Science.gov

Sample records for contrast-enhanced ultrasound imaging

  1. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    SciTech Connect

    Demi, Libertario Sloun, Ruud J. G. van; Mischi, Massimo; Wijkstra, Hessel

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  2. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  3. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. PMID:26459771

  4. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  5. Role of contrast enhanced ultrasound in hepatic imaging.

    PubMed

    Dhamija, Ekta; Paul, Shashi B

    2014-01-01

    Grey scale ultrasound (US) is the first line imaging modality used for the evaluation of liver by the radiologists and clinicians worldwide. It is a simple, inexpensive, safe and an easily available technique. US has the ability to delineate the hepatic parenchyma and differentiate the cystic from solid hepatic lesions. However, it has limited accuracy in the detection and characterization of focal liver lesions (FLL). CEUS is a major breakthrough in ultrasound imaging which evolved with the aim of overcoming these limitations of US. With the use of ultrasound contrast agents (UCAs), CEUS has the ability to detect the intranodular hemodynamics and thereby provide information of the enhancement pattern of the lesion resulting in reliable characterization of the FLL. This capability brings it at par with the cross sectional contrast enhanced imaging techniques of computed tomography and magnetic resonance imaging. UCAs are safe, non-nephrotoxic and thus can be used to evaluate patients with renal failure as well. The technique of CEUS is simple, requires few minutes to perform, portable, lacks ionising radiation and above all is a cost-effective modality. These advantages have made CEUS an established modality for hepatic imaging. Besides detection and characterization of FLL, it also plays a vital role in the management and repeated follow up of treated patients of FLL. Newer clinical applications of CEUS with promising results are also being unravelled . This review highlights the multifaceted role of CEUS in hepatic imaging and its upcoming clinical applications. PMID:26012317

  6. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  7. Ultrasound Despeckling for Contrast Enhancement

    PubMed Central

    Tay, Peter C.; Garson, Christopher D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  8. Ultrasound despeckling for contrast enhancement.

    PubMed

    Tay, Peter C; Garson, Christopher D; Acton, Scott T; Hossack, John A

    2010-07-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  9. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  10. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    PubMed Central

    Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  11. A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue

    2014-03-01

    Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.

  12. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  13. Contrast-Enhanced Endoscopic Ultrasound

    PubMed Central

    Dietrich, Christoph F.; Sharma, M.; Hocke, M.

    2012-01-01

    The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) introduced guidelines on the use of contrast-enhanced ultrasound (CEUS) in 2004. This EFSUMB-document focused mainly on liver applications. However, new applications extending beyond the liver were developed thereafter. Increased interest in recent years in CEUS technique and in the application of CEUS in novel fields like endoscopic ultrasound (EUS) has revolutionized indications and applications. As a result, the EFSUMB initiated a new update of the guidelines in 2011 to include this additional knowledge. Some of the contrast-enhanced EUS (CE-EUS) indications are established, whereas others are preliminary; these latter indications are categorized as emergent CEUS applications since the available evidence is insufficient for general recommendation. This article focuses on the use of CE-EUS in various clinical settings. The reader will get an overview of current indications and possible applications of CE-EUS. This involves the introduction of different contrast studies including color Doppler techniques (known as contrast-enhanced high mechanical index endosonography or CEHMI-EUS) as well as more modern high-resolution contrast-enhanced techniques (known as contrast-enhanced low mechanical index endosonography or CELMI EUS). PMID:24949350

  14. Contrast-enhanced harmonic endoscopic ultrasound imaging: Basic principles, present situation and future perspectives

    PubMed Central

    Alvarez-Sánchez, María-Victoria; Napoléon, Bertrand

    2014-01-01

    Over the last decade, the development of stabilised microbubble contrast agents and improvements in available ultrasonic equipment, such as harmonic imaging, have enabled us to display microbubble enhancements on a greyscale with optimal contrast and spatial resolution. Recent technological advances made contrast harmonic technology available for endoscopic ultrasound (EUS) for the first time in 2008. Thus, the evaluation of microcirculation is now feasible with EUS, prompting the evolution of contrast-enhanced EUS from vascular imaging to images of the perfused tissue. Although the relevant experience is still preliminary, several reports have highlighted contrast-enhanced harmonic EUS (CH-EUS) as a promising noninvasive method to visualise and characterise lesions and to differentiate benign from malignant focal lesions. Even if histology remains the gold standard, the combination of CH-EUS and EUS fine needle aspiration (EUS-FNA) can not only render EUS more accurate but may also assist physicians in making decisions when EUS-FNA is inconclusive, increasing the yield of EUS-FNA by guiding the puncture with simultaneous imaging of the vascularity. The development of CH-EUS has also opened up exciting possibilities in other research areas, including monitoring responses to anticancer chemotherapy or to ethanol-induced pancreatic tissue ablation, anticancer therapies based on ultrasound-triggered drug and gene delivery, and therapeutic adjuvants by contrast ultrasound-induced apoptosis. Contrast harmonic imaging is gaining popularity because of its efficacy, simplicity and non-invasive nature, and many expectations are currently resting on this technique. If its potential is confirmed in the near future, contrast harmonic imaging will become a standard practice in EUS. PMID:25400439

  15. International guidelines for contrast-enhanced ultrasonography: ultrasound imaging in the new millennium

    PubMed Central

    Lorentzen, Torben

    2016-01-01

    The intent of this review is to discuss and comment on common clinical scenarios in which contrast-enhanced ultrasonography (CEUS) may play a decisive role and to illustrate important points with typical cases. With the advent of CEUS, the scope of indications for ultrasonography has been dramatically extended, and now includes functional imaging and tissue characterization, which in many cases enable tumor diagnosis without a biopsy. It is virtually impossible to imagine the practice of modern medicine as we know it in high-income countries without the use of imaging, and yet, an estimated two thirds of the global population may receive no such care. Ultrasound imaging with CEUS has the potential to correct this inequity. PMID:26867761

  16. Atherosclerotic carotid lumen segmentation in combined B-mode and contrast enhanced ultrasound images

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Carvalho, Diego D. B.; Klein, Stefan; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2014-03-01

    Patients with carotid atherosclerotic plaques carry an increased risk of cardiovascular events such as stroke. Ultrasound has been employed as a standard for diagnosis of carotid atherosclerosis. To assess atherosclerosis, the intima contour of the carotid artery lumen should be accurately outlined. For this purpose, we use simultaneously acquired side-by-side longitudinal contrast enhanced ultrasound (CEUS) and B-mode ultrasound (BMUS) images and exploit the information in the two imaging modalities for accurate lumen segmentation. First, nonrigid motion compensation is performed on both BMUS and CEUS image sequences, followed by averaging over the 150 time frames to produce an image with improved signal-to-noise ratio (SNR). After that, we segment the lumen from these images using a novel method based on dynamic programming which uses the joint histogram of the CEUS and BMUS pair of images to distinguish between background, lumen, tissue and artifacts. Finally, the obtained lumen contour in the improved-SNR mean image is transformed back to each time frame of the original image sequence. Validation was done by comparing manual lumen segmentations of two independent observers with automated lumen segmentations in the improved-SNR images of 9 carotid arteries from 7 patients. The root mean square error between the two observers was 0.17+/-0.10mm and between automated and average of manual segmentation of two observers was 0.19+/-0.06mm. In conclusion, we present a robust and accurate carotid lumen segmentation method which overcomes the complexity of anatomical structures, noise in the lumen, artifacts and echolucent plaques by exploiting the information in this combined imaging modality.

  17. Contrast-Enhanced Ultrasound Imaging for the Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening

    PubMed Central

    Fan, Ching-Hsiang; Lin, Wun-Hao; Ting, Chien-Yu; Chai, Wen-Yen; Yen, Tzu-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2014-01-01

    The blood-brain barrier (BBB) can be transiently and locally opened by focused ultrasound (FUS) in the presence of microbubbles (MBs). Various imaging modalities and contrast agents have been used to monitor this process. Unfortunately, direct ultrasound imaging of BBB opening with MBs as contrast agent is not feasible, due to the inability of MBs to penetrate brain parenchyma. However, FUS-induced BBB opening is accompanied by changes in blood flow and perfusion, suggesting the possibility of perfusion-based ultrasound imaging. Here we evaluated the use of MB destruction-replenishment, which was originally developed for analysis of ultrasound perfusion kinetics, for verifying and quantifying FUS-induced BBB opening. MBs were intravenously injected and the BBB was disrupted by 2 MHz FUS with burst-tone exposure at 0.5-0.7 MPa. A perfusion kinetic map was estimated by MB destruction-replenishment time-intensity curve analysis. Our results showed that the scale and distribution of FUS-induced BBB opening could be determined at high resolution by ultrasound perfusion kinetic analysis. The accuracy and sensitivity of this approach was validated by dynamic contrast-enhanced MRI. Our successful demonstration of ultrasound imaging to monitor FUS-induced BBB opening provides a new approach to assess FUS-dependent brain drug delivery, with the benefit of high temporal resolution and convenient integration with the FUS device. PMID:25161701

  18. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    NASA Astrophysics Data System (ADS)

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth P.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-10-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml-1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  19. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    PubMed Central

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth C.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-01-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg/ml Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of 3-dimensional imaging of a 185 μL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi. PMID:24077004

  20. Contrast enhanced ultrasound of breast cancer

    PubMed Central

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  1. Contrast enhanced ultrasound of breast cancer.

    PubMed

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  2. The role of contrast-enhanced ultrasound imaging in the follow-up of patients post-endovascular aneurysm repair.

    PubMed

    Jawad, Nadia; Parker, Pamela; Lakshminarayan, Raghuram

    2016-02-01

    Endovascular aneurysm repair is a minimally invasive technique for the treatment of abdominal aortic aneurysms. Patients who undergo endovascular aneurysm repair are potentially at risk of developing problems related to the graft such as the development of endoleaks. Endoleaks can cause expansion of the aneurysmal sac, which can potentially lead to rupture. It is for this reason that lifelong surveillance of patients is required to assess the graft and the aneurysmal sac. This article discusses the role of contrast-enhanced ultrasound in the follow-up of patients post-endovascular aneurysm repair. Contrast-enhanced ultrasound is rapidly becoming a powerful, accurate and cost-effective tool to complement computed tomography in the follow-up of endovascular aneurysm repair patients. Real-time imaging of contrast filling into the arterial system means that contrast-enhanced ultrasound is an excellent problem-solving tool, particularly when assessing for the type and anatomy of endoleaks. In some instances, contrast-enhanced ultrasound can detect endoleaks when other modalities are equivocal. PMID:27433275

  3. Microflow imaging of contrast-enhanced ultrasound for evaluation of neovascularization in peripheral lung cancer.

    PubMed

    Wang, Song; Yang, Wei; Fu, Jing-Jing; Sun, Yu; Zhang, Hui; Bai, Jing; Chen, Min-Hua; Yan, Kun

    2016-08-01

    The aim of this study was to investigate the role of microflow imaging (MFI) of contrast-enhanced ultrasound (CEUS) for evaluating microvascular architecture of different types of peripheral lung cancer (PLC) and to explore the correlated pathological basis.Ninety-five patients with PLC were enrolled in this study. Two radiologists independently evaluated the microvascular architecture of PLC with MFI. The interobserver agreement was measured with Kappa test. The diagnosis value of MFI was calculated. With pathological analysis, the correlation between MFI and microvascular density (MVD)/microvascular diameter (MD) was evaluated.Of the 95 PLCs, MFI were mainly classified "dead wood" (27.4%, 25.3%), "vascular" (47.4%, 49.5%), and "cotton" (20.0%, 20.0%) patterns by the 2 readers. Kappa test showed a good agreement between the 2 readers (Kappa = 0.758). The "dead wood" can be regarded as a specific diagnostic factor for squamous carcinoma; the sensitivity, specificity, and accuracy was 62.9%, 93.3%, and 82.1%, respectively. The "vascular" and "cotton" patterns correlated well with adenocarcinoma and SCLC (small cell lung cancer); diagnostic sensitivity, specificity, and accuracy were 86.7%, 65.7%, and 78.9%, respectively. MVD of "dead wood" was lower than "vascular" and "cotton," while MD was bigger than the other 2 patterns (P < 0.05). There was a good correlation between MFI and histopathological types of PLC as well as between MFI and MVD/MD (P < 0.05).MFI has the advantage to display the microvascular architecture of PLCs and might become a promising diagnostic method of histopathological types of PLC. MFI features also correlated well with its pathological basis, including MVD and MD. PMID:27512847

  4. Microflow imaging of contrast-enhanced ultrasound for evaluation of neovascularization in peripheral lung cancer

    PubMed Central

    Wang, Song; Yang, Wei; Fu, Jing-Jing; Sun, Yu; Zhang, Hui; Bai, Jing; Chen, Min-Hua; Yan, Kun

    2016-01-01

    Abstract The aim of this study was to investigate the role of microflow imaging (MFI) of contrast-enhanced ultrasound (CEUS) for evaluating microvascular architecture of different types of peripheral lung cancer (PLC) and to explore the correlated pathological basis. Ninety-five patients with PLC were enrolled in this study. Two radiologists independently evaluated the microvascular architecture of PLC with MFI. The interobserver agreement was measured with Kappa test. The diagnosis value of MFI was calculated. With pathological analysis, the correlation between MFI and microvascular density (MVD)/microvascular diameter (MD) was evaluated. Of the 95 PLCs, MFI were mainly classified “dead wood” (27.4%, 25.3%), “vascular” (47.4%, 49.5%), and “cotton” (20.0%, 20.0%) patterns by the 2 readers. Kappa test showed a good agreement between the 2 readers (Kappa = 0.758). The “dead wood” can be regarded as a specific diagnostic factor for squamous carcinoma; the sensitivity, specificity, and accuracy was 62.9%, 93.3%, and 82.1%, respectively. The “vascular” and “cotton” patterns correlated well with adenocarcinoma and SCLC (small cell lung cancer); diagnostic sensitivity, specificity, and accuracy were 86.7%, 65.7%, and 78.9%, respectively. MVD of “dead wood” was lower than “vascular” and “cotton,” while MD was bigger than the other 2 patterns (P < 0.05). There was a good correlation between MFI and histopathological types of PLC as well as between MFI and MVD/MD (P < 0.05). MFI has the advantage to display the microvascular architecture of PLCs and might become a promising diagnostic method of histopathological types of PLC. MFI features also correlated well with its pathological basis, including MVD and MD. PMID:27512847

  5. A comparative study of contrast enhanced ultrasound and contrast enhanced magnetic resonance imaging for the detection and characterization of hepatic hemangiomas.

    PubMed

    Fang, Liang; Zhu, Zheng; Huang, Beijian; Ding, Hong; Mao, Feng; Li, Chaolun; Zeng, Mengsu; Zhou, Jianjun; Wang, Ling; Wang, Wenping; Chen, Yue

    2015-04-01

    This study aims to compare contrast enhanced ultrasound (CEUS) and contrast enhanced magnetic resonance imaging (CEMRI) for the detection and characterization of hepatic hemangiomas. Included in this retrospective study were 83 histopathologically confirmed lesions of hemangioma in 66 hospitalized patients who underwent both CEUS and CEMRI and received surgery. The enhancement patterns on CEUS and CEMRI in each lesion were compared and analyzed. In addition, data obtained by the two modalities were then compared with the pathological findings to determine their value in differential diagnosis of hepatic hemangiomas. CEUS diagnosed 78 lesions of hemangioma against 80 by CEMRI. There were no statistical significant differences in the diagnostic value between CEUS and CEMRI in terms of sensitivity (88.0% vs. 92.8%), specificity (99.0% vs. 99.4%), accuracy (97.3% vs. 98.4%), positive predictive value (93.6% vs. 96.3%), and negative predictive value (98.0% vs. 98.8%) (p > 0.05, all). In the arterial phase, the main enhancement pattern on both CEUS and CEMRI was peripheral nodular enhancement (73 vs. 76), but lesions with diffuse enhancement on CEUS outnumbered those on CEMRI (3 vs. 1) and lesions with circular enhancement on CEMRI outnumbered those on CEUS (3 vs. 2). In the portal venous phase and delayed phase, the main enhancement pattern was hyperechoic change on CEUS and hyperintense on CEMRI (66 vs. 65), some lesions presented isoechoic change (12 vs. 15). These results suggested CEUS, an equivalent to CEMRI, may have an added diagnostic value in hemangiomas. PMID:25971695

  6. Contrast-enhanced ultrasound for imaging blunt abdominal trauma - indications, description of the technique and imaging review.

    PubMed

    Cokkinos, D; Antypa, E; Stefanidis, K; Tserotas, P; Kostaras, V; Parlamenti, A; Tavernaraki, K; Piperopoulos, P N

    2012-02-01

    Patients with blunt abdominal trauma are initially imaged with ultrasound (US) for the evaluation of free abdominal fluid. However, lacerations of solid organs can be overlooked. Although computed tomography (CT) is the gold standard technique for abdominal trauma imaging, overutilization, ionizing radiation, need to transport the patient and potential artifacts are well known disadvantages. Contrast-enhanced US (CEUS) can be used as an imaging tool between the two methods. It can easily and reliably reveal solid abdominal organ injuries in patients with low-energy localized trauma and decrease the number of CT scans performed. It can be rapidly performed at the patient's bedside with no need for transportation. There are only very few contraindications and anaphylactoid reactions are extremely rare. Altogether, CEUS has proved to be very helpful for the initial imaging of traumatic lesions of the liver, kidney and spleen, as well as for patient follow-up. PMID:22274907

  7. Contrast-enhanced ultrasound: The evolving applications

    PubMed Central

    Xu, Hui-Xiong

    2009-01-01

    Contrast-enhanced ultrasound (CEUS) is a major breakthrough for ultrasound imaging in recent years. By using a microbubble contrast agent and contrast-specific imaging software, CEUS is able to depict the micro- and macro-circulation of the targeted organ, which in turn leads to improved performance in diagnosis. Due to the special dual blood supply system in the liver, CEUS is particularly suitable for liver imaging. It is evident that CEUS facilitates improvement for characterization of focal liver lesions (FLLs), detection of liver malignancy, guidance for interventional procedures, and evaluation of treatment response after local therapies. CEUS has been demonstrated to be equal to contrast-enhanced computed tomography or magnetic resonance imaging for the characterization of FLLs. In addition, the applicability of CEUS has expanded to non-liver structures such as gallbladder, bile duct, pancreas, kidney, spleen, breast, thyroid, and prostate. The usefulness of CEUS in these applications is confirmed by extensive literature production. Novel applications include detecting bleeding sites and hematomas in patients with abdominal trauma, guiding percutaneous injection therapy and therefore achieving the goal of using interventional ultrasonography in managing splenic trauma, assessing the activity of Crohn’s disease, and detecting suspected endoleaks after endovascular abdominal aneurysm repair. Contrast-enhanced intraoperative ultrasound (US) and intracavitary use of CEUS have been developed and clinically studied. The potential use of CEUS involves sentinel lymph node detection, drug or gene delivery, and molecular imaging. In conclusion, the advent of CEUS has greatly enhanced the usefulness of US and even changed the status of US in clinical practice. The application of CEUS in the clinic is continuously evolving and it is expected that its use will be expanded further in the future. PMID:21160717

  8. Contrast enhanced ultrasound of sentinel lymph nodes

    PubMed Central

    Cui, XinWu; Ignee, Andre; Nielsen, Michael Bachmann; Schreiber-Dietrich, Dagmar; De Molo, Chiara; Pirri, Clara; Jedrzejczyk, Maciej

    2013-01-01

    Sentinel lymph nodes are the first lymph nodes in the region that receive lymphatic drainage from a primary tumor. The detection or exclusion of sentinel lymph node micrometastases is critical in the staging of cancer, especially breast cancer and melanoma because it directly affects patient's prognosis and surgical management. Currently, intraoperative sentinel lymph node biopsies using blue dye and radioisotopes are the method of choice for the detection of sentinel lymph node with high identification rate. In contrast, conventional ultrasound is not capable of detecting sentinel lymph nodes in most cases. Contrast enhanced ultrasound with contrast specific imaging modes has been used for the evaluation and diagnostic work-up of peripherally located suspected lymphadenopathy. The method allows for real-time analysis of all vascular phases and the visualization of intranodal focal “avascular” areas that represent necrosis or deposits of neoplastic cells. In recent years, a number of animal and human studies showed that contrast enhanced ultrasound can be also used for the detection of sentinel lymph node, and may become a potential application in clinical routine. Several contrast agents have been used in those studies, including albumin solution, hydroxyethylated starch, SonoVue®, Sonazoid® and Definity®. This review summarizes the current knowledge about the use of ultrasound techniques in detection and evaluation of sentinel lymph node. PMID:26675994

  9. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  10. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  11. Quantitative Analysis of Vascular Heterogeneity in Breast Lesions Using Contrast-Enhanced 3-D Harmonic and Subharmonic Ultrasound Imaging

    PubMed Central

    Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming

    2015-01-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933

  12. Functional Flow Patterns and Static Blood Pooling in Tumors Revealed by Combined Contrast-Enhanced Ultrasound and Photoacoustic Imaging.

    PubMed

    Bar-Zion, Avinoam; Yin, Melissa; Adam, Dan; Foster, F Stuart

    2016-08-01

    Alterations in tumor perfusion and microenvironment have been shown to be associated with aggressive cancer phenotypes, raising the need for noninvasive methods of tracking these changes. Dynamic contrast-enhanced ultrasound (DCEUS) and photoacoustic (PA) imaging serve as promising candidates-one has the ability to measure tissue perfusion, whereas the other can be used to monitor tissue oxygenation and hemoglobin concentration. In this study, we investigated the relationship between the different functional parameters measured with DCEUS and PA imaging, using two morphologically different hind-limb tumor models and drug-induced alterations in an orthotopic breast tumor model. Imaging results showed some correlation between perfusion and oxygen saturation maps and the ability to sensitively monitor antivascular treatment. In addition, DCEUS measurements revealed different vascular densities in the core of specific tumors compared with their rims. Noncorrelated perfusion and hemoglobin concentration measurements facilitated discrimination between blood lakes and necrotic areas. Taken together, our results illustrate the utility of a combined contrast-enhanced ultrasound method with photoacoustic imaging to visualize blood flow patterns in tumors. Cancer Res; 76(15); 4320-31. ©2016 AACR. PMID:27325651

  13. When is contrast-enhanced sonography preferable over conventional ultrasound combined with Doppler imaging in renal transplantation?

    PubMed Central

    Zeisbrich, Markus; Kihm, Lars P.; Drüschler, Felix; Zeier, Martin; Schwenger, Vedat

    2015-01-01

    Conventional ultrasound in combination with colour Doppler imaging is still the standard diagnostic procedure for patients after renal transplantation. However, while conventional ultrasound in combination with Doppler imaging can diagnose renal artery stenosis and vein thrombosis, it is not possible to display subtle microvascular tissue perfusion, which is crucial for the evaluation of acute and chronic allograft dysfunctions. In contrast, real-time contrast-enhanced sonography (CES) uses gas-filled microbubbles not only to visualize but also to quantify renal blood flow and perfusion even in the small renal arterioles and capillaries. It is an easy to perform and non-invasive imaging technique that augments diagnostic capabilities in patients after renal transplantation. Specifically in the postoperative setting, CES has been shown to be superior to conventional ultrasound in combination with Doppler imaging in uncovering even subtle microvascular disturbances in the allograft perfusion. In addition, quantitative perfusion parameters derived from CES show predictive capability regarding long-term kidney function. PMID:26413289

  14. Quantitative Assessment of Cancer Vascular Architecture by Skeletonization of High-resolution 3-D Contrast-enhanced Ultrasound Images

    PubMed Central

    Molinari, F.; Meiburger, K. M.; Giustetto, P.; Rizzitelli, S.; Boffa, C.; Castano, M.; Terreno, E.

    2014-01-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient “theranostic” (i.e. therapeutic + diagnostic) ultrasound probes. PMID:24206210

  15. Bipolar radiofrequency ablation for liver tumors: comparison of contrast-enhanced ultrasound with contrast-enhanced MRI/CT in the posttreatment imaging evaluation

    PubMed Central

    Bo, Xiao-Wan; Xu, Hui-Xiong; Sun, Li-Ping; Zheng, Shu-Guang; Guo, Le-Hang; Lu, Feng; Wu, Jian; Xu, Xiao-Hong

    2014-01-01

    Objective: The aim of the study was to assess the role of contrast-enhanced ultrasound (CEUS) in treatment response evaluation after percutaneous bipolar radiofrequency ablation (BRFA) for liver tumors. Methods: From May 2012 to May 2014, 39 patients with 73 tumors were treated by BRFA. One month after the treatment, CEUS and CEMRI/CECT were conducted to evaluate the treatment response. The results of CEUS were compared with CEMRI/CECT. Results: Of the 73 tumors ablated, eight (11.0%) were found to have residual viable tumor tissue and 65 (89.0%) were successfully ablated based on CEMRI/CECT within 1-month after ablation. CEUS detected seven of the eight residual tumors and 63 of 65 completely ablated tumors. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CEUS were 87.5% (7/8), 96.9% (63/65), 77.8% (7/9), 98.4% (63/64) and 95.9% (70/73), respectively. The complete ablation (CR) rates for the tumors ≤3.0 cm, 3.1-5.0 cm, and >5.0 cm were 96.6% (58/60), 63.6% (7/11), and 0% (0/2), respectively (P<0.001). CR rates were 94.7% (36/38) for primary liver tumors and 82.9% (29/35) for metastatic liver tumors (P=0.212), and were 97.4% (38/39) for the tumors with curative treatment intention and 79.4% (27/34) for those with palliative treatment intention (P=0.037). Major complication was not encountered in this series. Conclusions: BRFA is an effective technique of percutaneous ablation for liver tumors and CEUS can be used to assess its therapeutic effect accurately. PMID:25337258

  16. Nonrigid motion compensation in B-mode and contrast enhanced ultrasound image sequences of the carotid artery

    NASA Astrophysics Data System (ADS)

    Carvalho, Diego D. B.; Akkus, Zeynettin; Bosch, Johan G.; van den Oord, Stijn C. H.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In this work, we investigate nonrigid motion compensation in simultaneously acquired (side-by-side) B-mode ultrasound (BMUS) and contrast enhanced ultrasound (CEUS) image sequences of the carotid artery. These images are acquired to study the presence of intraplaque neovascularization (IPN), which is a marker of plaque vulnerability. IPN quantification is visualized by performing the maximum intensity projection (MIP) on the CEUS image sequence over time. As carotid images contain considerable motion, accurate global nonrigid motion compensation (GNMC) is required prior to the MIP. Moreover, we demonstrate that an improved lumen and plaque differentiation can be obtained by averaging the motion compensated BMUS images over time. We propose to use a previously published 2D+t nonrigid registration method, which is based on minimization of pixel intensity variance over time, using a spatially and temporally smooth B-spline deformation model. The validation compares displacements of plaque points with manual trackings by 3 experts in 11 carotids. The average (+/- standard deviation) root mean square error (RMSE) was 99+/-74μm for longitudinal and 47+/-18μm for radial displacements. These results were comparable with the interobserver variability, and with results of a local rigid registration technique based on speckle tracking, which estimates motion in a single point, whereas our approach applies motion compensation to the entire image. In conclusion, we evaluated that the GNMC technique produces reliable results. Since this technique tracks global deformations, it can aid in the quantification of IPN and the delineation of lumen and plaque contours.

  17. Comparison of Superb Micro-Vascular Ultrasound Imaging (SMI) and Contrast-Enhanced Ultrasound (CEUS) for Detection of Endoleaks After Endovascular Aneurysm Repair (EVAR)

    PubMed Central

    Gabriel, Marcin; Tomczak, Jolanta; Snoch-Ziółkiewicz, Magdalena; Dzieciuchowicz, Łukasz; Strauss, Ewa; Oszkinis, Grzegorz

    2016-01-01

    Patient: Male, 68 Final Diagnosis: Unusual clinical course Symptoms: None Medication: — Clinical Procedure: Angio CT Specialty: Surgery Objective: Challenging differential diagnosis Background: High-resolution contrast-enhanced ultrasound is one of methods used in the detection and characterization of endoleaks, which is a frequent complication after EVAR. A new technology provided by Toshiba’s AplioTM 500 ultrasound system, called Superb Micro-Vascular Imaging (SMI), is dedicated specifically to imaging very low flow states and appears to be a promising new method for detection of endoleaks. Case Report: After endovascular treatment, a 68-year-old patient who had stent-graft implantation underwent clinical examinations, including contrast-enhanced ultrasound (CEUS), superb micro-vascular imaging (SMI), and computed tomographic angiography (CTA), revealing additional information about abnormal blood flow localized in the periphery of the sack of the left common iliac artery aneurysm. By using CEUS and SMI, the endoleak was clearly visible. Conclusions: This case report illustrates the potential clinical value of this advanced Doppler technology (SMI) and how it could influence clinical management. PMID:26806053

  18. Recent Experiences and Advances in Contrast-Enhanced Subharmonic Ultrasound

    PubMed Central

    Eisenbrey, John R.; Liu, Ji-Bin; Forsberg, Flemming

    2015-01-01

    Nonlinear contrast-enhanced ultrasound imaging schemes strive to suppress tissue signals in order to better visualize nonlinear signals from blood-pooling ultrasound contrast agents. Because tissue does not generate a subharmonic response (i.e., signal at half the transmit frequency), subharmonic imaging has been proposed as a method for isolating ultrasound microbubble signals while suppressing surrounding tissue signals. In this paper, we summarize recent advances in the use of subharmonic imaging in vivo. These advances include the implementation of subharmonic imaging on linear and curvilinear arrays, intravascular probes, and three-dimensional probes for breast, renal, liver, plaque, and tumor imaging. PMID:26090430

  19. Contrast-enhanced ultrasound improved performance of breast imaging reporting and data system evaluation of critical breast lesions

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To determine whether contrast-enhanced ultrasound (CEUS) can improve the precision of breast imaging reporting and data system (BI-RADS) categorization. METHODS: A total of 230 patients with 235 solid breast lesions classified as BI-RADS 4 on conventional ultrasound were evaluated. CEUS was performed within one week before core needle biopsy or surgical resection and a revised BI-RADS classification was assigned based on 10 CEUS imaging characteristics. Receiver operating characteristic curve analysis was then conducted to evaluate the diagnostic performance of CEUS-based BI-RADS assignment with pathological examination as reference criteria. RESULTS: The CEUS-based BI-RADS evaluation classified 116/235 (49.36%) lesions into category 3, 20 (8.51%), 13 (5.53%) and 12 (5.11%) lesions into categories 4A, 4B and 4C, respectively, and 74 (31.49%) into category 5. Selecting CEUS-based BI-RADS category 4A as an appropriate cut-off gave sensitivity and specificity values of 85.4% and 87.8%, respectively, for the diagnosis of malignant disease. The cancer-to-biopsy yield was 73.11% with CEUS-based BI-RADS 4A selected as the biopsy threshold compared with 40.85% otherwise, while the biopsy rate was only 42.13% compared with 100% otherwise. Overall, only 4.68% of invasive cancers were misdiagnosed. CONCLUSION: This pilot study suggests that evaluation of BI-RADS 4 breast lesions with CEUS results in reduced biopsy rates and increased cancer-to-biopsy yields. PMID:27358689

  20. Contrast enhanced ultrasound of renal masses

    PubMed Central

    Ignee, Andre; Straub, Bernd; Schuessler, Gudrun; Dietrich, Christoph Frank

    2010-01-01

    Contrast enhanced ultrasound (CEUS) has gained clinical importance over the last years for the characterization of hepatic masses. Its role in extrahepatic indications has been investigated repeatedly but has been less comprehensively studied. Currently more than 50% of renal masses are incidentally diagnosed, mostly by B-mode ultrasound. The method of choice for characterization of renal lesions is contrast enhanced computed tomography (CECT). In the case of cystic lesions CECT refers to the Bosniak classification for cystic lesions to assess the risk of malignant behavior. The majority of masses are renal cell carcinoma, but the exact proportion is controversial. Disadvantages of CECT are a significant risk for patients with impaired renal function, allergic reactions and hyperthyroidism due to iodinated contrast agents. Several studies concerning CEUS for the characterization of both solid and cystic renal lesions have been published, but prospective multicenter studies are missing, the presented data being mainly descriptive. The aim of the this manuscript is to review the current literature for CEUS in renal masses, to summarize the available data and focus on possible concepts for studies in the future. PMID:21160736

  1. Contrast-enhanced refraction imaging

    NASA Astrophysics Data System (ADS)

    Hall, Christopher J.; Rogers, Keith D.; Lewis, Rob A.; Menk, Ralf Hendrik; Arfelli, Fulvia; Siu, Karen K.; Benci, A.; Kitchen, M.; Pillon, Alessandra; Rigon, Luigi; Round, Andrew J.; Hufton, Alan P.; Evans, Andrew; Pinder, Sarah E.; Evans, S.

    2004-01-01

    An attempt has been made, for the first time, to extend the capabilities of diffraction enhanced imaging (DEI) using low concentrations of a contrast agent. A phantom has been constructed to accommodate a systematic series of diluted bromine deoxyuridase (BrDU) samples in liquid form. This was imaged using a conventional DEI arrangement and at a range of energies traversing the Br K-edge. The images were analyzed to provide a quantitative measure of contrast as a function of X-ray energy and (BrDU) concentration. The results indicate that the particular experimental arrangement was not optimized to exploit the potential of this contrast enhancement and several suggestions are discussed to improve this further.

  2. Contrast-enhanced ultrasound in oncology

    PubMed Central

    Rasmussen, F.

    2011-01-01

    Abstract In patients with known malignant disease, 51% of liver lesions less than 1.5 cm turn out to be benign. Whether the probability of malignancy is high or low, further investigations are often necessary to definitely exclude malignancy. Contrast-enhanced ultrasonography has a prominent role in lesion characterization with a diagnostic accuracy comparable with computed tomography and magnetic resonance imaging. Anti-angiogenic treatment is common in most oncological institutions and the response evaluation is a new challenge with a research focus on the change in tumour vasculature and perfusion. In planning biopsies, CEUS can identify necrotic and viable areas of tumours and improve the diagnostic accuracy. PMID:22186152

  3. Comparison of dynamic contrast-enhanced MR, ultrasound and optical imaging modalities to evaluate the antiangiogenic effect of PF-03084014 and sunitinib

    PubMed Central

    Zhang, Cathy C; Yan, Zhengming; Giddabasappa, Anand; Lappin, Patrick B; Painter, Cory L; Zhang, Qin; Li, Gang; Goodman, James; Simmons, Brett; Pascual, Bernadette; Lee, Joseph; Levkoff, Ted; Nichols, Tim; Xie, Zhiyong

    2014-01-01

    Noninvasive imaging has been widely applied for monitoring antiangiogenesis therapy in cancer drug discovery. In this report, we used different imaging modalities including high-frequency ultrasound (HFUS), dynamic contrast enhanced-MR (DCE-MR), and fluorescence molecular tomography (FMT) imaging systems to monitor the changes in the tumor vascular properties after treatment with γ-secretase inhibitor PF-03084014. Sunitinib was tested in parallel for comparison. In the MDA-MB-231Luc model, we demonstrated that antiangiogenesis was one of the contributing mechanisms for the therapeutic effect of PF-03084014. By immunohistochemistry and FITC-lectin perfusion assays, we showed that the vascular defects upon treatment with PF-03084014 were associated with Notch pathway modulation, evidenced by a decrease in the HES1 protein and by the changes in VEGFR2 and HIF1α levels, which indicates down-stream effects. Using a 3D power Doppler scanning method, ultrasound imaging showed that the% vascularity in the MDA-MB-231Luc tumor decreased significantly at 4 and 7 days after the treatment with PF-03084014. A decrease in the tumor vessel function was also observed through contrast-enhanced ultrasound imaging with microbubble injection. These findings were consistent with the PF-03084014-induced functional vessel changes measured by suppressing the Ktrans values using DCE-MRI. In contrast, the FMT imaging with the AngioSence 680EX failed to detect any treatment-associated tumor vascular changes. Sunitinib demonstrated an outcome similar to PF-03084014 in the tested imaging modalities. In summary, ultrasound and DCE-MR imaging successfully provided longitudinal measurement of the phenotypic and functional changes in tumor vasculature after treatment with PF-03084014 and sunitinib. PMID:24573979

  4. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.

    PubMed

    Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing

    2015-07-01

    Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. PMID:25935597

  5. Increasing specificity of contrast-enhanced ultrasound imaging using the interaction of quasi counter-propagating wavefronts: a proof of concept.

    PubMed

    Renaud, Guillaume; Bosch, Johan G; van der Steen, Antonius F W; de Jong, Nico

    2015-10-01

    Detection methods implemented in present clinical ultrasound scanners for contrast-enhanced ultrasound imaging show high sensitivity but a rather poor specificity due to pseudo-enhancement (false detection of contrast agent) produced by nonlinear wave propagation. They all require linear ultrasound propagation to detect nonlinear scattering of contrast agent microbubbles. Even at low transmit pressure, nonlinear wave propagation occurs in regions perfused with contrast agent because contrast agent microbubbles can dramatically enhance the nonlinear elastic behavior of the medium. This image artifact hinders further development of contrast-enhanced ultrasound imaging toward reliable quantitative measurement of local concentration of contrast agent and blood perfusion kinetics. We propose in this manuscript a new detection method, with specific beamforming and pulsing scheme, that produces contrast images with highly reduced pseudo-enhancement. It is based on the interaction of two diverging wavefronts broadcasted by two single elements of a conventional probe array. The contrast image is formed line by line; one single image line is the line segment bisector defined by the centers of the two transmitting elements. Each image line is formed by a three-step pulse sequence: (1) transmission with one element, (2) transmission with the other element, and (3) transmission with both elements. The proof of principle is shown with numerical simulations and in vitro experiments. The method is implemented in a programmable ultrasound system and tested in a tissue-mimicking phantom containing a vessel filled with diluted contrast agent. At a given depth, increasing the distance between the two transmitting elements increases the angle describing the propagation directions of the two wavefronts. As a result, the nonlinear interaction between the two broadcasted waves is reduced. We show experimentally that increasing the distance between the transmitting elements from 0.6 to 24

  6. Laser Image Contrast Enhancement System

    NASA Technical Reports Server (NTRS)

    Kurtz, Robert L. (Inventor); Holmes, Richard R. (Inventor); Witherow, William K. (Inventor)

    2002-01-01

    An optical image enhancement system provides improved image contrast in imaging of a target in high temperature surroundings such as a furnace. The optical system includes a source of vertically polarized light such as laser and a beam splitter for receiving the light and directing the light toward the target. A retardation plate is affixed to a target-facing surface of the beam splitter and a vertical polarizer is disposed along a common optical path with the beam splitter between the retardation plate and the target. A horizontal polarizer disposed in the common optical path, receives light passing through a surface of the beam splitter opposed to the target-facing surface. An image detector is disposed at one end of the optical path. A band pass filter having a band pass filter characteristic matching the frequency of the vertically polarized light source is disposed in the path between the horizontal polarizer and the image detector. The use of circular polarization, together with cross polarizers, enables the reflected light to be passed to the detector while blocking thermal radiation.

  7. Contrast-enhanced, real-time volumetric ultrasound imaging of tissue perfusion: preliminary results in a rabbit model of testicular torsion

    NASA Astrophysics Data System (ADS)

    Paltiel, H. J.; Padua, H. M.; Gargollo, P. C.; Cannon, G. M., Jr.; Alomari, A. I.; Yu, R.; Clement, G. T.

    2011-04-01

    Contrast-enhanced ultrasound (US) imaging is potentially applicable to the clinical investigation of a wide variety of perfusion disorders. Quantitative analysis of perfusion is not widely performed, and is limited by the fact that data are acquired from a single tissue plane, a situation that is unlikely to accurately reflect global perfusion. Real-time perfusion information from a tissue volume in an experimental rabbit model of testicular torsion was obtained with a two-dimensional matrix phased array US transducer. Contrast-enhanced imaging was performed in 20 rabbits during intravenous infusion of the microbubble contrast agent Definity® before and after unilateral testicular torsion and contralateral orchiopexy. The degree of torsion was 0° in 4 (sham surgery), 180° in 4, 360° in 4, 540° in 4, and 720° in 4. An automated technique was developed to analyze the time history of US image intensity in experimental and control testes. Comparison of mean US intensity rate of change and of ratios between mean US intensity rate of change in experimental and control testes demonstrated good correlation with testicular perfusion and mean perfusion ratios obtained with radiolabeled microspheres, an accepted 'gold standard'. This method is of potential utility in the clinical evaluation of testicular and other organ perfusion.

  8. Three-dimensional transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: A pilot human study with microbubble contrast enhancement

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on healthcare outcomes and costs. While clinical examination and standard CT alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well-suited to the task of examining blood flow dynamics in real-time and may allow for localization of a clot. A prototype bilateral 3D ultrasound imaging system utilizing two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in 5 healthy volunteers with Definity® microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3D color flow mode. The number of color flow voxels above a common threshold increased due to aberration correction in 5/5 subjects, with a mean increase of 33.9%. The percentage of large arteries visualized in 3D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. PMID:24239360

  9. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles.

    PubMed

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E

    2014-12-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes. PMID:24206210

  10. Predictive model for contrast-enhanced ultrasound of the breast: Is it feasible in malignant risk assessment of breast imaging reporting and data system 4 lesions?

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To build and evaluate predictive models for contrast-enhanced ultrasound (CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system (BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve (ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant (P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BI-RADS classification. PMID:27358688

  11. Role of contrast-enhanced ultrasound (CEUS) in the diagnosis of endometrial pathology

    PubMed Central

    POP, CIPRIAN MIHAITA; MIHU, DAN; BADEA, RADU

    2015-01-01

    Ultrasound is the reference imaging procedure used for the exploration of endometrial pathology. As medical procedures improve and the requirements of modern medicine become more demanding, gray-scale ultrasound is insufficient in establishing gynecological diagnosis. Thus, more complex examination techniques are required: Doppler ultrasound, contrast-enhanced ultrasound (CEUS), 3D ultrasound, etc. Contrast-enhanced ultrasound is a special examination technique that gains more and more ground. This allows a detailed real-time evaluation of microcirculation in a certain territory, which is impossible to perform by Doppler ultrasound. The aim of this review is to synthesize current knowledge regarding CEUS applications in endometrial pathology, to detail the technical aspects of endometrial CEUS and the physical properties of the equipment and contrast agents used, as well as to identify the limitations of the method. PMID:26733740

  12. Image contrast enhancement using Chebyshev wavelet moments

    NASA Astrophysics Data System (ADS)

    Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.

    2015-12-01

    A new algorithm for image contrast enhancement in the Chebyshev moment transform (CMT) domain is introduced. This algorithm is based on a contrast measure that is defined as the ratio of high-frequency to zero-frequency content in the bands of CMT matrix. Our algorithm enables to enhance a large number of high-spatial-frequency coefficients, that are responsible for image details, without severely degrading low-frequency contributions. To enhance high-frequency Chebyshev coefficients we use a multifractal spectrum of scaling exponents (SEs) for Chebyshev wavelet moment (CWM) magnitudes, where CWMs are multiscale realization of Chebyshev moments (CMs). This multifractal spectrum is very well suited to extract meaningful structures on images of natural scenes, because these images have a multifractal character. Experiments with test images show some advantages of the proposed algorithm as compared to other widely used image enhancement algorithms. The main advantage of our algorithm is the following: the algorithm very well highlights image details during image contrast enhancement.

  13. Contrast enhancement of mail piece images

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  14. Contrast-enhanced ultrasound (CEUS) in blunt abdominal trauma.

    PubMed

    Miele, Vittorio; Piccolo, Claudia Lucia; Galluzzo, Michele; Ianniello, Stefania; Sessa, Barbara; Trinci, Margherita

    2016-01-01

    Baseline ultrasound is essential in the early assessment of patients with a huge haemoperitoneum undergoing an immediate abdominal surgery; nevertheless, even with a highly experienced operator, it is not sufficient to exclude parenchymal injuries. More recently, a new ultrasound technique using second generation contrast agents, named contrast-enhanced ultrasound (CEUS) has been developed. This technique allows all the vascular phase to be performed in real time, increasing ultrasound capability to detect parenchymal injuries, enhancing some qualitative findings, such as lesion extension, margins and its relationship with capsule and vessels. CEUS has been demonstrated to be almost as sensitive as contrast-enhanced CT in the detection of traumatic injuries in patients with low-energy isolated abdominal trauma, with levels of sensitivity and specificity up to 95%. Several studies demonstrated its ability to detect lesions occurring in the liver, spleen, pancreas and kidneys and also to recognize active bleeding as hyperechoic bands appearing as round or oval spots of variable size. Its role seems to be really relevant in paediatric patients, thus avoiding a routine exposure to ionizing radiation. Nevertheless, CEUS is strongly operator dependent, and it has some limitations, such as the cost of contrast media, lack of panoramicity, the difficulty to explore some deep regions and the poor ability to detect injuries to the urinary tract. On the other hand, it is timesaving, and it has several advantages, such as its portability, the safety of contrast agent, the lack to ionizing radiation exposure and therefore its repeatability, which allows follow-up of those traumas managed conservatively, especially in cases of fertile females and paediatric patients. PMID:26607647

  15. Consistency analysis of contrast-enhanced ultrasound and contrast-enhanced CT in diagnosis of small hepatocellular carcinoma

    PubMed Central

    Liu, Jun-Jie; Li, Hong-Xue; Chen, Zhao-Bei; Yang, Wei-Ping; Zhao, Sheng-Fa; Chen, Jie; Bai, Tao; Li, Hang; Li, Le-Qun

    2015-01-01

    To compare the consistency of contrast-enhanced ultrasound (CEUS) and contrast-enhance CT (CECT) in diagnosis of 1~2 cm and 2.1~3 cm small hepatocellular carcinoma (HCC) and evaluate the value of CEUS in diagnosis of HCC. Methods: A total of 74 patients (89 lesions) with small HCC and cirrhosis background were retrospectively analyzed. All of the eighty-nine lesions were confirmed by histopathological examination of surgical samples or needle biopsy. All the cases were divided into 1~2 cm group and 2.1~3 cm group. The CEUS and CECT enhanced pattern and diagnosis results of the two groups were compared and the consistency between the two imaging methods were statistically analyzed. Results: In the diagnosis of 1.0-2.0 cm HCC, CEUS and CECT had a moderate consistency in arterial phase, CEUS showed a tolerable consistency with CECT in portal venous and delayphase. The two imaging methods have a better consistency for the diagnosis in 2.1-3.0 cm HCC. Conclusion: CEUS can be used as a supplement to provide important diagnostic information in clinical practice when positive results or definite diagnoses cannot obtain. PMID:26885093

  16. Contrast enhanced ultrasound (CEUS) in blunt abdominal trauma

    PubMed Central

    2013-01-01

    In the assessment of polytrauma patient, an accurate diagnostic study protocol with high sensitivity and specificity is necessary. Computed Tomography (CT) is the standard reference in the emergency for evaluating the patients with abdominal trauma. Ultrasonography (US) has a high sensitivity in detecting free fluid in the peritoneum, but it does not show as much sensitivity for traumatic parenchymal lesions. The use of Contrast-Enhanced Ultrasound (CEUS) improves the accuracy of the method in the diagnosis and assessment of the extent of parenchymal lesions. Although the CEUS is not feasible as a method of first level in the diagnosis and management of the polytrauma patient, it can be used in the follow-up of traumatic injuries of abdominal parenchymal organs (liver, spleen and kidneys), especially in young people or children. PMID:23902930

  17. Contrast-Enhanced Ultrasound: Practical Review for the Assessment of Hepatic and Renal Lesions.

    PubMed

    Denham, Stephanie LeeAnn Wilson; Alexander, Lauren F; Robbin, Michelle L

    2016-06-01

    The use of microbubble contrast greatly enhances the ability of ultrasound to delineate structures and therefore aid in diagnosis. Ultrasound microbubble contrast agents are composed of low-solubility gas encapsulated in a biomaterial shell. These agents use the physics of ultrasound imaging to effectively identify and characterize focal hepatic and renal lesions. Not only can contrast agents be used to evaluate multiple phases of lesion contrast enhancement, but ultrasound also allows for real-time study of enhancement patterns. The short half-life and intravascular location of the microbubbles allows for multiple, sequential administrations of contrast to observe enhancement of lesions in different sites. Furthermore, the ability to perform imaging without ionizing radiation and the lack of nephrotoxicity make contrast-enhanced ultrasound an ideal evaluation method for patients who need serial surveillance or in whom imaging options are severely limited because of renal insufficiency. These techniques are widely used in many countries for diagnostic radiological purposes; however, the lack of both Food and Drug Administration approval and reimbursement for noncardiac hospital-based imaging has delayed widespread use in the United States. Despite these limitations, continued research and innovations in ultrasound contrast make it essential to have a working knowledge of the typical enhancement patterns of frequently seen hepatic and renal lesions as these techniques offer an alternative option for contrast imaging. PMID:27233070

  18. Application of contrast-enhanced ultrasound after liver transplantation: Current status and perspectives

    PubMed Central

    Ren, Jie; Wu, Tao; Zheng, Bo-Wen; Tan, Ying-Yi; Zheng, Rong-Qin; Chen, Gui-Hua

    2016-01-01

    Liver transplantation is an effective treatment for patients with end-stage liver disease. Accurate imaging evaluation of the transplanted patient is critical for ensuring that the limited donor liver is functioning appropriately. Ultrasound contrast agents (UCAs), in combination with contrast-specific imaging techniques, are increasingly accepted in clinical use for the assessment of the hepatic vasculature, bile ducts and liver parenchyma in pre-, intra- and post-transplant patients. We describe UCAs, their technical requirements, the recommended clinical indications, image interpretation and the limitations for contrast-enhanced ultrasound applications in liver transplantation. PMID:26819526

  19. Intraoperative Contrast Enhanced Ultrasound Evaluates the Grade of Glioma

    PubMed Central

    Cheng, Ling-Gang; He, Wen; Zhang, Hong-Xia; Song, Qian; Ning, Bin; Li, Hui-Zhan; He, Yan; Lin, Song

    2016-01-01

    Objective. The aim of our study was to investigate the value of intraoperative contrast enhanced ultrasound (CEUS) for evaluating the grade of glioma and the correlation between microvessel density (MVD) and vascular endothelial growth factor (VEGF). Methods. We performed intraoperative conventional ultrasound (CUS) and CEUS on 88 patients with gliomas. All of the patients have undergone surgery and obtained the results of pathology. All patients have undergone intraoperative CUS and CEUS to compare the characteristics of different grade gliomas and the results of CUS and CEUS were compared with pathological results. Results. The time to start (TTS) and time to peak (TTP) of low grade glioma (LGG) were similar to those of edema and normal brain surrounding glioma. The enhanced extent of LGG was higher than that of the normal brain and edema. The TTS and TTP of high grade glioma were earlier than those of the edema and normal brain surrounding glioma. The enhancement of HGG was higher than that of LGG. The absolute peak intensity (API) was correlated with MVD and VEGF. Conclusion. Intraoperative CEUS could help in determining boundary of peritumoral brain edema of glioma. Intraoperative CEUS parameters in cerebral gliomas could indirectly reflect the information of MVD and VEGF. PMID:27069921

  20. Contrast-enhanced ultrasound of histologically proven hepatic epithelioid hemangioendothelioma

    PubMed Central

    Dong, Yi; Wang, Wen-Ping; Cantisani, Vito; D’Onofrio, Mirko; Ignee, Andre; Mulazzani, Lorenzo; Saftoiu, Adrian; Sparchez, Zeno; Sporea, Ioan; Dietrich, Christoph F

    2016-01-01

    AIM: To analyze contrast-enhanced ultrasound (CEUS) features of histologically proven hepatic epithelioid hemangioendothelioma (HEHE) in comparison to other multilocular benign focal liver lesions (FLL). METHODS: Twenty-five patients with histologically proven HEHE and 45 patients with histologically proven multilocular benign FLL were retrospectively reviewed. Four radiologists assessed the CEUS enhancement pattern in consensus. RESULTS: HEHE manifested as a single (n = 3) or multinodular (n = 22) FLL. On CEUS, HEHE showed rim-like (18/25, 72%) or heterogeneous hyperenhancement (7/25, 28%) in the arterial phase and hypoenhancement (25/25, 100%) in the portal venous and late phases (PVLP), a sign of malignancy. Eighteen patients showed central unenhanced areas (18/25, 72%); in seven patients (7/25, 28%), more lesions were detected in the PVLP. In contrast, all patients with hemangioma and focal nodular hyperplasia showed hyperenhancement as the most distinctive feature (P < 0.01). CONCLUSION: CEUS allows for characterization of unequivocal FLL. By analyzing the hypoenhancement in the PVLP, CEUS can determine the malignant nature of HEHE. PMID:27217705

  1. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    PubMed Central

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUSstart) and after (3D-iCEUSend) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUSstart and 3D-iCEUSend data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  2. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t ) and after (3D-iCEUS e n d ) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  3. Review of dynamic contrast-enhanced ultrasound guidance in ablation therapy for hepatocellular carcinoma

    PubMed Central

    Minami, Yasunori; Kudo, Masatoshi

    2011-01-01

    Local ablative techniques-percutaneous ethanol injection, microwave coagulation therapy and radiofrequency ablation (RFA)-have been developed to treat unresectable hepatocellular carcinoma (HCC). The success rate of percutaneous ablation therapy for HCC depends on correct targeting of the tumor via an imaging technique. However, probe insertion often is not completely accurate for small HCC nodules, which are poorly defined on conventional B-mode ultrasound (US) alone. Thus, multiple sessions of ablation therapy are frequently required in difficult cases. By means of two breakthroughs in US technology, harmonic imaging and the development of second-generation contrast agents, dynamic contrast-enhanced harmonic US imaging with an intravenous contrast agent can depict tumor vascularity sensitively and accurately, and is able to evaluate small hypervascular HCCs even when B-mode US cannot adequately characterize the tumors. Therefore, dynamic contrast-enhanced US can facilitate RFA electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of dynamic contrast-enhanced US guidance in ablation therapy for liver cancer is an efficient approach. Here, we present an overview of the current status of dynamic contrast-enhanced US-guided ablation therapy, and summarize the current indications and outcomes of reported clinical use in comparison with that of other modalities. PMID:22174544

  4. Dynamic contrast-enhanced ultrasound of slaughterhouse porcine livers in machine perfusion.

    PubMed

    Izamis, Maria-Louisa; Efstathiades, Andreas; Keravnou, Christina; Leen, Edward L; Averkiou, Michalakis A

    2014-09-01

    The aim of this study was to enable investigations into novel imaging and surgical techniques by developing a readily accessible, versatile liver machine perfusion system. Slaughterhouse pig livers were used, and dynamic contrast-enhanced ultrasound was introduced to optimize the procurement process and provide real-time perfusion monitoring. The system comprised a single pump, oxygenator, bubble trap and two flowmeters for pressure-controlled perfusion of the vessels using an off-the-shelf perfusate at room temperature. Successful livers exhibited homogeneous perfusion in both the portal vein and hepatic artery with dynamic contrast-enhanced ultrasound, which correlated with stable oxygen uptake, bile production and hepatic resistance and normal histology at the end of 3 h of perfusion. Dynamic contrast-enhanced ultrasound revealed perfusion abnormalities invisible to the naked eye, thereby providing context to the otherwise systemic biochemical/hemodynamic measurements and focal biopsy findings. The model developed here is a simple, cost-effective approach for stable ex vivo whole-organ machine perfusion. PMID:25023101

  5. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  6. Contrast enhanced ultrasound in pediatric patients: a real challenge.

    PubMed

    Schreiber-Dietrich, D G; Cui, X W; Piscaglia, F; Gilja, O H; Dietrich, C F

    2014-10-01

    Ultrasound (US) imaging in the paediatric population has been a routine technique for decades, in part because of the advantages it offers over other imaging modalities. Off-label use (and its funding) is of the utmost importance in paediatrics because many drugs have not been evaluated in randomised trials in children. As a consequence such drugs are not specifically approved for use in children. This is also true for the contrast agents used in CEUS. The off-label use of CEUS in paediatric patients illustrates the need to deal with unresolved legal issues while at the same time balancing this with the need for high diagnostic performance in daily clinical routine. In addition to approved indications with a focus on the liver and Doppler enhancement, CEUS is safe and effective for the examination of many organs, as recently highlighted by the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB). This article provides a summary of the available literature describing the utility of CEUS in paediatric patients. Furthermore, we suggest the establishment of a registry to collect data on safety and applications of ultrasound contrast agents in children. A paediatric registry has recently been introduced by EFSUMB (www.efsumb.org). PMID:25313631

  7. Liver metastases: Contrast-enhanced ultrasound compared with computed tomography and magnetic resonance.

    PubMed

    Cantisani, Vito; Grazhdani, Hektor; Fioravanti, Cristina; Rosignuolo, Maria; Calliada, Fabrizio; Messineo, Daniela; Bernieri, Maria Giulia; Redler, Adriano; Catalano, Carlo; D'Ambrosio, Ferdinando

    2014-08-01

    The development of ultrasound contrast agents with excellent tolerance and safety profiles has notably improved liver evaluation with ultrasound (US) for several applications, especially for the detection of metastases. In particular, contrast enhanced ultrasonography (CEUS) allows the display of the parenchymal microvasculature, enabling the study and visualization of the enhancement patterns of liver lesions in real time and in a continuous manner in all vascular phases, which is similar to contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging. Clinical studies have reported that the use of a contrast agent enables the visualization of more metastases with significantly improved sensitivity and specificity compared to baseline-US. Furthermore, studies have shown that CEUS yields sensitivities comparable to CT. In this review, we describe the state of the art of CEUS for detecting colorectal liver metastases, the imaging features, the literature reports of metastases in CEUS as well as its technique, its clinical role and its potential applications. Additionally, the updated international consensus panel guidelines are reported in this review with the inherent limitations of this technique and best practice experiences. PMID:25110428

  8. Contrast-enhanced molecular ultrasound differentiates endoglin genotypes in mouse embryos.

    PubMed

    Denbeigh, J M; Nixon, B A; Lee, J J Y; Jerkic, M; Marsden, P A; Letarte, M; Puri, M C; Foster, F S

    2015-01-01

    Targeted ultrasound contrast imaging has the potential to become a reliable molecular imaging tool. A better understanding of the quantitative aspects of molecular ultrasound technology could facilitate the translation of this technique to the clinic for the purposes of assessing vascular pathology and detecting individual response to treatment. The objective of this study was to evaluate whether targeted ultrasound contrast-enhanced imaging can provide a quantitative measure of endogenous biomarkers. Endoglin, an endothelial biomarker involved in the processes of development, vascular homeostasis, and altered in diseases, including hereditary hemorrhagic telangiectasia type 1 and tumor angiogenesis, was the selected target. We used a parallel plate perfusion chamber in which endoglin-targeted (MBE), rat isotype IgG2 control and untargeted microbubbles were perfused across endoglin wild-type (Eng+/+), heterozygous (Eng+/-) and null (Eng-/-) embryonic mouse endothelial cells and their adhesion quantified. Microbubble binding was also assessed in late-gestation, isolated living transgenic Eng+/- and Eng+/+ embryos. Nonlinear contrast-specific ultrasound imaging performed at 21 MHz was used to collect contrast mean power ratios for all bubble types. Statistically significant differences in microbubble binding were found across genotypes for both in vitro (p<0.05) and embryonic studies (p<0.001); MBE binding was approximately twofold higher in Eng+/+ cells and embryos compared with their Eng+/- counterparts. These results suggest that molecular ultrasound is capable of reliably differentiating between molecular genotypes and relating receptor densities to quantifiable molecular ultrasound levels. PMID:25298070

  9. Vessel contrast enhancement in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Denstedt, Martin; Milanič, Matija; Paluchowski, Lukasz A.; Randeberg, Lise L.

    2015-03-01

    Imaging of vessel structures can be useful for investigation of endothelial function, angiogenesis and hyper-vascularization. This can be challenging for hyperspectral tissue imaging due to photon scattering and absorption in other parts of the tissue. Real-time processing techniques for enhancement of vessel contrast in hyperspectral tissue images were investigated. Wavelet processing and an inverse diffusion model were employed, and compared to band ratio metrics and statistical methods. A multiscale vesselness filter was applied for further enhancement. The results show that vessel structures in hyperspectral images can be enhanced and characterized using a combination of statistical, numerical and more physics informed models.

  10. Pott's puffy tumour in a 5-year old boy: the role of ultrasound and contrast-enhanced CT imaging; surgical case report.

    PubMed

    Vanderveken, O M; De Smet, K; Dogan-Duyar, S; Desimpelaere, J; Duval, E L I M; De Praeter, M; Van Rompaey, D

    2012-01-01

    We report a case of Pott's puffy tumour, a subperiosteal abscess of the frontal bone associated with an underlying frontal osteomyelitis, in a 5-year-old boy. Ultrasonography played a crucial role in the diagnosis of our patient, suggesting the presence of a Pott's puffy tumour with epidural abscess by showing a subperiosteal abscess associated with erosion of the frontal bone. Subsequently, the diagnosis of Pott's puffy tumour with epidural abscess was confirmed by contrast-enhanced CT scanning. Prompt neurosurgical intervention with drainage of abscesses and debridement of bone sequestrate, together with prolonged antibiotic therapy, significantly contributes to a favorable outcome. PMID:22896932

  11. Is Contrast Enhanced Ultrasound (CEUS) ready for use in daily practice for evaluation of focal liver lesions?

    PubMed

    Sporea, Ioan; Şirli, Roxana

    2014-03-01

    Abdominal ultrasound is one of the most popular imaging methods due to its feasibility, low cost and accessibility. Contrast Enhanced Ultrasound (CEUS) with second generation contrast agents became in the last years a useful tool for the characterization of focal liver lesions (FLL) so that EFSUMB issued guidelines for its use in clinical practice. Several large studies proved that CEUS has similar performance to more expensive imaging methods such as contrast enhanced CT and contrast enhanced MRI for the characterization of FLL. Also, several studies proved that CEUS is cost-effective as a first-line imaging method. Considering all these data, we think that CEUS is ready to be used in daily practice for the evaluation of FLL. PMID:24567923

  12. Algorithms for contrast enhancement of electronic portal images

    NASA Astrophysics Data System (ADS)

    Díez, S.; Sánchez, S.

    2015-11-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results.

  13. Feasibility and usefulness of using swallow contrast-enhanced ultrasound to diagnose Zenker's diverticulum: preliminary results.

    PubMed

    Cui, Xin-Wu; Ignee, Andre; Baum, Ulrich; Dietrich, Christoph F

    2015-04-01

    Zenker's diverticulum (ZD) may be misdiagnosed on conventional ultrasound as a thyroid nodule or other lesion. A barium esophagram is usually used to confirm the diagnosis; however, this procedure exposes the patient to radiation. The aim of this study was to evaluate the feasibility of using swallow contrast-enhanced ultrasound (swallow-CEUS) to diagnose ZD. Ten consecutive patients with ZD (7 men and 3 women, aged 67 ± 11 y) were included in the study. In 4 patients, ZD was incidentally found on head and neck ultrasound, and in 6 patients, ZD was suspected because of dysphagia. All lesions could be detected on conventional ultrasound before swallow-CEUS. Ten healthy volunteers (8 men and 2 women, aged 60 ± 12 y) were chosen as a control group. Written informed consent was obtained. With the patient in the sitting or upright position, conventional ultrasound was performed first to image the lesion, then the patient was asked to swallow ultrasound contrast agent (UCA) (2-4 drops of SonoVue diluted with about 200 mL of tap water). Transity of the contrast agent in the esophagus was imaged with CEUS. Retention of the UCA in the diverticulum was monitored for at least 3 min. All patients underwent a barium esophagram as the gold standard. Swallow-CEUS revealed that in all patients (100%), the UCA was transported from the pharynx to the esophagus while the patient swallowed. ZD appeared as a pouch-shaped structure at the posterior pharyngo-esophageal junction that retained UCA longer than 3 min. The barium esophagram confirmed the diagnosis of ZD in all patients. For the 10 volunteers, no abnormal structure (retaining UCA) was detected during or after swallowing of UCA. With the advantages of no radiation and bedside availability, swallow-CEUS may become a method of choice in confirmation of the diagnosis of ZD, especially when ZD is suspected on conventional ultrasound. PMID:25701519

  14. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  15. Contrast-enhanced ultrasound after endovascular aortic repair—current status and future perspectives

    PubMed Central

    Partovi, Sasan; Kaspar, Mathias; Aschwanden, Markus; Lopresti, Charles; Madan, Shivanshu; Uthoff, Heiko; Imfeld, Stephan

    2015-01-01

    An increasing number of patients with abdominal aortic aneurysms (AAAs) are undergoing endovascular aortic repair (EVAR) instead of open surgery. These patients require lifelong surveillance, and the follow-up imaging modality of choice has been traditionally computed tomography angiography (CTA). Repetitive CTA imaging is associated with cumulative radiation exposure and requires the administration of multiple doses of nephrotoxic contrast agents. Contrast-enhanced ultrasound (CEUS) has emerged as an alternative strategy in the follow-up of patients with EVAR and demonstrates high sensitivity and specificity for detection of endoleaks. In fact, a series of studies have shown that CEUS is at least performing equal to computed tomography for the detection and classification of endoleaks. This article summarizes current evidence of CEUS after EVAR and demonstrates its usefulness via various patient cases. PMID:26673398

  16. Hepatosplenic sarcoidosis: contrast-enhanced ultrasound findings and implications for clinical practice.

    PubMed

    Tana, Claudio; Dietrich, Christoph F; Schiavone, Cosima

    2014-01-01

    Sarcoidosis is a complex granulomatous disease that affects virtually every organ and tissue, with a prevalence that varies significantly among the sites involved. The role of conventional imaging, such as computed tomography and magnetic resonance imaging, in the assessment of hepatosplenic sarcoidosis is well established by revealing organ enlargement, multiple discrete nodules, and lymphadenopathy. In this review, we aim to describe contrast-enhanced ultrasound (CEUS) findings in liver and spleen involvement by sarcoidosis, reporting evidence from the literature and cases from our experience, after a brief update on safety profile, cost-effectiveness, and clinical indications of this novel technique. Furthermore, we highlight potential advantages of CEUS in assessing hepatosplenic sarcoidosis that may be useful in the clinical practice. PMID:25215299

  17. The Feasibility of Contrast-Enhanced Ultrasound During Uterine Artery Embolization: A Pilot Study

    SciTech Connect

    Dorenberg, Eric J. Jakobsen, Jarl A.; Brabrand, Knut; Hafsahl, Geir; Smith, Hans-Jorgen

    2007-09-15

    Purpose. To evaluate the feasibility of using contrast-enhanced ultrasound (CEUS) during uterine artery embolization (UAE) in order to define the correct end-point of embolization with complete devascularization of all fibroids. Methods. In this prospective study of 10 consecutive women undergoing UAE, CEUS was performed in the angiographic suite during embolization. When the angiographic end-point, defined as the 'pruned-tree' appearance of the uterine arteries was reached, CEUS was performed while the angiographic catheters to both uterine arteries were kept in place. The decision whether or not to continue the embolization was based on the findings at CEUS. The results of CEUS were compared with those of contrast-enhanced magnetic resonance imaging (MRI) 1 day as well as 3 months following UAE. Results. CEUS was successfully performed in all women. In 4 cases injection of particles was continued based on the findings at CEUS despite angiographically complete embolization. CEUS imaging at completion of UAE correlated well with the findings at MRI. Conclusion. The use of CEUS during UAE is feasible and may increase the quality of UAE.

  18. Automated benign & malignant thyroid lesion characterization and classification in 3D contrast-enhanced ultrasound.

    PubMed

    Acharya, U Rajendra; S, Vinitha Sree; Molinari, Filippo; Garberoglio, Roberto; Witkowska, Agnieszka; Suri, Jasjit S

    2012-01-01

    In this work, we present a Computer Aided Diagnosis (CAD) based technique for automatic classification of benign and malignant thyroid lesions in 3D contrast-enhanced ultrasound images. The images were obtained from 20 patients. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture based features were extracted from the thyroid images. The resulting feature vectors were used to train and test three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr) using ten-fold cross validation technique. Our results show that combination of DWT and texture features in the K-NN classifier resulted in a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Thus, the preliminary results of the proposed technique show that it could be adapted as an adjunct tool that can give valuable second opinions to the doctors regarding the nature of the thyroid nodule. The technique is cost-effective, non-invasive, fast, completely automated and gives more objective and reproducible results compared to manual analysis of the ultrasound images. We however intend to establish the clinical applicability of this technique by evaluating it with more data in the future. PMID:23365926

  19. Diffeomorphic Registration of Images with Variable Contrast Enhancement

    PubMed Central

    Janssens, Guillaume; Jacques, Laurent; Orban de Xivry, Jonathan; Geets, Xavier; Macq, Benoit

    2011-01-01

    Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and easy to use. Recently, a diffeomorphic version of the Demons algorithm was proposed. This provides the advantage of producing invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons registration method is proposed and compared to conventional Morphons, Demons, and diffeomorphic Demons. The method is validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with and without variable contrast enhancement. PMID:21197460

  20. Contrast-enhanced ultrasound for diagnosing, staging and assessment of operability of pancreatic cancer.

    PubMed

    Grossjohann, Hanne Sønder

    2012-12-01

    We have evaluated the usefulness of contrast-enhanced ultrasound (CEUS) for diagnosing, staging and assessment of operability of pancreatic head tumors. For some years CEUS has been used with great success for diagnosis of focal liver lesions but when we started our trial, it was still relatively untested in the pancreas. This PhD thesis is based on a methodological study, two clinical studies and an intra-/interobserver study. The methodological study consists of material collected from investigations made on 14 experimental pigs. First, we examined the pig pancreas with CEUS. Hereafter we repeated the CEUS examination after venous injection of the gastrointestinal hormones secretin and cholecystokinin. We investigated if the contrast-enhancement would intensify after hormone stimulation. The clinical studies consist of material collected from examinations of 49 patients referred to our hospital with the diagnosis, suspicion of pancreatic cancer. All patients had a conventional ultrasound examination and a CEUS examination. In addition, some of the patients also had a CEUS examination after stimulation with secretin and cholecystokinin. All patients had a 64-slice-CT examination and a biopsy was taken for histopathological verification. We studied whether CEUS was useful for assessment of tumor classification, tumor staging and tumor resectability. We also tested if hormone stimulation of the pancreas during CEUS could intensify contrast-enhancement of healthy pancreatic tissue and thus contribute to a better demarcation of a tumor. Finally, we tested the intra-/interobserver agreement of our visual interpretation of the contrast-enhanced ultrasound images and the concordance between the visual interpretation and histopathological test results. From the results of the methodological study it seemed possible to intensify contrast-enhancement using the gastrointestinal hormones by 3%. During the clinical studies it emerged that hormone stimulation did not improve

  1. Validation of Dynamic Contrast-Enhanced Ultrasound in Predicting Outcomes of Antiangiogenic Therapy for Solid Tumors

    PubMed Central

    Lassau, Nathalie; Bonastre, Julia; Kind, Michèle; Vilgrain, Valérie; Lacroix, Joëlle; Cuinet, Marie; Taieb, Sophie; Aziza, Richard; Sarran, Antony; Labbe-Devilliers, Catherine; Gallix, Benoit; Lucidarme, Olivier; Ptak, Yvette; Rocher, Laurence; Caquot, Louis-Michel; Chagnon, Sophie; Marion, Denis; Luciani, Alain; Feutray, Sylvaine; Uzan-Augui, Joëlle; Coiffier, Benedicte; Benastou, Baya; Koscielny, Serge

    2014-01-01

    Objectives Dynamic contrast-enhanced ultrasound (DCE-US) has been used in single-center studies to evaluate tumor response to antiangiogenic treatments: the change of area under the perfusion curve (AUC), a criterion linked to blood volume, was consistently correlated with the Response Evaluation Criteria in Solid Tumors response. The main objective here was to do a multicentric validation of the use of DCE-US to evaluate tumor response in different solid tumor types treated by several antiangiogenic agents. A secondary objective was to evaluate the costs of the procedure. Materials and Methods This prospective study included patients from 2007 to 2010 in 19 centers (8 teaching hospitals and 11 comprehensive cancer centers). All patients treated with antiangiogenic therapy were eligible. Dynamic contrast-enhanced ultrasound examinations were performed at baseline as well as on days 7, 15, 30, and 60. For each examination, a perfusion curve was recorded during 3 minutes after injection of a contrast agent. Change from baseline at each time point was estimated for each of 7 fitted criteria. The main end point was freedom from progression (FFP). Criterion/time-point combinations with the strongest correlation with FFP were analyzed further to estimate an optimal cutoff point. Results A total of 1968 DCE-US examinations in 539 patients were analyzed. The median follow-up was 1.65 years. Variations from baseline were significant at day 30 for several criteria, with AUC having the most significant association with FFP (P = 0.00002). Patients with a greater than 40% decrease in AUC at day 30 had better FFP (P = 0.005) and overall survival (P = 0.05). The mean cost of each DCE-US was 180€, which corresponds to $250 using the current exchange rate. Conclusions Dynamic contrast-enhanced ultrasound is a new functional imaging technique that provides a validated criterion, namely, the change of AUC from baseline to day 30, which is predictive of tumor progression in a large

  2. FEASIBILITY AND SAFETY OF CONTRAST-ENHANCED ULTRASOUND IN THE DISTAL LIMB OF SIX HORSES.

    PubMed

    Seiler, Gabriela S; Campbell, Nigel; Nixon, Britton; Tsuruta, James K; Dayton, Paul A; Jennings, Samuel; Redding, W Rich; Lustgarten, Meghann

    2016-05-01

    Vascular alterations play important roles in many orthopedic diseases such as osteoarthritis, tendonitis, and synovitis in both human and equine athletes. Understanding these alterations could enhance diagnosis, prognosis, and treatment. Contrast-enhanced ultrasound (CEUS) could be a valuable method for evaluation of blood flow and perfusion of these processes in the equine distal limb, however no reports were found describing feasibility or safety of the technique. The goal of this prospective, experimental study was to describe the feasibility and safety of distal limb CEUS in a sample of six horses. For each horse, CEUS of the distal limb was performed after intravenous injections of 5 and 10 ml, as well as intra-arterial injections of 0.5 and 1 ml contrast medium. Vital parameters were monitored and CEUS images were assessed qualitatively and quantitatively for degree of contrast enhancement. None of the horses had clinically significant changes in their vital parameters after contrast medium injection. One horse had a transient increase in respiratory rate, and several horses had mild increases of systolic blood pressure of short duration after intravenous, but not after intra-arterial injections. Intra-arterial injection was possible in all horses and resulted in significantly improved contrast enhancement both quantitatively (P = 0.027) and qualitatively (P = 0.019). Findings from this study indicated that CEUS is a feasible and safe diagnostic test for evaluation of the equine distal limb. Future studies are needed to assess the clinical utility of this test for horses with musculoskeletal diseases. PMID:26765518

  3. Management of hepatocellular carcinoma: The role of contrast-enhanced ultrasound

    PubMed Central

    Zheng, Shu-Guang; Xu, Hui-Xiong; Liu, Lin-Na

    2014-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common neoplasm and the third cause of cancer death worldwide. Contrast enhanced ultrasound (CEUS) has been applied for more than ten years and plays increasingly important roles in the management of HCC. On the basis of the Guideline and Good Clinical Practice Recommendations for CEUS in the liver-update 2012 and related literature about the management of HCC, we summarize the main roles and applications of CEUS in the management of HCC, including HCC surveillance, diagnosis, CEUS-guided treatment, treatment response evaluation and follow-up. The diagnostic algorithm for HCC is also suggested. Meanwhile, the comparisons between CEUS and contrast enhanced computed tomography/magnetic resonance imaging (CECT/CEMRI) in these areas are made. Although CEUS is subject to the same limitation as ordinary US and is inferior to CECT/CEMRI in some aspects, CEUS has proved to be of great value in the management of HCC with inherent advantages, such as sufficient high safety profile making it suitable for patients with renal failure or allergic to iodine, absence of radiation, easy reproducibility and high temporal resolution. The tremendous application of CEUS to the diagnosis and treatment of HCC provides more opportunities for patients with HCC diagnosed at different stages. PMID:24578787

  4. Case Report of Contrast-Enhanced Ultrasound Features of Primary Hepatic Neuroendocrine Tumor

    PubMed Central

    Li, Wei; Zhuang, Bo-wen; Wang, Zhu; Liao, Bing; Hong, Ling-yao; Xu, Ming; Lin, Xiao-na; Xie, Xiao-yan; Lu, Ming-de; Chen, Li-da; Wang, Wei

    2016-01-01

    Abstract Primary hepatic neuroendocrine tumors (PHNETs) are very rare and their clinical features and treatment outcomes are not well understood. It is difficult to reach a proper diagnosis before biopsy or resection. The aim of this study was to analyze the imaging features of PHNETs on contrast-enhanced ultrasound (CEUS). The clinical characteristics, CEUS findings, pathological features, treatment and prognosis of 6 patients with PHNET treated in our hospital were retrospectively analyzed. Most PHNETs occurred in middle-aged patients, and the most common clinical manifestation was right upper quadrant palpable mass and abdominal pain. Multiple small anechoic intralesional cavities occurred frequently in PHNET. Multilocular cystic with internal septation or monolocular with wall nodule could also be detected. On contrast-enhanced ultrasonography (CEUS), heterogeneous hyperenhancement in the arterial phase and wash-out hypoenhancement were observed in most patients, while computed tomography scanning yielded similar results. Diagnosis of PHNET was confirmed by immunohistochemical result and follow-up with the absence of extrahepatic primary sites. Five patients received surgical resection and 2 cases exhibited recurrence. Transcatheter arterial chemoembolization was performed in 1 patient with recurrence. Only 1 patient received conservative care. The median overall survival in 5 patients who underwent surgical treatment was 27 months (18–36 months). PHNET is a rare tumor, and its diagnosis is difficult. The CEUS features reported in this series may enrich the knowledge base for characterization of PHNET. PMID:27227910

  5. Continuous Dynamic Registration of Microvascularization of Liver Tumors with Contrast-Enhanced Ultrasound

    PubMed Central

    Wiesinger, Isabel; Stroszczynski, Christian; Wiggermann, Philipp; Jung, Ernst-Michael

    2014-01-01

    Aim. To evaluate the diagnostic value of quantification of liver tumor microvascularization using contrast-enhanced ultrasound (CEUS) measured continuously from the arterial phase to the late phase (3 minutes). Material and Methods. We present a retrospective analysis of 20 patients with malignant (n = 13) or benign (n = 7) liver tumors. The tumors had histopathologically been proven or clearly identified using contrast-enhanced reference imaging with either 1.5 T MRI (liver specific contrast medium) or triphase CT and follow-up. CEUS was performed using a multifrequency transducer (1–5 MHz) and a bolus injection of 2.4 mL sulphur hexafluoride microbubbles. A retrospective perfusion analysis was performed to determine TTP (time-to-peak), RBV (regional blood volume), RBF (regional blood flow), and Peak. Results. Statistics revealed a significant difference (P < 0.05) between benign and malignant tumors in the RBV, RBF, and Peak but not in TTP (P = 0.07). Receiver operating curves (ROC) were generated for RBV, RBF, Peak, and TTP with estimated ROC areas of 0.97, 0.96, 0.98, and 0.76, respectively. Conclusion. RBV, RBF, and Peak continuously measured over a determined time period of 3 minutes could be of valuable support in differentiating malignant from benign liver tumors. PMID:24991432

  6. Contrast-enhanced ultrasound in diagnosis and characterization of focal hepatic lesions

    PubMed Central

    Molins, Inés Gómez; Font, Juan Manuel Fernández; Álvaro, Juan Carrero; Navarro, Jose Luís Lledó; Gil, Marta Fernández; Rodríguez, Conrado M Fernández

    2010-01-01

    The extensive use of imaging techniques in differential diagnosis of abdominal conditions and screening of hepatocellular carcinoma in patients with chronic hepatic diseases, has led to an important increase in identification of focal liver lesions. The development of contrast-enhanced ultrasound (CEUS) opens a new window in the diagnosis and follow-up of these lesions. This technique offers obvious advantages over the computed tomography and magnetic resonance, without a decrease in its sensitivity and specificity. The new second generation contrast agents, due to their intravascular distribution, allow a continuous evaluation of the enhancement pattern, which is crucial in characterization of liver lesions. The dual blood supply in the liver shows three different phases, namely arterial, portal and late phases. The enhancement during portal and late phases can give important information about the lesion’s behavior. Each liver lesion has a different enhancement pattern that makes possible an accurate approach to their diagnosis. The role of emerging techniques as a contrast-enhanced three-dimensional US is also discussed. In this article, the advantages, indications and technique employed during CEUS and the different enhancement patterns of most benign and malignant focal liver lesions are discussed. PMID:21225000

  7. Adaptive image contrast enhancement algorithm for point-based rendering

    NASA Astrophysics Data System (ADS)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  8. Intraoperative high-resolution ultrasound and contrast-enhanced ultrasound of peripheral nerve tumors and tumorlike lesions.

    PubMed

    Pedro, Maria Teresa; Antoniadis, Gregor; Scheuerle, Angelika; Pham, Mirko; Wirtz, Christian Rainer; Koenig, Ralph W

    2015-09-01

    The diagnostic workup and surgical therapy for peripheral nerve tumors and tumorlike lesions are challenging. Magnetic resonance imaging is the standard diagnostic tool in the preoperative workup. However, even with advanced pulse sequences such as diffusion tensor imaging for MR neurography, the ability to differentiate tumor entities based on histological features remains limited. In particular, rare tumor entities different from schwannomas and neurofibromas are difficult to anticipate before surgical exploration and histological confirmation. High-resolution ultrasound (HRU) has become another important tool in the preoperative evaluation of peripheral nerves. Ongoing software and technical developments with transducers of up to 17-18 MHz enable high spatial resolution with tissue-differentiating properties. Unfortunately, high-frequency ultrasound provides low tissue penetration. The authors developed a setting in which intraoperative HRU was used and in which the direct sterile contact between the ultrasound transducer and the surgically exposed nerve pathology was enabled to increase structural resolution and contrast. In a case-guided fashion, the authors report the sonographic characteristics of rare tumor entities shown by intraoperative HRU and contrast-enhanced ultrasound. PMID:26323823

  9. Contrast-enhanced ultrasound in differentiating malignant from benign portal vein thrombosis in hepatocellular carcinoma

    PubMed Central

    Tarantino, Luciano; Ambrosino, Pasquale; Di Minno, Matteo Nicola Dario

    2015-01-01

    Portal vein thrombosis (PVT) may occur in liver cirrhosis patients. Malignant PVT is a common complication in cirrhotic patients with concomitant hepatocellular carcinoma (HCC) and, in some cases, it may be even the initial sign of an undetected HCC. Detection of malignant PVT in a patient with liver cirrhosis heavily affects the therapeutic strategy. Gray-scale ultrasound (US) is widely unreliable for differentiating benign and malignant thrombi. Although effective for this differential diagnosis, fine-needle biopsy remains an invasive technique. Sensitivity of color-doppler US in detection of malignant thrombi is highly dependent on the size of the thrombus. Contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance (MRI) can be useful to assess the nature of portal thrombus, while limited data are currently available about the role of positron emission tomography (PET) and PET-CT. In contrast with CT, MRI, PET, and PET-CT, contrast-enhanced ultrasound (CEUS) is a fast, effective, well tolerated and cheap technique, that can be performed even in the same session in which the thrombus has been detected. CEUS can be performed bedside and can be available also in transplanted patients. Moreover, CT and MRI only yield a snapshot analysis during contrast diffusion, while CEUS allows for a continuous real-time imaging of the microcirculation that lasts several minutes, so that the whole arterial phase and the late parenchymal phase of the contrast diffusion can be analyzed continuously by real-time US scanning. Continuous real-time monitoring of contrast diffusion entails an easy detection of thrombus maximum enhancement. Moreover, continuous quantitative analyses of enhancement (wash in - wash out studies) by CEUS during contrast diffusion is nowadays available in most CEUS machines, thus giving a more sophisticated and accurate evaluation of the contrast distribution and an increased confidence in diagnosis in difficult cases. In conclusion

  10. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  11. Contrast-enhanced imaging of cerebral vasculature with laser speckle

    NASA Astrophysics Data System (ADS)

    Murari, K.; Li, N.; Rege, A.; Jia, X.; All, A.; Thakor, N.

    2007-08-01

    High-resolution cerebral vasculature imaging has applications ranging from intraoperative procedures to basic neuroscience research. Laser speckle, with spatial contrast processing, has recently been used to map cerebral blood flow. We present an application of the technique using temporal contrast processing to image cerebral vascular structures with a field of view a few millimeters across and approximately 20 μm resolution through a thinned skull. We validate the images using fluorescent imaging and demonstrate a factor of 2-4 enhancement in contrast-to-noise ratios over reflectance imaging using white or spectrally filtered green light. The contrast enhancement enables the perception of approximately 10%-30% more vascular structures without the introduction of any contrast agent.

  12. Image contrast enhancement based on a local standard deviation model

    SciTech Connect

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.

  13. Contrast-enhanced ultrasound improves accurate identification of appendiceal mucinous adenocarcinoma in an old patient

    PubMed Central

    Shang, Jing; Ruan, Li-tao; Dang, Ying; Wang, Yun-yue; Song, Yan; Lian, Jie

    2016-01-01

    Abstract Background: Adenocarcinoma of appendiceal origin is far rarer than other colorectal carcinomas and its preoperative diagnosis is challenging. To our knowledge, utility of contrast-enhanced ultrasound (CEUS) to diagnose it is much less. Method: A 61-year-old man presented with abdominal pain in the right lower quadrant for 20 days. In order to fulfill an accurately preoperative diagnosis, he received laboratory and imaging tests such as carcinoembryonic antigen (CEA), computer tomography (CT), CEUS and endoscope. Diagnosis and Intervention: He was initially suspected of suffering appendicitis, while his white blood cell count was normal and carcinoembryonic antigen (CEA) in serum was remarkably increased. Both routine ultrasound and computer tomography (CT) examinations supported suppurative appendicitis. The overall data, however, failed to excluded neoplastic pathology thoroughly. Therefore, CEUS was carried out and showed an inhomogeneous enhancement intra the lesion located in the body of the appendix, which made our consideration of neoplasm. The result of the follow-up biopsy guided by endoscope was consistent with appendiceal tumor. The patient received laparoscopic right hemicolectomy. Histopathology confirmed as well differentiated mucinous adenocarcinoma of appendix origin. His postoperative course was uneventful, and he had a regular diet again without any complaint. Result: Serum CEA was remarkably increased (12.00 ng/mL). Both routine ultrasound and CT examinations supported suppurative appendicitis. However, CEUS examination showed an inhomogeneous enhancement intra the lesion located in the body of the appendix, which made our consideration of neoplasm. The follow-up biopsy guided by endoscope and surgical specimens confirmed as well differentiated mucinous adenocarcinoma of appendix origin. Conclusion: Most mucinous adenocarcinoma mimicking appendicitis results in difficult diagnosis preoperatively. Clinician and radiologist should be

  14. Color contrast enhancement method of infrared polarization fused image

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xie, Chen

    2015-10-01

    As the traditional color fusion method based on color transfer algorithm has an issue that the color of target and background is similar. A kind of infrared polarization image color fusion method based on color contrast enhancement was proposed. Firstly the infrared radiation intensity image and the polarization image were color fused, and then color transfer technology was used between color reference image and initial fused image in the YCbCr color space. Secondly Otsu segmentation method was used to extract the target area image from infrared polarization image. Lastly the H,S,I component of the color fusion image which obtained by color transfer was adjusted to obtain the final fused image by using target area in the HSI space. Experimental results show that, the fused result which obtained by the proposed method is rich in detail and makes the contrast of target and background more outstanding. And then the ability of target detection and identification can be improved by the method.

  15. Contrast-enhanced ultrasound in the biliary system: Potential uses and indications.

    PubMed

    Xu, Hui-Xiong

    2009-12-31

    Conventional ultrasound (US) is the first-line imaging investigation for biliary diseases. However, it is lack of the ability to depict the microcirculation of some lesions which may lead to failure in diagnosis for some biliary diseases. The use of contrast-enhanced US (CEUS) has reached the field of bile duct disease in recent years and promising results have been achieved. In this review, the methodology, image interpretation, enhancement pattern, clinical usefulness, and indications for CEUS in the biliary system are summarized. CEUS may be indicated in the biliary system under the following circumstances: (1) Where there is a need to make a characterization of intrahepatic cholangiocarcinoma (ICC); (2) For differentiation diagnosis between ICC and other tumors (i.e. hepatocellular carcinoma or liver metastasis) or infectious diseases; (3) For differentiation diagnosis between biliary cystadenoma and biliary cystadenocarcinoma; (4) To detect malignant change in Caroli's disease; (5) To depict the extent of Klatskin's tumor with greater clarity; (6) To make a distinction between gallbladder cholesterol polyp, adenoma and polypoid cancer; (7) To make a distinction between chronic cholecystitis with thickened wall and gallbladder cancer; (8) For differentiation diagnosis between motionless sludge and gallbladder cancer; (9) For differentiation diagnosis between common bile duct cancer and sludge or stone without acoustic shadowing; and (10) In patients who are suspected of having a drop of their percutaneous transhepatic cholangiodrainage tube, US contrast agent can be administered to through the tube detect the site of the tube. PMID:21160719

  16. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis.

    PubMed

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-04-01

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC. PMID:24707142

  17. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis

    PubMed Central

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-01-01

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC. PMID:24707142

  18. Use of Contrast-Enhanced Ultrasound in Carotid Atherosclerotic Disease: Limits and Perspectives

    PubMed Central

    Varetto, Gianfranco; Gibello, Lorenzo; Castagno, Claudio; Quaglino, Simone; Ripepi, Matteo; Benintende, Emilio; Gattuso, Andrea; Garneri, Paolo; Zan, Stefano; Capaldi, Giacomo; Bertoldo, Ugo; Rispoli, Pietro

    2015-01-01

    Contrast-enhanced ultrasound (CEUS) has recently become one of the most versatile and powerful diagnostic tools in vascular surgery. One of the most interesting fields of application of this technique is the study of the carotid atherosclerotic plaque vascularization and its correlation with neurological symptoms (transient ischemic attack, minor stroke, and major stroke) and with the characteristics of the “vulnerable plaque” (surface ulceration, hypoechoic plaques, intraplaque hemorrhage, thinner fibrous cap, and carotid plaque neovascularization at histopathological analysis of the sample after surgical removal). The purpose of this review is to collect all the original studies available in literature (24 studies with 1356 patients enrolled) and to discuss the state of the art, limits, and future perspectives of CEUS analysis. The results of this work confirm the reliability of this imaging study for the detection of plaques with high risk of embolization; however, a shared, user-friendly protocol of imaging analysis is not available yet. The definition of this operative protocol becomes mandatory in order to compare results from different centers and to validate a cerebrovascular risk stratification of the carotid atherosclerotic lesions evaluated with CEUS. PMID:26180793

  19. Dynamic Vascular Pattern (DVP), a quantification tool for contrast enhanced ultrasound.

    PubMed

    Cui, X W; Ignee, A; Jedrzejczyk, M; Dietrich, C F

    2013-05-01

    Contrast-enhanced ultrasound (CEUS) is widely applied in tumour diagnosis, especially for focal liver lesions (FLL), due to its high sensitivity and specificity. According to the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) CEUS guidelines (2012) and non-liver guidelines (2011), the majority of tumours, regardless of location, show specific CEUS enhancement patterns that can distinguish benign from malignant lesions. However, even experienced clinicians evaluating FLL may find occasional irregularities in these patterns, due to particular FLL pathologies, that make a definitive diagnosis difficult. Hence, there is a need to train physicians to utilize contrast enhancement kinetics to aid in the correct interpretation of data from CEUS examinations in patients with divergent liver tumour pathologies. Here we report on a CEUS quantitation software, SonoLiver®, to verify and improve diagnostic accuracy in the characterization of suspicious liver lesions through the analysis of dynamic vascular patterns (DVP). PMID:23681894

  20. Automatic motion estimation using flow parameters for dynamic contrast-enhanced ultrasound

    NASA Astrophysics Data System (ADS)

    Barrois, Guillaume; Coron, Alain; Lucidarme, Olivier; Bridal, S. Lori

    2015-03-01

    Dynamic contrast-enhanced ultrasound (DCE-US) sequences are subject to motion which can disturb functional flow quantification. This can make estimated parameters more variable or unreliable. Methods that compensate for motion are therefore desirable. The most commonly used motion correction techniques in DCE-US register the images in the sequence with respect to a user-selected reference image. However, this image may not include all features that are representative of the whole sequence. Moreover, image-based registration neglects pertinent, functional-flow information contained in the DCE-US sequence. An operator-free method is proposed that combines the motion estimation and flow-parameter quantification (M/Q method) in a single mathematical framework. This method is based on a realistic multiplicative model of the DCE-US noise. By computing likelihood in this model, motion and flow parameters are both estimated iteratively. First, the maximization is accomplished by estimating functional and motion parameters. Then, a final registration based on a non-parametric temporal smoothing of the sequence is performed. This method is compared to a conventional (mutual information) registration method where all the images of the sequence are registered with respect to a reference image chosen by an expert. The two methods are evaluated on simulated sequences and DCE-US sequences acquired in patients (N = 15). The M/Q method demonstrates significantly (p < 0.05) lower Dice coefficients and Hausdorff distance than the conventional method on the simulated data sets. On the in vivo sequences analysed, the M/Q methods outperformed the conventional method in terms of mean Dice and Hausdorff distance on 80% of the sequences, and in terms of standard deviation of Dice and Hausdorff distance on 87% of the sequences.

  1. A contrast enhancement technique for low light images

    NASA Astrophysics Data System (ADS)

    Singh, Ankita; Gupta, K. K.

    2016-03-01

    Digital Imagery systems are traditionally bad in low light conditions. In this paper, a new algorithm for contrast improvement is proposed. The algorithm consists of two stages. The first stage is decomposing the input image into four subbands by applying two-dimensional discrete wavelet transform and estimates the singular value matrix of sub band image. The second stage is that it reconstructs the enhanced image by applying the inverse DWT. The technique is compared with conventional image equalization technique such as standard General Histogram Equalization (GHE) and other state-of-the-art techniques such as Quadrant Dynamic Histogram Equalization (QDHE), Singular-Value-Wavelet based image Equalization (SVWE) and Singular Value Equalization (SVE) on the basis of their Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) values. The simulation results indicated that the image contrast enhanced by the purposed method was higher than that of the images enhanced by the other conventional state-of-the-art techniques.

  2. Development of contrast-enhanced rodent imaging using functional CT

    NASA Astrophysics Data System (ADS)

    Liang, Yun; Stantz, Keith M.; Krishnamurthi, Ganapathy; Steinmetz, Rosemary; Hutchins, Gary D.

    2003-05-01

    Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.

  3. Conventional ultrasound and contrast-enhanced ultrasound in evaluating the severity of Crohn’s disease

    PubMed Central

    Liu, Chang; Xu, Xiao-Rong; Xu, Hui-Xiong; Liu, Zhan-Ju; Zhang, Yi-Feng; Sun, Li-Ping; Xu, Jun-Mei; Liu, Lin-Na; Guo, Le-Hang; Bo, Xiao-Wan

    2015-01-01

    Objective: To evaluate the value of conventional ultrasound and contrast-enhanced ultrasound (CEUS) in determining the severity of active Crohn’s disease. Methods: Thirty-seven patients who were considered to be in active period of Crohn’s disease were included. Conventional ultrasound was employed to measure the thicknesses of interior, exterior and the whole bowel walls. Qualitative and quantitative CEUS analysis of the interior, exterior and the whole intestinal walls were also performed. Correlations between these methods and the severity of Crohn’s disease were assessed. Results: Endoscopy grading system identified 19 patients with mild disease and 18 with severe disease. In discriminating severe Crohn’s disease from mild disease, the cut-off value for the thickness of the entire bowel wall was 6.8 mm by receiver operating characteristic (ROC) analysis, with area under ROC (AUROC) of 0.84, sensitivity of 94.4%, specificity of 68.4%, positive predictive value (PPV) of 61.1%, negative predictive value (NPV) of 69.2%, and Youden’s index of 0.628. The cut-off value for thickness of the interior intestinal wall was 4.8 mm (AUROC, 0.81; sensitivity, 88.9%; specificity, 63.2%; PPV, 85.7%; NPV, 69.6%; Youden’s index, 0.521). The sensitivity, specificity, PPV, NPV, accuracy, and Youden’s index of CEUS qualitative analysis were 100% (18/18), 57.9% (11/19), 64.3% (18/26), 100% (11/11), 78.4% (29/37), and 0.579, respectively. Quantitative comparison revealed that patients with mild disease and those with severe disease differed only in Imax of inner bowel wall enhancement (2746.9 ± 911 vs. 12814.5 ± 9802.4; P = 0.02) and Imax of entire wall enhancement (2106 ± 660 vs. 9864 ± 6994; P = 0.03). The cut-off value for the Imax of the entire bowel wall was 3067, with the AUROC of 0.96, sensitivity of 100%, specificity of 67.7%, PPV of 100%, NPV of 88.9%, and Youden’s index of 0.677; and the cut-off value for the Imax of the interior intestinal layer was 3356

  4. Utility of contrast-enhanced ultrasound with SonoVue in biopsy of small subpleural nodules

    PubMed Central

    Wang, Jinlin; Zhou, Dazhi; Xie, Xiaohong; Shen, Panxiao; Zeng, Yunxiang

    2015-01-01

    Objectives: This study aimed to evaluate the diagnostic accuracy and complication rates of contrast-enhanced ultrasound (CEUS)-guided biopsy of small subpleural nodules with SonoVue. Methods: CEUS-guided biopsies with SonoVue and conventional ultrasound were performed to determine nodule size, texture and biopsy route. After baseline ultrasonography, all patients received an intravenous injection of 4 mL of SonoVue, followed by 5 mL of saline flush. CEUS was obtained using a convex probe and contrast-specific imaging software. The lesion was observed using a contrast agent. Biopsies were performed during real-time visualisation of the target lesion. Results: A total of 51 patients (34 males and 17 females; average age, 54.8 ± 5.8 years) with subpleural nodules were enrolled. The median nodule size was 1.92 ± 0.75 cm (0.9-2.5 cm). Forty-eight of 51 procedures (94.1%) provided adequate material for histological analysis. Thirty patients (62.5%) were malignant and 18 patients (37.5%) were benign at the definitive diagnosis. The true positive and true negative result were 28 (58.3%) and 18 (37.5%), no false positive result was seen and two (4.2%) provided a false negative result. The sensitivity, specificity, positive and negative predictive values for the malignant diagnosis were 93.3, 100, 100 and 90%, respectively. The diagnostic accuracy was 95.8% (46/48), the standard error and the 95% CI were 2.8% and 86%-99%. An asymptomatic pneumothorax was present in one patient with no chest tube placement required. A small amount of hemoptysis was observed in another patient, which stopped spontaneously without treatment. Conclusions: CEUS-guided biopsy with SonoVue exhibits high diagnostic accuracy and low complication rates. It is especially advantageous for biopsies of small subpleural nodules. PMID:26629103

  5. Efficacy of contrast enhanced grey scale ultrasound in characterisation of hepatic focal lesions: A pilot study

    PubMed Central

    Joshi, P.; George, R.A.; Tyagi, A.K.; Sinha, Anamika

    2014-01-01

    Background Contrast enhanced ultrasound (CEUS) has recently gained widespread acceptance as an adjunct to conventional grey scale ultrasound. The present pilot study was undertaken to evaluate the efficacy of this technique in characterisation of hepatic focal lesions. Methods Adult patients who had at least one focal liver lesion underwent ultrasound evaluation in regular and contrast mode before and after intravenous administration of sulphur hexafluoride. The diagnoses were confirmed by comparison with a reference standard (multidetector CT), response to treatment or pathological correlation. Results The rate of correct diagnosis for unenhanced ultrasound was 54%, CEUS was 72% and multidetector CT (MDCT) was 92%. A comparison of unenhanced ultrasound versus CEUS using the McNemar test yielded a p value of 0.0704 (>0.05). However, comparison of CEUS versus MDCT using the McNemar test yielded a p value of 0.0265 (<0.05). Additionally, comparison of unenhanced ultrasound versus MDCT using the McNemar test yielded a p value of <0.0001. Conclusion CEUS increases diagnostic efficacy over unenhanced ultrasound but does not have any significant advantages over MDCT. Currently it may be used as a problem solving tool in atypical haemangiomas, echogenic focal liver lesions, contrast sensitivity and to avoid multiple studies utilising ionising radiation. PMID:25378775

  6. Clinical Value of Contrast-Enhanced Ultrasound in Diagnosis of Hyperechoic Liver Lesions

    PubMed Central

    Liu, Junjie; Wang, Dan; Li, Hongxue; Li, Hang; Zhou, Ting; Zhao, Shengfa; Ding, Zhanling

    2015-01-01

    Background The purpose of this study was to investigate the values of contrast-enhanced ultrasound (CEUS) in the diagnosis and differential diagnosis of hyperechoic liver lesions. Material/Methods The CEUS findings of 102 patients with hyperechoic liver lesions identified by 2-dimensional ultrasound in the Affiliated Tumor Hospital of Guangxi Medical University were reviewed and analyzed. Results A total of 135 lesions were analyzed, of which malignant lesions were found in 72 patients and benign lesions in 63, with a CEUS accuracy rate of 91.11%, which was significantly higher than that of conventional ultrasound (74.81%; P<0.05). Conclusions CEUS can improve the accuracy rate of ultrasonography in the diagnosis and differential diagnosis of hyperechoic liver lesions. PMID:26394170

  7. Current consensus and guidelines of contrast enhanced ultrasound for the characterization of focal liver lesions

    PubMed Central

    Jang, Jae Young; Kim, Moon Young; Jeong, Soung Won; Kim, Tae Yeob; Kim, Seung Up; Lee, Sae Hwan; Suk, Ki Tae; Park, Soo Young; Woo, Hyun Young; Kim, Sang Gyune; Heo, Jeong; Baik, Soon Koo; Kim, Hong Soo

    2013-01-01

    The application of ultrasound contrast agents (UCAs) is considered essential when evaluating focal liver lesions (FLLs) using ultrasonography (US). Microbubble UCAs are easy to use and robust; their use poses no risk of nephrotoxicity and requires no ionizing radiation. The unique features of contrast enhanced US (CEUS) are not only noninvasiveness but also real-time assessing of liver perfusion throughout the vascular phases. The later feature has led to dramatic improvement in the diagnostic accuracy of US for detection and characterization of FLLs as well as the guidance to therapeutic procedures and evaluation of response to treatment. This article describes the current consensus and guidelines for the use of UCAs for the FLLs that are commonly encountered in US. After a brief description of the bases of different CEUS techniques, contrast-enhancement patterns of different types of benign and malignant FLLs and other clinical applications are described and discussed on the basis of our experience and the literature data. PMID:23593604

  8. Role of contrast-enhanced ultrasound in follow-up assessment after ablation for hepatocellular carcinoma

    PubMed Central

    Zheng, Shu-Guang; Xu, Hui-Xiong; Lu, Ming-De; Xie, Xiao-Yan; Xu, Zuo-Feng; Liu, Guang-Jian; Liu, Lin-Na

    2013-01-01

    AIM: To assess the usefulness of contrast-enhanced ultrasound (CEUS) during follow-up after percutaneous ablation therapy for hepatocellular carcinoma (HCC). METHODS: A total of 141 patients with HCCs who received percutaneous ablation therapy were assessed by paired follow-up CEUS and contrast-enhanced computed tomography (CECT). The follow-up scheme was designed prospectively and the intervals between CEUS and CECT examinations were less than 14 d. Both images of follow-up CEUS and CECT were reviewed by radiologists. The ablated lesions were evaluated and classified as local tumor progression (LTP) and LTP-free. LTP was defined as regrowth of tumor inside or adjacent to the successfully treated nodule. The detected new intrahepatic recurrences were also evaluated and defined as presence of intrahepatic new foci. On CEUS and CECT, LTP and new intrahepatic recurrence both were displayed as typical enhancement pattern of HCC (i.e., hyper-enhancing during the arterial phase and washout in the late phase). With CECT as the reference standard, the ability of CEUS in detecting LTP or new intrahepatic recurrence during follow-up was evaluated. RESULTS: During a follow-up period of 1-31 mo (median, 4 mo), 169 paired CEUS and CECT examinations were carried out for the 141 patients. For a total of 221 ablated lesions, 266 comparisons between CEUS and CECT findings were performed. Thirty-three LTPs were detected on CEUS whereas 40 LTPs were detected on CECT, there was significant difference (P < 0.001). In comparison with CECT, the numbers of false positive and false negative LTPs detected on CEUS were 6 and 13, respectively; the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and overall accuracy of CEUS in detecting LTPs were 67.5%, 97.4%, 81.8%, 94.4% and 92.3%, respectively. Meanwhile, 131 new intrahepatic recurrent foci were detected on CEUS whereas 183 were detected on CECT, there was also significant difference (P < 0.05). In

  9. Pulmonary transit time measurement by contrast-enhanced ultrasound in left ventricular dyssynchrony

    PubMed Central

    Saporito, Salvatore; Mischi, Massimo; van Assen, Hans C; Bouwman, R Arthur; de Lepper, Anouk G W; van den Bosch, Harrie C M; Korsten, Hendrikus H M; Houthuizen, Patrick

    2016-01-01

    Background Pulmonary transit time (PTT) is an indirect measure of preload and left ventricular function, which can be estimated using the indicator dilution theory by contrast-enhanced ultrasound (CEUS). In this study, we first assessed the accuracy of PTT-CEUS by comparing it with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Secondly, we tested the hypothesis that PTT-CEUS correlates with the severity of heart failure, assessed by MRI and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Methods and results Twenty patients referred to our hospital for cardiac resynchronization therapy (CRT) were enrolled. DCE-MRI, CEUS, and NT-proBNP measurements were performed within an hour. Mean transit time (MTT) was obtained by estimating the time evolution of indicator concentration within regions of interest drawn in the right and left ventricles in video loops of DCE-MRI and CEUS. PTT was estimated as the difference of the left and right ventricular MTT. Normalized PTT (nPTT) was obtained by multiplication of PTT with the heart rate. Mean PTT-CEUS was 10.5±2.4s and PTT-DCE-MRI was 10.4±2.0s (P=0.88). The correlations of PTT and nPTT by CEUS and DCE-MRI were strong; r=0.75 (P=0.0001) and r=0.76 (P=0.0001), respectively. Bland–Altman analysis revealed a bias of 0.1s for PTT. nPTT-CEUS correlated moderately with left ventricle volumes. The correlations for PTT-CEUS and nPTT-CEUS were moderate to strong with NT-proBNP; r=0.54 (P=0.022) and r=0.68 (P=0.002), respectively. Conclusions (n)PTT-CEUS showed strong agreement with that by DCE-MRI. Given the good correlation with NT-proBNP level, (n)PTT-CEUS may provide a novel, clinically feasible measure to quantify the severity of heart failure. Clinical Trial Registry: NCT01735838 PMID:27249553

  10. Common ultrasound and contrast-enhanced ultrasonography in the diagnosis of hepatic artery pseudoaneurysm after liver transplantation

    PubMed Central

    Ren, Xiuyun; Luo, Yukun; Gao, Nong; Niu, Hong; Tang, Jie

    2016-01-01

    The diagnostic value of common ultrasound and contrast-enhanced ultrasonography (CEUS) in hepatic artery pseudoaneurysm (HAP) after liver transplantation was investigated. From January 2005 to November 2015, information was collected on 2,085 cases of orthotopic liver transplantation. The cases included 1,617 men and 468 women. Common ultrasound and CEUS were used to monitor arterial blood flow following surgery, and the complications were assessed. Instruments used included Acuson Sequoia 512 and Mylab Twice, and the contrast agent was SonoVue. The standard of common ultrasound in the diagnosis of HAP was follicular structure, which had arterial blood flow signal present beside the hepatic artery. The diagnostic criteria of HAP using CEUS were abnormal and round contrast enhancement zone and perfusion of the contrast agent in the zone near the hepatic artery. The diagnostic standard of HAP was computed tomographic angiography (CTA) and emergency operation. Eight cases of HAP were diagnosed in 2,085 patients after liver transplantation (0.38%). Three cases of HAP were diagnosed successfully by common ultrasound while 5 cases were missed. Sensitivity, specificity and diagnostic accuracy for common ultrasound was 37.5, 100 and 99.76%, respectively. Six cases of HAP were diagnosed by CEUS and 2 cases were missed. Sensitivity, specificity and diagnostic accuracy for CEUS was 75, 100 and 99.9%, respectively. Collectively, CEUS is a convenient and effective diagnostic method for HAP following liver transplantation, the diagnostic sensitivity was obviously higher than that of the common ultrasound, and it was more convenient than CTA. Nevertheless, the diagnosis of pseudoaneurysm with deep location, and unsatisfactory grayscale images were easily missed. PMID:27446316

  11. Contrast-enhanced ultrasound findings of post-transplant lymphoproliferative disorder in a transplanted kidney: A case report and literature review

    PubMed Central

    Lampe, Alyssa; Duddalwar, Vinay A; Djaladat, Hooman; Aron, Manju; Gulati, Mittul

    2015-01-01

    Post-transplant lymphoproliferative disorder occurs in approximately one percent of kidney transplant recipients. We evaluated a seventy-seven year-old man with a solid mass in his transplant kidney. On contrast enhanced ultrasound, the mass enhanced but remained persistently hypovascular throughout exam. The enhancement pattern of the mass differed from that typical of clear cell renal cell carcinoma, the main differential diagnosis. Final pathology after partial nephrectomy confirmed post-transplant lymphoproliferative disorder. This is the first report of contrast enhanced ultrasound findings in a renal mass diagnosed as post-transplant lymphoproliferative disorder. Contrast enhanced ultrasound has a promising role in imaging of renal masses, particularly relevant in transplant patients due to the lack of nephrotoxicity. PMID:26629291

  12. Dynamic contrast-enhanced ultrasound for differential diagnosis of submandibular gland disease.

    PubMed

    Strieth, Sebastian; Siedek, Vanessa; Rytvina, Margarita; Gürkov, Robert; Berghaus, Alexander; Clevert, Dirk-André

    2014-01-01

    Intensity-time gradients (ITGs) of contrast-enhanced ultrasound (CEUS) can be used for non-invasive monitoring of gland-preserving treatment effects in sialolithiasis-related chronic sialadenitis as well as for imaging vascularization in tumors. The aim of this clinical trial was to evaluate feasibility to distinguish different entities of submandibular gland disease including inflammatory alterations of the submandibular gland as well as benign and malignant tumors. In this prospective clinical study, ITGs in 30 patients with sialolithiasis-related chronic sialadenitis or an unilateral submandibular mass and 18 disease-free submandibular gland controls were quantitatively analyzed by CEUS using the contrast agent SonoVue. In addition, clinical complaints according to visual analog scales (VAS) were documented. VAS data documented significantly less complaints only in benign tumors compared with the other pathologies of the submandibular gland. In parallel, CEUS-derived ITGs revealed significantly reduced ITGs only in benign tumors (n = 5) compared to the controls (n = 18). Despite of comparably reduced wash-in velocities in malignant lesions (n = 3) statistical significance was not reached. Chronic sialadenitis (n = 18) and its sclerosing variant (Küttner tumor, n = 4) revealed comparable ITGs as controls. Tumors of the submandibular gland present with reduced functional microcirculatory networks comparing with healthy gland controls and chronically inflamed submandibular glands. Thus, dynamic CEUS-derived ITGs in combination with conventional clinical measures--for example VAS--appear as a safe and promising strategy for non-invasive diagnostic workup of submandibular lesions and warrant further validation in a larger set of patients. PMID:23625388

  13. Contrast-Enhanced Ultrasound for the Characterization of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma

    PubMed Central

    Liu, Guang-Jian; Wang, Wei; Lu, Ming-De; Xie, Xiao-Yan; Xu, Hui-Xiong; Xu, Zuo-Feng; Chen, Li-Da; Wang, Zhu; Liang, Jin-Yu; Huang, Yang; Li, Wei; Liu, Jin-Ya

    2015-01-01

    Purpose and methods The ability of contrast-enhanced ultrasound (CEUS) to differentiate between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) is still controversial. We reviewed the CEUS imaging of 819 patients (HCC=546, ICC=273) with an established pathological diagnosis. The enhancement patterns of lesions and the diagnostic performance of CEUS were analyzed. Results Arterial hyperenhancement followed by washout was observed in 92.3% (504/546) of the HCC lesions and 85.7% (234/273) of the ICC lesions on CEUS (p<0.05). Additionally, the ICCs presented contrast washout much earlier than the HCCs, with an average time of 27.5 seconds after injecting the contrast agent compared with 70.1 seconds for the HCCs (p<0.05). Peripheral rim-like enhancement was observed in 68.5% (187/273) of the ICCs, which was significantly more common than that in the HCCs (2.0%, 11/546) (p<0.05). When using arterial hyperenhancement with a washout phase later than 43 seconds after injecting the contrast agent and with no peripheral rim-like enhancement as the diagnostic criteria for HCC ≤5 cm in diameter, the area under the curve was 0.808, with 64.1% sensitivity, 97.4% specificity and 73.6% accuracy. Conclusions Although ICC may show the typical enhancement pattern of HCC on CEUS, peripheral rim-like enhancement and quick contrast washout show high efficiency in the differentiation of HCC from ICC. PMID:26779444

  14. Magnetic resonance imaging and contrast enhancement. Scientific report

    SciTech Connect

    Swenberg, C.E.; Movius, E.G.

    1988-01-01

    Chapters II through VI of this report discuss: Relaxation of Nuclear Spins; Echo Techniques; Basic Imaging Pulse Sequences; Partial Saturation Recovery; Inversion Recovery; Spin Echo; Effects of Pulse Sequence on Image Contrast; Contrast Agents; Theoretical Aspects; Pharmacokinetics and Toxicity; and Physiological Rationale for Agent Selection. One of the major goals in all medical imaging techniques is to maximize one's ability to visualize and differentiate adjacent tissue regions in the body on the basis of differences in anatomy, physiology, or various pathological processes. Magnetic resonance (MR) imaging offers distinct advantages over conventional x-ray imaging because of the possibility of selecting specific pulse sequences that can differentiate adjacent structures on the basis of differences in proton density, T/sub 1/ or T/sub 2/ relaxation rates, or flow. As a result of applying these various pulse sequences, numerous images have been obtained of the brain and other organs that demonstrate considerably more-detailed anatomical structure than had previously been available with computerized tomography, ultrasound, or nuclear medicine techniques. In some situations it is clearly superior, such as in the diagnosis of multiple sclerosis.

  15. The Value of Contrast-Enhanced Ultrasound in the Diagnosis of Cesarean Scar Pregnancy

    PubMed Central

    Xiong, Xi; Yan, Ping; Gao, Chunyan; Sun, Qiulei; Xu, Fenglian

    2016-01-01

    Objective. To evaluate the value of contrast-enhanced ultrasound (CEUS) in the cesarean scar pregnancy (CSP). Methods. Clinical data from 92 patients with lower uterine segment pregnancy, who underwent conventional ultrasound and CEUS examination in the Department of Obstetrics and Gynecology, were collected by Xinqiao Hospital Third Military Medical University from March 2014 to March 2015. The parameters of ultrasound contrast time-intensity curve (TIC), including arrival time, time to peak, time from peak to one half, basic intensity, peak intensity, and wash-in slope, were analyzed. Results. Of the 92 cases of patients with pregnancy in the lower uterine segment, 52 cases were CSP, and 40 cases were intrauterine pregnancy. CEUS was significantly better than conventional ultrasound in terms of sensitivity, negative predictive value, Youden index, and diagnostic accuracy (P < 0.05). There was no significant difference in specificity and positive predictive value (P > 0.05). Conclusion. CEUS has a higher accuracy than conventional ultrasound in diagnosis of CSP. PMID:27340659

  16. Feasibility and Usefulness of Intra-Cavitary Contrast-Enhanced Ultrasound in Percutaneous Nephrostomy.

    PubMed

    Cui, Xin-Wu; Ignee, Andre; Maros, Tiberius; Straub, Bernd; Wen, Jian-Guo; Dietrich, Christoph F

    2016-09-01

    The aim of this study was to evaluate the feasibility and utility of intra-cavitary contrast enhanced ultrasound (ICCEUS) in guiding percutaneous nephrostomy (PCN) and assessing complications. Forty-five ultrasound-guided PCNs were performed in 35 patients with hydronephrosis resulting from urinary tract obstruction. Ultrasound contrast agent (0.1 mL diluted in 20-30 mL saline) was injected through the puncture needle and the drainage tube to precisely locate the device and obstruction, with the fluoroscopy results considered the gold standard. ICCEUS was performed again the next day to assess complications. All 45 PCNs were successfully performed under the guidance of ultrasound. With ICCEUS, we could confirm the correct insertion of needle and catheter and locate the obstruction in all 35 patients, with fluoroscopic results as the gold standard. Catheter dislodgement was diagnosed by administration of ultrasound contrast agent in 5 patients. Hematoma (1 patient) and urine leakage (1 patient) were also observed. With the advantages of lack of exposure to radiation, performance in real time and bedside availability, ICCEUS has the potential to become a new modality to guide PCN and assess catheter-related complications. PMID:27262520

  17. Skeletonization approach for characterization of benign vs. malignant single thyroid nodules using 3D contrast enhanced ultrasound

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Mantovani, Alice; Deandrea, Maurilio; Limone, Paolo; Garberoglio, Roberto; Suri, Jasjit S.

    2011-03-01

    High-resolution ultrasonography (HRUS) has potentialities in differential diagnosis between malignant and benign thyroid lesions, but interpretative pitfalls remain and accuracy is still poor. We developed an image processing technique for characterizing the intra-nodular vascularization of thyroid lesions. Twenty nodules (ten malignant) were analyzed by 3-D contrast-enhanced ultrasound imaging. The 3-D volumes were preprocessed and skeletonized. Seven vascular parameters were computed on the skeletons: number of vascular trees (NT); vascular density (VD); number of branching nodes (or branching points) (NB); mean vessel radius (MR); 2-D (DM) and 3-D (SOAM) tortuosity; and inflection count metric (ICM). Results showed that the malignant nodules had higher values of NT (83.1 vs. 18.1), VD (00.4 vs. 0.01), NB (1453 vs. 552), DM (51 vs. 18), ICM (19.9 vs. 8.7), and SOAM (26 vs. 11). Quantification of nodular vascularization based on 3-D contrast-enhanced ultrasound and skeletonization could help differential diagnosis of thyroid lesions.

  18. Preliminary Analysis of Clinical Situations Involved in Quantification of Contrast-Enhanced Ultrasound in Crohn's Disease.

    PubMed

    Cheng, Wenjie; Gao, Xiang; Wang, Weili; Zhi, Min; Tang, Jian; Wen, Yan-Ling; Yu, Junli; Chen, Yao; Liu, Xiaoyin; Yang, Chuan; Hu, Pinjin; Liu, Guangjian

    2016-08-01

    To assess influencing factors for quantitative analysis of contrast-enhanced ultrasound (CEUS) in Crohn's disease (CD), dynamic CEUS examinations from 77 consecutive CD patients were recorded. Peak intensity (PI) values were calculated using the pre-installed quantification software of the ultrasound scanner. The influence of depth, pressure from the ultrasound probe and intraluminal gas was analyzed. The PI value of the anterior wall was lower than that of the posterior wall when the depth was ≤3.4 cm (17.9 dB vs. 21.3 dB; p < 0.05) or evident pressure was exerted (19.1 dB vs. 22.5 dB; p < 0.01). In the presence of intraluminal gas, the PI of the anterior wall was higher than that of the posterior wall (20.7 dB vs. 18.8 dB; p < 0.05). Nevertheless, no significant difference was found between the PI value of anterior and posterior walls when the depth was >3.4 cm (19.8 dB vs. 20.3 dB), moderate pressure was exerted (20.5 dB vs. 21.1 dB) or luminal gas was excluded between the two bowel walls (18.9 dB vs. 21.2 dB; p ≥ 0.05). The factors of depth, pressure from the ultrasound probe and intraluminal gas can affect the quantification results of CEUS. It is preferable to place the region of interest in the posterior wall when luminal gas is absent and in the anterior wall when luminal gas is present. In the latter case, more attention should be paid to reducing pressure by the ultrasound probe. PMID:27087694

  19. Use of Contrast-Enhanced Ultrasound in the Differential Diagnosis of Adrenal Tumors in Dogs.

    PubMed

    Bargellini, Paolo; Orlandi, Riccardo; Dentini, Alfredo; Paloni, Chiara; Rubini, Giuseppe; Fonti, Paolo; Diana, Alessia; Peterson, Mark E; Boiti, Cristiano

    2016-01-01

    We evaluated the diagnostic accuracy of the contrast-enhanced ultrasonography (CEUS), using a second-generation microbubble contrast agent, in differentiating the different types of adrenal mass lesions in 24 dogs. At B-mode ultrasound, 9 lesions involved the right adrenal gland, 14 the left, and 1 was bilateral. Each dog received a bolus of the contrast agent into the cephalic vein, immediately followed by a 5-mL saline flush. The first contrast enhancement of each adrenal lesion was evaluated qualitatively to assess the degree of enhancement and its distribution during the wash-in and wash-out phases, as well as the presence of non-vascularized areas and specific vascular patterns. Pathological diagnoses were determined in all dogs by histopathology or by cytology. Combining enhancement degree and vascularity resulted in the best predictive model, allowing CEUS to differentiate adrenocortical adenoma (n=10), adenocarcinoma (n=7), and pheochromocytoma (n=7) with an accuracy of 91.7% (P < 0.001). Combining enhancement degree and vascularity, CEUS can discriminate malignant versus benign adrenal lesions with a sensitivity of 100.0%, a specificity of 80.0%, and an accuracy of 91.7% (P < 0.001). In conclusion, results of this study confirm that CEUS is useful for differentiating between the different types of adrenal tumors in dogs. PMID:27008325

  20. Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions

    SciTech Connect

    Wei, Chen-wei; Lombardo, Michael; Larson-Smith, Kjersta; Perez, Camilo; Xia, Jinjun; Matula, Thomas; Pozzo, Danilo; O'Donnell, Matthew; Pelivanov, Ivan

    2014-01-20

    A composite contrast agent, a nanoemulsion bead with assembled gold nanospheres at the interface, is proposed to improve the specific contrast of photoacoustic molecular imaging. A phase transition in the bead's core is induced by absorption of a nanosecond laser pulse with a fairly low laser fluence (∼3.5 mJ/cm{sup 2}), creating a transient microbubble through dramatically enhanced thermal expansion. This generates nonlinear photoacoustic signals with more than 10 times larger amplitude compared to that of a linear agent with the same optical absorption. By applying a differential scheme similar to ultrasound pulse inversion, more than 40 dB contrast enhancement is demonstrated with suppression of background signals.

  1. Contrast-enhanced ultrasound assessment of complex cystic lesions in renal transplant recipients with acquired cystic kidney disease: preliminary experience.

    PubMed

    Paudice, N; Zanazzi, M; Agostini, S; Bertelli, E; Caroti, L; Carta, P; Moscarelli, L; Tsalouchos, A; Salvadori, M; Bertoni, E

    2012-09-01

    We prospectively studied the potential value of contrast-enhanced ultrasound (CEUS) to characterize complex acquired cystic kidney disease (ACKD) or suspected solid renal masses, avoiding the risk of inducing acute kidney injury in 138 renal transplant recipients by contrast-enhanced computed tomography (CT). Forty-three cases (31%) had ACKD; 15 ACKD patients (35%) showed suspicious or nondiagnostic ultrasound. The latter subgroup underwent CEUS and, if the suspicion was confirmed, a contrast-enhanced CT. Thirty five lesions were identified in the 15 patients studied by CEUS. According to the Bosniak classification, 27 cysts were type I (BI), four type II (BII), two type III (BIII) with enhancement at the level of thickened septa; we also identified two solid enhancing lesions (BIV). We followed the BI and BII lesions with serial CEUS, while the remaining four cases underwent contrast-enhanced CT showing two solid lesions and two complex cysts with contrast enhancement in the septea. The four patients underwent surgical resection yielding three renal cell carcinomas one papillary carcinoma as the pathological findings. This preliminary study characterized solid nodules and BIII lesions for further evaluation by CT. CEUS seems to correctly characterize BI and BII cysts that are not clearly defined by standard ultrasound. PMID:22974874

  2. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    PubMed Central

    Gupta, Suneet; Porwal, Rabins

    2016-01-01

    Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images. PMID:27127497

  3. A New Method for Discriminating between Bronchial and Pulmonary Arterial Phases using Contrast-Enhanced Ultrasound.

    PubMed

    Hong-Xia, Zhang; Wen, He; Ling-Gang, Cheng; Wen-Jia, Cai; Shuo, Li; Li-Juan, Du; Hai-Man, Song; Yang, Zhao

    2016-07-01

    This study aimed to explore the value of a real-time comparative observation method using contrast-enhanced ultrasound (CEUS) for discriminating between bronchial and pulmonary arterial phases in diagnosing lung diseases. Forty-nine patients with 50 pulmonary lesions (45 peripheral lesions and five central lesions with obstructive atelectasis, including 36 malignant tumors, five tuberculomas, four inflammatory pseudotumors and five pneumonia lesions) detected via computed tomography and visible on ultrasonography were enrolled in this study. The arterial phases were determined by comparing contrast agent arrival time (AT) in the peripheral lung lesion with that in adjacent lung tissue, referred to as a real-time comparative observation method. Detection rates of this observation method were 100% (50/50) for pulmonary arterial phase and 88% (44/50) for bronchial arterial phase. Using the instrument's built-in graphing and analysis software, a time-intensity curve was constructed based on a chosen region of interest within the lesion where enhancement was the most obvious. Commonly used perfusion indicators in CEUS, such as AT, time-to-peak and peak intensity, were obtained from the time-intensity curve. Percutaneous puncture biopsies were performed under ultrasound guidance, and specimens of all 50 lesions were examined pathologically. AT was significantly shorter in patients with pneumonia than in those with malignant tumors or chronic inflammation (p < 0.05), whereas no difference was seen between those with malignant tumors and those with chronic inflammation. No significant differences in time-to-peak or peak intensity were seen among those with various lung diseases (p > 0.05). This is the first description of a real-time comparative observation method using CEUS for determining the arterial phases in the lungs. This method is accurate, simple to perform and provides a direct display. It is expected to become a practical and feasible tool for diagnosing

  4. Diagnostic value of contrast-enhanced ultrasound in solid thyroid nodules with and without enhancement.

    PubMed

    Wu, Qiong; Wang, Yan; Li, Yi; Hu, Bing; He, Zhi-Yan

    2016-08-01

    We aimed to investigate different enhancement patterns of solid thyroid nodules on contrast-enhanced ultrasound (CEUS) and then to evaluate the corresponding diagnostic performance in the differentiation of benign and malignant nodules with and without enhancement. 229 solid thyroid nodules in 196 patients who had undergone both conventional ultrasound and CEUS examinations were classified into enhancement and non-enhancement groups. Besides, different enhancement patterns in the enhancement group were characterised with five indicators including arrival time, mode of entrance, echo intensity, homogeneity, and washout time. Then aforementioned indicators were compared between benign and malignant nodules of different sizes (<10 mm and >10 mm), and diagnostic performance of significant enhancement indicators was calculated. As for the enhancement group, there were statistically significant differences of <10 mm subgroup among three CEUS indicators including arrival time, mode of entrance, and washout time between malignant and benign thyroid nodules (p < 0.05), while all CEUS indicators showed statistically significant differences in the total group and ≥10 mm subgroup (p < 0.05). All the five CEUS indicators displayed better diagnostic performance with specificity (92.86, 92.14, 95.71, 90.71, and 90.71 %, respectively) and diagnostic accuracy (80.79, 79.48, 74.67, 75.11, and 81.66 %, respectively), while the sensitivity and negative predictive value of non-enhancement were 95.51 and 95.83 %, respectively, with an accuracy of 77.29 %. CEUS is a very promising diagnostic technique that could improve the diagnostic accuracy of identifying benign thyroid lesions to spare a large number of patients an unnecessary invasive procedure. PMID:26732040

  5. Diagnostic value of contrast-enhanced ultrasound in papillary thyroid microcarcinoma

    PubMed Central

    CHEN, HONG YAN; LIU, WEI YAN; ZHU, HUI; JIANG, DAO WEN; WANG, DONG HUA; CHEN, YONGQI; LI, WEIHUA; PAN, GAOFENG

    2016-01-01

    The aim of the present study was to explore the value and characteristics of contrast-enhanced ultrasound (CEUS) in the diagnosis of papillary thyroid microcarcinoma (PTMC). By analyzing CEUS information of 130 nodules obtained from 106 patients with PTMC, who had been diagnosed by surgery and pathological analysis, CEUS characteristics of PTMC nodules were concluded. Based on the results, the PTMC nodules were divided into three groups as follows: 32 nodules (24.62%) were found to be enhanced earlier than the surrounding normal thyroid tissue, 95 nodules (73.08%) were enhanced at the same time as the normal thyroid tissue and 3 nodules (2.30%) were enhanced later than the normal thyroid tissue. The results also demonstrated that the peak enhancement intensity of the 130 nodules was lower compared with the irregular intensity of the normal parenchyma in corresponding thyroids, and that PTMC enhancement washed out faster than in normal thyroid parenchyma. In conclusion, the PTMC characteristics that CEUS can detect may improve the diagnostic accuracy and provide valuable information for the treatment of the disease. PMID:27168773

  6. Vascular perfusion kinetics by contrast-enhanced ultrasound are related to synovial microvascularity in the joints of psoriatic arthritis.

    PubMed

    Fiocco, Ugo; Stramare, Roberto; Coran, Alessandro; Grisan, Enrico; Scagliori, Elena; Caso, Francesco; Costa, Luisa; Lunardi, Francesca; Oliviero, Francesca; Bianchi, Fulvia Chieco; Scanu, Anna; Martini, Veronica; Boso, Daniele; Beltrame, Valeria; Vezzù, Maristella; Cozzi, Luisella; Scarpa, Raffaele; Sacerdoti, David; Punzi, Leonardo; Doria, Andrea; Calabrese, Fiorella; Rubaltelli, Leopoldo

    2015-11-01

    The purpose of the study was to assess the relationship of the continuous mode contrast-enhanced harmonic ultrasound (CEUS) imaging with the histopathological and immunohistochemical (IHC) quantitative estimation of microvascular proliferation on synovial samples of patients affected by sustained psoriatic arthritis (PsA). A dedicated linear transducer was used in conjunction with a specific continuous mode contrast enhanced harmonic imaging technology with a second-generation sulfur hexafluoride-filled microbubbles C-agent. The examination was carried out within 1 week before arthroscopic biopsies in 32 active joints. Perfusional parameters were analyzed including regional blood flow (RBF); peak (PEAK) of the C-signal intensity, proportional to the regional blood volume (RBV); beta (β) perfusion frequency; slope (S), representing the inclination of the tangent in the origin; and the refilling time (RT), the reverse of beta. Arthroscopic synovial biopsies were targeted in the hypervascularity areas, as in the same knee recesses assessed by CEUS; the synovial cell infiltrate and vascularity (vessel density) was evaluated by IHC staining of CD45 (mononuclear cell) and CD31, CD105 (endothelial cell) markers, measured by computer-assisted morphometric analysis. In the CEUS area examined, the corresponding time-intensity curves demonstrated a slow rise time. Synovial histology showed slight increased layer lining thickness, perivascular lymphomonocyte cell infiltration, and microvascular remodeling, with marked vessel wall thickening with reduction of the vascular lumen. A significant correlation was found between RT and CD31+ as PEAK and CD105+ vessel density; RT was inversely correlated to RBF, PEAK, S, and β. The study demonstrated the association of the CEUS perfusion kinetics with the histopathological quantitative and morphologic estimation of synovial microvascular proliferation, suggesting that a CEUS imaging represents a reliable tool for the estimate of the

  7. Algorithm of contrast enhancement for visual document images with underexposure

    NASA Astrophysics Data System (ADS)

    Tian, Da-zeng; Hao, Yong; Ha, Ming-hu; Tian, Xue-dong; Ha, Yan

    2008-03-01

    The visual document image is the electronic image about newspapers, books or magazines taken by the digital camera, the digital vidicon etc. Whose getting is more convenient than got from the scanner. Along with the development of OCR technology, visual document images could be recognized by OCR. Affected by some factors, digital image will be degraded during its acquisition, processing, transmission. One of the main problems affecting image quality, leading to unpleasant pictures, comes from improper exposure to light. So preprocessing is becoming much more significant before recognition in order to get an appropriate image satisfied recognition requirements. For the low contrast images with underexposure, according to the visual document image's characteristic, a new algorithm, based on image background separation, for image object enhance is proposed, The proposed method calculate the threshold of separation firstly, And different processing be taken on foreground and background: Various gray values in image background will be merged into unitary gray value, whereas the contrast of foreground will be enhanced. The proposed algorithm implemented in Visual C++ 6.0, and compared the result of proposed algorithm with the results of Otsu's method and histogram equalization. The experimental results show clearly that this algorithm could enhance the details of image object adequately, increase the recognition rate, and avoid the block effect at the same time.

  8. Dyke Award. Evaluation of contrast-enhanced MR imaging in a brain-abscess model.

    PubMed

    Runge, V M; Clanton, J A; Price, A C; Herzer, W A; Allen, J H; Partain, C L; James, A E

    1985-01-01

    An alpha-streptococcus brain abscess was produced in five dogs and studied with magnetic resonance (MR) imaging (0.5 T) and computed tomography (CT). Non-contrast- and contrast-enhanced CT scans were obtained using gadolinium diethylenetriamine-pentaacetic acid (Gd DTPA) for MR imaging and meglumine iothalamate for CT scanning. Each animal was evaluated in the early and later cerebritis stages of abscess evolution. On MR, the area of cerebritis enhanced after administration of Gd DTPA in a manner similar to that observed with contrast-enhanced CT. However, contrast enhancement was greater on the MR examination. Early lesions in two animals were detected only with contrast-enhanced MR imaging. This experience suggests that intravenously administered agents such as Gd DTPA should increase the diagnostic potential of MR imaging in neurologic diseases, especially those altering the blood-brain barrier. PMID:3920873

  9. Automatic image equalization and contrast enhancement using Gaussian mixture modeling.

    PubMed

    Celik, Turgay; Tjahjadi, Tardi

    2012-01-01

    In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types. PMID:21775265

  10. Molecular Optical Coherence Tomography Contrast Enhancement and Imaging

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy L.; Applegate, Brian E.; Tucker-Schwartz, Jason M.; Skala, Melissa C.; Kim, Jongsik; Boppart, Stephen A.

    Histochemistry began as early as the nineteenth century, with the development of synthetic dyes that provided spatially mapped chemical contrast in tissue [1]. Stains such as hematoxylin and eosin, which contrast cellular nuclei and cytoplasm, greatly aid in the interpretation of microscopy images. An analogous development is currently taking place in biomedical imaging, whereby techniques adapted for MRI, CT, and PET now provide in vivo molecular imaging over the entire human body, aiding in both fundamental research discovery and in clinical diagnosis and treatment monitoring. Because OCT offers a unique spatial scale that is intermediate between microscopy and whole-body biomedical imaging, molecular contrast OCT (MCOCT) also has great potential for providing new insight into in vivo molecular processes. The strength of MCOCT lies in its ability to isolate signals from a molecule or contrast agent from the tissue scattering background over large scan areas at depths greater than traditional microscopy techniques while maintaining high resolution.

  11. Medical image visual appearance improvement using bihistogram Bezier curve contrast enhancement: data from the Osteoarthritis Initiative.

    PubMed

    Gan, Hong-Seng; Swee, Tan Tian; Abdul Karim, Ahmad Helmy; Sayuti, Khairil Amir; Abdul Kadir, Mohammed Rafiq; Tham, Weng-Kit; Wong, Liang-Xuan; Chaudhary, Kashif T; Ali, Jalil; Yupapin, Preecha P

    2014-01-01

    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of "adequate contrast enhancement" to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection. PMID:24977191

  12. A new hardware-efficient algorithm and reconfigurable architecture for image contrast enhancement.

    PubMed

    Huang, Shih-Chia; Chen, Wen-Chieh

    2014-10-01

    Contrast enhancement is crucial when generating high quality images for image processing applications, such as digital image or video photography, liquid crystal display processing, and medical image analysis. In order to achieve real-time performance for high-definition video applications, it is necessary to design efficient contrast enhancement hardware architecture to meet the needs of real-time processing. In this paper, we propose a novel hardware-oriented contrast enhancement algorithm which can be implemented effectively for hardware design. In order to be considered for hardware implementation, approximation techniques are proposed to reduce these complex computations during performance of the contrast enhancement algorithm. The proposed hardware-oriented contrast enhancement algorithm achieves good image quality by measuring the results of qualitative and quantitative analyzes. To decrease hardware cost and improve hardware utilization for real-time performance, a reduction in circuit area is proposed through use of parameter-controlled reconfigurable architecture. The experiment results show that the proposed hardware-oriented contrast enhancement algorithm can provide an average frame rate of 48.23 frames/s at high definition resolution 1920 × 1080. PMID:25148665

  13. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    SciTech Connect

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.

  14. SNR and Contrast Enhancement Techniques for the Photoacoustic Radar Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mandelis, Andreas

    2016-07-01

    This paper presents two methods for photoacoustic signal enhancement in biological tissues. One such method is based on the fact that temperature can affect the signals of the photoacoustic radar. Therefore, thermally assisted methods have been used for photoacoustic imaging contrast improvement. Another method is based on harmonic wavelength modulation which results in a differential PA radar signal to strengthen early cancer detection. Two chirped waveforms modulated out-of-phase between 680 nm and 800 nm can effectively suppress the background noise, greatly enhance the SNR and detect small variations in hemoglobin oxygenation levels, thereby distinguishing pre-malignant tumors. Experimental results demonstrate the accuracy of the frequency-modulated differential measurement with sheep blood at different hemoglobin oxygenation (S_tO2) levels.

  15. Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS).

    PubMed

    Greis, Christian

    2011-01-01

    Ultrasound contrast agents consist of tiny gas-filled microbubbles the size of red blood cells. Due to their size distribution, they are purely intravascular tracers which do not extravasate into the interstitial fluid, and thus they are perfect agents for imaging blood distribution and flow. Using ultrasound scanners with contrast-specific software, the specific microbubble-derived echo signals can be separated from tissue signals in realtime, allowing selective imaging of the contrast agent. The signal intensity obtained lies in a linear relationship to the amount of microbubbles in the target organ, which allows easy and reliable assessment of relative blood volume. Imaging of the contrast wash-in and wash-out after bolus injection, or more precisely using the flash-replenishment technique, allows assessment of regional blood flow velocity. Commercially available quantification software packages can calculate time-related intensity values from the contrast wash-in and wash-out phase for each image pixel from stored video clips. After fitting of a mathematical model curve according to the respective kinetic model (bolus or flash-replenishment kinetics), time/intensity curves (TIC) can be calculated from single pixels or user-defined regions of interest (ROI). Characteristic parameters of these TICs (e.g. peak intensity, area under the curve, wash-in rate, etc.) can be displayed as color-coded parametric maps on top of the anatomical image, to identify cold and hot spots with abnormal perfusion. PMID:22214685

  16. Single-Antenna Microwave Ablation Under Contrast-Enhanced Ultrasound Guidance for Treatment of Small Renal Cell Carcinoma: Preliminary Experience

    SciTech Connect

    Carrafiello, Gianpaolo Mangini, Monica Fontana, Federico Recaldini, Chiara Piacentino, Filippo Pellegrino, Carlo Lagana, Domenico; Cuffari, Salvatore; Marconi, Alberto; Fugazzola, Carlo

    2010-04-15

    The purpose of this study was to determine the safety, effectiveness, and feasibility of microwave ablation (MWA) of small renal cell carcinomas (RCCs) in selected patients. Institutional review board and informed consent were obtained. From December 2007 to January 2009, 12 patients (8 male, 4 female) were enrolled in a treatment group, in which percutaneous MWA of small RCCs was performed under contrast-enhanced ultrasound guidance. The tumors were 1.7-2.9 cm in diameter (mean diameter, 2.0 cm).Therapeutic effects were assessed at follow-up with computed tomography. All patients were followed up for 3-14 months (mean, 6 months) to observe the therapeutic effects and complications (according to SIR classification). Assessment was carried out with CT imaging. No severe complications or unexpected side effects were observed after the MWA procedures. In all cases technical success was achieved. Clinical effectiveness was 100%; none of the patients showed recurrence on imaging. In conclusion, our preliminary results support the use of MWA for the treatment of small renal tumors. This technology can be applied in select patients who are not candidates for surgery, as an alternative to other ablative techniques.

  17. Contrast enhanced-magnetic resonance imaging as a surrogate to map verteporfin delivery in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Bryant, Amber; Gunn, Jason R.; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2013-12-01

    The use of in vivo contrast-enhanced magnetic resonance (MR) imaging as a surrogate for photosensitizer (verteporfin) dosimetry in photodynamic therapy of pancreas cancer is demonstrated by correlating MR contrast uptake to ex vivo fluorescence images on excised tissue. An orthotopic pancreatic xenograft mouse model was used for the study. A strong correlation (r=0.57) was found for bulk intensity measurements of T1-weighted gadolinium enhancement and verteporfin fluorescence in the tumor region of interest. The use of contrast-enhanced MR imaging shows promise as a method for treatment planning and photosensitizer dosimetry in human photodynamic therapy (PDT) of pancreas cancer.

  18. Effectiveness of contrast-enhanced harmonic endoscopic ultrasound for the evaluation of solid pancreatic masses

    PubMed Central

    Park, Jin-Seok; Kim, Hyung Kil; Bang, Byoung Wook; Kim, Sang Gu; Jeong, Seok; Lee, Don Haeng

    2014-01-01

    AIM: To evaluate the usefulness of contrast-enhanced harmonic endoscopic ultrasound (CH-EUS) in differentiating between pancreatic adenocarcinomas and other pancreatic disease. METHODS: This retrospective cohort study evaluated 90 patients who were seen between November 2010 and May 2013. All these patients had solid pancreatic masses that had a hypoechoic appearance on EUS. All patients underwent CH-EUS to evaluate this diagnostic method’s usefulness. The mass lesions observed on CH-EUS were classified into three categories based on their echo intensity: hypoenhanced, isoenhanced, and hyperenhanced lesions. We adjusted the sensitivity and the specificity of each category for detecting malignancies. We also estimated the accuracy of CH-EUS by comparing it to a pathological diagnosis. RESULTS: Of the 90 patients, 62 had a pancreatic adenocarcinoma. Fifty-seven out of 62 pancreatic adenocarcinomas showed a hypoenhanced pattern on CH-EUS. The sensitivity was 92%, the specificity 68% and the accuracy approximately 82%. The area under the curve of the receiver operating characteristic analysis for CH-EUS was 0.799. There is a significant association between the hypoenhanced pattern on CH-EUS and pancreatic duct adenocarcinoma (χ2 = 35.264, P < 0.001). In pathological examinations, the number of specimens for EUS-fine needle aspiration (EUS-FNA) was considered insufficient for diagnosis in three patients, and in two patients, the results were reported to be negative for malignancy. Pancreatic masses in all five patients revealed a hypoenhanced pattern with CH-EUS. Three patients were diagnosed with pancreatic adenocarcinoma based on the pathology results of a biopsy, and the remaining two patients were clinically diagnosed with malignancy. CONCLUSION: CH-EUS is useful for distinguishing between pancreatic adenocarcinoma and other pancreatic disease. When a pancreatic mass shows a hypoenhanced pattern on CH-EUS but involves either insufficient samples or negative

  19. Role of contrast-enhanced ultrasound in evaluating the efficiency of ultrasound guided percutaneous microwave ablation in patients with renal cell carcinoma

    PubMed Central

    Li, Xin; Liang, Ping; Yu, Jie; Yu, Xiao-Ling; Liu, Fang-Yi; Cheng, Zhi-Gang; Han, Zhi-Yu

    2013-01-01

    Background The aim of the study was to evaluate the efficiency and feasibility of contrast-enhanced ultrasound (CEUS) with Sonovue in assessing of renal cell carcinomas (RCCs) following ultrasound (US)-guided percutaneous microwave ablation (MWA). Patinets and methods Seventy-nine patients (60 males and 19 females) with 83 lesions (mean size 3.2±1.6 cm) were treated by US-guided percutaneous MWA. The CEUS results of the third day after the ablation were compared with the synchronous contrast-enhanced computed tomography (CT)/magnetic resonance imaging (MRI) results and biopsy pathological results. The follow-up was performed by CEUS and CT/MRI after 1, 3, 6 months and every 6 months subsequently. The combination of clinical follow-up results and CT/MRI imaging findings was the reference standard of CEUS results for evaluating the therapeutic effect. The identification of residual or recurrence tumour was assessed by two blinded radiologists. Results On the third day after MWA, CEUS showed 68 of 83 lesions (68/83, 81.9%) successfully ablated and 15 of 83 (18.1%) with residual tumours. Among residual tumours, 13 (86.7%) were confirmed by contrast-enhanced CT/MRI findings and biopsy results. The sensitivity, specificity, accuracy, positive and negative predictive value of CEUS evaluating the short-term MWA effectiveness were 100%, 97.1%, 97.6%, 86.7% and 100%, respectively. During the six years follow-up (median 26 months), the CEUS showed recurrence in 7 patients, and six of them achieved consistent results on CEUS and CT/MRI imaging. The sensitivity, specificity, accuracy, positive and negative predictive value for CEUS evaluating long-term MWA effectiveness were 85.7%, 98.7%, 97.6%, 85.7% and 98.7%, respectively. Conclusions The post-procedural CEUS demonstrated as an effective and feasible method in evaluating a therapeutic effect of RCCs following MWA. PMID:24294186

  20. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series.

    PubMed

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S; Grant, Edward G; Christian, Eisha; Zada, Gabriel

    2016-03-01

    OBJECTIVE Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. METHODS Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. RESULTS Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. CONCLUSIONS Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of

  1. Benign liver lesions: grey-scale and contrast-enhanced ultrasound appearances

    PubMed Central

    Obaro, A E

    2015-01-01

    Ultrasound is often the first point of detection of liver lesions, with up to 75% of liver lesions detected at ultrasound having benign histology. In 2012, NICE issued recommendations that ultrasound contrast be used for the evaluation of incidentally discovered liver lesions. This has been demonstrated to provide a rapid and cost-effective evaluation for incidental liver lesions, in many cases precluding the need for further CT or MRI scans. The aim of this review is to demonstrate the ultrasound features of benign liver lesions, and to demonstrate their further characterisation with contrast ultrasound.

  2. Image of tumor metastasis and inflammatory lymph node enlargement by contrast-enhanced ultrasonography

    PubMed Central

    Aoki, Takaya; Moriyasu, Fuminori; Yamamoto, Kei; Shimizu, Masafumi; Yamada, Masahiko; Imai, Yasuharu

    2011-01-01

    AIM: To compare the difference between tumor-induced lymph node enlargement and inflammation-induced lymph node enlargement by contrast-enhanced ultrasonography and pathological findings. METHODS: A model of tumor-induced lymph node metastasis was prepared by embedding a VX2 tumor into the hind paws of white rabbits. A model of inflammation-induced enlargement was prepared by injecting a suspension of Escherichia coli into separate hind paws of white rabbits. Then, a solution of Sonazoid™ (GE Healthcare, Oslo, Norway) was injected subcutaneously in the proximity of the lesion followed by contrast-enhanced ultrasonography of the enlarged popliteal lymph nodes. RESULTS: In the contrast-enhanced ultrasonography of the tumor-induced metastasis model, the sentinel lymph node was imaged. An area of filling defect was observed in that enlarged lymph node. In the histology examination, the area of filling defect corresponded to the metastatic lesion of the tumor. Contrast-enhanced ultrasonography of the model on inflammation-induced lymph node enlargement, and that of the acute inflammation model performed 3-7 d later, revealed dense staining that was comparatively uniform. The pathological findings showed acute lymphadenitis mainly due to infiltration of inflammatory cells. Contrast-enhanced ultrasonography that was performed 28 d post-infection in the acute inflammation model showed speckled staining. Inflammation-induced cell infiltration and fiberization, which are findings of chronic lymphadenitis, were seen in the pathological findings. CONCLUSION: Sentinel lymph node imaging was made possible by subcutaneous injection of Sonazoid™. Contrast-enhanced ultrasonography was suggested to be useful in differentiating tumor-induced enlargement and inflammation-induced enlargement of lymph nodes. PMID:22224178

  3. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    Purpose: The role of 18fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. Materials and Methods: A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. Results: The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. Conclusion: The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted. PMID:26917889

  4. Impact of image acquisition timing on image quality for dual energy contrast-enhanced breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Mainprize, James G.; Puong, Sylvie; Carton, Ann-Katherine; Iordache, Razvan; Muller, Serge; Yaffe, Martin J.

    2012-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) image quality is affected by a large parameter space including the tomosynthesis acquisition geometry, imaging technique factors, the choice of reconstruction algorithm, and the subject breast characteristics. The influence of most of these factors on reconstructed image quality is well understood for DBT. However, due to the contrast agent uptake kinetics in CE imaging, the subject breast characteristics change over time, presenting a challenge for optimization . In this work we experimentally evaluate the sensitivity of the reconstructed image quality to timing of the low-energy and high-energy images and changes in iodine concentration during image acquisition. For four contrast uptake patterns, a variety of acquisition protocols were tested with different timing and geometry. The influence of the choice of reconstruction algorithm (SART or FBP) was also assessed. Image quality was evaluated in terms of the lesion signal-difference-to-noise ratio (LSDNR) in the central slice of DE CE-DBT reconstructions. Results suggest that for maximum image quality, the low- and high-energy image acquisitions should be made within one x-ray tube sweep, as separate low- and high-energy tube sweeps can degrade LSDNR. In terms of LSDNR per square-root dose, the image quality is nearly equal between SART reconstructions with 9 and 15 angular views, but using fewer angular views can result in a significant improvement in the quantitative accuracy of the reconstructions due to the shorter imaging time interval.

  5. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  6. Coronary artery calcium quantification from contrast enhanced CT using gemstone spectral imaging and material decomposition.

    PubMed

    Fuchs, Tobias A; Stehli, Julia; Dougoud, Svetlana; Sah, Bert-Ram; Bull, Sacha; Clerc, Olivier F; Possner, Mathias; Buechel, Ronny R; Gaemperli, Oliver; Kaufmann, Philipp A

    2014-10-01

    To explore the feasibility of coronary artery calcium (CAC) measurement from low-dose contrast enhanced coronary CT angiography (CCTA) as this may obviate the need for an unenhanced CT scan. 52 patients underwent unenhanced cardiac CT and prospectively ECG triggered contrast enhanced CCTA (Discovery HD 750, GE Healthcare, Milwaukee, WI, USA). The latter was acquired in single-source dual-energy mode [gemstone spectral imaging (GSI)]. Virtual unenhanced images were generated from GSI CCTA by monochromatic image reconstruction of 70 keV allowing selective iodine material suppression. CAC scores from virtual unenhanced CT were compared to standard unenhanced CT including a linear regression model. After iodine subtraction from the contrast enhanced CCTA the attenuation in the ascending aorta decreased significantly from 359 ± 61 to 54 ± 8 HU (P < 0.001), the latter comparing well to the value of 64 ± 55 HU found in the standard unenhanced CT (P = ns) confirming successful iodine subtraction. After introducing linear regression formula the mean values for Agatston, Volume and Mass scores of virtual unenhanced CT were 187 ± 321, 72 ± 114 mm(3), and 27 ± 46 mg/cm(3), comparing well to the values from standard unenhanced CT (187 ± 309, 72 ± 110 mm(3), and 27 ± 45 mg/cm(3)) yielding an excellent correlation (r = 0.96, r = 0.96, r = 0.92; P < 0.001). Mean estimated radiation dose revealed 0.83 ± 0.02 mSv from the unenhanced CT and 1.70 ± 0.53 mSv from the contrast enhanced CCTA. Single-source dual-energy scanning with GSI allows CAC quantification from low dose contrast enhanced CCTA by virtual iodine contrast subtraction. PMID:24993390

  7. A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning

    2014-01-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  8. CW-THz image contrast enhancement using wavelet transform and Retinex

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  9. Optimization Of Phase-Contrast Enhanced X-Ray Imaging Of D-T Layers

    SciTech Connect

    Kozioziemski, B

    2005-06-17

    Phase-contrast enhanced x-ray imaging has been demonstrated for characterization of D-T layers inside of beryllium shells. These first demonstrations used both scintillator and direct-detection imaging. This memo details tradeoffs between the two methods in order to optimize the imaging. The guiding principle for optimization is to minimize the exposure time while maximizing the signal-to-noise ratio at the D-T solid-vapor interface. Direct-detection and scintillator performance are comparable when imaging the full capsule. However, a scintillator allows for higher-resolution images necessary for studying local defects in the D-T layer.

  10. Percutaneous Ultrasound-Guided Laser Ablation with Contrast-Enhanced Ultrasonography for Hyperfunctioning Parathyroid Adenoma: A Preliminary Case Series

    PubMed Central

    Jiang, Tianan; Chen, Fen; Zhou, Xiang; Hu, Ying; Zhao, Qiyu

    2015-01-01

    The study was to evaluate the safety and effectiveness of ultrasound-guided percutaneous laser ablation (pLA) as a nonsurgical treatment for primary parathyroid adenoma. Surgery was contraindicated in, or refused by, the included patients. No lesion enhancement on contrast-enhanced ultrasound immediately after pLA was considered “complete ablation.” Nodule size, serum calcium, and parathyroid hormone level were compared before and after pLA. Complete ablation was achieved in all 21 patients with 1 (n = 20) or 2 (n = 1) sessions. Nodule volume decreased from 0.93 ± 0.58 mL at baseline to 0.53 ± 0.38 and 0.48 ± 0.34 mL at 6 and 12 months after pLA (P < 0.05). At 1 day, 6 months, and 12 months after pLA, serum PTH decreased from 15.23 ± 3.00 pmol/L at baseline to 7.41 ± 2.79, 6.95 ± 1.78, and 6.90 ± 1.46 pmol/L, serum calcium decreased from 3.77 ± 0.77 mmol/L at baseline to 2.50 ± 0.72, 2.41 ± 0.37, and 2.28 ± 0.26 mmol/L, respectively (P < 0.05). At 12 months, treatment success (normalization of PTH and serum calcium) was achieved in 81%. No serious complications were observed. Ultrasound-guided pLA with contrast-enhanced ultrasound is a viable alternative to surgery for primary parathyroid adenoma. PMID:26788059

  11. Percutaneous Ultrasound-Guided Laser Ablation with Contrast-Enhanced Ultrasonography for Hyperfunctioning Parathyroid Adenoma: A Preliminary Case Series.

    PubMed

    Jiang, Tianan; Chen, Fen; Zhou, Xiang; Hu, Ying; Zhao, Qiyu

    2015-01-01

    The study was to evaluate the safety and effectiveness of ultrasound-guided percutaneous laser ablation (pLA) as a nonsurgical treatment for primary parathyroid adenoma. Surgery was contraindicated in, or refused by, the included patients. No lesion enhancement on contrast-enhanced ultrasound immediately after pLA was considered "complete ablation." Nodule size, serum calcium, and parathyroid hormone level were compared before and after pLA. Complete ablation was achieved in all 21 patients with 1 (n = 20) or 2 (n = 1) sessions. Nodule volume decreased from 0.93 ± 0.58 mL at baseline to 0.53 ± 0.38 and 0.48 ± 0.34 mL at 6 and 12 months after pLA (P < 0.05). At 1 day, 6 months, and 12 months after pLA, serum PTH decreased from 15.23 ± 3.00 pmol/L at baseline to 7.41 ± 2.79, 6.95 ± 1.78, and 6.90 ± 1.46 pmol/L, serum calcium decreased from 3.77 ± 0.77 mmol/L at baseline to 2.50 ± 0.72, 2.41 ± 0.37, and 2.28 ± 0.26 mmol/L, respectively (P < 0.05). At 12 months, treatment success (normalization of PTH and serum calcium) was achieved in 81%. No serious complications were observed. Ultrasound-guided pLA with contrast-enhanced ultrasound is a viable alternative to surgery for primary parathyroid adenoma. PMID:26788059

  12. Preoperative Gross Classification of Gastric Adenocarcinoma: Comparison of Double Contrast-Enhanced Ultrasound and Multi-Detector Row CT.

    PubMed

    Yan, Caoxin; Bao, Xiaofeng; Shentu, Weihui; Chen, Jian; Liu, Chunmei; Ye, Qin; Wang, Liuhong; Tan, Yangbin; Huang, Pintong

    2016-07-01

    The aim of this study was to compare the accuracy of multi-detector computed tomography (MDCT) with double contrast-enhanced ultrasound (DCEUS), in which intravenous microbubbles are used alongside oral contrast-enhanced ultrasound, in determining the gross classification of patients with gastric carcinoma (GC). Altogether, 239 patients with GC proved by histology after endoscopic biopsy were included in this study. DCEUS and MDCT were performed pre-operatively. The diagnostic accuracies of DCEUS and MDCT in determining the gross classification were calculated and compared. The overall accuracy of DCEUS in determining the gross appearance of GC was higher than that of MDCT (84.9% vs. 79.9%, p < 0.001). There was no significant difference in accuracy between DCEUS and MDCT for Borrmann I and IV classifications of advanced gastric cancer (χ(2), p = 0.323 for Borrmann type I, p = 0.141 for Borrmann type IV). The accuracy of DCEUS for early GC and Borrmann II and III classifications of GC was higher than that of MDCT (χ(2), p = 0.000 for all). DCEUS may be regarded as a valuable complementary tool to MDCT in determining the gross appearance of gastric adenocarcinoma pre-operatively. PMID:27072076

  13. Contrast-Enhanced Magnetic Resonance Imaging in Pediatric Patients: Review and Recommendations for Current Practice

    PubMed Central

    Bhargava, Ravi; Hahn, Gabriele; Hirsch, Wolfgang; Kim, Myung-Joon; Mentzel, Hans-Joachim; Olsen, Øystein E.; Stokland, Eira; Triulzi, Fabio; Vazquez, Elida

    2013-01-01

    Magnetic resonance imaging (MRI), frequently with contrast enhancement, is the preferred imaging modality for many indications in children. Practice varies widely between centers, reflecting the rapid pace of change and the need for further research. Guide-line changes, for example on contrast-medium choice, require continued practice reappraisal. This article reviews recent developments in pediatric contrast-enhanced MRI and offers recommendations on current best practice. Nine leading pediatric radiologists from internationally recognized radiology centers convened at a consensus meeting in Bordeaux, France, to discuss applications of contrast-enhanced MRI across a range of indications in children. Review of the literature indicated that few published data provide guidance on best practice in pediatric MRI. Discussion among the experts concluded that MRI is preferred over ionizing-radiation modalities for many indications, with advantages in safety and efficacy. Awareness of age-specific adaptations in MRI technique can optimize image quality. Gadolinium-based contrast media are recommended for enhancing imaging quality. The choice of most appropriate contrast medium should be based on criteria of safety, tolerability, and efficacy, characterized in age-specific clinical trials and personal experience. PMID:25114547

  14. Optimum wavelet based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm.

    PubMed

    Daniel, Ebenezer; Anitha, J

    2016-04-01

    Unsharp masking techniques are a prominent approach in contrast enhancement. Generalized masking formulation has static scale value selection, which limits the gain of contrast. In this paper, we propose an Optimum Wavelet Based Masking (OWBM) using Enhanced Cuckoo Search Algorithm (ECSA) for the contrast improvement of medical images. The ECSA can automatically adjust the ratio of nest rebuilding, using genetic operators such as adaptive crossover and mutation. First, the proposed contrast enhancement approach is validated quantitatively using Brain Web and MIAS database images. Later, the conventional nest rebuilding of cuckoo search optimization is modified using Adaptive Rebuilding of Worst Nests (ARWN). Experimental results are analyzed using various performance matrices, and our OWBM shows improved results as compared with other reported literature. PMID:26945462

  15. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  16. An efficient method for accurate segmentation of LV in contrast-enhanced cardiac MR images

    NASA Astrophysics Data System (ADS)

    Suryanarayana K., Venkata; Mitra, Abhishek; Srikrishnan, V.; Jo, Hyun Hee; Bidesi, Anup

    2016-03-01

    Segmentation of left ventricle (LV) in contrast-enhanced cardiac MR images is a challenging task because of high variability in the image intensity. This is due to a) wash-in and wash-out of the contrast agent over time and b) poor contrast around the epicardium (outer wall) region. Current approaches for segmentation of the endocardium (inner wall) usually involve application of a threshold within the region of interest, followed by refinement techniques like active contours. A limitation of this method is under-segmentation of the inner wall because of gradual loss of contrast at the wall boundary. On the other hand, the challenge in outer wall segmentation is the lack of reliable boundaries because of poor contrast. There are four main contributions in this paper to address the aforementioned issues. First, a seed image is selected using variance based approach on 4D time-frame images over which initial endocardium and epicardium is segmented. Secondly, we propose a patch based feature which overcomes the problem of gradual contrast loss for LV endocardium segmentation. Third, we propose a novel Iterative-Edge-Refinement (IER) technique for epicardium segmentation. Fourth, we propose a greedy search algorithm for propagating the initial contour segmented on seed-image across other time frame images. We have experimented our technique on five contrast-enhanced cardiac MR Datasets (4D) having a total of 1097 images. The segmentation results for all 1097 images have been visually inspected by a clinical expert and have shown good accuracy.

  17. Application of image processing techniques for contrast enhancement in dense breast digital mammograms

    NASA Astrophysics Data System (ADS)

    Nunes, Fatima d. L. d. S.; Schiabel, Homero; Benatti, Rodrigo H.

    1999-05-01

    Dense breasts, that usually are characteristic of women less than 40 years old, difficult many times early detection of breast cancer. In this work we present the application of some image processing techniques intended to enhance the contrast in dense breast images, regarding the detection of clustered microcalcifications. The procedure was, firstly, determining in the literature the main techniques used for mammographic images contrast enhancement. The results indicate that, in general: (1) as expected, the overall performance of the CAD scheme for clusters detection decreased when applied exclusively to dense breast images, compared to the application to a set of images without this characteristic; (2) most of the techniques for contrast enhancement used successfully in generic mammography images databases are not able to enhance structures of athirst in databases formed only by dense breasts images, due to the very poor contrast between microcalcifications, for example, and other tissues. These features should stress, therefore, the need of developing a methodology specifically for this type of images in order to provide better conditions to the detection of breast suspicious structures in these group of women.

  18. Power Doppler imaging as a basis for automated endocardial border detection during left ventricular contrast enhancement.

    PubMed

    Mor-Avi, V; Bednarz, J; Weinert, L; Sugeng, L; Lang, R M

    2000-08-01

    Echocardiographic evaluation of left ventricular (LV) systolic function relies on endocardial visualization, which can be improved when necessary using contrast enhancement. However, there is no method to automatically detect the endocardial boundary from contrast-enhanced images. We hypothesized that this could be achieved using harmonic power Doppler imaging. Twenty-two patients were studied in two protocols: (1) 11 patients with poorly visualized endocardium (> 3 contiguous segments not visualized) and (2) 11 consecutive patients referred for dobutamine stress echocardiography who were studied at rest and at peak dobutamine infusion. Patients were imaged in the apical four-chamber view using harmonic power Doppler mode (HP SONOS 5500) during LV contrast enhancement (Optison or Definity DMP115). Digital images were analyzed using custom software designed to automatically extract the endocardial boundary from power Doppler color overlays. LV cavity area was automatically measured frame-by-frame throughout the cardiac cycle, and fractional area change calculated and compared with those obtained by manually tracing the endocardial boundary in end-systolic and end-diastolic gray scale images. Successful border detection and tracking throughout the cardiac cycle was possible in 9 of 11 patients with poor endocardial definition and in 10 of 11 unselected patients undergoing dobutamine stress testing. Fractional area change obtained from power Doppler images correlated well with manually traced area changes (r = 0.82 and r = 0.97, in protocols 1 and 2, respectively). Harmonic power Doppler imaging with contrast may provide a simple method for semi-automated border detection and thus facilitate the objective evaluation of LV function both at rest and under conditions of stress testing. This methodology may prove to be particularly useful in patients with poorly visualized endocardium. PMID:11000587

  19. Contrast-enhanced ultrasound and real-time elastography in the differential diagnosis of malignant and benign thyroid nodules

    PubMed Central

    Sui, Xin; Liu, Huai-Jun; Jia, Hong-Li; Fang, Qin-Mao

    2016-01-01

    The diagnostic value of contrast-enhanced ultrasound (CEUS) or real-time elastography (RTE) alone, as well as a combination of CEUS and RTE, in distinguishing benign from malignant thyroid nodules was investigated. Between August 2012 and June 2014, a total of 97 consecutive patients (50 male and 47 female patients; mean age, 48.6±12.4; age range, 27–70 years) with thyroid nodules referred for surgical treatment were examined by CEUS and RTE. The final diagnosis was obtained based on histological findings. Image analysis of the CEUS and RTE scans was performed. Considering the postoperative pathological results as the golden standard, a receiver operating characteristic (ROC) curve was constructed. Subsequently, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of CEUS alone, RTE alone and CEUS + RTE combination were calculated. Pathological examination showed 66 papillary carcinomas and 43 benign lesions, including 21 adenomas and 22 nodular goiters. The sensitivity, specificity, PPV, NPV and accuracy of CEUS were 81.82, 90.70, 93.10, 90.70 and 85.32%, respectively. In the case of RTE, the sensitivity, specificity, PPV, NPV and accuracy were 80.30, 88.37, 91.38, 88.37 and 83.49%, respectively. Furthermore, the combination of CEUS + RTE had a sensitivity of 95.45%, specificity of 95.35%, PPV of 96.92%, NPV of 95.35% and accuracy of 95.41%. Therefore, the CEUS + RTE combination showed a significantly higher sensitivity and specificity compared with CEUS or RTE alone (all P<0.05). Based on ROC analysis, the area under the curve (AUC) for CEUS, RTE and CEUS + RTE combination was 0.883, 0.863 and 0.959, respectively. The AUC of RTE alone was significantly lower compared with that of the CEUS + RTE combination. In conclusion, our results demonstrate that CEUS + RTE combination significantly increases the diagnostic performance for differential diagnosis of malignant and benign thyroid nodules compared with

  20. CONTRAST-ENHANCED ULTRASOUND ASSESSMENT OF IMPAIRED ADIPOSE TISSUE AND MUSCLE PERFUSION IN INSULIN-RESISTANT MICE

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Foster, Ted; Qi, Yue; Zhao, Yan; Peters, Dawn; Lindner, Jonathan R.

    2015-01-01

    Background In diabetes mellitus reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contributes to abnormal glucose homeostasis. Using contrast-enhanced ultrasound (CEU) we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance (IR) and correlates with glycemic control. Methods and Results Abdominal adipose tissue and skeletal muscle CEU perfusion imaging was performed in obese IR (db/db) mice at 11-12 or 14-16 weeks of age, and in control lean mice. Time-intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response over one hour was measured after insulin challenge (1 u/Kg, I.P.). Compared to control mice, db/db mice at 11-12 and 14-16 weeks had a higher glucose concentration area-under-the-curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively, p=0.0002), and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min/g, p=0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g, p=0.0017). The glucose area-under-the-curve correlated in a non-linear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF (r=0.81) and CBV (r=0.66). Adipocyte cell volume on histology was 25-fold higher in 14-16 week db/db versus control mice. Conclusions Abnormal adipose MBF and CBV in IR can be detected by CEU and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle appear to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response. PMID:25855669

  1. 2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound

    PubMed Central

    Ta, Casey N.; Eghtedari, Mohammad; Mattrey, Robert F.; Kono, Yuko; Kummel, Andrew C.

    2014-01-01

    Objectives Contrast-enhanced ultrasound (CEUS) cines of focal liver lesions (FLL) can be quantitatively analyzed to measure tumor perfusion on a pixel-by-pixel basis for diagnostic indication. However, CEUS cines acquired freehand and during free breathing cause non-uniform in-plane and out-of-plane motion from frame to frame. These motions create fluctuations in the time-intensity curves (TIC), reducing accuracy of quantitative measurements. Out-of-plane motion cannot be corrected by image registration in 2D CEUS and degrades the quality of in-plane motion correction (IPMC). A 2-tier IPMC strategy and adaptive out-of-plane motion filter (OPMF) are proposed to provide a stable correction of non-uniform motion to reduce the impact of motion on quantitative analyses. Materials and Methods 22 cines of FLLs were imaged with dual B-mode and contrast specific imaging to acquire a 3-minute TIC. B-mode images were analyzed for motion, and the motion correction was applied to both B-mode and contrast images. For IPMC, the main reference frame was automatically selected for each cine, and subreference frames were selected in each respiratory cycle and sequentially registered toward the main reference frame. All other frames were sequentially registered toward the local subreference frame. Four OPMFs were developed and tested: subsample Normalized Correlation (NC), subsample Sum of Absolute Differences (SAD), mean frame NC, and histogram. The frames that were most dissimilar to the OPMF reference frame using one of the four above criteria in each respiratory cycle were adaptively removed by thresholding against the low-pass filter of the similarity curve. OPMF was quantitatively evaluated by an out-of-plane motion metric (OPMM) that measured normalized variance in the high-pass filtered time-intensity curve within the tumor region-of-interest with low OPMM being the goal. IPMC and OPMF results were qualitatively evaluated by two blinded observers who ranked the motion in the

  2. Optical contrast enhancement of high-resolution ocular fundus imaging in vivo using polarimetry

    NASA Astrophysics Data System (ADS)

    Yang, Hansheng; Rao, Xuejun; Zhang, Yudong

    2007-11-01

    The adaptive optics (AO) retina imaging was performed with contrast enhancement by characterizing polarization parameters of the living retina. A removable pair of polarization state generating unit near the optical source and analysis unit near the CCD camera was incorporated into the basic 37-channle deformable mirror AO microscopic ophthalmoscope. Double-pass imaging polarimetry of the human eye was carried out, then incomplete Mueller matrix was calculated and analyzed to optimize the retina imaging condition using polarized light, which caused the subretinal structures with different polarization properties to emerge from the scattering light background, so the contrast of the image can be substantially enhanced. This method is demonstrated briefly and its validity was tested in the laboratory. The high-resolution images of ocular fundus are compared with 8-frame-averaging images we obtained prior to this method. The experiment results now show improved visualization of fundus structures to some extent without greatly sacrificing image resolution.

  3. Contrast Enhanced Abdominal Ultrasound in the Assessment of Ileal Inflammation in Crohn’s Disease: A Comparison with MR Enterography

    PubMed Central

    Horjus Talabur Horje, C. S.; Roovers, L.; Groenen, M. J. M.; Wahab, P. J.

    2015-01-01

    Background and Aims To prospectively examine the feasibility and accuracy of Contrast Enhanced Ultrasound (CEUS) in the assessment of Crohn’s disease (CD) activity in the terminal ileum in comparison to Magnetic Resonance Enterography (MRE), using endoscopy as a reference standard. Methods 105 consecutive patients with alleged clinically active CD were assessed by MRE and CEUS. CEUS of the terminal ileum was performed using an intravenous microbubble contrast enhancer. Accuracy values of CEUS and MRE for the presence of active terminal ileitis were evaluated using the Receiver Operating Characteristic method, using endoscopic findings as a reference standard. Sensitivity and specificity values of MRE and CEUS were compared by the McNemar test. Results CEUS was feasible in 98% of patients, MRE in all. Optimal diagnostic accuracy in CEUS was obtained at a peak intensity value of 10%, showing 100% sensitivity, 92% specificity and an accuracy of 99% in demonstrating ileal mucosal inflammation. For MRE, overall sensitivity, specificity and accuracy were, 87%, 100%, and 88%, respectively. CEUS and MRE were highly correlated in assessing length and wall thickness of the terminal ileum. CEUS identified 11 of 16 MRE-detected strictures, but no fistulae. Conclusion The accuracy of CEUS is comparable to that of MRE in the assessment of active, uncomplicated terminal ileal CD and therefore a valuable bedside alternative to MRE in the follow-up of these patients. PMID:26322970

  4. Contrast-enhanced ultrasonography: advance and current status in abdominal imaging

    PubMed Central

    2015-01-01

    In the field of contrast-enhanced ultrasonography (US), contrast agents are classified as either first- or second-generation agents depending on the gas within the microbubbles. In the case of first-generation contrast agents, a high-mechanical-index technique is used and only intermittent scanning is possible due to the early destruction of the microbubbles during the scanning. The use of second-generation contrast agents in a low-mechanical-index technique enables continuous scanning. Besides the detection and characterization of focal liver lesions, contrastenhanced US is helpful in the monitoring of radiofrequency ablation therapy and in the targeting step of an US-guided biopsy. Recently, there has been a demand for new criteria to evaluate the treatment response obtained using anti-angiogenic agents because morphologic criteria alone may not reflect the treatment response of the tumor and contrast-enhanced US can provide quantitative markers of tissue perfusion. In spite of the concerns related to its cost-effectiveness, contrast-enhanced US has the potential to be more widely used as a complimentary tool or to substitute the current imaging modalities in some occasions. PMID:25342120

  5. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  6. Imaging of myocardial infarction using carbon nanotube micro-computed tomography and delayed contrast enhancement

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Wang, Kohan; Kang, Eunice; Rojas, Mauricio; Willis, Monte; Lee, Yueh Z.; Lu, Jianping; Zhou, Otto

    2011-03-01

    We demonstrate the application of our cardiac- and respiratory-gated carbon nanotube (CNT) micro-CT system by evaluating murine myocardial infarction models with a delayed contrast enhancement technique. Myocardial infarction was induced in 8 wild-type male mice. The ischemia reperfusion model was achieved by surgical occlusion of the LAD artery for 30 minutes followed by 24 hours of reperfusion. Free-breathing subjects were anesthetized with isoflurane during imaging. Respiratory and cardiac signals were monitored externally to gate the scan. Micro-CT data was obtained at 50kV, 3mA cathode current for 15ms per projection. All images were acquired during end exhalation at either 0msec or 55msec after the R-wave (diastole or systole, respectively). Following administration of Omnipaque 300mgI/mL at 0.1ml/5g, images were obtained at 0msec after the R-wave. Fenestra VC was then administered at a 0.1ml/5g dose, followed by images 0 and 55msec after the R-wave. Hearts were then harvested, sliced 1mm thick and stained with TTC. All animals survived surgery and imaging; all demonstrated obvious delayed contrast enhancement in the left ventricular wall in Omnipaque images. Fenestra VC revealed cardiac functional changes quantified by low ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. CNT enabled gated cardiac micro-CT imaging demonstrates the ability to consistently identify areas of myocardial infarct in mice, providing a powerful tool for the study of cardiovascular biology. Further work is ongoing to streamline the imaging protocol and perform more quantitative analysis of the images.

  7. Cardiac Amyloidosis: Typical Imaging Findings and Diffuse Myocardial Damage Demonstrated by Delayed Contrast-Enhanced MRI

    SciTech Connect

    Sueyoshi, Eijun Sakamoto, Ichiro; Okimoto, Tomoaki; Hayashi, Kuniaki; Tanaka, Kyouei; Toda, Genji

    2006-08-15

    Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.

  8. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  9. Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images.

    PubMed

    Zheng, Yuanjie; Baloch, Sajjad; Englander, Sarah; Schnall, Mitchell D; Shen, Dinggang

    2007-01-01

    Accuracy of automatic cancer diagnosis is largely determined by two factors, namely, the precision of tumor segmentation, and the suitability of extracted features for discrimination between malignancy and benignancy. In this paper, we propose a new framework for accurate characterization of tumors in contrast enhanced MR images. First, a new graph cut based segmentation algorithm is developed for refining coarse manual segmentation, which allows precise identification of tumor regions. Second, by considering serial contrast-enhanced images as a single spatio-temporal image, a spatio-temporal model of segmented tumor is constructed to extract Spatio-Temporal Enhancement Patterns (STEPs). STEPs are designed to capture not only dynamic enhancement and architectural features, but also spatial variations of pixel-wise temporal enhancement of the tumor. While temporal enhancement features are extracted through Fourier transform, the resulting STEP framework captures spatial patterns of temporal enhancement features via moment invariants and rotation invariant Gabor textures. High accuracy of the proposed framework is a direct consequence of this two pronged approach, which is validated through experiments yielding, for instance, an area of 0.97 under the ROC curve. PMID:18044593

  10. Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy.

    PubMed

    Meng, Hong-Min; Lu, Limin; Zhao, Xu-Hua; Chen, Zhuo; Zhao, Zilong; Yang, Chan; Zhang, Xiao-Bing; Tan, Weihong

    2015-04-21

    Many one-photon fluorescence-based theranostic nanosystems have been developed for simultaneous therapeutic intervention/monitoring for various types of cancers. However, for early diagnosis of cancer, two-photon fluorescence microscopy (TPFM) can realize deep-tissue imaging with higher spatial resolution. In this study, we first report a multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Components of the nanoprobe include (1) two-photon dye-doped mesoporous silica nanoparticles (TPD-MSNs); (2) MnO2 nanosheets that act as a (i) gatekeeper for TPD-MSNs, (ii) quencher for TP fluorescence, and (iii) contrast agent for MRI; (3) cancer cell-targeting aptamers. Guided by aptamers, TPD-MSNs are rapidly internalized into the target cells. Next, intracellular glutathione reduces MnO2 to Mn(2+) ions, resulting in contrast-enhanced TP fluorescence and magnetic resonance signal for cellular imaging. Meanwhile, preloaded doxorubicin and Chlorin e6 are released for chemotherapy and photodynamic therapy, respectively, with a synergistic effect and significantly enhanced therapeutic efficacy. PMID:25791340

  11. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion.

    PubMed

    Nedelmann, Max; Ritschel, Nouha; Doenges, Simone; Langheinrich, Alexander C; Acker, Till; Reuter, Peter; Yeniguen, Mesut; Pukropski, Jan; Kaps, Manfred; Mueller, Clemens; Bachmann, Georg; Gerriets, Tibo

    2010-10-01

    In monitoring of recanalization and in sonothrombolysis, contrast-enhanced ultrasound (CEUS) is applied in extended time protocols. As extended use may increase the probability of unwanted effects, careful safety evaluation is required. We investigated the safety profile and beneficial effects of CEUS in a reperfusion model. Wistar rats were subjected to filament occlusion of the right middle cerebral artery (MCA). Reperfusion was established after 90 minutes, followed by recombinant tissue-type plasminogen activator (rt-PA) treatment and randomization to additional CEUS (contrast agent: SonoVue; 60 minutes). Blinded outcome evaluation consisted of magnetic resonance imaging (MRI), neurologic assessment, and histology and, in separate experiments, quantitative 3D nano-computed tomography (CT) angiography (900 nm(3) voxel size). Nano-CT revealed severely compromised microcirculation in untreated animals after MCA reperfusion. The rt-PA partially improved hemispheric perfusion. Impairment was completely reversed in animals receiving rt-PA and CEUS. This combination was more effective than treatment with either CEUS without rt-PA or rt-PA and ultrasound or ultrasound alone. In MRI experiments, CEUS and rt-PA treatment resulted in a significantly reduced ischemic lesion volume and edema formation. No unwanted effects were detected on MRI, histology, and intracranial temperature assessment. This study shows that CEUS and rt-PA is safe in the situation of reperfusion and displays beneficial effects on the level of the microvasculature. PMID:20531462

  12. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion

    PubMed Central

    Nedelmann, Max; Ritschel, Nouha; Doenges, Simone; Langheinrich, Alexander C; Acker, Till; Reuter, Peter; Yeniguen, Mesut; Pukropski, Jan; Kaps, Manfred; Mueller, Clemens; Bachmann, Georg; Gerriets, Tibo

    2010-01-01

    In monitoring of recanalization and in sonothrombolysis, contrast-enhanced ultrasound (CEUS) is applied in extended time protocols. As extended use may increase the probability of unwanted effects, careful safety evaluation is required. We investigated the safety profile and beneficial effects of CEUS in a reperfusion model. Wistar rats were subjected to filament occlusion of the right middle cerebral artery (MCA). Reperfusion was established after 90 minutes, followed by recombinant tissue-type plasminogen activator (rt-PA) treatment and randomization to additional CEUS (contrast agent: SonoVue; 60 minutes). Blinded outcome evaluation consisted of magnetic resonance imaging (MRI), neurologic assessment, and histology and, in separate experiments, quantitative 3D nano-computed tomography (CT) angiography (900 nm3 voxel size). Nano-CT revealed severely compromised microcirculation in untreated animals after MCA reperfusion. The rt-PA partially improved hemispheric perfusion. Impairment was completely reversed in animals receiving rt-PA and CEUS. This combination was more effective than treatment with either CEUS without rt-PA or rt-PA and ultrasound or ultrasound alone. In MRI experiments, CEUS and rt-PA treatment resulted in a significantly reduced ischemic lesion volume and edema formation. No unwanted effects were detected on MRI, histology, and intracranial temperature assessment. This study shows that CEUS and rt-PA is safe in the situation of reperfusion and displays beneficial effects on the level of the microvasculature. PMID:20531462

  13. A novel technique for the contrast-enhanced microCT imaging of murine intervertebral discs.

    PubMed

    Lin, Kevin H; Wu, Qi; Leib, Daniel J; Tang, Simon Y

    2016-10-01

    Disc degeneration is one of the leading factors that contribute to low back pain. Thus, the further understanding of the mechanisms contributing to degeneration of the intervertebral disc degeneration is critical for the development of therapies and strategies for treating low back pain. Rodent models are attractive for conducting mechanistic studies particularly because of the availability of genetically modified animals. However, current imaging technologies such as magnetic resonance imaging, do not have the ability to resolve spatial features at the tens- to single- micrometer scale. We propose here a contrast-enhanced microCT technique to conduct high-resolution imaging of the rodent intervertebral discs at 10µm spatial resolution. Based on the iodinated-hydrophilic contrast agent Ioversol, we are able to conduct high resolution imaging on rat and mouse intervertebral discs. Leveraging the hydrophilic characteristic of the contrast agent, we are able to discriminate the annulus fibrosus from the water-rich nucleus pulposus. Moreover, this technique allows for the quantitative measurement of disc morphologies and volumes, and we demonstrate the versatility of this technique on cultured live intervertebral discs. Coupled with our semi-automated segmentation technique, we are able to quantify the intervertebral disc volumes with a high degree of reproducibility. The contrast-enhanced microCT images were qualitatively and quantitatively indistinguishable from the traditional histological assessment of the same sample. Furthermore, stereological measures compared well between histology and microCT images. Taken together, the results reveal that rat and mouse intervertebral discs can be imaged longitudinally in vitro at high resolutions, with no adverse effects on viability and features of the intervertebral disc. PMID:27341292

  14. Model-based pancreas segmentation in portal venous phase contrast-enhanced CT images.

    PubMed

    Hammon, Matthias; Cavallaro, Alexander; Erdt, Marius; Dankerl, Peter; Kirschner, Matthias; Drechsler, Klaus; Wesarg, Stefan; Uder, Michael; Janka, Rolf

    2013-12-01

    This study aims to automatically detect and segment the pancreas in portal venous phase contrast-enhanced computed tomography (CT) images. The institutional review board of the University of Erlangen-Nuremberg approved this study and waived the need for informed consent. Discriminative learning is used to build a pancreas tissue classifier incorporating spatial relationships between the pancreas and surrounding organs and vessels. Furthermore, discrete cosine and wavelet transforms are used to build texture features to describe local tissue appearance. Classification is used to guide a constrained statistical shape model to fit the data. The algorithm to detect and segment the pancreas was evaluated on 40 consecutive CT data that were acquired in the portal venous contrast agent phase. Manual segmentation of the pancreas was carried out by experienced radiologists and served as reference standard. Threefold cross validation was performed. The algorithm-based detection and segmentation yielded an average surface distance of 1.7 mm and an average overlap of 61.2 % compared with the reference standard. The overall runtime of the system was 20.4 min. The presented novel approach enables automatic pancreas segmentation in portal venous phase contrast-enhanced CT images which are included in almost every clinical routine abdominal CT examination. Reliable pancreatic segmentation is crucial for computer-aided detection systems and an organ-specific decision support. PMID:23471751

  15. A method for automatic liver segmentation from multi-phase contrast-enhanced CT images

    NASA Astrophysics Data System (ADS)

    Yuan, Rong; Luo, Ming; Wang, Shaofa; Wang, Luyao; Xie, Qingguo

    2014-03-01

    Liver segmentation is a basic and indispensable function in systems of computer aided liver surgery for volume calculation, operation designing and risk evaluation. Traditional manual segmentation is very time consuming because of the complicated contours of liver and the big amount of images. For increasing the efficiency of the clinical work, in this paper, a fully-automatic method was proposed to segment the liver from multi-phase contrast-enhanced computed tomography (CT) images. As an advanced region growing method, we applied various pre- and post-processing to get better segmentation from the different phases. Fifteen sets of clinical abdomens CT images of five patients were segmented by our algorithm, and the results were acceptable and evaluated by an experienced surgeon. The running-time is about 30 seconds for a single-phase data which includes more than 200 slices.

  16. Real-time contrast-enhanced holographic imaging using phase coherent photorefractive quantum wells.

    PubMed

    Dongol, A; Thompson, J; Schmitzer, H; Tierney, D; Wagner, H P

    2015-05-18

    We demonstrate wide-field real-time and depth-resolved contrast enhanced holographic imaging (CEHI) using the all-optical phase coherent photorefractive effect in ZnSe quantum wells. Moving objects are imaged at large depth-of-field by the local enhancement of a static reference hologram. The high refresh rate of the holographic films enables direct-to-video monitoring of floating glass beads and of living Paramecium and Euglena cells moving in water. Depth resolution is achieved by tilting the incident laser beam with respect to the normal of the cuvette. This creates double images of the objects, which are analyzed geometrically and with Fresnel diffraction theory. A two-color CEHI set-up further enables the visualization of a concealed 95 µm thick wire behind a thin layer of chicken skin. PMID:26074534

  17. Modified Sigmoid Function Based Gray Scale Image Contrast Enhancement Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Verma, Harish Kumar; Pal, Sandeep

    2016-06-01

    The main objective of an image enhancement is to improve eminence by maximizing the information content in the test image. Conventional contrast enhancement techniques either often fails to produce reasonable results for a broad variety of low-contrast and high contrast images, or cannot be automatically applied to different images, because they are parameters dependent. Hence this paper introduces a novel hybrid image enhancement approach by taking both the local and global information of an image. In the present work, sigmoid function is being modified on the basis of contrast of the images. The gray image enhancement problem is treated as nonlinear optimization problem with several constraints and solved by particle swarm optimization. The entropy and edge information is included in the objective function as quality measure of an image. The effectiveness of modified sigmoid function based enhancement over conventional methods namely linear contrast stretching, histogram equalization, and adaptive histogram equalization are better revealed by the enhanced images and further validated by statistical analysis of these images.

  18. Usefulness of contrast-enhanced ultrasound for detection of carotid plaque ulceration in patients with symptomatic carotid atherosclerosis.

    PubMed

    ten Kate, Gerrit L; van Dijk, Anouk C; van den Oord, Stijn C H; Hussain, Burhan; Verhagen, Hence J M; Sijbrands, Eric J G; van der Steen, Antonius F W; van der Lugt, Aad; Schinkel, Arend F L

    2013-07-15

    Previous data have indicated that carotid plaque ulceration is a strong predictor of cerebrovascular events. Standard ultrasound and color Doppler ultrasound (CDUS) scans have poor diagnostic accuracy for the detection of carotid plaque ulceration. The aim of the present prospective study was to assess the value of contrast-enhanced ultrasound (CEUS) scans for the detection of carotid plaque ulceration. The Institutional Ethics Committee approved the study protocol, and all patients provided informed consent. The patients had symptomatic stenosis of the internal carotid artery and underwent carotid computed tomographic angiography as part of their clinical evaluation. All patients underwent a CDUS examination in conjunction with CEUS. Carotid plaque ulceration was defined as the presence of ≥1 disruptions in the plaque-lumen border ≥1 × 1 mm. Carotid computed tomographic angiography was used as reference technique. The study population consisted of 20 patients (mean age 64 ± 9 years, 80% men), and 39 carotid arteries were included in the present analysis. Computed tomographic angiography demonstrated that the plaque surface was smooth in 15 (38%), irregular in 7 (18%) and ulcerated in 17 (44%) carotid arteries. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of CDUS for the detection of ulceration was 29%, 73%, 54%, 46%, and 57%, respectively. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of CEUS for the detection of ulceration was 88%, 59%, 72%, 63%, and 87%, respectively. CEUS had superior sensitivity and diagnostic accuracy for the assessment of carotid plaque ulceration compared with CDUS. CEUS improved the intrareader and inter-reader variability for the assessment of carotid plaque ulceration compared with CDUS. In conclusion, CEUS could be an additional method for the detection of carotid plaque ulceration. The role of CDUS for the assessment of

  19. Contrast enhancement and elastography in endoscopic ultrasound: an update of clinical applications in pancreatic diseases.

    PubMed

    Serrani, Marta; Lisotti, Andrea; Caletti, Giancarlo; Fusaroli, Pietro

    2016-08-01

    It is well established that endoscopic ultrasound (EUS) is fundamental in the characterization of many diseases concerning different organs, i.e. pancreaticobiliary diseases, gastrointestinal pathologic conditions, and lymph nodes of unknown origin. It is also well known that many factors can hamper the accuracy of EUS, i.e. biliary stents, chronic pancreatitis, poor operator's expertise. These factors can also lead to suboptimal accuracy when cytological confirmation through EUS-fine needle aspiration (EUS-FNA) is indicated. In recent years, new technological tools have rapidly increased their clinical impact improving the diagnostic power of EUS and EUS-FNA. Among these new tools, the most investigated and useful ones are represented by contrast harmonic-EUS (CH-EUS) and EUS-elastography (EUS-E). The purpose of this paper is to provide, through a review of the literature, an update of the applications of CH-EUS and EUS-E in the routine clinical practice in pancreatic diseases. We discussed the first reports and applications of these techniques in our previous review published in Minerva Medica. The applications of CH-EUS and EUS-E to the study of pancreatic diseases appear feasible and safe. The use of both techniques is very simple and does not require any relevant additional workload for the endoscopic personnel. CH-EUS is now considered an important and accurate tool in the diagnosis of solid pancreatic masses and in the differential diagnosis of pancreatic cystic lesions. CH-EUS targeted FNA is an active field of research. However the available studies show that CH-EUS increases FNA accuracy by a little extent, without statistical significance; moreover, CH-EUS FNA showed a trend toward being more efficient vs. simple EUS FNA (less needle passes and more abundance in cytological material) but this trend did not reach statistical significance. On the other hand, the clinical impact of EUS-E in terms of differential diagnosis of pancreatic masses is still under

  20. The use of photographic methods in contrast enhancement of ERTS-1 images

    NASA Technical Reports Server (NTRS)

    Harris, L. F.

    1973-01-01

    The contrast of ERTS 70mm positive images can be enhanced to varying degrees by rephotographing the images with different types of negative films, and by overdeveloping the films with different developers. A combination of high contrast copy film (Kodak 5069) and a high energy developer (Kodak D-11) yields high contrast. Still greater contrast may be otbained by using a film of higher contrast capability and a developer of higher energy capability. Contrast can also be enhanced in the printing process with the use of highcontrast photographic papers, or with the use of polycontrast photographic paper and filters. Contrast enhancement by photocopying delineates topographic boundaries and may aid in the objective measurement of topographic parameters.

  1. Quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines.

    PubMed

    Schmid, Volker J; Whitcher, Brandon; Padhani, Anwar R; Yang, Guang-Zhong

    2009-06-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the nonlinear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome these problems, this paper proposes a semi-parametric penalized spline smoothing approach, where the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided. PMID:19272996

  2. Hue-preserving local contrast enhancement and illumination compensation for outdoor color images

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Monnin, David; Christnacher, Frank

    2015-10-01

    Real-time applications in the field of security and defense use dynamic color camera systems to gain a better understanding of outdoor scenes. To enhance details and improve the visibility in images it is required to per- form local image processing, and to reduce lightness and color inconsistencies between images acquired under different illumination conditions it is required to compensate illumination effects. We introduce an automatic hue-preserving local contrast enhancement and illumination compensation approach for outdoor color images. Our approach is based on a shadow-weighted intensity-based Retinex model which enhances details and compensates the illumination effect on the lightness of an image. The Retinex model exploits information from a shadow detection approach to reduce lightness halo artifacts on shadow boundaries. We employ a hue-preserving color transformation to obtain a color image based on the original color information. To reduce color inconsistencies between images acquired under different illumination conditions we process the saturation using a scaling function. The approach has been successfully applied to static and dynamic color image sequences of outdoor scenes and an experimental comparison with previous Retinex-based approaches has been carried out.

  3. Chain of evidence generation for contrast enhancement in digital image forensics

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Messina, Giuseppe; Strano, Daniela

    2010-01-01

    The quality of the images obtained by digital cameras has improved a lot since digital cameras early days. Unfortunately, it is not unusual in image forensics to find wrongly exposed pictures. This is mainly due to obsolete techniques or old technologies, but also due to backlight conditions. To extrapolate some invisible details a stretching of the image contrast is obviously required. The forensics rules to produce evidences require a complete documentation of the processing steps, enabling the replication of the entire process. The automation of enhancement techniques is thus quite difficult and needs to be carefully documented. This work presents an automatic procedure to find contrast enhancement settings, allowing both image correction and automatic scripting generation. The technique is based on a preprocessing step which extracts the features of the image and selects correction parameters. The parameters are thus saved through a JavaScript code that is used in the second step of the approach to correct the image. The generated script is Adobe Photoshop compliant (which is largely used in image forensics analysis) thus permitting the replication of the enhancement steps. Experiments on a dataset of images are also reported showing the effectiveness of the proposed methodology.

  4. Kinetic Curve Type Assessment for Classification of Breast Lesions Using Dynamic Contrast-Enhanced MR Imaging

    PubMed Central

    Chen, Jun-Ming; Zhang, Geoffrey; Liao, Yen-Hsiu; Huang, Tzung-Chi

    2016-01-01

    Objective The aim of this study was to employ a kinetic model with dynamic contrast enhancement-magnetic resonance imaging to develop an approach that can efficiently distinguish malignant from benign lesions. Materials and Methods A total of 43 patients with 46 lesions who underwent breast dynamic contrast enhancement-magnetic resonance imaging were included in this retrospective study. The distribution of malignant to benign lesions was 31/15 based on histological results. This study integrated a single-compartment kinetic model and dynamic contrast enhancement-magnetic resonance imaging to generate a kinetic modeling curve for improving the accuracy of diagnosis of breast lesions. Kinetic modeling curves of all different lesions were analyzed by three experienced radiologists and classified into one of three given types. Receiver operating characteristic and Kappa statistics were used for the qualitative method. The findings of the three radiologists based on the time-signal intensity curve and the kinetic curve were compared. Results An average sensitivity of 82%, a specificity of 65%, an area under the receiver operating characteristic curve of 0.76, and a positive predictive value of 82% and negative predictive value of 63% was shown with the kinetic model (p = 0.017, 0.052, 0.068), as compared to an average sensitivity of 80%, a specificity of 55%, an area under the receiver operating characteristic of 0.69, and a positive predictive value of 79% and negative predictive value of 57% with the time-signal intensity curve method (p = 0.003, 0.004, 0.008). The diagnostic consistency of the three radiologists was shown by the κ-value, 0.857 (p<0.001) with the method based on the time-signal intensity curve and 0.826 (p<0.001) with the method of the kinetic model. Conclusions According to the statistic results based on the 46 lesions, the kinetic modeling curve method showed higher sensitivity, specificity, positive and negative predictive values as compared with

  5. Computerized measurement of myocardial infarct size on contrast-enhanced magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yueh; Kellman, Peter; Natanzon, Alex; Hirsch, Glenn A.; Aletras, Anthony H.; Arai, Andrew E.

    2005-04-01

    Purpose: To validate a computer algorithm for measuring myocardial infarct size on gadolinium enhanced MR images. The results of computer infarct sizing are studied on phase-sensitive and magnitude imaging against a histopathology reference. Materials and Methods: Validations were performed in 9 canine myocardial infarctions determined by triphenyltetrazolium chloride (TTC). The algorithm analyzed the pixel intensity distribution within manually traced myocardial regions. Pixels darker than an automatically determined threshold were first excluded from further analysis. Selected image features were used to remove false positive regions. A threshold 50% between bright and dark regions was then used to minimize partial volume errors. Post-processing steps were applied to identify microvascular obstruction. Both phase sensitive and magnitude reconstructed MR images were measured by the computer algorithm in units of % of the left ventricle (LV) infarction and compared to TTC. Results: Correlations of MR and TTC infarct size were 0.96 for both phase sensitive and magnitude imaging. Bland Altman analysis showed no consistent bias as a function of infarct size. The average error of computer infarct sizing was less than 2% of the LV for both reconstructions. Fixed intensity thresholding was less accurate compared to the computer algorithm. Conclusions: MR can accurately depict myocardial infarction. The proposed computer algorithm accurately measures infarct size on contrast-enhanced MR images against the histopathology reference. It is effective for both phase-sensitive and magnitude imaging.

  6. Contrast-Enhanced Ultrasound in the Diagnosis of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: Controversy over the ASSLD Guideline

    PubMed Central

    2015-01-01

    Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are both regarded as primary liver cancers, having different biological behaviors and prognoses. Correct differentiation between them is essential for surgical planning and prognosis assessment. In 2005, the American Association for the Study of Liver Diseases (AASLD) recommended that noninvasive diagnosis of HCC is achievable by a single dynamic technique (including contrast-enhanced ultrasound (CEUS)) showing intense arterial uptake followed by washout of contrast in the venous-delayed phases. However, CEUS has been dropped from the diagnostic techniques in the latest AASLD guideline according to the opinion of some authors from Europe that CEUS may offer false positive HCC diagnosis in patients with ICC. Since the update of AASLD guideline has been released, increased attention has been paid to this interesting topic. Remarkable controversy over this issue is present and this removal was not well received in Europe and Asia. This commentary summarized the opinions for the role of CUES in differentiation between HCC and ICC in recent years. It is concluded that prospective studies with strict design and large case series are mandatory to solve the controversies and stratification of ICC in terms of tumor size and liver background is also essential. PMID:26090401

  7. Contrast enhanced ultrasound with quantitative perfusion analysis for objective characterization of pancreatic ductal adenocarcinoma: A feasibility study.

    PubMed

    D'Onofrio, Mirko; Canestrini, Stefano; Crosara, Stefano; De Robertis, Riccardo; Pozzi Mucelli, Roberto

    2014-03-28

    The aim of this study was to determine whether contrast enhanced ultrasound (CEUS) quantitative perfusion analysis allows an objective characterization of ductal adenocarcinoma (ADK) of the pancreas. Patients with pancreatic ADK underwent CEUS. All examinations were performed on an Acuson S2000 system (Siemens, Erlangen, Germany) after the iv administration of 2.4 mL contrast agent (SonoVue(®), Bracco, Milan, Italy). All lesions were pathologically proved. An operator manually drew different regions of interest within the tumor and the adjacent parenchyma to allow the quantitative perfusion analysis. The mean values of peak of enhancement, time to peak and ascending curve were calculated and compared using the Student's t test. The quantitative perfusion analysis was possible in all lesions. The mean values of the peak of enhancement, time to peak and ascending curve were 17.19%, 7.97 s and 159.52% s within the tumor and 33.57%, 8.89 s and 355.29% s within the adjacent parenchyma. The peak of enhancement and the ascending curve values were significantly different within the tumor and the adjacent parenchyma. Thus, CEUS allows the quantitative perfusion analysis of pancreatic ductal adenocarcinoma. PMID:24765238

  8. Contrast enhanced ultrasound with quantitative perfusion analysis for objective characterization of pancreatic ductal adenocarcinoma: A feasibility study

    PubMed Central

    D’Onofrio, Mirko; Canestrini, Stefano; Crosara, Stefano; Robertis, Riccardo De; Mucelli, Roberto Pozzi

    2014-01-01

    The aim of this study was to determine whether contrast enhanced ultrasound (CEUS) quantitative perfusion analysis allows an objective characterization of ductal adenocarcinoma (ADK) of the pancreas. Patients with pancreatic ADK underwent CEUS. All examinations were performed on an Acuson S2000 system (Siemens, Erlangen, Germany) after the iv administration of 2.4 mL contrast agent (SonoVue®, Bracco, Milan, Italy). All lesions were pathologically proved. An operator manually drew different regions of interest within the tumor and the adjacent parenchyma to allow the quantitative perfusion analysis. The mean values of peak of enhancement, time to peak and ascending curve were calculated and compared using the Student’s t test. The quantitative perfusion analysis was possible in all lesions. The mean values of the peak of enhancement, time to peak and ascending curve were 17.19%, 7.97 s and 159.52% s within the tumor and 33.57%, 8.89 s and 355.29% s within the adjacent parenchyma. The peak of enhancement and the ascending curve values were significantly different within the tumor and the adjacent parenchyma. Thus, CEUS allows the quantitative perfusion analysis of pancreatic ductal adenocarcinoma. PMID:24765238

  9. Multi-planar dynamic contrast-enhanced ultrasound assessment of blood flow in a rabbit model of testicular torsion.

    PubMed

    Paltiel, Harriet J; Estrada, Carlos R; Alomari, Ahmad I; Stamoulis, Catherine; Passerotti, Carlo C; Meral, F Can; Lee, Richard S; Clement, Gregory T

    2014-02-01

    To assess correlation between multi-planar, dynamic contrast-enhanced ultrasound (US) blood flow measurements and radiolabeled microsphere blood flow measurements, five groups of six rabbits underwent unilateral testicular torsion of 0°, 180°, 360°, 540° or 720°. Five US measurements per testis (three transverse/two longitudinal) were obtained pre-operatively and immediately and 4 and 8 h post-operatively using linear transducers (7-4 MHz/center frequency 4.5 MHz/10 rabbits; 9-3 MHz/center frequency 5.5 MHz/20 rabbits). Björck's linear least-squares method fit the rise phase of mean pixel intensity over a 7-s period for each time curve. Slope of fit and intervention/control US pixel intensity ratios were calculated. Means of transverse, longitudinal and combined transverse/longitudinal US ratios as a function of torsion degree were compared with radiolabeled microsphere ratios using Pearson's correlation coefficient, ρ. There was high correlation between the two sets of ratios (ρ ≥ 0.88, p ≤ 0.05), except for the transverse US ratio in the immediate post-operative period (ρ = 0.79, p = 0.11). These results hold promise for future clinical applications. PMID:24188690

  10. The Degree of Contrast Washout on Contrast-Enhanced Ultrasound in Distinguishing Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma.

    PubMed

    Han, Jing; Liu, Yubo; Han, Feng; Li, Qing; Yan, Cuiju; Zheng, Wei; Wang, Jianwei; Guo, Zhixing; Wang, Jun; Li, Anhua; Zhou, Jianhua

    2015-12-01

    We aim to assess the role and degree of contrast washout in the differential diagnosis of intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) on contrast-enhanced ultrasound (CEUS). Fifty-six histopathology-confirmed ICC nodules and 184 HCC nodules were included in this study. The nodules' washout degree on CEUS at 1, 2 and 3 min was semi-quantitatively and qualitatively assessed using gray-scale video signal intensity. Semi-quantitative assessment showed that the washout degree of ICCs at 1, 2 and 3 min were significantly lower than those of HCCs (p < 0.001) and similar results were found in the same size range subgroups. There were no significant differences in the washout degree of ICCs between patients with chronic hepatitis and those without. The areas under receiver operating characteristic curves, using the nodules' washout degree at 1, 2 and 3 min to differentiate ICC from HCC, were 0.957, 0.979 and 0.982, respectively. The qualitative assessment showed the washout of ICCs was more rapid and obvious than that of HCCs. At 3 min, moderate and marked washout were observed in all ICCs, but in only 12.5% HCCs (p < 0.001). In conclusion, ICCs displayed much higher degree of contrast washout than HCCs on CEUS, which allowed for differentiation from HCCs. PMID:26386477

  11. Reliability of contrast-enhanced ultrasound for the assessment of muscle perfusion in health and peripheral arterial disease.

    PubMed

    Thomas, Kate N; Cotter, James D; Lucas, Samuel J E; Hill, Brigid G; van Rij, André M

    2015-01-01

    We investigated the reliability of contrast-enhanced ultrasound (CEUS) in assessing calf muscle microvascular perfusion in health and disease. Response to a post-occlusive reactive hyperaemia test was repeated on two occasions >48 h apart in healthy young (28 ± 7 y) and elderly controls (70 ± 5 y), and in peripheral arterial disease patients (PAD, 69 ± 7 y; n = 10, 9 and 8 respectively). Overall, within-individual reliability was poor (coefficient of variation [CV] range: 15-87%); the most reliable parameter was time to peak (TTP, 15-48% CV). Nevertheless, TTP was twice as long in elderly controls and PAD compared to young (19.3 ± 10.4 and 22.0 ± 8.6 vs. 8.9 ± 6.2 s respectively; p < 0.01), and area under the curve for contrast intensity post-occlusion (a reflection of blood volume) was ∼50% lower in elderly controls (p < 0.01 versus PAD and young). Thus, CEUS assessment of muscle perfusion during reactive hyperaemia demonstrated poor reliability, yet still distinguished differences between PAD patients, elderly and young controls. PMID:25308937

  12. Automated lesion detection in dynamic contrast enhanced magnetic resonance imaging of breast

    NASA Astrophysics Data System (ADS)

    Liang, Xi; Kotagiri, Romamohanarao; Frazer, Helen; Yang, Qing

    2015-03-01

    We propose an automated method in detecting lesions to assist radiologists in interpreting dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of breast. The aim is to highlight the suspicious regions of interest to reduce the searching time of the lesions and the possibility of radiologists overlooking small regions. In our method, we locate the suspicious regions by applying a threshold on essential features. The features are normalized to reduce the variation between patients. Support vector machine classifier is then applied to exclude normal tissues from these regions, using both kinetic and morphological features extracted in the lesions. In the evaluation of the system on 21 patients with 50 lesions, all lesions were successfully detected with 5.02 false positive regions per breast.

  13. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  14. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  15. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    PubMed Central

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2016-01-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART. PMID:26987475

  16. Importance of Contrast-Enhanced Fluid-Attenuated Inversion Recovery Magnetic Resonance Imaging in Various Intracranial Pathologic Conditions

    PubMed Central

    Lee, Eun Kyoung; Kim, Sungwon; Lee, Yong Seok

    2016-01-01

    Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions. PMID:26798225

  17. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    SciTech Connect

    Jensen, Nikolaj K. G.; Stewart, Errol; Lock, Michael; Fisher, Barbara; Kozak, Roman; Chen, Jeff; Lee, Ting-Yim; Wong, Eugene

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

  18. Contrast-enhanced continuous-terahertz-wave imaging based on superparamagnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Zhang, Rui; Zhang, Liangliang; Wu, Tong; Zuo, Shasha; Wang, Ruixue; Zhang, Cunlin; Zhang, Jue; Fang, Jing

    2016-04-18

    We present a novel contrast-enhanced continuous-terahertz-wave imaging modality based on magnetic induction heating of superparamagnetic iron oxide nanoparticles (SPIOs), which yields a highly sensitive increment in the reflection terahertz (THz) signal in SPIO solution upon exposure to an alternating magnetic field. In the differential and relative refection change focal-plane images before and after alternating magnetic field exposure, a dramatic contrast is demonstrated between water with and without SPIOs. This low-cost, simple, and stable contrast-enhanced continuous-THz-wave imaging system is suitable for miniaturization and real-time imaging application. PMID:27137233

  19. Automatic indicator dilution curve extraction in dynamic-contrast enhanced imaging using spectral clustering

    NASA Astrophysics Data System (ADS)

    Saporito, Salvatore; Herold, Ingeborg HF; Houthuizen, Patrick; van den Bosch, Harrie CM; Korsten, Hendrikus HM; van Assen, Hans C.; Mischi, Massimo

    2015-07-01

    Indicator dilution theory provides a framework for the measurement of several cardiovascular parameters. Recently, dynamic imaging and contrast agents have been proposed to apply the method in a minimally invasive way. However, the use of contrast-enhanced sequences requires the definition of regions of interest (ROIs) in the dynamic image series; a time-consuming and operator dependent task, commonly performed manually. In this work, we propose a method for the automatic extraction of indicator dilution curves, exploiting the time domain correlation between pixels belonging to the same region. Individual time intensity curves were projected into a low dimensional subspace using principal component analysis; subsequently, clustering was performed to identify the different ROIs. The method was assessed on clinically available DCE-MRI and DCE-US recordings, comparing the derived IDCs with those obtained manually. The robustness to noise of the proposed approach was shown on simulated data. The tracer kinetic parameters derived on real images were in agreement with those obtained from manual annotation. The presented method is a clinically useful preprocessing step prior to further ROI-based cardiac quantifications.

  20. Detailed Analysis of Temporal Features on Contrast Enhanced Ultrasound May Help Differentiate Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma in Cirrhosis

    PubMed Central

    Li, Rui; Yuan, Meng-Xia; Ma, Kuan-sheng; Li, Xiao-Wu; Tang, Chun-Lin; Zhang, Xiao-Hang; Guo, De-Yu; Yan, Xiao-Chu

    2014-01-01

    Aim To verify if detailed analysis of temporal enhancement patterns on contrast enhanced ultrasound (CEUS) may help differentiate intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) in cirrhosis. Methods Thirty three ICC and fifty HCC in cirrhosis were enrolled in this study. The contrast kinetics of ICC and HCC was analyzed and compared. Results Statistical analysis did not reveal significant difference between ICC and HCC in the time of contrast first appearance and arterial peak maximum time. ICC displayed much earlier washout than that of HCC (47.93±26.45 seconds vs 90.86±31.26 seconds) in the portal phase, and most ICC (87.9%) showed washout before 60 seconds than HCC (16.0%). Much more ICC (78.8%) revealed marked washout than HCC (12.0%) while most HCC (88.0%) showed mild washout or no washout in late part of the portal phase (90–120 seconds). Twenty six out of thirty three ICC (78.8%) demonstrated both early washout(<60seconds) and marked washout in late part of the portal phase, whereas, only six of fifty HCC (12.0%)showed these temporal enhancement features (p = 0.000).When both early washout and marked washout in the portal phase are taken as diagnostic criterion for ICC, the diagnostic sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 78.8%,88.0%,81.3%,86.3%,and 84.3% respectively by CEUS. Conclusions Analysis of detailed temporal enhancement features on CEUS is helpful differentiate ICC from HCC in cirrhosis.If a nodule in cirrhotic liver displays hyper-enhancement in the arterial phase followed by early and marked washout in the portal phase, the nodule is highly suspicious of ICC rather than HCC. PMID:24874413

  1. Implementation of propeller, spiral, and variable density spiral methods for dynamic contrast enhanced magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahunbay, Ergun Emin

    2001-09-01

    Previous studies showed that dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a valuable tool for the prognosis and diagnosis of cancer, however it requires a tradeoff between temporal and spatial resolution. The ultimate goal of this dissertation is to compare the temporal performance of three methods (spiral, propeller and variable density spiral), given a certain spatial resolution requirement, for the DCE-MRI. These methods show distinction from the conventional MRI methods in their k-space coverage. Propeller and Variable Density Spiral methods use an approach of oversampling the center of k-space, updating the central 13-20% of the radial k-space more frequently than the peripheries. The reason for this is that most of the image data resides in the central part of k-space. Spiral method, on the other hand approaches the problem by updating the overall k-space as fast as possible, faster than the conventional methods. Comparison is performed mainly by computer simulations, where ground truth is known. In addition to computer simulations, these three methods are compared in- vivo, by tracking the DCE-MRI signal amplitude variation with time for each method on a healthy volunteer's liver. One limitation of the spiral and variable density spiral imaging methods is the effect of off-resonance frequencies on image quality. For these spiral based methods, long readout times are desired to have short overall imaging times and high temporal resolution. However, for long readout times, off resonance frequencies blur the images and reduce the spatial resolution. In this dissertation a new method is proposed which is less complicated than most other methods, and reaches an acceptable level of accuracy with less amount of CPU time compared to previously effective methods.

  2. Radiofrequency ablation for hepatocellular carcinoma: utility of conventional ultrasound and contrast-enhanced ultrasound in guiding and assessing early therapeutic response and short-term follow-up results.

    PubMed

    Du, Jing; Li, Hong-Li; Zhai, Bo; Chang, Samuel; Li, Feng-Hua

    2015-09-01

    The purpose of this study was to assess the efficacy of conventional ultrasound (US) and contrast-enhanced ultrasound (CEUS) in guiding and assessing early therapeutic response to radiofrequency (RF) ablation for hepatocellular carcinomas (HCCs; up to 3 lesions, each ≤3 cm in diameter) and to report the short-term follow-up results. Between September 2011 and January 2013, 63 patients with 78 HCCs (≤3 cm) underwent conventional US- and CEUS-guided percutaneous RF ablation. CEUS was repeated after 20-30 min to assess therapeutic response, and local efficacy was further confirmed by contrast-enhanced magnetic resonance imaging (MRI) 1 mo after tumor ablation. Patients were followed periodically to look for local tumor or disease progression. Survival probability was estimated with the Kaplan-Meier method. Complete ablation was achieved for 76 (97.4%) of 78 HCCs in one (n = 73) or two (n = 3) sessions. No major complications were observed in any patient. The overall concordance in assessment of therapeutic efficacy of RF ablation between CEUS and MRI was 97.4% (76/78 tumors). The concordance test gave a value of κ = 0.74 (p < 0.001), indicating that CEUS had a high diagnostic agreement with MRI. During a mean follow-up of 20 mo, the local tumor progression rate was 5.3% (4/76 tumors). The 1-, 1.5- and 2-y cumulative survival rates were 98.4%, 96.1% and 92.6%, respectively. Although CEUS has some intrinsic limitations, the combined use of conventional US and CEUS provides a safe and efficient tool to guide RF ablation for HCCs 3 cm or smaller, with encouraging results in terms of survival rate and minimal complications. Moreover, the immediate post-procedural CEUS can be a reliable alternative to contrast-enhanced MRI for assessing the early therapeutic response to RF ablation. PMID:26055968

  3. T2∗ Measurement During First-Pass Contrast-Enhanced Cardiac Perfusion Imaging

    PubMed Central

    Kellman, Peter; Aletras, Anthony H.; Hsu, Li-yueh; McVeigh, Elliot R.; Arai, Andrew E.

    2007-01-01

    First-pass contrast-enhanced (CE) myocardial perfusion imaging will experience T2∗ effects at peak concentrations of contrast agent. A reduction in the signal intensity of left ventricular (LV) blood due to T2∗ losses may effect estimates of the arterial input function (AIF) used for quantitative perfusion measurement. Imaging artifacts may also result from T2∗ losses as well as off-resonance due to the bolus susceptibility. We hypothesized that T2∗ losses would not be significant for measurement of the AIF in full-dose studies using a short echo time (TE = 0.6 ms). The purpose of this study was to directly measure T2∗ in the LV cavity during first-pass perfusion. For single-dose Gd-DTPA (0.1 mmol/kg at 5 ml/s), the LV blood pool T2∗ had a mean value of 9 ms (N = 10) at peak enhancement. Distortion of the AIF due to T2∗ signal intensity loss will be less than 10% using TE = 0.6 ms. PMID:17029226

  4. New pulse sequences for T1- and T1/T2-contrast enhancing in NMR imaging.

    PubMed

    Andreev, N K; Hakimov, A M; Idiyatullin, D S

    1998-10-01

    Improved pulse sequences DIFN (abbreviation of the words: DIFferentiation by N pulses), 90 degrees - tau1 - 180 degrees tau1 - . . . 180 degrees - tau1 with optimised time intervals tau1- for T1 measurement and contrast enhancing in NMR imaging are presented. The pulse sequences DIFN have a better sensitivity to T1 than the well-known pulse sequence SR. In contrast to the IR pulse sequence, the information given by the DIFN pulse sequence is more reliable, because the NMR signal does not change its sign. For a given time interval tau0 < or = (0.1 - 0.3) T(1) the DIFN pulse sequences serve as T1-filters. They pass the signal components with relatively short T1 < T(1) and suppress the components with relatively long T1 < T(1). The effects of the radiofrequency field inhomogeneity and inaccurate adjusting of pulse lengths are also considered. It is also proposed in this work to use the joint T1T2-contrast in NMR imaging obtained as a result of applying the DIFN pulse sequences in combination with the well-known Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The region of interest, where the contrast should be especially enhanced, is specified by the two times at which measurements are performed, which allow the amplitudes of pixels to reach some defined levels by spin-lattice and spin-spin relaxation. PMID:9814781

  5. Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle

    PubMed Central

    Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco

    2002-01-01

    Background Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. Methods The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. Results At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. Conclusion The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology. PMID:12049675

  6. Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions.

    PubMed

    Kerckhofs, G; Sainz, J; Wevers, M; Van de Putte, T; Schrooten, J

    2013-01-01

    We describe a non-destructive imaging method, named contrast-enhanced nanofocus X-ray computed tomography (CE-nanoCT), that permits simultaneously imaging and quantifying in 3D the (sub)tissue architecture and (biochemical) composition of cartilage and bone in small animal models at a novel contrast and spatial resolution. To demonstrate the potential of this novel methodology, a newborn mouse was scanned using CE-nanoCT. This allowed simultaneously visualising the bone and cartilage structure much like the traditional alcian blue-alizarin red skeletal stain. Additionally, it enabled a 3D visualisation at such a high spatial image resolution that internal, micro-scale structures could be digitally dissected and evaluated for size, structure and composition. Ex vivo treatment with papain, that is known to specifically remove the non-calcified cartilage layer but keep the calcified cartilage intact, proved CE-nanoCT to be applicable to visualise the subdivisions within the hyaline cartilage of the articular joint of mice. The quantitative power of CE-nanoCT in vivo was evaluated using a mouse model for osteoarthritis (OA), where OA-like cartilage lesions are induced by meniscus destabilisation surgery. The thickness of both the non-calcified and calcified cartilage layer in the knee joint of such mice was visualised and quantified in 3D and compared to unaffected mice. Finally, to show that different forms of cartilage and tissue combinations can be distinguished using CE-nanoCT, different cartilaginous body parts of the mouse were imaged. In conclusion, CE-nanoCT can provide novel insights in preclinical research by quantifying in a non-destructive 3D manner pathological differences, in particular in developing mice, newborns or adults. PMID:23389752

  7. Contrast-enhanced ultrasound for evaluation of high-intensity focused ultrasound treatment of benign uterine diseases: retrospective analysis of contrast safety.

    PubMed

    Cheng, Chong-Qing; Zhang, Rui-Tao; Xiong, Yu; Chen, Li; Wang, Jian; Huang, Guo-Hua; Li, Ke-Quan; Zhang, Lian; Bai, Jin

    2015-04-01

    As a noninvasive treatment technique, ultrasound-guided high-intensity focused ultrasound (HIFU) has been considered as a routine treatment for uterine fibroids and adenomyosis in China. Contrast-enhanced ultrasound (CEUS) has been proposed as another option to assess the treatment efficacy during HIFU treatment. The aim of this investigation is to evaluate the adverse effects of HIFU ablation for benign uterine diseases in a group of patients studied with ultrasound contrast agent (UCA), in comparison with a group of patients not exposed to UCA. From November 2010 to December 2013, 2604 patients with benign uterine diseases were treated with HIFU. Among them, 1300 patients were exposed to an UCA, whereas 1304 patients were not.During HIFU procedure, the incidences of leg pain, sacral/buttock pain, groin pain, treatment area pain, and the discomfort "hot" sensation on skin were higher in the patients who were exposed to SonoVue (Bracco, Milan, Italy) than those who were not (20.5% vs 11.7%, 52.5% vs 42.3%, 6.5% vs 4.5%, 68.9% vs 55.4%, and 48.1% vs 42.9%, respectively). Among the postoperative adverse effects, the incidence of lower abdominal pain was significantly higher in patients who were exposed to an UCA than those who were not (51.2% vs 39.9%, P < 0.05). Two patients who were exposed to an UCA had acute renal function failure.In conclusion, UCA may increase the incidences of some common HIFU-related adverse effects during HIFU treatment for benign uterine diseases, but most of which were acceptable and self-limited. After HIFU treatment, renal function should be monitored in patients with a history of hypertension or taking nonsteroidal anti-inflammatory drugs. PMID:25906100

  8. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    SciTech Connect

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Saab-Puong, Sylvie; Iordache, Răzvan; Muller, Serge; Jong, Roberta A.; Dromain, Clarisse

    2013-08-15

    Purpose: Dual-energy (DE) contrast-enhanced digital mammography (CEDM) uses an iodinated contrast agent in combination with digital mammography (DM) to evaluate lesions on the basis of tumor angiogenesis. In DE imaging, low-energy (LE) and high-energy (HE) images are acquired after contrast administration and their logarithms are subtracted to cancel the appearance of normal breast tissue. Often there is incomplete signal cancellation in the subtracted images, creating a background “clutter” that can impair lesion detection. This is the second component of a two-part report on anatomical noise in CEDM. In Part I the authors characterized the anatomical noise for single-energy (SE) temporal subtraction CEDM by a power law, with model parameters α and β. In this work the authors quantify the anatomical noise in DE CEDM clinical images and compare this with the noise in SE CEDM. The influence on the anatomical noise of the presence of iodine in the breast, the timing of imaging postcontrast administration, and the x-ray energy used for acquisition are each evaluated.Methods: The power law parameters, α and β, were measured from unprocessed LE and HE images and from DE subtracted images to quantify the anatomical noise. A total of 98 DE CEDM cases acquired in a previous clinical pilot study were assessed. Conventional DM images from 75 of the women were evaluated for comparison with DE CEDM. The influence of the imaging technique on anatomical noise was determined from an analysis of differences between the power law parameters as measured in DM, LE, HE, and DE subtracted images for each subject.Results: In DE CEDM, weighted image subtraction lowers β to about 1.1 from 3.2 and 3.1 in LE and HE unprocessed images, respectively. The presence of iodine has a small but significant effect in LE images, reducing β by about 0.07 compared to DM, with α unchanged. Increasing the x-ray energy, from that typical in DM to a HE beam, significantly decreases α by about 2

  9. Hepatic schwannoma: imaging findings on CT, MRI and contrast-enhanced ultrasonography.

    PubMed

    Ota, Yu; Aso, Kazunobu; Watanabe, Kenji; Einama, Takahiro; Imai, Koji; Karasaki, Hidenori; Sudo, Ryuji; Tamaki, Yosui; Okada, Mituyoshi; Tokusashi, Yosihiko; Kono, Toru; Miyokawa, Naoyuki; Haneda, Masakazu; Taniguchi, Masahiko; Furukawa, Hiroyuki

    2012-09-21

    A primary benign schwannoma of the liver is extremely rare and is difficult to preoperatively discriminate from a malignant tumor. We compared the imaging and pathological findings, and examined the possibility of preoperatively diagnosing a benign liver schwannoma. A 72-year-old woman was admitted to our hospital because of a 4.6-cm mass in the liver. A malignant tumor was suspected, and a right hepatectomy was performed. After this, the diagnosis of a primary benign schwannoma of the liver was made through pathological examination. Contrast-enhanced ultrasonography (CEUS) with Sonazoid showed minute blood flows into the septum and solid areas of the tumor in the vascular phase; most likely due to increased arterial flow associated with infiltration of chronic inflammatory cells. In the postvascular phase, CEUS showed contrast defect of cystic areas and delayed enhancement of solid areas; most likely due to aggregation of siderophores. Because discriminating between a benign and malignant schwannoma of the liver is difficult, surgery is generally recommended. However, the two key findings from CEUS may be useful in discriminating ancient schwannoma by recognizing the hemorrhage involved in the secondary degeneration and aggregation of siderophores. PMID:23002371

  10. Hepatic schwannoma: Imaging findings on CT, MRI and contrast-enhanced ultrasonography

    PubMed Central

    Ota, Yu; Aso, Kazunobu; Watanabe, Kenji; Einama, Takahiro; Imai, Koji; Karasaki, Hidenori; Sudo, Ryuji; Tamaki, Yosui; Okada, Mituyoshi; Tokusashi, Yosihiko; Kono, Toru; Miyokawa, Naoyuki; Haneda, Masakazu; Taniguchi, Masahiko; Furukawa, Hiroyuki

    2012-01-01

    A primary benign schwannoma of the liver is extremely rare and is difficult to preoperatively discriminate from a malignant tumor. We compared the imaging and pathological findings, and examined the possibility of preoperatively diagnosing a benign liver schwannoma. A 72-year-old woman was admitted to our hospital because of a 4.6-cm mass in the liver. A malignant tumor was suspected, and a right hepatectomy was performed. After this, the diagnosis of a primary benign schwannoma of the liver was made through pathological examination. Contrast-enhanced ultrasonography (CEUS) with Sonazoid showed minute blood flows into the septum and solid areas of the tumor in the vascular phase; most likely due to increased arterial flow associated with infiltration of chronic inflammatory cells. In the postvascular phase, CEUS showed contrast defect of cystic areas and delayed enhancement of solid areas; most likely due to aggregation of siderophores. Because discriminating between a benign and malignant schwannoma of the liver is difficult, surgery is generally recommended. However, the two key findings from CEUS may be useful in discriminating ancient schwannoma by recognizing the hemorrhage involved in the secondary degeneration and aggregation of siderophores. PMID:23002371

  11. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts

    SciTech Connect

    Ovrebo, Kirsti Marie; Ellingsen, Christine; Galappathi, Kanthi; Rofstad, Einar K.

    2012-05-01

    Purpose: Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested as a useful noninvasive method for characterizing the physiologic microenvironment of tumors. In the present study, we investigated whether Gd-DTPA-based DCE-MRI has the potential to provide biomarkers for hypoxia-associated metastatic dissemination. Methods and Materials: C-10 and D-12 melanoma xenografts were used as experimental tumor models. Pimonidazole was used as a hypoxia marker. A total of 60 tumors were imaged, and parametric images of K{sup trans} (volume transfer constant of Gd-DTPA) and v{sub e} (fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The host mice were killed immediately after DCE-MRI, and the primary tumor and the lungs were resected and prepared for histologic assessment of the fraction of pimonidazole-positive hypoxic tissue and the presence of lung metastases, respectively. Results: Metastases were found in 11 of 26 mice with C-10 tumors and 14 of 34 mice with D-12 tumors. The primary tumors of the metastatic-positive mice had a greater fraction of hypoxic tissue (p = 0.00031, C-10; p < 0.00001, D-12), a lower median K{sup trans} (p = 0.0011, C-10; p < 0.00001, D-12), and a lower median v{sub e} (p = 0.014, C-10; p = 0.016, D-12) than the primary tumors of the metastatic-negative mice. Conclusions: These findings support the clinical attempts to establish DCE-MRI as a method for providing biomarkers for tumor aggressiveness and suggests that primary tumors characterized by low K{sup trans} and low v{sub e} values could have a high probability of hypoxia-associated metastatic spread.

  12. Nature-inspired nanoformulations for contrast-enhanced in vivo MR imaging of macrophages

    PubMed Central

    Sigalov, Alexander B.

    2014-01-01

    Magnetic resonance imaging (MRI) of macrophages in atherosclerosis requires the use of contrast-enhancing agents. Reconstituted lipoprotein particles that mimic native high density lipoproteins (HDL) are a versatile delivery platform for Gd-based contrast agents (GBCA) but require targeting moieties to direct the particles to macrophages. In this study, a naturally occurring methionine oxidation in the major HDL protein, apolipoprotein (apo) A-I, was exploited as a novel way to target HDL to macrophages. We also tested if fully functional GBCA-HDL can be generated using synthetic apo A-I peptides. The fluorescence and MRI studies reveal that specific oxidation of apo A-I or its peptides increases the in vitro macrophage uptake of GBCA-HDL by 2–3 times. The in vivo imaging studies using an apo E-deficient mouse model of atherosclerosis and a 3.0T MRI system demonstrate that this modification significantly improves atherosclerotic plaque detection using GBCA-HDL. At 24 h post-injection of 0.05 mmol Gd/kg GBCA-HDL containing oxidized apo A-I or its peptides, the atherosclerotic wall/muscle normalized enhancement ratios were 90% and 120%, respectively, while those of GBCA-HDL containing their unmodified counterparts were 35% and 45%, respectively. Confocal fluorescence microscopy confirms the accumulation of GBCA-HDL containing oxidized apo A-I or its peptides in intraplaque macrophages. Together, the results of this study confirm the hypothesis that specific oxidation of apo A-I targets GBCA-HDL to macrophages in vitro and in vivo. Furthermore, our observation that synthetic peptides can functionally replace the native apo A-I protein in HDL further encourages the development of these contrast agents for macrophage imaging. PMID:24729189

  13. Assessment of carotid plaque neovascularization by contrast-enhanced ultrasound and high sensitivity C-reactive protein test in patients with acute cerebral infarction: a comparative study.

    PubMed

    Xu, Rong; Yin, Xiaohua; Xu, Weixin; Jin, Lin; Lu, Min; Wang, Yingchun

    2016-07-01

    Vulnerable carotid plaque easily ruptures and causes cerebral infarction. Plaque inflammation and neovascularization have both been shown as important characteristics in vulnerable plaque. We assessed neovascularization within carotid plaque using contrast-enhanced ultrasound, and also assessed inflammation, using high sensitivity C-reactive protein (hs-CRP) testing, in acute cerebral infarction patients. A total of 106 patients with acute cerebral infarction and 40 controls were enrolled in the study. All subjects had been previously found to have carotid atherosclerotic plaques, and the plaques were classified as soft plaque, hard plaque, mixed plaque, and calcified plaque, using carotid artery ultrasound. Contrast-enhanced ultrasound was performed on the plaques for quantitative analysis and hs-CRP levels were measured. The results showed that plaque enhancement was present in 81.1 % of cerebral infarction patients and 40.0 % of controls. The contrast parameters for cerebral infarction patients were significantly different from controls. For cerebral infarction patients, soft plaque showed the highest enhanced percentage, 95.1 %, with contrast parameters significantly different to other types of plaque. The hs-CRP levels of enhanced cerebral infarction patients were higher than in non-enhanced patients. Correlation analysis in cerebral infarction patients showed that hs-CRP levels were closely related to the contrast parameters. Acute cerebral infarction patients showed intense contrast enhancement and inflammation in carotid plaque, and different types of plaque had various degrees of enhancement, suggesting that contrast-enhanced ultrasound and hs-CRP might be used for plaque risk stratification. PMID:27021564

  14. Can Doppler or contrast-enhanced ultrasound analysis add diagnostically important information about the nature of breast lesions?

    PubMed Central

    Stanzani, Daniela; Chala, Luciano F.; de Barros, Nestor; Cerri, Giovanni G.; Chammas, Maria Cristina

    2014-01-01

    OBJECTIVES: Despite evidence suggesting that Doppler ultrasonography can help to differentiate between benign and malignant breast lesions, it is rarely applied in clinical practice. The aim of this study was to determine whether certain vascular features of breast masses observed by duplex Doppler and color Doppler ultrasonography (before and/or after microbubble contrast injection) add information to the gray-scale analysis and support the Breast Imaging-Reporting and Data System (BI-RADS) classification. METHODS: Seventy solid lesions were prospectively evaluated with gray-scale ultrasonography, color Doppler ultrasonography, and contrast-enhanced ultrasonography. The morphological analysis and lesion vascularity were correlated with the histological results. RESULTS: Percutaneous core biopsies revealed that 25/70 (17.5%) lesions were malignant, while 45 were benign. Hypervascular lesions with tortuous and central vessels, a resistive index (RI)≥0.73 before contrast injection, and an RI≥0.75 after contrast injection were significantly predictive of malignancy (p<0.001). CONCLUSION: The combination of gray-scale ultrasonography data with unenhanced or enhanced duplex Doppler and color Doppler US data can provide diagnostically useful information. These techniques can be easily implemented because Doppler devices are already present in most health centers. PMID:24519198

  15. Anatomical noise in contrast-enhanced digital mammography. Part I. Single-energy imaging

    SciTech Connect

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Muller, Serge; Ebrahimi, Mehran; Jong, Roberta A.; Dromain, Clarisse

    2013-05-15

    Purpose: The use of an intravenously injected iodinated contrast agent could help increase the sensitivity of digital mammography by adding information on tumor angiogenesis. Two approaches have been made for clinical implementation of contrast-enhanced digital mammography (CEDM), namely, single-energy (SE) and dual-energy (DE) imaging. In each technique, pairs of mammograms are acquired, which are then subtracted with the intent to cancel the appearance of healthy breast tissue to permit sensitive detection and specific characterization of lesions. Patterns of contrast agent uptake in the healthy parenchyma, and uncanceled signal from background tissue create a 'clutter' that can mask or mimic an enhancing lesion. This type of 'anatomical noise' is often the limiting factor in lesion detection tasks, and thus, noise quantification may be useful for cascaded systems analysis of CEDM and for phantom development. In this work, the authors characterize the anatomical noise in CEDM clinical images and the authors evaluate the influence of the x-ray energy used for acquisition, the presence of iodine in the breast, and the timing of imaging postcontrast administration on anatomical noise. The results are presented in a two-part report, with SE CEDM described here, and DE CEDM in Part II. Methods: A power law is used to model anatomical noise in CEDM images. The exponent, {beta}, which describes the anatomical structure, and the constant {alpha}, which represents the magnitude of the noise, are determined from Wiener spectra (WS) measurements on images. A total of 42 SE CEDM cases from two previous clinical pilot studies are assessed. The parameters {alpha} and {beta} are measured both from unprocessed images and from subtracted images. Results: Consistent results were found between the two SE CEDM pilot studies, where a significant decrease in {beta} from a value of approximately 3.1 in the unprocessed images to between about 1.1 and 1.8 in the subtracted images was

  16. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  17. Dynamic contrast-enhanced magnetic resonance imaging in patients with pulmonary arterial hypertension.

    PubMed

    Swift, Andrew J; Telfer, Adam; Rajaram, Smitha; Condliffe, Robin; Marshall, Helen; Capener, Dave; Hurdman, Judith; Elliot, Charlie; Kiely, David G; Wild, Jim M

    2014-03-01

    Dynamic contrast-enhanced (DCE) time-resolved magnetic resonance (MR) imaging is a technique whereby the passage of an intravenous contrast bolus can be tracked through the pulmonary vascular system. The aim of this study was to investigate the prognostic significance of DCE-MR pulmonary blood transit times in patients with pulmonary arterial hypertension (PAH). Seventy-nine patients diagnosed with PAH underwent pulmonary DCE imaging at 1.5 T using a time-resolved three-dimensional spoiled gradient echo sequence. The prognostic significance of two DCE parameters, full width at half maximum (FWHM) of the first-pass clearance curve and pulmonary transit time (PTT), along with demographic and invasive catheter measurements, was evaluated by univariate and bivariate Cox proportional hazards regression and Kaplan-Meier analysis. DCE-MR transit times were most closely correlated with cardiac index (CI) and pulmonary vascular resistance index (PVRI) and were both found to be accurate for detecting reduced CI (FWHM area under the curve [AUC] at receiver operating characteristic analysis = 0.91 and PTT AUC = 0.92, respectively) and for detecting elevated PVRI (FWHM AUC = 0.88 and PTT AUC = 0.84, respectively). During the follow-up period, 25 patients died. Patients with longer measurements of FWHM (P = 0.0014) and PTT (P = 0.004) were associated with poor outcome at Kaplan-Meier analysis, and both parameters were strong predictors of adverse outcome from Cox proportional hazards analysis (P = 0.013 and 0.010, respectively). At bivariate analysis, DCE measurements predicted mortality independent of age, gender, and World Health Organization functional class; however, invasive hemodynamic indexes CI, PVRI, and DCE measurements were not independent of one another. In conclusion, DCE-MR transit times predict mortality in patients with PAH and are closely associated with clinical gold standards CI and PVRI. PMID:25006422

  18. Nanobubbles for enhanced ultrasound imaging of tumors.

    PubMed

    Yin, Tinghui; Wang, Ping; Zheng, Rongqin; Zheng, Bowen; Cheng, Du; Zhang, Xinling; Shuai, Xintao

    2012-01-01

    The fabrication and initial applications of nanobubbles (NBs) have shown promising results in recent years. A small particle size is a basic requirement for ultrasound contrast-enhanced agents that penetrate tumor blood vessel pores to allow for targeted imaging and therapy. However, the nanoscale size of the particles used has the disadvantage of weakening the imaging ability of clinical diagnostic ultrasound. In this work, we fabricated a lipid NBs contrast-enhanced ultrasound agent and evaluated its passive targeting ability in vivo. The results showed that the NBs were small (436.8 ± 5.7 nm), and in vitro ultrasound imaging suggested that the ultrasonic imaging ability is comparable to that of microbubbles (MBs). In vivo experiments confirmed the ability of NBs to passively target tumor tissues. The NBs remained in the tumor area for a longer period because they exhibited enhanced permeability and retention. Direct evidence was obtained by direct observation of red fluorescence-dyed NBs in tumor tissue using confocal laser scanning microscopy. We have demonstrated the ability to fabricate NBs that can be used for the in vivo contrast-enhanced imaging of tumor tissue and that have potential for drug/gene delivery. PMID:22393289

  19. In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice

    PubMed Central

    Herrmann, Karl-Heinz; Reichenbach, Jürgen R.; Witte, Otto W.; Weih, Falk; Kretz, Alexandra; Haenold, Ronny

    2014-01-01

    The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or

  20. Comparison between PUN and Tofts models in the quantification of dynamic contrast-enhanced MR imaging

    NASA Astrophysics Data System (ADS)

    Mazzetti, S.; Gliozzi, A. S.; Bracco, C.; Russo, F.; Regge, D.; Stasi, M.

    2012-12-01

    Dynamic contrast-enhanced study in magnetic resonance imaging (DCE-MRI) is an important tool in oncology to visualize tissues vascularization and to define tumour aggressiveness on the basis of an altered perfusion and permeability. Pharmacokinetic models are generally used to extract hemodynamic parameters, providing a quantitative description of the contrast uptake and wash-out. Empirical functions can also be used to fit experimental data without the need of any assumption about tumour physiology, as in pharmacokinetic models, increasing their diagnostic utility, in particular when automatic diagnosis systems are implemented on the basis of an MRI multi-parametric approach. Phenomenological universalities (PUN) represent a novel tool for experimental research and offer a simple and systematic method to represent a set of data independent of the application field. DCE-MRI acquisitions can thus be advantageously evaluated by the extended PUN class, providing a convenient diagnostic tool to analyse functional studies, adding a new set of features for the classification of malignant and benign lesions in computer aided detection systems. In this work the Tofts pharmacokinetic model and the class EU1 generated by the PUN description were compared in the study of DCE-MRI of the prostate, evaluating complexity of model implementation, goodness of fitting results, classification performances and computational cost. The mean R2 obtained with the EU1 and Tofts model were equal to 0.96 and 0.90, respectively, and the classification performances achieved by the EU1 model and the Tofts implementation discriminated malignant from benign tissues with an area under the receiver operating characteristic curve equal to 0.92 and 0.91, respectively. Furthermore, the EU1 model has a simpler functional form which reduces implementation complexity and computational time, requiring 6 min to complete a patient elaboration process, instead of 8 min needed for the Tofts model analysis.

  1. Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Staging of Bladder Cancer

    PubMed Central

    Rabie, Elham; Izadpanahi, Mohammad-Hossein; Dayani, Mohammad-Ali

    2016-01-01

    Introduction Dynamic Contrast Enhanced (DCE)-Magnetic Resonance Imaging (MRI) is a useful technique in which rapid enhancement of tumour by uptake of the contrast agent compared to bladder wall. Aim To evaluate the accuracy of dynamic gadolinium-enhanced MRI in staging of bladder cancer through differentiating superficial tumours from invasive tumours and organ-confined tumours from non-organ-confined tumours. In addition, the benefits of DCE-MRI in diagnosis of tumour progression steps were investigated. Materials and Methods This was a quasi-experimental study in which 45 patients (95.55% men and 4.45% women) were enrolled. Patients with confirmed transitional cell carcinoma by histopathology findings were imaged using 1.5 Tesla MRI systems. Pathology results were considered as the standard reference. Tumour stage was determined by imaging findings and compared with pathologic findings after radical cystectomy. Data were analysed by SPSS version 16 and the level of significance in all tests was considered p<0.001. Results The most common stage that was seen in pathology and MRI findings was T3b. Kappa agreement coefficient between MRI and pathology was 0.7 (p<0.001). The accuracy of MRI in differentiating superficial tumours (≤T1) from invasive tumours (≥ T2a), and organ-confined tumours (≤T2b) from non-organ-confined tumours (≥T3b) was 0.97 and 0.84, respectively. The overall accuracy of MRI was 0.77 (p<0.001). Totally, 10 cases of disagreement between MRI and pathological staging were found, eight (80%) of which were overestimated and two cases (20%) underestimated. MRI detection rate was 0% in stage Ta, 100% in stage T1, 66.7% in stage T2, 86.7% in stage T3, and 100% in stage T4. The sensitivity and specificity of MRI in differentiating superficial tumours from invasive tumours were 0.97 and 1, respectively, and in differentiating organ-confined tumours from non-organ-confined tumours were 0.94 and 0.77, respectively. The Spearman’s correlation

  2. Improved dosimetry in prostate brachytherapy using high resolution contrast enhanced magnetic resonance imaging: a feasibility study

    PubMed Central

    Morancy, Tye; Kaplan, Irving; Qureshi, Muhammad M.; Hirsch, Ariel E.; Rofksy, Neil M.; Holupka, Edward; Oismueller, Renee; Hawliczek, Robert; Helbich, Thomas H.; Bloch, B. Nicolas

    2014-01-01

    Purpose To assess detailed dosimetry data for prostate and clinical relevant intra- and peri-prostatic structures including neurovascular bundles (NVB), urethra, and penile bulb (PB) from postbrachytherapy computed tomography (CT) versus high resolution contrast enhanced magnetic resonance imaging (HR-CEMRI). Material and methods Eleven postbrachytherapy prostate cancer patients underwent HR-CEMRI and CT imaging. Computed tomography and HR-CEMRI images were randomized and 2 independent expert readers created contours of prostate, intra- and peri-prostatic structures on each CT and HR-CEMRI scan for all 11 patients. Dosimetry data including V100, D90, and D100 was calculated from these contours. Results Mean V100 values from CT and HR-CEMRI contours were as follows: prostate (98.5% and 96.2%, p = 0.003), urethra (81.0% and 88.7%, p = 0.027), anterior rectal wall (ARW) (8.9% and 2.8%, p < 0.001), left NVB (77.9% and 51.5%, p = 0.002), right NVB (69.2% and 43.1%, p = 0.001), and PB (0.09% and 11.4%, p = 0.005). Mean D90 (Gy) derived from CT and HR-CEMRI contours were: prostate (167.6 and 150.3, p = 0.012), urethra (81.6 and 109.4, p = 0.041), ARW (2.5 and 0.11, p = 0.003), left NVB (98.2 and 58.6, p = 0.001), right NVB (87.5 and 55.5, p = 0.001), and PB (11.2 and 12.4, p = 0.554). Conclusions Findings of this study suggest that HR-CEMRI facilitates accurate and meaningful dosimetric assessment of prostate and clinically relevant structures, which is not possible with CT. Significant differences were seen between CT and HR-CEMRI, with volume overestimation of CT derived contours compared to HR-CEMRI. PMID:25834576

  3. Use of computational fluid dynamics in the design of dynamic contrast enhanced imaging phantoms.

    PubMed

    Hariharan, Prasanna; Freed, Melanie; Myers, Matthew R

    2013-09-21

    Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the 'tumor-enhancement curve'. It is also important for the concentration field within the lesion to be as uniform as possible. This study demonstrates how computational fluid dynamics (CFD) can be applied to achieve these goals within design constraints. The distribution of the contrast agent within the simulated phantoms was investigated in relation to the influence of three factors of the phantom design. First, the interaction between the inlets and the uniformity of the contrast agent within the phantom was modeled. Second, pumps were programmed using a variety of schemes and the resultant dynamic uptake curves were compared to tumor-enhancement curves obtained from clinical data. Third, the effectiveness of pulsing the inlet flow rate to produce faster equilibration of the contrast-agent distribution was quantified. The models employed a spherical lesion and design constraints (lesion diameter, inlet-tube size and orientation, contrast-agent flow rates and fluid properties) taken from a recently published DCE-MRI phantom study. For DCE-MRI in breast cancer detection, where the target tumor-enhancement curve varies on the scale of hundreds of seconds, optimizing the number of inlet tubes and their orientation was found to be adequate for attaining concentration uniformity and reproducing the target tumor-enhancement curve. For DCE-CT in liver tumor detection, where the tumor-enhancement curve varies on a scale of tens of seconds, the use of an iterated inlet condition (programmed into the pump) enabled the phantom to reproduce the target tumor-enhancement curve within a few per cent beyond about 6

  4. Use of computational fluid dynamics in the design of dynamic contrast enhanced imaging phantoms

    NASA Astrophysics Data System (ADS)

    Hariharan, Prasanna; Freed, Melanie; Myers, Matthew R.

    2013-09-01

    Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the ‘tumor-enhancement curve’. It is also important for the concentration field within the lesion to be as uniform as possible. This study demonstrates how computational fluid dynamics (CFD) can be applied to achieve these goals within design constraints. The distribution of the contrast agent within the simulated phantoms was investigated in relation to the influence of three factors of the phantom design. First, the interaction between the inlets and the uniformity of the contrast agent within the phantom was modeled. Second, pumps were programmed using a variety of schemes and the resultant dynamic uptake curves were compared to tumor-enhancement curves obtained from clinical data. Third, the effectiveness of pulsing the inlet flow rate to produce faster equilibration of the contrast-agent distribution was quantified. The models employed a spherical lesion and design constraints (lesion diameter, inlet-tube size and orientation, contrast-agent flow rates and fluid properties) taken from a recently published DCE-MRI phantom study. For DCE-MRI in breast cancer detection, where the target tumor-enhancement curve varies on the scale of hundreds of seconds, optimizing the number of inlet tubes and their orientation was found to be adequate for attaining concentration uniformity and reproducing the target tumor-enhancement curve. For DCE-CT in liver tumor detection, where the tumor-enhancement curve varies on a scale of tens of seconds, the use of an iterated inlet condition (programmed into the pump) enabled the phantom to reproduce the target tumor-enhancement curve within a few per cent beyond about

  5. A flexible patch based approach for combined denoising and contrast enhancement of digital X-ray images.

    PubMed

    Irrera, Paolo; Bloch, Isabelle; Delplanque, Maurice

    2016-02-01

    Denoising and contrast enhancement play key roles in optimizing the trade-off between image quality and X-ray dose. However, these tasks present multiple challenges raised by noise level, low visibility of fine anatomical structures, heterogeneous conditions due to different exposure parameters, and patient characteristics. This work proposes a new method to address these challenges. We first introduce a patch-based filter adapted to the properties of the noise corrupting X-ray images. The filtered images are then used as oracles to define non parametric noise containment maps that, when applied in a multiscale contrast enhancement framework, allow optimizing the trade-off between improvement of the visibility of anatomical structures and noise reduction. A significant amount of tests on both phantoms and clinical images has shown that the proposed method is better suited than others for visual inspection for diagnosis, even when compared to an algorithm used to process low dose images in clinical routine. PMID:26716719

  6. Image contrast enhancement in angular domain optical imaging of turbid media.

    PubMed

    Vasefi, Fartash; Kaminska, Bozena; Chapman, Glenn H; Carson, Jeffrey J L

    2008-12-22

    Imaging structures within a turbid medium using Angular Domain Imaging (ADI) employs an angular filter array to separate weakly scattered photons from those that are highly scattered. At high scattering coefficients, ADI contrast declines due to the large fraction of non-uniform background scattered light still within the acceptance angle. This paper demonstrates various methods to enhance the image contrast in ADI. Experiments where a wedge prism was used to deviate the laser source so that scattered photons could be imaged and subtracted from the image obtained by standard ADI provided the greatest improvement in image contrast. PMID:19104579

  7. Monitoring Antivascular Therapy in Head and Neck Cancer Xenografts using Contrast-enhanced MR and US Imaging

    PubMed Central

    Seshadri, Mukund; Sacadura, Nuno T.; Coulthard, Tonya

    2013-01-01

    Background The overall goal of this study was to non-invasively monitor changes in blood flow of squamous cell carcinoma of the head and neck (SCCHN) xenografts using contrast-enhanced magnetic resonance (MR) and ultrasound (US) imaging. Methods Experimental studies were performed on mice bearing FaDu tumors and SCCHN xenografts derived from human surgical tissue. MR examinations were performed using gadofosveset trisodium at 4.7T. Change in T1-relaxation rate of tumors (ΔR1) and tumor enhancement parameters (amplitude, area under the curve - AUC) were measured at baseline and 24 hours after treatment with a tumor-vascular disrupting agent (tumor-VDA), 5,6-dimethylxanthenone-4-acetic acid (DMXAA; ASA404) and correlated with tumor necrosis and treatment outcome. CE-US was performed using microbubbles (Vevo MicroMarker®) to assess the change in relative tumor blood volume following VDA treatment. Results A marked decrease (up to 68% of baseline) in T1-enhancement of FaDu tumors was observed one day after VDA therapy indicative of a reduction in blood flow. Early (24h) vascular response of individual tumors to VDA therapy detected by MRI correlated with tumor necrosis and volume estimates at 10 days post treatment. VDA treatment also resulted in a significant reduction in AUC and amplitude of patient tumor-derived SCCHN xenografts. Consistent with MRI observations, CE-US revealed a significant reduction in tumor blood volume of patient tumor-derived SCCHN xenografts after VDA therapy. Treatment with VDA resulted in a significant tumor growth inhibition of patient tumor derived SCCHN xenografts. Conclusions These findings demonstrate that both CE-MRI and CE-US allow monitoring of early changes in vascular function following VDA therapy. The results also demonstrate, for the first time, potent vascular disruptive and antitumor activity of DMXAA against patient tumor-derived head and neck carcinoma xenografts. PMID:21901534

  8. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    SciTech Connect

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-08-15

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments ({sigma}/{mu} < 5% for all metrics investigated). The dynamic flow phantom was capable of producing input and output TACs using

  9. Assessment of Tumor Radioresponsiveness and Metastatic Potential by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    SciTech Connect

    Ovrebo, Kirsti Marie; Gulliksrud, Kristine; Mathiesen, Berit; Rofstad, Einar K.

    2011-09-01

    Purpose: It has been suggested that gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may provide clinically useful biomarkers for personalized cancer treatment. In this preclinical study, we investigated the potential of DCE-MRI as a noninvasive method for assessing the radioresponsiveness and metastatic potential of tumors. Methods and Materials: R-18 melanoma xenografts growing in BALB/c nu/nu mice were used as experimental tumor models. Fifty tumors were subjected to DCE-MRI, and parametric images of K{sup trans} (the volume transfer constant of Gd-DTPA) and v{sub e} (the fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The tumors were irradiated after the DCE-MRI, either with a single dose of 10 Gy for detection of radiobiological hypoxia (30 tumors) or with five fractions of 4 Gy in 48 h for assessment of radioresponsiveness (20 tumors). The host mice were then euthanized and examined for lymph node metastases, and the primary tumors were resected for measurement of cell survival in vitro. Results: Tumors with hypoxic cells showed significantly lower K{sup trans} values than tumors without significant hypoxia (p < 0.0001, n = 30), and K{sup trans} decreased with increasing cell surviving fraction for tumors given fractionated radiation treatment (p < 0.0001, n = 20). Tumors in metastasis-positive mice had significantly lower K{sup trans} values than tumors in metastasis-negative mice (p < 0.0001, n = 50). Significant correlations between v{sub e} and tumor hypoxia, radioresponsiveness, or metastatic potential could not be detected. Conclusions: R-18 tumors with low K{sup trans} values are likely to be resistant to radiation treatment and have a high probability of developing lymph node metastases. The general validity of these observations should be investigated further by studying preclinical tumor models with biological

  10. Dynamic contrast-enhanced MRI serves as a predictor of HIFU treatment outcome for uterine fibroids with hyperintensity in T2-weighted images

    PubMed Central

    ZHAO, WEN-PENG; CHEN, JIN-YUN; CHEN, WEN-ZHI

    2016-01-01

    The aim of the present study was to investigate the efficacy of dynamic contrast-enhanced magnetic resonance imaging (MRI) in predicting the outcome of using ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation for the treatment of uterine fibroids with T2 hyperintensity under MRI. A total of 131 uterine fibroids from 131 patients that appeared hyperintense under T2-weighted MRI were analyzed. The uterine fibroids were subjectively categorized into slight, irregular or regular enhancement groups, according to pretreatment dynamic contrast-enhanced MRI in the arterial phase within 60 sec after the injection of gadolinium. The non-perfused volume (NPV), which is indicative of successful ablation, was represented as the non-perfused area inside the uterine fibroids on enhanced MRI scans following treatment. Additionally, the treatment duration, treatment efficiency, sonication duration, energy efficiency ratio and any adverse events were recorded. The results indicated that the average NPV ratio for all the treated fibroids was 68.5%, while the average NPV ratios for fibroids with slight, irregular or regular enhancement were 84.7, 70.6 and 57.1%, respectively. Fibroids with regular enhancement were associated with the lowest NPV ratio and the lowest treatment efficiency, but exhibited the highest energy effect ratio and an elevated risk of severe adverse effects. The results of the present study indicate that hyperintense uterine fibroids with slight and irregular enhancement in the arterial phase of dynamic contrast-enhanced MRI are suitable for USgHIFU treatment. By contrast, uterine fibroids with regular enhancement were associated with the lowest treatment efficacy and safety. PMID:26889263

  11. Dynamic contrast-enhanced magnetic resonance imaging: definitive imaging of placental function?

    PubMed

    Chalouhi, G E; Deloison, B; Siauve, N; Aimot, S; Balvay, D; Cuenod, C A; Ville, Y; Clément, O; Salomon, L J

    2011-02-01

    The placenta constitutes a complex circulatory interface between the mother and fetus, but the relationship between the maternal and fetal circulation is still very difficult to study in vivo. There is growing evidence that magnetic resonance imaging (MRI) is useful and safe during pregnancy, and MRI is increasingly used for fetal and placental anatomical imaging. MRI functional imaging is now a modern obstetric tool and has the potential to provide new insights into the physiology of the human placenta. Placental perfusion has been studied during the first pass of an MR contrast agent, by arterial spin labeling, diffusion imaging, T1 and T2 relaxation time measurement using echo-planar imaging, and by a combination of magnetization transfer with established stereological methods. The BOLD (blood oxygen level-dependent) effect offers new perspectives for functional MRI evaluation of the placenta. PMID:20851065

  12. Analysis of Pharmacokinetics of Gd-DTPA for Dynamic Contrast-enhanced Magnetic Resonance Imaging

    PubMed Central

    Taheri, Saeid; Jon Shah, N.; Rosenberg, Gary A.

    2016-01-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23–85 years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05 mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125 mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PK of Gd-DTPA from 58 subjects (28–80 years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025 mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025 mmol/kg) had a half-life of 37.3 ± 6.6 mins, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1 mmol/kg). The area under the curve (AUC) for 0.025 mmol/kg was 3.37± 0.46, which was a quarter of AUC of 0.1 mmol/kg. In population analysis, a dose of 0.025 mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025 mmol/kg Gd-DTPA enable us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. PMID:27109487

  13. Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Taheri, Saeid; Shah, N Jon; Rosenberg, Gary A

    2016-09-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23-85years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PKs of Gd-DTPA from 58 subjects (28-80years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025mmol/kg) had a half-life of 37.3±6.6min, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1mmol/kg). The area under the curve (AUC) for 0.025mmol/kg was 3.37±0.46, which was a quarter of AUC of 0.1mmol/kg. In population analysis, a dose of 0.025mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025mmol/kg Gd-DTPA enabled us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. PMID:27109487

  14. Radiofrequency ablation of very-early-stage hepatocellular carcinoma inconspicuous on fusion imaging with B-mode US: value of fusion imaging with contrast-enhanced US

    PubMed Central

    Min, Ji Hye; Lim, Hyo Keun; Lim, Sanghyeok; Kang, Tae Wook; Song, Kyoung Doo; Choi, Seo-youn; Rhim, Hyunchul

    2014-01-01

    Background/Aims To determine the value of fusion imaging with contrast-enhanced ultrasonography (CEUS) and computed tomography (CT)/magnetic resonance (MR) images for percutaneous radiofrequency ablation (RFA) of very-early-stage hepatocellular carcinomas (HCCs) that are inconspicuous on fusion imaging with B-mode ultrasound (US) and CT/MR images. Methods This retrospective study was approved by our institutional review board and the requirement for informed consent was waived. Fusion imaging with CEUS using Sonazoid contrast agent and CT/MR imaging was performed on HCCs (<2 cm) that were inconspicuous on fusion imaging with B-mode US. We evaluated the number of cases that became conspicuous on fusion imaging with CEUS. Percutaneous RFA was performed under the guidance of fusion imaging with CEUS. Technical success and major complication rates were assessed. Results In total, 30 patients with 30 HCCs (mean, 1.2 cm; range, 0.6-1.7 cm) were included, among which 25 (83.3%) became conspicuous on fusion imaging with CEUS at the time of the planning US and/or RFA procedure. Of those 25 HCCs, RFA was considered feasible for 23 (92.0%), which were thus treated. The technical success and major complication rates were 91.3% (21/23) and 4.3% (1/23), respectively. Conclusions Fusion imaging with CEUS and CT/MR imaging is highly effective for percutaneous RFA of very-early-stage HCCs inconspicuous on fusion imaging with B-mode US and CT/MR imaging. PMID:24757660

  15. Motion compensation method using dynamic programming for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS)

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Hoogi, Assaf; Renaud, Guillaume; ten Kate, Gerrit L.; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    Intraplaque neovascularization (IPN) has been linked with progressive atherosclerotic disease and plaque instability in several studies. Quantification of IPN may allow early detection of vulnerable plaques. A dedicated motion compensation method with normalized-cross-correlation (NCC) block matching combined with multidimensional (2D+time) dynamic programming (MDP) was developed for quantification of IPN in small plaques (<30% diameter stenosis). The method was compared to NCC block matching without MDP (forward tracking (FT)) and showed to improve motion tracking. Side-by-side CEUS and B-mode ultrasound images of carotid arteries were acquired by a Philips iU22 system with a L9-3 linear array probe. The motion pattern for the plaque region was obtained from the Bmode images with MDP. MDP results were evaluated in-vitro by a phantom and in-vivo by comparing to manual tracking of three experts for multibeat-image-sequences (MIS) of 11 plaques. In the in-vivo images, the absolute error was 72+/-55μm (mean+/-SD) for X (longitudinal) and 34+/-23μm for Y (radial). The method's success rate was visually assessed on 67 MIS. The tracking was considered failed if it deviated >2 pixels (~200μm) from true motion in any frame. Tracking was scored as fully successful in 63 MIS (94%) for MDP vs. 52(78%) for FT. The range of displacement over these 63 was 1045+/-471μm (X) and 395+/-216μm (Y). The tracking sporadically failed in 4 MIS (6%) due to poor image quality, jugular vein proximity and out-of-plane motion. Motion compensation showed improved lumen-plaque contrast separation. In conclusion, the proposed method is sufficiently accurate and successful for in vivo application.

  16. Assessment of hepatic VX2 tumors with combined percutaneous transhepatic lymphosonography and contrast-enhanced ultrasonographic imaging

    PubMed Central

    Liu, Cun; Liang, Ping; Wang, Yang; Zhou, Pei; Li, Xin; Han, Zhi-Yu; Liu, Shao-Ping

    2008-01-01

    AIM: To evaluate the feasibility and efficacy of percutaneous transhepatic lymphosonography (PTL) as a novel method for the detection of tumor lymphangiogenesis in hepatic VX2 of rabbits and to evaluate combined PTL and routine contrast-enhanced ultrasonographic imaging for the diagnosis of liver cancer. METHODS: Ten rabbits with VX2 tumor were included in this study. SonoVue (0.1 mL/kg) was injected into each rabbit via an ear vein for contrast-enhanced ultrasonographic imaging, and 0.5 mL SonoVue was injected into the normal liver parenchyma near the VX2 tumor for PTL. Images and/or movie clips were stored for further analysis. RESULTS: Ultrasonographic imaging showed VX2 tumors ranging 5-19 mm in the liver of rabbits. The VX2 tumor was hyperechoic and hypoechoic to liver parenchyma at the early and later phase, respectively. The hepatic lymph vessels were visualized immediately after injection of contrast medium and continuously visualized with SonoVue® during PTL. The boundaries of VX2 tumors were hyperechoic to liver parenchyma and the tumors. There was a significant difference in the values for the boundaries of VX2 tumors after injection compared with the liver normal parenchyma and the tumor parenchyma during PTL. CONCLUSION: PTL is a novel method for the detection of tumor lymphangiogenesis in hepatic VX2 of rabbits. Combined PTL and contrast-enhanced ultrasonographic imaging can improve the diagnosis of liver cancer. PMID:18609718

  17. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  18. Transvaginal ultrasound (image)

    MedlinePlus

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  19. Quantitative Contrast-Enhanced Ultrasonic Imaging Reflects Microvascularization in Hepatocellular Carcinoma and Prognosis after Resection.

    PubMed

    Zou, Ru-Hai; Lin, Qing-Guang; Huang, Wei; Li, Xiao-Ling; Cao, Yun; Zhang, Jing; Zhou, Jian-Hua; Li, An-Hua; Beretta, Laura; Qian, Chao-Nan

    2015-10-01

    Our aim was to evaluate the correlation between tumor vasculature detected by pre-surgical contrast-enhanced ultrasonography and the post-surgical prognosis of patients with hepatocellular carcinoma. One hundred ninety-five patients with hepatocellular carcinoma who had undergone curative resection and pre-operative contrast-enhanced ultrasonography were enrolled. Intra-tumoral microvessels were evaluated by immunohistochemical staining for anti-CD31 and anti-CD34. On the basis of the immunohistochemical staining and morphology patterns, tumors were divided into capillary-like and sinusoid-like microvessel subtypes. The rise time of tumors was shorter in the capillary-like microvessel subtype than in the sinusoid-like microvasculature subtype (p = 0.026). Intra-tumor microvascular density (p < 0.001, hazard ratio = 0.137) and rise time (p = 0.006, hazard ratio = 2.475) were independent factors corresponding to different microvasculature types. Microvascular density, vascular invasion and wash-in perfusion index were determined to be independent factors in recurrence-free survival and overall survival. In conclusion, contrast-enhanced ultrasonography may serve as a means of non-invasive assessment of tumor angiogenesis and may be associated with the survival of patients with hepatocellular carcinoma after resection. PMID:26210785

  20. Dynamic Contrast-Enhanced MR Microscopy: Functional Imaging in Preclinical Models of Cancer

    NASA Astrophysics Data System (ADS)

    Subashi, Ergys

    Dynamic contrast-enhanced (DCE) MRI has been widely used as a quantitative imaging method for monitoring tumor response to therapy. The pharmacokinetic parameters derived from this technique have been used in more than 100 phase I trials and investigator led studies. The simultaneous challenges of increasing the temporal and spatial resolution, in a setting where the signal from the much smaller voxel is weaker, have made this MR technique difficult to implement in small-animal imaging.Existing preclinical DCE-MRI protocols acquire a limited number of slices resulting in potentially lost information in the third dimension. Furthermore, drug efficacy studies measuring the effect of an anti-angiogenic treatment, often compare the derived biomarkers on manually selected tumor regions or over the entire volume. These measurements include domains where the interpretation of the biomarkers may be unclear (such as in necrotic areas). This dissertation describes and compares a family of four-dimensional (3D spatial + time), projection acquisition, keyhole-sampling strategies that support high spatial and temporal resolution. An interleaved 3D radial trajectory with a quasi-uniform distribution of points in k-space was used for sampling temporally resolved datasets. These volumes were reconstructed with three different k-space filters encompassing a range of possible keyhole strategies. The effect of k-space filtering on spatial and temporal resolution was studied in phantoms and in vivo. The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Finally, the technique was applied for measuring the extent of the opening of the blood-brain barrier in a mouse model of pediatric glioma and for identifying regions of therapeutic effect in a model of colorectal adenocarcinoma. It is shown that 4D radial keyhole imaging does not degrade

  1. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  2. Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors.

    PubMed

    Furman-Haran, E; Margalit, R; Grobgeld, D; Degani, H

    1996-06-25

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value. PMID:8692800

  3. Medical ultrasound imaging.

    PubMed

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy are shown. Systems using both linear and non-linear propagation of ultrasound are described. The blood velocity can also be non-invasively visualized using ultrasound and the basic signal processing for doing this is introduced. Examples for spectral velocity estimation, color flow imaging and the new vector velocity images are presented. PMID:17092547

  4. Noise correlation-based adaptive polarimetric image representation for contrast enhancement of a polarized beacon in fog

    NASA Astrophysics Data System (ADS)

    Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi

    2015-10-01

    We show the use of a simplified snapshot polarimetric camera along with an adaptive image processing for optimal detection of a polarized light beacon through fog. The adaptive representation is derived using theoretical noise analysis of the data at hand and is shown to be optimal in the Maximum likelihood sense. We report that the contrast enhancing optimal representation that depends on the background noise correlation differs in general from standard representations like polarimetric difference image or polarization filtered image. Lastly, we discuss a detection strategy to reduce the false positive counts.

  5. Tumor Characterization with Dynamic Contrast Enhanced Magnetic Resonance Imaging and Biodegradable Macromolecular Contrast Agents in Mice

    PubMed Central

    Wu, Xueming; Feng, Yi; Jeong, Eun-Kee; Emerson, Lyska; Lu, Zheng-Rong

    2009-01-01

    Purpose To investigate the efficacy of polydisulfide-based biodegradable macromolecular contrast agents of different degradability and molecular weight for tumor characterization based on angiogenesis using dynamic contrast enhanced MRI (DCE-MRI). Methods Biodegradable macromolecular MRI contrast agents, GDCC and GDCP, with molecular weight of 20 and 70 KDa were evaluated for tumor characterization. The DCE-MRI studies were performed in nude mice bearing MDA PCa 2b and PC-3 human prostate tumor xenografts. Tumor angiogenic kinetic parameters, endothelium transfer coefficient (Ktrans) and fractional tumor plasma volume (fPV), were calculated from the DCE-MRI data using a two-compartment model. Results There was no significant difference in the fPV values between two tumor models estimated with the same agent except for GDCC-70. The Ktrans values in both tumor models decreased with increasing molecular weight of the agents. GDCC-70 showed a higher Ktrans values than GDCP-70 due to high degradability of the former in both tumor models (p < 0.05). The Ktrans values of MDA PCa 2b tumors were significantly higher than those of PC-3 tumors estimated by Gd(DTPA-BMA), GDCC-20, GDCC-70, GDCP-70, and albumin-(Gd-DTPA) (p < 0.05). Conclusions The polydisulfide based biodegradable macromolecular MRI contrast agents are promising in tumor characterization with dynamic contrast enhanced MRI. PMID:19597972

  6. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Localization of Recurrent Prostate Cancer After External Beam Radiotherapy

    SciTech Connect

    Haider, Masoom A. Chung, Peter; Sweet, Joan; Toi, Ants; Jhaveri, Kartik; Menard, Cynthia; Warde, Padraig; Trachtenberg, John; Lockwood, Gina M.Math.; Milosevic, Michael

    2008-02-01

    Purpose: To compare the performance of T2-weighted (T2w) imaging and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland in the localization of recurrent prostate cancer in patients with biochemical failure after external beam radiotherapy (EBRT). Methods and Materials: T2-weighted imaging and DCE MRI were performed in 33 patients with suspected relapse after EBRT. Dynamic contrast-enhanced MRI was performed with a temporal resolution of 95 s. Voxels enhancing at 46 s after injection to a greater degree than the mean signal intensity of the prostate at 618 s were considered malignant. Results from MRI were correlated with biopsies from six regions in the peripheral zone (PZ) (base, mid, and apex). The percentage of biopsy core positive for malignancy from each region was correlated with the maximum diameter of the tumor on DCE MRI with a linear regression model. Results: On a sextant basis, DCE MRI had significantly better sensitivity (72% [21of 29] vs. 38% [11 of 29]), positive predictive value (46% [21 of 46] vs. 24% [11 of 45]) and negative predictive value (95% [144 of 152] vs. 88% [135 of 153] than T2w imaging. Specificities were high for both DCE MRI and T2w imaging (85% [144 of 169] vs. 80% [135 of 169]). There was a linear relationship between tumor diameters on DCE MRI and the percentage of cancer tissue in the corresponding biopsy core (r = 0.9, p < 0.001), with a slope of 1.2. Conclusions: Dynamic contrast-enhanced MRI performs better than T2w imaging in the detection and localization of prostate cancer in the peripheral zone after EBRT. This may be helpful in the planning of salvage therapy.

  7. Feasibility of Using Volumetric Contrast-Enhanced Ultrasound with a 3-D Transducer to Evaluate Therapeutic Response after Targeted Therapy in Rabbit Hepatic VX2 Carcinoma.

    PubMed

    Kim, Jeehyun; Kim, Jung Hoon; Yoon, Soon Ho; Choi, Won Seok; Kim, Young Jae; Han, Joon Koo; Choi, Byung-Ihn

    2015-12-01

    The aim of this study was to assess the feasibility of using dynamic contrast-enhanced ultrasound (DCE-US) with a 3-D transducer to evaluate therapeutic responses to targeted therapy. Rabbits with hepatic VX2 carcinomas, divided into a treatment group (n = 22, 30 mg/kg/d sorafenib) and a control group (n = 13), were evaluated with DCE-US using 2-D and 3-D transducers and computed tomography (CT) perfusion imaging at baseline and 1 d after the first treatment. Perfusion parameters were collected, and correlations between parameters were analyzed. In the treatment group, both volumetric and 2-D DCE-US perfusion parameters, including peak intensity (33.2 ± 19.9 vs. 16.6 ± 10.7, 63.7 ± 20.0 vs. 30.1 ± 19.8), slope (15.3 ± 12.4 vs. 5.7 ± 4.5, 37.3 ± 20.4 vs. 15.7 ± 13.0) and area under the curve (AUC; 1004.1 ± 560.3 vs. 611.4 ± 421.1, 1332.2 ± 708.3 vs. 670.4 ± 388.3), had significantly decreased 1 d after the first treatment (p = 0.00). In the control group, 2-D DCE-US revealed that peak intensity, time to peak and slope had significantly changed (p < 0.05); however, volumetric DCE-US revealed that peak intensity, time-intensity AUC, AUC during wash-in and AUC during wash-out had significantly changed (p = 0.00). CT perfusion imaging parameters, including blood flow, blood volume and permeability of the capillary vessel surface, had significantly decreased in the treatment group (p = 0.00); however, in the control group, peak intensity and blood volume had significantly increased (p = 0.00). It is feasible to use DCE-US with a 3-D transducer to predict early therapeutic response after targeted therapy because perfusion parameters, including peak intensity, slope and AUC, significantly decreased, which is similar to the trend observed for 2-D DCE-US and CT perfusion imaging parameters. PMID:26365926

  8. Delayed contrast enhancement imaging of a murine model for ischemia reperfusion with carbon nanotube micro-CT.

    PubMed

    Burk, Laurel M; Wang, Ko-Han; Wait, John Matthew; Kang, Eunice; Willis, Monte; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2015-01-01

    We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8-12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300 mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate

  9. Reactive lymphoid hyperplasia of the liver: Perinodular enhancement on contrast-enhanced computed tomography and magnetic resonance imaging

    PubMed Central

    Sonomura, Tetsuo; Anami, Shinpei; Takeuchi, Taizo; Nakai, Motoki; Sahara, Shinya; Tanihata, Hirohiko; Sakamoto, Kazuki; Sato, Morio

    2015-01-01

    We report the case of a 69-year-old woman with reactive lymphoid hyperplasia (RLH) of the liver. She underwent partial hepatectomy under a preoperative diagnosis of hepatocellular carcinoma; however, histopathological analysis revealed RLH. The liver nodule showed the imaging feature of perinodular enhancement in the arterial dominant phase on contrast-enhanced computed tomography and magnetic resonance imaging, which could be a useful clue for identifying RLH in the liver. Histologically, the perinodular enhancement was compatible with prominent sinusoidal dilatation surrounding the liver nodule. PMID:26074715

  10. Reactive lymphoid hyperplasia of the liver: Perinodular enhancement on contrast-enhanced computed tomography and magnetic resonance imaging.

    PubMed

    Sonomura, Tetsuo; Anami, Shinpei; Takeuchi, Taizo; Nakai, Motoki; Sahara, Shinya; Tanihata, Hirohiko; Sakamoto, Kazuki; Sato, Morio

    2015-06-01

    We report the case of a 69-year-old woman with reactive lymphoid hyperplasia (RLH) of the liver. She underwent partial hepatectomy under a preoperative diagnosis of hepatocellular carcinoma; however, histopathological analysis revealed RLH. The liver nodule showed the imaging feature of perinodular enhancement in the arterial dominant phase on contrast-enhanced computed tomography and magnetic resonance imaging, which could be a useful clue for identifying RLH in the liver. Histologically, the perinodular enhancement was compatible with prominent sinusoidal dilatation surrounding the liver nodule. PMID:26074715