character. Experiments with test images show some advantages of the proposed algorithm as compared to other widely used image enhancement algorithms. The main advantage of our algorithm is the following: the algorithm very well highlights image details during image contrast enhancement.

  5. Contrast enhanced ultrasound of renal masses

    PubMed Central

    Ignee, Andre; Straub, Bernd; Schuessler, Gudrun; Dietrich, Christoph Frank

    2010-01-01

    Contrast enhanced ultrasound (CEUS) has gained clinical importance over the last years for the characterization of hepatic masses. Its role in extrahepatic indications has been investigated repeatedly but has been less comprehensively studied. Currently more than 50% of renal masses are incidentally diagnosed, mostly by B-mode ultrasound. The method of choice for characterization of renal lesions is contrast enhanced computed tomography (CECT). In the case of cystic lesions CECT refers to the Bosniak classification for cystic lesions to assess the risk of malignant behavior. The majority of masses are renal cell carcinoma, but the exact proportion is controversial. Disadvantages of CECT are a significant risk for patients with impaired renal function, allergic reactions and hyperthyroidism due to iodinated contrast agents. Several studies concerning CEUS for the characterization of both solid and cystic renal lesions have been published, but prospective multicenter studies are missing, the presented data being mainly descriptive. The aim of the this manuscript is to review the current literature for CEUS in renal masses, to summarize the available data and focus on possible concepts for studies in the future. PMID:21160736

  6. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  7. Contrast enhanced ultrasound of sentinel lymph nodes

    PubMed Central

    Cui, XinWu; Ignee, Andre; Nielsen, Michael Bachmann; Schreiber-Dietrich, Dagmar; De Molo, Chiara; Pirri, Clara; Jedrzejczyk, Maciej

    2013-01-01

    Sentinel lymph nodes are the first lymph nodes in the region that receive lymphatic drainage from a primary tumor. The detection or exclusion of sentinel lymph node micrometastases is critical in the staging of cancer, especially breast cancer and melanoma because it directly affects patient's prognosis and surgical management. Currently, intraoperative sentinel lymph node biopsies using blue dye and radioisotopes are the method of choice for the detection of sentinel lymph node with high identification rate. In contrast, conventional ultrasound is not capable of detecting sentinel lymph nodes in most cases. Contrast enhanced ultrasound with contrast specific imaging modes has been used for the evaluation and diagnostic work-up of peripherally located suspected lymphadenopathy. The method allows for real-time analysis of all vascular phases and the visualization of intranodal focal “avascular” areas that represent necrosis or deposits of neoplastic cells. In recent years, a number of animal and human studies showed that contrast enhanced ultrasound can be also used for the detection of sentinel lymph node, and may become a potential application in clinical routine. Several contrast agents have been used in those studies, including albumin solution, hydroxyethylated starch, SonoVue®, Sonazoid® and Definity®. This review summarizes the current knowledge about the use of ultrasound techniques in detection and evaluation of sentinel lymph node. PMID:26675994

  8. Optimization of subcutaneous vein contrast enhancement

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Deshmukh, Harshal

    2000-05-01

    A technique for enhancing the contrast of subcutaneous veins has been demonstrated. This techniques uses a near IR light source and one or more IR sensitive CCD TV cameras to produce a contrast enhanced image of the subcutaneous veins. This video image of the veins is projected back onto the patient's skin using a n LCD video projector. The use of an IR transmitting filter in front of the video cameras prevents any positive feedback from the visible light from the video projector from causing instabilities in the projected image. The demonstration contrast enhancing illuminator has been tested on adults and children, both Caucasian and African-American, and it enhances veins quite well in all cases. The most difficult cases are those where significant deposits of subcutaneous fat are present which make the veins invisible under normal room illumination. Recent attempts to see through fat using different IR wavelength bands and both linearly and circularly polarized light were unsuccessful. The key to seeing through fat turns out to be a very diffuse source of RI light. Results on adult and pediatric subjects are shown with this new IR light source.

  9. Quantitative contrast-enhanced optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; de la Zerda, Adam

    2016-01-01

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  10. Contrast enhancement of mail piece images

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  11. Optimization of Polarimetric Contrast Enhancement Based on Fisher Criterion

    NASA Astrophysics Data System (ADS)

    Deng, Qiming; Chen, Jiong; Yang, Jian

    The optimization of polarimetric contrast enhancement (OPCE) is a widely used method for maximizing the received power ratio of a desired target versus an undesired target (clutter). In this letter, a new model of the OPCE is proposed based on the Fisher criterion. By introducing the well known two-class problem of linear discriminant analysis (LDA), the proposed model is to enlarge the normalized distance of mean value between the target and the clutter. In addition, a cross-iterative numerical method is proposed for solving the optimization with a quadratic constraint. Experimental results with the polarimetric SAR (POLSAR) data demonstrate the effectiveness of the proposed method.

  12. Accuracy of velocity and power determination by the Doppler method

    NASA Technical Reports Server (NTRS)

    Rottger, J.

    1984-01-01

    When designing a Mesosphere-Stratosphere-Troposphere (MST) radar antenna one has to trade between the choices to optimize the effective aperture or to optimize the sidelobe suppression. An optimization of the aperture increases the sensitivity. Suppression of side-lobes by tapering attenuates undesirable signals which spoil the estimates of reflectivity and velocity. Generally, any sidelobe effects are equivalent to a broadening of the antenna beam. The return signal is due to a product of the antenna pattern with the varying atmospheric reflectivity structures. Thus, knowing the antenna pattern, it is in principle possible to find the signal spectra, which, however, may be a tedious computational and ambiguous procedure. For vertically pointing main beams the sidelobe effects are efficiently suppressed because of the aspect sensitivity. It follows that sidelobes are a minor problem for spaced antenna methods. However, they can be crucial for Doppler methods, which need off-vertical beams. If a sidelobe is pointing towards the zenith a larger power may be received from the vertical than off-vertical directions, but quantitative estimates of this effect are not yet known. To get an error estimate of sidelobe effects with an off-vertical main beam a 1-dimensional example is considered.

  13. Contrast-enhanced ultrasound in oncology

    PubMed Central

    Rasmussen, F.

    2011-01-01

    Abstract In patients with known malignant disease, 51% of liver lesions less than 1.5 cm turn out to be benign. Whether the probability of malignancy is high or low, further investigations are often necessary to definitely exclude malignancy. Contrast-enhanced ultrasonography has a prominent role in lesion characterization with a diagnostic accuracy comparable with computed tomography and magnetic resonance imaging. Anti-angiogenic treatment is common in most oncological institutions and the response evaluation is a new challenge with a research focus on the change in tumour vasculature and perfusion. In planning biopsies, CEUS can identify necrotic and viable areas of tumours and improve the diagnostic accuracy. PMID:22186152

  14. Contrast-Enhanced Digital Mammography and Angiogenesis

    SciTech Connect

    Rosado-Mendez, I.; Palma, B. A.; Villasenor, Y.; Benitez-Bribiesca, L.; Brandan, M. E.

    2007-11-26

    Angiogenesis could be a means for pouring contrast media around tumors. In this work, optimization of radiological parameters for contrast-enhanced subtraction techniques in mammography has been performed. A modification of Lemacks' analytical formalism was implemented to model the X-ray absorption in the breast with contrast medium and detection by a digital image receptor. Preliminary results of signal-to-noise ratio analysis show the advantage of subtracting two images taken at different energies, one prior and one posterior to the injection of contrast medium. Preliminary experimental results using a custom-made phantom have shown good agreement with calculations. A proposal is presented for the clinical application of the optimized technique, which aims at finding correlations between angiogenesis indicators and dynamic variables of contrast medium uptake.

  15. Role of contrast-enhanced ultrasound (CEUS) in the diagnosis of endometrial pathology

    PubMed Central

    POP, CIPRIAN MIHAITA; MIHU, DAN; BADEA, RADU

    2015-01-01

    Ultrasound is the reference imaging procedure used for the exploration of endometrial pathology. As medical procedures improve and the requirements of modern medicine become more demanding, gray-scale ultrasound is insufficient in establishing gynecological diagnosis. Thus, more complex examination techniques are required: Doppler ultrasound, contrast-enhanced ultrasound (CEUS), 3D ultrasound, etc. Contrast-enhanced ultrasound is a special examination technique that gains more and more ground. This allows a detailed real-time evaluation of microcirculation in a certain territory, which is impossible to perform by Doppler ultrasound. The aim of this review is to synthesize current knowledge regarding CEUS applications in endometrial pathology, to detail the technical aspects of endometrial CEUS and the physical properties of the equipment and contrast agents used, as well as to identify the limitations of the method. PMID:26733740

  16. The effect of foot position on Power Doppler Ultrasound grading of Achilles enthesitis.

    PubMed

    Zappia, Marcello; Cuomo, Giovanna; Martino, Maria Teresa; Reginelli, Alfonso; Brunese, Luca

    2016-06-01

    The aim of this study was to determine whether foot position could modify power Doppler grading in evaluation of the Achilles enthesis. Eighteen patients with clinical Achilles enthesitis were studied with power Doppler ultrasound (PDUS) in five different positions of the foot: active and passive dorsiflexion, neutral position, active and passive plantar flexion. The Doppler signal was graded in any position and compared with the others. The Doppler signal was higher with the foot in plantar flexion and decreased gradually, sometimes till to disappear, while increasing dorsiflexion. The Doppler signal was always less during the active keeping of the position of the joint, than during the passive. The PDUS examination of the Achilles enthesis should be performed also with the foot in passive plantar flexion, in order not to underestimate the degree of vascularization. PMID:27002715

  17. Cyclic and radial variation of the Doppler power from porcine whole blood.

    PubMed

    Paeng, Dong-Guk; Shung, K Kirk

    2003-06-01

    The Doppler power from porcine blood was observed in a mock flow loop to have cyclic and radial variation during a pulsatile cycle. It was found to decrease with shear rate under steady flow, except near the center of the tube at which other mechanisms such as the effects of radial distribution on the rouleaux might be involved. Under pulsatile flow, the timing of the peak of the Doppler power measured at the center of the tube became closer to the peak systole from 20 to 60 beats/minute (BPM), and the power and velocity peaks coincided at 60 BPM. The overall radial variation of the Doppler power during a whole pulsatile cycle was prominent due to the increase of shear rate from the center to 4.5 mm radial position within a tube of 6.35 mm radius. The cyclic variation of the Doppler power varied with the radial position, being relatively large at the center, reaching a minimum at an intermediate radial position, and increasing again near the wall. The peak of the Doppler power occurred at early systole near the tube wall and lagged the flow closer to the center. The "black hole" phenomenon was observed only over portions of the flow cycle. All these complex variations of the Doppler power across the tube over a cycle are thought to be the result of red cell aggregation, which can be affected by shear rate and acceleration. PMID:12839173

  18. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  19. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  20. Assessment of endometrial receptivity by transvaginal color Doppler and three-dimensional power Doppler ultrasonography in patients undergoing in vitro fertilization procedures.

    PubMed

    Kupesic, S; Bekavac, I; Bjelos, D; Kurjak, A

    2001-02-01

    The objective of this study was to investigate the usefulness of transvaginal color Doppler and three-dimensional power Doppler ultrasonography for the assessment of endometrial receptivity. A total of 89 patients undergoing in vitro fertilization procedures were evaluated for endometrial thickness and volume, endometrial morphology, and subendometrial perfusion on the day of embryo transfer. Neither the volume nor the thickness of the endometrium on the day of embryo transfer had a predictive value for conception during in vitro fertilization cycles (P > .05). Patients who became pregnant were characterized by a significantly lower resistance index, obtained from subendometrial vessels by transvaginal color Doppler ultrasonography (resistance index = 0.53 +/- 0.04 versus 0.64 +/- 0.04, pregnant versus not pregnant, respectively; P < .05), and a significantly higher flow index (13.2 +/- 2.2 versus 11.9 +/- 2.4; P < .05), as measured by a three-dimensional power Doppler histogram. No difference was found in the predictive value of scoring systems analyzing endometrial thickness and volume, endometrial morphology, and subendometrial perfusion by color Doppler and three-dimensional power Doppler ultrasonography. The high degree of endometrial perfusion shown by color Doppler ultrasonography and on three-dimensional power Doppler histograms on the day of embryo transfer can indicate a more favorable endometrial milieu for successful in vitro fertilization. PMID:11211132

  1. Triple-energy contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Puong, Sylvie; Milioni de Carvalho, Pablo; Muller, Serge

    2010-04-01

    With the injection of iodine, Contrast Enhanced Digital Mammography (CEDM) provides functional information about breast tumour angiogenesis that can potentially help in cancer diagnosis. In order to generate iodine images in which the gray level is proportional to the iodine thickness, temporal and dual-energy approaches have already been considered. The dual-energy method offers the advantage of less patient motion artifacts and better comfort during the exam. However, this approach requires knowledge of the breast thickness at each pixel. Generally, as compression is applied, the breast thickness at each pixel is taken as the compression thickness. Nevertheless, in the breast border region, this assumption is not correct anymore and this causes inaccuracies in the iodine image. Triple-Energy CEDM could overcome these limitations by providing supplemental information in the form of a third image acquired with a different spectrum than the other two. This precludes the need of a priori knowledge of the breast thickness. Moreover, with Triple-Energy CEDM, breast thickness and glandularity maps could potentially be derived. In this study, we first focused on the method to recombine the three images in order to generate the iodine image, analyzing the performance of either quadratic, cubic or conic recombination functions. Then, we studied the optimal acquisition spectra in order to maximize the iodine SDNR in the recombined image for a given target total glandular dose. The concept of Triple-Energy CEDM was validated on simulated textured images and poly-energetic images acquired with a conventional X-ray mammography tube.

  2. Comparison between ultrasonographic findings of benign and malignant canine mammary gland tumours using B-mode, colour Doppler, power Doppler and spectral Doppler.

    PubMed

    Soler, Marta; Dominguez, Elisabet; Lucas, Xiomara; Novellas, Rosa; Gomes-Coelho, Kassia Valeria; Espada, Yvonne; Agut, Amalia

    2016-08-01

    The aim of this study was to evaluate whether the comparison between the ultrasonographic features of canine mammary tumours, assessed by B-Mode, colour Doppler, power Doppler, spectral Doppler, and histopathologic features, would help to differentiate if a tumour is benign or malignant. Ultrasonographic examinations of 104 tumours were performed. Volume, margins, presence of a capsule, echotexture and presence and distribution of the vascular flow of the tumours were evaluated. All the tumours were surgically removed, submitted for histopathologic examination and classified in two groups: Group I (benign tumours) and Group II (malignant tumours). Echotexture was the only parameter evaluated by B-Mode ultrasonography where significant differences were found (p<0.01), with tumours in Group I being homogeneous and tumours in Group II presenting greater heterogeneity. Presence of vascular flow was observed in most of the tumours from both groups and no differences between them were found. Regarding flow distribution, significant differences were observed between groups (p<0.05). In benign tumours, the most common vascular pattern was the peripheral, showing significant differences (p<0.05) compared to mixed and central patterns. In malignant tumours the mixed pattern was the most frequent. Also significant differences among other patterns (peripheral and central) were found. Concerning vascular resistivity and pulsatility indexes, there were no significant differences between the two groups. The echotexture and type of vascular flow pattern of canine mammary gland tumours may help, in a first examination of the tumour, to differentiate between benign and malignant tumours; however to reach a definitive diagnosis histological study is required. PMID:27473987

  3. Coherent Flow Power Doppler (CFPD): Flow Detection using Spatial Coherence Beamforming

    PubMed Central

    Li, You Leo; Dahl, Jeremy J.

    2015-01-01

    Power Doppler imaging is a widely used method of flow detection for tissue perfusion monitoring, inflammatory hyperemia detection, deep vein thrombosis diagnosis, and other clinical applications. However, thermal noise and clutter limit its sensitivity and ability to detect slow flow. In addition, large ensembles are required to obtain sufficient sensitivity, which limits frame rate and yields flash artifacts during moderate tissue motion. We propose an alternative method of flow detection using the spatial coherence of backscattered ultrasound echoes. The method enhances slow flow detection and frame rate, while maintaining or improving the signal quality of conventional power Doppler techniques. The feasibility of this method is demonstrated with simulations, flow-phantom experiments, and an in-vivo human thyroid study. In comparison to conventional power Doppler imaging, the proposed method can produce Doppler images with 15-30 dB SNR improvement. Therefore, it is able to detect flow with velocities approximately 50% lower than conventional power Doppler, or improve the frame rate by a factor of 3 with comparable image quality. The results show promise for clinical applications of the method. PMID:26067037

  4. Coherent flow power Doppler (CFPD): flow detection using spatial coherence beamforming.

    PubMed

    Li, You Leo; Dahl, Jeremy J

    2015-06-01

    Power Doppler imaging is a widely used method of flow detection for tissue perfusion monitoring, inflammatory hyperemia detection, deep vein thrombosis diagnosis, and other clinical applications. However, thermal noise and clutter limit its sensitivity and ability to detect slow flow. In addition, large ensembles are required to obtain sufficient sensitivity, which limits frame rate and yields flash artifacts during moderate tissue motion. We propose an alternative method of flow detection using the spatial coherence of backscattered ultrasound echoes. The method enhances slow flow detection and frame rate, while maintaining or improving the signal quality of conventional power Doppler techniques. The feasibility of this method is demonstrated with simulations, flow-phantom experiments, and an in vivo human thyroid study. In comparison with conventional power Doppler imaging, the proposed method can produce Doppler images with 15- to 30-dB SNR improvement. Therefore, the method is able to detect flow with velocities approximately 50% lower than conventional power Doppler, or improve the frame rate by a factor of 3 with comparable image quality. The results show promise for clinical applications of the method. PMID:26067037

  5. Characteristic power Doppler sonographic images of tumorous and non-tumorous buccal space lesions

    PubMed Central

    Ogura, I; Kaneda, T; Sasaki, Y; Sekiya, K; Tokunaga, S

    2013-01-01

    Objectives: The aim of this study was to evaluate the characteristic power Doppler sonographic images of buccal space tumorous and non-tumorous lesions. Methods: 48 patients with buccal space lesions were evaluated with greyscale sonography followed by power Doppler sonography with a 12 MHz linear transducer. On greyscale sonography, buccal space lesions were assessed for the boundary (clear or unclear), echogenicity (hypoechoic or isoechoic) and internal architecture (homogeneous or heterogeneous). Power Doppler sonography was performed to evaluate the vascular signals within the buccal space lesions. Results: 48 lesions were found in the 48 patients; of these 48 lesions, 28 were tumourous and 20 were non-tumourous. In the 28 tumours, 15 cases showed clear boundaries, 15 cases were hypoechoic relative to adjacent tissues and 22 cases presented with a heterogeneous appearance on greyscale sonography. The internal vascularity of 19 tumours was shown using power Doppler sonography. In the 20 non-tumorous lesions, 11 cases showed clear boundaries, 17 cases were hypoechoic relative to adjacent tissues and 13 cases presented with a homogeneous appearance on greyscale sonography. 18 non-tumorous lesions showed no internal vascularity using power Doppler sonography. Logistic multivariate regression analysis between the tumour group and the non-tumorous lesions group demonstrated that the internal architecture (odds ratio = 8.270, p = 0.029) and vascular signals (odds ratio = 17.533, p = 0.003) were significant variables. Conclusions: Power Doppler sonography is a useful technique for the differential diagnosis of tumorous and non-tumorous buccal space lesions. PMID:23520393

  6. Modeling the effects of contrast enhancement on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2008-04-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content, by better utilizing the available gray levels either globally or locally. This paper assesses the range-performance effects of various contrast enhancement algorithms for target identification with well contrasted vehicles. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing linearly scaled images and various contrast enhancement processed images. Contrast enhancement is modeled in the US Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of feature saturation or enhancement. To account for the equivalent blur associated with each contrast enhancement algorithm, an additional effective MTF was calculated and added to the model. The measured results are compared with the predicted performance based on the target task difficulty metric used in NVThermIP.

  7. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0–16%), NCC (0–6%), NMI (0–13%) and TRE (0–34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  8. Temporal subtraction contrast-enhanced dedicated breast CT.

    PubMed

    Gazi, Peymon M; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  9. Monolithic high peak-power coherent Doppler lidar system

    NASA Astrophysics Data System (ADS)

    Kotov, Leonid V.; Töws, Albert; Kurtz, Alfred; Bobkov, Konstantin K.; Aleshkina, Svetlana S.; Bubnov, Mikhail M.; Lipatov, Denis S.; Guryanov, Alexey N.; Likhachev, Mikhail

    2016-03-01

    In this work we present a monolithic lidar system, based on a newly-developed double-clad large mode area (LMA) polarization-maintaining Er-doped fiber and specially designed LMA passive components. Optimization of the fiber designs resulted in as high as 100 W of SBS limited peak power. The amplifier and its passive components (circulator and collimator) were integrated in an existing lidar system. The enhanced lidar system provides three times increase of scanning range compared to one based on standard telecom-grade amplifiers.

  10. [Usefulness of power Doppler ultrasonography for the diagnosis of autoinfarction of parathyroid gland in secondary hyperparathyroidism].

    PubMed

    Tanaka, Motoko; Ito, Kazuko; Matsushita, Kazunori; Matsushita, Kazutaka; Tominaga, Yoshihiro; Matsuoka, Susumu; Ueki, Tsuneo; Goto, Norihiko; Sato, Tetsuhiko; Katayama, Akio; Haba, Toshihito; Uchida, Kazuharu

    2005-09-01

    Spontaneous remission due to parathyroid infarction of secondary hyperparathyroidism is rare compared with that of primary hyperparathyroidism, probably because several glands are enlarged in secondary hyperparathyroidism. Lately, neck ultrasound examination has become a more beneficial and specific method for the diagnosis of enlarged parathyroid glands in contrast to classic diagnostic techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and scintigraphy. However, the diagnosis of parathyroid infarction reported in previous studies was often based on CT, MRI and scintigraphy findings and there are few studies that reported such diagnosis by urgent power Doppler ultrasonography of the neck. Here we present a hemodialysis patient with autoinfarction of the left parathyroid gland diagnosed by urgent power Doppler ultrasonography of the neck. PMID:16272629

  11. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    NASA Astrophysics Data System (ADS)

    Tong, Yu; Zhao, Hongcai; Fang, Hui; Zhao, Youquan; Yuan, Xiaocong

    2016-02-01

    Photoacoustic Doppler (PAD) power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  12. Limitations of contrast enhancement for infrared target identification

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2009-05-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content. Automatic contrast enhancement techniques do not always achieve this improvement. In some cases, the contrast can increase to a level of target saturation. This paper assesses the range-performance effects of contrast enhancement for target identification as a function of image saturation. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing contrast enhancement processed images at various levels of saturation. Contrast enhancement is modeled in the U.S. Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of specific feature saturation or enhancement. The measured results follow the predicted performance based on the target task difficulty metric used in NVThermIP for the non-saturated cases. The saturated images reduce the information contained in the target and performance suffers. The model treats the contrast of the target as uniform over spatial frequency. As the contrast is enhanced, the model assumes that the contrast is enhanced uniformly over the spatial frequencies. After saturation, the spatial cues that differentiate one tank from another are located in a limited band of spatial frequencies. A frequency dependent treatment of target contrast is needed to predict performance of over-processed images.

  13. Intrarenal Reflux: Diagnosis at Contrast-Enhanced Voiding Urosonography.

    PubMed

    Colleran, Gabrielle C; Barnewolt, Carol E; Chow, Jeanne S; Paltiel, Harriet J

    2016-08-01

    Vesicoureteral reflux (VUR) is a childhood condition that is usually diagnosed by fluoroscopic voiding cystourethrography (VCUG). Intrarenal reflux (IRR) of infected urine is believed to play an important role in the pathogenesis of reflux-associated pyelonephritis and subsequent parenchymal scarring and is traditionally depicted by fluoroscopic VCUG. This case series describes the phenomenon of IRR occurring in association with VUR in 4 children as depicted by contrast-enhanced voiding urosonography. The ability of contrast-enhanced voiding urosonography to show IRR when it occurs in conjunction with VUR compares favorably to that of fluoroscopic VCUG. PMID:27371375

  14. Could contrast-enhanced CT detect STEMI prior to electrocardiogram?

    PubMed

    Sabbagh, Chadi; Rahi, Mayda; Baz, Maria; Haddad, Fadi; Helwe, Omar; Aoun, Noel; Ibrahim, Tony; Abdo, Lynn

    2015-01-01

    We present here a case in which contrast-enhanced computed tomography (CT) was the first diagnostic tool to detect myocardial hypoperfusion in a patient with atypical symptoms and normal electrocardiogram (ECG) on admission. An ST-segment elevation was detected thereafter on a second ECG realized several minutes after CT with raised troponin levels. Percutaneous coronary intervention was performed after failure of thrombolysis and confirmed occlusion of the left anterior descending artery. Further studies are needed to evaluate the role of high-resolution contrast-enhanced CT with or without coronary angiography in the workup of suspected myocardial infarction in the setting of a normal ECG. PMID:25085282

  15. The Role of Power Doppler Ultrasonography as Disease Activity Marker in Rheumatoid Arthritis

    PubMed Central

    Bhasin, Shaloo; Cheung, Peter P.

    2015-01-01

    Structural damage in rheumatoid arthritis (RA) occurs early if inflammation is not treated promptly. Treatment targeted to reduce inflammation, in particular, that of synovial inflammation in the joints (synovitis), has been recommended as standard treat-to-target recommendations by rheumatologists. The goal is to achieve disease remission (i.e., no disease activity). Several accepted remission criteria have not always equated to the complete absence of true inflammation. Over the last decade, musculoskeletal ultrasonography has been demonstrated to detect subclinical synovitis not appreciated by routine clinical or laboratory assessments, with the Power Doppler modality allowing clinicians to more readily appreciate true inflammation. Thus, targeting therapy to Power Doppler activity may provide superior outcomes compared with treating to clinical targets alone, making it an attractive marker of disease activity in RA. However, more validation on its true benefits such as its benefits to patients in regard to patient related outcomes and issues with standardized training in acquisition and interpretation of power Doppler findings are required. PMID:26063952

  16. Transcranial power M-mode Doppler ultrasound for diagnosis of patent foramen ovale

    NASA Astrophysics Data System (ADS)

    Moehring, Mark; Spencer, Merrill

    2005-04-01

    Patent foramen ovale (PFO) is a right-to-left shunt (RLS) which communicates blood from the right to left atrium of the heart. PFO has been associated with stroke and, more recently, with migraine headache. Diagnosis of RLS can be accomplished effectively with transcranial power M-mode Doppler ultrasound (PMD). PMD is a modality which can be performed without the sedation required by the more invasive diagnostic technique using transesophageal echocardiography. PMD for this application consists of 2 MHz pulse Doppler ultrasound with placement of sample gates at 2 mm intervals along the single-transducer beam axis, and 8 kHz pulse repetition rate (PMD100M, Spencer Technologies). Doppler power versus depth is constructed every 4ms, using 33 sample gates. Bubble microemboli injected in the venous system and moving across a PFO present as high intensity tracks on a PMD image, as emboli transit from the heart to the brain and through the observed cerebral vasculature. Use of PMD in this context has been reported in the clinical literature [M. P. Spencer, M. A. Moehring, J. Jesurum et al, J. Neuroimaging 14, 342-349 (2004)]. This talk surveys the basic technical features of PMD for sensing PFO-related showers of bubble microemboli, and how these features provide clues to the severity of PFO.

  17. Image analysis of placental issues using three-dimensional ultrasound and color power doppler

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cheng, Qiong; Liu, J. G.

    2007-12-01

    With the development of birthing-process medical science, and insurance requirement of prepotency, the ultrasound technique is widely used in the application of obstetrics realm, especially on the monitoring of embryo's growth. In the recent decade, the introduction of high resolution three-dimensional ultrasonic and color power Doppler scanner provides a much more direct, sensitive, forerunner method for the monitoring of embryo and gravida's prediction. A novel method that depends on examining images of vasculature of placenta to determine the growth of embryo is introduced in this paper. First, get a set of placenta vascularity images of the pregnant woman, taken by Color Doppler Ultrasonic Scanner, then mark some points in these images, where we get a section image, thus we can observe the internal blood vessel distribution at those points. This method provides an efficient tool for doctors.

  18. Real-time clinically oriented array-based in vivo combined photoacoustic and power Doppler imaging

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Jeffery, Dean; Wiebe, Edward; Zemp, Roger J.

    2014-03-01

    Photoacoustic imaging has great potential for identifying vascular regions for clinical imaging. In addition to assessing angiogenesis in cancers, there are many other disease processes that result in increased vascularity that present novel targets for photoacoustic imaging. Doppler imaging can provide good localization of large vessels, but poor imaging of small or low flow speed vessels and is susceptible to motion artifacts. Photoacoustic imaging can provide visualization of small vessels, but due to the filtering effects of ultrasound transducers, only shows the edges of large vessels. Thus, we have combined photoacoustic imaging with ultrasound power Doppler to provide contrast agent- free vascular imaging. We use a research-oriented ultrasound array system to provide interlaced ultrasound, Doppler, and photoacoustic imaging. This system features realtime display of all three modalities with adjustable persistence, rejection, and compression. For ease of use in a clinical setting, display of each mode can be disabled. We verify the ability of this system to identify vessels with varying flow speeds using receiver operating characteristic curves, and find that as flow speed falls, photoacoustic imaging becomes a much better method for identifying blood vessels. We also present several in vivo images of the thyroid and several synovial joints to assess the practicality of this imaging for clinical applications.

  19. Contrast-enhanced photoacoustic tomography of human joints

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding

    2016-03-01

    Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.

  20. Diffeomorphic Registration of Images with Variable Contrast Enhancement

    PubMed Central

    Janssens, Guillaume; Jacques, Laurent; Orban de Xivry, Jonathan; Geets, Xavier; Macq, Benoit

    2011-01-01

    Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and easy to use. Recently, a diffeomorphic version of the Demons algorithm was proposed. This provides the advantage of producing invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons registration method is proposed and compared to conventional Morphons, Demons, and diffeomorphic Demons. The method is validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with and without variable contrast enhancement. PMID:21197460

  1. Contrast-enhanced ultrasonography of the normal canine adrenal gland.

    PubMed

    Pey, Pascaline; Vignoli, Massimo; Haers, Hendrik; Duchateau, Luc; Rossi, Federica; Saunders, Jimmy H

    2011-01-01

    Contrast-enhanced ultrasonography is useful in differentiating adrenal gland adenomas from nonadenomatous lesions in human patients. The purposes of this study were to evaluate the feasibility and to describe contrast-enhanced ultrasonography of the normal canine adrenal gland. Six healthy female Beagles were injected with an intravenous bolus of a lipid-shelled contrast agent (SonoVue(®) ). The aorta enhanced immediately followed by the renal artery and then the adrenal gland. Adrenal gland enhancement was uniform, centrifugal, and rapid from the medulla to the cortex. When maximum enhancement was reached, a gradual homogeneous decrease in echogenicity of the adrenal gland began and simultaneously enhancement of the phrenicoabdominal vessels was observed. While enhancement kept decreasing in the adrenal parenchyma, the renal vein, caudal vena cava, and phrenicoabdominal vein were characterized by persistent enhancement until the end of the study. A second contrast enhancement was observed, corresponding to the refilling time. Objective measurements were performed storing the images for off-line image analysis using Image J (ImageJ(©) ). The shape of the time-intensity curve reflecting adrenal perfusion was similar in all dogs. Ratios of the values of the cortex and the medulla to the values of the renal artery were characterized by significant differences from initial upslope to the peak allowing differentiation between the cortex and the medulla for both adrenal glands only in this time period. Contrast-enhanced ultrasonography of the adrenal glands is feasible in dogs and the optimal time for adrenal imaging is between 5 and 90 s after injection. PMID:21521396

  2. Assessment of zebrafish cardiac performance using Doppler echocardiography and power angiography.

    PubMed

    Ho, Yi-Lwun; Shau, Yio-Wha; Tsai, Huai-Jen; Lin, Lung-Chun; Huang, Por-Jau; Hsieh, Fon-Jou

    2002-09-01

    The zebrafish (Danio rerio) has become a new animal model for cardiac researches. Although it is equipped with a prototypical vertebrate heart, the zebrafish studies for cardiac mutations and genetic control of development can reveal some hints for solving human problems. Despite the simplicity of the zebrafish heart, the objective parameters of cardiac performance are not easily available, except for the morphological description, due to its small size. Because the four components (sinus venosus, atrium, ventricle and bulbus arteriosus) of the zebrafish heart are connected in series, we studied it by applying ultrasonic imaging methods for the vascular system. A total of 20 fishes that were ages of 3 to 4 months were studied. Their mean body weight and height were 562 +/- 173 mg and 4.6 +/- 0.7 cm, respectively. Power angiography and routine Doppler echocardiography were used to evaluate the cardiac performance of zebrafish at 25 degrees C and 15 degrees C. The zebrafish hearts could be easily identified with color Doppler (8.5 MHz) or power angiography (7 MHz). The ventricular filling flow contained two components (E and A-flow). The E-flow velocities were lower than the A-flow velocities at both 25 and 15 degrees C. The cycle length was prolonged (p < 0.05) and the velocities of ventricular filling and bulbus arteriosus decreased significantly at 15 degrees C (p < 0.05). A significant decrease in early diastolic deceleration slope and significant prolongation in early diastolic and late-diastolic deceleration times were found at a lower temperature (15 degrees C). The acceleration:deceleration ratio for early and late diastole also showed a significant difference at 15 degrees C. In conclusion, the cardiac performance of the zebrafish could be approached using commercially available clinical instruments equipped with Doppler echocardiography and power angiography. PMID:12401383

  3. Adaptive image contrast enhancement algorithm for point-based rendering

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  4. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  5. Contrast enhancement via texture region based histogram equalization

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Vishwakarma, Dinesh K.; Singh Walia, Gurjit; Kapoor, Rajiv

    2016-08-01

    This paper presents two novel contrast enhancement approaches using texture regions-based histogram equalization (HE). In HE-based contrast enhancement methods, the enhanced image often contains undesirable artefacts because an excessive number of pixels in the non-textured areas heavily bias the histogram. The novel idea presented in this paper is to suppress the impact of pixels in non-textured areas and to exploit texture features for the computation of histogram in the process of HE. The first algorithm named as Dominant Orientation-based Texture Histogram Equalization (DOTHE), constructs the histogram of the image using only those image patches having dominant orientation. DOTHE categories image patches into smooth, dominant or non-dominant orientation patches by using the image variance and singular value decomposition algorithm and utilizes only dominant orientation patches in the process of HE. The second method termed as Edge-based Texture Histogram Equalization, calculates significant edges in the image and constructs the histogram using the grey levels present in the neighbourhood of edges. The cumulative density function of the histogram formed from texture features is mapped on the entire dynamic range of the input image to produce the contrast-enhanced image. Subjective as well as objective performance assessment of proposed methods is conducted and compared with other existing HE methods. The performance assessment in terms of visual quality, contrast improvement index, entropy and measure of enhancement reveals that the proposed methods outperform the existing HE methods.

  6. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization.

    PubMed

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  7. Algorithms for contrast enhancement of electronic portal images

    NASA Astrophysics Data System (ADS)

    Díez, S.; Sánchez, S.

    2015-11-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results.

  8. Assessment of early chorionic circulation by three-dimensional power Doppler.

    PubMed

    Hafner, Tomislav; Kurjak, Asim; Funduk-Kurjak, Biserka; Bekavac, Ivanka

    2002-01-01

    Three-dimensional power Doppler sonography is a unique instrument that enables assessment of vascular signals within the whole investigated area. Hemodynamical changes included in the process of early placentation are one of the most exciting topics in investigation of early human development. This investigation was designed as an observational cross-sectional study. A group of 25 patients in gestational age five to eleven weeks were recruited for the study. After acquirement of the volume containing three-dimensional power Doppler data of the pregnant uterus, the signals belonging to the chorion were isolated. Vascular 3D measurements were undertaken through 3D color/power histogram and expressed by Vascularization Index (VI) and Vascularization Flow Index (VFI). Volume of the chorion increased exponentially throughout the observation period. The VI and VFI positively correlated with the crown-rump length and chorion volume, and showed gradual increment through the investigation period. This investigation produced results confirming gradual augmentation of the loci and intensity of the intervillous flow in pregnancies between five and eleven gestational weeks. PMID:11933653

  9. Basket pattern blood flow signals discovered in a case of splenic hamartoma by power Doppler ultrasonography

    PubMed Central

    Nakanishi, Shigeo; Shiraki, Katsuya; Yamamoto, Kouji; Nakano, Takeshi; Koyama, Mutsumi; Yano, Takatsugu; Sanda, Takayuki; Tamaki, Hisao; Hirano, Tadanori; Fukudome, Kazuo; Ishihara, Akinori

    2005-01-01

    We present the gray-scale ultrasonography (GSUS), power Doppler ultrasonography (PDUS), abdominal computed tomography (CT), and magnetic resonance imaging (MRI) findings for a case of splenic hamartoma in a 27-year-old man, showing a φ 50 mm homogeneous, iso- and hypo-echoic splenic mass with evidence of a small plural cystic lesion. This splenic hamartoma showed increased vascularity on power Doppler sonograms. PDUS showed multiple circular blood flow signals inside the mass (i.e. a basket pattern), which was consistent with the small plural cystic lesion shown by GSUS. Spectral analysis also confirmed arterial and venous flow. CT scans showed that the mass had low-density relative to the normal spleen and MRI showed that the mass was isodense, relative to the normal spleen. Therefore, CT and MRI are not useful for the diagnosis of splenic hamartoma. Ultrasonography can be used to diagnose splenic hamartoma without administration of a contrast material and therefore is an indispensable method for the diagnosis of splenic hamartoma. PMID:16127761

  10. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  11. Quantifying the Effects of Radiation on Tumour Vasculature with High-Frequency Three-Dimensional Power Doppler Ultrasound

    NASA Astrophysics Data System (ADS)

    Hupple, Clinton

    Recent evidence suggests that radiation may have a significant effect on tumour vasculature in addition to damaging tumour cell DNA. It is well established that endothelial cells are among the first cells to respond after administration of ionizing radiation in both normal and tumour tissues. It has also been suggested that microvascular dysfunction may regulate tumour response to radiotherapy at high doses. However, due to limitations in imaging the microcirculation this response is not well characterized. Advances in high-frequency ultrasound and computation methods now make it possible to acquire and analyze 3-D ultrasound data of tumour blood flow in tumour microcirculation. This thesis outlines the work done to test the hypothesis that single dose 8 Gy radiotherapy produces changes in tumour blood vessels which can be quantified using high-frequency power Doppler ultrasound. In addition, the issue of reproducibility of power Doppler measurements and the relationship between histopathology and power Doppler measurements have been examined.

  12. Recent Experiences and Advances in Contrast-Enhanced Subharmonic Ultrasound

    PubMed Central

    Eisenbrey, John R.; Liu, Ji-Bin; Forsberg, Flemming

    2015-01-01

    Nonlinear contrast-enhanced ultrasound imaging schemes strive to suppress tissue signals in order to better visualize nonlinear signals from blood-pooling ultrasound contrast agents. Because tissue does not generate a subharmonic response (i.e., signal at half the transmit frequency), subharmonic imaging has been proposed as a method for isolating ultrasound microbubble signals while suppressing surrounding tissue signals. In this paper, we summarize recent advances in the use of subharmonic imaging in vivo. These advances include the implementation of subharmonic imaging on linear and curvilinear arrays, intravascular probes, and three-dimensional probes for breast, renal, liver, plaque, and tumor imaging. PMID:26090430

  13. [MRI with dynamic contrast enhancement in brain tumors].

    PubMed

    Panfilenko, A F; Iakovlev, S A; Pozdniakov, A V; Tiumin, L A; Shcherbuk, A Iu

    2013-01-01

    Magnetic resonance imaging (MRI) is the leading method of radiation diagnosis of brain tumors. In conditions of the artificial contrast enhancement there are more clearly differentiated the boundaries of the tumor node on the back of peritumorous edema and identified structural features of the tumor. The purpose of this study was to examine indicators of the dynamics of accumulation and removal of contrast agents by brain tumors in MRI technique with dynamic contrast and identify opportunities of this method in the differential diagnosis of various types of tumors. PMID:23814831

  14. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  15. Optimal contrast enhancement liquid for dynamic MRI of swallowing.

    PubMed

    Ohkubo, M; Higaki, T; Nishikawa, K; Otonari-Yamamoto, M; Sugiyama, T; Ishida, R; Wakoh, M

    2016-09-01

    Several dynamic magnetic resonance imaging (MRI) techniques to observe swallowing and their parameters have been reported. Although these studies used several contrast enhancement liquids, no studies were conducted to investigate the most suitable liquids. The purpose of this study was to identify the optimal contrast enhancement liquid for dynamic MRI of swallowing. MRI was performed using a new sequence consisting of true fast imaging with steady-state precession, generalised auto-calibrating partially parallel acquisition and a keyhole imaging technique. Seven liquids were studied, including pure distilled water, distilled water with thickener at 10, 20 and 30 mg mL(-1) concentrations and oral MRI contrast medium at 1, 2 or 3 mg mL(-1) . Distilled water showed the highest signal intensity. There were statistically significant differences among the following contrast media: distilled water with thickener at 20 mg mL(-1) and the oral MRI contrast medium at 2 mg mL(-1) and 1 mg mL(-1) . It can be concluded that the optimal liquid for dynamic MRI of swallowing is a water-based substance that allows variations in viscosity. PMID:27328011

  16. Fuzzy pulmonary vessel segmentation in contrast enhanced CT data

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til

    2008-03-01

    Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.

  17. Optimal exposure techniques for iodinated contrast enhanced breast CT

    NASA Astrophysics Data System (ADS)

    Glick, Stephen J.; Makeev, Andrey

    2016-03-01

    Screening for breast cancer using mammography has been very successful in the effort to reduce breast cancer mortality, and its use has largely resulted in the 30% reduction in breast cancer mortality observed since 1990 [1]. However, diagnostic mammography remains an area of breast imaging that is in great need for improvement. One imaging modality proposed for improving the accuracy of diagnostic workup is iodinated contrast-enhanced breast CT [2]. In this study, a mathematical framework is used to evaluate optimal exposure techniques for contrast-enhanced breast CT. The ideal observer signal-to-noise ratio (i.e., d') figure-of-merit is used to provide a task performance based assessment of optimal acquisition parameters under the assumptions of a linear, shift-invariant imaging system. A parallel-cascade model was used to estimate signal and noise propagation through the detector, and a realistic lesion model with iodine uptake was embedded into a structured breast background. Ideal observer performance was investigated across kVp settings, filter materials, and filter thickness. Results indicated many kVp spectra/filter combinations can improve performance over currently used x-ray spectra.

  18. Power spectral density of velocity fluctuations estimated from phase Doppler data

    NASA Astrophysics Data System (ADS)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  19. Determining radiated sound power of building structures by means of laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    This paper introduces a methodology that makes use of laser Doppler vibrometry to assess the acoustic insulation performance of a building element. The sound power radiated by the surface of the element is numerically determined from the vibrational pattern, offering an alternative for classical microphone measurements. Compared to the latter the proposed analysis is not sensitive to room acoustical effects. This allows the proposed methodology to be used at low frequencies, where the standardized microphone based approach suffers from a high uncertainty due to a low acoustic modal density. Standardized measurements as well as laser Doppler vibrometry measurements and computations have been performed on two test panels, a light-weight wall and a gypsum block wall and are compared and discussed in this paper. The proposed methodology offers an adequate solution for the assessment of the acoustic insulation of building elements at low frequencies. This is crucial in the framework of recent proposals of acoustic standards for measurement approaches and single number sound insulation performance ratings to take into account frequencies down to 50 Hz.

  20. Contrast-enhanced harmonic endoscopic ultrasonography for assessment of lymph node metastases in pancreatobiliary carcinoma

    PubMed Central

    Miyata, Takeshi; Kitano, Masayuki; Omoto, Shunsuke; Kadosaka, Kumpei; Kamata, Ken; Imai, Hajime; Sakamoto, Hiroki; Nisida, Naoshi; Harwani, Yogesh; Murakami, Takamichi; Takeyama, Yoshifumi; Chiba, Yasutaka; Kudo, Masatoshi

    2016-01-01

    AIM: To assess the usefulness of contrast-enhanced harmonic endoscopic ultrasonography (CH-EUS) for lymph node metastasis in pancreatobiliary carcinoma. METHODS: All patients suspected of pancreatobiliary carcinoma with visible lymph nodes after standard EUS between June, 2009 and January, 2012 were enrolled. In the primary analysis, patients with successful EUS-fine needle aspiration (FNA) were included. The lymph nodes were assessed by several standard EUS variables (short and long axis lengths, shape, edge characteristic and echogenicity), color Doppler EUS variable [central intranodal blood vessel (CIV) presence] and CH-EUS variable (heterogeneous/homogeneous enhancement patterns). The diagnostic accuracy relative to EUS-FNA was calculated. In the second analysis, N-stage diagnostic accuracy of CH-EUS was compared with EUS-FNA in patients who underwent surgical resection. RESULTS: One hundred and nine patients (143 lymph nodes) fulfilled the criteria. The short axis cut-off ≥ 13 mm predicted malignancy with a sensitivity and specificity of 72% and 85%, respectively. These values were 72% and 63% for the long axis cut-off ≥ 20 mm, 62% and 75% for the round shape variable, 81% and 30% for the sharp edge variable, 66% and 61% for the hypoechogenicity variable, 70% and 72% for the CIV-absent variable, and 83% and 91% for the heterogeneous CH-EUS-enhancement variable, respectively. CH-EUS was more accurate than standard and color Doppler EUS, except the short axis cut-off. Notably, three patients excluded because of EUS-FNA failure were correctly N-staged by CH-EUS. CONCLUSION: CH-EUS complements standard and color Doppler EUS and EUS-FNA for assessment of lymph node metastases. PMID:27022220

  1. Prediction of functional recovery of hibernating myocardium using harmonic power Doppler imaging and dobutamine stress echocardiography in patients with coronary artery disease.

    PubMed

    Aggeli, Constadina; Stefanadis, Christodoulos; Bonou, Maria; Pitsavos, Christos; Theocharis, Constantinos; Roussakis, George; Chatzos, Constantinos; Brili, Stela; Toutouzas, Pavlos

    2003-06-15

    The aim of this study was to compare the accuracy of harmonic power Doppler imaging (HPDI) and dobutamine stress echocardiography (DSE) in predicting recovery of myocardial function after bypass surgery. HPDI using triggering imaging with the administration of Levovist (Shering AG, Berlin, Germany) and DSE were performed in 34 patients (mean age 64 +/- 5 years) with left ventricular dysfunction. A repeat echocardiogram at rest was performed 3 months after revascularization. Of the 408 revascularized dysfunctional segments, 188 (45%) improved on the repeat echocardiogram. HPDI exhibited overall similar sensitivity (88% vs 87%) and accuracy (74% vs 79%) but lower specificity (61% vs 72%, p<0.05) compared with DSE for predicting recovery of myocardial function. Only delayed opacification at the 1:8 triggering point, demonstrated in 62% of viable segments, exhibited higher sensitivity (63%) and positive (58%) and negative (66%) predictive values than early opacification at 1:4 (25%, p<0.001; 35%, p<0.001; and 49%, p<0.001, respectively) in predicting functional recovery. The presence of contrast enhancement within the revascularized area resulted in a significant improvement after revascularization in wall motion score index and ejection fraction compared with areas with residual contrast defect (1.9 +/- 0.3 vs 2.3 +/- 0.3, p<0.01; 36 +/- 6% vs 29 +/- 5%, p<0.01, respectively). Significant correlations were observed between the contrast score index and the follow-up wall motion score index (r = -0.67) and between the contrast score index and the follow-up ejection fraction change (r = 0.65). Triggered HPDI has high sensitivity in detecting hibernating myocardium and can accurately predict the potential for recovery of ischemic left ventricular dysfunction 3 months after revascularization. PMID:12804726

  2. Comparison of dynamic contrast-enhanced MR, ultrasound and optical imaging modalities to evaluate the antiangiogenic effect of PF-03084014 and sunitinib

    PubMed Central

    Zhang, Cathy C; Yan, Zhengming; Giddabasappa, Anand; Lappin, Patrick B; Painter, Cory L; Zhang, Qin; Li, Gang; Goodman, James; Simmons, Brett; Pascual, Bernadette; Lee, Joseph; Levkoff, Ted; Nichols, Tim; Xie, Zhiyong

    2014-01-01

    Noninvasive imaging has been widely applied for monitoring antiangiogenesis therapy in cancer drug discovery. In this report, we used different imaging modalities including high-frequency ultrasound (HFUS), dynamic contrast enhanced-MR (DCE-MR), and fluorescence molecular tomography (FMT) imaging systems to monitor the changes in the tumor vascular properties after treatment with γ-secretase inhibitor PF-03084014. Sunitinib was tested in parallel for comparison. In the MDA-MB-231Luc model, we demonstrated that antiangiogenesis was one of the contributing mechanisms for the therapeutic effect of PF-03084014. By immunohistochemistry and FITC-lectin perfusion assays, we showed that the vascular defects upon treatment with PF-03084014 were associated with Notch pathway modulation, evidenced by a decrease in the HES1 protein and by the changes in VEGFR2 and HIF1α levels, which indicates down-stream effects. Using a 3D power Doppler scanning method, ultrasound imaging showed that the% vascularity in the MDA-MB-231Luc tumor decreased significantly at 4 and 7 days after the treatment with PF-03084014. A decrease in the tumor vessel function was also observed through contrast-enhanced ultrasound imaging with microbubble injection. These findings were consistent with the PF-03084014-induced functional vessel changes measured by suppressing the Ktrans values using DCE-MRI. In contrast, the FMT imaging with the AngioSence 680EX failed to detect any treatment-associated tumor vascular changes. Sunitinib demonstrated an outcome similar to PF-03084014 in the tested imaging modalities. In summary, ultrasound and DCE-MR imaging successfully provided longitudinal measurement of the phenotypic and functional changes in tumor vasculature after treatment with PF-03084014 and sunitinib. PMID:24573979

  3. Power Doppler ultrasonographic assessment of the ankle in patients with inflammatory rheumatic diseases

    PubMed Central

    Suzuki, Takeshi

    2014-01-01

    Ankle involvement is frequent in patients with inflammatory rheumatic diseases, but accurate evaluation by physical examination is often difficult because of the complex anatomical structures of the ankle. Over the last decade, ultrasound (US) has become a practical imaging tool for the assessment of articular and periarticular pathologies, including joint synovitis, tenosynovitis, and enthesitis in rheumatic diseases. Progress in power Doppler (PD) technology has enabled evaluation of the strength of ongoing inflammation. PDUS is very useful for identifying the location and kind of pathologies in rheumatic ankles as well as for distinguishing between inflammatory processes and degenerative changes or between active inflammation and residual damage. The aim of this paper is to illustrate the US assessment of ankle lesions in patients with inflammatory rheumatic diseases, including rheumatoid arthritis, spondyloarthritis, and systemic lupus erythematosus, focusing on the utility of PDUS. PMID:25405085

  4. Evaluation of blunt pancreatic injury with contrast-enhanced ultrasonography in comparison with contrast-enhanced computed tomography

    PubMed Central

    SONG, QING; TANG, JIE; LV, FA-QIN; ZHANG, YAN; JIAO, ZI-YU; LIU, QIANG; LUO, YU-KUN

    2013-01-01

    The aim of the present study was to evaluate acute blunt pancreatic injury using contrast-enhanced ultrasonography (CEUS) in comparison with contrast-enhanced computed tomography (CECT). Superficial and deep lesions were established by blunt pancreatic injury in 40 Chinese Guangxi Bama miniature pigs. Conventional ultrasound (US), CEUS and CECT were performed to detect traumatic lesions in the pancreas. A total of 40 lesions were established, including 20 deep lesions and 20 superficial lesions. US identified 21 of the 40 lesions, including 7 of the 20 superficial and 14 of the 20 deep lesions. CEUS identified 34 of the 40 lesions, including 14 of the 20 superficial and 20 of the 20 deep lesions. CECT identified 33 of the 40 lesions, including 13 of the 20 superficial and 20 of the 20 deep lesions. The detection rate of acute blunt pancreatic injury using CEUS was significantly higher compared with that using US (85 vs. 52.5%, P<0.05), however there was no significant difference in the detection rate of pancreatic lesions between CEUS and CECT (85 vs. 82.5%, P>0.05). CEUS improves the diagnostic levels of conventional US and is comparable with CECT scans in the diagnosis of blunt pancreatic injury. PMID:23737899

  5. Consistency analysis of contrast-enhanced ultrasound and contrast-enhanced CT in diagnosis of small hepatocellular carcinoma

    PubMed Central

    Liu, Jun-Jie; Li, Hong-Xue; Chen, Zhao-Bei; Yang, Wei-Ping; Zhao, Sheng-Fa; Chen, Jie; Bai, Tao; Li, Hang; Li, Le-Qun

    2015-01-01

    To compare the consistency of contrast-enhanced ultrasound (CEUS) and contrast-enhance CT (CECT) in diagnosis of 1~2 cm and 2.1~3 cm small hepatocellular carcinoma (HCC) and evaluate the value of CEUS in diagnosis of HCC. Methods: A total of 74 patients (89 lesions) with small HCC and cirrhosis background were retrospectively analyzed. All of the eighty-nine lesions were confirmed by histopathological examination of surgical samples or needle biopsy. All the cases were divided into 1~2 cm group and 2.1~3 cm group. The CEUS and CECT enhanced pattern and diagnosis results of the two groups were compared and the consistency between the two imaging methods were statistically analyzed. Results: In the diagnosis of 1.0-2.0 cm HCC, CEUS and CECT had a moderate consistency in arterial phase, CEUS showed a tolerable consistency with CECT in portal venous and delayphase. The two imaging methods have a better consistency for the diagnosis in 2.1-3.0 cm HCC. Conclusion: CEUS can be used as a supplement to provide important diagnostic information in clinical practice when positive results or definite diagnoses cannot obtain. PMID:26885093

  6. Contrast-enhanced ultrasound in differentiating malignant from benign portal vein thrombosis in hepatocellular carcinoma

    PubMed Central

    Tarantino, Luciano; Ambrosino, Pasquale; Di Minno, Matteo Nicola Dario

    2015-01-01

    Portal vein thrombosis (PVT) may occur in liver cirrhosis patients. Malignant PVT is a common complication in cirrhotic patients with concomitant hepatocellular carcinoma (HCC) and, in some cases, it may be even the initial sign of an undetected HCC. Detection of malignant PVT in a patient with liver cirrhosis heavily affects the therapeutic strategy. Gray-scale ultrasound (US) is widely unreliable for differentiating benign and malignant thrombi. Although effective for this differential diagnosis, fine-needle biopsy remains an invasive technique. Sensitivity of color-doppler US in detection of malignant thrombi is highly dependent on the size of the thrombus. Contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance (MRI) can be useful to assess the nature of portal thrombus, while limited data are currently available about the role of positron emission tomography (PET) and PET-CT. In contrast with CT, MRI, PET, and PET-CT, contrast-enhanced ultrasound (CEUS) is a fast, effective, well tolerated and cheap technique, that can be performed even in the same session in which the thrombus has been detected. CEUS can be performed bedside and can be available also in transplanted patients. Moreover, CT and MRI only yield a snapshot analysis during contrast diffusion, while CEUS allows for a continuous real-time imaging of the microcirculation that lasts several minutes, so that the whole arterial phase and the late parenchymal phase of the contrast diffusion can be analyzed continuously by real-time US scanning. Continuous real-time monitoring of contrast diffusion entails an easy detection of thrombus maximum enhancement. Moreover, continuous quantitative analyses of enhancement (wash in - wash out studies) by CEUS during contrast diffusion is nowadays available in most CEUS machines, thus giving a more sophisticated and accurate evaluation of the contrast distribution and an increased confidence in diagnosis in difficult cases. In conclusion

  7. Contrast-enhanced imaging of cerebral vasculature with laser speckle

    NASA Astrophysics Data System (ADS)

    Murari, K.; Li, N.; Rege, A.; Jia, X.; All, A.; Thakor, N.

    2007-08-01

    High-resolution cerebral vasculature imaging has applications ranging from intraoperative procedures to basic neuroscience research. Laser speckle, with spatial contrast processing, has recently been used to map cerebral blood flow. We present an application of the technique using temporal contrast processing to image cerebral vascular structures with a field of view a few millimeters across and approximately 20 μm resolution through a thinned skull. We validate the images using fluorescent imaging and demonstrate a factor of 2-4 enhancement in contrast-to-noise ratios over reflectance imaging using white or spectrally filtered green light. The contrast enhancement enables the perception of approximately 10%-30% more vascular structures without the introduction of any contrast agent.

  8. Real-Time Contrast Enhancement to Improve Speech Recognition

    PubMed Central

    Alexander, Joshua M.; Jenison, Rick L.; Kluender, Keith R.

    2011-01-01

    An algorithm that operates in real-time to enhance the salient features of speech is described and its efficacy is evaluated. The Contrast Enhancement (CE) algorithm implements dynamic compressive gain and lateral inhibitory sidebands across channels in a modified winner-take-all circuit, which together produce a form of suppression that sharpens the dynamic spectrum. Normal-hearing listeners identified spectrally smeared consonants (VCVs) and vowels (hVds) in quiet and in noise. Consonant and vowel identification, especially in noise, were improved by the processing. The amount of improvement did not depend on the degree of spectral smearing or talker characteristics. For consonants, when results were analyzed according to phonetic feature, the most consistent improvement was for place of articulation. This is encouraging for hearing aid applications because confusions between consonants differing in place are a persistent problem for listeners with sensorineural hearing loss. PMID:21949736

  9. Contrast enhanced ultrasound (CEUS) in blunt abdominal trauma

    PubMed Central

    2013-01-01

    In the assessment of polytrauma patient, an accurate diagnostic study protocol with high sensitivity and specificity is necessary. Computed Tomography (CT) is the standard reference in the emergency for evaluating the patients with abdominal trauma. Ultrasonography (US) has a high sensitivity in detecting free fluid in the peritoneum, but it does not show as much sensitivity for traumatic parenchymal lesions. The use of Contrast-Enhanced Ultrasound (CEUS) improves the accuracy of the method in the diagnosis and assessment of the extent of parenchymal lesions. Although the CEUS is not feasible as a method of first level in the diagnosis and management of the polytrauma patient, it can be used in the follow-up of traumatic injuries of abdominal parenchymal organs (liver, spleen and kidneys), especially in young people or children. PMID:23902930

  10. Real-time contrast enhancement to improve speech recognition.

    PubMed

    Alexander, Joshua M; Jenison, Rick L; Kluender, Keith R

    2011-01-01

    An algorithm that operates in real-time to enhance the salient features of speech is described and its efficacy is evaluated. The Contrast Enhancement (CE) algorithm implements dynamic compressive gain and lateral inhibitory sidebands across channels in a modified winner-take-all circuit, which together produce a form of suppression that sharpens the dynamic spectrum. Normal-hearing listeners identified spectrally smeared consonants (VCVs) and vowels (hVds) in quiet and in noise. Consonant and vowel identification, especially in noise, were improved by the processing. The amount of improvement did not depend on the degree of spectral smearing or talker characteristics. For consonants, when results were analyzed according to phonetic feature, the most consistent improvement was for place of articulation. This is encouraging for hearing aid applications because confusions between consonants differing in place are a persistent problem for listeners with sensorineural hearing loss. PMID:21949736

  11. Contrast-Enhanced Ultrasonography in Crohn's Disease Diagnostics.

    PubMed

    Białecki, Marcin; Białecka, Agnieszka; Laskowska, Katarzyna; Liebert, Ariel; Kłopocka, Maria; Serafin, Zbigniew

    2015-06-01

    The chronic nature of Crohn's disease (CD) implicates necessity of multiple control assessments throughout patient's life. It is accepted that in patients with CD requiring disease monitoring, magnetic resonance enterography (MRE) and computed tomography enterography (CTE) are--apart from endoscopy--imaging studies of first choice. In practice, diagnostic imaging of patients with CD is troublesome, since MRE is an expensive and complicated study, and CTE exposes patients to high doses of ionizing radiation. Therefore, there is a need for new, both non-invasive and effective, methods of imaging in CD. Contrast-Enhanced Ultrasonography (CEUS) is a relatively new method using gas-filled microbubbles serving as contrast agent. It allows for detailed assessment of blood perfusion within intestine wall and peri-intestinal tissues, which enables detection and monitoring of inflammation and its qualitative assessment. The purpose of this paper is to describe CEUS examination technique and its clinical applications in patients with Crohn's disease. PMID:26902030

  12. Microvascular contrast enhancement in optical coherence tomography using microbubbles

    NASA Astrophysics Data System (ADS)

    Assadi, Homa; Demidov, Valentin; Karshafian, Raffi; Douplik, Alexandre; Vitkin, I. Alex

    2016-07-01

    Gas microbubbles (MBs) are investigated as intravascular optical coherence tomography (OCT) contrast agents. Agar + intralipid scattering tissue phantoms with two embedded microtubes were fabricated to model vascular blood flow. One was filled with human blood, and the other with a mixture of human blood + MB. Swept-source structural and speckle variance (sv) OCT images, as well as speckle decorrelation times, were evaluated under both no-flow and varying flow conditions. Faster decorrelation times and higher structural and svOCT image contrasts were detected in the presence of MB in all experiments. The effects were largest in the svOCT imaging mode, and uniformly diminished with increasing flow velocity. These findings suggest the feasibility of utilizing MB for tissue hemodynamic investigations and for microvasculature contrast enhancement in OCT angiography.

  13. Image contrast enhancement based on a local standard deviation model

    SciTech Connect

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.

  14. Contrast enhancing solution for use in confocal microscopy

    DOEpatents

    Tannous, Zeina; Torres, Abel; Gonzalez, Salvador

    2006-10-31

    A method of optically detecting a tumor during surgery. The method includes imaging at least one test point defined on the tumor using a first optical imaging system to provide a first tumor image. The method further includes excising a first predetermined layer of the tumor for forming an in-vivo defect area. A predetermined contrast enhancing solution is disposed on the in-vivo defect area, which is adapted to interact with at least one cell anomaly, such as basal cell carcinoma, located on the in-vivo defect area for optically enhancing the cell anomaly. Thereafter the defect area can be optically imaged to provide a clear and bright representation of the cell anomaly to aid a surgeon while surgically removing the cell anomaly.

  15. Contrast Enhanced MRI in the Diagnosis of HCC

    PubMed Central

    Niendorf, Eric; Spilseth, Benjamin; Wang, Xiao; Taylor, Andrew

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide. Imaging plays a critical role in HCC screening and diagnosis. Initial screening of patients at risk for HCC is performed with ultrasound. Confirmation of HCC can then be obtained by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), due to the relatively high specificity of both techniques. This article will focus on reviewing MRI techniques for imaging HCC, felt by many to be the exam of choice for HCC diagnosis. MRI relies heavily upon the use of gadolinium-based contrast agents and while primarily extracellular gadolinium-based contrast agents are used, there is an emerging role of hepatobiliary contrast agents in HCC imaging. The use of other non-contrast enhanced MRI techniques for assessing HCC will also be discussed and these MRI strategies will be reviewed in the context of the pathophysiology of HCC to help understand the MR imaging appearance of HCC. PMID:26854161

  16. Contrast-enhanced microwave detection and treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Gao, Fuqiang

    Contrast agents and heating agents have been proposed for microwave breast tumor imaging and treatment, respectively. The dielectric properties of the tumor are altered with contrast agents or heating agents that locally accumulate in the tumor. The resulting change in dielectric properties of the tumor has the potential to enhance the sensitivity of microwave imaging of breast tumors and increase the efficiency and selectivity of microwave thermal therapy of breast tumors. This dissertation addresses several key challenges in contrast-enhanced microwave imaging and treatment of breast tumors. Carbon nanotubes (CNTs) have been shown to enhance both the relative permittivity and effective conductivity of the host medium, and are promising as theranostic (integrated therapeutic and diagnostic) agents. Thus, our properties characterization work focuses on CNT dispersions. We performed in vitro microwave dielectric properties and heating response characterization of dispersions of CNTs treated by different functionalization methods and identified a CNT formulation that is very promising as a microwave theranostic agent. Stable dispersions of CNTs with concentrations up to 20 mg/ml are obtained with this formulation, and the enhanced microwave properties of these dispersions are extraordinary compared to the control. We also conducted in vivo dielectric properties characterization of mouse tumors with intra-tumoral injections of CNT dispersions and confirmed that the presence of CNTs increases the dielectric properties of the tumor. In parallel, we developed a contrast-enhanced microwave breast tumor imaging algorithm using sparse reconstruction methods. We demonstrated that this algorithm accurately localizes small tumors in 3D numerical breast phantoms. We also demonstrated the experimental feasibility of this method using physical breast phantoms. Lastly, we studied the sensitivity of the distorted Born iterative method (DBIM) to initial guesses and developed a

  17. Contrast-enhanced ultrasound (CEUS) in blunt abdominal trauma.

    PubMed

    Miele, Vittorio; Piccolo, Claudia Lucia; Galluzzo, Michele; Ianniello, Stefania; Sessa, Barbara; Trinci, Margherita

    2016-01-01

    Baseline ultrasound is essential in the early assessment of patients with a huge haemoperitoneum undergoing an immediate abdominal surgery; nevertheless, even with a highly experienced operator, it is not sufficient to exclude parenchymal injuries. More recently, a new ultrasound technique using second generation contrast agents, named contrast-enhanced ultrasound (CEUS) has been developed. This technique allows all the vascular phase to be performed in real time, increasing ultrasound capability to detect parenchymal injuries, enhancing some qualitative findings, such as lesion extension, margins and its relationship with capsule and vessels. CEUS has been demonstrated to be almost as sensitive as contrast-enhanced CT in the detection of traumatic injuries in patients with low-energy isolated abdominal trauma, with levels of sensitivity and specificity up to 95%. Several studies demonstrated its ability to detect lesions occurring in the liver, spleen, pancreas and kidneys and also to recognize active bleeding as hyperechoic bands appearing as round or oval spots of variable size. Its role seems to be really relevant in paediatric patients, thus avoiding a routine exposure to ionizing radiation. Nevertheless, CEUS is strongly operator dependent, and it has some limitations, such as the cost of contrast media, lack of panoramicity, the difficulty to explore some deep regions and the poor ability to detect injuries to the urinary tract. On the other hand, it is timesaving, and it has several advantages, such as its portability, the safety of contrast agent, the lack to ionizing radiation exposure and therefore its repeatability, which allows follow-up of those traumas managed conservatively, especially in cases of fertile females and paediatric patients. PMID:26607647

  18. Power and pulsed Doppler evaluation of ovarian hemodynamic changes during diestrus in pregnant and nonpregnant bitches.

    PubMed

    Polisca, A; Zelli, R; Troisi, A; Orlandi, R; Brecchia, G; Boiti, C

    2013-01-15

    The aim of the study was to further characterize the relationship between hemodynamic changes in the ovary and luteal function in pregnant and nonpregnant bitches. Fourteen German Shepherd bitches were monitored three times a week from the first day of cytological diestrus (D1) until parturition or the end of diestrus (progesterone <2 ng/mL) by color Doppler, pulsed wave spectral Doppler, and power Doppler (PD) ultrasonography. By means of PD the total number of color pixels were calculated. The Doppler parameters evaluated were: peak systolic velocity (PSV), end diastolic velocity (EDV), and both resistive and pulsatility indices. Blood samples were collected three times a week throughout the experiment to determine progesterone (P4) concentrations. The length of diestrus in pregnant versus nonpregnant group was significantly shorter (P < 0.01; 57 ± 1 vs. 63 ± 1, respectively). By means of pulsed wave spectral Doppler the waveform showed a typical pattern of a low-resistive vessel characterized by a rapid systolic peak followed by a slow telediastolic decrease with a relatively high end-diastolic velocity. Blood flow parameters did not differ between left and right ovary. In both groups PSV and EDV showed a gradual decrease with the progress of diestrus; however, the values of PSV and EDV were significantly higher (P < 0.05) in the pregnant group versus nonpregnant group from D31 to D61 and from D49 to D58 respectively. Moreover, a significantly decrease (P < 0.05) of PSV and EDV in the pregnant group was observed from D46 to D58 and from D49 to D55, respectively. The resistive and pulsatility indices showed an increase during diestrus and the values were significantly lower (P < 0.05) in the pregnant group from D49 to D61. By means of PD, the pixel number was significantly higher (P < 0.05) in the pregnant versus nonpregnant group from D40 to D61. In particular, a significant decrease (P < 0.05) in the pixel number in the pregnant group was observed from D46 to

  19. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    SciTech Connect

    Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.; Sundfor, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-03-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  20. Intraoperative Contrast Enhanced Ultrasound Evaluates the Grade of Glioma

    PubMed Central

    Cheng, Ling-Gang; He, Wen; Zhang, Hong-Xia; Song, Qian; Ning, Bin; Li, Hui-Zhan; He, Yan; Lin, Song

    2016-01-01

    Objective. The aim of our study was to investigate the value of intraoperative contrast enhanced ultrasound (CEUS) for evaluating the grade of glioma and the correlation between microvessel density (MVD) and vascular endothelial growth factor (VEGF). Methods. We performed intraoperative conventional ultrasound (CUS) and CEUS on 88 patients with gliomas. All of the patients have undergone surgery and obtained the results of pathology. All patients have undergone intraoperative CUS and CEUS to compare the characteristics of different grade gliomas and the results of CUS and CEUS were compared with pathological results. Results. The time to start (TTS) and time to peak (TTP) of low grade glioma (LGG) were similar to those of edema and normal brain surrounding glioma. The enhanced extent of LGG was higher than that of the normal brain and edema. The TTS and TTP of high grade glioma were earlier than those of the edema and normal brain surrounding glioma. The enhancement of HGG was higher than that of LGG. The absolute peak intensity (API) was correlated with MVD and VEGF. Conclusion. Intraoperative CEUS could help in determining boundary of peritumoral brain edema of glioma. Intraoperative CEUS parameters in cerebral gliomas could indirectly reflect the information of MVD and VEGF. PMID:27069921

  1. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. PMID:26459771

  2. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  3. Nanoparticles and nanostructured carriers for drug delivery and contrast enhancement

    NASA Astrophysics Data System (ADS)

    Godage, Olga S.; Bucharskaya, Alla B.; Navolokin, Nikita A.; German, Sergey V.; Zuev, Viktor V.; Terentyuk, Georgy S.; Maslyakova, Galina N.; Gorin, Dmitry A.

    2016-04-01

    Currently, nanotechnologies are widely used in science and industry. It is known that the application of drug delivery nanostructured carriers for biomedicine is one of the promising areas of nanotechnology. Nanostructured carriers can be used in the diagnosis process for detecting a neoplastic tumor cells in peripheral blood, for contrast enhancement on magnetic resonance imaging (MRI), as well as for targeted drug delivery to tumor tissues. Agents for the targeted delivery (nanoparticles, liposomes, microcapsules, and etc) can affect the healthy tissues and organs, cause side effects and have a toxic effect. Therefore, it necessary to study the morphological changes that occur not only in the "target", such as a tumor, but also the internal organs, taking place under the influence of both the agents for targeted drug delivery and physical impact induced remote controlled drug release. Thus , the aim of our work is selection of the most promising agents for targeted drug delivery to tumor and contrast agents for in vivo visualization of tumor tissue boundaries , as well as their impact on the organs and tissues as results of nanostructured object biodistribution.

  4. Role of contrast enhanced ultrasound in hepatic imaging.

    PubMed

    Dhamija, Ekta; Paul, Shashi B

    2014-01-01

    Grey scale ultrasound (US) is the first line imaging modality used for the evaluation of liver by the radiologists and clinicians worldwide. It is a simple, inexpensive, safe and an easily available technique. US has the ability to delineate the hepatic parenchyma and differentiate the cystic from solid hepatic lesions. However, it has limited accuracy in the detection and characterization of focal liver lesions (FLL). CEUS is a major breakthrough in ultrasound imaging which evolved with the aim of overcoming these limitations of US. With the use of ultrasound contrast agents (UCAs), CEUS has the ability to detect the intranodular hemodynamics and thereby provide information of the enhancement pattern of the lesion resulting in reliable characterization of the FLL. This capability brings it at par with the cross sectional contrast enhanced imaging techniques of computed tomography and magnetic resonance imaging. UCAs are safe, non-nephrotoxic and thus can be used to evaluate patients with renal failure as well. The technique of CEUS is simple, requires few minutes to perform, portable, lacks ionising radiation and above all is a cost-effective modality. These advantages have made CEUS an established modality for hepatic imaging. Besides detection and characterization of FLL, it also plays a vital role in the management and repeated follow up of treated patients of FLL. Newer clinical applications of CEUS with promising results are also being unravelled . This review highlights the multifaceted role of CEUS in hepatic imaging and its upcoming clinical applications. PMID:26012317

  5. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  6. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer.

    PubMed

    Eriksen, Rie Ø; Strauch, Louise S; Sandgaard, Michael; Kristensen, Thomas S; Nielsen, Michael B; Lauridsen, Carsten A

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. PMID:27608045

  7. A contrast enhancement technique for low light images

    NASA Astrophysics Data System (ADS)

    Singh, Ankita; Gupta, K. K.

    2016-03-01

    Digital Imagery systems are traditionally bad in low light conditions. In this paper, a new algorithm for contrast improvement is proposed. The algorithm consists of two stages. The first stage is decomposing the input image into four subbands by applying two-dimensional discrete wavelet transform and estimates the singular value matrix of sub band image. The second stage is that it reconstructs the enhanced image by applying the inverse DWT. The technique is compared with conventional image equalization technique such as standard General Histogram Equalization (GHE) and other state-of-the-art techniques such as Quadrant Dynamic Histogram Equalization (QDHE), Singular-Value-Wavelet based image Equalization (SVWE) and Singular Value Equalization (SVE) on the basis of their Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) values. The simulation results indicated that the image contrast enhanced by the purposed method was higher than that of the images enhanced by the other conventional state-of-the-art techniques.

  8. Development of contrast-enhanced rodent imaging using functional CT

    NASA Astrophysics Data System (ADS)

    Liang, Yun; Stantz, Keith M.; Krishnamurthi, Ganapathy; Steinmetz, Rosemary; Hutchins, Gary D.

    2003-05-01

    Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.

  9. Contrast-enhanced ultrasound of histologically proven hepatic epithelioid hemangioendothelioma

    PubMed Central

    Dong, Yi; Wang, Wen-Ping; Cantisani, Vito; D’Onofrio, Mirko; Ignee, Andre; Mulazzani, Lorenzo; Saftoiu, Adrian; Sparchez, Zeno; Sporea, Ioan; Dietrich, Christoph F

    2016-01-01

    AIM: To analyze contrast-enhanced ultrasound (CEUS) features of histologically proven hepatic epithelioid hemangioendothelioma (HEHE) in comparison to other multilocular benign focal liver lesions (FLL). METHODS: Twenty-five patients with histologically proven HEHE and 45 patients with histologically proven multilocular benign FLL were retrospectively reviewed. Four radiologists assessed the CEUS enhancement pattern in consensus. RESULTS: HEHE manifested as a single (n = 3) or multinodular (n = 22) FLL. On CEUS, HEHE showed rim-like (18/25, 72%) or heterogeneous hyperenhancement (7/25, 28%) in the arterial phase and hypoenhancement (25/25, 100%) in the portal venous and late phases (PVLP), a sign of malignancy. Eighteen patients showed central unenhanced areas (18/25, 72%); in seven patients (7/25, 28%), more lesions were detected in the PVLP. In contrast, all patients with hemangioma and focal nodular hyperplasia showed hyperenhancement as the most distinctive feature (P < 0.01). CONCLUSION: CEUS allows for characterization of unequivocal FLL. By analyzing the hypoenhancement in the PVLP, CEUS can determine the malignant nature of HEHE. PMID:27217705

  10. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  11. Color contrast enhancement method of infrared polarization fused image

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xie, Chen

    2015-10-01

    As the traditional color fusion method based on color transfer algorithm has an issue that the color of target and background is similar. A kind of infrared polarization image color fusion method based on color contrast enhancement was proposed. Firstly the infrared radiation intensity image and the polarization image were color fused, and then color transfer technology was used between color reference image and initial fused image in the YCbCr color space. Secondly Otsu segmentation method was used to extract the target area image from infrared polarization image. Lastly the H,S,I component of the color fusion image which obtained by color transfer was adjusted to obtain the final fused image by using target area in the HSI space. Experimental results show that, the fused result which obtained by the proposed method is rich in detail and makes the contrast of target and background more outstanding. And then the ability of target detection and identification can be improved by the method.

  12. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    SciTech Connect

    Wellons, Sarah; Zhu, Yucong; Narayan, Ramesh; McClintock, Jeffrey E.; Psaltis, Dimitrios

    2014-04-20

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  13. Portal vein thrombosis in liver cirrhosis - the added value of contrast enhanced ultrasonography.

    PubMed

    Danila, Mirela; Sporea, Ioan; Popescu, Alina; Șirli, Roxana

    2016-06-01

    Portal vein thrombosis (PVT) is a frequent complication of liver cirrhosis and its prevalence increases with the severity of liver disease. Patients with liver cirrhosis and hepatocellular carcinoma may have either malignant or blunt (benign) PVT. In these patients, the diagnosis and characterization of PVT is important for the prognosis and further treatment. Ultrasound (US) is the modality of choice for the diagnosis of PVT. The features of PVT on B-mode (gray-scale) US include: dilatation of the portal vein, visualization of the thrombus and, in chronic PVT- cavernous transformation. Sensitivity of US in the diagnosis of PVT is improved by the use of Doppler US and of ultrasound contrast agents. In the latter years, contrast enhanced ultrasound (CEUS) showed high sensitivity in the differential diagnosis between benign and malignant PVT and could be the diagnostic method of choice for the characterization of PVT. Blunt thrombi are avascular and will not enhance during CEUS examination, while a hyperenhancement pattern of the portal thrombus in the arterial phase, with "wash out" in the portal or late phase is typical for malignant PVT. PMID:27239658

  14. The role of contrast-enhanced ultrasound imaging in the follow-up of patients post-endovascular aneurysm repair.

    PubMed

    Jawad, Nadia; Parker, Pamela; Lakshminarayan, Raghuram

    2016-02-01

    Endovascular aneurysm repair is a minimally invasive technique for the treatment of abdominal aortic aneurysms. Patients who undergo endovascular aneurysm repair are potentially at risk of developing problems related to the graft such as the development of endoleaks. Endoleaks can cause expansion of the aneurysmal sac, which can potentially lead to rupture. It is for this reason that lifelong surveillance of patients is required to assess the graft and the aneurysmal sac. This article discusses the role of contrast-enhanced ultrasound in the follow-up of patients post-endovascular aneurysm repair. Contrast-enhanced ultrasound is rapidly becoming a powerful, accurate and cost-effective tool to complement computed tomography in the follow-up of endovascular aneurysm repair patients. Real-time imaging of contrast filling into the arterial system means that contrast-enhanced ultrasound is an excellent problem-solving tool, particularly when assessing for the type and anatomy of endoleaks. In some instances, contrast-enhanced ultrasound can detect endoleaks when other modalities are equivocal. PMID:27433275

  15. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.

    PubMed

    Hart, Blaine L; Taheri, Saeid; Rosenberg, Gary A; Morrison, Leslie A

    2013-10-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22-76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E-6 to 9.63E-4 min(-1), mean 3.55E-4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E-4, not statistically different from mean WM Ki of 1.47E-4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects. PMID:24323376

  16. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    SciTech Connect

    Demi, Libertario Sloun, Ruud J. G. van; Mischi, Massimo; Wijkstra, Hessel

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  17. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  18. PERIPATELLAR SYNOVITIS: COMPARISON BETWEEN NON-CONTRAST-ENHANCED AND CONTRAST-ENHANCED MRI AND ASSOCIATION WITH PAIN. THE MOST STUDY

    PubMed Central

    Crema, Michel D.; Felson, David T.; Roemer, Frank W.; Niu, Jingbo; Marra, Monica D.; Zhang, Yuqing; Lynch, John A.; El-Khoury, Georges Y.; Lewis, Cora E.; Guermazi, Ali

    2013-01-01

    Purpose To assess the diagnostic performance of signal changes in Hoffa's fat pad (HFP) assessed on non-contrast-enhanced (CE) MRI in detecting synovitis, and the association of pain with signal changes in Hoffa’s fat pad on non-CE MRI and peripatellar synovial thickness on CE MRI. Methods The Multicenter Osteoarthritis (MOST) Study is an observational study of individuals who have or are at high risk for knee OA. All subjects with available non-CE and CE MRIs were included. Signal changes in HFP were scored from 0 to 3 in 2 regions using non-CE MRI. Synovial thickness was scored from 0 to 2 on CE MRI in 5 peripatellar regions. Sensitivity, specificity and accuracy of HFP signal changes were calculated considering synovial thickness on CE MRI as the reference standard. We used logistic regression to assess the associations of HFP changes (non-CE MRI) and synovial thickness (CE MRI) with pain from walking up or down stairs, after adjusting for potential confounders. Results A total of 393 subjects were included. Sensitivity of infrapatellar and intercondylar signal changes in HFP was high (71% and 88%), but specificity was low (55% and 30%). No significant associations were found between HFP changes on non-CE MRI and pain. Grade 2 synovial thickness assessed on CE MRI was significantly associated with pain after adjustments for potential confounders. Conclusion Signal changes in HFP detected on non-CE MRI are a sensitive but non-specific surrogate for the assessment of synovitis. CE MRI identifies associations with pain better than non-CE MRI. PMID:23277189

  19. Contrast enhanced ultrasound in pediatric patients: a real challenge.

    PubMed

    Schreiber-Dietrich, D G; Cui, X W; Piscaglia, F; Gilja, O H; Dietrich, C F

    2014-10-01

    Ultrasound (US) imaging in the paediatric population has been a routine technique for decades, in part because of the advantages it offers over other imaging modalities. Off-label use (and its funding) is of the utmost importance in paediatrics because many drugs have not been evaluated in randomised trials in children. As a consequence such drugs are not specifically approved for use in children. This is also true for the contrast agents used in CEUS. The off-label use of CEUS in paediatric patients illustrates the need to deal with unresolved legal issues while at the same time balancing this with the need for high diagnostic performance in daily clinical routine. In addition to approved indications with a focus on the liver and Doppler enhancement, CEUS is safe and effective for the examination of many organs, as recently highlighted by the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB). This article provides a summary of the available literature describing the utility of CEUS in paediatric patients. Furthermore, we suggest the establishment of a registry to collect data on safety and applications of ultrasound contrast agents in children. A paediatric registry has recently been introduced by EFSUMB (www.efsumb.org). PMID:25313631

  20. Image analysis of placental issues using three-dimensional ultrasound and color power Doppler based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Diyun; Liu, Jianguo

    2009-10-01

    With the development of medical science, three-dimensional ultrasound and color power Doppler tomography shooting placenta is widely used. To determine whether the fetus's development is abnormal or not is mainly through the analysis of the capillary's distribution of the obtained images which are shot by the Doppler scanner. In this classification process, we will adopt Support Vector Machine classifier. SVM achieves substantial improvements over the statistical learning methods and behaves robustly over a variety of different learning tasks. Furthermore, it is fully automatic, eliminating the need for manual parameter tuning and can solve the small sample problem wonderfully well. So SVM classifier is valid and reliable in the identification of placentas and is more accurate with the lower error rate.

  1. Imaging of myocardial infarction using carbon nanotube micro-computed tomography and delayed contrast enhancement

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Wang, Kohan; Kang, Eunice; Rojas, Mauricio; Willis, Monte; Lee, Yueh Z.; Lu, Jianping; Zhou, Otto

    2011-03-01

    We demonstrate the application of our cardiac- and respiratory-gated carbon nanotube (CNT) micro-CT system by evaluating murine myocardial infarction models with a delayed contrast enhancement technique. Myocardial infarction was induced in 8 wild-type male mice. The ischemia reperfusion model was achieved by surgical occlusion of the LAD artery for 30 minutes followed by 24 hours of reperfusion. Free-breathing subjects were anesthetized with isoflurane during imaging. Respiratory and cardiac signals were monitored externally to gate the scan. Micro-CT data was obtained at 50kV, 3mA cathode current for 15ms per projection. All images were acquired during end exhalation at either 0msec or 55msec after the R-wave (diastole or systole, respectively). Following administration of Omnipaque 300mgI/mL at 0.1ml/5g, images were obtained at 0msec after the R-wave. Fenestra VC was then administered at a 0.1ml/5g dose, followed by images 0 and 55msec after the R-wave. Hearts were then harvested, sliced 1mm thick and stained with TTC. All animals survived surgery and imaging; all demonstrated obvious delayed contrast enhancement in the left ventricular wall in Omnipaque images. Fenestra VC revealed cardiac functional changes quantified by low ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. CNT enabled gated cardiac micro-CT imaging demonstrates the ability to consistently identify areas of myocardial infarct in mice, providing a powerful tool for the study of cardiovascular biology. Further work is ongoing to streamline the imaging protocol and perform more quantitative analysis of the images.

  2. Real-time 3D curved needle segmentation using combined B-mode and power Doppler ultrasound.

    PubMed

    Greer, Joseph D; Adebar, Troy K; Hwang, Gloria L; Okamura, Allison M

    2014-01-01

    This paper presents a real-time segmentation method for curved needles in biological tissue based on analysis of B-mode and power Doppler images from a tracked 2D ultrasound transducer. Mechanical vibration induced by an external voice coil results in a Doppler response along the needle shaft, which is centered around the needle section in the ultrasound image. First, B-mode image analysis is performed within regions of interest indicated by the Doppler response to create a segmentation of the needle section in the ultrasound image. Next, each needle section is decomposed into a sequence of points and transformed into a global coordinate system using the tracked transducer pose. Finally, the 3D shape is reconstructed from these points. The results of this method differ from manual segmentation by 0.71 ± 0.55 mm in needle tip location and 0.38 ± 0.27 mm along the needle shaft. This method is also fast, taking 5-10 ms to run on a standard PC, and is particularly advantageous in robotic needle steering, which involves thin, curved needles with poor echogenicity. PMID:25485402

  3. Wearable blood flowmeter appcessory with low-power laser Doppler signal processing for daily-life healthcare monitoring.

    PubMed

    Kuwabara, K; Higuchi, Y; Ogasawara, T; Koizumi, H; Haga, T

    2014-01-01

    A new appcessory for monitoring peripheral blood flow in daily life consists of a wearable laser Doppler sensor device and a cooperating smart phone application. Bluetooth Low Energy connects them wirelessly. The sensor device features ultralight weight of 15 g and an intermittent signal processing technique that reduces power consumption to only 7 mW at measurement intervals of 0.1 s. These features enable more than 24-h continuous monitoring of peripheral blood flow in daily life, which can provide valuable vital-sign information for healthcare services. PMID:25571431

  4. Power broadening and Doppler effects of coherent dark resonances in Rb

    NASA Astrophysics Data System (ADS)

    Erhard, Michael; Nußmann, Stefan; Helm, Hanspeter

    2000-12-01

    Using a phase-locked laser pair we have observed dark resonances with linewidths below 30 Hz in a rubidium cell filled with neon as buffer gas. A model allowing for pressure broadening correctly reproduces the dependence of the width on the laser intensity. Consideration of velocity changing collisions reveals the absence of Doppler effects in the position and width of the dark resonance at high buffer-gas pressure.

  5. The role of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the diagnosis of childhood febrile urinary tract infections

    PubMed Central

    İlarslan, Nisa Eda Çullas; Fitöz, Ömer Suat; Öztuna, Derya Gökmen; Küçük, Nuriye Özlem; Yalçınkaya, Fatma Fatoş

    2015-01-01

    Aim: This study assessed the ability of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the detection of childhood febrile urinary tract infections in comparison with the gold standard reference method: Tc-99m dimercaptosuccinicacid renal cortical scintigraphy. Material and Methods: This prospective study included 60 patients who were hospitalized with a first episode of febrile urinary tract infections. All children were examined with dimercaptosuccinicacid scan and tissue harmonic imaging ultrasound combined with power Doppler ultrasound within the first 3 days of admission. Results: Signs indicative of acute infection were observed in 29 patients according to the results of tissue harmonic imaging ultrasound combined with power Doppler ultrasound while dimercaptosuccinicacid scan revealed abnormal findings in 33 patients. The sensitivity, specificity, positive predictive value and negative predictive value of tissue harmonic imaging combined with power Doppler ultrasound using dimercaptosuccinicacid scintigraphy as the reference method in patients diagnosed with first episode febrile urinary tract infections were calculated as 57.58% (95% confidence interval: 40.81%–72.76%); 62.96% (95% confidence interval: 44.23%–78.47%); 65.52% (95% confidence interval: 52.04%–77%); 54.84% (95% confidence interval: 41.54%–67.52%); respectively. Conclusions: Although current results exhibit inadequate success of power Doppler ultrasound, this practical and radiation-free method may soon be comprise a part of the routine ultrasonographic evaluation of febrile urinary tract infections of childhood if patients are evaluated early and under appropriate sedation. PMID:26265892

  6. Very different performance of the power Doppler modalities of several ultrasound machines ascertained by a microvessel flow phantom

    PubMed Central

    2013-01-01

    Introduction In many patients with rheumatoid arthritis (RA) subclinical disease activity can be detected with ultrasound (US), especially using power Doppler US (PDUS). However, PDUS may be highly dependent on the type of machine. This could create problems both in clinical trials and in daily clinical practice. To clarify how the PDUS signal differs between machines we created a microvessel flow phantom. Methods The flow phantom contained three microvessels (150, 1000, 2000 microns). A syringe pump was used to generate flows. Five US machines were used. Settings were optimised to assess the lowest detectable flow for each US machine. Results The minimal detectable flow velocities showed very large differences between the machines. Only two of the machines may be able to detect the very low flows in the capillaries of inflamed joints. There was no clear relation with price. One of the lower-end machines actually performed best in all three vessel sizes. Conclusions We created a flow phantom to test the sensitivity of US machines to very low flows in small vessels. The sensitivity of the power Doppler modalities of 5 different machines was very different. The differences found between the machines are probably caused by fundamental differences in processing of the PD signal or internal settings inaccessible to users. Machines considered for PDUS assessment of RA patients should be tested using a flow phantom similar to ours. Within studies, only a single machine type should be used. PMID:24286540

  7. Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation

    NASA Astrophysics Data System (ADS)

    Adler, Desmond C.; Ko, Tony H.; Herz, Paul R.; Fujimoto, James G.

    2004-11-01

    Enhanced tissue contrast in developmental biology specimens is demonstrated in vivo using a new type of spectroscopic optical coherence tomography analysis that is insensitive to spectroscopic noise sources. The technique is based on a statistical analysis of spectral modulation at each image pixel, and provides contrast based on both the intensity of the backscattered light and the distribution of scattering particle sizes. Since the technique does not analyze optical power at absolute wavelengths, it is insensitive to all spectroscopic noise that appears as local Doppler shifts. No exogenous contrast agents or dyes are required, and no additional components are needed to correct for reference arm motion.

  8. Dyke Award. Evaluation of contrast-enhanced MR imaging in a brain-abscess model.

    PubMed

    Runge, V M; Clanton, J A; Price, A C; Herzer, W A; Allen, J H; Partain, C L; James, A E

    1985-01-01

    An alpha-streptococcus brain abscess was produced in five dogs and studied with magnetic resonance (MR) imaging (0.5 T) and computed tomography (CT). Non-contrast- and contrast-enhanced CT scans were obtained using gadolinium diethylenetriamine-pentaacetic acid (Gd DTPA) for MR imaging and meglumine iothalamate for CT scanning. Each animal was evaluated in the early and later cerebritis stages of abscess evolution. On MR, the area of cerebritis enhanced after administration of Gd DTPA in a manner similar to that observed with contrast-enhanced CT. However, contrast enhancement was greater on the MR examination. Early lesions in two animals were detected only with contrast-enhanced MR imaging. This experience suggests that intravenously administered agents such as Gd DTPA should increase the diagnostic potential of MR imaging in neurologic diseases, especially those altering the blood-brain barrier. PMID:3920873

  9. Contrast-enhanced ultrasonographic findings in three dogs with lung lobe torsion

    PubMed Central

    CAIVANO, Domenico; BIRETTONI, Francesco; BUFALARI, Antonello; MONTE, Valentina DE; ANGELI, Giovanni; GIORGI, Maria Elena; PATATA, Valentina; PORCIELLO, Francesco

    2015-01-01

    Lung lobe torsion is rare but life-threatening condition in the dog. Thoracic radiographs and conventional ultrasonography cannot be conclusive for the diagnosis, and computed tomography is useful but is limited by cost and availability. This report describes the findings of contrast-enhanced ultrasonography in 3 dogs with lung lobe torsion. Contrast-enhanced ultrasonography showed the absence or reduction of pulmonary vascularization secondary to twisting of the lung lobe around its bronchovascular pedicle in all three dogs. Moreover, contrast-enhanced ultrasonography distinguished partial pulmonary atelectasis from a lung lobe torsion. These preliminary results suggest that contrast-enhanced ultrasonography can improve the accuracy of conventional ultrasonography for detection of pulmonary blood flow compromise in dogs with lung lobe torsion. PMID:26498403

  10. Assessment of mass detection performance in contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  11. Clustered breast microcalcifications: Evaluation by dynamic contrast-enhanced subtraction MRI

    SciTech Connect

    Gilles, R.; Tardivon, A.A.; Vanel, D.; Guinebretiere, J.M.; Arriagada, R.

    1996-01-01

    Our goal was to evaluate dynamic contrast-enhanced subtraction MRI in the diagnosis of isolated clustered calcifications of the breast. One hundred seventy-two patients underwent surgical biopsy for isolated clustered breast calcifications. Their mammograms showed round (n = 88) or linear/irregular (n = 84) microcalcifications. All patients had a preoperative Gd-DOTA-enhanced subtraction dynamic study. Any early contrast enhancement in the breast parenchyma concomitant with early enhancement of normal vessels was considered positive. Fifty-eight in situ carcinomas, 22 invasive carcinomas, and 92 benign lesions were found at histological analysis. Dynamic MR sequences showed early contrast enhancement in 76 of 80 malignant lesions (sensitivity 95%) and in 45 of 92 benign lesions (specificity 51%). Two invasive and two intraductal carcinomas did not show early contrast enhancement. Three independent observers agreed in rating early contrast enhancement in 143 of 172 lesions. Poor specificity limits the diagnostic accuracy of dynamic contrast-enhanced subtraction MRI in distinguishing benign from malignant microcalcifications on mammography. 8 refs., 2 figs., 2 tabs.

  12. A new hardware-efficient algorithm and reconfigurable architecture for image contrast enhancement.

    PubMed

    Huang, Shih-Chia; Chen, Wen-Chieh

    2014-10-01

    Contrast enhancement is crucial when generating high quality images for image processing applications, such as digital image or video photography, liquid crystal display processing, and medical image analysis. In order to achieve real-time performance for high-definition video applications, it is necessary to design efficient contrast enhancement hardware architecture to meet the needs of real-time processing. In this paper, we propose a novel hardware-oriented contrast enhancement algorithm which can be implemented effectively for hardware design. In order to be considered for hardware implementation, approximation techniques are proposed to reduce these complex computations during performance of the contrast enhancement algorithm. The proposed hardware-oriented contrast enhancement algorithm achieves good image quality by measuring the results of qualitative and quantitative analyzes. To decrease hardware cost and improve hardware utilization for real-time performance, a reduction in circuit area is proposed through use of parameter-controlled reconfigurable architecture. The experiment results show that the proposed hardware-oriented contrast enhancement algorithm can provide an average frame rate of 48.23 frames/s at high definition resolution 1920 × 1080. PMID:25148665

  13. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  14. Contrast-enhanced molecular ultrasound differentiates endoglin genotypes in mouse embryos.

    PubMed

    Denbeigh, J M; Nixon, B A; Lee, J J Y; Jerkic, M; Marsden, P A; Letarte, M; Puri, M C; Foster, F S

    2015-01-01

    Targeted ultrasound contrast imaging has the potential to become a reliable molecular imaging tool. A better understanding of the quantitative aspects of molecular ultrasound technology could facilitate the translation of this technique to the clinic for the purposes of assessing vascular pathology and detecting individual response to treatment. The objective of this study was to evaluate whether targeted ultrasound contrast-enhanced imaging can provide a quantitative measure of endogenous biomarkers. Endoglin, an endothelial biomarker involved in the processes of development, vascular homeostasis, and altered in diseases, including hereditary hemorrhagic telangiectasia type 1 and tumor angiogenesis, was the selected target. We used a parallel plate perfusion chamber in which endoglin-targeted (MBE), rat isotype IgG2 control and untargeted microbubbles were perfused across endoglin wild-type (Eng+/+), heterozygous (Eng+/-) and null (Eng-/-) embryonic mouse endothelial cells and their adhesion quantified. Microbubble binding was also assessed in late-gestation, isolated living transgenic Eng+/- and Eng+/+ embryos. Nonlinear contrast-specific ultrasound imaging performed at 21 MHz was used to collect contrast mean power ratios for all bubble types. Statistically significant differences in microbubble binding were found across genotypes for both in vitro (p<0.05) and embryonic studies (p<0.001); MBE binding was approximately twofold higher in Eng+/+ cells and embryos compared with their Eng+/- counterparts. These results suggest that molecular ultrasound is capable of reliably differentiating between molecular genotypes and relating receptor densities to quantifiable molecular ultrasound levels. PMID:25298070

  15. Use of Contrast-Enhanced Ultrasound in Carotid Atherosclerotic Disease: Limits and Perspectives

    PubMed Central

    Varetto, Gianfranco; Gibello, Lorenzo; Castagno, Claudio; Quaglino, Simone; Ripepi, Matteo; Benintende, Emilio; Gattuso, Andrea; Garneri, Paolo; Zan, Stefano; Capaldi, Giacomo; Bertoldo, Ugo; Rispoli, Pietro

    2015-01-01

    Contrast-enhanced ultrasound (CEUS) has recently become one of the most versatile and powerful diagnostic tools in vascular surgery. One of the most interesting fields of application of this technique is the study of the carotid atherosclerotic plaque vascularization and its correlation with neurological symptoms (transient ischemic attack, minor stroke, and major stroke) and with the characteristics of the “vulnerable plaque” (surface ulceration, hypoechoic plaques, intraplaque hemorrhage, thinner fibrous cap, and carotid plaque neovascularization at histopathological analysis of the sample after surgical removal). The purpose of this review is to collect all the original studies available in literature (24 studies with 1356 patients enrolled) and to discuss the state of the art, limits, and future perspectives of CEUS analysis. The results of this work confirm the reliability of this imaging study for the detection of plaques with high risk of embolization; however, a shared, user-friendly protocol of imaging analysis is not available yet. The definition of this operative protocol becomes mandatory in order to compare results from different centers and to validate a cerebrovascular risk stratification of the carotid atherosclerotic lesions evaluated with CEUS. PMID:26180793

  16. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    PubMed Central

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2016-01-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART. PMID:26987475

  17. Medical image visual appearance improvement using bihistogram Bezier curve contrast enhancement: data from the Osteoarthritis Initiative.

    PubMed

    Gan, Hong-Seng; Swee, Tan Tian; Abdul Karim, Ahmad Helmy; Sayuti, Khairil Amir; Abdul Kadir, Mohammed Rafiq; Tham, Weng-Kit; Wong, Liang-Xuan; Chaudhary, Kashif T; Ali, Jalil; Yupapin, Preecha P

    2014-01-01

    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of "adequate contrast enhancement" to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection. PMID:24977191

  18. Determination of contrast media administration to achieve a targeted contrast enhancement in CT

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Li, Yuan; Segars, Paul; Marin, Daniele; Nelson, Rendon; Samei, Ehsan

    2015-03-01

    Contrast enhancement is a key component of CT imaging and offer opportunities for optimization. The design and optimization of new techniques however requires orchestration with the scan parameters and further a methodology to relate contrast enhancement and injection function. In this study, we used such a methodology to develop a method, analytical inverse method, to predict the required injection function to achieve a desired contrast enhancement in a given organ by incorporation of a physiologically based compartmental model. The method was evaluated across 32 different target contrast enhancement functions for aorta, kidney, stomach, small intestine, and liver. The results exhibited that the analytical inverse method offers accurate performance with error in the range of 10% deviation between the predicted and desired organ enhancement curves. However, this method is incapable of predicting the injection function based on the liver enhancement. The findings of this study can be useful in optimizing contrast medium injection function as well as the scan timing to provide more consistency in the way that the contrast enhanced CT examinations are performed. To our knowledge, this work is one of the first attempts to predict the contrast material injection function for a desired organ enhancement curve.

  19. Non-invasive assessment of portal hypertension and liver fibrosis using contrast-enhanced ultrasonography.

    PubMed

    Maruyama, Hitoshi; Shiha, Gamal; Yokosuka, Osamu; Kumar, Ashish; Sharma, Barjesh Chander; Ibrahim, Alaa; Saraswat, Vivek; Lesmana, Cosmas Rinaldi A; Omata, Masao

    2016-03-01

    Portal hypertension and hepatic fibrosis are key pathophysiologies with major manifestations in cirrhosis. Although the degree of portal pressure and hepatic fibrosis are pivotal parameters, both are determined using invasive procedures. Ultrasound (US) is a simple and non-invasive technique that is available for use worldwide in the abdominal field. Because of its safety and easy of use, contrast-enhanced US is one of the most frequently used tools in the management of liver tumors for the detection and characterization of lesions, assessment of malignancy grade, and evaluation of therapeutic effects. This wide range of applications drives the practical use of contrast-enhanced US for evaluation of the severity of portal hypertension and hepatic fibrosis. The present article reviews the recent progress in contrast-enhanced US for the assessment of portal hypertension and hepatic fibrosis. PMID:26696585

  20. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    SciTech Connect

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.

  1. [3D real time contrast enhanced ultrasonography,a new technique].

    PubMed

    Dietrich, C F

    2002-02-01

    While 3D sonography has become established in gynecology, abdominal applications have been mainly restricted to case reports. However, recent advances in computer technology have supported the development of new systems with motion detection methods and image registration algorithms - making it possible to acquire 3D data without position sensors, before and after administration of contrast enhancing agents. Hepatic (and also splenic) applications involve the topographic localization of masses in relation to the vessels, e.g. hepatic veins and portal vein branches prior to surgical procedures (segment localization). 3D imaging in the characterization of liver tumors after administration of contrast enhancing agents could become of special importance. We report on the first use of 3D imaging of the liver and spleen under real time conditions in 10 patients, using contrast enhanced phase inversion imaging with low mechanical index, which may improve the detection rate and characterization of liver and splenic tumors. PMID:11898076

  2. Image of tumor metastasis and inflammatory lymph node enlargement by contrast-enhanced ultrasonography

    PubMed Central

    Aoki, Takaya; Moriyasu, Fuminori; Yamamoto, Kei; Shimizu, Masafumi; Yamada, Masahiko; Imai, Yasuharu

    2011-01-01

    AIM: To compare the difference between tumor-induced lymph node enlargement and inflammation-induced lymph node enlargement by contrast-enhanced ultrasonography and pathological findings. METHODS: A model of tumor-induced lymph node metastasis was prepared by embedding a VX2 tumor into the hind paws of white rabbits. A model of inflammation-induced enlargement was prepared by injecting a suspension of Escherichia coli into separate hind paws of white rabbits. Then, a solution of Sonazoid™ (GE Healthcare, Oslo, Norway) was injected subcutaneously in the proximity of the lesion followed by contrast-enhanced ultrasonography of the enlarged popliteal lymph nodes. RESULTS: In the contrast-enhanced ultrasonography of the tumor-induced metastasis model, the sentinel lymph node was imaged. An area of filling defect was observed in that enlarged lymph node. In the histology examination, the area of filling defect corresponded to the metastatic lesion of the tumor. Contrast-enhanced ultrasonography of the model on inflammation-induced lymph node enlargement, and that of the acute inflammation model performed 3-7 d later, revealed dense staining that was comparatively uniform. The pathological findings showed acute lymphadenitis mainly due to infiltration of inflammatory cells. Contrast-enhanced ultrasonography that was performed 28 d post-infection in the acute inflammation model showed speckled staining. Inflammation-induced cell infiltration and fiberization, which are findings of chronic lymphadenitis, were seen in the pathological findings. CONCLUSION: Sentinel lymph node imaging was made possible by subcutaneous injection of Sonazoid™. Contrast-enhanced ultrasonography was suggested to be useful in differentiating tumor-induced enlargement and inflammation-induced enlargement of lymph nodes. PMID:22224178

  3. Usefulness of gray-scale contrast-enhanced ultrasonography (SonoVue®) in diagnosing hepatic alveolar echinococcosis.

    PubMed

    Tao, Song; Qin, Zhao; Hao, Wen; Yongquan, Lu; Lanhui, Yao; Lei, Yang

    2011-07-01

    Hepatic alveolar echinococcosis (HAE) is a parasitic infection with an infiltrative growth pattern that has the appearance of a hepatic malignant tumor. Ultrasound (US) has been used for screening of HAE in epidemic areas. However, it has been very difficult to evaluate the clear boundary and microvessel perfusion of the lesions. The aim of this study was to demonstrate the characteristic imaging and clinical significance of HAE lesions by contrast-enhanced ultrasonography (CEUS). Seventeen patients with 19 HAE lesions were examined in sequence with US, color Doppler flow imaging (CDFI) and then CEUS before any treatment. All the data were compared before surgery. Examined by fundamental US, 47.4% of HAE lesions showed irregular hyperechoic substantive areas and 52.6% appeared as having a mixed echotype with irregular anechoic areas in the central portion of the lesions. The CDFI method indicated no blood flow signals inside any of the 19 lesions. By CEUS, all 19 lesions displayed circular rim enhancement in the peripheral segments and absent enhancement within the central areas of the lesions (a "black hole" effect). As a result, the lesions' margins were clear, irregular and distinct. In general, the sizes of all the HAE lesions observed by CEUS were larger than those obtained by fundamental US. Therefore, CEUS is a simple imaging method and can be a helpful tool for more accurate sizing of HAE lesions and their surrounding invasion range and the proper cut-off margin when radical hepatectomy is needed. PMID:21640477

  4. Real-Time Elastography and Contrast-Enhanced Ultrasonography in the Evaluation of Testicular Masses: A Comparative Prospective Study.

    PubMed

    Schröder, Claudia; Lock, Guntram; Schmidt, Christa; Löning, Thomas; Dieckmann, Klaus-Peter

    2016-08-01

    This study investigates the usefulness of contrast-enhanced ultrasound (CEUS) and real-time elastography (RTE) for the characterization of testicular masses by comparing pre-operative ultrasound findings with post-operative histology. Sixty-seven patients with 68 sonographically detected testicular masses underwent B-mode, color-coded Doppler sonography (CCDS), CEUS and RTE according to defined criteria. For RTE, elasticity score (ES), difference of elasticity score (D-ES), strain ratio (SR) and size quotient (Qsize) were evaluated. Histopathologically, 54/68 testicular lesions were neoplastic (47 malignant, 7 benign). Descriptive statistics revealed the following results (neoplastic vs. non-neoplastic) for sensitivity, specificity, positive predictive value, negative predictive value and accuracy, respectively: B-mode, 100%, 43%, 87%, 100%, 88%; CCDS 81%, 86%, 96%, 55%, 82%; CEUS 93%, 85%, 96%, 73%, 91%; ES 98%, 25%, 85%, 75%, 85%; D-ES 98%, 50%, 90%, 83%, 89%; SR 90%, 45%, 86%, 56%, 81%; and Qsize 57%, 83%, 94%, 28%, 61%. B-mode with CCDS remains the standard for assessing testicular masses. In characterization of testicular lesions, CEUS clearly outperformed all other modalities. Our study does not support the routine use of RTE in testicular ultrasonography because of its low specificity. PMID:27181687

  5. Contrast enhanced-magnetic resonance imaging as a surrogate to map verteporfin delivery in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Bryant, Amber; Gunn, Jason R.; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2013-12-01

    The use of in vivo contrast-enhanced magnetic resonance (MR) imaging as a surrogate for photosensitizer (verteporfin) dosimetry in photodynamic therapy of pancreas cancer is demonstrated by correlating MR contrast uptake to ex vivo fluorescence images on excised tissue. An orthotopic pancreatic xenograft mouse model was used for the study. A strong correlation (r=0.57) was found for bulk intensity measurements of T1-weighted gadolinium enhancement and verteporfin fluorescence in the tumor region of interest. The use of contrast-enhanced MR imaging shows promise as a method for treatment planning and photosensitizer dosimetry in human photodynamic therapy (PDT) of pancreas cancer.

  6. Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function.

    PubMed

    Xie, Luke; Layton, Anita T; Wang, Nian; Larson, Peder E Z; Zhang, Jeff L; Lee, Vivian S; Liu, Chunlei; Johnson, G Allan

    2016-01-15

    Dynamic contrast-enhanced (DCE) MRI can provide key insight into renal function. DCE MRI is typically achieved through an injection of a gadolinium (Gd)-based contrast agent, which has desirable T1 quenching and tracer kinetics. However, significant T2* blooming effects and signal voids can arise when Gd becomes very concentrated, especially in the renal medulla and pelvis. One MRI sequence designed to alleviate T2* effects is the ultrashort echo time (UTE) sequence. In the present study, we observed T2* blooming in the inner medulla of the mouse kidney, despite using UTE at an echo time of 20 microseconds and a low dose of 0.03 mmol/kg Gd. We applied quantitative susceptibility mapping (QSM) and resolved the signal void into a positive susceptibility signal. The susceptibility values [in parts per million (ppm)] were converted into molar concentrations of Gd using a calibration curve. We determined the concentrating mechanism (referred to as the concentrating index) as a ratio of maximum Gd concentration in the inner medulla to the renal artery. The concentrating index was assessed longitudinally over a 17-wk course (3, 5, 7, 9, 13, 17 wk of age). We conclude that the UTE-based DCE method is limited in resolving extreme T2* content caused by the kidney's strong concentrating mechanism. QSM was able to resolve and confirm the source of the blooming effect to be the large positive susceptibility of concentrated Gd. UTE with QSM can complement traditional magnitude UTE and offer a powerful tool to study renal pathophysiology. PMID:26447222

  7. Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions.

    PubMed

    Kerckhofs, G; Sainz, J; Wevers, M; Van de Putte, T; Schrooten, J

    2013-01-01

    We describe a non-destructive imaging method, named contrast-enhanced nanofocus X-ray computed tomography (CE-nanoCT), that permits simultaneously imaging and quantifying in 3D the (sub)tissue architecture and (biochemical) composition of cartilage and bone in small animal models at a novel contrast and spatial resolution. To demonstrate the potential of this novel methodology, a newborn mouse was scanned using CE-nanoCT. This allowed simultaneously visualising the bone and cartilage structure much like the traditional alcian blue-alizarin red skeletal stain. Additionally, it enabled a 3D visualisation at such a high spatial image resolution that internal, micro-scale structures could be digitally dissected and evaluated for size, structure and composition. Ex vivo treatment with papain, that is known to specifically remove the non-calcified cartilage layer but keep the calcified cartilage intact, proved CE-nanoCT to be applicable to visualise the subdivisions within the hyaline cartilage of the articular joint of mice. The quantitative power of CE-nanoCT in vivo was evaluated using a mouse model for osteoarthritis (OA), where OA-like cartilage lesions are induced by meniscus destabilisation surgery. The thickness of both the non-calcified and calcified cartilage layer in the knee joint of such mice was visualised and quantified in 3D and compared to unaffected mice. Finally, to show that different forms of cartilage and tissue combinations can be distinguished using CE-nanoCT, different cartilaginous body parts of the mouse were imaged. In conclusion, CE-nanoCT can provide novel insights in preclinical research by quantifying in a non-destructive 3D manner pathological differences, in particular in developing mice, newborns or adults. PMID:23389752

  8. Evaluation of liver parenchyma and perfusion using dynamic contrast-enhanced computed tomography and contrast-enhanced ultrasonography in captive green iguanas (Iguana iguana) under general anesthesia

    PubMed Central

    2014-01-01

    Background Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. Results An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. Conclusion CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions. PMID:24885935

  9. Dual-energy contrast-enhanced digital mammography in routine clinical practice in 2013.

    PubMed

    Badr, S; Laurent, N; Régis, C; Boulanger, L; Lemaille, S; Poncelet, E

    2014-03-01

    To date, analysis of the vascularisation of breast lesions mainly relies on MR imaging. However, the accessibility of MRI is sometimes limited and has led to the development of new means of imaging, such as dual-energy contrast-enhanced mammography, which provides data on the vascularisation of the breast along with the usual morphological information. The purpose of this paper is to present this new imaging technique as well as the recent references, illustrated by clinical reports derived from our everyday practice to focus on the advantages and disadvantages of this new breast exploration. Dual-energy contrast-enhanced mammography is a recent, seemingly promising technique, in the management of breast cancer. The main advantages consist of its easy installation, the good tolerance and the comfort in the interpretation of difficult to read mammograms. However, the indications and the role of dual-energy contrast-enhanced mammography still have to be determined within the diagnostic strategy of breast tumours. New studies are expected, especially to compare dual-energy contrast-enhanced mammography with breast MRI. PMID:24238816

  10. Review of dynamic contrast-enhanced ultrasound guidance in ablation therapy for hepatocellular carcinoma

    PubMed Central

    Minami, Yasunori; Kudo, Masatoshi

    2011-01-01

    Local ablative techniques-percutaneous ethanol injection, microwave coagulation therapy and radiofrequency ablation (RFA)-have been developed to treat unresectable hepatocellular carcinoma (HCC). The success rate of percutaneous ablation therapy for HCC depends on correct targeting of the tumor via an imaging technique. However, probe insertion often is not completely accurate for small HCC nodules, which are poorly defined on conventional B-mode ultrasound (US) alone. Thus, multiple sessions of ablation therapy are frequently required in difficult cases. By means of two breakthroughs in US technology, harmonic imaging and the development of second-generation contrast agents, dynamic contrast-enhanced harmonic US imaging with an intravenous contrast agent can depict tumor vascularity sensitively and accurately, and is able to evaluate small hypervascular HCCs even when B-mode US cannot adequately characterize the tumors. Therefore, dynamic contrast-enhanced US can facilitate RFA electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of dynamic contrast-enhanced US guidance in ablation therapy for liver cancer is an efficient approach. Here, we present an overview of the current status of dynamic contrast-enhanced US-guided ablation therapy, and summarize the current indications and outcomes of reported clinical use in comparison with that of other modalities. PMID:22174544

  11. Contrast-enhanced ultrasonography in Takayasu arteritis: watching and monitoring the arterial inflammation.

    PubMed

    Herlin, Bastien; Baud, Jean-Michel; Chadenat, Marie-Laure; Pico, Fernando

    2015-01-01

    A 43-year-old man was diagnosed with Takayasu arteritis, and treated with methotrexate and corticosteroids. While under treatment and with normal biological inflammatory parameters, he experienced an ischaemic stroke, successfully treated with intravenous thrombolysis (alteplase). The B-mode ultrasound examination revealed circumferential wall thickening of the left common carotid artery. Contrast-enhanced ultrasonography showed a progressive arterial wall enhancement of the left common carotid artery. This pathological enhancement indicates neovascularisation of the arterial wall, which is supposed to correlate with active vascular inflammation. After an increase in immunosuppressive treatment, follow-up contrast-enhanced ultrasonography no longer showed artery wall enhancement. Contrast-enhanced ultrasound examination is an inexpensive, reproducible and minimally invasive method, providing dynamic information on arterial wall neovascularisation and thus inflammation. This case illustrates that contrast-enhanced ultrasonography can be a useful tool for the management and follow-up of Takayasu arteritis, and its use as a marker of disease activity and arterial inflammation in Takayasu arteritis should be evaluated in further studies. PMID:26452525

  12. The Value of Contrast-Enhanced Ultrasonography and Contrast-Enhanced CT in the Diagnosis of Malignant Renal Cystic Lesions: A Meta-Analysis.

    PubMed

    Lan, Dong; Qu, Hong-Chen; Li, Ning; Zhu, Xing-Wang; Liu, Yi-Li; Liu, Chun-Lai

    2016-01-01

    We compared the efficacy of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) for the diagnosis of renal cystic lesions via a meta-analysis to determine the value of CEUS in the prediction of the malignant potential of complex renal cysts. Eleven studies were evaluated: 4 control studies related to CEUS and CECT, 3 studies related to CEUS and 4 studies related to CECT. According to the random effects model, the pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for CEUS/CECT were 0.95/0.90, 0.79/0.85, 4.39/5.00, and 0.10/0.15, respectively. The areas under the summary receiver operating characteristic (AUCs-SROC) curves for the two methods were 94.24% and 93.39%, and the estimated Q values were 0.8805 and 0.8698, respectively. Comparing the Q index values of CEUS and CECT revealed no significant difference between the two methods (P>0.05). When compared with conventional CECT, CEUS is also useful for diagnosing renal cystic lesions in the clinic. PMID:27203086

  13. The Value of Contrast-Enhanced Ultrasonography and Contrast-Enhanced CT in the Diagnosis of Malignant Renal Cystic Lesions: A Meta-Analysis

    PubMed Central

    Lan, Dong; Qu, Hong-Chen; Li, Ning; Zhu, Xing-Wang; Liu, Yi-Li; Liu, Chun-Lai

    2016-01-01

    We compared the efficacy of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) for the diagnosis of renal cystic lesions via a meta-analysis to determine the value of CEUS in the prediction of the malignant potential of complex renal cysts. Eleven studies were evaluated: 4 control studies related to CEUS and CECT, 3 studies related to CEUS and 4 studies related to CECT. According to the random effects model, the pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for CEUS/CECT were 0.95/0.90, 0.79/0.85, 4.39/5.00, and 0.10/0.15, respectively. The areas under the summary receiver operating characteristic (AUCs-SROC) curves for the two methods were 94.24% and 93.39%, and the estimated Q values were 0.8805 and 0.8698, respectively. Comparing the Q index values of CEUS and CECT revealed no significant difference between the two methods (P>0.05). When compared with conventional CECT, CEUS is also useful for diagnosing renal cystic lesions in the clinic. PMID:27203086

  14. Doppler-free spectroscopy of mercury at 253.7 nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser.

    PubMed

    Paul, Justin; Kaneda, Yushi; Wang, Tsuei-Lian; Lytle, Christian; Moloney, Jerome V; Jones, R Jason

    2011-01-01

    We have developed a stable, high-power, single-frequency optically pumped external-cavity semiconductor laser system and generate up to 125 mW of power at 253.7 nm using successive frequency doubling stages. We demonstrate precision scanning and control of the laser frequency in the UV to be used for cooling and trapping of mercury atoms. With active frequency stabilization, a linewidth of <60 kHz is measured in the IR. Doppler-free spectroscopy and stabilization to the 6(1)S(0)-6(3)P(1) mercury transition at 253.7 nm is demonstrated. To our knowledge, this is the first demonstration of Doppler-free spectroscopy in the deep UV based on a frequency-quadrupled, high-power (>1 W) optically pumped semiconductor laser system. The results demonstrate the utility of these devices for precision spectroscopy at deep-UV wavelengths. PMID:21209687

  15. Coronary artery calcium quantification from contrast enhanced CT using gemstone spectral imaging and material decomposition.

    PubMed

    Fuchs, Tobias A; Stehli, Julia; Dougoud, Svetlana; Sah, Bert-Ram; Bull, Sacha; Clerc, Olivier F; Possner, Mathias; Buechel, Ronny R; Gaemperli, Oliver; Kaufmann, Philipp A

    2014-10-01

    To explore the feasibility of coronary artery calcium (CAC) measurement from low-dose contrast enhanced coronary CT angiography (CCTA) as this may obviate the need for an unenhanced CT scan. 52 patients underwent unenhanced cardiac CT and prospectively ECG triggered contrast enhanced CCTA (Discovery HD 750, GE Healthcare, Milwaukee, WI, USA). The latter was acquired in single-source dual-energy mode [gemstone spectral imaging (GSI)]. Virtual unenhanced images were generated from GSI CCTA by monochromatic image reconstruction of 70 keV allowing selective iodine material suppression. CAC scores from virtual unenhanced CT were compared to standard unenhanced CT including a linear regression model. After iodine subtraction from the contrast enhanced CCTA the attenuation in the ascending aorta decreased significantly from 359 ± 61 to 54 ± 8 HU (P < 0.001), the latter comparing well to the value of 64 ± 55 HU found in the standard unenhanced CT (P = ns) confirming successful iodine subtraction. After introducing linear regression formula the mean values for Agatston, Volume and Mass scores of virtual unenhanced CT were 187 ± 321, 72 ± 114 mm(3), and 27 ± 46 mg/cm(3), comparing well to the values from standard unenhanced CT (187 ± 309, 72 ± 110 mm(3), and 27 ± 45 mg/cm(3)) yielding an excellent correlation (r = 0.96, r = 0.96, r = 0.92; P < 0.001). Mean estimated radiation dose revealed 0.83 ± 0.02 mSv from the unenhanced CT and 1.70 ± 0.53 mSv from the contrast enhanced CCTA. Single-source dual-energy scanning with GSI allows CAC quantification from low dose contrast enhanced CCTA by virtual iodine contrast subtraction. PMID:24993390

  16. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    USGS Publications Warehouse

    Zajd, Henry J., Jr.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  17. Effect of contrast enhancement prior to iteration procedure on image correction for soft x-ray projection microscopy

    NASA Astrophysics Data System (ADS)

    Jamsranjav, Erdenetogtokh; Shiina, Tatsuo; Kuge, Kenichi; Kinjo, Yasuhito; Nakamura, Yuichi; Shinohara, Kunio; Ito, Atsushi

    2016-01-01

    Soft X-ray microscopy is well recognized as a powerful tool of high-resolution imaging for hydrated biological specimens. Projection type of it has characteristics of easy zooming function, simple optical layout and so on. However the image is blurred by the diffraction of X-rays, leading the spatial resolution to be worse. In this study, the blurred images have been corrected by an iteration procedure, i.e., Fresnel and inverse Fresnel transformations repeated. This method was confirmed by earlier studies to be effective. Nevertheless it was not enough to some images showing too low contrast, especially at high magnification. In the present study, we tried a contrast enhancement method to make the diffraction fringes clearer prior to the iteration procedure. The method was effective to improve the images which were not successful by iteration procedure only.

  18. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  19. Comparison of Superb Micro-Vascular Ultrasound Imaging (SMI) and Contrast-Enhanced Ultrasound (CEUS) for Detection of Endoleaks After Endovascular Aneurysm Repair (EVAR)

    PubMed Central

    Gabriel, Marcin; Tomczak, Jolanta; Snoch-Ziółkiewicz, Magdalena; Dzieciuchowicz, Łukasz; Strauss, Ewa; Oszkinis, Grzegorz

    2016-01-01

    Patient: Male, 68 Final Diagnosis: Unusual clinical course Symptoms: None Medication: — Clinical Procedure: Angio CT Specialty: Surgery Objective: Challenging differential diagnosis Background: High-resolution contrast-enhanced ultrasound is one of methods used in the detection and characterization of endoleaks, which is a frequent complication after EVAR. A new technology provided by Toshiba’s AplioTM 500 ultrasound system, called Superb Micro-Vascular Imaging (SMI), is dedicated specifically to imaging very low flow states and appears to be a promising new method for detection of endoleaks. Case Report: After endovascular treatment, a 68-year-old patient who had stent-graft implantation underwent clinical examinations, including contrast-enhanced ultrasound (CEUS), superb micro-vascular imaging (SMI), and computed tomographic angiography (CTA), revealing additional information about abnormal blood flow localized in the periphery of the sack of the left common iliac artery aneurysm. By using CEUS and SMI, the endoleak was clearly visible. Conclusions: This case report illustrates the potential clinical value of this advanced Doppler technology (SMI) and how it could influence clinical management. PMID:26806053

  20. A comparative study of contrast enhanced ultrasound and contrast enhanced magnetic resonance imaging for the detection and characterization of hepatic hemangiomas.

    PubMed

    Fang, Liang; Zhu, Zheng; Huang, Beijian; Ding, Hong; Mao, Feng; Li, Chaolun; Zeng, Mengsu; Zhou, Jianjun; Wang, Ling; Wang, Wenping; Chen, Yue

    2015-04-01

    This study aims to compare contrast enhanced ultrasound (CEUS) and contrast enhanced magnetic resonance imaging (CEMRI) for the detection and characterization of hepatic hemangiomas. Included in this retrospective study were 83 histopathologically confirmed lesions of hemangioma in 66 hospitalized patients who underwent both CEUS and CEMRI and received surgery. The enhancement patterns on CEUS and CEMRI in each lesion were compared and analyzed. In addition, data obtained by the two modalities were then compared with the pathological findings to determine their value in differential diagnosis of hepatic hemangiomas. CEUS diagnosed 78 lesions of hemangioma against 80 by CEMRI. There were no statistical significant differences in the diagnostic value between CEUS and CEMRI in terms of sensitivity (88.0% vs. 92.8%), specificity (99.0% vs. 99.4%), accuracy (97.3% vs. 98.4%), positive predictive value (93.6% vs. 96.3%), and negative predictive value (98.0% vs. 98.8%) (p > 0.05, all). In the arterial phase, the main enhancement pattern on both CEUS and CEMRI was peripheral nodular enhancement (73 vs. 76), but lesions with diffuse enhancement on CEUS outnumbered those on CEMRI (3 vs. 1) and lesions with circular enhancement on CEMRI outnumbered those on CEUS (3 vs. 2). In the portal venous phase and delayed phase, the main enhancement pattern was hyperechoic change on CEUS and hyperintense on CEMRI (66 vs. 65), some lesions presented isoechoic change (12 vs. 15). These results suggested CEUS, an equivalent to CEMRI, may have an added diagnostic value in hemangiomas. PMID:25971695

  1. Brightness-preserving fuzzy contrast enhancement scheme for the detection and classification of diabetic retinopathy disease.

    PubMed

    Datta, Niladri Sekhar; Dutta, Himadri Sekhar; Majumder, Koushik

    2016-01-01

    The contrast enhancement of retinal image plays a vital role for the detection of microaneurysms (MAs), which are an early sign of diabetic retinopathy disease. A retinal image contrast enhancement method has been presented to improve the MA detection technique. The success rate on low-contrast noisy retinal image analysis shows the importance of the proposed method. Overall, 587 retinal input images are tested for performance analysis. The average sensitivity and specificity are obtained as 95.94% and 99.21%, respectively. The area under curve is found as 0.932 for the receiver operating characteristics analysis. The classifications of diabetic retinopathy disease are also performed here. The experimental results show that the overall MA detection method performs better than the current state-of-the-art MA detection algorithms. PMID:26870750

  2. Dynamic Vascular Pattern (DVP), a quantification tool for contrast enhanced ultrasound.

    PubMed

    Cui, X W; Ignee, A; Jedrzejczyk, M; Dietrich, C F

    2013-05-01

    Contrast-enhanced ultrasound (CEUS) is widely applied in tumour diagnosis, especially for focal liver lesions (FLL), due to its high sensitivity and specificity. According to the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) CEUS guidelines (2012) and non-liver guidelines (2011), the majority of tumours, regardless of location, show specific CEUS enhancement patterns that can distinguish benign from malignant lesions. However, even experienced clinicians evaluating FLL may find occasional irregularities in these patterns, due to particular FLL pathologies, that make a definitive diagnosis difficult. Hence, there is a need to train physicians to utilize contrast enhancement kinetics to aid in the correct interpretation of data from CEUS examinations in patients with divergent liver tumour pathologies. Here we report on a CEUS quantitation software, SonoLiver®, to verify and improve diagnostic accuracy in the characterization of suspicious liver lesions through the analysis of dynamic vascular patterns (DVP). PMID:23681894

  3. Current consensus and guidelines of contrast enhanced ultrasound for the characterization of focal liver lesions

    PubMed Central

    Jang, Jae Young; Kim, Moon Young; Jeong, Soung Won; Kim, Tae Yeob; Kim, Seung Up; Lee, Sae Hwan; Suk, Ki Tae; Park, Soo Young; Woo, Hyun Young; Kim, Sang Gyune; Heo, Jeong; Baik, Soon Koo; Kim, Hong Soo

    2013-01-01

    The application of ultrasound contrast agents (UCAs) is considered essential when evaluating focal liver lesions (FLLs) using ultrasonography (US). Microbubble UCAs are easy to use and robust; their use poses no risk of nephrotoxicity and requires no ionizing radiation. The unique features of contrast enhanced US (CEUS) are not only noninvasiveness but also real-time assessing of liver perfusion throughout the vascular phases. The later feature has led to dramatic improvement in the diagnostic accuracy of US for detection and characterization of FLLs as well as the guidance to therapeutic procedures and evaluation of response to treatment. This article describes the current consensus and guidelines for the use of UCAs for the FLLs that are commonly encountered in US. After a brief description of the bases of different CEUS techniques, contrast-enhancement patterns of different types of benign and malignant FLLs and other clinical applications are described and discussed on the basis of our experience and the literature data. PMID:23593604

  4. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  5. De-enhancing the dynamic contrast-enhanced breast MRI for robust registration.

    PubMed

    Zheng, Yuanjie; Yu, Jingyi; Kambhamettu, Chandra; Englander, Sarah; Schnall, Mitchell D; Shen, Dinggang

    2007-01-01

    Dynamic enhancement causes serious problems for registration of contrast enhanced breast MRI, due to variable uptakes of agent on different tissues or even same tissues in the breast. We present an iterative optimization algorithm to de-enhance the dynamic contrast-enhanced breast MRI and then register them for avoiding the effects of enhancement on image registration. In particular, the spatially varying enhancements are modeled by a Markov Random Field, and estimated by a locally smooth function with boundaries using a graph cut algorithm. The de-enhanced images are then registered by conventional B-spline based registration algorithm. These two steps benefit from each other and are repeated until the results converge. Experimental results show that our two-step registration algorithm performs much better than conventional mutual information based registration algorithm. Also, the effects of tumor shrinking in the conventional registration algorithms can be effectively avoided by our registration algorithm. PMID:18051148

  6. CW-THz image contrast enhancement using wavelet transform and Retinex

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  7. Revisiting the potential signs of colorectal cancer on contrast-enhanced computed tomography without bowel preparation.

    PubMed

    Naqvi, Jawad; Hosmane, Sharath; Lapsia, Snehal

    2015-10-01

    Colorectal cancer (CRC) is the second most common cause of cancer death in the US. Earlier detection can allow treatment with curative intent and improve prognosis. Optical and virtual colonoscopy are widely used in screening for colonic polyps and in the investigation of suspected CRC. However, contrast-enhanced computed tomography (CT) is still performed to investigate various non-specific abdominal complaints. Hence, a significant number of CRC are identified on contrast-enhanced CT without bowel preparation. We describe several signs, which when present in tandem, raise suspicion of CRC, and may warrant further investigation with optical colonoscopy. These include an intraluminal mass, eccentric or circumferential wall thickening >3 mm, focal wall enhancement, pericolic fat stranding, a cluster of >3 local lymph nodes, and enlarged lymph nodes >10 mm in short axis. Multiplanar evaluation of the bowel should be performed on all CT abdominal studies, including those without bowel preparation, to identify subtle features of CRC. PMID:26194811

  8. Optimum wavelet based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm.

    PubMed

    Daniel, Ebenezer; Anitha, J

    2016-04-01

    Unsharp masking techniques are a prominent approach in contrast enhancement. Generalized masking formulation has static scale value selection, which limits the gain of contrast. In this paper, we propose an Optimum Wavelet Based Masking (OWBM) using Enhanced Cuckoo Search Algorithm (ECSA) for the contrast improvement of medical images. The ECSA can automatically adjust the ratio of nest rebuilding, using genetic operators such as adaptive crossover and mutation. First, the proposed contrast enhancement approach is validated quantitatively using Brain Web and MIAS database images. Later, the conventional nest rebuilding of cuckoo search optimization is modified using Adaptive Rebuilding of Worst Nests (ARWN). Experimental results are analyzed using various performance matrices, and our OWBM shows improved results as compared with other reported literature. PMID:26945462

  9. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    SciTech Connect

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Saab-Puong, Sylvie; Iordache, Răzvan; Muller, Serge; Jong, Roberta A.; Dromain, Clarisse

    2013-08-15

    Purpose: Dual-energy (DE) contrast-enhanced digital mammography (CEDM) uses an iodinated contrast agent in combination with digital mammography (DM) to evaluate lesions on the basis of tumor angiogenesis. In DE imaging, low-energy (LE) and high-energy (HE) images are acquired after contrast administration and their logarithms are subtracted to cancel the appearance of normal breast tissue. Often there is incomplete signal cancellation in the subtracted images, creating a background “clutter” that can impair lesion detection. This is the second component of a two-part report on anatomical noise in CEDM. In Part I the authors characterized the anatomical noise for single-energy (SE) temporal subtraction CEDM by a power law, with model parameters α and β. In this work the authors quantify the anatomical noise in DE CEDM clinical images and compare this with the noise in SE CEDM. The influence on the anatomical noise of the presence of iodine in the breast, the timing of imaging postcontrast administration, and the x-ray energy used for acquisition are each evaluated.Methods: The power law parameters, α and β, were measured from unprocessed LE and HE images and from DE subtracted images to quantify the anatomical noise. A total of 98 DE CEDM cases acquired in a previous clinical pilot study were assessed. Conventional DM images from 75 of the women were evaluated for comparison with DE CEDM. The influence of the imaging technique on anatomical noise was determined from an analysis of differences between the power law parameters as measured in DM, LE, HE, and DE subtracted images for each subject.Results: In DE CEDM, weighted image subtraction lowers β to about 1.1 from 3.2 and 3.1 in LE and HE unprocessed images, respectively. The presence of iodine has a small but significant effect in LE images, reducing β by about 0.07 compared to DM, with α unchanged. Increasing the x-ray energy, from that typical in DM to a HE beam, significantly decreases α by about 2

  10. Evaluation of the potential utility of flat panel CT for quantifying relative contrast enhancement

    SciTech Connect

    Jones, A. Kyle; Mahvash, Armeen

    2012-07-15

    Purpose: Certain directed oncologic therapies seek to take advantage of the fact that tumors are typically more susceptible to directed therapeutic agents than normal tissue owing to their extensive networks of poorly formed, leaky vasculature. If differences between the vascularity of normal and tumor tissues could be quantified, patients could be selected for or excluded from directed treatments on the basis of this difference. However, angiographic imaging techniques such as digital subtraction angiography (DSA) yield two-dimensional data that may be inadequate for this task. As a first step, the authors evaluated the feasibility of using a commercial implementation of flat panel computed tomography (FPCT) to quantify differences in enhancement of a simulated tumor compared with normal tissue based on differences in CT number measured in precontrast and postcontrast scans. Methods: To evaluate the FPCT scanner studied, the authors scanned several phantoms containing simulated normal and tumor tissues. In the first experiment, the authors used an anthropomorphic phantom containing inclusions representing normal, tumor, and bone tissue to evaluate the constancy of CT numbers in scans repeated at clinically relevant intervals of 1 and 3 min. The authors then scanned gelatin phantoms containing dilutions of iodinated contrast to evaluate the accuracy of relative contrast enhancement measurements for a clinical FPCT system. Data were analyzed using widely available software. Results: CT numbers measured in identical locations were constant over both scan intervals evaluated. Measured relative contrast enhancement values were accurate compared with known relative contrast enhancement values. Care must be taken to avoid artifacts in reconstructed images when placing regions of interest. Conclusions: Despite its limitations, FPCT in the interventional laboratory can be used to quantify relative contrast enhancement in phantoms. This is accomplished by measuring CT

  11. Hydrogen atom donor compounds as contrast enhancers for black-and-white photothermographic and thermographic elements

    DOEpatents

    Harring, Lori S.; Simpson, Sharon M.; Sansbury, Francis H.

    1997-01-01

    Hydrogen atom donor compounds are useful as contrast enhancers when used in combination with (i) hindered phenol developers, and (ii) trityl hydrazide and/or formyl-phenyl hydrazine co-developers, to produce ultra-high contrast black-and-white photothermographic and thermographic elements. The photothermographic and thermographic elements may be used as a photomask in a process where there is a subsequent exposure of an ultraviolet or short wavelength visible radiation-sensitive imageable medium.

  12. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    Purpose: The role of 18fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. Materials and Methods: A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. Results: The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. Conclusion: The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted. PMID:26917889

  13. Quantitative Contrast-Enhanced Ultrasonic Imaging Reflects Microvascularization in Hepatocellular Carcinoma and Prognosis after Resection.

    PubMed

    Zou, Ru-Hai; Lin, Qing-Guang; Huang, Wei; Li, Xiao-Ling; Cao, Yun; Zhang, Jing; Zhou, Jian-Hua; Li, An-Hua; Beretta, Laura; Qian, Chao-Nan

    2015-10-01

    Our aim was to evaluate the correlation between tumor vasculature detected by pre-surgical contrast-enhanced ultrasonography and the post-surgical prognosis of patients with hepatocellular carcinoma. One hundred ninety-five patients with hepatocellular carcinoma who had undergone curative resection and pre-operative contrast-enhanced ultrasonography were enrolled. Intra-tumoral microvessels were evaluated by immunohistochemical staining for anti-CD31 and anti-CD34. On the basis of the immunohistochemical staining and morphology patterns, tumors were divided into capillary-like and sinusoid-like microvessel subtypes. The rise time of tumors was shorter in the capillary-like microvessel subtype than in the sinusoid-like microvasculature subtype (p = 0.026). Intra-tumor microvascular density (p < 0.001, hazard ratio = 0.137) and rise time (p = 0.006, hazard ratio = 2.475) were independent factors corresponding to different microvasculature types. Microvascular density, vascular invasion and wash-in perfusion index were determined to be independent factors in recurrence-free survival and overall survival. In conclusion, contrast-enhanced ultrasonography may serve as a means of non-invasive assessment of tumor angiogenesis and may be associated with the survival of patients with hepatocellular carcinoma after resection. PMID:26210785

  14. Selective X-ray contrast enhancement of the spleen of living mice mediated by gold nanorods.

    PubMed

    Wathen, Connor A; Caldwell, Chuck; Chanda, Nripen; Upendran, Anandhi; Zambre, Ajit; Afrasiabi, Zahra; Chapaman, Sarah E; Foje, Nathan; Leevy, W Matthew; Kannan, Raghuraman

    2015-01-01

    Gold nanomaterials (AuNPs) represent a promising new class of contrast agents for X-ray computed tomographic (CT) imaging in both research and clinical settings. These materials exhibit superior X-ray absorption properties compared with other iodinated agents, and thus require lower injection doses. Gold is nonimmunogenic and therefore contributes to safety profile in living specimens. Unfortunately, most reports on the use of AuNPs as X-ray CT enhancers only demonstrate marginal enhancement of the intended anatomical structure. In this study, we demonstrate the dramatic properties of gold nanorods (GNR) to serve as robust X-ray CT contrast-enhancing agent for selective imaging of the spleen. These organ-specific uptake properties were delineated by performing longitudinal CT imaging of living mice that were dosed with GNR at 2 day intervals. Rapid uptake in spleen was noted within 12 h of first systemic administration with a change in contrast enhancement of 90 Hounsfield units (ΔHU = 90) and with two subsequent injections a total contrast enhancement of over 200 HU was observed. The resulting images provide excellent contrast that will enable the detailed anatomical visualization and study of a range of pre-clinical models of spleen disease including infection and cancer. PMID:25169942

  15. Contrast-Enhanced Magnetic Resonance Imaging in Pediatric Patients: Review and Recommendations for Current Practice

    PubMed Central

    Bhargava, Ravi; Hahn, Gabriele; Hirsch, Wolfgang; Kim, Myung-Joon; Mentzel, Hans-Joachim; Olsen, Øystein E.; Stokland, Eira; Triulzi, Fabio; Vazquez, Elida

    2013-01-01

    Magnetic resonance imaging (MRI), frequently with contrast enhancement, is the preferred imaging modality for many indications in children. Practice varies widely between centers, reflecting the rapid pace of change and the need for further research. Guide-line changes, for example on contrast-medium choice, require continued practice reappraisal. This article reviews recent developments in pediatric contrast-enhanced MRI and offers recommendations on current best practice. Nine leading pediatric radiologists from internationally recognized radiology centers convened at a consensus meeting in Bordeaux, France, to discuss applications of contrast-enhanced MRI across a range of indications in children. Review of the literature indicated that few published data provide guidance on best practice in pediatric MRI. Discussion among the experts concluded that MRI is preferred over ionizing-radiation modalities for many indications, with advantages in safety and efficacy. Awareness of age-specific adaptations in MRI technique can optimize image quality. Gadolinium-based contrast media are recommended for enhancing imaging quality. The choice of most appropriate contrast medium should be based on criteria of safety, tolerability, and efficacy, characterized in age-specific clinical trials and personal experience. PMID:25114547

  16. Contrast-enhanced ultrasonography to assess blood perfusion of skeletal muscles in normal dogs.

    PubMed

    Oh, Juyeon; Jeon, Sunghoon; Choi, Jihye

    2015-07-01

    This study evaluated perfusion of skeletal muscle using contrast enhanced ultrasonography in humerus, radius, femur and tibia in normal dogs. Contrast enhanced ultrasonography for each region was performed after injecting 0.5 mL and 1 mL of contrast medium (SonoVue) in every dog. Blood perfusion was assessed quantitatively by measuring the peak intensity, time to the peak intensity and area under the curve from the time-intensity curve. Vascularization in skeletal muscle was qualitatively graded with a score of 0-3 according to the number of vascular signals. A parabolic shape of time-intensity curve was observed from muscles in normal dogs, and time to the peak intensity, the peak intensity and area under the curve of each muscle were not significantly different according to the appendicular regions examined and the dosage of contrast agent administered. This study reports that feasibility of contrast enhanced ultrasonography for assessment of the muscular perfusion in canine appendicular regions. PMID:25754794

  17. Non-contrast-enhanced renal and abdominal MR angiography using velocity-selective inversion preparation.

    PubMed

    Shin, Taehoon; Worters, Pauline W; Hu, Bob S; Nishimura, Dwight G

    2013-05-01

    Non-contrast-enhanced MR angiography is a promising alternative to the established contrast-enhanced approach as it reduces patient discomfort and examination costs and avoids the risk of nephrogenic systemic fibrosis. Inflow-sensitive slab-selective inversion recovery imaging has been used with great promise, particularly for abdominal applications, but has limited craniocaudal coverage due to inflow time constraints. In this work, a new non-contrast-enhanced MR angiography method using velocity-selective inversion preparation is developed and applied to renal and abdominal angiography. Based on the excitation k-space formalism and Shinnar-Le-Roux transform, a velocity-selective excitation pulse is designed that inverts stationary tissues and venous blood while preserving inferiorly flowing arterial blood. As the magnetization of the arterial blood in the abdominal aorta and iliac arteries is well preserved during the magnetization preparation, artery visualization over a large abdominal field of view is achievable with an inversion delay time that is chosen for optimal background suppression. Healthy volunteer tests demonstrate that the proposed method significantly increases the extent of visible arteries compared with the slab-selective approach, covering renal arteries through iliac arteries over a craniocaudal field of view of 340 mm. PMID:22711643

  18. Optimized dynamic contrast-enhanced cone-beam CT for target visualization during liver SBRT

    NASA Astrophysics Data System (ADS)

    Jones, Bernard L.; Altunbas, Cem; Kavanagh, Brian; Schefter, Tracey; Miften, Moyed

    2014-03-01

    The pharmacokinetic behavior of iodine contrast agents makes it difficult to achieve significant enhancement during contrast-enhanced cone-beam CT (CE-CBCT). This study modeled this dynamic behavior to optimize CE-CBCT and improve the localization of liver lesions for SBRT. We developed a model that allows for controlled study of changing iodine concentrations using static phantoms. A projection database consisting of multiple phantom images of differing iodine/scan conditions was built. To reconstruct images of dynamic hepatic concentrations, hepatic contrast enhancement data from conventional CT scans were used to re-assemble the projections to match the expected amount of contrast. In this way the effect of various parameters on image quality was isolated, and using our dynamic model we found parameters for iodine injection, CBCT scanning, and injection/scanning timing which optimize contrast enhancement. Increasing the iodine dose, iodine injection rate, and imaging dose led to significant increases in signal-to-noise ratio (SNR). Reducing the CBCT imaging time also increased SNR, as the image can be completed before the iodine exits the liver. Proper timing of image acquisition played a significant role, as a 30 second error in start time resulted in a 40% SNR decrease. The effect of IV contrast is severely degraded in CBCT, but there is promise that, with optimization of the injection and scan parameters to account for iodine pharmacokinetics, CE-CBCT which models venous-phase blood flow kinetics will be feasible for accurate localization of liver lesions.

  19. Contrast-enhanced ultrasonography to assess blood perfusion of skeletal muscles in normal dogs

    PubMed Central

    OH, Juyeon; JEON, Sunghoon; CHOI, Jihye

    2015-01-01

    This study evaluated perfusion of skeletal muscle using contrast enhanced ultrasonography in humerus, radius, femur and tibia in normal dogs. Contrast enhanced ultrasonography for each region was performed after injecting 0.5 mL and 1 mL of contrast medium (SonoVue) in every dog. Blood perfusion was assessed quantitatively by measuring the peak intensity, time to the peak intensity and area under the curve from the time–intensity curve. Vascularization in skeletal muscle was qualitatively graded with a score of 0–3 according to the number of vascular signals. A parabolic shape of time–intensity curve was observed from muscles in normal dogs, and time to the peak intensity, the peak intensity and area under the curve of each muscle were not significantly different according to the appendicular regions examined and the dosage of contrast agent administered. This study reports that feasibility of contrast enhanced ultrasonography for assessment of the muscular perfusion in canine appendicular regions. PMID:25754794

  20. A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue

    2014-03-01

    Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.

  1. DyCoH: an innovative tool to dynamic contrast enhancement analysis.

    PubMed

    Russo, Valentina; Setola, Roberto; Del Vescovo, Riccardo; Grasso, Rosario Francesco; Zobel, Bruno Beomonte

    2007-01-01

    Contrast-Enhancement (CE) is an innovative approach, used in radiological framework, to evaluate the vascularization of the diseases. This non-invasive method determines the nature of a diseases, analysing the perfusion' dynamic of contrast media in the tissues. In this paper we present an innovative tool named DyCoH (Dynamic Contrast Enhancement). This software, being specifically designed for this type of analysis, provides to medical doctor, in a very user-friendly framework, all the information needed to perform the CE analysis. DyCoH produces four inspectionable colour-maps that radiologists can use to identify the most relevant areas over which dynamically evaluates the contrast enhancement curve. However, the most interesting feature of DyCoH is its capability to manage, into a single framework, DICOM images produced by US, CT and MR of different vendors, allowing to support many types of clinical tests and to compare results provided by different diagnostic devices. Clinical tests have shown the effectiveness of the software and its capability to concretely support CE diagnoses. PMID:18001889

  2. Contrast-enhanced ultrasonography: advance and current status in abdominal imaging

    PubMed Central

    2015-01-01

    In the field of contrast-enhanced ultrasonography (US), contrast agents are classified as either first- or second-generation agents depending on the gas within the microbubbles. In the case of first-generation contrast agents, a high-mechanical-index technique is used and only intermittent scanning is possible due to the early destruction of the microbubbles during the scanning. The use of second-generation contrast agents in a low-mechanical-index technique enables continuous scanning. Besides the detection and characterization of focal liver lesions, contrastenhanced US is helpful in the monitoring of radiofrequency ablation therapy and in the targeting step of an US-guided biopsy. Recently, there has been a demand for new criteria to evaluate the treatment response obtained using anti-angiogenic agents because morphologic criteria alone may not reflect the treatment response of the tumor and contrast-enhanced US can provide quantitative markers of tissue perfusion. In spite of the concerns related to its cost-effectiveness, contrast-enhanced US has the potential to be more widely used as a complimentary tool or to substitute the current imaging modalities in some occasions. PMID:25342120

  3. Dynamic contrast-enhanced ultrasound of slaughterhouse porcine livers in machine perfusion.

    PubMed

    Izamis, Maria-Louisa; Efstathiades, Andreas; Keravnou, Christina; Leen, Edward L; Averkiou, Michalakis A

    2014-09-01

    The aim of this study was to enable investigations into novel imaging and surgical techniques by developing a readily accessible, versatile liver machine perfusion system. Slaughterhouse pig livers were used, and dynamic contrast-enhanced ultrasound was introduced to optimize the procurement process and provide real-time perfusion monitoring. The system comprised a single pump, oxygenator, bubble trap and two flowmeters for pressure-controlled perfusion of the vessels using an off-the-shelf perfusate at room temperature. Successful livers exhibited homogeneous perfusion in both the portal vein and hepatic artery with dynamic contrast-enhanced ultrasound, which correlated with stable oxygen uptake, bile production and hepatic resistance and normal histology at the end of 3 h of perfusion. Dynamic contrast-enhanced ultrasound revealed perfusion abnormalities invisible to the naked eye, thereby providing context to the otherwise systemic biochemical/hemodynamic measurements and focal biopsy findings. The model developed here is a simple, cost-effective approach for stable ex vivo whole-organ machine perfusion. PMID:25023101

  4. Liver metastases: Contrast-enhanced ultrasound compared with computed tomography and magnetic resonance.

    PubMed

    Cantisani, Vito; Grazhdani, Hektor; Fioravanti, Cristina; Rosignuolo, Maria; Calliada, Fabrizio; Messineo, Daniela; Bernieri, Maria Giulia; Redler, Adriano; Catalano, Carlo; D'Ambrosio, Ferdinando

    2014-08-01

    The development of ultrasound contrast agents with excellent tolerance and safety profiles has notably improved liver evaluation with ultrasound (US) for several applications, especially for the detection of metastases. In particular, contrast enhanced ultrasonography (CEUS) allows the display of the parenchymal microvasculature, enabling the study and visualization of the enhancement patterns of liver lesions in real time and in a continuous manner in all vascular phases, which is similar to contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging. Clinical studies have reported that the use of a contrast agent enables the visualization of more metastases with significantly improved sensitivity and specificity compared to baseline-US. Furthermore, studies have shown that CEUS yields sensitivities comparable to CT. In this review, we describe the state of the art of CEUS for detecting colorectal liver metastases, the imaging features, the literature reports of metastases in CEUS as well as its technique, its clinical role and its potential applications. Additionally, the updated international consensus panel guidelines are reported in this review with the inherent limitations of this technique and best practice experiences. PMID:25110428

  5. Usefulness of contrast-enhanced ultrasound for detection of carotid plaque ulceration in patients with symptomatic carotid atherosclerosis.

    PubMed

    ten Kate, Gerrit L; van Dijk, Anouk C; van den Oord, Stijn C H; Hussain, Burhan; Verhagen, Hence J M; Sijbrands, Eric J G; van der Steen, Antonius F W; van der Lugt, Aad; Schinkel, Arend F L

    2013-07-15

    Previous data have indicated that carotid plaque ulceration is a strong predictor of cerebrovascular events. Standard ultrasound and color Doppler ultrasound (CDUS) scans have poor diagnostic accuracy for the detection of carotid plaque ulceration. The aim of the present prospective study was to assess the value of contrast-enhanced ultrasound (CEUS) scans for the detection of carotid plaque ulceration. The Institutional Ethics Committee approved the study protocol, and all patients provided informed consent. The patients had symptomatic stenosis of the internal carotid artery and underwent carotid computed tomographic angiography as part of their clinical evaluation. All patients underwent a CDUS examination in conjunction with CEUS. Carotid plaque ulceration was defined as the presence of ≥1 disruptions in the plaque-lumen border ≥1 × 1 mm. Carotid computed tomographic angiography was used as reference technique. The study population consisted of 20 patients (mean age 64 ± 9 years, 80% men), and 39 carotid arteries were included in the present analysis. Computed tomographic angiography demonstrated that the plaque surface was smooth in 15 (38%), irregular in 7 (18%) and ulcerated in 17 (44%) carotid arteries. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of CDUS for the detection of ulceration was 29%, 73%, 54%, 46%, and 57%, respectively. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of CEUS for the detection of ulceration was 88%, 59%, 72%, 63%, and 87%, respectively. CEUS had superior sensitivity and diagnostic accuracy for the assessment of carotid plaque ulceration compared with CDUS. CEUS improved the intrareader and inter-reader variability for the assessment of carotid plaque ulceration compared with CDUS. In conclusion, CEUS could be an additional method for the detection of carotid plaque ulceration. The role of CDUS for the assessment of

  6. Multipurpose contrast enhancement on epiphyseal plates and ossification centers for bone age assessment

    PubMed Central

    2013-01-01

    Background The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task. Method In this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database. Result From the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age. Conclusions

  7. Automatic hyperspectral camera for latent fingerprint detection and contrast enhancement. Final report, September 2, 1998 - March 17, 1999

    SciTech Connect

    Paul Shnitser

    1999-06-01

    Physical Optics Corporation demonstrated the feasibility of the contrast enhancement of the latent fingerprint by portable hyperspectral imaging camera. The demonstrated non-contact technology is applicable for observation of the low contrast laser excited fluorescence from latent fingerprints as well as for the contrast enhancement of chemically processed fingerprints. Experiments were conducted with fingerprints on various types of substrates.

  8. T1-Weighted Dynamic Contrast-Enhanced MRI as a Noninvasive Biomarker of Epidermal Growth Factor Receptor vIII Status

    PubMed Central

    Arevalo-Perez, J.; Thomas, A.A.; Kaley, T.; Lyo, J.; Peck, K.K.; Holodny, A.I.; Mellinghoff, I.K.; Shi, W.; Zhang, Z.; Young, R.J.

    2016-01-01

    BACKGROUND AND PURPOSE Epidermal growth factor receptor variant III is a common mutation in glioblastoma, found in approximately 25% of tumors. Epidermal growth factor receptor variant III may accelerate angiogenesis in malignant gliomas. We correlated T1-weighted dynamic contrast-enhanced MR imaging perfusion parameters with epidermal growth factor receptor variant III status. MATERIALS AND METHODS Eighty-two consecutive patients with glioblastoma and known epidermal growth factor receptor variant III status who had dynamic contrast-enhanced MR imaging before surgery were evaluated. Volumes of interest were drawn around the entire enhancing tumor on contrast T1-weighted images and then were transferred onto coregistered dynamic contrast-enhanced MR imaging perfusion maps. Histogram analysis with normalization was performed to determine the relative mean, 75th percentile, and 90th percentile values for plasma volume and contrast transfer coefficient. A Wilcoxon rank sum test was applied to assess the relationship between baseline perfusion parameters and positive epidermal growth factor receptor variant III status. The receiver operating characteristic method was used to select the cutoffs of the dynamic contrast-enhanced MR imaging perfusion parameters. RESULTS Increased relative plasma volume and increased relative contrast transfer coefficient parameters were both significantly associated with positive epidermal growth factor receptor variant III status. For epidermal growth factor receptor variant III–positive tumors, relative plasma volume mean was 9.3 and relative contrast transfer coefficient mean was 6.5; for epidermal growth factor receptor variant III–negative tumors, relative plasma volume mean was 3.6 and relative contrast transfer coefficient mean was 3.7 (relative plasma volume mean, P < .001, and relative contrast transfer coefficient mean, P = .008). The predictive powers of relative plasma volume histogram metrics outperformed those of the

  9. Assessment of inflammatory activity in rheumatoid arthritis: a comparative study of clinical evaluation with grey scale and power Doppler ultrasonography

    PubMed Central

    Naredo, E; Bonilla, G; Gamero, F; Uson, J; Carmona, L; Laffon, A

    2005-01-01

    Objective: To compare the clinical assessment of overall inflammatory activity in patients with rheumatoid arthritis (RA) with grey scale and power Doppler (PD) ultrasonography (US). Methods: Ninety four consecutive patients with RA were included. Demographic and clinical data, C reactive protein (CRP) level, and erythrocyte sedimentation rate (ESR) were recorded for each patient. The presence of tenderness, swelling, and a subjective swelling score from 1 to 3 were independently assessed by two rheumatologists, who reached a consensus in 60 joints examined in each patient. All patients underwent a US examination by a third blinded rheumatologist, using PD. US joint effusion, synovitis, and PD signal were graded from 1 to 3 in the 60 joints. Joint count and joint index for effusion, synovitis, and PD signal were recorded. A 28 joint count for clinical and US variables was calculated. Interobserver reliability of the US examination was evaluated by a fourth blinded rheumatologist. Results: US showed significantly more joints with effusion (mean 15.2) and synovitis (mean 14.6) than clinical examination (mean 11.5, p<0.05). A significant correlation was found between joint count and joint index for swelling, US effusion, synovitis, and PD signal. The 28 joint count for effusion, synovitis, and PD signal correlated highly with the corresponding 60 joint counts. US findings correlated better with CRP and ESR than clinical measures. Interobserver reliability was better for US findings than for clinical assessment. Conclusion: US is a sensitive method for assessing joint inflammatory activity in RA, complementary to clinical evaluation. PMID:15708891

  10. Is There Subclinical Synovitis in Early Psoriatic Arthritis? A Clinical Comparison With Gray-Scale and Power Doppler Ultrasound

    PubMed Central

    Freeston, Jane E; Coates, Laura C; Nam, Jackie L; Moverley, Anna R; Hensor, Elizabeth M A; Wakefield, Richard J; Emery, Paul; Helliwell, Philip S; Conaghan, Philip G

    2014-01-01

    Objective Arthritis activity assessments in psoriatic arthritis (PsA) have traditionally relied on tender and swollen joint counts, but in rheumatoid arthritis, multiple studies have demonstrated subclinical inflammation using modern imaging. The aim of this study was to compare clinical examination and ultrasound (US) findings in an early PsA cohort. Methods Forty-nine disease-modifying antirheumatic drug–naive patients with recent-onset PsA (median disease duration 10 months) underwent gray-scale (GS) and power Doppler (PD) US of 40 joints plus tender and swollen joint counts of 68/66 joints. GS and PD were scored on a 0–3 semiquantitative scale for each joint. Clinically active joints were defined as tender and/or swollen and US active joints were defined as a GS score ≥2 and/or a PD score ≥1. Results The most common sites for subclinical synovitis were the wrist (30.6%), knee (21.4%), metatarsophalangeal (MTP) joints (26.5–33.7%), and metacarpophalangeal joints (10.2–19.4%). Excluding MTP joints and ankles, 37 (75.5%) of 49 patients had subclinical synovitis with a median of 3 (interquartile range [IQR] 1–4) joints involved. In contrast, clinical overestimation of synovitis occurred most commonly at the shoulder (38%) and ankle (28.6%). Twelve of 49 patients were classified clinically as having oligoarthritis; of these, subclinical synovitis identified 8 (75%) as having polyarthritis with an increase in their median joint count from 3 (IQR 1–4) to 6 (IQR 5–7). Conclusion This study has demonstrated that subclinical synovitis, as identified by US, is very common in early PsA and led to the majority of oligoarthritis patients being reclassified as having polyarthritis. Further research is required into the relationship of such subclinical synovitis to structural progression. PMID:24022986

  11. Haemodynamic Optimization by Oesophageal Doppler and Pulse Power Wave Analysis in Liver Surgery: A Randomised Controlled Trial

    PubMed Central

    Feldheiser, Aarne; Pavlova, Velizara; Weimann, Karin; Hunsicker, Oliver; Stockmann, Martin; Koch, Mandy; Giebels, Alexander; Wernecke, Klaus-Dieter; Spies, Claudia D.

    2015-01-01

    Liver surgery is still associated with a high rate of morbidity and mortality. We aimed to compare different haemodynamic treatments in liver surgery. In a prospective, blinded, randomised, controlled pilot trial patients undergoing liver resection were randomised to receive haemodynamic management guided by conventional haemodynamic parameters or by oesophageal Doppler monitor (ODM, CardioQ-ODM) or by pulse power wave analysis (PPA, LiDCOrapid) within a goal-directed algorithm adapted for liver surgery. The primary endpoint was stroke volume index before intra-operative start of liver resection. Secondary endpoints were the haemodynamic course during surgery and postoperative pain levels. Due to an unbalance in the extension of the surgical procedures with a high rate of only minor procedures the conventional group was dropped from the analysis. Eleven patients in the ODM group and 10 patients in the PPA group were eligible for statistical analysis. Stroke volume index before start of liver resection was 49 (37; 53) ml/m2 and 48 (41; 56) ml/m2 in the ODM and PPA group, respectively (p=0.397). The ODM guided group was haemodynamically stable as shown by ODM and PPA measurements. However, the PPA guided group showed a significant increase of pulse-pressure-variability (p=0.002) that was not accompanied by a decline of stroke volume index displayed by the PPA (p=0.556) but indicated by a decline of stroke volume index by the ODM (p<0.001). The PPA group had significantly higher postoperative pain levels than the ODM group (p=0.036). In conclusion, goal-directed optimization by ODM and PPA showed differences in intraoperative cardiovascular parameters indicating that haemodynamic optimization is not consistent between the two monitors. Trial Registration ISRCTN.com ISRCTN64578872 PMID:26186702

  12. Anatomical noise in contrast-enhanced digital mammography. Part I. Single-energy imaging

    SciTech Connect

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Muller, Serge; Ebrahimi, Mehran; Jong, Roberta A.; Dromain, Clarisse

    2013-05-15

    Purpose: The use of an intravenously injected iodinated contrast agent could help increase the sensitivity of digital mammography by adding information on tumor angiogenesis. Two approaches have been made for clinical implementation of contrast-enhanced digital mammography (CEDM), namely, single-energy (SE) and dual-energy (DE) imaging. In each technique, pairs of mammograms are acquired, which are then subtracted with the intent to cancel the appearance of healthy breast tissue to permit sensitive detection and specific characterization of lesions. Patterns of contrast agent uptake in the healthy parenchyma, and uncanceled signal from background tissue create a 'clutter' that can mask or mimic an enhancing lesion. This type of 'anatomical noise' is often the limiting factor in lesion detection tasks, and thus, noise quantification may be useful for cascaded systems analysis of CEDM and for phantom development. In this work, the authors characterize the anatomical noise in CEDM clinical images and the authors evaluate the influence of the x-ray energy used for acquisition, the presence of iodine in the breast, and the timing of imaging postcontrast administration on anatomical noise. The results are presented in a two-part report, with SE CEDM described here, and DE CEDM in Part II. Methods: A power law is used to model anatomical noise in CEDM images. The exponent, {beta}, which describes the anatomical structure, and the constant {alpha}, which represents the magnitude of the noise, are determined from Wiener spectra (WS) measurements on images. A total of 42 SE CEDM cases from two previous clinical pilot studies are assessed. The parameters {alpha} and {beta} are measured both from unprocessed images and from subtracted images. Results: Consistent results were found between the two SE CEDM pilot studies, where a significant decrease in {beta} from a value of approximately 3.1 in the unprocessed images to between about 1.1 and 1.8 in the subtracted images was

  13. FEASIBILITY AND SAFETY OF CONTRAST-ENHANCED ULTRASOUND IN THE DISTAL LIMB OF SIX HORSES.

    PubMed

    Seiler, Gabriela S; Campbell, Nigel; Nixon, Britton; Tsuruta, James K; Dayton, Paul A; Jennings, Samuel; Redding, W Rich; Lustgarten, Meghann

    2016-05-01

    Vascular alterations play important roles in many orthopedic diseases such as osteoarthritis, tendonitis, and synovitis in both human and equine athletes. Understanding these alterations could enhance diagnosis, prognosis, and treatment. Contrast-enhanced ultrasound (CEUS) could be a valuable method for evaluation of blood flow and perfusion of these processes in the equine distal limb, however no reports were found describing feasibility or safety of the technique. The goal of this prospective, experimental study was to describe the feasibility and safety of distal limb CEUS in a sample of six horses. For each horse, CEUS of the distal limb was performed after intravenous injections of 5 and 10 ml, as well as intra-arterial injections of 0.5 and 1 ml contrast medium. Vital parameters were monitored and CEUS images were assessed qualitatively and quantitatively for degree of contrast enhancement. None of the horses had clinically significant changes in their vital parameters after contrast medium injection. One horse had a transient increase in respiratory rate, and several horses had mild increases of systolic blood pressure of short duration after intravenous, but not after intra-arterial injections. Intra-arterial injection was possible in all horses and resulted in significantly improved contrast enhancement both quantitatively (P = 0.027) and qualitatively (P = 0.019). Findings from this study indicated that CEUS is a feasible and safe diagnostic test for evaluation of the equine distal limb. Future studies are needed to assess the clinical utility of this test for horses with musculoskeletal diseases. PMID:26765518

  14. Renal stones on portal venous phase contrast-enhanced CT: does intravenous contrast interfere with detection?

    PubMed Central

    Dym, R. Joshua; Duncan, Dameon R.; Spektor, Michael; Cohen, Hillel W.; Scheinfeld, Meir H.

    2015-01-01

    Purpose To determine the sensitivity of portal venous phase contrast-enhanced CT for the detection of renal stones. Methods This retrospective study included 97 CT examinations of the abdomen without and with intravenous contrast, including 85 (87.6%) examinations with at least one renal stone on the “gold standard” noncontrast images, as scored by a single radiologist. Three other radiologists each independently reviewed only the contrast-enhanced images from all 97 examinations and recorded all renal stones. Reviewer sensitivity for stones was categorized by stone diameter. Reviewer sensitivity and specificity for stone disease were also calculated on a per-kidney basis. Results The 97 cases included a total of 238 stones ≥1 mm, with a mean (±SD) of 1.2 ± 1.9 stones per kidney and a stone diameter of 3.5 ± 3.0 mm. Pooling data for the three reviewers, sensitivity for all stones was 81%; sensitivity for stones ≥2, ≥3, ≥4, and ≥5 mm was 88%, 95%, 99%, and 98%, respectively. Sensitivity for stone disease on a per-kidney basis was 94% when considering all stones; when considering only stones ≥2, ≥3, and ≥4 mm, sensitivity was 96%, 99%, and 100%, respectively. Specificity for stone disease on a per-kidney basis was 98% overall, 99% when considering only stones ≥2 mm, and 100% when considering only stones ≥3 mm. Conclusion: Contrast-enhanced CT is highly sensitive for the detection of renal stones ≥3 mm in diameter and less sensitive for smaller stones. In cases where the clinical diagnosis is uncertain and performance of a CT examination is being contemplated, intravenous contrast utilization would allow assessment for stone disease while also optimizing evaluation for other conditions. PMID:24504541

  15. Photon counting CT of the liver with dual-contrast enhancement

    NASA Astrophysics Data System (ADS)

    Muenzel, Daniela; Proksa, Roland; Daerr, Heiner; Fingerle, Alexander A.; Pfeiffer, Franz; Rummeny, Ernst J.; Noël, Peter B.

    2016-03-01

    The diagnostic quality of photon counting computed tomography (PCCT) is one the unexplored areas in medical imaging; at the same time, it seems to offer the opportunity as a fast and highly sensitive diagnostic tool. Today, conventional computed tomography (CT) is the standard imaging technique for diagnostic evaluation of the parenchyma of the liver. However, considerations on radiation dose are still an important factor in CT liver imaging, especially with regard to multi-phase contrast enhanced CT. In this work we report on a feasibility study for multi-contrast PCCT for simultaneous liver imaging at different contrast phases. PCCT images of the liver were simulated for a contrast-enhanced examination performed with two different contrast agents (CA), iodine (CA 1) and gadolinium (CA 2). PCCT image acquisition was performed at the time point with portal venous contrast distribution of CA 1 and arterial contrast phase for CA 2. Therefore, a contrast injection protocol was planned with sequential injection of CA 1 and CA 2 to provide a time dependent difference in contrast distribution of both CAs in the vessels and parenchyma of the liver. Native, arterial, and portal venous contrast enhanced images have been calculated based on the spectral separation of PCCT. In simulated PCCT images, we were able to differentiate between the tissue enhancement of CA 1 and CA 2. The distribution of both CA within the parenchyma of the liver was illustrated with perfusion maps for CA 1 and CA 2. In addition, virtual noncontrast enhanced image were calculated. In conclusion, multi-phase PCCT imaging of the liver based on a single scan is a novel approach for spectral PCCT imaging, offering detailed contrast information in a single scan volume and a significant reduction of radiation dose.

  16. Paramagnetic pyrophosphate. Preliminary studies on magnetic resonance contrast enhancement of acute myocardial infarction.

    PubMed

    Maurer, A H; Knight, L C; Siegel, J A; Elfenbein, I B; Adler, L P

    1990-02-01

    Ferric pyrophosphate (Fe-PyP) was investigated in an animal model of acute myocardial infarction for its potential to provide contrast enhancement of the peri-infarct zone using magnetic resonance (MR) imaging. Radiotracer studies compared the biodistribution of soluble 59Fe-PyP with 99mTc-PyP in excised tissue samples. Preferential localization of 59Fe-PyP in the peri-infarct zone was found to be similar to 99mTc-PyP. The ratio (percent dose/gram of tissue) at the edge of the infarct to normal tissue was 1.30 +/- 0.16 and 1.44 +/- 0.33 for 99mTc-PyP and 59Fe-PyP, respectively. In initial studies with high doses of the contrast agent, gated T1-weighted MR images of animals with 48-hour-old infarcts were obtained at 15-minute intervals after injection of Fe-PyP at a dose of 350 mg/kg. Contrast enhancement of the infarct zone was observed in all studies and was maximal 15-30 minutes after injection. Signal intensity ratios (infarct/normal) increased from a baseline 1.31 +/- 0.22 to a peak 1.90 +/- 0.57. Studies were then performed with smaller amounts of Fe-PyP. Images obtained with 50 mg/kg Fe-PyP showed contrast enhancement beginning at 60 minutes. Toxicology studies showed primarily respiratory effects, which became significant at doses of 190 mg/kg. These preliminary studies suggest that Fe-PyP potentially could serve as an MR contrast agent to localize and size acute myocardial infarcts; however, its clinical use may be limited by potential toxicity and dose limitations. PMID:2155882

  17. EFFECT OF SEDATION ON CONTRAST-ENHANCED ULTRASONOGRAPHY OF THE SPLEEN IN HEALTHY DOGS.

    PubMed

    Rossi, Federica; Fina, Caroline; Stock, Emmelie; Vanderperren, Katrien; Duchateau, Luc; Saunders, Jimmy H

    2016-05-01

    Contrast-enhanced ultrasound of the spleen enables the dynamic assessment of the perfusion of this organ, however, both subjective and quantitative evaluation can be strongly influenced by sedative agent administration. The purpose of this prospective, experimental study was to test effects of two sedative agents on splenic perfusion during contrast-enhanced ultrasound of the spleen in a sample of healthy dogs. Contrast-enhanced ultrasound of the spleen was repeated in six healthy Beagles following a cross-over study design comparing three protocols: awake, butorphanol 0.2 mg/Kg intramuscular (IM), and dexmedetomidine 500 μg/m(2) IM. After intravenous injection of a phospholipid stabilized sulfur hexafluoride microbubble solution (SonoVue®, Bracco Imaging, Milano, Italy), the enhancement intensity and perfusion pattern of the splenic parenchyma were assessed and perfusion parameters were calculated. Normal spleen was slightly heterogeneous in the early phase, but the parenchyma was homogeneous at a later phase. Sedation with butorphanol did not modify perfusion of the spleen. Dexmedetomidine significantly reduced splenic enhancement, providing diffuse parenchymal hypoechogenicity during the entire examination. Measured parameters were significantly modified, with increased arrival time (AT; (< 0.0001) and time to peak (TTP; P < 0.0001), and decreased peak intensity (PI; P = 0.0108), wash-in (P = 0.0014), and area under the curve (AUC; P = 0.0421). Findings supported the use of butorphanol and contraindicated the use of dexmedetomidine as sedatives for splenic contrast ultrasound procedures in dogs. Short-term and diffuse heterogeneity of the spleen in the early venous phase was determined to be a normal finding. PMID:26777031

  18. Intracranial Hypertension as an Acute Complication of Aseptic Meningoencephalitis with Leptomeningeal Contrast Enhancement on FLAIR MRI

    PubMed Central

    Wolf, Marc E.; Eisele, Philipp; Schweizer, Yvonne; Alonso, Angelika; Gass, Achim; Hennerici, Michael G.; Szabo, Kristina

    2016-01-01

    We report a case of a 19-year-old woman who developed intracranial hypertension as an unusual clinical complication of severe aseptic meningoencephalitis probably due to a diminished cerebrospinal fluid reabsorption capacity or leptomeningeal transudation as a consequence of blood-brain barrier dysfunction. These severe inflammatory changes were accompanied by prominent leptomeningeal contrast enhancement best visualized on fluid-attenuated inversion recovery magnetic resonance imaging. In such a prolonged course, a continuous lumbar drainage might be a temporary option to provide rapid symptom relief to the patient. PMID:26889150

  19. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  20. Optical switching and contrast enhancement in intense laser systems by cascaded optical parametric amplification

    SciTech Connect

    Jovanovic, I; Haefner, C; Wattellier, B; Barty, C J

    2005-09-06

    Optical parametric chirped-pulse amplification (OPCPA) can be used to improve the prepulse contrast in chirped-pulse amplification systems by amplifying the main pulse with a total saturated OPCPA gain, while not affecting the preceding prepulses of the seed oscillator mode-locked pulse train. We show that a simple modification of a multistage OPCPA system into a cascaded optical parametric amplifier (COPA) results in an optical switch and extreme contrast enhancement which can completely eliminate the preceding and trailing oscillator pulses. Instrument-limited measurement of prepulse contrast ratio of 1.4 x 10{sup 11} is demonstrated from COPA at a 30-mJ level.

  1. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Jayaprabha, K. N.; Joy, P. A.

    2015-04-01

    Superparamagnetic iron oxide nanoparticles of size ~5 nm surface functionalized with ascorbic acid (vitamin C) form a stable dispersion in water with a hydrodynamic size of ~30 nm. The anti-oxidant property of ascorbic acid is retained after capping, as evidenced from the capability of converting methylene blue to its reduced leuco form. NMR relaxivity studies show that the ascorbic-acid-coated superparamagnetic iron oxide aqueous nanofluid is suitable as a contrast enhancement agent for MRI applications, coupled with the excellent biocompatibility and medicinal values of ascorbic acid.

  2. Application of contrast-enhanced ultrasound after liver transplantation: Current status and perspectives

    PubMed Central

    Ren, Jie; Wu, Tao; Zheng, Bo-Wen; Tan, Ying-Yi; Zheng, Rong-Qin; Chen, Gui-Hua

    2016-01-01

    Liver transplantation is an effective treatment for patients with end-stage liver disease. Accurate imaging evaluation of the transplanted patient is critical for ensuring that the limited donor liver is functioning appropriately. Ultrasound contrast agents (UCAs), in combination with contrast-specific imaging techniques, are increasingly accepted in clinical use for the assessment of the hepatic vasculature, bile ducts and liver parenchyma in pre-, intra- and post-transplant patients. We describe UCAs, their technical requirements, the recommended clinical indications, image interpretation and the limitations for contrast-enhanced ultrasound applications in liver transplantation. PMID:26819526

  3. A novel method for viability assessment by cinematographic and late contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Cockshott, Paul W.; Martin, Thomas N.; Foster, John E.; Elliott, Alex; Dargie, Henry; Groenning, Bjoern A.

    2004-04-01

    Using cardiac magnetic resonance (MR) imaging, a combination of late contrast enhanced MR (ceMR) and cinematographic (CINE) images, a myocardial viability score can be derived. At present this score is produced by visual evaluation of wall motion abnormalities in combination with presence or absence of late hyper enhancement (LE) on ceMR. We set out to develop and validate image processing techniques derived from stereo vision capable of reducing the observer dependence and improving accuracy in the diagnosis of viable myocardium.

  4. What do we know about brain contrast enhancement patterns in neuromyelitis optica?☆

    PubMed Central

    Pekcevik, Yeliz; Orman, Gunes; Lee, In Ho; Mealy, Maureen A.; Levy, Michael; Izbudak, Izlem

    2016-01-01

    Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system that usually presents with acute myelitis and/or optic neuritis. Recently, some brain magnetic resonance imaging findings have been described in NMO that are important in the differential diagnosis. Pencil-thin, leptomeningeal, and cloud-like enhancement may be specific to NMO. These patterns are usually seen during relapses. Recognizing these lesions and enhancement patterns may expedite the diagnosis and allows early effective treatment. The purpose of this article is to review the latest knowledge and to share our experience with the contrast enhancement patterns of NMO brain lesions. PMID:26615899

  5. Cardiac Amyloidosis: Typical Imaging Findings and Diffuse Myocardial Damage Demonstrated by Delayed Contrast-Enhanced MRI

    SciTech Connect

    Sueyoshi, Eijun Sakamoto, Ichiro; Okimoto, Tomoaki; Hayashi, Kuniaki; Tanaka, Kyouei; Toda, Genji

    2006-08-15

    Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.

  6. Optimization Of Phase-Contrast Enhanced X-Ray Imaging Of D-T Layers

    SciTech Connect

    Kozioziemski, B

    2005-06-17

    Phase-contrast enhanced x-ray imaging has been demonstrated for characterization of D-T layers inside of beryllium shells. These first demonstrations used both scintillator and direct-detection imaging. This memo details tradeoffs between the two methods in order to optimize the imaging. The guiding principle for optimization is to minimize the exposure time while maximizing the signal-to-noise ratio at the D-T solid-vapor interface. Direct-detection and scintillator performance are comparable when imaging the full capsule. However, a scintillator allows for higher-resolution images necessary for studying local defects in the D-T layer.

  7. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam

    PubMed Central

    Tian, Nian; Fu, Ling; Gu, Min

    2015-01-01

    We extend the subtractive imaging method to label-free second harmonic generation (SHG) microscopy to enhance the spatial resolution and contrast. This method is based on the intensity difference between two images obtained with circularly polarized Gaussian and doughnut-shaped beams, respectively. By characterizing the intensity and polarization distributions of the two focused beams, we verify the feasibility of the subtractive imaging method in polarization dependent SHG microscopy. The resolution and contrast enhancement in different biological samples is demonstrated. This work will open a new avenue for the applications of SHG microscopy in biomedical research. PMID:26364733

  8. What do we know about brain contrast enhancement patterns in neuromyelitis optica?

    PubMed

    Pekcevik, Yeliz; Orman, Gunes; Lee, In Ho; Mealy, Maureen A; Levy, Michael; Izbudak, Izlem

    2016-01-01

    Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system that usually presents with acute myelitis and/or optic neuritis. Recently, some brain magnetic resonance imaging findings have been described in NMO that are important in the differential diagnosis. Pencil-thin, leptomeningeal, and cloud-like enhancement may be specific to NMO. These patterns are usually seen during relapses. Recognizing these lesions and enhancement patterns may expedite the diagnosis and allows early effective treatment. The purpose of this article is to review the latest knowledge and to share our experience with the contrast enhancement patterns of NMO brain lesions. PMID:26615899

  9. Intracranial Hypertension as an Acute Complication of Aseptic Meningoencephalitis with Leptomeningeal Contrast Enhancement on FLAIR MRI.

    PubMed

    Wolf, Marc E; Eisele, Philipp; Schweizer, Yvonne; Alonso, Angelika; Gass, Achim; Hennerici, Michael G; Szabo, Kristina

    2016-01-01

    We report a case of a 19-year-old woman who developed intracranial hypertension as an unusual clinical complication of severe aseptic meningoencephalitis probably due to a diminished cerebrospinal fluid reabsorption capacity or leptomeningeal transudation as a consequence of blood-brain barrier dysfunction. These severe inflammatory changes were accompanied by prominent leptomeningeal contrast enhancement best visualized on fluid-attenuated inversion recovery magnetic resonance imaging. In such a prolonged course, a continuous lumbar drainage might be a temporary option to provide rapid symptom relief to the patient. PMID:26889150

  10. Porcine Ex Vivo Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: Development and Initial Results

    PubMed Central

    Thompson, Scott M.; Giraldo, Juan C. Ramirez; Knudsen, Bruce; Grande, Joseph P.; Christner, Jodie A.; Xu, Man; Woodrum, David A.; McCollough, Cynthia H.; Callstrom, Matthew R.

    2011-01-01

    Objectives To demonstrate the feasibility of developing a fixed, dual-input, biological liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging. Materials and Methods Porcine livers were obtained from completed surgical studies and perfused with saline and fixative. The phantom was placed in a body-shaped, CT-compatible acrylic container and connected to a perfusion circuit fitted with a contrast injection port. Flow-controlled contrast-enhanced imaging experiments were performed using a 128-slice and 64 slice, dual-source multidetector CT scanners. CT angiography protocols were employed to obtain portal venous and hepatic arterial vascular enhancement, reproduced over a period of four to six months. CT perfusion protocols were employed at different input flow rates to correlate input flow with calculated tissue perfusion, to test reproducibility and demonstrate the feasibility of simultaneous dual input liver perfusion. Histologic analysis of the liver phantom was also performed. Results CT angiogram 3D reconstructions demonstrated homogenous tertiary and quaternary branching of the portal venous system out to the periphery of all lobes of the liver as well as enhancement of the hepatic arterial system to all lobes of the liver and gallbladder throughout the study period. For perfusion CT, the correlation between the calculated mean tissue perfusion in a volume of interest and input pump flow rate was excellent (R2 = 0.996) and color blood flow maps demonstrated variations in regional perfusion in a narrow range. Repeat perfusion CT experiments demonstrated reproducible time-attenuation curves and dual-input perfusion CT experiments demonstrated that simultaneous dual input liver perfusion is feasible. Histologic analysis demonstrated that the hepatic microvasculature and architecture appeared intact and well preserved at the completion of four to six

  11. Bipolar radiofrequency ablation for liver tumors: comparison of contrast-enhanced ultrasound with contrast-enhanced MRI/CT in the posttreatment imaging evaluation

    PubMed Central

    Bo, Xiao-Wan; Xu, Hui-Xiong; Sun, Li-Ping; Zheng, Shu-Guang; Guo, Le-Hang; Lu, Feng; Wu, Jian; Xu, Xiao-Hong

    2014-01-01

    Objective: The aim of the study was to assess the role of contrast-enhanced ultrasound (CEUS) in treatment response evaluation after percutaneous bipolar radiofrequency ablation (BRFA) for liver tumors. Methods: From May 2012 to May 2014, 39 patients with 73 tumors were treated by BRFA. One month after the treatment, CEUS and CEMRI/CECT were conducted to evaluate the treatment response. The results of CEUS were compared with CEMRI/CECT. Results: Of the 73 tumors ablated, eight (11.0%) were found to have residual viable tumor tissue and 65 (89.0%) were successfully ablated based on CEMRI/CECT within 1-month after ablation. CEUS detected seven of the eight residual tumors and 63 of 65 completely ablated tumors. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CEUS were 87.5% (7/8), 96.9% (63/65), 77.8% (7/9), 98.4% (63/64) and 95.9% (70/73), respectively. The complete ablation (CR) rates for the tumors ≤3.0 cm, 3.1-5.0 cm, and >5.0 cm were 96.6% (58/60), 63.6% (7/11), and 0% (0/2), respectively (P<0.001). CR rates were 94.7% (36/38) for primary liver tumors and 82.9% (29/35) for metastatic liver tumors (P=0.212), and were 97.4% (38/39) for the tumors with curative treatment intention and 79.4% (27/34) for those with palliative treatment intention (P=0.037). Major complication was not encountered in this series. Conclusions: BRFA is an effective technique of percutaneous ablation for liver tumors and CEUS can be used to assess its therapeutic effect accurately. PMID:25337258

  12. Analysis of multilayer and single layer X-ray detectors for contrast-enhanced mammography using imaging task

    NASA Astrophysics Data System (ADS)

    Allec, Nicholas; Abbaszadeh, Shiva; Karim, Karim S.

    2011-03-01

    A multilayer (single-shot) detector has previously been proposed for contrast-enhanced mammography. The multilayer detector has the benefit of avoiding motion artifacts due to simultaneous acquisition of both high and low energy images. A single layer (dual-shot) detector has the benefit of better control over the energy separation since the incident beams can be produced and filtered separately. In this paper the performance of the multilayer detector is compared to that of a single layer detector using an ideal observer detectability index which is determined from an extended cascaded systems model and a defined imaging task. The detectors are assumed to have amorphous selenium direct conversion layers, however the same theoretical techniques used here may be applied to other types of integrating detectors. The anatomical noise caused by variation of glandularity within the breast is known to dominate the noise power spectrum at low frequencies due to its inverse power law dependence and is thus taken into account in our model to provide an accurate estimate of the detectability index. The conditions leading to the optimal detectability index, such as tube voltage, filtration, and weight factor are reported for both detector designs.

  13. The evaluation of contrast-enhancing brain lesions: pitfalls in current practice.

    PubMed Central

    Piszczor, M.; Thornton, G.; Bia, F. J.

    1985-01-01

    The definitive diagnosis of space-occupying brain lesions can be established more readily since the advent of computerized tomographic (CT) scanning. Some brain lesions are more clearly defined when contrast-enhancing agents are utilized; however, so-called ring-enhancing lesions are not pathognomonic for specific neurological entities. Review of the literature suggests that at least four disorders must be considered in the differential diagnosis of contrast-enhancing lesions. These include mature brain abscesses of any etiology, cerebrovascular accidents, and primary or metastatic brain tumors. Since the medical and surgical management of these conditions is quite different, it is critical to establish a diagnosis before therapy is instituted. In many instances the combination of history, physical examination, laboratory, and radiologic examination will enable physicians to correctly diagnose the etiology of such brain lesions. However, we present two cases for which the above clinical and non-invasive parameters led to incorrect working diagnoses. Brain biopsy was required before appropriate management was eventually instituted. Potentially, such delays in diagnosis and institution of therapy can result in unnecessary morbidity and mortality. Each case illustrates the need to substantiate a presumptive diagnosis based on these clinical and radiographic criteria, regardless of how "typical" lesions may appear on CT scans. Images FIG. 1 FIG. 2 FIG. 3 PMID:4013370

  14. Contrast-Enhanced Ultrasound: Practical Review for the Assessment of Hepatic and Renal Lesions.

    PubMed

    Denham, Stephanie LeeAnn Wilson; Alexander, Lauren F; Robbin, Michelle L

    2016-06-01

    The use of microbubble contrast greatly enhances the ability of ultrasound to delineate structures and therefore aid in diagnosis. Ultrasound microbubble contrast agents are composed of low-solubility gas encapsulated in a biomaterial shell. These agents use the physics of ultrasound imaging to effectively identify and characterize focal hepatic and renal lesions. Not only can contrast agents be used to evaluate multiple phases of lesion contrast enhancement, but ultrasound also allows for real-time study of enhancement patterns. The short half-life and intravascular location of the microbubbles allows for multiple, sequential administrations of contrast to observe enhancement of lesions in different sites. Furthermore, the ability to perform imaging without ionizing radiation and the lack of nephrotoxicity make contrast-enhanced ultrasound an ideal evaluation method for patients who need serial surveillance or in whom imaging options are severely limited because of renal insufficiency. These techniques are widely used in many countries for diagnostic radiological purposes; however, the lack of both Food and Drug Administration approval and reimbursement for noncardiac hospital-based imaging has delayed widespread use in the United States. Despite these limitations, continued research and innovations in ultrasound contrast make it essential to have a working knowledge of the typical enhancement patterns of frequently seen hepatic and renal lesions as these techniques offer an alternative option for contrast imaging. PMID:27233070

  15. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  16. Use of Contrast-Enhanced Ultrasound in the Differential Diagnosis of Adrenal Tumors in Dogs.

    PubMed

    Bargellini, Paolo; Orlandi, Riccardo; Dentini, Alfredo; Paloni, Chiara; Rubini, Giuseppe; Fonti, Paolo; Diana, Alessia; Peterson, Mark E; Boiti, Cristiano

    2016-01-01

    We evaluated the diagnostic accuracy of the contrast-enhanced ultrasonography (CEUS), using a second-generation microbubble contrast agent, in differentiating the different types of adrenal mass lesions in 24 dogs. At B-mode ultrasound, 9 lesions involved the right adrenal gland, 14 the left, and 1 was bilateral. Each dog received a bolus of the contrast agent into the cephalic vein, immediately followed by a 5-mL saline flush. The first contrast enhancement of each adrenal lesion was evaluated qualitatively to assess the degree of enhancement and its distribution during the wash-in and wash-out phases, as well as the presence of non-vascularized areas and specific vascular patterns. Pathological diagnoses were determined in all dogs by histopathology or by cytology. Combining enhancement degree and vascularity resulted in the best predictive model, allowing CEUS to differentiate adrenocortical adenoma (n=10), adenocarcinoma (n=7), and pheochromocytoma (n=7) with an accuracy of 91.7% (P < 0.001). Combining enhancement degree and vascularity, CEUS can discriminate malignant versus benign adrenal lesions with a sensitivity of 100.0%, a specificity of 80.0%, and an accuracy of 91.7% (P < 0.001). In conclusion, results of this study confirm that CEUS is useful for differentiating between the different types of adrenal tumors in dogs. PMID:27008325

  17. An efficient method for accurate segmentation of LV in contrast-enhanced cardiac MR images

    NASA Astrophysics Data System (ADS)

    Suryanarayana K., Venkata; Mitra, Abhishek; Srikrishnan, V.; Jo, Hyun Hee; Bidesi, Anup

    2016-03-01

    Segmentation of left ventricle (LV) in contrast-enhanced cardiac MR images is a challenging task because of high variability in the image intensity. This is due to a) wash-in and wash-out of the contrast agent over time and b) poor contrast around the epicardium (outer wall) region. Current approaches for segmentation of the endocardium (inner wall) usually involve application of a threshold within the region of interest, followed by refinement techniques like active contours. A limitation of this method is under-segmentation of the inner wall because of gradual loss of contrast at the wall boundary. On the other hand, the challenge in outer wall segmentation is the lack of reliable boundaries because of poor contrast. There are four main contributions in this paper to address the aforementioned issues. First, a seed image is selected using variance based approach on 4D time-frame images over which initial endocardium and epicardium is segmented. Secondly, we propose a patch based feature which overcomes the problem of gradual contrast loss for LV endocardium segmentation. Third, we propose a novel Iterative-Edge-Refinement (IER) technique for epicardium segmentation. Fourth, we propose a greedy search algorithm for propagating the initial contour segmented on seed-image across other time frame images. We have experimented our technique on five contrast-enhanced cardiac MR Datasets (4D) having a total of 1097 images. The segmentation results for all 1097 images have been visually inspected by a clinical expert and have shown good accuracy.

  18. Tumor Characterization with Dynamic Contrast Enhanced Magnetic Resonance Imaging and Biodegradable Macromolecular Contrast Agents in Mice

    PubMed Central

    Wu, Xueming; Feng, Yi; Jeong, Eun-Kee; Emerson, Lyska; Lu, Zheng-Rong

    2009-01-01

    Purpose To investigate the efficacy of polydisulfide-based biodegradable macromolecular contrast agents of different degradability and molecular weight for tumor characterization based on angiogenesis using dynamic contrast enhanced MRI (DCE-MRI). Methods Biodegradable macromolecular MRI contrast agents, GDCC and GDCP, with molecular weight of 20 and 70 KDa were evaluated for tumor characterization. The DCE-MRI studies were performed in nude mice bearing MDA PCa 2b and PC-3 human prostate tumor xenografts. Tumor angiogenic kinetic parameters, endothelium transfer coefficient (Ktrans) and fractional tumor plasma volume (fPV), were calculated from the DCE-MRI data using a two-compartment model. Results There was no significant difference in the fPV values between two tumor models estimated with the same agent except for GDCC-70. The Ktrans values in both tumor models decreased with increasing molecular weight of the agents. GDCC-70 showed a higher Ktrans values than GDCP-70 due to high degradability of the former in both tumor models (p < 0.05). The Ktrans values of MDA PCa 2b tumors were significantly higher than those of PC-3 tumors estimated by Gd(DTPA-BMA), GDCC-20, GDCC-70, GDCP-70, and albumin-(Gd-DTPA) (p < 0.05). Conclusions The polydisulfide based biodegradable macromolecular MRI contrast agents are promising in tumor characterization with dynamic contrast enhanced MRI. PMID:19597972

  19. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  20. Management of hepatocellular carcinoma: The role of contrast-enhanced ultrasound

    PubMed Central

    Zheng, Shu-Guang; Xu, Hui-Xiong; Liu, Lin-Na

    2014-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common neoplasm and the third cause of cancer death worldwide. Contrast enhanced ultrasound (CEUS) has been applied for more than ten years and plays increasingly important roles in the management of HCC. On the basis of the Guideline and Good Clinical Practice Recommendations for CEUS in the liver-update 2012 and related literature about the management of HCC, we summarize the main roles and applications of CEUS in the management of HCC, including HCC surveillance, diagnosis, CEUS-guided treatment, treatment response evaluation and follow-up. The diagnostic algorithm for HCC is also suggested. Meanwhile, the comparisons between CEUS and contrast enhanced computed tomography/magnetic resonance imaging (CECT/CEMRI) in these areas are made. Although CEUS is subject to the same limitation as ordinary US and is inferior to CECT/CEMRI in some aspects, CEUS has proved to be of great value in the management of HCC with inherent advantages, such as sufficient high safety profile making it suitable for patients with renal failure or allergic to iodine, absence of radiation, easy reproducibility and high temporal resolution. The tremendous application of CEUS to the diagnosis and treatment of HCC provides more opportunities for patients with HCC diagnosed at different stages. PMID:24578787

  1. Contrast-enhanced ultrasonographic findings in three dogs with pancreatic insulinoma.

    PubMed

    Nakamura, Kensuke; Lim, Sue-Yee; Ochiai, Kenji; Yamasaki, Masahiro; Ohta, Hiroshi; Morishita, Keitaro; Takagi, Satoshi; Takiguchi, Mitsuyoshi

    2015-01-01

    Abdominal ultrasonography is one of the most common diagnostic imaging modalities used for dogs with suspected insulinoma; however, pancreatic masses are clearly identified in fewer than half of affected dogs and benign pancreatic nodules can be difficult to differentiate from malignant ones. The purpose of this prospective study was to describe contrast-enhanced ultrasonography (CEUS) characteristics of confirmed pancreatic insulinoma in a group of dogs. Inclusion criteria were as follows: (1) repeated hypoglycemia (blood glucose levels <60 mg/dl, twice or more); (2) elevated blood insulin levels with hypoglycemia; (3) pancreatic nodules detected with conventional ultrasonography; and (4) histological confirmation of pancreatic islet cell carcinoma. Immediately following conventional ultrasonography of the entire abdomen, CEUS of the pancreatic nodule and adjacent parenchyma was performed using contrast-specific technology pulse inversion imaging and perflubutane microbubble contrast agent. Three dogs met inclusion criteria. Pancreatic nodules in all the three dogs became more clearly demarcated after injection of the contrast agent. Each nodule showed different enhancement patterns: markedly hyperechoic for 5 s, slightly hyperechoic for 1 s, and clearly hypoechoic for over 30 s. These results were not in complete agreement with previously reported CEUS findings in human patients with insulinoma. All nodules were surgically resected and histopathologically confirmed as malignant insulinomas. Findings from the current study indicated that contrast-enhanced ultrasound may help to increase conspicuity of pancreatic insulinomas in dogs and that enhancement characteristics may be more variable in dogs than in humans. PMID:24846763

  2. Application of image processing techniques for contrast enhancement in dense breast digital mammograms

    NASA Astrophysics Data System (ADS)

    Nunes, Fatima d. L. d. S.; Schiabel, Homero; Benatti, Rodrigo H.

    1999-05-01

    Dense breasts, that usually are characteristic of women less than 40 years old, difficult many times early detection of breast cancer. In this work we present the application of some image processing techniques intended to enhance the contrast in dense breast images, regarding the detection of clustered microcalcifications. The procedure was, firstly, determining in the literature the main techniques used for mammographic images contrast enhancement. The results indicate that, in general: (1) as expected, the overall performance of the CAD scheme for clusters detection decreased when applied exclusively to dense breast images, compared to the application to a set of images without this characteristic; (2) most of the techniques for contrast enhancement used successfully in generic mammography images databases are not able to enhance structures of athirst in databases formed only by dense breasts images, due to the very poor contrast between microcalcifications, for example, and other tissues. These features should stress, therefore, the need of developing a methodology specifically for this type of images in order to provide better conditions to the detection of breast suspicious structures in these group of women.

  3. Case Report of Contrast-Enhanced Ultrasound Features of Primary Hepatic Neuroendocrine Tumor

    PubMed Central

    Li, Wei; Zhuang, Bo-wen; Wang, Zhu; Liao, Bing; Hong, Ling-yao; Xu, Ming; Lin, Xiao-na; Xie, Xiao-yan; Lu, Ming-de; Chen, Li-da; Wang, Wei

    2016-01-01

    Abstract Primary hepatic neuroendocrine tumors (PHNETs) are very rare and their clinical features and treatment outcomes are not well understood. It is difficult to reach a proper diagnosis before biopsy or resection. The aim of this study was to analyze the imaging features of PHNETs on contrast-enhanced ultrasound (CEUS). The clinical characteristics, CEUS findings, pathological features, treatment and prognosis of 6 patients with PHNET treated in our hospital were retrospectively analyzed. Most PHNETs occurred in middle-aged patients, and the most common clinical manifestation was right upper quadrant palpable mass and abdominal pain. Multiple small anechoic intralesional cavities occurred frequently in PHNET. Multilocular cystic with internal septation or monolocular with wall nodule could also be detected. On contrast-enhanced ultrasonography (CEUS), heterogeneous hyperenhancement in the arterial phase and wash-out hypoenhancement were observed in most patients, while computed tomography scanning yielded similar results. Diagnosis of PHNET was confirmed by immunohistochemical result and follow-up with the absence of extrahepatic primary sites. Five patients received surgical resection and 2 cases exhibited recurrence. Transcatheter arterial chemoembolization was performed in 1 patient with recurrence. Only 1 patient received conservative care. The median overall survival in 5 patients who underwent surgical treatment was 27 months (18–36 months). PHNET is a rare tumor, and its diagnosis is difficult. The CEUS features reported in this series may enrich the knowledge base for characterization of PHNET. PMID:27227910

  4. Quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines.

    PubMed

    Schmid, Volker J; Whitcher, Brandon; Padhani, Anwar R; Yang, Guang-Zhong

    2009-06-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the nonlinear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome these problems, this paper proposes a semi-parametric penalized spline smoothing approach, where the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided. PMID:19272996

  5. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  6. Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images.

    PubMed

    Zheng, Yuanjie; Baloch, Sajjad; Englander, Sarah; Schnall, Mitchell D; Shen, Dinggang

    2007-01-01

    Accuracy of automatic cancer diagnosis is largely determined by two factors, namely, the precision of tumor segmentation, and the suitability of extracted features for discrimination between malignancy and benignancy. In this paper, we propose a new framework for accurate characterization of tumors in contrast enhanced MR images. First, a new graph cut based segmentation algorithm is developed for refining coarse manual segmentation, which allows precise identification of tumor regions. Second, by considering serial contrast-enhanced images as a single spatio-temporal image, a spatio-temporal model of segmented tumor is constructed to extract Spatio-Temporal Enhancement Patterns (STEPs). STEPs are designed to capture not only dynamic enhancement and architectural features, but also spatial variations of pixel-wise temporal enhancement of the tumor. While temporal enhancement features are extracted through Fourier transform, the resulting STEP framework captures spatial patterns of temporal enhancement features via moment invariants and rotation invariant Gabor textures. High accuracy of the proposed framework is a direct consequence of this two pronged approach, which is validated through experiments yielding, for instance, an area of 0.97 under the ROC curve. PMID:18044593

  7. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    PubMed Central

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUSstart) and after (3D-iCEUSend) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUSstart and 3D-iCEUSend data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  8. High-resolution contrast-enhanced optical coherence tomography in mice retinae

    NASA Astrophysics Data System (ADS)

    Sen, Debasish; SoRelle, Elliott D.; Liba, Orly; Dalal, Roopa; Paulus, Yannis M.; Kim, Tae-Wan; Moshfeghi, Darius M.; de la Zerda, Adam

    2016-06-01

    Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ˜0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.

  9. Continuous Dynamic Registration of Microvascularization of Liver Tumors with Contrast-Enhanced Ultrasound

    PubMed Central

    Wiesinger, Isabel; Stroszczynski, Christian; Wiggermann, Philipp; Jung, Ernst-Michael

    2014-01-01

    Aim. To evaluate the diagnostic value of quantification of liver tumor microvascularization using contrast-enhanced ultrasound (CEUS) measured continuously from the arterial phase to the late phase (3 minutes). Material and Methods. We present a retrospective analysis of 20 patients with malignant (n = 13) or benign (n = 7) liver tumors. The tumors had histopathologically been proven or clearly identified using contrast-enhanced reference imaging with either 1.5 T MRI (liver specific contrast medium) or triphase CT and follow-up. CEUS was performed using a multifrequency transducer (1–5 MHz) and a bolus injection of 2.4 mL sulphur hexafluoride microbubbles. A retrospective perfusion analysis was performed to determine TTP (time-to-peak), RBV (regional blood volume), RBF (regional blood flow), and Peak. Results. Statistics revealed a significant difference (P < 0.05) between benign and malignant tumors in the RBV, RBF, and Peak but not in TTP (P = 0.07). Receiver operating curves (ROC) were generated for RBV, RBF, Peak, and TTP with estimated ROC areas of 0.97, 0.96, 0.98, and 0.76, respectively. Conclusion. RBV, RBF, and Peak continuously measured over a determined time period of 3 minutes could be of valuable support in differentiating malignant from benign liver tumors. PMID:24991432

  10. Contrast enhanced pulmonary magnetic resonance angiography for pulmonary embolism: Building a successful program.

    PubMed

    Nagle, Scott K; Schiebler, Mark L; Repplinger, Michael D; François, Christopher J; Vigen, Karl K; Yarlagadda, Rajkumar; Grist, Thomas M; Reeder, Scott B

    2016-03-01

    The performance of contrast enhanced pulmonary magnetic resonance angiography (MRA) for the diagnosis of pulmonary embolism (PE) is an effective non-ionizing alternative to contrast enhanced computed tomography and nuclear medicine ventilation/perfusion scanning. However, the technical success of these exams is very dependent on careful attention to the details of the MRA acquisition protocol and requires reader familiarity with MRI and its artifacts. Most practicing radiologists are very comfortable with the performance and interpretation of computed tomographic angiography (CTA) performed to detect pulmonary embolism but not all are as comfortable with the use of MRA in this setting. The purpose of this review is to provide the general radiologist with the tools necessary to build a successful pulmonary embolism MRA program. This review will cover in detail image acquisition, image interpretation, and some key elements of outreach that help to frame the role of MRA to consulting clinicians and hospital administrators. It is our aim that this resource will help build successful clinical pulmonary embolism MRA programs that are well received by patients and physicians, reduce the burden of medical imaging radiation, and maintain good patient outcomes. PMID:26860667

  11. Dual-energy contrast enhanced digital breast tomosynthesis: concept, method, and evaluation on phantoms

    NASA Astrophysics Data System (ADS)

    Puong, Sylvie; Patoureaux, Fanny; Iordache, Razvan; Bouchevreau, Xavier; Muller, Serge

    2007-03-01

    In this paper, we present the development of dual-energy Contrast-Enhanced Digital Breast Tomosynthesis (CEDBT). A method to produce background clutter-free slices from a set of low and high-energy projections is introduced, along with a scheme for the determination of the optimal low and high-energy techniques. Our approach consists of a dual-energy recombination of the projections, with an algorithm that has proven its performance in Contrast-Enhanced Digital Mammography1 (CEDM), followed by an iterative volume reconstruction. The aim is to eliminate the anatomical background clutter and to reconstruct slices where the gray level is proportional to the local iodine volumetric concentration. Optimization of the low and high-energy techniques is performed by minimizing the total glandular dose to reach a target iodine Signal Difference to Noise Ratio (SDNR) in the slices. In this study, we proved that this optimization could be done on the projections, by consideration of the SDNR in the projections instead of the SDNR in the slices, and verified this with phantom measurements. We also discuss some limitations of dual-energy CEDBT, due to the restricted angular range for the projection views, and to the presence of scattered radiation. Experiments on textured phantoms with iodine inserts were conducted to assess the performance of dual-energy CEDBT. Texture contrast was nearly completely removed and the iodine signal was enhanced in the slices.

  12. The Feasibility of Contrast-Enhanced Ultrasound During Uterine Artery Embolization: A Pilot Study

    SciTech Connect

    Dorenberg, Eric J. Jakobsen, Jarl A.; Brabrand, Knut; Hafsahl, Geir; Smith, Hans-Jorgen

    2007-09-15

    Purpose. To evaluate the feasibility of using contrast-enhanced ultrasound (CEUS) during uterine artery embolization (UAE) in order to define the correct end-point of embolization with complete devascularization of all fibroids. Methods. In this prospective study of 10 consecutive women undergoing UAE, CEUS was performed in the angiographic suite during embolization. When the angiographic end-point, defined as the 'pruned-tree' appearance of the uterine arteries was reached, CEUS was performed while the angiographic catheters to both uterine arteries were kept in place. The decision whether or not to continue the embolization was based on the findings at CEUS. The results of CEUS were compared with those of contrast-enhanced magnetic resonance imaging (MRI) 1 day as well as 3 months following UAE. Results. CEUS was successfully performed in all women. In 4 cases injection of particles was continued based on the findings at CEUS despite angiographically complete embolization. CEUS imaging at completion of UAE correlated well with the findings at MRI. Conclusion. The use of CEUS during UAE is feasible and may increase the quality of UAE.

  13. Vena Cava 3D Contrast-Enhanced MR Venography: A Pictorial Review

    SciTech Connect

    Lin Jiang; Zhou Kangrong; Chen Zuwang; Wang Jianhua; Yan Ziping; Wang, Yi-Xiang J.

    2005-12-15

    Three-dimensional contrast-enhanced magnetic resonance venography (CE MRV) is a sensitive and accurate method for diagnosing vena cava pathologies. The commonly used indirect approach involves a nondiluted gadolinium contrast agent injected into an upper limb vein or, occasionally, a pedal vein for assessment of the superior or inferior vena cava. In our studies, a coronal 3D fast multi-planar spoiled gradient-echo acquisition was used. A pre-contrast scan was obtained to ensure correct coverage of the region of interest. We initiated contrast-enhanced acquisition 15 sec after the start of contrast agent injection and performed the procedure twice. The image sets were obtained during two 20-30-sec breath hold, with a breathing rest of 5-6 sec, to obtain the first-pass and delayed arteriovenous phases. For patients with Budd-Chiari syndrome, a third acquisition coinciding with late venous phase was collected to visualize the hepatic veins, which was carried out by one additional acquisition after a 5-6-sec breathing time. This review describes the clinical application of 3D CE MRV in vena cava congenital anomalies, superior and inferior vena cava syndrome, Budd-Chiari syndrome, peripheral vein thrombosis extending to the vena cava, pre-operational evaluation in portosystemic shunting and post-surgical follow-up, and road-mapping for the placement and evaluation of complications of central venous devices.

  14. Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy.

    PubMed

    Meng, Hong-Min; Lu, Limin; Zhao, Xu-Hua; Chen, Zhuo; Zhao, Zilong; Yang, Chan; Zhang, Xiao-Bing; Tan, Weihong

    2015-04-21

    Many one-photon fluorescence-based theranostic nanosystems have been developed for simultaneous therapeutic intervention/monitoring for various types of cancers. However, for early diagnosis of cancer, two-photon fluorescence microscopy (TPFM) can realize deep-tissue imaging with higher spatial resolution. In this study, we first report a multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Components of the nanoprobe include (1) two-photon dye-doped mesoporous silica nanoparticles (TPD-MSNs); (2) MnO2 nanosheets that act as a (i) gatekeeper for TPD-MSNs, (ii) quencher for TP fluorescence, and (iii) contrast agent for MRI; (3) cancer cell-targeting aptamers. Guided by aptamers, TPD-MSNs are rapidly internalized into the target cells. Next, intracellular glutathione reduces MnO2 to Mn(2+) ions, resulting in contrast-enhanced TP fluorescence and magnetic resonance signal for cellular imaging. Meanwhile, preloaded doxorubicin and Chlorin e6 are released for chemotherapy and photodynamic therapy, respectively, with a synergistic effect and significantly enhanced therapeutic efficacy. PMID:25791340

  15. Contrast enhanced ultrasonography in assessing the treatment response to transarterial chemoembolization in patients with hepatocellular carcinoma.

    PubMed

    Sparchez, Zeno; Mocan, Tudor; Radu, Pompilia; Anton, Ofelia; Bolog, Nicolae

    2016-03-01

    The last decades have known continuous development of therapeutic strategies in hepatocellular carcinoma (HCC). Unfortunately the disease it still not diagnosed until it is already at an intermediate or even an advanced disease. In these circumstances transarterial chemoembolization (TACE) is considered an effective treatment for HCC. The most important independent prognostic factor of both disease free survival and overall survival is the presence of complete necrosis. Therefore, treatment outcomes are dictated by the proper use of radiological imaging. Current guidelines recommend contrast enhanced computer tomography (CECT) as the standard imaging technique for evaluating the therapeutic response in patients with HCC after TACE. One of the most important disadvantage of CECT is the overestimation of tumor response. As an attempt to overcome this limitation contrast enhanced ultrasound (CEUS) has gained particular attention as an imaging modality in HCC patients after TACE. Of all available imaging modalities, CEUS performs better in the early and very early assessment of TACE especially after lipiodol TACE. As any other imaging techniques CEUS has disadvantages especially in hypovascular tumors or in cases of tumor multiplicity. Not far from now the current limitations of CEUS will be overcome by the new CEUS techniques that are already tested in clinical practice such as dynamic CEUS with quantification, three-dimensional CEUS or fusion techniques. PMID:26962561

  16. Model-based pancreas segmentation in portal venous phase contrast-enhanced CT images.

    PubMed

    Hammon, Matthias; Cavallaro, Alexander; Erdt, Marius; Dankerl, Peter; Kirschner, Matthias; Drechsler, Klaus; Wesarg, Stefan; Uder, Michael; Janka, Rolf

    2013-12-01

    This study aims to automatically detect and segment the pancreas in portal venous phase contrast-enhanced computed tomography (CT) images. The institutional review board of the University of Erlangen-Nuremberg approved this study and waived the need for informed consent. Discriminative learning is used to build a pancreas tissue classifier incorporating spatial relationships between the pancreas and surrounding organs and vessels. Furthermore, discrete cosine and wavelet transforms are used to build texture features to describe local tissue appearance. Classification is used to guide a constrained statistical shape model to fit the data. The algorithm to detect and segment the pancreas was evaluated on 40 consecutive CT data that were acquired in the portal venous contrast agent phase. Manual segmentation of the pancreas was carried out by experienced radiologists and served as reference standard. Threefold cross validation was performed. The algorithm-based detection and segmentation yielded an average surface distance of 1.7 mm and an average overlap of 61.2 % compared with the reference standard. The overall runtime of the system was 20.4 min. The presented novel approach enables automatic pancreas segmentation in portal venous phase contrast-enhanced CT images which are included in almost every clinical routine abdominal CT examination. Reliable pancreatic segmentation is crucial for computer-aided detection systems and an organ-specific decision support. PMID:23471751

  17. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t ) and after (3D-iCEUS e n d ) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  18. Contrast-enhanced ultrasound in diagnosis and characterization of focal hepatic lesions

    PubMed Central

    Molins, Inés Gómez; Font, Juan Manuel Fernández; Álvaro, Juan Carrero; Navarro, Jose Luís Lledó; Gil, Marta Fernández; Rodríguez, Conrado M Fernández

    2010-01-01

    The extensive use of imaging techniques in differential diagnosis of abdominal conditions and screening of hepatocellular carcinoma in patients with chronic hepatic diseases, has led to an important increase in identification of focal liver lesions. The development of contrast-enhanced ultrasound (CEUS) opens a new window in the diagnosis and follow-up of these lesions. This technique offers obvious advantages over the computed tomography and magnetic resonance, without a decrease in its sensitivity and specificity. The new second generation contrast agents, due to their intravascular distribution, allow a continuous evaluation of the enhancement pattern, which is crucial in characterization of liver lesions. The dual blood supply in the liver shows three different phases, namely arterial, portal and late phases. The enhancement during portal and late phases can give important information about the lesion’s behavior. Each liver lesion has a different enhancement pattern that makes possible an accurate approach to their diagnosis. The role of emerging techniques as a contrast-enhanced three-dimensional US is also discussed. In this article, the advantages, indications and technique employed during CEUS and the different enhancement patterns of most benign and malignant focal liver lesions are discussed. PMID:21225000

  19. Contrast-enhanced ultrasound for diagnosing, staging and assessment of operability of pancreatic cancer.

    PubMed

    Grossjohann, Hanne Sønder

    2012-12-01

    We have evaluated the usefulness of contrast-enhanced ultrasound (CEUS) for diagnosing, staging and assessment of operability of pancreatic head tumors. For some years CEUS has been used with great success for diagnosis of focal liver lesions but when we started our trial, it was still relatively untested in the pancreas. This PhD thesis is based on a methodological study, two clinical studies and an intra-/interobserver study. The methodological study consists of material collected from investigations made on 14 experimental pigs. First, we examined the pig pancreas with CEUS. Hereafter we repeated the CEUS examination after venous injection of the gastrointestinal hormones secretin and cholecystokinin. We investigated if the contrast-enhancement would intensify after hormone stimulation. The clinical studies consist of material collected from examinations of 49 patients referred to our hospital with the diagnosis, suspicion of pancreatic cancer. All patients had a conventional ultrasound examination and a CEUS examination. In addition, some of the patients also had a CEUS examination after stimulation with secretin and cholecystokinin. All patients had a 64-slice-CT examination and a biopsy was taken for histopathological verification. We studied whether CEUS was useful for assessment of tumor classification, tumor staging and tumor resectability. We also tested if hormone stimulation of the pancreas during CEUS could intensify contrast-enhancement of healthy pancreatic tissue and thus contribute to a better demarcation of a tumor. Finally, we tested the intra-/interobserver agreement of our visual interpretation of the contrast-enhanced ultrasound images and the concordance between the visual interpretation and histopathological test results. From the results of the methodological study it seemed possible to intensify contrast-enhancement using the gastrointestinal hormones by 3%. During the clinical studies it emerged that hormone stimulation did not improve

  20. Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics.

    PubMed

    Raccuglia, Davide; Yan McCurdy, Li; Demir, Mahmut; Gorur-Shandilya, Srinivas; Kunst, Michael; Emonet, Thierry; Nitabach, Michael N

    2016-01-01

    Contrast enhancement mediated by lateral inhibition within the nervous system enhances the detection of salient features of visual and auditory stimuli, such as spatial and temporal edges. However, it remains unclear how mechanisms for temporal contrast enhancement in the olfactory system can enhance the detection of odor plume edges during navigation. To address this question, we delivered to Drosophila melanogaster flies pulses of high odor intensity that induce sustained peripheral responses in olfactory sensory neurons (OSNs). We use optical electrophysiology to directly measure electrical responses in presynaptic terminals and demonstrate that sustained peripheral responses are temporally sharpened by the combined activity of two types of inhibitory GABA receptors to generate contrast-enhanced voltage responses in central OSN axon terminals. Furthermore, we show how these GABA receptors modulate the time course of innate behavioral responses after odor pulse termination, demonstrating an important role for temporal contrast enhancement in odor-guided navigation. PMID:27588305

  1. Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics

    PubMed Central

    Demir, Mahmut; Gorur-Shandilya, Srinivas; Kunst, Michael; Nitabach, Michael N.

    2016-01-01

    Contrast enhancement mediated by lateral inhibition within the nervous system enhances the detection of salient features of visual and auditory stimuli, such as spatial and temporal edges. However, it remains unclear how mechanisms for temporal contrast enhancement in the olfactory system can enhance the detection of odor plume edges during navigation. To address this question, we delivered to Drosophila melanogaster flies pulses of high odor intensity that induce sustained peripheral responses in olfactory sensory neurons (OSNs). We use optical electrophysiology to directly measure electrical responses in presynaptic terminals and demonstrate that sustained peripheral responses are temporally sharpened by the combined activity of two types of inhibitory GABA receptors to generate contrast-enhanced voltage responses in central OSN axon terminals. Furthermore, we show how these GABA receptors modulate the time course of innate behavioral responses after odor pulse termination, demonstrating an important role for temporal contrast enhancement in odor-guided navigation. PMID:27588305

  2. Straight Vessel Pattern and Rapid Filling Time: Characteristic Findings on Contrast-Enhanced Sonography of Testicular Lymphoma.

    PubMed

    Lock, Guntram; Schmidt, Christa; Schröder, Claudia; Löning, Thomas; Dieckmann, Klaus-Peter

    2016-07-01

    Six patients with 7 lesions that were histologically confirmed as primary testicular lymphoma were preoperatively investigated with a standardized sonographic protocol including contrast-enhanced sonography. Duplex and contrast-enhanced sonography showed marked hypervascularization in all 7 lesions. On contrast-enhanced sonography, the filling time of lymphomatous lesions was significantly shorter than the filling time of a size-matched sample of 10 patients with seminomas (P < .0001). The sonographic hallmarks of testicular lymphoma in our case series were as follows: (1) sharply demarcated homogeneous hypoechoic testicular lesions with marked hypervascularization; (2) a rapid (<7 seconds) filling time of contrast bubbles; and (3) a straight and parallel course of intralesional vessels on contrast-enhanced sonography. PMID:27335443

  3. Intravenous contrast-enhanced CT of the postoperative lumbar spine: improved identification of recurrent disk herniation, scar, arachnoiditis, and diskitis

    SciTech Connect

    Teplick, J.G.; Haskin, M.E.

    1984-10-01

    Unsuccessful relief of symptoms after back surgery is usually attributable to hypertrophic extradural scar or recurrent herniated disk. Their clinical and myelographic differentiation is difficult, yet important because reoperation is not always beneficial for scar removal. This article examines the usefulness of intravenous contrast-enhanced computed tomography for this problem. Forty-five postsurgical patients were studied; eight had subsequent surgery. In the four with hypertrophic scars, intravenous contrast enhancement of the scar allowed its recognition in each case; in the four with hypertrophic scars, intravenous contrast enhancement of the scar allowed its recognition in each case; in the four with recurrent disk herniation, nonenhancement of the extruded disk allowed its recognition in three. In the other 37 patients who were not reoperated, 33 were believed to have scar on the basis of contrast enhancement. The method seems promising for more accurate evaluation of failed back surgery, including the recognition of diskitis.

  4. Fabrication of a PMN-PT Single Crystal-Based Transcranial Doppler Transducer and the Power Regulation of Its Detection System

    PubMed Central

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-01-01

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The −6 dB bandwidth of the transducer is 68.4% and the sensitivity is −17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries. PMID:25536000

  5. Fabrication of a PMN-PT single crystal-based transcranial Doppler transducer and the power regulation of its detection system.

    PubMed

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-01-01

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The -6 dB bandwidth of the transducer is 68.4% and the sensitivity is -17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries. PMID:25536000

  6. Correction of lumen contrast-enhancement influence on non-calcified coronary atherosclerotic plaque quantification on CT.

    PubMed

    Kristanto, Wisnumurti; Tuncay, Volkan; Vliegenthart, Rozemarijn; van Ooijen, Peter M A; Oudkerk, Matthijs

    2015-02-01

    Lumen contrast-enhancement influences non-calcified atherosclerotic plaque Hounsfield-unit (HU) values in computed tomography (CT). This study aimed to construct and validate an algorithm to correct for this influence. Three coronary vessel phantoms with 1, 2, and 4 mm circular hollow lumina; with normal and plaque-infested walls were scanned simultaneously in oil using a dual-source CT scanner. Scanning was repeated as the lumina were alternately filled with water and four contrast solutions (100-400 HU, at 100 HU intervals). Images were reconstructed at 0.4 mm x-y pixel size. Pixel-by-pixel comparisons of contrast-enhanced and non-contrast-enhanced images confirmed exponential declining patterns in lumen contrast-enhancement influence on wall HU-values from the lumen border (y = Ae(-λx) + c). The median difference of the inside and outside 2-pixel radius part of the contrast-enhanced coronary phantom wall to the reference (non-contrast-enhanced images) was 45 and 2 HU, respectively. Based on the lumen contrast-enhancement influence patterns, a generalized correction algorithm was formulated. Application of the generalized correction algorithm to the inside 2-pixel radius part of the wall reduced the median difference to the reference to 4 HU. In conclusion, lumen contrast-enhancement influence on the vessel wall can be defined by an exponential approximation, allowing correction of the CT density of the vessel wall closest to the lumen. With this correction, a more accurate determination of vessel wall composition can be made. PMID:25326412

  7. Validation of Dynamic Contrast-Enhanced Ultrasound in Predicting Outcomes of Antiangiogenic Therapy for Solid Tumors

    PubMed Central

    Lassau, Nathalie; Bonastre, Julia; Kind, Michèle; Vilgrain, Valérie; Lacroix, Joëlle; Cuinet, Marie; Taieb, Sophie; Aziza, Richard; Sarran, Antony; Labbe-Devilliers, Catherine; Gallix, Benoit; Lucidarme, Olivier; Ptak, Yvette; Rocher, Laurence; Caquot, Louis-Michel; Chagnon, Sophie; Marion, Denis; Luciani, Alain; Feutray, Sylvaine; Uzan-Augui, Joëlle; Coiffier, Benedicte; Benastou, Baya; Koscielny, Serge

    2014-01-01

    Objectives Dynamic contrast-enhanced ultrasound (DCE-US) has been used in single-center studies to evaluate tumor response to antiangiogenic treatments: the change of area under the perfusion curve (AUC), a criterion linked to blood volume, was consistently correlated with the Response Evaluation Criteria in Solid Tumors response. The main objective here was to do a multicentric validation of the use of DCE-US to evaluate tumor response in different solid tumor types treated by several antiangiogenic agents. A secondary objective was to evaluate the costs of the procedure. Materials and Methods This prospective study included patients from 2007 to 2010 in 19 centers (8 teaching hospitals and 11 comprehensive cancer centers). All patients treated with antiangiogenic therapy were eligible. Dynamic contrast-enhanced ultrasound examinations were performed at baseline as well as on days 7, 15, 30, and 60. For each examination, a perfusion curve was recorded during 3 minutes after injection of a contrast agent. Change from baseline at each time point was estimated for each of 7 fitted criteria. The main end point was freedom from progression (FFP). Criterion/time-point combinations with the strongest correlation with FFP were analyzed further to estimate an optimal cutoff point. Results A total of 1968 DCE-US examinations in 539 patients were analyzed. The median follow-up was 1.65 years. Variations from baseline were significant at day 30 for several criteria, with AUC having the most significant association with FFP (P = 0.00002). Patients with a greater than 40% decrease in AUC at day 30 had better FFP (P = 0.005) and overall survival (P = 0.05). The mean cost of each DCE-US was 180€, which corresponds to $250 using the current exchange rate. Conclusions Dynamic contrast-enhanced ultrasound is a new functional imaging technique that provides a validated criterion, namely, the change of AUC from baseline to day 30, which is predictive of tumor progression in a large

  8. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.

    PubMed

    Landrigan, Matthew D; Li, Jiliang; Turnbull, Travis L; Burr, David B; Niebur, Glen L; Roeder, Ryan K

    2011-03-01

    Conventional methods used to image and quantify microdamage accumulation in bone are limited to histological sections, which are inherently invasive, destructive, two-dimensional, and tedious. These limitations inhibit investigation of microdamage accumulation with respect to volumetric spatial variation in mechanical loading, bone mineral density, and microarchitecture. Therefore, the objective of this study was to investigate non-destructive, three-dimensional (3-D) detection of microdamage accumulation in human cortical bone using contrast-enhanced micro-computed tomography (micro-CT), and to validate micro-CT measurements against conventional histological methods. Unloaded controls and specimens loaded in cyclic uniaxial tension to a 5% and 10% reduction in secant modulus were labeled with a precipitated BaSO₄ stain for micro-CT and basic fuchsin for histomorphometry. Linear microcracks were similarly labeled by BaSO₄ and basic fuchsin as shown by backscattered electron microscopy and light microscopy, respectively. The higher X-ray attenuation of BaSO₄ relative to the bone extracellular matrix provided enhanced contrast for the detection of damage that was otherwise not able to be detected by micro-CT prior to staining. Therefore, contrast-enhanced micro-CT was able to nondestructively detect the presence, 3-D spatial location, and accumulation of fatigue microdamage in human cortical bone specimens in vitro. Microdamage accumulation was quantified on segmented micro-CT reconstructions as the ratio of BaSO₄ stain volume (SV) to total bone volume (BV). The amount of microdamage measured by both micro-CT (SV/BV) and histomorphometry (Cr.N, Cr.Dn, Cr.S.Dn) progressively increased from unloaded controls to specimens loaded to a 5% and 10% reduction in secant modulus (p < 0.001). Group means for micro-CT measurements of damage accumulation were strongly correlated to those using histomorphometry (p < 0.05), validating the new methods. Limitations of the new

  9. Kinetic Curve Type Assessment for Classification of Breast Lesions Using Dynamic Contrast-Enhanced MR Imaging

    PubMed Central

    Chen, Jun-Ming; Zhang, Geoffrey; Liao, Yen-Hsiu; Huang, Tzung-Chi

    2016-01-01

    Objective The aim of this study was to employ a kinetic model with dynamic contrast enhancement-magnetic resonance imaging to develop an approach that can efficiently distinguish malignant from benign lesions. Materials and Methods A total of 43 patients with 46 lesions who underwent breast dynamic contrast enhancement-magnetic resonance imaging were included in this retrospective study. The distribution of malignant to benign lesions was 31/15 based on histological results. This study integrated a single-compartment kinetic model and dynamic contrast enhancement-magnetic resonance imaging to generate a kinetic modeling curve for improving the accuracy of diagnosis of breast lesions. Kinetic modeling curves of all different lesions were analyzed by three experienced radiologists and classified into one of three given types. Receiver operating characteristic and Kappa statistics were used for the qualitative method. The findings of the three radiologists based on the time-signal intensity curve and the kinetic curve were compared. Results An average sensitivity of 82%, a specificity of 65%, an area under the receiver operating characteristic curve of 0.76, and a positive predictive value of 82% and negative predictive value of 63% was shown with the kinetic model (p = 0.017, 0.052, 0.068), as compared to an average sensitivity of 80%, a specificity of 55%, an area under the receiver operating characteristic of 0.69, and a positive predictive value of 79% and negative predictive value of 57% with the time-signal intensity curve method (p = 0.003, 0.004, 0.008). The diagnostic consistency of the three radiologists was shown by the κ-value, 0.857 (p<0.001) with the method based on the time-signal intensity curve and 0.826 (p<0.001) with the method of the kinetic model. Conclusions According to the statistic results based on the 46 lesions, the kinetic modeling curve method showed higher sensitivity, specificity, positive and negative predictive values as compared with

  10. Contrast-enhanced sonographically guided thermal ablation for treatment of solid-organ hemorrhage: preliminary clinical results.

    PubMed

    Zhou, Luyao; Kuang, Ming; Xu, Zuofeng; Xie, Xiaoyan; Lu, Mingde

    2015-05-01

    The purpose of this series was to preliminarily evaluate the use of contrast-enhanced sonographically guided percutaneous thermal ablation in the evaluation and treatment of solid-organ bleeding by retrospectively analyzing 6 cases observed in clinical practice. Six patients who underwent contrast-enhanced sonographically guided thermal ablation for treatment of solid-organ bleeding (5 in liver and 1 in spleen) from December 2005 to August 2012 were included in this series. Clinical information, contrast-enhanced sonograms before and after ablation, and the ablation method were retrospectively collected and analyzed. In 5 of the 6 patients, the location of the bleeding lesion was clearly seen. Hemostasis was successfully achieved in 4 of these 5 patients: 1 by radiofrequency ablation and 3 by microwave ablation. Ablation failed to achieve hemostasis in 1 patient who had postbiopsy splenic arterial bleeding because the bleeding vessel was a thick branch of the splenic artery. In the sixth remaining patient, who had bleeding after liver biopsy, hemostasis failed because contrast-enhanced sonography did not precisely locate the bleeding lesion; hence, the ablation zone did not cover the whole lesion. Contrast-enhanced sonographically guided ablation can be an alternative choice for treating solid-organ bleeding because of its effectiveness and minimal invasiveness. However, it should be carefully investigated for those in whom the bleeding lesion cannot be located by contrast-enhanced sonography and in those who have bleeding in a large vessel. PMID:25911724