Science.gov

Sample records for control coil arrangement

  1. Control coil arrangement for a rotating machine rotor

    DOEpatents

    Shah, Manoj R.; Lewandowsk, Chad R.

    2001-07-31

    A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.

  2. Control Coil Arrangement for a Rotating Machine Rotor

    SciTech Connect

    Shah, Manoj R.; Lewandowski, Chad R.

    1999-05-05

    A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.

  3. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  4. Thermosyphon coil arrangement for heat pump outdoor unit

    DOEpatents

    Draper, R.

    1984-05-22

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  5. Thermosyphon coil arrangement for heat pump outdoor unit

    DOEpatents

    Draper, Robert

    1984-01-01

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  6. Effective arrangement of separated transmit-only/receive-only RF coil for improvement of B1 homogeneity at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Im, Geun Ho; Seo, Jeong-Hoon; Kim, Kyoung-Nam; Heo, Phil; Chung, Julius Juhyun; Jang, Moon-Sun; Lee, Jung Hee; Kim, Jae-Hun; Kim, Sun I.

    2014-09-01

    This article presents an effective arrangement with shifted transmit (Tx)-only and receive (Rx)-only (TORO) radiofrequency (RF) coils in a single-channel surface coil for improving the magnetic flux ( B 1) homogeneity in an ultra-high field (UHF) magnetic resonance imaging (MRI) scanner. The proposed new methodology for the coil arrangement using the shifted TORO RF coils was demonstrated for coils with 50-mm, 100-mm, and 150-mm-square surfaces and the results were compared to those for general Tx/Rx surface coils with the same dimensions. The computational analysis indicated that a homogeneous B1 field was achieved when the Rx-only coil was shifted in the two-dimensional xy-plane away from the Tx-only coils. Because the proposed coil configuration provides a unique opportunity for increasing the B 1 homogeneity, this feature is likely to increase the feasibility via new coil arrangements of UHF surface design and fabrication.

  7. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork's bill awn

    PubMed Central

    Abraham, Yael; Tamburu, Carmen; Klein, Eugenia; Dunlop, John W. C.; Fratzl, Peter; Raviv, Uri; Elbaum, Rivka

    2012-01-01

    The sessile nature of plants demands the development of seed-dispersal mechanisms to establish new growing loci. Dispersal strategies of many species involve drying of the dispersal unit, which induces directed contraction and movement based on changing environmental humidity. The majority of researched hygroscopic dispersal mechanisms are based on a bilayered structure. Here, we investigate the motility of the stork's bill (Erodium) seeds that relies on the tightening and loosening of a helical awn to propel itself across the surface into a safe germination place. We show that this movement is based on a specialized single layer consisting of a mechanically uniform tissue. A cell wall structure with cellulose microfibrils arranged in an unusually tilted helix causes each cell to spiral. These cells generate a macroscopic coil by spiralling collectively. A simple model made from a thread embedded in an isotropic foam matrix shows that this cellulose arrangement is indeed sufficient to induce the spiralling of the cells. PMID:21865252

  8. Coiling Temperature Control in Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  9. Auxiliary coil controls temperature of RF induction heater

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.

  10. Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    PubMed Central

    Rose, Annkatrin; Schraegle, Shannon J; Stahlberg, Eric A; Meier, Iris

    2005-01-01

    Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell. PMID:16288662

  11. Optimization of RMP Coils for ELM Control

    NASA Astrophysics Data System (ADS)

    Dutta, Someswar; Evans, T. E.; Orlov, D. M.

    2015-11-01

    Advanced DIII-D RMP coils with improved capabilities are studied using a vacuum island overlap width (VIOW) criterion. Changes in characteristics of the RMP field produced by different geometrical parameters using both ex-vessel (C- and O-) and in-vessel (I- and CP-) coils are discussed. By reducing the poloidal span of each coil, the spacing between them and varying the geometric angle between the coils and the plasma, the resonant field can be adjusted to optimize the edge VIOW criterion while minimizing core resonances. Three separate phase scans using a combination of the as built I-coils and proposed CP-coils are compared for three different equilibria. Two of these equilibria have different edge safety factors and the third one has a different gap between plasma and wall than the standard equilibrium scenario of DIII D. The scan results show that the VIOW correlation criterion is well satisfied in all three cases, resulting in a new way to optimize the RMP coils for the future reactors in order to achieve the ELM suppression criterion over a significantly wider range of fusion plasma operating scenarios. Work supported by the U.S. DOE under DE-FG02-05ER54809 and DE-FC02-04ER54698.

  12. 54. LOCK, ELECTRICAL SYSTEM, CONTROL SWITCH CABINET, PANEL ARRANGEMENT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. LOCK, ELECTRICAL SYSTEM, CONTROL SWITCH CABINET, PANEL ARRANGEMENT AND DETAILS. February 1938 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 17, Upper Mississippi River, New Boston, Mercer County, IL

  13. Turbine airfoil with controlled area cooling arrangement

    SciTech Connect

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  14. The Development of a New Lateral-Control Arrangement

    NASA Technical Reports Server (NTRS)

    Baker, Paul S.

    1941-01-01

    Development work on an arrangement using ailerons and spoilers for lateral control was carried out by the Vought-Sikorsky Aircraft Division of the United Aircraft Corporation on a small commercial airplane in flight and on an airfoil in a wind tunnel. Spoiler hinge moments were reduced by aerodynamic balance. The arrangement was then built into an experimental airplane and further improvements were adopted as the result of flight and tunnel tests. The use of ailerons for lateral control with flaps up, spoilers with flaps full down, and gradual transition as the flaps are lowered was found to provide lateral control under the flight conditions for which they were best suited. The ailerons were of short span, permitting the use of long-span flaps, and were drooped to a relatively large angle when the flaps were deflected. A high maximum lift coefficient was thus attained. With large control deflections in the intermediate flap-angle range and spoiler effectiveness near neutral improved by "ventilating" the spoiler, the lateral control was satisfactory for the experimental airplane and was a definite improvement over that of a conventional control arrangement.

  15. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOEpatents

    Sisk, Francis J.

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor

  16. Synthesis and characterization of nanowire coils of organometallic coordination polymers for controlled cargo release.

    PubMed

    Liang, Guodong; Ni, Huan; Bao, Suping; Zhu, Fangming; Gao, Haiyang; Wu, Qing

    2014-06-12

    Nanowire coils of organometallic coordination polymers have been synthesized for the first time by using the emulsion periphery polymerization technique. An amphiphilic triblock copolymer terminated with inclusion complex of β-cyclodextrin and 4,4'-bipyridine self-assembles into oil-in-water emulsion in a toluene/water mixture. Subsequent coordination of bipyridine with Ni(II) in periphery of emulsions results in the formation of coordination polymer nanowire coils. The nanowire coils are composed of nanowires with diameter of 2 nm. Nanowire coils exhibit enhanced thermal stability in contrast to their parent triblock copolymer. Interestingly, nanowire coils are capable of encapsulating organic cargoes. Encapsulated cargoes can be selectively extracted from nanowire coils without damaging nanowire coils. Nanowire coils are potential candidates for encapsulating and controlled release of organic cargoes. PMID:24842771

  17. Arranging computer architectures to create higher-performance controllers

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1988-01-01

    Techniques for integrating microprocessors, array processors, and other intelligent devices in control systems are reviewed, with an emphasis on the (re)arrangement of components to form distributed or parallel processing systems. Consideration is given to the selection of the host microprocessor, increasing the power and/or memory capacity of the host, multitasking software for the host, array processors to reduce computation time, the allocation of real-time and non-real-time events to different computer subsystems, intelligent devices to share the computational burden for real-time events, and intelligent interfaces to increase communication speeds. The case of a helicopter vibration-suppression and stabilization controller is analyzed as an example, and significant improvements in computation and throughput rates are demonstrated.

  18. DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII-D

    SciTech Connect

    ANDERSON, PM; BAXI, CB; KELLMAN, AG; REIS, EE; ROBINSON, JI

    2002-10-01

    OAK A271 DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII-D. Since 1995, DIII-D has performed correction of magnetic field imperfections using a set of six external picture frame coils located on the vessel mid-plane. Recently, these coils have also demonstrated significant benefits when used for feedback of the resistive wall mode, an instability that limits the plasma performance at high beta. Modeling has shown that substantial performance improvements can be achieved by installing new coils inside the vessel and expanding the poloidal coverage above and below the mid-plane. Two prototype internal coils were installed in 2001 and have been tested successfully. installation of a set of twelve internal coils and magnetic sensors in the DIII-D tokamak is to be completed in December 2002. The design requirement for the new coil system was to maximize the magnetic field at the plasma edge, operate with a frequency range of dc to 1000 Hz, and fit behind the existing graphite wall tiles. The coil design adopted and installed is a water-cooled hollow copper conductor insulated with polyamide and housed inside a stainless steel tube that forms a vacuum boundary. The coil is rigidly mounted to the inside of the vacuum vessel. The primary challenge in the design of these coils was in joining of both the copper conductor and the stainless tube without overheating the polyamide insulator.

  19. Joule heating of the ITER TF cold structure: Effects of vertical control coil currents and ELMS

    SciTech Connect

    Radovinsky, A.; Pillsbury, R.D. Jr.

    1993-11-09

    The toroidal field coil and support structures for ITER are maintained at cryogenic temperatures. The time-varying currents in the poloidal field coil system will induce eddy currents in these structures. The associated Joule dissipation will cause local heating and require heat removal which will show up as a load on the cryogenic system. Studies of Joule heating of the ITER TF cold structure (TFCS) due to the currents in the poloidal field coil system are presented. The two regimes considered in this study are the plasma vertical stability control and the Edge Loss Mode (ELM) events. The 3-D, thin-shell, eddy current program, EDDYCUFF was used to analyze the eddy currents and Joule losses in the cold structure. The current versus time scenarios were defined. Four control coil options were studied. All schemes use coils external to the TF cold structure. Analyses of power depositions during the plasma vertical stability control were performed for each of the four options. For each of these options three different recovery times were assumed. The times were 3, 1, and 1/3 seconds. Sets of four sequential ELMs, as well as isolated ELMs have been studied for various sets of active PF coils. The results showed that the lowest average power dissipation in the TF cold structure occurs when a subset of PF2 and PF7 are active, and all the other PF coils are passive. The general conclusion is that to minimize power dissipation in the TF cold structure it is preferable that only coils PF2 and PF7 are active. The other coils (PF3-PF6) should be passive and driven by a condition of constant flux. It is recommended in particular, that coils PF3 and PF5 be allowed to change currents to conserve flux, since they provide the maximum shielding of the TFCS from the fields caused by the active coils.

  20. Plasma Vertical Control with Internal and External Coils in Nest Step Tokamaks

    SciTech Connect

    C.E. Kessel; P. Heitzenroeder; C. Jun

    2000-11-03

    Vertical stability and control are examined for a tokamak configuration intended to be a generic representation of next step devices. Vertical stability calculations show that a critical resistive wall location can be determined for realistic structures, and that the introduction of small amounts of low resistivity material to an all steel structure can significantly reduce the vertical instability growth rate. Vertical control simulations show that internal control coils require significantly less feedback power than external coils, and that low resistivity materials can allow very low feedback powers or coils to be located externally with reasonable feedback powers.

  1. Thioredoxin from Streptomyces aureofaciens controls coiling of plasmid DNA.

    PubMed

    Golubnitchaya-Labudova, O; Horecka, T; Kapalla, M; Perecko, D; Kutejova, E; Lubec, G

    1998-01-01

    A number of potential functions of thioredoxin have been proposed in literature, including a role for DNA replication. The aim of our study was to investigate the effects of thioredoxin from Streptomyces aureofaciens (Trx S.a.) on plasmid DNA. Trx S.a. was incubated with plasmid forms and the incubation product(s) characterized on agarose gels. To compare Trx activity with enzymes with known DNA modifying activities, topoisomerase I, II (gyrase) and T4 DNA ligase were incubated with plasmid DNA in parallel. For the demonstration of nick removal a PCR technique was used. Trx S.a. bound non-specifically to plasmid DNA relaxing supercoiled circle closed form (CCC form) with subsequent formation of the circle closed form (CC form) as a major product. The amplification of a specific DNA template, possible only after nick removal, took place following incubation with Trx. The effect of topoisomerase I on plasmid DNA resembled Trx S.a. activity. We propose the following mechanism for CCC relaxation: Binding of Trx leads to a break of one strand and CC is formed by stepwise relaxation, ending with nick removal. The concomitant finding of open circle form (OC form) generation after incubation with Trx may indicate the generation of an intermediate due to the postulated strand break at initiation. This control of coiling may play a role in the DNA replication machinery, providing CC as a readily available substrate for DNA polymerases. In addition, Trx may serve in DNA repair mechanisms by its nonspecific binding to DNA and nick removing activity. PMID:9449230

  2. A Coiled-coil Clamp Controls Both Conformation and Clustering of Stromal Interaction Molecule 1 (STIM1)*

    PubMed Central

    Fahrner, Marc; Muik, Martin; Schindl, Rainer; Butorac, Carmen; Stathopulos, Peter; Zheng, Le; Jardin, Isaac; Ikura, Mitsuhiko; Romanin, Christoph

    2014-01-01

    Store-operated Ca2+ entry, essential for the adaptive immunity, is initiated by the endoplasmic reticulum (ER) Ca2+ sensor STIM1. Ca2+ entry occurs through the plasma membrane resident Ca2+ channel Orai1 that directly interacts with the C-terminal STIM1 domain, named SOAR/CAD. Depletion of the ER Ca2+ store controls this STIM1/Orai1 interaction via transition to an extended STIM1 C-terminal conformation, exposure of the SOAR/CAD domain, and STIM1/Orai1 co-clustering. Here we developed a novel approach termed FRET-derived Interaction in a Restricted Environment (FIRE) in an attempt to dissect the interplay of coiled-coil (CC) interactions in controlling STIM1 quiescent as well as active conformation and cluster formation. We present evidence of a sequential activation mechanism in the STIM1 cytosolic domains where the interaction between CC1 and CC3 segment regulates both SOAR/CAD exposure and CC3-mediated higher-order oligomerization as well as cluster formation. These dual levels of STIM1 auto-inhibition provide efficient control over the coupling to and activation of Orai1 channels. PMID:25342749

  3. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains

    PubMed Central

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-01-01

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming. DOI: http://dx.doi.org/10.7554/eLife.14862.001 PMID:27253063

  4. 47 CFR 1.9010 - De facto control standard for spectrum leasing arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false De facto control standard for spectrum leasing... PROCEDURE Spectrum Leasing General Policies and Procedures § 1.9010 De facto control standard for spectrum leasing arrangements. (a) Under the rules established for spectrum leasing arrangements in this...

  5. 47 CFR 1.9010 - De facto control standard for spectrum leasing arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false De facto control standard for spectrum leasing... PROCEDURE Spectrum Leasing General Policies and Procedures § 1.9010 De facto control standard for spectrum leasing arrangements. (a) Under the rules established for spectrum leasing arrangements in this...

  6. Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia.

    PubMed

    Lee, Hyun O; Norden, Caren

    2013-03-01

    During development, cells undergo complex rearrangements that contribute to the final tissue architecture. A characteristic arrangement found in rapidly expanding, highly proliferative tissues is pseudostratified epithelium, which features notably elongated cells with varied nuclear positions along the cell axis. Although anomalies in its structure are implicated in diseases like microcephaly, how pseudostratification is formed and maintained remains elusive. In this review, we focus on a typical feature of pseudostratified epithelia called interkinetic nuclear migration (INM), which describes dynamic movements of nuclei within the elongated cell bodies. We provide an overview of cytoskeletal components underlying INM in different systems, discuss current understanding of its kinetics and timing, and evaluate how conflicting results could be explained through developmental and evolutionary considerations. PMID:23266143

  7. Design Of JET ELM Control Coils For Operation At 350 C

    SciTech Connect

    Zatz, I J; Brooks, A; Cole, M; Neilson, G H; Lowry, C; Mardenfeld, M; Omran, H; Thompson, V; Todd, T

    2010-09-20

    A study has confirmed the feasibility of designing, fabricating and installing resonant magnetic field perturbation (RMP) coils in JET1 with the objective of controlling edge localized modes (ELM). A system of two rows of in-vessel coils, above the machine midplane, has been chosen as it not only can investigate the physics of and achieve the empirical criteria for ELM suppression, but also permits variation of the spectra allowing for comparison with other experiments. These coils present several engineering challenges. Conditions in JET necessitate the installation of these coils via remote handling, which will impose weight, dimensional and logistical limitations. And while the encased coils are designed to be conventionally wound and bonded, they will not have the usual benefit of active cooling. Accordingly, coil temperatures are expected to reach 350 C during bakeout as well as during plasma operations. These elevated temperatures are beyond the safe operating limits of conventional OFHC copper and the epoxies that bond and insulate the turns of typical coils. This has necessitated the use of an alternative copper alloy conductor C18150 (CuCrZr). More importantly, an alternative to epoxy had to be found. An R&D program was initiated to find the best available insulating and bonding material. The search included polyimides and ceramic polymers. The scope and status of this R&D program, as well as the critical engineering issues encountered to date are reviewed and discussed.

  8. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  9. A voice coil motor based measuring force control system for tactile scanning profiler

    NASA Astrophysics Data System (ADS)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  10. Analysis of Options for Resistive Wall Mode Control Coils for ITER

    NASA Astrophysics Data System (ADS)

    Ulrickson, M.

    2006-10-01

    Several fusion devices have found improvement in plasma performance from the application of either static or dynamic magnetic perturbations from a set of coils. DIII-D has found that static fields can prevent formation of locked modes and create ergodic structures in the plasma edge that decrease the size of ELMS. They have also used such coils in a feedback loop to control the growth of resistive wall modes. Similar effects have been observed on NSTX, C-Mod, ASDEX, and JET. In all cases, the coils were placed close to the plasma either inside the vessel or immediately outside a thin vessel. Because ITER is a burning plasma device with a long pulse length, thick nuclear shielding must be placed between the plasma and the vacuum vessel. If ITER is to realize the confinement and operation benefits of resistive wall mode control coils, locations and coil designs must be found where such coils can be deployed. Two generic locations have been identified. The most accessible location is immediately outside the vessel and around the mid-plane ports. An alternative location closer to the plasma is inside the mid-plane ports but behind the port shield module. We have used an electromagnetic modeling code to evaluate both the static and dynamic field perturbations at the plasma edge for both of these coil options for frequencies from 1 Hz to 6kHz. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Statistical Methods for Quality Control of Steel Coils Manufacturing Process using Generalized Linear Models

    NASA Astrophysics Data System (ADS)

    García-Díaz, J. Carlos

    2009-11-01

    Fault detection and diagnosis is an important problem in process engineering. Process equipments are subject to malfunctions during operation. Galvanized steel is a value added product, furnishing effective performance by combining the corrosion resistance of zinc with the strength and formability of steel. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing and the increasingly stringent quality requirements in automotive industry has also demanded ongoing efforts in process control to make the process more robust. When faults occur, they change the relationship among these observed variables. This work compares different statistical regression models proposed in the literature for estimating the quality of galvanized steel coils on the basis of short time histories. Data for 26 batches were available. Five variables were selected for monitoring the process: the steel strip velocity, four bath temperatures and bath level. The entire data consisting of 48 galvanized steel coils was divided into sets. The first training data set was 25 conforming coils and the second data set was 23 nonconforming coils. Logistic regression is a modeling tool in which the dependent variable is categorical. In most applications, the dependent variable is binary. The results show that the logistic generalized linear models do provide good estimates of quality coils and can be useful for quality control in manufacturing process.

  12. DSP based lunar sampling control system for the coiling-type sampler

    NASA Astrophysics Data System (ADS)

    Ling, Yun; Song, Aiguo; Lu, Wei

    2011-12-01

    The paper develops a control system based on DSP28334 for lunar sampling, and provides the main structure of it. The critical hardware and software design of the system are introduced in detail. The emphasis is placed on the design and realization of the vibration control of the coiling-type sampler in the process of lunar sampling. A control strategy which combines manual-control and local autonomous control is applied for the lunar sampling control. And the sampling mechanism being controlled can realizes multi-motor units working at time-sharing, which reduces the power comsumption and increases the stability of the sampling system greatly. The practical application of the control strategy used for the coiling-type sampler is verified by the finite element analysis. The experiments results show that the system works with low power consumption and high efficiency, and the proposed strategy enables greater depth and better efficiency during sampling.

  13. Ion particle and energy flux uniformity control using a phase locked dual ICP coil design

    NASA Astrophysics Data System (ADS)

    Coumou, David; Shannon, Steven

    2015-09-01

    Phase lock drive of multiple power sources to drive a single plasma discharge has demonstrated the ability to modify low pressure discharges in a variety of ways not achievable by other means including control of electrical asymmetry ion energy distribution function shape and uniformity. This work presents an experimental effort to elucidate the relationship between plasma parameters and locked phase between dual inductive coils and between the coils and bias cathode of a commercial 300 mm etching chamber. Adjusting parameters to maintain a constant electron density at the center of the discharge, both ion flux uniformity and average ion energy are impacted by these relative phase conditions.

  14. Parallel Magnetic Flow Electromagnet for Movable Coil Control-rod Driving Mechanism

    SciTech Connect

    Jige, Zhang

    2006-07-01

    The parallel magnetic flow electromagnet can effectively relax the saturation, which easily takes place in the single magnetic flow electromagnet, and accordingly can improve the drive capacity of the movable coil electromagnet drive mechanism for a mobile reactor control rod. (authors)

  15. ECR apparatus with magnetic coil for plasma refractive index control

    DOEpatents

    Berry, L.A.

    1994-04-26

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figures.

  16. ECR apparatus with magnetic coil for plasma refractive index control

    DOEpatents

    Berry, Lee A.

    1994-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  17. 47 CFR 1.9010 - De facto control standard for spectrum leasing arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false De facto control standard for spectrum leasing... PROCEDURE Grants by Random Selection Spectrum Leasing General Policies and Procedures § 1.9010 De facto control standard for spectrum leasing arrangements. (a) Under the rules established for spectrum...

  18. 47 CFR 1.9010 - De facto control standard for spectrum leasing arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false De facto control standard for spectrum leasing... PROCEDURE Grants by Random Selection Spectrum Leasing General Policies and Procedures § 1.9010 De facto control standard for spectrum leasing arrangements. (a) Under the rules established for spectrum...

  19. 47 CFR 1.9010 - De facto control standard for spectrum leasing arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false De facto control standard for spectrum leasing... PROCEDURE Grants by Random Selection Spectrum Leasing General Policies and Procedures § 1.9010 De facto control standard for spectrum leasing arrangements. (a) Under the rules established for spectrum...

  20. Second coiled-coil domain of KCNQ channel controls current expression and subfamily specific heteromultimerization by salt bridge networks.

    PubMed

    Nakajo, Koichi; Kubo, Yoshihiro

    2008-06-15

    KCNQ channels carry the slowly activating, voltage-dependent M-current in excitable cells such as neurons. Although the KCNQ2 homomultimer can form a functional voltage-gated K(+) channel, heteromultimerization with KCNQ3 produces a > 10-fold increase in current amplitude. All KCNQ channels contain double coiled-coil domains (TCC1 and TCC2, or A-domain Head and Tail), of which TCC2 (A-domain Tail) is thought to be important for subunit recognition, channel assembly and surface expression. The mechanism by which TCC2 recognizes and associates with its partner is not fully understood, however. Our aim in the present study was to elucidate the recognition mechanism by examining the phenotypes of TCC2-deletion mutants, TCC2-swapped chimeras and point mutants. Electrophysiological analysis using Xenopus oocytes under two-electrode voltage clamp revealed that homotetrameric KCNQ3 TCC2 is a negative regulator of current expression in the absence of KCNQ2 TCC2. Recent structural analysis of KCNQ4 TCC2 revealed the presence of intercoil salt bridge networks. We therefore swapped the sign of the charged residues reportedly involved in the salt bridge formation and functionally confirmed that the intercoil salt bridge network is responsible for the subunit recognition between KCNQ2 and KCNQ3. Finally, we constructed TCC2-swapped KCNQ2/KCNQ3 mutants with KCNQ1 TCC2 or GCN4-pLI, a coiled-coil domain from an unrelated protein, and found that TCC2 is substitutable and even GCN4-pLI can work as a substitute for TCC2. Our present data provide some new insights into the role played by TCC2 during current expression, and also provide functional evidence of the importance of the intercoil salt bridge network for subunit recognition and coiled-coil formation, as is suggested by recent crystallographic data. PMID:18440995

  1. Controlling the Assembly of Coiled–Coil Peptide Nanotubes

    PubMed Central

    Thomas, Franziska; Burgess, Natasha C.; Thomson, Andrew R.

    2015-01-01

    Abstract An ability to control the assembly of peptide nanotubes (PNTs) would provide biomaterials for applications in nanotechnology and synthetic biology. Recently, we presented a modular design for PNTs using α‐helical barrels with tunable internal cavities as building blocks. These first‐generation designs thicken beyond single PNTs. Herein we describe strategies for controlling this lateral association, and also for the longitudinal assembly. We show that PNT thickening is pH sensitive, and can be reversed under acidic conditions. Based on this, repulsive charge interactions are engineered into the building blocks leading to the assembly of single PNTs at neutral pH. The building blocks are modified further to produce covalently linked PNTs via native chemical ligation, rendering ca. 100 nm‐long nanotubes. Finally, we show that small molecules can be sequestered within the interior lumens of single PNTs. PMID:26663438

  2. Optimization of Feedback Control Coils for Resistive Wall Mode Stabilization in DIII-D

    NASA Astrophysics Data System (ADS)

    Bialek, J.; Boozer, A. H.; Garofalo, A. M.; Mauel, M. E.; Navratil, G. A.; Turnbull, A. D.

    1999-11-01

    Recent experiments in DIII--D on Resistive Wall Mode (RWM) stabilization with active feedback have been very promising. We investigated extensions to the sensor and control coil set that would further improve RWM stabilization. The VALEN computer code models the RWM as an equivalent current distribution on the unperturbed plasma boundary which duplicates the plasma external magnetic field of the mode, as calculated by GATO. This surface current determines the plasma interaction with all conducting structures. In three dimensions the VALEN code models the unstable plasma, passive structure, proposed sensors, and proposed control coils together with the control logic. The problem may be examined as a transient simulation, or for a linear power supply model, as an eigenvalue calculation. A summary of the configurations examined and their predicted effectiveness will be presented.

  3. Preparing Plasma Control and Digital Coil Protection for NSTX-U

    NASA Astrophysics Data System (ADS)

    Gerhardt, S. P.; Erickson, K.; Gates, D. A.; Kaita, R.; Mueller, D.; Sabbagh, S. A.; Stevenson, T.; Titus, P.; Que, W.

    2014-10-01

    Compared to NSTX, NSTX-Upgrade will have twice the toroidal field (BT 0.5T --> 1.0T) and plasma current (IP 1 MA --> 2 MA). These increases in capability have mandated a new digital coil protection system (DCPS). This software computes forces, stresses, and coil heating in real time, and brings down the coil power supplies in a controlled manner when the forces, stresses, heating and currents exceed limits; the algorithms and their numerical implementation will be described. The algorithms have been run on the legacy NSTX database of discharges, motivating a reexamination of some limit values and identification of the plasma control behaviors that lead to large forces and stresses. These and other changes in the conversion to NSTX-U have motivated improvements to the plasma control system (PCS) algorithms. The preliminary design of an architecture for a automated discharge termination system will be presented, motivated by the desire to reduce large current transients during disruptions, thereby reducing stresses and avoiding DCPS faults. Other improvements to the plasma control system include the automation of the TF current rampdown, improvements to the gas delivery algorithms, and the addition of many more flux loops and magnetic pickup (Mirnov) sensors for real time equilibrium reconstruction. This work was sponsored by the U.S. Department of Energy.

  4. Application of horizontal spiral coil heat exchanger for volatile organic compounds (VOC) emission control.

    PubMed

    Deshpande, P M; Dawande, S D

    2013-04-01

    The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser. PMID:25464701

  5. New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT

    NASA Astrophysics Data System (ADS)

    Zeng, Wubing; Ding, Yonghua; Yi, Bin; Xu, Hangyu; Rao, Bo; Zhang, Ming; Liu, Minghai

    2014-11-01

    In order to advance the research on suppressing tearing modes and driving plasma rotation, a DC power supply (PS) system has been developed for dynamic resonant magnetic perturbation (DRMP) coils and applied in the J-TEXT experiment. To enrich experimental phenomena in the J-TEXT tokamak, applying the circulating current four-quadrant operation mode in the DRMP DC PS system is proposed. By using the circulating current four-quadrant operation, DRMP coils can be smoothly controlled without the dead-time when the current polarity reverses. Essential circuit analysis, control optimization and simulation of desired scenarios have been performed for normal current. Relevant simulation and test results are also presented.

  6. Application of horizontal spiral coil heat exchanger for volatile organic compounds (VOC) emission control.

    PubMed

    Deshpande, P M; Dawande, S D

    2013-04-01

    The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser. PMID:25508332

  7. Controlled self-assembly of conjugated rod-coil block copolymers for applications in organic optoelectronics

    NASA Astrophysics Data System (ADS)

    Tao, Yuefei

    Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous

  8. Embolization with Tornado coils to control bleeding from an arterioureteral fistula.

    PubMed

    Jacobs, Bruce L; Maranchie, Jodi K

    2007-12-01

    Arterioureteral fistulae are rare, but potentially life-threatening causes of bleeding. We present a case of an 82 year-old woman with refractory, transfusion-dependent bleeding from an arterial fistula to her right ureteral stump, following right radical nephrectomy for advanced renal cell carcinoma. Cystoscopy with retrograde ureteral stump embolization using Tornado (Cook Medical, Bloomington, Indiana, USA) coils plus a slurry of thrombin-soaked Gelfoam (Pfizer Inc., New York, New York, USA) was performed, which led to prompt resolution of the patient's hematuria requiring no further hospitalizations or transfusions. Retrograde insertion of coils and injection of thrombin-soaked Gelfoam can be a minimally invasive, safe, and durable alternative for controlling hemorrhage from an arterioureteral fistula to a ureteral stump. PMID:18163933

  9. Low cost optical tweezers systems using double coil driving stepping motor to controlling sample stage

    NASA Astrophysics Data System (ADS)

    Laowattanatham, N.; Cheamanunkul, N.; Plaipichit, S.; Buranasiri, P.; Nuansri, R.

    2013-06-01

    In this research, the low cost optical tweezers systems using X-Y stage has been developed by using 5-phase stepping motor. By using sequential double coil driving, we can obtain the driving torque larger than using the single coil driving. The moving scale is fine resolution at 0.2 micrometer. The overall systems based on microcontroller PIC18F458 and joystick controller with LabView® graphical user interface (GUI). The mechanical damping has been included in the system for decreasing the vibrational noise. By using this method, our optical tweezers system is cheaper than the other commercial system that has been used the piezoelectric driving, and still has the same efficiency.

  10. Controlled-force end seal arrangement for an air press of a papermaking machine

    DOEpatents

    Beck, David A.

    2003-07-08

    An air press for pressing a fiber web includes a plurality of rolls and a pair of end seal arrangements. Of the plurality of rolls, each pair of adjacent rolls forms a nip therebetween. Further, each roll has a pair of roll ends, the plurality of rolls together forming two sets of roll ends. Each end seal arrangement coacts with one set of roll ends, the plurality of rolls and the pair of end seal arrangements together defining an air press chamber having an air chamber pressure. Each end seal arrangement is composed of at least one roll seal, including a first roll seal, and an adjustable bias mechanism. Each roll seal forms a seal with at least one roll end, and one side of the first roll seal being exposed to the air chamber pressure. The adjustable bias mechanism is configured for controlling a position of each roll seal relative to a respective at least one roll end and for adjusting a seal force between the roll seal and the respective at least one roll end.

  11. Energy efficient fume and odor control equipment for coil coating line

    SciTech Connect

    Coughran, G.

    1982-06-01

    Wolverine Aluminum Corporation, producer of exterior siding building material, recently installed a Variable Energy Recovery Control System at its Lincoln Park coil coating plant. Boilers had an incinerator which emitted odors and consumed large volumes of gas. The fume incinerators were eliminated by one Model G 56,000 SCFM RE-THE M thermal Oxidizer from Reeco of Morris Plains, NJ. Its chambers, preheaters, two main ducts, and other design features are described. Installation was simple, as was operation. Fumes and odor have been controlled; operating costs have been reduced.

  12. Arrangement of a nanostructure array to control equilibrium and nonequilibrium transports of macromolecules.

    PubMed

    Yasui, Takao; Kaji, Noritada; Ogawa, Ryo; Hashioka, Shingi; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2015-05-13

    Exploiting the nonequilibrium transport of macromolecules makes it possible to increase the separation speed without any loss of separation resolution. Here we report the arrangement of a nanostructure array in microchannels to control equilibrium and nonequilibrium transports of macromolecules. The direct observation and separation of macromolecules in the nanopillar array reported here are the first to reveal the nonequilibrium transport, which has a potential to overcome the intrinsic trade-off between the separation speed and resolution. PMID:25879141

  13. Radial arrangement of Janus-like setae permits friction control in spiders

    NASA Astrophysics Data System (ADS)

    Wolff, Jonas O.; Gorb, Stanislav N.

    2013-01-01

    Dynamic attachment is the key to move on steep surfaces, with mechanisms being still not well understood. The hunting spider Cupiennius salei (Arachnida, Ctenidae) possesses hairy attachment pads (claw tufts) at its distal legs, consisting of directional branched setae. The morphological investigation revealed that adhesive setae are arranged in a radial manner within the distal tarsus. Friction of claw tufts on smooth glass was measured to reveal the functional effect of seta arrangement within the pad. Measurements revealed frictional anisotropy in both longitudinal and transversal directions. Contact behaviour of adhesive setae was investigated in a reflection interference contrast microscope (RICM). Observations on living spiders showed, that only a small part of the hairy pads is in contact at the same time. Thus the direction of frictional forces is depending on leg placement and rotation. This may aid controlling the attachment to the substrate.

  14. Radial arrangement of Janus-like setae permits friction control in spiders

    PubMed Central

    Wolff, Jonas O.; Gorb, Stanislav N.

    2013-01-01

    Dynamic attachment is the key to move on steep surfaces, with mechanisms being still not well understood. The hunting spider Cupiennius salei (Arachnida, Ctenidae) possesses hairy attachment pads (claw tufts) at its distal legs, consisting of directional branched setae. The morphological investigation revealed that adhesive setae are arranged in a radial manner within the distal tarsus. Friction of claw tufts on smooth glass was measured to reveal the functional effect of seta arrangement within the pad. Measurements revealed frictional anisotropy in both longitudinal and transversal directions. Contact behaviour of adhesive setae was investigated in a reflection interference contrast microscope (RICM). Observations on living spiders showed, that only a small part of the hairy pads is in contact at the same time. Thus the direction of frictional forces is depending on leg placement and rotation. This may aid controlling the attachment to the substrate. PMID:23346358

  15. Optimal coordinated control of energy extraction in LES of wind farms: effect of turbine arrangement patterns

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Munters, Wim; Goit, Jay

    2015-11-01

    We investigate optimal control of wind-farm boundary layers, considering the individual wind turbines as flow actuators. By controlling the thrust coefficients of the turbines as function of time, the energy extraction can be dynamically regulated with the aim to optimally influence the flow field and the vertical energy transport. To this end, we use Large-Eddy Simulations (LES) of wind-farm boundary layers in a receding-horizon optimal control framework. Recently, the approach was applied to fully developed wind-farm boundary layers in a 7D by 6D aligned wind-turbine arrangement. For this case, energy extraction increased up to 16%, related to improved wake mixing by slightly anti-correlating the turbine thrust coefficient with the local wind speed at the turbine level. Here we discuss optimal control results for finite wind farms that are characterized by entrance effects and a developing internal boundary layer above the wind farm. Both aligned and staggered arrangement patterns are considered, and a range of different constraints on the controls is included. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the infrastructure of the Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Governement.

  16. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    NASA Astrophysics Data System (ADS)

    Ngamroo, Issarachai

    2010-12-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  17. Controllable preparation of Ni nanoparticles for catalysis of coiled carbon fibers growth.

    PubMed

    Jian, Xian; Zhou, Zuowan; Wu, Sixin; Chen, Lei; Zeng, Qing; Wang, Chao

    2014-01-01

    The mass preparation of high-purity coiled carbon fibers (CCFs) remains challenging due to the high complexity and low controllability of reaction. In this work, a controllable growth of Ni particles was fulfilled by liquid phase reduction of nickel sulfate with hydrazine hydrate. The impacts of the reaction temperature, NaOH concentration, and reaction time on the particle size and purity were investigated. The as-deposited Ni particles were characterized by scanning electron microscopy and X-ray diffraction. In addition, these Ni particles were also applied in preparing high-purity CCFs both on graphite and ceramic substrates. The diameter of the as-grown carbon microcoil was about 500 nm, and the related growth mechanism was discussed. PMID:25136280

  18. Controllable preparation of Ni nanoparticles for catalysis of coiled carbon fibers growth

    PubMed Central

    2014-01-01

    The mass preparation of high-purity coiled carbon fibers (CCFs) remains challenging due to the high complexity and low controllability of reaction. In this work, a controllable growth of Ni particles was fulfilled by liquid phase reduction of nickel sulfate with hydrazine hydrate. The impacts of the reaction temperature, NaOH concentration, and reaction time on the particle size and purity were investigated. The as-deposited Ni particles were characterized by scanning electron microscopy and X-ray diffraction. In addition, these Ni particles were also applied in preparing high-purity CCFs both on graphite and ceramic substrates. The diameter of the as-grown carbon microcoil was about 500 nm, and the related growth mechanism was discussed. PMID:25136280

  19. Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions

    PubMed Central

    Watkins, Herschel M.; Simon, Anna J.; Sosnick, Tobin R.; Lipman, Everett A.; Hjelm, Rex P.; Plaxco, Kevin W.

    2015-01-01

    Small-angle scattering studies generally indicate that the dimensions of unfolded single-domain proteins are independent (to within experimental uncertainty of a few percent) of denaturant concentration. In contrast, single-molecule FRET (smFRET) studies invariably suggest that protein unfolded states contract significantly as the denaturant concentration falls from high (∼6 M) to low (∼1 M). Here, we explore this discrepancy by using PEG to perform a hitherto absent negative control. This uncharged, highly hydrophilic polymer has been shown by multiple independent techniques to behave as a random coil in water, suggesting that it is unlikely to expand further on the addition of denaturant. Consistent with this observation, small-angle neutron scattering indicates that the dimensions of PEG are not significantly altered by the presence of either guanidine hydrochloride or urea. smFRET measurements on a PEG construct modified with the most commonly used FRET dye pair, however, produce denaturant-dependent changes in transfer efficiency similar to those seen for a number of unfolded proteins. Given the vastly different chemistries of PEG and unfolded proteins and the significant evidence that dye-free PEG is well-described as a denaturant-independent random coil, this similarity raises questions regarding the interpretation of smFRET data in terms of the hydrogen bond- or hydrophobically driven contraction of the unfolded state at low denaturant. PMID:25964362

  20. Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks.

    PubMed

    Zhang, Wei; Huang, Mingjun; Su, Hao; Zhang, Siyu; Yue, Kan; Dong, Xue-Hui; Li, Xiaopeng; Liu, Hao; Zhang, Shuo; Wesdemiotis, Chrys; Lotz, Bernard; Zhang, Wen-Bin; Li, Yiwen; Cheng, Stephen Z D

    2016-01-27

    Herein we introduce a unique synthetic methodology to prepare a library of giant molecules with multiple, precisely arranged nano building blocks, and illustrate the influence of minute structural differences on their self-assembly behaviors. The T8 polyhedral oligomeric silsesquioxane (POSS) nanoparticles are orthogonally functionalized and sequentially attached onto the end of a hydrophobic polymer chain in either linear or branched configuration. The heterogeneity of primary chemical structure in terms of composition, surface functionality, sequence, and topology can be precisely controlled and is reflected in the self-assembled supramolecular structures of these giant molecules in the condensed state. This strategy offers promising opportunities to manipulate the hierarchical heterogeneities of giant molecules via precise and modular assemblies of various nano building blocks. PMID:27163025

  1. Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks

    PubMed Central

    2016-01-01

    Herein we introduce a unique synthetic methodology to prepare a library of giant molecules with multiple, precisely arranged nano building blocks, and illustrate the influence of minute structural differences on their self-assembly behaviors. The T8 polyhedral oligomeric silsesquioxane (POSS) nanoparticles are orthogonally functionalized and sequentially attached onto the end of a hydrophobic polymer chain in either linear or branched configuration. The heterogeneity of primary chemical structure in terms of composition, surface functionality, sequence, and topology can be precisely controlled and is reflected in the self-assembled supramolecular structures of these giant molecules in the condensed state. This strategy offers promising opportunities to manipulate the hierarchical heterogeneities of giant molecules via precise and modular assemblies of various nano building blocks. PMID:27163025

  2. Hinge Moments of Sealed-Internal-Balance Arrangements for Control Surfaces I : Theoretical Investigation

    NASA Technical Reports Server (NTRS)

    Murray, Harry E.; Erwin, Mary A.

    1945-01-01

    The results of a theoretical analysis of the hinge-moment characteristics of various sealed-internal-balance arrangements for control surfaces are presented. The analysis considered overhands sealed to various types of wing structure by flexible seals spanning gaps of various widths or sealed to the wing structure by a flexible system of linked plates. Leakage was not considered; the seal was assumed to extend the full spanwise length of the control surface. The effect of the developed width of the flexible seal and of the geometry of the structure to which the seal was anchored was investigated, as well as the effect of the gap width that is sealed. The results of the investigation indicated that the most nearly linear control-surface hinge-moment characteristics can probably be obtained from a flexible seal over a narrow gap (about 0.1 of the overhang chord), which is so installed that the motion of the seal is restricted to a region behind the point of attachment of the seal to the wing structure. Control-surface hinge moments that tend to be high at large deflections and low or overbalanced at small deflections will result if a very narrow seal is used.

  3. The study of non-axisymmetric control coil applications in NSTX-U

    NASA Astrophysics Data System (ADS)

    Park, J.-K.; Menard, J. E.; Kim, K.; Gerhardt, S. P.; Maingi, R.; Bialek, J. M.; Sabbagh, S. A.; Berkery, J. W.; Boozer, A. H.; Canik, J. M.; Evans, T. E.

    2013-10-01

    As expanded 3D field capability is essential to meet NSTX-U programmatic goals and support ITER, non-axisymmetric control coil (NCC) configurations have been proposed and studied to assess potential physics applications. IPEC-NTV, POCA, and TRIP-3D code analysis show that NCC can provide a range of non-resonant error field control while minimizing resonant error field, and enhance NTV variability to better control rotation and shear, and also largely vary stochastic layers in the edge while maintaining similar plasma response characteristics. VALEN-3D analysis shows that RWM control performance increases with NCC and indicates even the possibility of operation near the ideal-wall limit. In addition, 3D analysis using stellarator codes such as COBRA indicates that NCC can directly broaden ballooning unstable region across radius and thus can be used to improve ELM pacing in NSTX-U. Relevant figures-of-merit are defined and used to quantify these NCC physics capabilities, as will be presented with future analysis plans. This work was supported by DOE Contract DE-AC02-09CH11466.

  4. Coupling characteristics and control of dual mechanical port machine with spoke type permanent magnet arrangement

    NASA Astrophysics Data System (ADS)

    Zhuang, Xingming; Song, Qiang; Wen, Xuhui; Zhao, Feng; Fan, Tao

    2014-11-01

    Dual mechanical port machine(DMPM), as a novel electromechanical energy conversion device, has attracted widespread attention. DMPM with spoke type permanent magnet arrangements(STPM-DMPM), which is one of several types of DMPM, has been of interest recently. The unique coupling characteristics of STPM-DMPM are beneficial to improving system performance, but these same characteristics increase the difficulties of control. Now there has been little research about the control of STPM-DMPM, and this has hindered its practical application. Based on a mathematical model of STPM-DMPM, the coupling characteristics and the merits and demerits of such devices are analyzed as applied to a hybrid system. The control strategies for improving the disadvantages and for utilizing the advantage of coupling are researched. In order to weaken the interaction effect of torque outputs in the inner motor and the outer motor that results from coupling in STPM-DMPM, a decoupling control method based on equivalent current control is proposed, and independent torque control for the inner motor and outer motor is achieved. In order to solve address the problem of adequately utilization of coupling, minimizing the overall copper loss of the inner motor and the outer motor of STPM-DMPM is taken as the optimization objective for optimal control, and the purpose of utilizing the coupling adequately and reasonably is achieved. The verification tests of the proposed decoupling control and optimal control strategies are carried out on a prototype STPM-DMPM, and the experimental results show that the interaction effect of torque outputs in the inner motor and the outer motor can be markedly weakened through use of the control method. The overall copper loss of the inner motor and the outer motor can be markedly reduced through use of the optimal control method, while the power output remains unchanged. A breakthrough in the control problem of STPM-DMPM is accomplished by combining the control

  5. Control of Plasma-Stored Energy for Burn Control using DIII-D In-Vessel Coils

    SciTech Connect

    Hawryluk, R. J.; Eidietis, N. W.; Grierson, B. A.; Hyatt, A. W.; Koleman, E.; Logan, N. C.; Nazikian, R.; Paz-Soldan, C.; Wolf, S.

    2014-09-01

    A new approach has been experimentally demonstrated to control the stored energy by applying a non-axisymmetric magnetic field using the DIII-D in-vessel coils to modify the energy confinement time. In future burning plasma experiments as well as magnetic fusion energy power plants, various concepts have been proposed to control the fusion power. The fusion power in a power plant operating at high gain can be related to the plasma-stored energy and hence, is a strong function of the energy confinement time. Thus, an actuator, that modifies the confinement time, can be used to adjust the fusion power. In relatively low collisionality DIII-D discharges, the application of non-axisymmetric magnetic fields results in a decrease in confinement time and density pumpout. Gas puffing was used to compensate the density pumpout in the pedestal while control of the stored energy was demonstrated by the application of non-axisymmetric fields.

  6. Split Coil Forms for Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  7. Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001).

    PubMed

    Stradi, Daniele; Garnica, Manuela; Díaz, Cristina; Calleja, Fabián; Barja, Sara; Martín, Nazario; Alcamí, Manuel; Vazquez de Parga, Amadeo L; Miranda, Rodolfo; Martín, Fernando

    2014-12-21

    Achieving control over the self-organization of functional molecules on graphene is critical for the development of graphene technology in organic electronic and spintronic. Here, by using a scanning tunneling microscope (STM), we show that the electron acceptor molecule 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) and its fluorinated derivative 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyano-p-quinodimethane (F4-TCNQ), co-deposited on the surface of epitaxial graphene on Ru(0001), transform spontaneously into their corresponding magnetic anions and self-organize in two remarkably different structures. TCNQ forms densely packed linear magnetic arrays, while F4-TCNQ molecules remain as isolated non interacting magnets. With the help of density functional theory (DFT) calculations, we trace back the origin of this behavior in the competition between the intermolecular repulsion experienced by the individual charged anions, which tends to separate the molecules, and the delocalization of the electrons transferred from the surface to the molecules, which promotes the formation of molecular oligomers. Our results demonstrate that it is possible to control the spatial arrangement of organic magnetic anions co-adsorbed on a surface by means of chemical substitution, paving the way for the design of two-dimensional fully organic magnetic structures on graphene and on other surfaces. PMID:25382549

  8. Gradient coil system for nuclear magnetic resonance apparatus

    SciTech Connect

    Frese, G.; Siebold, H.

    1984-08-28

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry.

  9. Enhancing DC Glow Discharge Tube Museuum Displays using a Theremin Controlled Helmholtz Coil to Demonstrate Magnetic Confinement

    NASA Astrophysics Data System (ADS)

    Siu, Theodore; Wissel, Stephanie; Guttadora, Larry; Liao, Susan; Zwicker, Andrew

    2010-11-01

    Since their discovery in the mid 1800's, DC glow discharge apparatuses have commonly been used for spectral analysis, the demonstration of the Frank-Hertz experiment, and to study plasma breakdown voltages following from the Paschen Curve. A DC glow discharge tube museum display was outfitted with a Helmholtz Coil electromagnet in order to demonstrate magnetic confinement for a science museum display. A device commonly known as a ``theremin'' was designed and built in order to externally control the Helmholtz Coil current and the plasma current. Originally a musical instrument, a theremin has two variable capacitors connected to two radio frequency oscillators which determine pitch and volume. Using a theremin to control current and ``play'' the plasma adds appeal and durability by providing a new innovative means of interacting with a museum exhibit. Educationally, students can use the display to not only learn about plasma properties but also electronic properties of the human body.

  10. ELECTRICAL COIL STRUCTURE

    DOEpatents

    Baker, W.R.; Hartwig, A.

    1962-09-25

    A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)

  11. α/β coiled coils

    PubMed Central

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-01

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold. DOI: http://dx.doi.org/10.7554/eLife.11861.001 PMID:26771248

  12. Inverting microwell array chip for the cultivation of human induced pluripotent stem cells with controlled aggregate size and geometrical arrangement

    PubMed Central

    Satoh, Taku; Sugiura, Shinji; Sumaru, Kimio; Ozaki, Shigenori; Gomi, Shinichi; Kurakazu, Tomoaki; Oshima, Yasuhiro; Kanamori, Toshiyuki

    2014-01-01

    We present a novel cell culture chip, namely, “inverting microwell array chip,” for cultivation of human induced pluripotent stem cells. The chip comprises a lower hydrogel microwell array and an upper polystyrene culture surface. We demonstrate the formation of uniform cellular aggregates in the microwell array, and after inversion, a culture with controlled aggregate size and geometrical arrangement on the polystyrene surface. Here, we report effects of cell concentrations on a cultivation sequence in the chip. PMID:24803961

  13. Open coil traction system.

    PubMed

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement. PMID:22567645

  14. Controlling the Interaction and Non-Close-Packed Arrangement of Nanoparticles on Large Areas.

    PubMed

    Schmudde, Madlen; Grunewald, Christian; Goroncy, Christian; Noufele, Christelle N; Stein, Benjamin; Risse, Thomas; Graf, Christina

    2016-03-22

    In light of the importance of nanostructured surfaces for a variety of technological applications, the quest for simple and reliable preparation methods of ordered, nanometer ranged structures is ongoing. Herein, a versatile method to prepare ordered, non-close-packed arrangements of nanoparticles on centimeter sized surfaces by self-assembly is described using monodisperse (118-162 nm Ø), amino-functionalized silica nanoparticles as an exploratory example. It is shown that the arrangement of the particles is governed by the interplay between the electrostatic repulsion between the particles and the interaction between particles and surfaces. The latter is tuned by the properties of the particles such as their surface roughness as well as the chemistry of the linkage. Weak dispersive interactions between amino groups and gold surfaces are compared to a covalent amide linkage of the amino groups with carboxylic acid functionalized self-assembled monolayers. It was shown that the order of the former systems may suffer from capillary forces between particles during the drying process, while the covalently bonded systems do not. In turn, covalently bonded systems can be dried quickly, while the van der Waals bonded systems require a slow drying process to minimize aggregation. These highly ordered structures can be used as templates for the formation of a second, ordered, non-close-packed layer of nanoparticles exemplified for larger polystyrene particles (Ø 368 ± 14 nm), which highlights the prospect of this approach as a simple preparation method for ordered arrays of nanoparticles with tunable properties. PMID:26919385

  15. Analysis of relay based valley coil system of K-130 Cyclotron and an approach to computer controlled system

    NASA Astrophysics Data System (ADS)

    Shoor, B.

    2016-09-01

    To overcome the first harmonic field imperfection in sector focused cyclotron, a set of coils placed in valleys are used to produce an opposite first harmonic effect. Usually, at the time of beam tuning the phase of the first harmonic is varied using a relay system. It can be shown analytically that magnitude of it changes simultaneously, when phase is changed. This is not desirable at the time of beam tuning. Moreover phase changes in long steps, which hampers accuracy of beam tuning. To overcome this, a computer controlled system is suggested where amplitude remains constant at the time of phase change. Moreover, phase can be changed continuously which gives better tuning accuracy.

  16. Influence of living arrangements on the management and control of hypertension: a mixed-methods study of Korean American elderly.

    PubMed

    Han, Hae-Ra; Song, Youngshin; Song, Hee-Jung; Kim, Miyong T

    2013-10-01

    Elders living alone may experience worse health outcomes than do those living with spouse and/or children. Using baseline data from a randomized trial to promote high blood pressure (HBP) control in Korean elders (N = 440), we examined the relationship between living arrangements and HBP control. We also interviewed a sub-sample to better understand the patterns of social interactions associated with different types of living arrangements. One in five reported living alone; this group tended to be older and female, and resided in senior group housing. Those living alone were twice as likely as those living with a spouse to have controlled BP (OR = 2.08; 95 % CI 1.09-3.97), even after controlling for study covariates. Those in senior group housing had frequent social interactions that involved conversations around health, encouragement concerning medication taking, and health information sharing. In conclusion, Korean elders living independently are neither socially-isolated nor at increased risk for poor BP control. PMID:22790881

  17. The HOMO Nodal Arrangement in Polychromophoric Molecules and Assemblies Controls the Interchromophoric Electronic Coupling.

    PubMed

    Talipov, Marat R; Navale, Tushar S; Rathore, Rajendra

    2015-11-23

    Triptycenes spontaneously assemble into two-dimensional networks in which long-range charge transport is facilitated by the extensive electronic coupling through the triptycene framework (intramolecularly) and by cofacial π-stacking (intermolecularly). While designing and synthesizing next-generation triptycenes containing polyaromatic chromophores, the electronic coupling amongst the chromophores was observed to be highly dependent on the nature and position of the substituents. Herein, we demonstrate using hexaalkoxytriptycenes that the electronic coupling amongst the chromophores is switched on and off by a simple repositioning of the substituents, which alters the nodal arrangement of the HOMOs of the individual chromophores. A visual inspection of the HOMOs can thus provide a ready evaluation of the electronic coupling in polychromophoric molecules/assemblies, and will serve as an important tool for the rational design of modern charge-transport materials. PMID:26425818

  18. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor.

    PubMed

    Wang, Qiujing; Gao, Yuyuan; Sun, Xinlin; Ji, Bin; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Jiang, Xiaodan; Zhu, Aiping; Quan, Daping

    2014-08-01

    Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can

  19. Coiled-coil intermediate filament stutter instability and molecular unfolding.

    PubMed

    Arslan, Melis; Qin, Zhao; Buehler, Markus J

    2011-05-01

    Intermediate filaments (IFs) are the key components of cytoskeleton in eukaryotic cells and are critical for cell mechanics. The building block of IFs is a coiled-coil alpha-helical dimer, consisting of several domains that include linkers and other structural discontinuities. One of the discontinuities in the dimer's coiled-coil region is the so-called 'stutter' region. The stutter is a region where a variation of the amino acid sequence pattern from other parts of the alpha-helical domains of the protein is found. It was suggested in earlier works that due to this sequence variation, the perfect coiled-coil arrangement ceases to exist. Here, we show using explicit water molecular dynamics and well-tempered metadynamics that for the coil2 domain of vimentin IFs the stutter is more stable in a non-alpha-helical, unfolded state. This causes a local structural disturbance in the alpha helix, which has a global effect on the nanomechanics of the structure. Our analysis suggests that the stutter features an enhanced tendency to unfolding even under the absence of external forces, implying a much greater structural instability than previously assumed. As a result it features a smaller local bending stiffness than other segments and presents a seed for the initiation of molecular bending and unfolding at large deformation. PMID:21516532

  20. Effect of winglet geometry arrangement and incidence on tip clearance control in a compressor cascade

    NASA Astrophysics Data System (ADS)

    Han, Shaobing; Zhong, Jingjun; Lu, Huawei; Kan, Xiaoxu; Yang, Ling

    2014-08-01

    An experimental study is conducted to investigate the influences of blade tip winglet on the flow field of a compressor cascade. The tests are performed in a low speed linear cascade with stationary endwall, with three blade tip configurations, including the baseline tip, the suction-side winglet tip and the pressure-side winglet tip. The flowfield downstream of the cascade is measured using five-hole probe, from which the three-dimensional velocity field, vorticity field and pressure field are obtained. Static pressure measurements are made on the endwall above the blade row using pressure taps embedded in the plywood endwall. All measurements are made at both design and off-design conditions for tip clearance level of about 2 percent of the blade chord. The results revealed the incidence variation significantly affects the secondary flow and the associated loss field downstream of the cascade, where the tip leakage vortex and passage vortex exist as the major contributors on the field. The winglet geometry arrangements can change the trajectory of the tip leakage vortex. The suction-side winglet tip blade provides a lower overall total pressure loss coefficient when compared to the baseline tip blade and pressure-side winglet tip blade at all incidence angles.

  1. Can the 8-coil Shakti alter subjective emotional experience? A randomized, placebo-controlled study.

    PubMed

    Gendle, Mathew H; McGrath, Megan G

    2012-02-01

    At present, a commercially available device (the 8-coil Shakti) claims to produce weak and complex magnetic fields that alter neurobiological processes. The effects of the Shakti on emotional responses to photographs that varied on emotional valence were investigated. Participants (N = 37) were exposed to either 30 min, of magnetic fields or a sham condition and rated their emotional reactions to a set of 54 color photographs. Although participants indicated significantly different emotional responses to images with distinct emotional valences, exposure to magnetic fields did not affect these responses, nor significantly interact with image emotional valence. Although the device's "amygdala signal" had no effect on the emotive response to images in this study, additional investigations examining the effects of weak and complex magnetic fields on various aspects of perception and cognition are warranted. PMID:22582690

  2. Collaborative Arrangements.

    ERIC Educational Resources Information Center

    Cota-Robles, Eugene; Doby, Winston

    Two conference papers describing various collaborative arrangements within the educational community among teachers, students and others are presented in this document. The first paper, "Successful Collaborations" (Eugene Cota-Robles), describes the following projects in California that seek to forge collaborations to improve the education of…

  3. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA.

    PubMed

    Minnen, Anita; Bürmann, Frank; Wilhelm, Larissa; Anchimiuk, Anna; Diebold-Durand, Marie-Laure; Gruber, Stephan

    2016-03-01

    Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosome-presumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc. PMID:26904953

  4. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA

    PubMed Central

    Minnen, Anita; Bürmann, Frank; Wilhelm, Larissa; Anchimiuk, Anna; Diebold-Durand, Marie-Laure; Gruber, Stephan

    2016-01-01

    Summary Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosome—presumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc. PMID:26904953

  5. 78 FR 37371 - Wassenaar Arrangement 2012 Plenary Agreements Implementation: Commerce Control List, Definitions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... definition of ``specially designed.'' On June 19, 2012 (77 FR 36419), BIS published the advanced notice of... based devices are within the scope of control. 3B001.b (Equipment designed for ion implantation) is... controlled ion implant systems used for the manufacture of memory integrated circuits (Example: FLASH...

  6. 77 FR 39353 - Wassenaar Arrangement 2011 Plenary Agreements Implementation: Commerce Control List, Definitions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... control that was inadvertently not reflected in the rule BIS published on December 11, 2009 (74 FR 66003... market consumer products such as luminescence diodes, laser diodes, and high frequency...

  7. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  8. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  9. Pulse Coil Tester

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  10. 76 FR 34577 - Wassenaar Arrangement 2010 Plenary Agreements Implementation: Commerce Control List, Definitions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ...: Commerce Control List, Definitions, Reports'' was published in the Federal Register (76 FR 29610). The May...: ] Authority: 50 U.S.C. app. 2401 et seq.; 50 U.S.C. 1701 et seq.; 22 U.S.C. 7201 et seq.; E.O. 13026, 61 FR 58767, 3 CFR, 1996 Comp., p. 228; E.O. 13222, 66 FR 44025, 3 CFR, 2001 Comp., p. 783; Notice of...

  11. Seal arrangement

    DOEpatents

    Lundholm, Gunnar

    1987-01-01

    A seal arrangement is provided for preventing gas leakage along a reciprocating piston rod or other reciprocating member passing through a wall which separates a high pressure gas chmber and a low pressure gas chamber. Liquid lubricant is applied to the lower pressure side of a sealing gland surrounding the piston rod to prevent the escape of gas between the rod and the gland. The sealing gland is radially forced against the piston rod by action of a plurality of axially stacked O-rings influenced by an axially acting spring as well as pressure from the gas.

  12. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature

    PubMed Central

    Phillips, L. C.; Cherifi, R. O.; Ivanovskaya, V.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Guiblin, N.; Ünal, A. A.; Kronast, F.; Dkhil, B.; Barthélémy, A.; Bibes, M.; Valencia, S.

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  13. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature

    NASA Astrophysics Data System (ADS)

    Phillips, L. C.; Cherifi, R. O.; Ivanovskaya, V.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Guiblin, N.; Ünal, A. A.; Kronast, F.; Dkhil, B.; Barthélémy, A.; Bibes, M.; Valencia, S.

    2015-05-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics.

  14. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature.

    PubMed

    Phillips, L C; Cherifi, R O; Ivanovskaya, V; Zobelli, A; Infante, I C; Jacquet, E; Guiblin, N; Ünal, A A; Kronast, F; Dkhil, B; Barthélémy, A; Bibes, M; Valencia, S

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  15. A Mechanical Coil Insertion System for Endovascular Coil Embolization of Intracranial Aneurysms

    PubMed Central

    Haraguchi, K.; Miyachi, S.; Matsubara, N.; Nagano, Y.; Yamada, H.; Marui, N.; Sano, A.; Fujimoto, H.; Izumi, T.; Yamanouchi, T.; Asai, T.; Wakabayashi, T.

    2013-01-01

    Summary Like other fields of medicine, robotics and mechanization might be introduced into endovascular coil embolization of intracranial aneurysms for effective treatment. We have already reported that coil insertion force could be smaller and more stable when the coil delivery wire is driven mechanically at a constant speed. Another background is the difficulty in synchronizing operators' minds and hands when two operators control the microcatheter and the coil respectively. We have therefore developed a mechanical coil insertion system enabling a single operator to insert coils at a fixed speed while controlling the microcatheter. Using our new system, the operator manipulated the microcatheter with both hands and drove the coil using foot switches simultaneously. A delivery wire force sensor previously reported was used concurrently, allowing the operator to detect excessive stress on the wire. In vitro coil embolization was performed using three methods: simple mechanical advance of the coil; simple mechanical advance of the coil with microcatheter control; and driving (forward and backward) of the coil using foot switches in addition to microcatheter control. The system worked without any problems, and did not interfere with any procedures. In experimental coil embolization, delivery wire control using the foot switches as well as microcatheter manipulation helped to achieve successful insertion of coils. This system could offer the possibility of developing safer and more efficient coil embolization. Although we aim at total mechanization and automation of procedures in the future, microcatheter manipulation and synchronized delivery wire control are still indispensable using this system. PMID:23693038

  16. A mechanical coil insertion system for endovascular coil embolization of intracranial aneurysms.

    PubMed

    Haraguchi, K; Miyachi, S; Matsubara, N; Nagano, Y; Yamada, H; Marui, N; Sano, A; Fujimoto, H; Izumi, T; Yamanouchi, T; Asai, T; Wakabayashi, T

    2013-06-01

    Like other fields of medicine, robotics and mechanization might be introduced into endovascular coil embolization of intracranial aneurysms for effective treatment. We have already reported that coil insertion force could be smaller and more stable when the coil delivery wire is driven mechanically at a constant speed. Another background is the difficulty in synchronizing operators' minds and hands when two operators control the microcatheter and the coil respectively. We have therefore developed a mechanical coil insertion system enabling a single operator to insert coils at a fixed speed while controlling the microcatheter. Using our new system, the operator manipulated the microcatheter with both hands and drove the coil using foot switches simultaneously. A delivery wire force sensor previously reported was used concurrently, allowing the operator to detect excessive stress on the wire. In vitro coil embolization was performed using three methods: simple mechanical advance of the coil; simple mechanical advance of the coil with microcatheter control; and driving (forward and backward) of the coil using foot switches in addition to microcatheter control. The system worked without any problems, and did not interfere with any procedures. In experimental coil embolization, delivery wire control using the foot switches as well as microcatheter manipulation helped to achieve successful insertion of coils. This system could offer the possibility of developing safer and more efficient coil embolization. Although we aim at total mechanization and automation of procedures in the future, microcatheter manipulation and synchronized delivery wire control are still indispensable using this system. PMID:23693038

  17. Surface segregation of fluorinated moieties on random copolymer films controlled by random-coil conformation of polymer chains in solution.

    PubMed

    Xue, Dongwu; Wang, Xinping; Ni, Huagang; Zhang, Wei; Xue, Gi

    2009-02-17

    The relationship between solution properties, film-forming methods, and the solid surface structures of random copolymers composed of butyl methacrylate and dodecafluorheptyl methylacrylate (DFHMA) was investigated by contact angle measurements, X-ray photoelectron spectroscopy, sum frequency generation vibrational spectroscopy, and surface tension measurements. The results, based on thermodynamic considerations, demonstrated that the random copolymer chain conformation at the solution/air interface greatly affected the surface structure of the resulting film, thereby determining the surface segregation of fluorinated moieties on films obtained by various film-forming techniques. When the fluorinated monomer content of the copolymer solution was low, entropic forces dominated the interfacial structure, with the perfluoroalkyl groups unable to migrate to the solution/air interface and thus becoming buried in a random-coil chain conformation. When employing this copolymer solution for film preparation by spin-coating, the copolymer chains in solution were likely extended due to centrifugal forces, thereby weakening the entropy effect of the polymer chains. Consequently, this resulted in the segregation of the fluorinated moieties on the film surface. For the films prepared by casting, the perfluoroalkyl groups were, similar to those in solution, incapable of segregating at the film surface and were thus buried in the random-coil chains. When the copolymers contained a high content of DFHMA, the migration of perfluoroalkyl groups at the solution/air interface was controlled by enthalpic forces, and the perfluoroalkyl groups segregated at the surface of the film regardless of the film-forming technique. The aim of the present work was to obtain an enhanced understanding of the formation mechanism of the chemical structure on the surface of the polymer film, while demonstrating that film-forming methods may be used in practice to promote the segregation of fluorinated

  18. Stability and control characteristics of a monoplannar missile configuration with two low-profile tail arrangements at Mach numbers from 1.70 to 2.86

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1977-01-01

    An experimental wind tunnel investigation has been made to determine the longitudinal and lateral aerodynamic stability and control characteristics of two tail fin arrangements of a monowing missile model. Both a conventional cruciform and a low profile tail arrangement were tested. The results indicate that the tail surfaces of both configurations were effective in producing pitch control. It was also concluded that both are effective in producing roll and yaw control that is accompanied by proverse yaw and roll, respectively. The conventional cruciform tail produces the most roll and yaw control.

  19. Molecular basis of coiled-coil formation.

    PubMed

    Steinmetz, Michel O; Jelesarov, Ilian; Matousek, William M; Honnappa, Srinivas; Jahnke, Wolfgang; Missimer, John H; Frank, Sabine; Alexandrescu, Andrei T; Kammerer, Richard A

    2007-04-24

    Coiled coils have attracted considerable interest as design templates in a wide range of applications. Successful coiled-coil design strategies therefore require a detailed understanding of coiled-coil folding. One common feature shared by coiled coils is the presence of a short autonomous helical folding unit, termed "trigger sequence," that is indispensable for folding. Detailed knowledge of trigger sequences at the molecular level is thus key to a general understanding of coiled-coil formation. Using a multidisciplinary approach, we identify and characterize here the molecular determinants that specify the helical conformation of the monomeric early folding intermediate of the GCN4 coiled coil. We demonstrate that a network of hydrogen-bonding and electrostatic interactions stabilize the trigger-sequence helix. This network is rearranged in the final dimeric coiled-coil structure, and its destabilization significantly slows down GCN4 leucine zipper folding. Our findings provide a general explanation for the molecular mechanism of coiled-coil formation. PMID:17438295

  20. DESIGN, FABRICATION, INSTALLATION, TESTING AND INITIAL RESULTS OF IN-VESSEL CONTROL COILS FOR DIII-D

    SciTech Connect

    ANDERSON,P.M; BAXI,C.B; KELLMAN,A.G; REIS,E.E

    2003-10-01

    OAK-B135 Since 1995, DIII-D has performed correction of magnetic field imperfections using a set of six external picture frame coils located on the vessel mid-plane. In 2000, these coils also demonstrated benefits when used for feedback of the resistive wall mode, an instability that limits the plasma performance at high beta. Modeling has shown that substantial performance improvements could be achieved by installing new coils inside the vessel and expanding the poloidal coverage above and below the mid-plane. Two prototype internal coils were installed in 2001 and were power tested successfully after several bakes to 350 C. A full set of twelve internal coils and related magnetic sensors are now operational in the DIII-D tokamak. The design requirements for the new coil system was to maximize the magnetic field at the plasma edge, operate with a frequency range of dc to 1000 Hz, and fit behind the existing graphite wall tiles. The coil design adopted and installed is a water-cooled hollow copper conductor insulated with polyamide and housed inside a stainless steel tube that forms a vacuum boundary. The coil is rigidly mounted to the inside of the vacuum vessel. The primary challenge in the design of these coils wa sin joining of both the copper conductor and the stainless tube without overheating the polyamide insulator. Elastic-plastic analysis was used to demonstrate acceptable thermal stresses during baking conditions. Analysis determined the optimum water cooling channel diameter. The coils were tested in high toroidal field to the limit of the power supply of 4.5 kA DC with inductance-limited current for frequencies between 300 Hz and 1000 Hz. Recent results are presented.

  1. Thermal annealing as an easy tool for the controlled arrangement of gold nanoparticles in block-copolymer thin films

    NASA Astrophysics Data System (ADS)

    Ledo-Suárez, Ana; Hoppe, Cristina Elena; Lazzari, Massimo; Lopez Quintela, M. Arturo; Zucchi, Ileana Alicia

    2013-06-01

    Thermal annealing was used for the bottom-up fabrication of morphologically controlled gold-block-copolymer (Au-BC) nanocomposites. Three different blends formed by polystyrene (PS) homopolymer and PS-coated gold nanoparticles (PSSH@Au) were used as modifiers of asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA): PS26/PS26SH@Au, PS75/PS75SH@Au and PS167/PS167SH@Au (where the subscripts refer to the number of styrene monomeric units). The results indicated that all three blends used as modifiers (PSn/PSnSH@Au) were successfully located in the PS phase during thermally induced BC self-assembly for a composition range from 5 to 43 wt% without macro-phase separation. The PSnSH@Au moiety experienced molecular desorption, nanocrystal core coalescence and partial molecular re-encapsulation processes during thermal annealing, leading to sphere-like gold NPs with a larger average size (without exceeding an interdomain distance). Ligand chain length regulated the degree of coalescence and re-encapsulation, defining ultimate core size. Furthermore, proper combination of chain length and composition enabled tuning of NP partitioning and arrangement on different length scales through thermally activated cooperative assembly processes. These results have not only significant impact for establishing thermal processing as a useful tool for the precise control of NP size and distribution, but also much broader implications for many nanoparticle-based technologies.

  2. Zero-angle helical coil

    NASA Technical Reports Server (NTRS)

    Troendle, J. A.

    1976-01-01

    Device is constructed of bimetallic stock material formed into segments of small diameters and fastened together by metal strips. Coil is useful in various types of actuators, such as temperature controls.

  3. Method and apparatus for controlling current in inductive loads such as large diameter coils

    DOEpatents

    Riveros, Carlos A.

    1981-01-01

    A method and apparatus for controlling electric current in loads that are essentially inductive, such that sparking and "ringing" current problems are reduced or eliminated. The circuit apparatus employs a pair of solid state switches (each of which switch may be an array of connected or parallel solid state switching devices such as transistors) and means for controlling those switches such that a power supply supplying two d.c. voltages (e.g. positive 150 volts d.c. and negative 150 volts d.c.) at low resistance may be connected across an essentially inductive load (e.g. a 6 gauge wire loop one hundred meters in diameter) alternatively and such that the first solid state switch is turned off and the second is turned on such that both are not on at the same time but the first turned on and the other on in less time than the inductive time constant (L/R) so that the load is essentially always presented with a low resistance path across its input. In this manner a steady AC current may be delivered to the load at a frequency desired. Shut-off problems are avoided by gradually shortening the period of switching to less than the time constant so that the maximum energy contained in the inductive load is reduced to approximately zero and dissipated in the inherent resistance. The invention circuit may be employed by adjusting the timing of switching to deliver a desired waveform (such as sinusoidal) to the load.

  4. Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength.

    PubMed

    Xiang, Jin; Li, Jinxiang; Li, Hui; Zhang, Chengyun; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2016-05-30

    A metasurface composed of regularly arranged silicon (Si) nanospheres (NSs) with coupling was investigated both theoretically and numerically based on the Mie theory, the simple Lorentz line shape model and the finite-difference time-domain technique. By deliberately controlling the coupling strength between Si NSs through the design of the lattice constants of a rectangular lattice, polarization beam splitters, converters and analyzers with good performance can be successfully constructed. A square lattice as well as a large incidence angle was employed to build the polarization beam splitters and converters. At an incidence angle of 80°, the polarization beam splitters can completely reflect the s-polarized light and transmit the p-polarized light in a wavelength region of 510-620 nm. For a circularly polarized light incident on the polarization converters, one can get s-polarized light in the reflection direction and p-polarized light in the transmission direction. For the polarization beam analyzers, a rectangular lattice with deliberately chosen lattice constants was employed and the transmissivity of a linearly polarized light can be continuously adjusted from 0 to ~0.90 by simply rotating the metasurface. We revealed that the broadening of either the electric dipole resonance or the magnetic dipole resonance or both of them, which is induced by the asymmetric coupling of Si NSs, is responsible for the modification in the transmissivity spectrum of the metasurface. Our findings provide a guideline for designing photonic devices based on the metasurfaces composed of Si NSs with controllable coupling strength. PMID:27410070

  5. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    PubMed

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils. PMID:20054666

  6. Ignition control system for internal combustion engines with simplified crankshaft sensing and improved coil charging

    SciTech Connect

    Wilens, D.L.; Long, A.

    1988-11-29

    This patent describes an electronic ignition system for controlling as a function of at least one selected engine parameter the ignition instant of an internal combustion engine having at least one cylinder, the cylinder having a piston and a rotatable crankshaft coupled to the piston to be rotatably driven as combustions occur within the cylinder at the ignition instants, the crankshaft having at least one reference position defining a positional relationship of the crankshaft to the cylinder. The electronic ignition system comprising: (a) a rotor affixed to rotate with the crankshaft and having a plurality of reference indicia thereon positionally related with respect to the reference position. The reference indicia being disposed at points equally spaced by a predetermined arc of crankshaft rotation from each other about the rotor, at least one of the points having a missing indicium and disposed in a predetermined relation to the reference position of the crankshaft; (b) a single sensor disposed at a point fixed in relation to the rotation of the crankshaft for providing a train of signals, each signal occurring in time when each of the plurality of reference indicia rotates past the fixed point (c) missing indicium means responsive to each sensor signal of the train for measuring an arc of crankshaft rotation from the corresponding, current indicium and if the measured arc of crankshaft rotation exceeds the predetermined arc of crankshaft rotation, for providing a missing indicium signal.

  7. Noise properties of a NMR transceiver coil array.

    PubMed

    Pinkerton, Robert G; Barberi, Enzo A; Menon, Ravi S

    2004-11-01

    The use of multiple radiofrequency (RF) surface coil elements has applications in both fast parallel imaging and conventional imaging techniques. Through implementation of a simple magnetic decoupling network, 50 Omega matching can be achieved in both the transmitter and receiver chains, enabling the use of conventional RF power amplifiers and preamplifiers for transceive applications. Unlike phased array coil arrangements using low impedance preamplifiers for decoupling, the noise correlation between 50 Omega coils decoupled with discrete components has not been characterized. We have measured the dependence of coil quality factor (Q-factor) and noise correlation on coil separation and shown these quantities to be consistent with theoretical arguments, at least at 4 T (170 MHz). Our results suggest that a coil system for transmission and reception of NMR signals with 50 Omega coils can be built to take advantage of all the benefits of conventional array coils and with the added advantages of using conventional amplifiers. PMID:15504694

  8. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery.

    PubMed

    Reja, Rahi M; Khan, Mohsina; Singh, Sumeet K; Misra, Rajkumar; Shiras, Anjali; Gopi, Hosahudya N

    2016-03-01

    Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic lysosomal compartments in comparison with liposomes without coiled coils. PMID:26876788

  9. Mg(2+)-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane.

    PubMed

    Takihara, Hayato; Akase, Yumiko; Sunairi, Michio; Iwabuchi, Noriyuki

    2016-06-25

    We recently reported that a close relationship exists between alkane carbon-chain length, cell growth, and translocation frequency in Rhodococcus. In the present study, we examined the regulation of the spatial arrangement of cells in aqueous-alkane two phase cultures. An analysis of the effects of minerals on cell localization revealed that changes in the concentration of MgSO4 in two phase cultures containing n-dodecane (C12) altered cell localization from translocation to adhesion and vice versa. Our results indicate that the spatial arrangement of cells in two phase culture systems is controlled through the regulation of MgSO4 concentrations. PMID:27180641

  10. Mg2+-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane

    PubMed Central

    Takihara, Hayato; Akase, Yumiko; Sunairi, Michio; Iwabuchi, Noriyuki

    2016-01-01

    We recently reported that a close relationship exists between alkane carbon-chain length, cell growth, and translocation frequency in Rhodococcus. In the present study, we examined the regulation of the spatial arrangement of cells in aqueous-alkane two phase cultures. An analysis of the effects of minerals on cell localization revealed that changes in the concentration of MgSO4 in two phase cultures containing n-dodecane (C12) altered cell localization from translocation to adhesion and vice versa. Our results indicate that the spatial arrangement of cells in two phase culture systems is controlled through the regulation of MgSO4 concentrations. PMID:27180641

  11. Accessing Three-Dimensional Crystals with Incorporated Guests through Metal-Directed Coiled-Coil Peptide Assembly.

    PubMed

    Nepal, Manish; Sheedlo, Michael J; Das, Chittaranjan; Chmielewski, Jean

    2016-08-31

    Obtaining three-dimensional (3D) protein and peptide crystals on demand requires a precisely orchestrated hierarchical assembly of biopolymer building blocks. In this work, we disclose a metal-ion-mediated strategy to assemble trimeric coiled-coil peptides in a head-to-tail fashion into linear strands with interstrand interactions. This design led to hexagonal 3D peptide crystal formation within 30 min in the presence of divalent metal ions. The crystal morphology could be controlled by varying the metal ion/peptide ratio, resulting in hexagonal discs to rods. Diffraction studies elucidated the head-to-tail arrangement of the coiled-coil linear strands and their hexagonal, antiparallel packing within the crystal. Unsatisfied ligands at the hexagonal ends of the crystals were harnessed as a powerful means to direct His-tagged fluorophores to distinct locations within the crystals. Overall, the designed hierarchical assembly provides a facile means to obtain 3D peptide crystals and incorporate His-tag-based cargoes and may have potential use in drug delivery and sensor design. PMID:27500907

  12. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  13. Starfire poloidal coil systems

    SciTech Connect

    Evans, K. Jr.; Kim, S.H.; Turner, L.R.; Wang, S.T.

    1980-01-01

    The poloidal coils for STARFIRE consists of three systems: (1) equilibrium field (EF) coils; (2) ohmic heating (OH) coils; and (3) correction field (CF) coils. The EF coils are superconducting and lie outside the toroidal field (TF) coils. These coils provide the bulk of the equilibrium field necessary to keep the plasma positioned in the vacuum chamber with the desired cross sectional shape and pressure and current distributions. Having these coils outside of the TF coils requires that they have a larger stored energy and larger currents but eases the assembly, maintenance, and reliability of the coils. The STARFIRE OH system is relatively small compared to tokamaks in which the current is entirely ohmically driven. It is designed to provide sufficient flux in the early startup to raise the plasma current to the point (1 to 2 MA) where the rf current drive can take over.

  14. Imaging arrangement and microscope

    DOEpatents

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  15. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    PubMed

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction. PMID:26177815

  16. Coil in coil - components for the high voltage superconducting resistive current limiter CULT 110

    NASA Astrophysics Data System (ADS)

    Elschner, S.; Stemmle, M.; Breuer, F.; Walter, H.; Frohne, C.; Noe, M.; Bock, J.

    2008-02-01

    The German government (BMBF/VDI) funded project CULT 110 is presently the largest European current limiter project and aims at the development of a one-phase resistive limiter for the voltage level of 110 kV. The contribution presents the actual state of development of the superconducting components. As in the successful predecessor project CURL 10 these are made of melt cast processed BSCCO 2212 bulk material, however monofilar instead of bifilar coils are used. The electrical protection concept is based on a normal conducting coil arranged around a superconducting coil and connected in parallel. Simultaneously this coil serves as an electrical bypass and, under fault conditions, generates a magnetic field for quench homogenisation. Since no continuously connected shunt is needed, a much higher voltage during faults can be applied. The rules for an optimum superconductor and coil design are given and the viability of the whole concept is demonstrated by both, experiment and numerical simulation.

  17. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells

    SciTech Connect

    Harnicarova, Andrea; Kozubek, Stanislav . E-mail: kozubek@ibp.cz; Pachernik, Jiri; Krejci, Jana; Bartova, Eva

    2006-12-10

    Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.

  18. Structural Characteristics of the Redox-sensing Coiled Coil in the Voltage-gated H+ Channel*

    PubMed Central

    Fujiwara, Yuichiro; Takeshita, Kohei; Nakagawa, Atsushi; Okamura, Yasushi

    2013-01-01

    Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H+ (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome. PMID:23667254

  19. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  20. Immune responses to coiled coil supramolecular biomaterials

    PubMed Central

    Rudra, Jai S.; Tripathi, Pulak; Hildeman, David A.; Jung, Jangwook P.; Collier, Joel H.

    2010-01-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response. PMID:20708258

  1. Compact fluxgate magnetic full-tensor gradiometer with spherical feedback coil.

    PubMed

    Sui, Yangyi; Li, Guang; Wang, Shilong; Lin, Jun

    2014-01-01

    The magnetic tensor gradiometer, which is used for measuring the spatial derivatives of three orthogonal magnetic field components, is an important magnetic field characterization tool. Here, the construction of a magnetic full-tensor gradiometer is described, which utilizes four fluxgates arranged on a planar cross structure, and a single, triaxial, spherical feedback coil assembly. In this arrangement, one of the fluxgates is used as a reference, controlling the currents through the feedback coils. Since the fluxgates are working in the near-zero magnetic field environment, the magnetic tensor gradiometer is stable and of an improved accuracy. This design avoids the crosstalk normally caused by individual feedback coils for each fluxgate, and reduces the orthogonality and orientation errors. Moreover, the calibration parameters can be directly inferred using the spherical feedback coil. The measured gradient tensor magnitude can reach 0.52 nT/m/Hz(1/2) @ 1 Hz in unshielded laboratory conditions, while exhibiting good noise immunity. The functionality of the system is verified by locating a small, single, permanent, and dipole magnet in space. The gradiometer is compact, while employing global feedback, and therefore it is especially suitable for deployment on space-constrained moving platforms. PMID:24517792

  2. Compact fluxgate magnetic full-tensor gradiometer with spherical feedback coil

    NASA Astrophysics Data System (ADS)

    Sui, Yangyi; Li, Guang; Wang, Shilong; Lin, Jun

    2014-01-01

    The magnetic tensor gradiometer, which is used for measuring the spatial derivatives of three orthogonal magnetic field components, is an important magnetic field characterization tool. Here, the construction of a magnetic full-tensor gradiometer is described, which utilizes four fluxgates arranged on a planar cross structure, and a single, triaxial, spherical feedback coil assembly. In this arrangement, one of the fluxgates is used as a reference, controlling the currents through the feedback coils. Since the fluxgates are working in the near-zero magnetic field environment, the magnetic tensor gradiometer is stable and of an improved accuracy. This design avoids the crosstalk normally caused by individual feedback coils for each fluxgate, and reduces the orthogonality and orientation errors. Moreover, the calibration parameters can be directly inferred using the spherical feedback coil. The measured gradient tensor magnitude can reach 0.52 nT/m/Hz1/2 @ 1 Hz in unshielded laboratory conditions, while exhibiting good noise immunity. The functionality of the system is verified by locating a small, single, permanent, and dipole magnet in space. The gradiometer is compact, while employing global feedback, and therefore it is especially suitable for deployment on space-constrained moving platforms.

  3. A precise technique for manufacturing correction coil

    SciTech Connect

    Schieber, L.

    1992-11-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire{reg_sign} technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC.

  4. A precise technique for manufacturing correction coil

    SciTech Connect

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire[reg sign] technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC.

  5. Operator coil monitoring Acceptance Test Procedure

    SciTech Connect

    Erhart, M.F.

    1995-05-16

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software`s ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ``ENABLE`` and ``DISABLE`` controls from the Master and RSS stations function correctly, and only with the use of proper passwords.

  6. Operator coil monitoring acceptance test procedure

    SciTech Connect

    Erhart, M.F.

    1995-06-05

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software`s ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations correct. Each abort coil will also be tested to ensure that the ``ENABLE`` and ``DISABLE`` controls from the Master and RSS stations function correctly, and only with the use of proper passwords.

  7. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer

    PubMed Central

    Sanchez, Jacint G.; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M.; Sundquist, Wesley I.; Pornillos, Owen

    2014-01-01

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication. PMID:24550273

  8. Analysis of coils of wire rope arranged for passive damping

    NASA Technical Reports Server (NTRS)

    Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.

    1988-01-01

    Vibration dampers constructed with multiple loops of wire rope are studied. The literature on such devices is reviewed briefly, and dynamic and static models of them are examined. Fundamental and advanced NASTRAN models for wire rope damping are considered.

  9. Kinking the coiled coil--negatively charged residues at the coiled-coil interface.

    PubMed

    Straussman, Ravid; Ben-Ya'acov, Ami; Woolfson, Derek N; Ravid, Shoshana

    2007-03-01

    The coiled coil is one of the most common protein-structure motifs. It is believed to be adopted by 3-5% of all amino acids in proteins. It comprises two or more alpha-helical chains wrapped around one another. The sequences of most coiled coils are characterized by a seven-residue (heptad) repeat, denoted (abcdefg)(n). Residues at the a and d positions define the helical interface (core) and are usually hydrophobic, though about 20% are polar or charged. We show that parallel coiled-coils have a unique pattern of their negatively charged residues at the core positions: aspartic acid is excluded from these positions while glutamic acid is not. In contrast the antiparallel structures are more permissive in their amino acid usage. We show further, and for the first time, that incorporation of Asp but not Glu into the a positions of a parallel coiled coil creates a flexible hinge and that the maximal hinge angle is being directly related to the number of incorporated mutations. These new computational and experimental observations will be of use in improving protein-structure predictions, and as rules to guide rational design of novel coiled-coil motifs and coiled coil-based materials. PMID:17207815

  10. EDITORIAL: Selected papers from the 16th Workshop on MHD Stability Control: Optimizing and Understanding the Role of Coils for Mode Control Selected papers from the 16th Workshop on MHD Stability Control: Optimizing and Understanding the Role of Coils for Mode Control

    NASA Astrophysics Data System (ADS)

    La Haye, Rob

    2012-09-01

    The Magnetohydrodynamic (MHD) Control Workshop with the theme 'Optimizing and Understanding the Role of Coils for Mode Control' was held at General Atomics (20-22 November 2011) following the 2011 APS-DPP Annual Meeting in Salt Lake City, Utah (14-18 November). This was the 16th in the annual series and was organized jointly by Columbia University, General Atomics, Princeton Plasma Physics Laboratory, and the University of Wisconsin-Madison. Program committee participation included representatives from the EU and Japan along with other US laboratory and university institutions. This workshop highlighted the role of applied non-axisymmetric magnetic fields from both internal and external coils for control of MHD stability to achieve high performance fusion plasmas. The application of 3D magnetic field offers control of important elements of equilibrium, stability, and transport. The use of active 3D fields to stabilize global instabilities and to correct magnetic field errors is an established tool for achieving high beta configurations. 3D fields also affect transport and plasma momentum, and are shown to be important for the control of edge localized modes (ELMs), resistive wall modes, and optimized stellarator configurations. The format was similar to previous workshops, including 13 invited talks, 21 contributed talks, and this year there were 2 panel discussions ('Error Field Correction' led by Andrew Cole of Columbia University and 'Application of Coils in General' led by Richard Buttery of General Atomics). Ted Strait of General Atomics also gave a summary of the International Tokamak Physics Activity (ITPA) MHD meeting in Padua, a group for which he is now the leader. In this special section of Plasma Physics and Controlled Fusion (PPCF) is a sample of the presentations at the workshop, which have been subject to the normal refereeing procedures of the journal. They include a review (A Boozer) and an invited talk (R Fitzpatrick) on error fields, an invited

  11. NCSX Trim Coil Design

    SciTech Connect

    M. Kalish, A. Brooks, J. Rushinski, R. Upcavage

    2009-05-29

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure.

  12. Vineyard weeds control practices impact on surface water transfers: using numerical tracer experiment coupled to a distributed hydrological model to manage agricultural practices spatial arrangements.

    NASA Astrophysics Data System (ADS)

    Colin, F.; Moussa, R.

    2009-04-01

    In rural basins, agricultural landscape management highly influences water and pollutants transfers. Landuse, agricultural practices and their spatial arrangements are at issue. Hydrological model are widely used to explore impacts of anthropogenic influences on experimental catchments. But planning all spatial arrangements leads to a possible cases count which cannot be considered. On the basis of the recent « numerical experiment » approach, we propose a « numerical tracer function » which had to be coupled to a distributed rainfall-runoff model. This function simulate the transfer of a virtual tracer successively spread on each distributed unit inside the catchment. It allows to rank hydrological spatial units according to their hydrological contribution to the surface flows, particularly at the catchment outlet. It was used with the distributed model MHYDAS in an agricultural context. The case study concerns the experimental Roujan vine-growing catchment (1km², south of France) studied since 1992. In this Mediterranean context, we focus on the soil hydraulic conductivity distributed parameter because it highly depends on weed control practices (chemical weeding induces a lot more runoff than mechanical weeding). We checked model sensitivity analysis to soil hydraulic conductivity spatial arrangement on runoff coefficient, peak discharge and catchment lag-time. Results show (i) the use of the tracer function is more efficient than a random approach to improve sensitivity to spatial arrangements from point of view of simulated discharge range, (ii) the first factor explaining hydrological simulations variability was practices area ratio, (iii) variability induced by practices spatial arrangements was significant on runoff coefficient and peak discharge for balanced practices area ratio and on lag-time for low area ratio of chemical weeding practices. From the actual situation on the experimental Roujan catchment (40% of tilled and 60% of non tilled vineyard

  13. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  14. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  15. Biplanar Radiofrequency Coil Design

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Insko, E. K.; Bolinger, L.; Leigh, J. S.

    A novel geometry for radiofrequency coil design is described. In this geometry, longitudinal wires of the coil lie on two parallel planes. The currents in the wires of one plane run in the direction opposite to those of the other plane. An analytic solution is provided for the field produced by infinite surface currents running in the biplanar geometry. For the case of discrete wires, computer-generated field maps imply that the homogeneity and sensitivity of the biplanar design are superior to those of a saddle coil, but worse than those obtained in an equivalent discrete cosine or birdcage coil design. Optimization of this coil design was performed using computer simulations. The measured B1 map of an optimized, single-tuned biplanar coil compares favorably to that of an equivalent discrete cosine coil, demonstrating excellent homogeneity in the central region of the coil. A 30 × 24 × 40 cm biplanar coil has been coupled to a 1.5 T imaging system. Images of the human abdomen generated with this coil demonstrate a high degree of homogeneity across nearly all of the sensitive region of the coil.

  16. Toroid cavity/coil NMR multi-detector

    DOEpatents

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  17. Coil bobbin for stable superconducting coils

    SciTech Connect

    Kashima, T.; Yamanaka, A.; Nishijima, S.; Okada, T.

    1996-12-31

    The coil bobbin for a.c. coils have been prepared with the high strength polyethylene fiber (DF) reinforced plastics (DFRP) or with hybrid composites reinforced by DF and glass fiber (GF). The coils with the bobbin were found to be markedly stable. The DF has a large negative thermal expansion coefficient and hence the circumferential thermal strain of bobbin can be designed by changing the ratio of DF to GF layer thickness (DF/GF). It was found that the thermal expansion coefficient in the circumferential direction of the outer surface changed from negative to positive with increasing DF/GF and became nearly zero at a DF/GF of approximately 5.1 kA rms class a.c. coils having a bobbin with a negative thermal expansion coefficient or small thermal contraction in the circumferential direction were fabricated and were confirmed to show higher quench current than that with a GFRP bobbin.

  18. Structural Correlation of the Neck Coil with the Coiled-coil (CC1)-Forkhead-associated (FHA) Tandem for Active Kinesin-3 KIF13A.

    PubMed

    Ren, Jinqi; Huo, Lin; Wang, Wenjuan; Zhang, Yong; Li, Wei; Lou, Jizhong; Xu, Tao; Feng, Wei

    2016-02-12

    Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3. PMID:26680000

  19. Design and Modelling of a Silicon Optical MEMS Switch Controlled by Magnetic Field Generated by a Plain Coil

    NASA Astrophysics Data System (ADS)

    Golebiowski, J.; Milcarz, Sz

    2014-04-01

    Optical switches can be made as a silicon cantilever with a magnetic layer. Such a structure is placed in a magnetic field of a planar coil. There is a torque deflecting the silicon beam with NiFe layer depending on a flux density of the magnetic field. The study shows an analysis of ferromagnetic layer parameters, beam's dimensions on optical switch characteristics. Different constructions of the beams were simulated for a range of values of magnetic field strength from 100 to 1000 A/m. An influence of the actuators parameters on characteristics was analysed. The loss of stiffness of the beam caused by specific constructions effected in displacements reaching 85 nm. Comsol Multiphysics 4.3b was used for the simulations.

  20. Oil fence arrangement

    SciTech Connect

    Muto, I.; Tatsuguchi, M.

    1984-01-10

    An oil fence arrangement for effectively preventing oil spills from spreading or diffusing over the surface of the sea. The arrangement is of a double wall construction and can fold into a small space.

  1. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part I: Modeling

    NASA Astrophysics Data System (ADS)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    An ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be applied to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings by using both passive and active control. The proposed method is based on mounting severaladditional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimization process. This paper, Part I, concerns derivation of a mathematical model of the plate with attached elements in the function of their shape and placement. The model is validated by means of simulations and laboratory experiments, and compared with models known from the literature. This paper is followed by a companion paper, Part II, where the optimization process is described. It includes arrangement of passive elements as well as actuators and sensors to improve controllability and observability measures, if active control is concerned.

  2. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization

    NASA Astrophysics Data System (ADS)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    It was shown in Part I that an ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be used to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings. It can be used for both passive and active control. The proposed method is based on mounting several additional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimisation process. In Part I a relevant model of such structure, as a function of arrangement of the additional elements was derived and validated. The model allows calculating natural frequencies and mode-shapes of the whole structure. The aim of this companion paper, Part II, is to present the second stage of the method. This is an optimization process that results in arrangement of the elements guaranteeing desired plate frequency response, and enhancement of controllability and observability measures. For that purpose appropriate cost functions, and constraints followed from technological feasibility are defined. Then, a memetic algorithm is employed to obtain a numerical solution with parameters of the arrangement. The optimization results are initially presented for simple cases to validate the method. Then, more complex scenarios are analysed with very special demands concerning the frequency response to present the full potential of the method. Subsequently, a laboratory experiment is presented and discussed. Finally, other areas of applications of the proposed method are shown and conclusions for future research are drawn.

  3. A Synthetic Coiled-Coil Interactome Provides Heterospecific Modules for Molecular Engineering

    SciTech Connect

    Reinke, Aaron W.; Grant, Robert A.; Keating, Amy E.

    2010-06-21

    The versatile coiled-coil protein motif is widely used to induce and control macromolecular interactions in biology and materials science. Yet the types of interaction patterns that can be constructed using known coiled coils are limited. Here we greatly expand the coiled-coil toolkit by measuring the complete pairwise interactions of 48 synthetic coiled coils and 7 human bZIP coiled coils using peptide microarrays. The resulting 55-member protein 'interactome' includes 27 pairs of interacting peptides that preferentially heteroassociate. The 27 pairs can be used in combinations to assemble sets of 3 to 6 proteins that compose networks of varying topologies. Of special interest are heterospecific peptide pairs that participate in mutually orthogonal interactions. Such pairs provide the opportunity to dimerize two separate molecular systems without undesired crosstalk. Solution and structural characterization of two such sets of orthogonal heterodimers provide details of their interaction geometries. The orthogonal pair, along with the many other network motifs discovered in our screen, provide new capabilities for synthetic biology and other applications.

  4. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  5. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  6. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  7. MINIMARS choke coil design

    SciTech Connect

    Gurol, H.; Parmer, J.E.

    1986-01-01

    The choke coil is one of the most advanced of all the magnets in the MINIMARS tandem mirror reactor. Recent developments have enabled the high-field choke coil to be much more compact and consume less power than past designs. There are three main technology areas that have had the greatest impact on the choke coil design: (1) superfluid helium (He-II) at 1.8 K; (2) Nb/sub 3/Sn superconductor; and (3) high-strength alloys for conductor reinforcement. The purpose of this paper is to discuss the 24-T MINIMARS choke coil configuration. It is a hybrid design consisting of a superconducting (S/C) background coil and a normal (N/C) insert coil.

  8. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOEpatents

    He, J.; Rote, D.M.

    1996-05-21

    A stabilization and propulsion system are disclosed comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the superconducting magnets on the vehicle. 12 figs.

  9. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOEpatents

    He, Jianliang; Rote, Donald M.

    1996-01-01

    A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the super conducting magnets on the vehicle.

  10. Seating arrangements for children with insufficient head control: lessons from trials using the i2i head & neck positioning & support system.

    PubMed

    Uyama, Sachie; Hanaki, Keiichi

    2015-03-01

    [Purpose] An insufficient head control is the most troublesome condition for children with impaired mobility who require optimal seating. [Subjects and Methods] We report on the clinical trial of the newly developed i2i head & neck positioning & support system called i2i for locomotively disabled children with periventricular leukomalacia (PVL). [Results] Two major advantages of the i2i were observed in the trial. The first was its favorable effect on the alignment of the spine to prevent scoliosis and to provide stable breathing and optimal seating, which resulted in improvement of the children's activities of daily living (ADL). The second was its direct application of force to the head rather than indirectly to the pelvis in a conventional seat arrangement. The conventional way of head support is based on stabilization of the trunk which is based on stabilization of the pelvis by some seating arrangement. [Conclusion] The trial of the i2i device demonstrated its usefulness in helping PVL children with insufficient head control develop their abilities while preventing secondary disability. PMID:25931766

  11. Seating arrangements for children with insufficient head control: lessons from trials using the i2i head & neck positioning & support system

    PubMed Central

    Uyama, Sachie; Hanaki, Keiichi

    2015-01-01

    [Purpose] An insufficient head control is the most troublesome condition for children with impaired mobility who require optimal seating. [Subjects and Methods] We report on the clinical trial of the newly developed i2i head & neck positioning & support system called i2i for locomotively disabled children with periventricular leukomalacia (PVL). [Results] Two major advantages of the i2i were observed in the trial. The first was its favorable effect on the alignment of the spine to prevent scoliosis and to provide stable breathing and optimal seating, which resulted in improvement of the children’s activities of daily living (ADL). The second was its direct application of force to the head rather than indirectly to the pelvis in a conventional seat arrangement. The conventional way of head support is based on stabilization of the trunk which is based on stabilization of the pelvis by some seating arrangement. [Conclusion] The trial of the i2i device demonstrated its usefulness in helping PVL children with insufficient head control develop their abilities while preventing secondary disability. PMID:25931766

  12. Segmented Coil Fails In Steps

    NASA Technical Reports Server (NTRS)

    Stedman, Ronald S.

    1990-01-01

    Electromagnetic coil degrades in steps when faults occur, continues to operate at reduced level instead of failing catastrophically. Made in segments connected in series and separated by electrically insulating barriers. Fault does not damage adjacent components or create hazard. Used to control valves in such critical applications as cooling systems of power generators and chemical process equipment, where flammable liquids or gases handled. Also adapts to electrical control of motors.

  13. Comparison of RF body coils for MRI at 3  T: a simulation study using parallel transmission on various anatomical targets.

    PubMed

    Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, Thomas J; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-10-01

    The performance of multichannel transmit coil layouts and parallel transmission (pTx) RF pulse design was evaluated with respect to transmit B1 (B1 (+)) homogeneity and specific absorption rate (SAR) at 3 T for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with two or three identical rings, stacked in the z axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1 (+) homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to about eightfold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils, including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging, with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the three-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1 (+) homogeneity, particularly for a "z-stacked" double-ring design with coil elements arranged on two transaxial rings. PMID:26332290

  14. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery

    NASA Astrophysics Data System (ADS)

    Reja, Rahi M.; Khan, Mohsina; Singh, Sumeet K.; Misra, Rajkumar; Shiras, Anjali; Gopi, Hosahudya N.

    2016-02-01

    Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic lysosomal compartments in comparison with liposomes without coiled coils.Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic

  15. Optimal Coil Orientation for Transcranial Magnetic Stimulation

    PubMed Central

    Richter, Lars; Neumann, Gunnar; Oung, Stephen; Schweikard, Achim; Trillenberg, Peter

    2013-01-01

    We study the impact of coil orientation on the motor threshold (MT) and present an optimal coil orientation for stimulation of the foot. The result can be compared to results of models that predict this orientation from electrodynamic properties of the media in the skull and from orientations of cells, respectively. We used a robotized TMS system for precise coil placement and recorded motor-evoked potentials with surface electrodes on the abductor hallucis muscle of the right foot in 8 healthy control subjects. First, we performed a hot-spot search in standard (lateral) orientation and then rotated the coil in steps of 10° or 20°. At each step we estimated the MT. For navigated stimulation and for correlation with the underlying anatomy a structural MRI scan was obtained. Optimal coil orientation was 33.1±18.3° anteriorly in relation to the standard lateral orientation. In this orientation the threshold was 54±18% in units of maximum stimulator output. There was a significant difference of 8.0±5.9% between the MTs at optimal and at standard orientation. The optimal coil orientations were significantly correlated with the direction perpendicular to the postcentral gyrus (). Robotized TMS facilitates sufficiently precise coil positioning and orientation to study even small variations of the MT with coil orientation. The deviations from standard orientation are more closely matched by models based on field propagation in media than by models based on orientations of pyramidal cells. PMID:23593200

  16. Concentric differential gearing arrangement

    NASA Technical Reports Server (NTRS)

    Zeiger, R. J.; Gerdts, J. C. (Inventor)

    1974-01-01

    Two input members and two concentric rotatable output members are interconnected by a planetary gear arrangement. The first input drives directly the first output. The second input engages a carrier having the planetary gears affixed thereto. Rotation of the carriage causes rotation of the central sun gear of the planetary gear system. The sun gear is journaled to the carriage and is drivingly connected to the second output through a direction reversing set of bevel gears. The first input drive member includes a ring gear drivingly connected to the planetary gears for driving the second output member in the same direction and by the same amount as the first output member. Motion of the first input results in equal motion of the two outputs while input motion of the second input results in movement of the second output relative to the first output. This device is useful where non-interacting two-axis control of remote gimbaled systems is required.

  17. Coil system for plasmoid thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  18. The Orientations of Large Aspect-Ratio Coiled-Coil Proteins Attached to Gold Nanostructures.

    PubMed

    Chang, Jae-Byum; Kim, Yong Ho; Thompson, Evan; No, Young Hyun; Kim, Nam Hyeong; Arrieta, Jose; Manfrinato, Vitor R; Keating, Amy E; Berggren, Karl K

    2016-03-01

    Methods for patterning biomolecules on a substrate at the single molecule level have been studied as a route to sensors with single-molecular sensitivity or as a way to probe biological phenomena at the single-molecule level. However, the arrangement and orientation of single biomolecules on substrates has been less investigated. Here, the arrangement and orientation of two rod-like coiled-coil proteins, cortexillin and tropomyosin, around patterned gold nanostructures is examined. The high aspect ratio of the coiled coils makes it possible to study their orientations and to pursue a strategy of protein orientation via two-point attachment. The proteins are anchored to the surfaces using thiol groups, and the number of cysteine residues in tropomyosin is varied to test how this variation affects the structure and arrangement of the surface-attached proteins. Molecular dynamics studies are used to interpret the observed positional distributions. Based on initial studies of protein attachment to gold post structures, two 31-nm-long tropomyosin molecules are aligned between the two sidewalls of a trench with a width of 68 nm. Because the approach presented in this study uses one of twenty natural amino acids, this method provides a convenient way to pattern biomolecules on substrates using standard chemistry. PMID:26799936

  19. The Golgin Family of Coiled-Coil Tethering Proteins

    PubMed Central

    Witkos, Tomasz M.; Lowe, Martin

    2016-01-01

    The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins. PMID:26793708

  20. Self-assembly of cyclic rod-coil diblock copolymers.

    PubMed

    He, Linli; Chen, Zenglei; Zhang, Ruifen; Zhang, Linxi; Jiang, Zhouting

    2013-03-01

    The phase behavior of cyclic rod-coil diblock copolymer melts is investigated by the dissipative particle dynamics simulation. In order to understand the effect of chain topological architecture better, we also study the linear rod-coil system. The comparison of the calculated phase diagrams between the two rod-coil copolymers reveals that the order-disorder transition point (χN)ODT for cyclic rod-coil diblock copolymers is always higher than that of equivalent linear rod-coil diblocks. In addition, the phase diagram for cyclic system is more "symmetrical," due to the topological constraint. Moreover, there are significant differences in the self-assembled overall morphologies and the local molecular arrangements. For example, frod = 0.5, both lamellar structures are formed while rod packing is different greatly in cyclic and linear cases. The lamellae with rods arranged coplanarly into bilayers occurs in cyclic rod-coil diblocks, while the lamellar structure with rods arranged end by end into interdigitated bilayers appears in linear counterpart. In both the lamellar phases, the domain size ratio of cyclic to linear diblocks is ranged from 0.63 to 0.70. This is attributed to that the cyclic architecture with the additional junction increases the contacts between incompatible blocks and prevents the coil chains from expanding as much as the linear cases. As frod = 0.7, the hexagonally packed cylinder is observed for cyclic rod-coil diblocks, while liquid-crystalline smectic A lamellar phase is formed in linear system. As a result, the cyclization of a linear rod-coil block copolymer can induce remarkable differences in the self-assembly behavior and also diversify its physical properties and applications greatly. PMID:23485326

  1. Dynamic Face Seal Arrangement

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher (Inventor)

    1999-01-01

    A radial face seal arrangement is disclosed comprising a stationary seal ring that is spring loaded against a seal seat affixed to a rotating shaft. The radial face seal arrangement further comprises an arrangement that not only allows for preloading of the stationary seal ring relative to the seal seat, but also provides for dampening yielding a dynamic seating response for the radial face seal arrangement. The overall seal system, especially regarding the selection of the material for the stationary seal ring, is designed to operate over a wide temperature range from below ambient up to 900 C.

  2. A coiled-coil domain acts as a molecular ruler in LPS chain length regulation

    PubMed Central

    Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I.; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H.

    2014-01-01

    Long-chain bacterial polysaccharides play important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow distribution of size is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Such careful control of polymerization is recurring theme in biology. Combining crystallography and small angle X-ray scattering, we show that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions within the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide. PMID:25504321

  3. Commercial applications for COIL

    NASA Astrophysics Data System (ADS)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  4. CALUTRON PLANT ARRANGEMENT

    DOEpatents

    Waite, L.O.

    1959-06-01

    A description is given of an arrangement for calutrons in which the tanks and magnets are placed alternately in a race track'' figure. Pump connections are through the floor to the pumps below where roughing and finishing headers are provided. The arrangement provides more efficient and exonomical operaton, economy of construction, and saving of space. (T.R.H.)

  5. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  6. Magnetic microhelix coil structures.

    PubMed

    Smith, Elliot J; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M; Schmidt, Oliver G

    2011-08-26

    Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials. PMID:21929266

  7. Magnetic Microhelix Coil Structures

    NASA Astrophysics Data System (ADS)

    Smith, Elliot J.; Makarov, Denys; Sanchez, Samuel; Fomin, Vladimir M.; Schmidt, Oliver G.

    2011-08-01

    Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials.

  8. Disruption of Bcr-Abl Coiled Coil Oligomerization by Design*

    PubMed Central

    Dixon, Andrew S.; Pendley, Scott S.; Bruno, Benjamin J.; Woessner, David W.; Shimpi, Adrian A.; Cheatham, Thomas E.; Lim, Carol S.

    2011-01-01

    Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coiled coil domain of Bcr-Abl were identified that reduce homo-oligomerization through intermolecular charge-charge repulsion yet increase interaction with the Bcr-Abl coiled coil through additional salt bridges, resulting in an enhanced ability to disrupt the oligomeric state of Bcr-Abl. The mutations were modeled computationally to optimize the design. Assays performed in vitro confirmed the validity and functionality of the optimal mutations, which were found to exhibit reduced homo-oligomerization and increased binding to the Bcr-Abl coiled coil domain. Introduction of the mutant coiled coil into K562 cells resulted in decreased phosphorylation of Bcr-Abl, reduced cell proliferation, and increased caspase-3/7 activity and DNA segmentation. Importantly, the mutant coiled coil domain was more efficacious than the wild type in all experiments performed. The improved inhibition of Bcr-Abl through oligomeric disruption resulting from this modified coiled coil domain represents a viable alternative to small molecule inhibitors for therapeutic intervention. PMID:21659527

  9. FIRST 100 T NON-DESTRUCTIVE MAGNET OUTER COIL SET

    SciTech Connect

    J. BACON; A. BACA; ET AL

    1999-09-01

    The controlled power outer coil set of the first 100 T non-destructive (100 T ND) magnet is described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND controlled power outer coil set consists of seven nested, mechanically independent externally reinforced coils. These coils, in combination, will produce a 47 T platform field in a 225-mm diameter bore. Using inertial energy storage a synchronous motor/generator provides ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. Each coil consists of a multi-layer winding of high strength conductor supported by an external high strength stainless steel shell. Coils with the highest magnetic loads will utilize a reinforcing shell fabricated from highly cold worked 301 stainless steel strip. The autofrettage conditioning method will be used to pre-stress the coils and thereby limit conductor and reinforcement strains to the elastic range. The purpose of pre-stressing the coils is to attain a design life of 10,000 full field pulses. The operation and conditioning of the coil set will be described along with special features of its design, magnetic and structural analyses and construction.

  10. Theory of myelin coiling.

    PubMed

    Huang, J-R

    2006-04-01

    A new model is proposed to explain coiling of myelins composed of fluid bilayers. This model allows the constituent bilayer cylinders of a myelin to be non-coaxial and the bilayer lateral tension to vary from bilayer to bilayer. The calculations show that a myelin would bend or coil to lower its free energy when the bilayer lateral tension is sufficiently large. From a mechanical point of view, the proposed coiling mechanism is analogous to the classical Euler buckling of a thin elastic rod under axial compression. The analysis of a simple two-bilayer case suggests that a bilayer lateral tension of about 1 dyne/cm can easily induce coiling of myelins of typical lipid bilayers. This model signifies the importance of bilayer lateral tension in determining the morphology of myelinic structures. PMID:16465468

  11. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  12. Comparison of the Association of Sac Growth and Coil Compaction with Recurrence in Coil Embolized Cerebral Aneurysms

    PubMed Central

    2015-01-01

    Background and Purpose In recurrent cerebral aneurysms treated by coil embolization, coil compaction is regarded as the presumptive mechanism. We test the hypothesis that aneurysm growth is the primary recurrence mechanism. We also test the hypothesis that the coil mass will translate a measurable extent when recurrence occurs. Methods An objective, quantitative image analysis protocol was developed to determine the volumes of aneurysms and coil masses during initial and follow-up visits from 3D rotational angiograms. The population consisted of 15 recurrence and 12 non-recurrence control aneurysms initially completely coiled at a single center. An investigator sensitivity study was performed to assess the objectivity of the methods. Paired Wilcoxon tests (p<0.05, one-tailed) were performed to assess for aneurysm and coil growth. The translation of the coil mass center at follow-up was computed. A Mann Whitney U-Test (p<0.05, one-tailed) was used to compare translation of coil mass centers between recurrence and control subjects. Results Image analysis protocol was found to be insensitive to the investigator. Aneurysm growth was evident in the recurrence cohort (p=0.003) but not the control (p=0.136). There was no evidence of coil compaction in either the recurrence or control cohorts (recurrence: p=0.339; control: p=0.429). The translation of the coil mass centers was found to be significantly larger in the recurrence cohort than the control cohort (p=0.047). Conclusion Aneurysm sac growth, not coil compaction, was the primary mechanism of recurrence following successful coil embolization. The coil mass likely translates to a measurable extent when recurrence occurs and has the potential to serve as a non-angiographic recurrence marker. PMID:25894532

  13. Self-Assembling Peptide-Polymer Hydrogels Designed From the Coiled Coil Region of Fibrin

    PubMed Central

    Jing, Peng; Rudra, Jai S.; Herr, Andrew B.; Collier, Joel H.

    2010-01-01

    Biomaterials constructed from self-assembling peptides, peptide derivatives, and peptide-polymer conjugates are receiving increasing attention as defined matrices for tissue engineering, controlled therapeutic release, and in vitro cell expansion, but many are constructed from peptide structures not typically found in the human extracellular matrix. Here we report a self-assembling biomaterial constructed from a designed peptide inspired by the coiled coil domain of human fibrin, the major protein constituent of blood clots and the provisional scaffold of wound healing. Targeted substitutions were made in the residues forming the interface between coiled coil strands for a 37-amino acid peptide from human fibrinogen to stabilize the coiled coil peptide bundle, while the solvent-exposed residues were left unchanged to provide a surface similar to that of the native protein. This peptide, which self-assembled into coiled coil dimers and tetramers, was then used to produce triblock peptide-PEG-peptide bioconjugates that self-assembled into viscoelastic hydrogel biomaterials. PMID:18712921

  14. NCSX Toroidal Field Coil Design

    SciTech Connect

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  15. Sense circuit arrangement

    NASA Technical Reports Server (NTRS)

    Bohning, Oliver D. (Inventor)

    1976-01-01

    A unique, two-node sense circuit is disclosed. The circuit includes a bridge comprised of resistance elements and a differential amplifier. The two-node circuit is suitably adapted to be arranged in an array comprised of a plurality of discrete bridge-amplifiers which can be selectively energized. The circuit is arranged so as to form a configuration with minimum power utilization and a reduced number of components and interconnections therebetween.

  16. On the construction of detection coils for a vectorial vibrating sample magnetometer

    NASA Astrophysics Data System (ADS)

    Richter, H. J.

    1992-06-01

    The construction of a coil system for a three-dimensional detection of the magnetization in a vibrating sample magnetometer is described in detail. Calculations of the sensitivity and signal to noise considerations assuming different noise sources are performed for an eight coil arrangement (Bowden arrangement). The system is constructed with special reference to thin-film samples which require a low position dependence at a high sensitivity.

  17. Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation

    PubMed Central

    D’Ostilio, Kevin; Goetz, Stefan M.; Hannah, Ricci; Ciocca, Matteo; Chieffo, Raffaella; Chen, Jui-Cheng A.; Peterchev, Angel V.; Rothwell, John C.

    2016-01-01

    Objective To compare the strength–duration (S–D) time constants of motor cortex structures activated by current pulses oriented posterior–anterior (PA) or anterior–posterior (AP) across the central sulcus. Methods Motor threshold and input–output curve, along with motor evoked potential (MEP) latencies, of first dorsal interosseus were determined at pulse widths of 30, 60, and 120 μs using a controllable pulse parameter (cTMS) device, with the coil oriented PA or AP. These were used to estimate the S–D time constant and we compared with data for responses evoked by cTMS of the ulnar nerve at the elbow. Results The S–D time constant with PA was shorter than for AP stimulation (230.9 ± 97.2 vs. 294.2 ± 90.9 μs; p < 0.001). These values were similar to those calculated after stimulation of ulnar nerve (197 ± 47 μs). MEP latencies to AP, but not PA stimulation were affected by pulse width, showing longer latencies following short duration stimuli. Conclusion PA and AP stimuli appear to activate the axons of neurons with different time constants. Short duration AP pulses are more selective than longer pulses in recruiting longer latency corticospinal output. Significance More selective stimulation of neural elements may be achieved by manipulating pulse width and orientation. PMID:26077634

  18. Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping

    PubMed Central

    Hamed, Elham; Keten, Sinan

    2014-01-01

    Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies. PMID:25028889

  19. Final Project Report: Self-Correcting Controls for VAV System Faults Filter/Fan/Coil and VAV Box Sections

    SciTech Connect

    Brambley, Michael R.; Fernandez, Nicholas; Wang, Weimin; Cort, Katherine A.; Cho, Heejin; Ngo, Hung; Goddard, James K.

    2011-05-01

    This report addresses original research by the Pacific Northwest National Laboratory for the California Institute for Energy and Environment on self-correcting controls for variable-air-volume (VAV) heating, ventilating and air-conditioning systems and focuses specifically on air handling and VAV box components of the air side of the system. A complete set of faults for these components was compiled and a fault mode analysis performed to understand the detectable symptoms of the faults and the chain of causation. A set of 26 algorithms was developed to facilitate the automatic correction of these faults in typical commercial VAV systems. These algorithms include training tests that are used during commissioning to develop models of normal system operation, passive diagnostics used to detect the symptoms of faults, proactive diagnostics used to diagnose the cause of a fault, and finally fault correction algorithms. Ten of the twenty six algorithms were implemented in a prototype software package that interfaces with a test bed facility at PNNL's Richland, WA, laboratory. Measurement bias faults were instigated in the supply-air temperature sensor and the supply-air flow meter to test the algorithms developed. The algorithms as implemented in the laboratory software correctly detected, diagnosed and corrected these faults. Finally, an economic and impact assessment was performed for the State of California for deployment of self-correcting controls. Assuming 15% HVAC energy savings and a modeled deployment profile, 3.1-5.8 TBu of energy savings are possible by year 15.

  20. Coil Embolization for Intracranial Aneurysms

    PubMed Central

    2006-01-01

    Executive Summary Objective To determine the effectiveness and cost-effectiveness of coil embolization compared with surgical clipping to treat intracranial aneurysms. The Technology Endovascular coil embolization is a percutaneous approach to treat an intracranial aneurysm from within the blood vessel without the need of a craniotomy. In this procedure, a microcatheter is inserted into the femoral artery near the groin and navigated to the site of the aneurysm. Small helical platinum coils are deployed through the microcatheter to fill the aneurysm, and prevent it from further expansion and rupture. Health Canada has approved numerous types of coils and coil delivery systems to treat intracranial aneurysms. The most favoured are controlled detachable coils. Coil embolization may be used with other adjunct endovascular devices such as stents and balloons. Background Intracranial Aneurysms Intracranial aneurysms are the dilation or ballooning of part of a blood vessel in the brain. Intracranial aneurysms range in size from small (<12 mm in diameter) to large (12–25 mm), and to giant (>25 mm). There are 3 main types of aneurysms. Fusiform aneurysms involve the entire circumference of the artery; saccular aneurysms have outpouchings; and dissecting aneurysms have tears in the arterial wall. Berry aneurysms are saccular aneurysms with well-defined necks. Intracranial aneurysms may occur in any blood vessel of the brain; however, they are most commonly found at the branch points of large arteries that form the circle of Willis at the base of the brain. In 85% to 95% of patients, they are found in the anterior circulation. Aneurysms in the posterior circulation are less frequent, and are more difficult to treat surgically due to inaccessibility. Most intracranial aneurysms are small and asymptomatic. Large aneurysms may have a mass effect, causing compression on the brain and cranial nerves and neurological deficits. When an intracranial aneurysm ruptures and bleeds

  1. Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement.

    PubMed

    Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias

    2013-04-12

    An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling

  2. AAFreqCoil: a new classifier to distinguish parallel dimeric and trimeric coiled coils.

    PubMed

    Wang, Xiaofeng; Zhou, Yuan; Yan, Renxiang

    2015-07-01

    Coiled coils are characteristic rope-like protein structures, constituted by one or more heptad repeats. Native coiled-coil structures play important roles in various biological processes, while the designed ones are widely employed in medicine and industry. To date, two major oligomeric states (i.e. dimeric and trimeric states) of a coiled-coil structure have been observed, plausibly exerting different biological functions. Therefore, exploration of the relationship between heptad repeat sequences and coiled coil structures is highly important. In this paper, we develop a new method named AAFreqCoil to classify parallel dimeric and trimeric coiled coils. Our method demonstrated its competitive performance when benchmarked based on 10-fold cross validation and jackknife cross validation. Meanwhile, the rules that can explicitly explain the prediction results of the test coiled coil can be extracted from the AAFreqCoil model for a better explanation of user predictions. A web server and stand-alone program implementing the AAFreqCoil algorithm are freely available at . PMID:25918905

  3. Correction coil cable

    DOEpatents

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  4. Techniques For Microfabricating Coils For Microelectromechanical Systems Applications

    SciTech Connect

    Woods, R. C.; Powell, A. L.

    2008-01-21

    The advanced technology necessary for building future space exploration vehicles includes microfabricated coils for making possible self-inductances integrated with other passive and active electronic components. Integrated inductances make possible significant improvements in reliability over the traditional arrangement of using external discrete inductances, as well as allowing significant size (volume) reductions (also important in space vehicles). Two possible fabrication techniques (one using proprietary branded 'Foturan' glass, the other using silicon wafer substrates) for microscopic coils are proposed, using electroplating into channels. The techniques have been evaluated for fabricating the planar electrical coils needed for typical microelectromechanical systems applications. There remain problems associated with processing using 'Foturan' glass, but coil fabrication on silicon wafers was successful. Fabrication methods such as these are expected to play an important part in the development of systems and subsystems for forthcoming space exploration missions.

  5. Coiling of Elastic Ropes

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Ribe, N. M.; Bonn, Daniel

    2007-10-01

    A rope falling onto a solid surface typically forms a series of regular coils. Here, we study this phenomenon using laboratory experiments (with cotton threads and softened spaghetti) and an asymptotic “slender-rope” numerical model. The excellent agreement between the two with no adjustable parameters allows us to determine a complete phase diagram for elastic coiling comprising three basic regimes involving different force balances (elastic, gravitational, and inertial) together with resonant “whirling string” and “whirling shaft” eigenmodes in the inertial regime.

  6. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  7. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  8. Magnet coils made from high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Jenkins, R. G.; Jones, H.; Burgoyne, J.; Yang, M.; Grovenor, C. R. M.; Goringe, M. J.

    1996-02-01

    We review the progress we have made in constructing HTS coils and report our latest results. Also we describe the cryogen-free operation of one of our HTS coils cooled to 55 K using a Stirling cycle cryocooler. Lastly, we describe how 4 Oxford coils are being used in a project to investigate the controllability of HTS magnets in applications such as “maglev” suspension systems. We briefly report the initial findings of this work and describe developments in progress.

  9. 49 CFR 236.730 - Coil, receiver.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.730 Coil, receiver. Concentric layers of insulated wire wound around the core of a receiver of an automatic train stop, train control or cab signal device on a locomotive....

  10. Dynamics of the coiled-coil unfolding transition of myosin rod probed by dissipation force spectrum.

    PubMed

    Taniguchi, Yukinori; Khatri, Bhavin S; Brockwell, David J; Paci, Emanuele; Kawakami, Masaru

    2010-07-01

    The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic force microscopy using a magnetically driven oscillating cantilever to measure the dissipative properties of single myosin rods that provide unique dynamical information about the coiled-coil structure as a function of force. We find that the friction constant of the single myosin rod has a highly nontrivial variation with force; in particular, the single-molecule friction constant is reduced dramatically and increases again as it passes through the coiled-uncoiled transition. This is a direct indication of a large free-energy barrier to uncoiling, which may be related to a fine-tuned dynamic mechanosignaling response to large and unexpected physiological loads. Further, from the critical force at which the minimum in friction occurs we determine the asymmetry of the bistable landscape that controls uncoiling of the coiled coil. This work highlights the sensitivity of the dissipative signal in force unfolding to dynamic molecular structure that is hidden to the elastic signal. PMID:20655854

  11. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  12. Improved Coil for Hydrogen Dissociators

    NASA Technical Reports Server (NTRS)

    Vessot, R.

    1984-01-01

    Flat coil has rigid printed circuit substrate. New coil structure minimizes RF electric field near glass walls of plasma vessel; therefore reduces direct electron bombardment of glass. Design lends itself well to high production and standardized dimensions.

  13. Pulse Test of Coil Insulation

    NASA Technical Reports Server (NTRS)

    Kroy, Ralph E.

    1987-01-01

    Waveform of back-electromotive force reveals defects. Simple pulse test reveals defects in inductor coils. Devised for use on servovalve solenoid coils on Space Shuttle, test also applicable to transformer windings, chokes, relays, and the like.

  14. Ferrite core non-linearity in coils for magnetic neurostimulation

    PubMed Central

    Lazzi, Gianluca

    2014-01-01

    The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values. PMID:26609390

  15. Magnetic Coil Design and Analysis

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael

    2012-06-01

    Modified magnetic field coil geometries as described in U.S. Patent Applications US20100194506 and US20110247414 can produce substantially greater magnetic field homogeneity as compared to the traditional realized versions of idealized magnetic coil geometries such as spherical or Helmholtz. The new coil geometries will be described in detail and will be compared and contrasted to realized versions of idealized geometries, including discussion of errors not typically accounted for in traditional coil design and analysis.

  16. Wet Winding Improves Coil Encapsulation

    NASA Technical Reports Server (NTRS)

    Hill, A. J.

    1987-01-01

    Wet-winding process encapsulates electrical coils more uniformily than conventional processes. Process requires no vacuum pump and adapts easily to existing winding machines. Encapsulant applied to each layer of wire as soon as added to coil. Wet-winding process eliminates voids, giving more uniformly encapsulated coil.

  17. Design of printed circuit coils

    NASA Technical Reports Server (NTRS)

    Higgins, W. T.

    1969-01-01

    Spiral-like coil is printed with several extra turns which increase the realizable coil inductance. Included are shorting connections which not only short the extra turns, but also short out several turns of the main body. Coil tuning is accomplished by removing the shorts until the desired inductance is obtained.

  18. Gasoline engine choking arrangement

    SciTech Connect

    Armes, P.W.

    1987-10-13

    In combination with a gasoline engine including a fuel tank having a fuel inlet and outlet, an automatic choke is described having a pivotal choke butterfly plate, an air filter, and a rod mounting the air filter. A choking arrangement comprises means immobilizing the pivotal choke butterfly plate at an open position and means communicating with the fuel inlet selectively urging fuel passage from the fuel tank outlet during gasoline engine starting.

  19. 13. ROOM 40, LOOKING WEST FROM THE RUBENS COIL. SPINNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ROOM 40, LOOKING WEST FROM THE RUBENS COIL. SPINNER MAGNETOMETER IS VISIBLE AT FAR LEFT, AND THE RUBENS COIL CONTROL UNIT AT FAR RIGHT. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  20. A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device

    NASA Astrophysics Data System (ADS)

    Pal, A. M.; Bhattacharya, S.; Biswas, S.; Basu, S.; Pal, R.

    2014-03-01

    A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere.

  1. Eddy current gauge for monitoring displacement using printed circuit coil

    DOEpatents

    Visioli, Jr., Armando J.

    1977-01-01

    A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.

  2. Current COIL research in Samara

    NASA Astrophysics Data System (ADS)

    Nikolaev, Valeri D.

    1996-02-01

    Development of the high pressure singlet oxygen generator (SOG) is a very important aspect for chemical oxygen-iodine laser (COIL). Increasing of oxygen pressure up to 30 torr and more at conserving high O2(1(Delta) ) yield and maintaining BHP temperature at minus (10 divided by 20) degrees Celsius permits us to decrease ration [H2O]/[O2] to 5% and less. In this case COIL can operate successfully without a water vapor trap. With raising the total pressure Reynolds number increases too, diminishing boundary layers in supersonic nozzles and improving pressure recovery. The weight and dimensions of the SOG and laser become reduced for the same gas flow rate. For solving these problems the jet SOG has been suggested and developed in Lebedev Physical Institute, Samara Branch. The advantages of the jet SOG consist of the following: (1) Large and controlled specific surface of contact liquid-gas provides for high mass transfer efficiency. (2) High jets velocity guarantees fast basic hydrogen peroxide (BHP) surface renovation. (3) High gas velocity in the reaction zone diminishes O2(1(Delta) ) quenching. (4) Efficient gas-liquid heat exchange eliminates the gas heating and generation water vapor due O2(1(Delta) ) quenching. (5) Counterflowing design of the jet SOG produces the best conditions for self-cleaning gas flow of droplets in the reaction zone and gives the possibility of COIL operation without droplets separator. High pressure jet SOG has some features connected with intrachannel jet formation, free space jets reconstruction, interaction jets ensemble with counter moving gas flow and drag part of gas by jets, disintegrating jets, generation and separation of droplets, heat effects, surface renovation, impoverishment BHP surface by HO2- ions, moving solution film on the reaction zone walls, etc. In this communication our current understanding of the major processes in the jet SOG is set forth. The complex gas and hydrodynamic processes with heat and mass transfer

  3. A real-time data acquisition and control of gradient coil noise for fMRI identification of hearing disorder in children with history of ear infection.

    PubMed

    Lee, Jaeseung; Holte, James; Ritenour, E Russell

    2013-02-01

    Early ear infection and trauma, from birth to age 12 are known to have a significant effect on sensory and cognitive development. This effect can be demonstrated through the fMRI study of children who have a history of ear infection compared to a control group. A second research question is the extent to which brain plasticity at an early age can reduce the impact of infection on hearing and cognitive development. Functional Magnetic Resonance Imaging (fMRI) provides a mapping of brain activity in cognitive and sensory regions by recording the oxygenation state of the local cerebral blood flow. The gradient coils of fMRI scanners generate intense acoustic noise (GCN) - to which the subject is in close proximity - in the range of 90 to 140 db SPL during the imaging process. Clearly this noise will impress its signature on low level brain response patterns. An Active Noise Canceller (ANC) system can suppress the effect of GCN on the subject's perception of a phonetic stimulus at the phoneme, word or phrase level. Due to a superimposition of the frequency and time domain components of the test signal and GCN for MR test, the ANC filtering system performs its function in real time - we must capture the brain's response to the test signal AFTER the noise has been removed. This goal is achieved through the application of field programmable gate array (FPGA) technology of NI LabVIEW. The presentation (in the noisy fMRI environment) of test words and phrases to hearing impaired children can identify sources of distortion to their perceptual processes associated with GCN. Once this distortion has been identified, learning strategies may be introduced to replace the hearing function distorted by early infection as well as the short term effect of GCN. The study of speech cognition without the confounding effect of GCN and with the varying level of GCN for a repeated test signal at later age can be allowed to a measure of recovery through brain plasticity. PMID:23482910

  4. A real-time data acquisition and control of gradient coil noise for fMRI identification of hearing disorder in children with history of ear infection

    PubMed Central

    Lee, Jaeseung; Holte, James

    2013-01-01

    Early ear infection and trauma, from birth to age 12 are known to have a significant effect on sensory and cognitive development. This effect can be demonstrated through the fMRI study of children who have a history of ear infection compared to a control group. A second research question is the extent to which brain plasticity at an early age can reduce the impact of infection on hearing and cognitive development. Functional Magnetic Resonance Imaging (fMRI) provides a mapping of brain activity in cognitive and sensory regions by recording the oxygenation state of the local cerebral blood flow. The gradient coils of fMRI scanners generate intense acoustic noise (GCN) - to which the subject is in close proximity - in the range of 90 to 140 db SPL during the imaging process. Clearly this noise will impress its signature on low level brain response patterns. An Active Noise Canceller (ANC) system can suppress the effect of GCN on the subject’s perception of a phonetic stimulus at the phoneme, word or phrase level. Due to a superimposition of the frequency and time domain components of the test signal and GCN for MR test, the ANC filtering system performs its function in real time - we must capture the brain’s response to the test signal AFTER the noise has been removed. This goal is achieved through the application of field programmable gate array (FPGA) technology of NI LabVIEW. The presentation (in the noisy fMRI environment) of test words and phrases to hearing impaired children can identify sources of distortion to their perceptual processes associated with GCN. Once this distortion has been identified, learning strategies may be introduced to replace the hearing function distorted by early infection as well as the short term effect of GCN. The study of speech cognition without the confounding effect of GCN and with the varying level of GCN for a repeated test signal at later age can be allowed to a measure of recovery through brain plasticity. PMID:23482910

  5. Coiled-coil networking shapes cell molecular machinery

    PubMed Central

    Wang, Yongqiang; Zhang, Xinlei; Zhang, Hong; Lu, Yi; Huang, Haolong; Dong, Xiaoxi; Chen, Jinan; Dong, Jiuhong; Yang, Xiao; Hang, Haiying; Jiang, Taijiao

    2012-01-01

    The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications. PMID:22875988

  6. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  7. Combustion pressure sensor arrangement

    SciTech Connect

    Sawamoto, K.; Nagaishi, H.; Takeuchi, K.

    1986-07-29

    A combustion pressure sensor arrangement in an internal combustion engine having a cylinder head, comprising: a plug seating formed in the cylinder head; an annular pressure sensor; an ignition plug screwed into the cylinder head in such a manner that the pressure sensor is clamped between the ignition plug and the plug seating; an ignition plug accommodation hole formed in the cylinder head for accommodating therein the ignition plug; and a guide sleeve joined at one end thereof to the outer periphery of the pressure sensor and fitted in the ignition plug accommodation hole, wherein the one end of the guide sleeve is fitted on the outer periphery of the pressure sensor.

  8. 48 CFR 970.1504-1-4 - Types of contracts and fee arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-based management contract, those contract types which incentivize performance and cost control are... arrangement or cost reduction incentive for the requirements. Pricing arrangements which provide incentives... and government's organizations to prepare, evaluate, and administer the pricing arrangement or...

  9. A 128-Channel Receive-Only Cardiac Coil for Highly Accelerated Cardiac MRI at 3 Tesla

    PubMed Central

    Schmitt, Melanie; Potthast, Andreas; Sosnovik, David E.; Polimeni, Jonathan R.; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.

    2008-01-01

    A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam-shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R = 7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R = 7) in a single spatial dimension. PMID:18506789

  10. Meta-analysis of stent-assisted coiling versus coiling-only for the treatment of intracranial aneurysms.

    PubMed

    Phan, Kevin; Huo, Ya R; Jia, Fangzhi; Phan, Steven; Rao, Prashanth J; Mobbs, Ralph J; Mortimer, Alex M

    2016-09-01

    Endovascular coil embolization is a widely accepted and useful treatment modality for intracranial aneurysms. However, the principal limitation of this technique is the high aneurysm recurrence. The adjunct use of stents for coil embolization procedures has revolutionized the field of endovascular aneurysm management, however its safety and efficacy remains unclear. Two independent reviewers searched six databases from inception to July 2015 for trials that reported outcomes according to those who received stent-assisted coiling versus coiling-only (no stent-assistance). There were 14 observational studies involving 2698 stent-assisted coiling and 29,388 coiling-only patients. The pooled immediate occlusion rate for stent-assisted coiling was 57.7% (range: 20.2%-89.2%) and 48.7% (range: 31.7%-89.2%) for coiling-only, with no significant difference between the two (odds ratio [OR}=1.01; 95% confidence intervals [CI}: 0.68-1.49). However, progressive thrombosis was significantly more likely in stent-assisted coiling (29.9%) compared to coiling-only (17.5%) (OR=2.71; 95% CI: 1.95-3.75). Aneurysm recurrence was significantly lower in stent-assisted coiling (12.7%) compared to coiling-only (27.9%) (OR=0.43; 95% CI: 0.28-0.66). In terms of complications, there was no significant difference between the two techniques for all-complications, permanent complications or thrombotic complications. Mortality was significantly higher in the stent-assisted group 1.4% (range: 0%-27.5%) compared to the coiling-only group 0.2% (range: 0%-19.7%) (OR=2.16; 95% CI: 1.33-3.52). Based on limited evidence, stent-assisted coiling shows similar immediate occlusion rates, improved progressive thrombosis and decreased aneurysm recurrence compared to coiling-only, but is associated with a higher mortality rate. Future randomized controlled trials are warranted to clarify the safety of stent-associated coiling. PMID:27344091

  11. The Automotive Ignition Coil

    NASA Technical Reports Server (NTRS)

    Darnell, T H

    1932-01-01

    This report gives the results of a series of measurements on the secondary voltage induced in an ignition coil of typical construction under a variety of operating conditions. These results show that the theoretical predictions hitherto made as to the behavior of this type of apparatus are in satisfactory agreement with the observed facts. The large mass of data obtained is here published both for the use of other investigators who may wish to compare them with other theoretical predictions and for the use of automotive engineers who will here find definite experimental results showing the effect of secondary capacity and resistance on the crest voltage produced by ignition apparatus.

  12. Designing with null flux coils

    SciTech Connect

    Davey, K.R.

    1997-09-01

    Null flux were suggested by Danby and Powell in the late 1960`s as a useful means for realizing induced lift with little drag. As an array of alternating magnets is translated past a set of null flux coils, the currents induced in these coils act to vertically center the magnets on those coils. At present, one Japanese MAGLEV system company and two American-based companies are employing either null flux or flux eliminating coils in their design for high speed magnetically levitated transportation. The principle question addressed in paper is: what is the proper choice of coil length to magnet length in a null flux system? A generic analysis in the time and frequency domain is laid out with the intent of showing the optimal design specification in terms of coil parameters.

  13. Triple Halo Coil: Development and Comparison with Other TMS Coils

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  14. Design and optimization of efficient magnetic coils for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ram Rakhyani, Anil Kumar

    Magnetic fields are permeable to the biological tissues and can induce electric field in the conductive structures. Some medical devices take advantage of this ability to transfer energy from the source to the receiving site without direct contact. Prosthetic devices such as retinal implants use time-varying magnetic field to achieve wireless power transfer to the implanted magnetic coil. However, devices such as magnetic stimulators use the induction principle to create an electric field at the stimulation site. Efficiency of these devices is primarily dependent on the design of the magnetic coils. Therefore, in this work, we designed and validated efficient magnetic coils for wireless power transfer to implanted devices and magnetic stimulation of the peripheral nerves. Typical wireless power transfer (WPT) systems uses two-coil based design to achieve contactless power transfer to the implanted electronics. These systems achieve low power transfer efficiency (< 30%) and frequency bandwidth. Moreover, efficient wireless system requires high coupling and load variation tolerance during device operation. To design an electromagnetic safe WPT system, the power absorbed by the tissue and radiated field due to the proximal magnetic coils needs to be minimized. In this work, we proposed a multi-coil power transfer system which solves some of the current challenges. The proposed multi-coil WPT system achieves more than twice the power transfer efficiency, controllable voltage gain, wider frequency bandwidth, higher tolerance to coupling and load variations, lower absorbed power in the tissue and lower radiated field from the magnetic coil than a comparable two-coil system. In this work, we have developed analytic models of the multi-coil WPT system and validated the accuracy of the solutions using experiments. Magnetic coils play an important role in controlling the distribution of induced electric field inside the nerve during magnetic stimulation. In the past

  15. A Parallel Coiled-Coil Tetramer with Offset Helices

    SciTech Connect

    Liu,J.; Deng, Y.; Zheng, Q.; Cheng, C.; Kallenbach, N.; Lu, M.

    2006-01-01

    Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between {alpha} helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of {alpha}-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete {alpha}-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 {angstrom} resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.

  16. Stellarator Coil Design and Plasma Sensitivity

    SciTech Connect

    Long-Poe Ku and Allen H. Boozer

    2010-11-03

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  17. Replaceable Sleeve Protects Welder Coil

    NASA Technical Reports Server (NTRS)

    Baker, W. L.; Simpson, C., E.

    1983-01-01

    New replaceable carbon insert for deflection coil in electron-beam welder promises to decrease maintenance costs. Inserts made from materials other than carbon (not yet tried) are less expensive, thus reducing costs even further. With carbon insert, deflection coils last longer and are easier to maintain.

  18. Magnet Coil Shorted Turn Detector

    SciTech Connect

    Dinkel, J.A.; Biggs, J.E.

    1994-03-01

    The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

  19. Embolization of the Gastroduodenal Artery Before Selective Internal Radiotherapy: A Prospectively Randomized Trial Comparing Standard Pushable Coils with Fibered Interlock Detachable Coils

    SciTech Connect

    Dudeck, Oliver Bulla, Karsten; Wieners, Gero; Ruehl, Ricarda; Ulrich, Gerd; Amthauer, Holger; Ricke, Jens; Pech, Maciej

    2011-02-15

    The purpose of this study was compare embolization of the gastroduodenal artery (GDA) using standard pushable coils with the Interlock detachable coil (IDC), a novel fibered mechanically detachable long microcoil, in patients scheduled for selective internal radiotherapy (SIRT). Fifty patients (31 male and 19 female; median age 66.6 {+-} 8.1 years) were prospectively randomized for embolization using either standard coils or IDCs. Procedure time, radiation dose, number of embolization devices, complications, and durability of vessel occlusion at follow-up angiography were recorded. The procedures differed significantly in time (14:32 {+-} 5:56 min for standard coils vs. 2:13 {+-} 1:04 min for IDCs; p < 0.001); radiation dose for coil deployment (2479 {+-} 1237 cGycm Superscript-Two for standard coils vs. 275 {+-} 268 cGycm Superscript-Two for IDCs; p < 0.001); and vessel occlusion (17:18 {+-} 6:39 min for standard coils vs. 11:19 {+-} 7:54 min for IDCs; p = 0.002). A mean of 6.2 {+-} 1.8 coils (n = 27) were used in the standard coil group, and 1.3 {+-} 0.9 coils (p < 0.0001) were used in the IDC group (n = 23) because additional pushable coils were required to achieve GDA occlusion in 4 patients. In 2 patients, the IDC could not be deployed through a Soft-VU catheter. One standard coil dislodged in the hepatic artery and was retrieved. Vessel reperfusion was noted in only 1 patient in the standard coil group. Controlled embolization of the GDA with fibered IDCs was achieved more rapidly than with pushable coils. However, vessel occlusion may not be obtained using a single device only, and the use of sharply angled guiding catheters hampered coil pushability.

  20. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  1. The Coil Method in Contemporary Ceramics

    ERIC Educational Resources Information Center

    Nigrosh, Leon I.

    1976-01-01

    For centuries coil building has been the primary method of making pottery the world over. Many classrooms still reflect this preference for symmetrical coil building. Describes coil building and what forms can be made from it. (Author/RK)

  2. Design and preliminary tests of a twin coil HTS SMES for pulse power operation

    NASA Astrophysics Data System (ADS)

    Badel, Arnaud; Tixador, Pascal; Berger, Kevin; Deleglise, Marc

    2011-05-01

    The design of a twin coil 2 × 200 kJ-1 MW pulse power high temperature superconductor (HTS) superconducting magnetic energy storage (SMES) demonstrator is presented. Its aim is to test at small scale various possibilities of electromagnetic launcher powering. The foreseen operation modes include high voltage discharge in power capacitors, sequential discharges of identical energies from two coupled coils, and XRAM current multiplication. Special attention was paid to the arrangement of the coils for the energies discharged to be equal. The coils are cooled by conduction from three cryocoolers; the thermal design was optimized in order to maintain the coils around 15 K in spite of the high number of current leads required for XRAM operation (eight). Preliminary tests of the demonstrator are also presented, showing that the thermal and electrical characteristics are in very good agreement with the design objectives.

  3. Parametric design of tri-axial nested Helmholtz coils

    SciTech Connect

    Abbott, Jake J.

    2015-05-15

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  4. Balance between Coiled-Coil Stability and Dynamics Regulates Activity of BvgS Sensor Kinase in Bordetella

    PubMed Central

    Lesne, E.; Krammer, E.-M.; Dupre, E.; Locht, C.; Lensink, M. F.

    2016-01-01

    ABSTRACT The two-component system BvgAS controls the expression of the virulence regulon of Bordetella pertussis. BvgS is a prototype of bacterial sensor kinases with extracytoplasmic Venus flytrap perception domains. Following its transmembrane segment, BvgS harbors a cytoplasmic Per-Arnt-Sim (PAS) domain and then a predicted 2-helix coiled coil that precede the dimerization-histidine-phosphotransfer domain of the kinase. BvgS homologs have a similar domain organization, or they harbor only a predicted coiled coil between the transmembrane and the dimerization-histidine-phosphotransfer domains. Here, we show that the 2-helix coiled coil of BvgS regulates the enzymatic activity in a mechanical manner. Its marginally stable hydrophobic interface enables a switch between a state of great rotational dynamics in the kinase mode and a more rigid conformation in the phosphatase mode in response to signal perception by the periplasmic domains. We further show that the activity of BvgS is controlled in the same manner if its PAS domain is replaced with the natural α-helical sequences of PAS-less homologs. Clamshell motions of the Venus flytrap domains trigger the shift of the coiled coil’s dynamics. Thus, we have uncovered a general mechanism of regulation for the BvgS family of Venus flytrap-containing two-component sensor kinases. PMID:26933056

  5. NSTX Protection And Interlock Systems For Coil And Powers Supply Systems

    SciTech Connect

    X. Zhao, S. Ramakrishnan, J. Lawson, C.Neumeyer, R. Marsala, H. Schneider, Engineering Operations

    2009-09-24

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is either prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.

  6. INTERCOMPARISON OF PERFORMANCE OF RF COIL GEOMETRIES FOR HIGH FIELD MOUSE CARDIAC MRI

    PubMed Central

    Constantinides, Christakis; Angeli, S.; Gkagkarellis, S.; Cofer, G.

    2012-01-01

    Multi-turn spiral surface coils are constructed in flat and cylindrical arrangements and used for high field (7.1 T) mouse cardiac MRI. Their electrical and imaging performances, based on experimental measurements, simulations, and MRI experiments in free space, and under phantom, and animal loading conditions, are compared with a commercially available birdcage coil. Results show that the four-turn cylindrical spiral coil exhibits improved relative SNR (rSNR) performance to the flat coil counterpart, and compares fairly well with a commercially available birdcage coil. Phantom experiments indicate a 50% improvement in the SNR for penetration depths ≤ 6.1 mm from the coil surface compared to the birdcage coil, and an increased penetration depth at the half-maximum field response of 8 mm in the 4-spiral cylindrical coil case, in contrast to 2.9 mm in the flat 4-turn spiral case. Quantitative comparison of the performance of the two spiral coil geometries in anterior, lateral, inferior, and septal regions of the murine heart yield maximum mean percentage rSNR increases of the order of 27–167% in vivo post-mortem (cylindrical compared to flat coil). The commercially available birdcage outperforms the cylindrical spiral coil in rSNR by a factor of 3–5 times. The comprehensive approach and methodology adopted to accurately design, simulate, implement, and test radiofrequency coils of any geometry and type, under any loading conditions, can be generalized for any application of high field mouse cardiac MRI. PMID:23204945

  7. Optimized quadrature surface coil designs

    PubMed Central

    Kumar, Ananda; Bottomley, Paul A.

    2008-01-01

    Background Quadrature surface MRI/MRS detectors comprised of circular loop and figure-8 or butterfly-shaped coils offer improved signal-to-noise-ratios (SNR) compared to single surface coils, and reduced power and specific absorption rates (SAR) when used for MRI excitation. While the radius of the optimum loop coil for performing MRI at depth d in a sample is known, the optimum geometry for figure-8 and butterfly coils is not. Materials and methods The geometries of figure-8 and square butterfly detector coils that deliver the optimum SNR are determined numerically by the electromagnetic method of moments. Figure-8 and loop detectors are then combined to create SNR-optimized quadrature detectors whose theoretical and experimental SNR performance are compared with a novel quadrature detector comprised of a strip and a loop, and with two overlapped loops optimized for the same depth at 3 T. The quadrature detection efficiency and local SAR during transmission for the three quadrature configurations are analyzed and compared. Results The SNR-optimized figure-8 detector has loop radius r8 ∼ 0.6d, so r8/r0 ∼ 1.3 in an optimized quadrature detector at 3 T. The optimized butterfly coil has side length ∼ d and crossover angle of ≥ 150° at the center. Conclusions These new design rules for figure-8 and butterfly coils optimize their performance as linear and quadrature detectors. PMID:18057975

  8. Rapid mixing of viscous liquids by electrical coiling.

    PubMed

    Kong, Tiantian; Li, Jingmei; Liu, Zhou; Zhou, Zhuolong; Ng, Peter Hon Yu; Wang, Liqiu; Shum, Ho Cheung

    2016-01-01

    The control for the processing of precursor liquids determines whether the properties and functions of the final material product can be engineered. An inherent challenge of processing viscous liquids arises from their large resistance to deform. Here, we report on the discovery of an electric approach that can significantly contribute to address this challenge. The applied electric force can induce a straight viscous jet to coil, and the resulting coiling characteristics are governed by the electric stress. We demonstrate the promising use of electrical coiling in the rapid and efficient mixing of viscous liquids. Remarkably, the degree of mixing can be precisely adjusted by tuning the applied electric stress. Our approach of controlling the coiling electrically has important implications on applications such as dispensing and printing of resins, printing patterned surfaces and scaffolds, processing of food and generating non-woven fabrics. PMID:26860660

  9. Rapid mixing of viscous liquids by electrical coiling

    PubMed Central

    Kong, Tiantian; Li, Jingmei; Liu, Zhou; Zhou, Zhuolong; Ng, Peter Hon Yu; Wang, Liqiu; Shum, Ho Cheung

    2016-01-01

    The control for the processing of precursor liquids determines whether the properties and functions of the final material product can be engineered. An inherent challenge of processing viscous liquids arises from their large resistance to deform. Here, we report on the discovery of an electric approach that can significantly contribute to address this challenge. The applied electric force can induce a straight viscous jet to coil, and the resulting coiling characteristics are governed by the electric stress. We demonstrate the promising use of electrical coiling in the rapid and efficient mixing of viscous liquids. Remarkably, the degree of mixing can be precisely adjusted by tuning the applied electric stress. Our approach of controlling the coiling electrically has important implications on applications such as dispensing and printing of resins, printing patterned surfaces and scaffolds, processing of food and generating non-woven fabrics. PMID:26860660

  10. Rapid mixing of viscous liquids by electrical coiling

    NASA Astrophysics Data System (ADS)

    Kong, Tiantian; Li, Jingmei; Liu, Zhou; Zhou, Zhuolong; Ng, Peter Hon Yu; Wang, Liqiu; Shum, Ho Cheung

    2016-02-01

    The control for the processing of precursor liquids determines whether the properties and functions of the final material product can be engineered. An inherent challenge of processing viscous liquids arises from their large resistance to deform. Here, we report on the discovery of an electric approach that can significantly contribute to address this challenge. The applied electric force can induce a straight viscous jet to coil, and the resulting coiling characteristics are governed by the electric stress. We demonstrate the promising use of electrical coiling in the rapid and efficient mixing of viscous liquids. Remarkably, the degree of mixing can be precisely adjusted by tuning the applied electric stress. Our approach of controlling the coiling electrically has important implications on applications such as dispensing and printing of resins, printing patterned surfaces and scaffolds, processing of food and generating non-woven fabrics.

  11. Improved Sensing Coils for SQUIDs

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho

    2007-01-01

    An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.

  12. Coiling of a viscous filament

    NASA Astrophysics Data System (ADS)

    Samuel, A. D. T.; Ryu, W. S.; Mahadevan, L.

    1997-11-01

    A classic demonstration of fluid buckling is a daily occurence at the breakfast table, where a continuous stream of viscous fluid (honey) is often poured onto a flat surface (toast) from a sufficient height. The thin fluid filament quickly settles into a steady state; near the surface it bends into a helical shape while simultaneously rotating about the vertical and is laid out in a regular coil. This behavior is reminiscent of the coiling of a falling flexible rope. We derive a simple scaling law that predicts the coiling frequency in terms of the filament radius and the flow rate. We also verify this scaling law with the results of experiments.

  13. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  14. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  15. Rapid mixing of viscous liquids by electrical coiling

    NASA Astrophysics Data System (ADS)

    Kong, Tiantian; Li, Jingmei; Liu, Zhou; Wang, Liqiu; Shum, Ho Cheung

    2015-11-01

    We study the coiling of viscous liquid jets under an axial electric field. As a viscous jet accelerated by the electric field encounters a solid substrate, it is forced to decelerate, leading a compressive force that sets the jet to coil. We show that the coiling characteristics are significantly influenced by the applied electric force. Based on a balance between the electric and viscous torque, we deduce a scaling law to predict the coiling frequency from the relevant physical parameters, including the viscosity, dielectric constant, volumetric flow rate of the liquid and the applied electric field intensity. Moreover, we exploit this electrically controlled coiling to achieve rapid mixing between viscous liquids. We show that as a compound viscous jet is induced to coil electrically, the diffusion distance between viscous liquids is significantly reduced. As such, the mixing is enhanced remarkably despite the low Reynolds number, which is on the order of 10-7. We further show that the degree of mixing can be precisely tuned by the applied electric force. Our approach of electric coiling offers a novel and versatile way to dispense, mix and print precursor liquids with large viscosities, including resins, food suspensions and polymer blends.

  16. Discrete-coil investigations of modular stellarator configurations

    SciTech Connect

    Lilliequist, C.G.

    1985-10-01

    The existence of a vacuum magnetic well is generally accepted as a prerequisite to start-up. The special set of modular-stellarator configurations selected for the present computational investigation was derived from coefficients and equations that produced finite-beta wells in a continuous-current-sheet representation. The corresponding coils did not produce magnetic wells in a vacuum when their field configuration was investigated with a discrete-coil code. Vacuum magnetic wells have been identified through the use of this discrete-coil code in previous Heliac and stellarator studies. Therefore, these finite-beta magnetic wells could be the consequence of the continuous-current-sheet model: a conjecture that is supported by the linear scaling of the magnetic hills found in the present work as a function of the separation between the coils used. In addition to magnetic field profiles, comparisons are shown here of ripple, rotational transform, and flux-surface shapes for the discrete-coil, modular stellarators under study. Initially, each of the significant parameters affecting the shape of the control surface upon which the coils lie and the deformation of the individual coils was varied separately in search of a vacuum magnetic well in the parameter neighborhood of the successful finite-beta configuration.

  17. The Aesthetics of Behavioral Arrangements

    ERIC Educational Resources Information Center

    Hineline, Philip N.

    2005-01-01

    With their origins in scientific validation, behavior-analytic applications have understandably been developed with an engineering rather than a crafting orientation. Nevertheless, traditions of craftsmanship can be instructive for devising aesthetically pleasing arrangements--arrangements that people will try, and having tried, will choose to…

  18. ASTROMAG coil cooling study

    NASA Technical Reports Server (NTRS)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  19. Growth factor identity is encoded by discrete coiled coil rotamers in the EGFR juxtamembrane region

    PubMed Central

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-01-01

    Summary Binding of the growth factor TGF-α to the EGFR extracellular domain is encoded through the formation of a unique anti-parallel coiled coil within the juxtamembrane segment. This new coiled coil is an ‘inside-out’ version of the coiled coil formed in the presence of EGF. A third, intermediary coiled coil interface is formed in the juxtamembrane segment when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane segment correlates with cell state. The observation that coiled coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. PMID:26091170

  20. High-resolution structures of a heterochiral coiled coil

    PubMed Central

    Mortenson, David E.; Steinkruger, Jay D.; Kreitler, Dale F.; Perroni, Dominic V.; Sorenson, Gregory P.; Huang, Lijun; Mittal, Ritesh; Yun, Hyun Gi; Travis, Benjamin R.; Mahanthappa, Mahesh K.; Forest, Katrina T.; Gellman, Samuel H.

    2015-01-01

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein–protein interactions. Coiled–coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled–coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern. PMID:26460035

  1. An Autoinhibited Coiled-Coil Design Strategy for Split-Protein Protease Sensors

    PubMed Central

    Shekhawat, Sujan S.; Porter, Jason R.; Sriprasad, Akshay; Ghosh, Indraneel

    2009-01-01

    Proteases are widely studied as they are integral players in cell cycle control and apoptosis. We report a new approach for the design of a family of genetically encoded turn-on protease biosensors. In our design, an auto-inhibited coiled-coil switch is turned on upon proteolytic cleavage, which results in the complementation of split-protein reporters. Utilizing this new auto-inhibition design paradigm, we present the rational construction and optimization of three generations of protease biosensors, with the final design providing a 1000 fold increase in bioluminescent signal upon addition of the TEV protease. We demonstrate the generality of the approach utilizing two different split-protein reporters, firefly luciferase and beta-lactamase, while also testing our design in the context of a therapeutically relevant protease, caspase-3. Finally, we present a dual-protease sensor geometry that allows for the use of these turn-on sensors as potential AND logic gates. Thus these studies potentially provide a new method for the design and implementation of genetically encoded turn-on protease sensors while also providing a general auto-inhibited coiled-coil strategy for controlling the activity of fragmented proteins. PMID:19803505

  2. Adjustable Induction-Heating Coil

    NASA Technical Reports Server (NTRS)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  3. Dynamics of liquid rope coiling

    NASA Astrophysics Data System (ADS)

    Habibi, Mehdi; Maleki, Maniya; Golestanian, Ramin; Ribe, Neil M.; Bonn, Daniel

    2006-12-01

    We present a combined experimental and numerical investigation of the coiling of a liquid “rope” falling on a solid surface, focusing on three little-explored aspects of the phenomenon: The time dependence of “inertio-gravitational” coiling, the systematic dependence of the radii of the coil and the rope on the experimental parameters, and the “secondary buckling” of the columnar structure generated by high-frequency coiling. Inertio-gravitational coiling is characterized by oscillations between states with different frequencies, and we present experimental observations of four distinct branches of such states in the frequency-fall height space. The transitions between coexisting states have no characteristic period, may take place with or without a change in the sense of rotation, and usually (but not always) occur via an intermediate “figure of eight” state. We present extensive laboratory measurements of the radii of the coil and of the rope within it, and show that they agree well with the predictions of a “slender-rope” numerical model. Finally, we use dimensional analysis to reveal a systematic variation of the critical column height for secondary buckling as a function of (dimensionless) flow rate and surface tension parameters.

  4. RF surface receive array coils: the art of an LC circuit.

    PubMed

    Fujita, Hiroyuki; Zheng, Tsinghua; Yang, Xiaoyu; Finnerty, Matthew J; Handa, Shinya

    2013-07-01

    The radiofrequency (RF) receive array coil is a complicated device with many inductors and capacitors and serves as one of the most critical magnetic resonance imaging (MRI) electronic devices. It directly determines the achievable level of signal-to-noise ratio (SNR). Simply put, however, the RF coil is nothing but an LC circuit. The receive array coil was first proposed more than 20 years ago, evolving from a simple arrangement with a few electronic channels to a complicated system of 128 channels, enabling highly sophisticated parallel imaging, at different field strengths. This article summarizes the basic concepts pertaining to RF receive coil arrays and their associated SNR and reviews the theories behind the major components of such arrays. This includes discussions of the intrinsic SNR of a receive coil, the matching circuits, low-noise preamplifiers, coupling/decoupling amongst coils, the coupling between receive and transmit coils, decoupling via preamplifiers, and baluns. An 8-channel receive array coil on a cylindrical former serves as a useful example for demonstrating various points in the review. PMID:23649497

  5. Status report on the 12T split coil test facility SULTAN

    SciTech Connect

    Blau, B.; Aebli, E.; Jakob, B.; Pasztor, G.; Vecsey, G. , Villigen ); della Corte, A.; Pasotti, G.; Sacchetti, N.; Spadoni, M. )

    1992-01-01

    The third phase of upgrading of the superconductor test facility SULTAN into a split coil system (SULTAN III) is in progress. SULTAN III a join project of ENEA (Italy) and PSI (Switzerland) consists of two coil packages, each containing three concentrically mounted superconducting solenoids. Together they will produce a field of nearly 12T between the two coil packages, inside a solenoid bore of 58 cm. The outermost 6T coils have NbTi conductors, whereas the inner 9T and 12T coils are made of A-15 cables. All Nb{sub 3}Sn coils are manufactured by the react-and-wind technique. The split coil arrangement, in connection with a sophisticated sample insert containing a 50 kA superconducting transformer, will allow testing of short samples of high current carrying superconductors, e.g. for fusion applications. The sample insert was designed to allow changing the samples within a few hours without warming up the whole magnet system. This paper deals with the present status and potential of the Split Coil Test Facility SULTAN III.

  6. Helical coil thermal hydraulic model

    NASA Astrophysics Data System (ADS)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  7. Nylon screws make inexpensive coil forms

    NASA Technical Reports Server (NTRS)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  8. Tailoring Supramolecular Peptide-Poly(ethylene glycol) Hydrogels by Coiled Coil Self-Assembly and Self-Sorting.

    PubMed

    Dånmark, Staffan; Aronsson, Christopher; Aili, Daniel

    2016-06-13

    Physical hydrogels are extensively used in a wide range of biomedical applications. However, different applications require hydrogels with different mechanical and structural properties. Tailoring these properties demands exquisite control over the supramolecular interactions involved. Here we show that it is possible to control the mechanical properties of hydrogels using de novo designed coiled coil peptides with different affinities for dimerization. Four different nonorthogonal peptides, designed to fold into four different coiled coil heterodimers with dissociation constants spanning from μM to pM, were conjugated to star-shaped 4-arm poly(ethylene glycol) (PEG). The different PEG-coiled coil conjugates self-assemble as a result of peptide heterodimerization. Different combinations of PEG-peptide conjugates assemble into PEG-peptide networks and hydrogels with distinctly different thermal stabilities, supramolecular, and rheological properties, reflecting the peptide dimer affinities. We also demonstrate that it is possible to rationally modulate the self-assembly process by means of thermodynamic self-sorting by sequential additions of nonpegylated peptides. The specific interactions involved in peptide dimerization thus provides means for programmable and reversible self-assembly of hydrogels with precise control over rheological properties, which can significantly facilitate optimization of their overall performance and adaption to different processing requirements and applications. PMID:27219681

  9. Multiprocessing interrupt arrangement

    SciTech Connect

    Brown, S.S.; Hunsberger, D.J.; Lundberg, M.R.

    1986-08-05

    An interrupt system is described for use with each processor of a multiprocessor communication or telephone network, where one processor may request actions of another responding processor independent of the state of the other processors. The system consists of: means including a FIFO memory for queuing interrupt vector messages directed from a requesting processor to a particular other responding processor and received via the network directly from the requesting processor without intervention by any other processor, and means controlled only by the responding processor for sequentially providing to the directed processor an interrupt signal for each of the queued vector message.

  10. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOEpatents

    Provol, Steve J.; Russell, David B.; Isaksson, Matti J.

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  11. Retrieval of Distally Migrated Coils with Detachable Intracranial Stent during Coil Embolization of Cerebral Aneurysm

    PubMed Central

    Singh, Devendra Pal; Huang, Lijin; Lee, Won Joo

    2016-01-01

    Migration of coils during endovascular procedures is a rare, but well-known complication. We are reporting two cases of successfully retrieving migrated coil using detachable intracranial stent. In both of our cases there was distal migration of coil during the intracranial aneurysm coiling procedure. The Solitaire® AB stent (Covidien, Irvine, CA, USA) was used to retrieve those coils. The stent was passed distal to the migrated coil using standard technique. It was then partially deployed and gradually withdrawn along with the entangled coil. Coil retrieval using the fully retrievable intracranial stent is a very simple, safe and easily available alternative for retrieval of distally migrated coil. PMID:27114967

  12. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  13. Prospective Motion Correction using Inductively-Coupled Wireless RF Coils

    PubMed Central

    Ooi, Melvyn B.; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D.; Bammer, Roland

    2013-01-01

    Purpose A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency (RF) coils, or “wireless markers”, for position tracking. Methods Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers’ unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Results Wireless-marker position measurements were comparable to measurements using traditional wired RF tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. RF safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Conclusion Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid RF safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. PMID:23813444

  14. JET divertor coils, manufacture, assembly and testing

    NASA Astrophysics Data System (ADS)

    Dolgetta, N.; Bertolini, E.; D'Urzo, C.; Last, J. R.; Laurenti, A.; Presle, P.; Sannazzaro, G.; Tait, J.; Tesini, A.

    1994-07-01

    Four coils have been built and installed in the JET vacuum vessel to produce divertor plasmas. The coils are copper with glass epoxy insulation and are enclosed in vacuum tight Inconel cases. At the coil contractor's factory, the coil parts were manufactured and process techniques qualified. In the JET vacuum vessel the conductor bars were brazed to form the coils, which were inserted in the casings and impregnated and cured with epoxy resin.

  15. Coiling of elastic rods on rigid substrates.

    PubMed

    Jawed, Mohammad K; Da, Fang; Joo, Jungseock; Grinspun, Eitan; Reis, Pedro M

    2014-10-14

    We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations toward developing predictive understanding of the coiling process. Both cases of deposition onto static and moving substrates are considered. We construct phase diagrams for the possible coiling patterns and characterize them as a function of the geometric and material properties of the rod, as well as the height and relative speeds of deployment. The modes selected and their characteristic length scales are found to arise from a complex interplay between gravitational, bending, and twisting energies of the rod, coupled to the geometric nonlinearities intrinsic to the large deformations. We give particular emphasis to the first sinusoidal mode of instability, which we find to be consistent with a Hopf bifurcation, and analyze the meandering wavelength and amplitude. Throughout, we systematically vary natural curvature of the rod as a control parameter, which has a qualitative and quantitative effect on the pattern formation, above a critical value that we determine. The universality conferred by the prominent role of geometry in the deformation modes of the rod suggests using the gained understanding as design guidelines, in the original applications that motivated the study. PMID:25267649

  16. Coiling and Folding of Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2007-11-01

    The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).

  17. Coiling of elastic rods on rigid substrates

    PubMed Central

    Jawed, Mohammad K.; Da, Fang; Joo, Jungseock; Grinspun, Eitan; Reis, Pedro M.

    2014-01-01

    We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations toward developing predictive understanding of the coiling process. Both cases of deposition onto static and moving substrates are considered. We construct phase diagrams for the possible coiling patterns and characterize them as a function of the geometric and material properties of the rod, as well as the height and relative speeds of deployment. The modes selected and their characteristic length scales are found to arise from a complex interplay between gravitational, bending, and twisting energies of the rod, coupled to the geometric nonlinearities intrinsic to the large deformations. We give particular emphasis to the first sinusoidal mode of instability, which we find to be consistent with a Hopf bifurcation, and analyze the meandering wavelength and amplitude. Throughout, we systematically vary natural curvature of the rod as a control parameter, which has a qualitative and quantitative effect on the pattern formation, above a critical value that we determine. The universality conferred by the prominent role of geometry in the deformation modes of the rod suggests using the gained understanding as design guidelines, in the original applications that motivated the study. PMID:25267649

  18. REMOTE HANDLING ARRANGEMENTS

    DOEpatents

    Ginns, D.W.

    1958-04-01

    A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

  19. Power Supply Changes for NSTX Resistive Wall Mode Coils

    SciTech Connect

    Ramakrishnan, S S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils need fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.

  20. Stability and control characteristics of a monoplanar missile configuration with triform-tail-fin arrangements at Mach numbers from 1.70 to 2.86

    NASA Technical Reports Server (NTRS)

    Lamb, M.

    1981-01-01

    A wind-tunnel missile model with either a lower vertical tail fin with a pair of horizontal fins having 0 deg, 22.5 deg, or 30 deg dihedral or an upper vertical tail fin with horizontal fins having 0 deg, -22.5 deg, or -30 deg dihedral was investigated. The results indicated that those configurations with horizontal fins at or below the horizontal plane had nearly linear pitching-moment characteristics, while those with the horizontal fins above the horizontal plane experienced pitch-up which increased with increasing horizontal-fin-dihedral angle. At zero angle of attack, the configurations were directionally stable at most test Mach numbers. Generally, those configurations with the upper vertical fin had positive effective dihedral at zero angle of attack, while those with he lower vertical fin had negative effective dihedral. For roll control, three deflected tail fins produced more total roll control than two horizontal fins. For yaw control, three tail fins deflected equally or differentially produced more total yaw control than the single vertical fin.

  1. X-ray Crystallographic Structure and Solution Behavior of an Antiparallel Coiled-Coil Hexamer Formed by de Novo Peptides.

    PubMed

    Spencer, Ryan K; Hochbaum, Allon I

    2016-06-14

    The self-assembly of peptides and proteins into higher-ordered structures is encoded in the amino acid sequence of each peptide or protein. Understanding the relationship among the amino acid sequence, the assembly dynamics, and the structure of well-defined peptide oligomers expands the synthetic toolbox for these structures. Here, we present the X-ray crystallographic structure and solution behavior of de novo peptides that form antiparallel coiled-coil hexamers (ACC-Hex) by an interaction motif neither found in nature nor predicted by existing peptide design software. The 1.70 Å X-ray crystallographic structure of peptide 1a shows six α-helices associating in an antiparallel arrangement around a central axis comprising hydrophobic and aromatic residues. Size-exclusion chromatography studies suggest that peptides 1 form stable oligomers in solution, and circular dichroism experiments show that peptides 1 are stable to relatively high temperatures. Small-angle X-ray scattering studies of the solution behavior of peptide 1a indicate an equilibrium of dimers, hexamers, and larger aggregates in solution. The structures presented here represent a new motif of biomolecular self-assembly not previously observed for de novo peptides and suggest supramolecular design principles for material scaffolds based on coiled-coil motifs containing aromatic residues. PMID:27192036

  2. Tropomyosin lysine reactivities and relationship to coiled-coil structure.

    PubMed

    Hitchcock-DeGregori, S E; Lewis, S F; Chou, T M

    1985-06-18

    We have carried out a detailed analysis of tropomyosin structure using lysines as specific probes for the protein surface in regions of the molecule that have not been investigated by other methods. We have measured the relative reactivities of lysines in rabbit skeletal muscle alpha, alpha-tropomyosin with acetic anhydride using a competitive labeling procedure. We have identified 37 of 39 lysines and find that they range 20-fold in reactivity. The observed reactivities are related to the coiled-coil model of the tropomyosin molecule [Crick, F.H.C. (1953) Acta Crystallogr. 6, 689-697; McLachlan, A.D., Stewart, M., & Smillie, L.B. (1975) J. Mol. Biol. 98, 281-291] and other available chemical and physical information about the structure. In most cases, the observed lysine reactivities can be explained by allowable interactions with neighboring amino acid side chains on the same or facing alpha-helix. However, we found no correlation between reactivity and helical position of a given lysine. For example, lysines in the outer helical positions included lysines of low as well as high reactivity, indicating that they vary widely in their accessibility to solvent and that the coiled coil is heterogeneous along its length. Furthermore, the middle of the molecule (residues 126-182) that is susceptible to proteolysis and known to be the least stable region of the protein also contains some of the least and most reactive lysines. We have discussed the implications of our results on our understanding the structures of tropomyosin and other coiled-coil proteins as well as globular proteins containing helical regions. PMID:3927977

  3. Designed coiled coils promote folding of a recombinant bacterial collagen.

    PubMed

    Yoshizumi, Ayumi; Fletcher, Jordan M; Yu, Zhuoxin; Persikov, Anton V; Bartlett, Gail J; Boyle, Aimee L; Vincent, Thomas L; Woolfson, Derek N; Brodsky, Barbara

    2011-05-20

    Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat. PMID:21454493

  4. High-current density coils for high-radiation environments

    SciTech Connect

    Harvey, A.

    1981-01-01

    This paper concentrates on the problems of providing normal (that is, nonsuperconducting) magnet coils for present and short-term-future requirements where significant radiation doses are involved. Projects such as 100-mA deuteron accelerators and bundle diverter coils for TOKAMAKS are typical of applications where conventional organic insulation limited to 10/sup 10/ rads makes epoxy-based systems unacceptable. Moreover, even in present-day accelerators, radiation levels can be high enough to give rise to problems with oxidation of copper conductors if water is used in direct contact with the copper. The radiolytic oxygen, being formed in situ, cannot be controlled by external deoxygenators. An acceptable insulation for such environments has been described previously, and is being employed where radiation is expected to be a problem. Being a compacted magnesium oxide powder, the insulation has advantages. Analysis of constraints on maximum current densities achievable in such a coil construction, using computer codes, leads to coil configurations that operate at higher current densities than are usually found in directly cooled coils. An example of the thermal analysis of one coil configuration is given. The problems are addressed here.

  5. Dynamic multi-channel TMS with reconfigurable coil.

    PubMed

    Jiang, Ruoli; Jansen, Ben H; Sheth, Bhavin R; Chen, Ji

    2013-05-01

    Investigations of the causal involvement of particular brain areas and interconnections in behavior require an external stimulation system with reasonable spatio-temporal resolution. Current transcranial magnetic stimulation (TMS) technology is limited to stimulating a single brain area once in a given trial. Here, we present a feasibility study for a novel TMS system based on multi-channel reconfigurable coils. With this hardware, researchers will be able to stimulate multiple brain sites in any temporal order in a trial. The system employs a wire-mesh coil, constructed using x- and y-directional wires. By varying the current direction and/or strength on each wire, we can configure the proposed mesh-wire coil into a standard loop coil and figure-eight coil of varying size. This provides maximum flexibility to the experimenter in that the location and extent of stimulation on the brain surface can be modified depending on experimental requirement. Moreover, one can dynamically and automatically modify the site(s) of stimulation several times within the span of seconds. By pre-storing various sequences of excitation patterns inside a control unit, one can explore the effect of dynamic TMS on behavior, in associative learning, and as rehabilitative therapy. Here, we present a computer simulation and bench experiments that show the feasibility of the dynamically-reconfigurable coil. PMID:23193321

  6. Release of zinc from disposable coils during hemodialysis

    SciTech Connect

    Bogden, J.D.; Zadzielski, E.; Weiner, B.; Oleske, J.M.; Aviv, A.

    1981-06-01

    In a prior study, we demonstrated that certain disposable coils are contaminated with zinc and release substantial quantities of Zn during hemodialysis, producing high post-dialysis plasma Zn concentrations. The present investigation was designed to monitor plasma and dialysis fluid Zn and copper throughout dialysis and to estimate patient Zn and Cu uptake. Venous plasma, arterial plasma and coil chamber fluid were sampled periodically throughout dialysis; trace metal concentrations were determined by flame atomic absorption spectrophotometry. Release of considerable quantities of Zn from the coils into the dialysis fluid, with uptake into the patient's plasma, was found. Approximately one-half of the plasma Zn uptake occurred in the first 45 minutes. Coils from different lots released significantly different quantities of Zn. Patient uptake of Zn ranged from 3.2 mg-23.0 mg, with a mean of 15.0 +- 6.1 mg. Copper release and uptake was low. It is recommended that quality control of the Zn content of some types of disposable coils be initiated. The results suggest that Zn release from disposable dialysis coils should be assessed before recommending that hemodialysis patients receive Zn supplements.

  7. Impact of air pollution control costs on the cost and spatial arrangement of cellulosic biofuel production in the U.S.

    PubMed

    Murphy, Colin W; Parker, Nathan C

    2014-02-18

    Air pollution emissions regulation can affect the location, size, and technology choice of potential biofuel production facilities. Difficulty in obtaining air pollutant emission permits and the cost of air pollution control devices have been cited by some fuel producers as barriers to development. This paper expands on the Geospatial Bioenergy Systems Model (GBSM) to evaluate the effect of air pollution control costs on the availability, cost, and distribution of U.S. biofuel production by subjecting potential facility locations within U.S. Clean Air Act nonattainment areas, which exceed thresholds for healthy air quality, to additional costs. This paper compares three scenarios: one with air quality costs included, one without air quality costs, and one in which conversion facilities were prohibited in Clean Air Act nonattainment areas. While air quality regulation may substantially affect local decisions regarding siting or technology choices, their effect on the system as a whole is small. Most biofuel facilities are expected to be sited near to feedstock supplies, which are seldom in nonattainment areas. The average cost per unit of produced energy is less than 1% higher in the scenarios with air quality compliance costs than in scenarios without such costs. When facility construction is prohibited in nonattainment areas, the costs increase by slightly over 1%, due to increases in the distance feedstock is transported to facilities in attainment areas. PMID:24467277

  8. Transient voltage oscillations in coils

    SciTech Connect

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated.

  9. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    SciTech Connect

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  10. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  11. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    SciTech Connect

    He, J.; Rote, D.M.

    1994-12-31

    A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows form a magnetic rail. Levitation and lateral stability is provided when the induced field in the magnetic rails interacts with the superconducting magnets (SCM) mounted on the magnetic levitation vehicle. A multiphase propulsion system interconnects specific coils in a given magnetic rail and interacts with the SCM to produce a propulsion force to the vehicle.

  12. Multi-coil approach to reduce electromagnetic energy absorption for wirelessly powered implants.

    PubMed

    RamRakhyani, Anil Kumar; Lazzi, Gianluca

    2014-01-01

    Near-field inductive coupling is a commonly used technique for wireless power transfer (WPT) in biomedical implants. Owing to the close proximity of the implant coil(s) with the tissue ( ∼1 mm) and high current ( ∼100-300 mA) in the magnetic coil(s), a significant induced electric field can be generated for the operating frequency (1-20 MHz). In this Letter, a multi-coil-based WPT technique is proposed to selectively control the currents in the external and implant coils to reduce the specific absorption rate (SAR). A three-coil WPT system, that can achieve 26% reduction in peak 1-g SAR and 15% reduction in peak 10-g SAR, as compared to a two-coil WPT system with the same dimensions, is implemented and used to demonstrate the effectiveness of the proposed approach. To achieve the seamless design for the external and implant electronics, the multi-coil system achieves the same voltage gain and bandwidth as the two-coil design with 46% improvement in the power transfer efficiency. PMID:26609371

  13. Multi-coil approach to reduce electromagnetic energy absorption for wirelessly powered implants

    PubMed Central

    Lazzi, Gianluca

    2014-01-01

    Near-field inductive coupling is a commonly used technique for wireless power transfer (WPT) in biomedical implants. Owing to the close proximity of the implant coil(s) with the tissue ( ∼1 mm) and high current ( ∼100–300 mA) in the magnetic coil(s), a significant induced electric field can be generated for the operating frequency (1–20 MHz). In this Letter, a multi-coil-based WPT technique is proposed to selectively control the currents in the external and implant coils to reduce the specific absorption rate (SAR). A three-coil WPT system, that can achieve 26% reduction in peak 1-g SAR and 15% reduction in peak 10-g SAR, as compared to a two-coil WPT system with the same dimensions, is implemented and used to demonstrate the effectiveness of the proposed approach. To achieve the seamless design for the external and implant electronics, the multi-coil system achieves the same voltage gain and bandwidth as the two-coil design with 46% improvement in the power transfer efficiency.

  14. [Two Cases of Ruptured Cerebral Aneurysm Complicated with Delayed Coil Protrusion after Coil Embolization].

    PubMed

    Furukawa, Takashi; Ogata, Atsushi; Ebashi, Ryo; Takase, Yukinori; Masuoka, Jun; Kawashima, Masatou; Abe, Tatsuya

    2016-07-01

    We report two cases of delayed coil protrusion after coil embolization for ruptured cerebral aneurysms. Case 1:An 82-year-old woman with a subarachnoid hemorrhage due to a ruptured small anterior communicating artery aneurysm underwent successful coil embolization. Eighteen days after the procedure, coil protrusion from the aneurysm into the right anterior cerebral artery was observed without any symptoms. Further coil protrusion did not develop after 28 days. Case 2:A 78-year-old woman with a subarachnoid hemorrhage due to a ruptured small left middle cerebral artery aneurysm underwent successful coil embolization. Twenty days after the procedure, coil protrusion from the aneurysm into the left middle cerebral artery was observed, with a transient ischemic attack. Further coil protrusion did not develop. Both patients recovered with antithrombotic treatment. Even though delayed coil protrusion after coil embolization is rare, it should be recognized as a long-term complication of coil embolization for cerebral aneurysms. PMID:27384117

  15. 42 CFR 441.460 - Participant living arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... arrangements. (a) Self-directed PAS are not available to an individual who resides in a home or property that is owned, operated, or controlled by a PAS provider who is not related to the individual by blood...

  16. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, M.L.; Rosenstein, R.G.

    1998-10-13

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

  17. Mox fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-05-15

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

  18. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    1998-01-01

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  19. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-07-17

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  20. Increased Vessel Depiction of the Carotid Bifurcation with a Specialized 16-Channel Phased Array Coil at 3T

    PubMed Central

    Tate, Quinn; Kim, Seong-Eun; Treiman, Gerald; Parker, Dennis L.; Hadley, J. Rock

    2012-01-01

    The purpose of this work was to design and construct a multi-channel receive-only RF coil for 3 Tesla magnetic resonance imaging of the human carotid artery and bifurcation with optimized signal to noise ratio in the carotid vessels along the full extent of the neck. A neck phantom designed to match the anatomy of a subject with a neck representing the body habitus often seen in subjects with carotid arterial disease, was constructed. Sixteen circular coil elements were arranged on a semi-rigid fiberglass former that closely fit the shape of the phantom, resulting in a 16-channel bilateral phased array coil. Comparisons were made between this coil and a typical 4-channel carotid coil in a study of 10 carotid vessels in 5 healthy volunteers. The 16-channel carotid coil showed a 73% average improvement in signal to noise ratio (SNR) at the carotid bifurcation. This coil also maintained an SNR greater than the peak SNR of the 4-channel coil over a vessel length of 10 cm. The resulting increase in SNR improved vessel depiction of the carotid arteries over an extended field of view, and demonstrated better image quality for higher parallel imaging reduction factors compared to the 4-channel coil. PMID:22777692

  1. Finite element coiled cochlea model

    NASA Astrophysics Data System (ADS)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  2. Wedding ring shaped excitation coil

    DOEpatents

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  3. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  4. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  5. Coupled Coils, Magnets and Lenz's Law

    ERIC Educational Resources Information Center

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  6. Design and evaluation of coils for a 50 mm diameter induction coilgun launcher

    NASA Astrophysics Data System (ADS)

    Kaye, R. J.; Shokair, I. R.; Wavrik, R. W.; Dempsey, J. F.; Honey, W. E.; Shimp, K. J.; Douglas, G. M.

    Coilguns have the ability to provide magnetic pressure to projectiles which results in near constant acceleration. However, to achieve this performance and control projectile hearing, significant constraints are placed on the design of the coils. We are developing coils to produce an effective projectile base pressure of 100 MPa as a step toward reaching base pressures of 200 MPa. The design uses a scalable technology applicable to the entire range of breech to muzzle coils of a multi-stage launcher. This paper presents the design of capacitor-driven coils for launching nominal 50 mm, 350 gram projectiles. Design criteria, constraints, mechanical stress analysis, launcher performance, and test results are discussed.

  7. Bow-shaped toroidal field coils

    SciTech Connect

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case.

  8. Multi-Canted Coils, Tubes, and Structures

    NASA Technical Reports Server (NTRS)

    Jaster, Mark L. (Inventor)

    2015-01-01

    Coil, tube, and other structures configured with a plurality of individual coils, internal structures, legs or extensions with each having multiple cants per coil, internal structure, leg or extension, and wherein the cants formed therein allow for a load-deflection force when each is compressed. In addition, any horizontal or moment forces are substantially reduced and/or eliminated when a downward vertical force is applied, as minimal or no torsion is created in the individual coils, legs or extensions.

  9. Design and modelling of a SMES coil

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Coombs, T. A.

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  10. Rotor assembly including superconducting magnetic coil

    DOEpatents

    Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  11. Development of the Current Bypassing Methods into the Transverse Direction in Non-insulation HTS Coils

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Kim, S. B.; Ikoma, H.; Kanemoto, D.

    In the case of motors and generators, the benefits of using high temperature superconducting (HTS) coils can be represented by the reduction of 50% in both losses and sizes compared to conventional machines. However, it is hard to establish quench detection and protection devices for the HTS coils applied to the rotors of motors and generators. So, the stability of the coils is lower than for the quiescent coils applied to NMR, MRI and so on. Therefore, it is important to improve the self-protection ability of HTS coils. We have studied the methods to improve the self-protection ability of HTS coils by removing the layer-to-layer insulation and inserting metal tape instead of the electrical insulation. The operating current in the non-insulated HTS coil was bypassed into the transverse direction by the generated normal region because of their electrical contact among the winding. In this study, we examined the method to control the current bypassing on layer-to-layer for controlling the inductance of the non-insulated HTS coil. The current bypassing properties on non-insulated HTS coil wound with 2G wires will be discussed.

  12. Inductively coupled wireless RF coil arrays.

    PubMed

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. PMID:25523607

  13. Controlled release of stromal cell-derived factor-1α from silk fibroin-coated coils accelerates intra-aneurysmal organization and occlusion of neck remnant by recruiting endothelial progenitor cells.

    PubMed

    Gao, Yuyuan; Wang, Qiujing; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Sun, Chengmei; Huang, Shuyun; Wang, Xin; Liu, Yanchao; Jiang, Xiaodan; Zeng, Chi; Quan, Daping

    2014-01-01

    This study is to test the efficacy of stromal cell-derived factor-1α (SDF-1α)-coated coils together with endothelial progenitor cells (EPCs) transplantation in occluding aneurysms. Bone marrow-derived EPC surface markers were analyzed using flow cytometry. The migratory function of EPCs in response to SDF-1α was evaluated using a modified Boyden chamber assay. Capillary-like tube formation was assessed using Matrigel gel. Coil morphologies before and after coating with SDF-1α were observed under a scanning electron microscope. The level of SDF-1α in supernatants was measured by ELISA. Sprague-Dawley rats were randomly allocated into five groups. Histological analysis was performed on days 14 and 28 after coil implantation. The bone marrow-EPCs could express CD133, CD34, and VEGFR-2 and form tubule-like structures in vitro. Migratory ability of EPCs in the presence of SDF-1α-coated coils was similar to that in the presence of 5 ng/ml SDF-1α gradient. Sustained release of SDF-1α was achieved using silk fibroin as a carrier. In SDF-1α-coated coils + EPCs transplantation group, a well-organized fibrous tissue bridging the orifice of aneurysms was shown on days 14 and 28. On day 28, tissue organization was greater in the SDF-1α-coated coils group than in the unmodified coils group. Immunofluorescence showed α-smooth muscle actin-positive cells in organized tissue in sacs. Combined treatment with SDF-1α-coated coils and EPCs transplantation is a safe and effective treatment for rat aneurysms. This may provide a new strategy for endovascular therapy following aneurysmal subarachnoid hemorrhage. PMID:25674201

  14. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or...

  15. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or...

  16. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or...

  17. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or...

  18. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or...

  19. Modulation of water surface waves with a coiling-up-space metasurface

    NASA Astrophysics Data System (ADS)

    Sun, H. T.; Wang, J. S.; Cheng, Y.; Wei, Q.; Liu, X. J.

    2016-05-01

    We have designed a gradient-index (GRIN) metasurface to modulate water surface waves (WSWs). The metasurface is composed of an array of coiling-up-space units with a deep sub-wavelength scale, and can focus/scatter WSWs when the units are arranged elaborately and pierced into water. The modulation of WSWs has been ascribed to the relative effective refractive GRIN of the coiling-up-space units, which can be tuned by changing the parameters such as the plate length of units. This work may have potential application in energy extraction of water wave.

  20. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  1. Emphysema: coiling up the lungs, trick or treat?

    PubMed

    Bezzi, M; Mondoni, M; Sorino, C; Solidoro, P

    2015-08-01

    Lung volume reduction coil (LVRC) treatment is a minimally-invasive technique planned to achieve an improvement of exercise capacity and pulmonary function in subjects with advanced emphysema and hyperinflation. It has been proposed together with other bronchoscopic lung volume reduction approaches to reduce lung hyperinflation in emphysema as less invasive alternatives to LVRS and are currently under clinical investigation. Following the successful early experiences in previous pilot trials, recent studies allow further investigation into the feasibility, safety and efficacy of LVR coil treatment in a multi-center setting in a larger group of patients. According to this studies we can state that LVR coil treatment results in significant clinical improvements in patients with severe emphysema, in multicenter analysis, with a good safety profile and sustained results for up to 1 year. The literature on endobronchial coils continues to look promising with an acceptable safety profile, and positive long-term follow-up data are certainly more and more available. However, further well-designed, blinded, placebo (or sham) controlled trials, and even randomized trials against LVRS (lung volume reduction surgery), are needed before routine clinical use can be recommended. This is true not only for endobronchial coils, but also for the whole field of bronchoscopic lung volume reduction. PMID:27427120

  2. Equations determine coiled tubing collapse pressure

    SciTech Connect

    Avakov, V.; Taliaferro, W.

    1995-07-24

    A set of equations has been developed for calculating pipe collapse pressure for oval tubing such as coiled tubing. When coiled tubing is placed onto a reel, the tubing is forced into an oval shape and never again returns to perfect roundness because the coiling process exceeds the plasticity limits of the tubing. Straightening the tubing for the trip into the well does not restore roundness. The consequence of this physical property is that all coiled tubing collapse pressure calculations should be made considering oval tubing, not round tubing. Tubing collapse can occur when formation pressure against the coiled tubing exceeds the collapse resistance inherent in the coiled tubing. As coiled tubing becomes more oval in shape, it becomes more oval in shape, it becomes more susceptible to collapse from outside pressure.

  3. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  4. A thermodynamic model for the helix-coil transition coupled to dimerization of short coiled-coil peptides.

    PubMed Central

    Qian, H

    1994-01-01

    A simple thermodynamic formalism is presented to model the conformational transition between a random-coil monomeric peptide and a coiled-coil helical dimer. The coiled-coil helical dimer is the structure of a class of proteins also called leucine zipper, which has been studied intensively in recent years. Our model, which is appropriate particularly for short peptides, is an alternative to the theory developed by Skolnick and Holtzer. Using the present formalism, we discuss the multi-equilibriatory nature of this transition and provide an explanation for the apparent two-state behavior of coiled-coil formation when the helix-coil transition is coupled to dimerization. It is found that such coupling between multi-equilibria and a true two-state transition can simplify the data analysis, but care must be taken in using the overall association constant to determine helix propensities (w) of single residues. Successful use of the two-state model does not imply that the helix-coil transition is all-or-none. The all-or-none assumption can provide good numerical estimates when w is around unity (0.35 < or = w < or = 1.35), but when w is small (w < 0.01), similar estimations can lead to large errors. The theory of the helix-coil transition in denaturation experiments is also discussed. PMID:7919005

  5. Hygroscopic movements in Geraniaceae: the structural variations that are responsible for coiling or bending.

    PubMed

    Abraham, Yael; Elbaum, Rivka

    2013-07-01

    The family Geraniaceae is characterized by a beak-like fruit, consisting of five seeds appended by a tapering awn. The awns exhibit coiling or bending hygroscopic movement as part of the seed dispersal strategy. Here we explain the variation in the hygroscopic reaction based on structural principles. We examined five representative species from three genera: Erodium, Geranium, and Pelargonium. Using X-ray diffraction, and electron and polarized light microscopy, we measured the cellulose microfibril angles in relation to the cell and cellulose helix axes. The behavior of separated single cells during dehydration was also examined. A bi-layered structure characterizes all the representative genera studied, with a hygroscopically contracting inner layer, and a stiff outer layer. We found that the cellulose arrangement in the inner layer is responsible for the type of awn deformation (coiling or bending). In three of the five awns examined, we identified an additional coiling outer sublayer, which adds coiling deformation to the awn. We divide the movements into three types: bending, coiling, and coiled-bending. All movement types are found in the Geranium genus. These characteristics are of importance for understanding the evolution of seed dispersal mechanisms in the Geraniaceae family. PMID:23574364

  6. 26 CFR 1.881-3 - Conduit financing arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... solely from ownership of a controlling interest in the issuer in cases where the control does not arise... approve any guarantee of a financing transaction or to exercise general supervision and control over the... 26 Internal Revenue 9 2011-04-01 2011-04-01 false Conduit financing arrangements. 1.881-3...

  7. A comparison of coupling efficiencies for a Stix coil and an m equals 1 coil

    NASA Technical Reports Server (NTRS)

    Sigman, D. R.

    1972-01-01

    This theoretical and experimental study compares the ion-cyclotron wave generating characteristics of a Stix coil (which generates waves with azimuthal mode number m = 0) with those of a coil which produces primarily m = + or -1 ion-cyclotron modes. The theoretical work of J.E. Hipp, which predicted very good coupling for the m = 1 coil, was extended to determine the scaling laws for plasma column radius and coil wavelength. Experimentally, an m = 1 coil and an m = 0 coil were used to generate ion-cyclotron waves on a beam generated plasma column with electron density = 10 to the 12th power/cu cm. Coupling resonances with peak efficiencies of approximately 40 to 50 percent were measured for both coils in low power (approximately 10k W) experiments. For equal power transfer to the plasma, the m = 0 coil voltage was more than a factor of two greater than that for the m = 1 coil.

  8. 29 CFR 794.117 - Effect of franchises and other arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Effect of franchises and other arrangements. 794.117... âindependently Owned and Controlled Local Enterpriseâ § 794.117 Effect of franchises and other arrangements... number of different types of arrangements established in such cases. The key in each case may be found...

  9. 29 CFR 794.117 - Effect of franchises and other arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Effect of franchises and other arrangements. 794.117... âindependently Owned and Controlled Local Enterpriseâ § 794.117 Effect of franchises and other arrangements... number of different types of arrangements established in such cases. The key in each case may be found...

  10. Optimized Geometry for Superconducting Sensing Coils

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Pananen, Konstantin; Hahn, Inseob

    2008-01-01

    An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity.

  11. Visitation arrangements for impaired parents.

    PubMed

    Montgomery, Stephen A; Street, David F

    2011-07-01

    Forensic mental health professionals are frequently asked to evaluate the parenting skills of divorcing parents because the court seeks help in determining the custody, visitation, and parenting time arrangements for the children. When one of the parents is impaired, the court wants to know the way to help the children have a good relationship with that parent and keep the children safe. There is little empirical research to answer such questions. In this article, the authors describe their methodology for providing useful clinical information to the court to help guide their decisions regarding visitation with impaired parents. PMID:21683915

  12. Ultra high vacuum seal arrangement

    SciTech Connect

    Flaherty, R.

    1981-08-11

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation is claimed. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  13. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  14. De Novo Design of Ln(III) Coiled Coils for Imaging Applications

    PubMed Central

    2014-01-01

    A new peptide sequence (MB1) has been designed which, in the presence of a trivalent lanthanide ion, has been programmed to self-assemble to form a three stranded metallo-coiled coil, Ln(III)(MB1)3. The binding site has been incorporated into the hydrophobic core using natural amino acids, restricting water access to the lanthanide. The resulting terbium coiled coil displays luminescent properties consistent with a lack of first coordination sphere water molecules. Despite this the gadolinium coiled coil, the first to be reported, displays promising magnetic resonance contrast capabilities. PMID:24405157

  15. Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T.

    PubMed

    Muftuler, L Tugan; Gulsen, Gultekin; Sezen, Kumsal D; Nalcioglu, Orhan

    2002-03-01

    We have developed an MRI RF coil whose tuning can be adjusted automatically between 120 and 128 MHz for sequential spectroscopic imaging of hydrogen and fluorine nuclei at field strength 3 T. Variable capacitance (varactor) diodes were placed on each rung of an eight-leg low-pass birdcage coil to change the tuning frequency of the coil. The diode junction capacitance can be controlled by the amount of applied reverse bias voltage. Impedance matching was also done automatically by another pair of varactor diodes to obtain the maximum SNR at each frequency. The same bias voltage was applied to the tuning varactors on all rungs to avoid perturbations in the coil. A network analyzer was used to monitor matching and tuning of the coil. A Pentium PC controlled the analyzer through the GPIB bus. A code written in LABVIEW was used to communicate with the network analyzer and adjust the bias voltages of the varactors via D/A converters. Serially programmed D/A converter devices were used to apply the bias voltages to the varactors. Isolation amplifiers were used together with RF choke inductors to provide isolation between the RF coil and the DC bias lines. We acquired proton and fluorine images sequentially from a multicompartment phantom using the designed coil. Good matching and tuning were obtained at both resonance frequencies. The tuning and matching of the coil were changed from one resonance frequency to the other within 60 s. PMID:11945031

  16. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to

  17. Development of a new error field correction coil (C-coil) for DIII-D

    SciTech Connect

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 {times} 10{sup 13} cm{sup {minus}3}, nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60{degree} wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak.

  18. Crystal Structure of a Super Leucine Zipper an Extended Two-Stranded Super Long Coiled Coil

    SciTech Connect

    J Diao

    2011-12-31

    Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 {angstrom} resolution. The peptide monomer shows a helix trunk with short curved N- and C-termini. In the crystal, two monomers cross in 35{sup o} and form an X-shaped dimer, and each X-shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two-stranded, parallel, super long coiled coil rather than a discrete, two-helix coiled coil of the wild-type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild-type leucine zipper, the N-terminus of the mutant has a dramatic conformational change and the C-terminus has one more residue Glu 32 determined. The mutant X-shaped dimer has a large crossing angle of 35{sup o} instead of 18{sup o} in the wild-type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self-assembling protein fibers.

  19. Electromagnetic levitation coil fabrication technique for MSFC containerless processing facilities

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Theiss, J.; Curreri, P. A.; Abbaschian, G. J.

    1983-01-01

    A technique is described for more reproducible fabrication of electromagnetic levitation coils. A split mandrel was developed upon which the coil is wound. After fabrication the mandrel can be disassembled to remove it from the coil. Previously, a full day was required to fabricate a levitation coil and the success rate for a functional coil was only 50 percent. About eight coils may be completed in one day using the technique developed and 95 percent of them are good levitation coils.

  20. A flux pumping method applied to the magnetization of YBCO superconducting coils: frequency, amplitude and waveform characteristics

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Matsuda, Koichi; Lecrevisse, Thibault; Iwasa, Yukikazu; Coombs, Tim

    2016-04-01

    This letter presents a flux pumping method and the results gained when it was used to magnetize a range of different YBCO coils. The pumping device consists of an iron magnetic circuit with eight copper coils which apply a traveling magnetic field to the superconductor. The copper poles are arranged vertically with an air gap length of 1 mm and the iron cores are made of laminated electric steel plates to minimize eddy-current losses. We have used this arrangement to investigate the best possible pumping result when parameters such as frequency, amplitude and waveform are varied. We have successfully pumped current into the superconducting coil up to a value of 90% of I c and achieved a resultant magnetic field of 1.5 T.

  1. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    PubMed Central

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-01-01

    GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells. PMID:26527144

  2. H.R. 1180: A Bill to amend the Solid Waste Disposal Act to provide congressional authorization for restrictions on receipt of out-of-State municipal solid waste and for State control over transportation of municipal solid waste, and to clarify the authority for certain municipal solid waste flow control arrangements, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First Session, March 9, 1995

    SciTech Connect

    1995-12-31

    The report H.R. 1180 is a bill to amend the Solid Waste Disposal Act to provide congressional authorization for restrictions on receipt of out-of-State municipal solid waste and for State control over transportation of municipal solid waste, and to clarify the authority for certain municipal solid waste flow control arrangements. The proposed legislative text is provided.

  3. 'Chrysanthemum petal' arrangements of silver nano wires.

    PubMed

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2014-12-01

    Highly ordered 'Chrysanthemum petal' arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these 'Chrysanthemum petal' arrangements was discussed specifically. These 'Chrysanthemum petal' arrangements will be helpful to increase the electrical conductivity of silver nano wires films. PMID:25397618

  4. Transient response of coaxial pulse coils

    NASA Astrophysics Data System (ADS)

    Clifton, S.; Mongeau, P.

    1984-03-01

    Of central importance in designing coaxial launcher systems is understanding the mechanical response and structural limits of the magnetic pulse coils. In normal operation the driving frequency can vary from static conditions through the lowest natural modes to well beyond the highest frequencies. By using a lumped parameter model the transient behavior of a magnetic pulse coil can be readily characterized. In an effort to understand the failure mechanism of coaxial pulse coils the results of this model are compared to the experimental performance of several thin build coils.

  5. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  6. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  7. Self-correction coil: Operation mechanism of self-correction coil

    NASA Astrophysics Data System (ADS)

    Hosoyama, K.

    1983-06-01

    The operation mechanism of self-correction coil is extended with a simple model. For the ideal self-correction coil case, The self-inductance L of the self-correction coil is calculated. This calculation method is extended to a non-ideal self-correction coil case. For measure of completeness of self-correction coil is measured by the ratio of induced magnetic field by the self-correction coil and error field. Examples are L, M and N calculated for two cases; one is a single block approximation of self-correction coil winding and the other is a two block approximation case. By choosing the adequate angles of self-correction coil winding, one can get about 98% efficiency for single block approximation case and 99.8% for two block approximation case.

  8. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action

    PubMed Central

    Cheung, Pak-yan P.; Pfeffer, Suzanne R.

    2016-01-01

    The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed. PMID:27014693

  9. Electrohydrodynamic direct-writing of three-dimensional multi-loop nanofibrous coils

    NASA Astrophysics Data System (ADS)

    Zheng, Gaofeng; Yu, Zhaojie; Zhuang, Mingfeng; Wei, Wen; Zhao, Yang; Zheng, Jiangyi; Sun, Daoheng

    2014-07-01

    This paper studies the whipping deposition behavior of straight charged jets of Near-Field Electrospinning. A micro 3D structure of multi-loop nanofibrous coil was printed on a silicon collector. The whipping motion resulted from Coulomb force caused the charged jet to deposit and form a coiled structure. With the guidance of deposited nanofiber, the charged jet deposited layer by layer to build up a 3D nanofibrous coiled structure with 3-50 loops. The diameter of the coiled structure ranged from 4 to 60 μm. The number of loops decreased with the increase of collector motion speed, due to shorter post-deposition relaxing time. With higher stress inside the charged jet, PEO solution of higher concentration led to fewer loops but larger diameter of the coil. This work provides a promising method to study the control technology of charged jet printing, which may push forward the development of micro 3D inkjet printing technology.

  10. Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining

    SciTech Connect

    Martin, N.; Kredler, L.; Häußler, W.; Wagner, J. N.; Dogu, M.; Fuchs, C.; Böni, P.

    2014-07-15

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a μ-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  11. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  12. 42 CFR 413.241 - Pharmacy arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Pharmacy arrangements. 413.241 Section 413.241... Disease (ESRD) Services and Organ Procurement Costs § 413.241 Pharmacy arrangements. Effective January 1, 2011, an ESRD facility that enters into an arrangement with a pharmacy to furnish renal...

  13. 42 CFR 413.241 - Pharmacy arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Pharmacy arrangements. 413.241 Section 413.241... Disease (ESRD) Services and Organ Procurement Costs § 413.241 Pharmacy arrangements. Effective January 1, 2011, an ESRD facility that enters into an arrangement with a pharmacy to furnish renal...

  14. Aft outer rim seal arrangement

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J; Campbell, Christian X

    2015-04-28

    An outer rim seal arrangement (10), including: an annular rim (70) centered about a longitudinal axis (30) of a rotor disc (31), extending fore and having a fore-end (72), an outward-facing surface (74), and an inward-facing surface (76); a lower angel wing (62) extending aft from a base of a turbine blade (22) and having an aft end (64) disposed radially inward of the rim inward-facing surface to define a lower angel wing seal gap (80); an upper angel wing (66) extending aft from the turbine blade base and having an aft end (68) disposed radially outward of the rim outward-facing surface to define a upper angel wing seal gap (80, 82); and guide vanes (100) disposed on the rim inward-facing surface in the lower angel wing seal gap. Pumping fins (102) may be disposed on the upper angel wing seal aft end in the upper angel wing seal gap.

  15. Diverse living arrangements of children.

    PubMed

    1993-01-01

    In the United States, over the past few decades, the prominence of the traditional two-parent family has gradually faded, with its place usually being taken by homes headed by a mother. Relatively few children are raised by single fathers. The pattern of this ongoing development varies considerably by major racial groups as well as by age of child. Current living arrangements for children by three classes of age, race and presence of parents were analyzed by four parental characteristics--age, educational attainment, labor force participation and existence of other siblings. Racial similarities and differences--some significant--are noted. For example, among white children, 36 percent of those under age six had a parent under age 30. Among black children, the proportion was 57 percent and among Hispanics, 46 percent. In all groups, educational attainment was higher in families with two parents. Parents' educational levels were parallel with their employment rates. PMID:8211668

  16. A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching.

    PubMed

    Watson, Matthew D; Peran, Ivan; Raleigh, Daniel P

    2016-07-01

    Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens. PMID:27258904

  17. DATA ACQUISITION AND PROTECTION FOR NEW DII-D IN-VESSEL COILS

    SciTech Connect

    CAMPBELL,G.L; SZYMANSKI,D.D; PIGLOWSKI,D.A; KELLMAN,D.H; ANDERSON,P.M; JACKSON,G.L; KELLMAN,A.G

    2003-10-01

    OAK-B135 The installation of new internal magnetic coils (I-Coils) in the DIII-D tokamak at General Atomics required extensive additions to the experiment data acquisition and protection capabilities. This set of 12 coils (up to 7 kA each) is designed to allow improved feedback stabilization of resistive wall modes which limit the plasma performance. The acquisition and signal conditions needs of the I-Coil power system presented an opportunity to try a new data acquisition approach which increased both the sampling rate and sample size per channel compared to the standard DIII-D CAMAC acquisition equipment. A 96 channel Compact-PCI (cPCI) digitizer system was purchased for the I-Coil project to acquire up to approximately 380 MB of power supply and coil current data per plasma discharge. Additional instrumentation and control was provided to protect personnel, the new coils, the tokamak, the facility and improve machine availability. This paper will present discussions of technical and programmatic requirements, based for requirements, the design selection outcome, installation experience, integration issues, commissioning experience, and lessons learned. The data acquisition system is described in detail including a conservative signal isolation scheme, signal grounding standards, anti-aliasing filters, and synchronization of acquisition. Protection interlocks are described, including high voltage isolation, water flow measurement, and the coil grounding-shorting switches.

  18. Support arrangements for core modules of nuclear reactors. [PWR

    DOEpatents

    Bollinger, L.R.

    1983-11-03

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  19. Support arrangement for core modules of nuclear reactors

    DOEpatents

    Bollinger, Lawrence R.

    1987-01-01

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  20. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    SciTech Connect

    Wilbur, Jeremy D.; Hwang, Peter K.; Brodsky, Frances M.; Fletterick, Robert J.

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  1. Natural templates for coiled-coil biomaterials from praying mantis egg cases.

    PubMed

    Walker, Andrew A; Weisman, Sarah; Kameda, Tsunenori; Sutherland, Tara D

    2012-12-10

    Whereas there is growing interest in producing biomaterials containing coiled-coils, relatively few studies have made use of naturally occurring fibrous proteins. In this study, we have characterized fibrous proteins used by mother praying mantises to produce an extensive covering for their eggs called an ootheca and demonstrate the production of artificial ootheca using recombinantly produced proteins. Examination of natural oothecae by infrared spectroscopy and solid-state nuclear magnetic resonance revealed the material to consist of proteins organized predominately as coiled-coils. Two structural proteins, Mantis Fibroin 1 and Mantis Fibroin 2, were identified in ootheca from each of three species. Between species, the primary sequences of both proteins had diverged considerably, but other features were tightly conserved, including low molecular weight, high abundance of Ala, Glu, Lys, and Ser, and a triblock-like architecture with extensive central coiled-coil domain. Mantis fibroin hydrophobic cores had an unusual composition containing high levels of alanine and aromatic residues. Recombinantly produced mantis fibroins folded into coiled-coils in solution and could be fabricated into solid materials with high coiled-coil content. The structural features of mantis fibroins and their straightforward recombinant production make them promising templates for the production of coiled-coil biomimetics materials. PMID:23137042

  2. A comparative study of flat coil and coil sensor for landslide detection

    NASA Astrophysics Data System (ADS)

    Sanjaya, Edi; Muslimin, Ahmad Novi; Djamal, Mitra; Suprijadi, Handayani, Gunawan; Ramli

    2016-03-01

    The landslide is one of the most costly catastrophic events in terms of human lives and infrastructure damage, thus an early warning monitoring for landslides becomes more and more important. Currently existing monitoring systems for early warning are available in terms of monolithic systems. This is a very cost-intensive way, considering installation as well as operational and personal expenses. We have been developing a landslide detection system based on flat coil and coil sensor. The flat coil element being developed is an inductive proximity sensor for detection mass of soil movement. The simple method of flat coil manufactures and low cost, is an attraction that is still inspired to develop flat coil sensors. Meanwhile, although it has a drawback in terms of their size, the coil sensor is still required in many fields due to their sensitivity and robustness. The simple method of coil manufacture and the materials are commonly available and low cost, is an attraction that is still inspired to develop induction coil sensors. A comparative study of alternative configuration of sensor based on flat coil elements and a coil in application to landslide detection has been discussed in this paper. The purpose of this comparison is to show the ideal conditions and the challenges for each sensor. Furthermore, a comparison between flat coil and coil sensor is presented.

  3. An Overview Of The ITER In-Vessel Coil Systems

    SciTech Connect

    Heitzenroeder, P J; Chrzanowski, J H; Dahlgren, F; Hawryluk, R J; Loesser, G D; Neumeyer, C; Mansfield, C; Smith, J P; Schaffer, M; Humphreys, D; Cordier, J J; Campbell, D; Johnson, G A; Martin, A; Rebut, P H; Tao, J O; Fogarty, P J; Nelson, B E; Reed, R P

    2009-09-24

    ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable "natural" small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.

  4. Exposure to Mosquito Coil Smoke May be a Risk Factor for Lung Cancer in Taiwan

    PubMed Central

    Chen, Shu-Chen; Wong, Ruey-Hong; Shiu, Li-Jie; Chiou, Ming-Chih

    2008-01-01

    Background About 50% of lung cancer deaths in Taiwan are not related to cigarette smoking. Environmental exposure may play a role in lung cancer risk. Taiwanese households frequently burn mosquito coil at home to repel mosquitoes. The aim of this hospital-based case-control study was to determine whether exposure to mosquito coil smoke is a risk for lung cancer. Methods Questionnaires were administered to 147 primary lung cancer patients and 400 potential controls to ascertain demographic data, occupation, lifestyle data, indoor environmental exposures (including habits of cigarette smoking, cooking methods, incense burning at home, and exposure to mosquito coil smoke ), as well as family history of cancer and detailed medical history. Results Mosquito coil smoke exposure was more frequent in lung cancer patients than controls (38.1% vs.17.8%; p<0.01). Risk of lung cancer was significantly higher in frequent burners of mosquito coils (more than 3 times [days] per week) than nonburners (adjusted odds ratio = 3.78; 95% confidence interval: 1.55-6.90). Those who seldom burned mosquito coils (less than 3 times per week) also had a significantly higher risk of lung cancer (adjusted odds ratio = 2.67; 95% confidence interval: 1.60-4.50). Conclusion Exposure to mosquito coil smoke may be a risk factor for development of lung cancer. PMID:18305363

  5. Design and characterization of the anion-sensitive coiled-coil peptide.

    PubMed Central

    Hoshino, M.; Yumoto, N.; Yoshikawa, S.; Goto, Y.

    1997-01-01

    As a model for analyzing the role of charge repulsion in proteins and its shielding by the solvent, we designed a peptide of 27 amino acid residues that formed a homodimeric coiled-coil. The interface between the coils consisted of hydrophobic Leu and Val residues, and 10 Lys residues per monomer were incorporated into the positions exposed to solvent. During the preparation of a disulfide-linked dimer in which the two peptides were linked in parallel by the two disulfide bonds located at the N and C terminals, a cyclic monomer with an intramolecular disulfide bond was also obtained. On the basis of CD and 1H-NMR, the conformational stabilities of these isomers and several reference peptides were examined. Whereas all these peptides were unfolded in the absence of salt at pH 4.7 and 20 degrees C, the addition of NaClO4 cooperatively stabilized the alpha-helical conformation. The crosslinking of the peptides by disulfide bonds significantly decreased the midpoint salt concentration of the transition. The 1H-NMR spectra in the presence of NaClO4 suggested that, whereas the disulfide-bonded dimer assumed a native-like conformation, the cyclic monomer assumed a molten globule-like conformation with disordered side chains. However, the cyclic monomer exhibited cooperative transitions against temperature and Gdn-HCl that were only slightly less cooperative than those of the disulfide-bonded parallel dimer. These results indicate that the charge repulsion critically destabilizes the native-like state as well as the molten globule-like state, and that the solvent-dependent charge repulsion may be useful for controlling the conformation of designed peptides. PMID:9232640

  6. Comparison of Coil Designs for Transcranial Magnetic Stimulation on Mice

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive treatment for neurological disorders using time varying magnetic field. The electric field generated by the time varying magnetic field is used to depolarize the brain neurons which can lead to measurable effects. TMS provides a surgical free method for the treatment of neurological brain disorders like depression, post-traumatic stress disorder, traumatic brain injury and Parkinson's disease. Before using TMS on human subjects, it is appropriate that its effects are verified on animals such as mice. The magnetic field intensity and stimulated region of the brain can be controlled by the shape, position and current in the coils. There are few reports on the designs of the coils for mice. In this paper, different types of coils are developed and compared using an anatomically realistic mouse model derived from MRI images. Parameters such as focality, depth of the stimulation, electric field strength on the scalp and in the deep brain regions, are taken into account. These parameters will help researchers to determine the most suitable coil design according to their need. This should result in improvements in treatment of specific disorders. Carver Charitable Trust.

  7. Coil optimization for electromagnetic levitation using a genetic like algorithm

    NASA Astrophysics Data System (ADS)

    Royer, Z. L.; Tackes, C.; LeSar, R.; Napolitano, R. E.

    2013-06-01

    The technique of electromagnetic levitation (EML) provides a means for thermally processing an electrically conductive specimen in a containerless manner. For the investigation of metallic liquids and related melting or freezing transformations, the elimination of substrate-induced nucleation affords access to much higher undercooling than otherwise attainable. With heating and levitation both arising from the currents induced by the coil, the performance of any EML system depends on controlling the balance between lifting forces and heating effects, as influenced by the levitation coil geometry. In this work, a genetic algorithm is developed and utilized to optimize the design of electromagnetic levitation coils. The optimization is targeted specifically to reduce the steady-state temperature of the stably levitated metallic specimen. Reductions in temperature of nominally 70 K relative to that obtained with the initial design are achieved through coil optimization, and the results are compared with experiments for aluminum. Additionally, the optimization method is shown to be robust, generating a small range of converged results from a variety of initial starting conditions. While our optimization criterion was set to achieve the lowest possible sample temperature, the method is general and can be used to optimize for other criteria as well.

  8. A personal-computer-based package for interactive assessment of magnetohydrodynamic equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    SciTech Connect

    Kelleher, W.P. ); Steiner, D. . Dept. of Nuclear Science)

    1989-07-01

    A personal-computer (PC)-based calculational approach assesses magnetohydrodynamic (MHD) equilibrium and poloidal field (PF) coil arrangement in a highly interactive mode, well suited for tokamak scoping studies. The system developed involves a two-step process: the MHD equilibrium is calculated and then a PF coil arrangement, consistent with the equilibrium is determined in an interactive design environment. In this paper the approach is used to examine four distinctly different toroidal configurations: the STARFIRE rector, a spherical torus (ST), the Big Dee, and an elongated tokamak. In these applications the PC-based results are benchmarked against those of a mainframe code for STARFIRE, ST, and Big Dee. The equilibrium and PF coil arrangement calculations obtained with the PC approach agree within a few percent with those obtained with the mainframe code.

  9. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    PubMed Central

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  10. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  11. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  12. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    SciTech Connect

    Fat’yanov, O. V. Asimow, P. D.

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  13. Undulator Long Coil Measurement System Tests

    SciTech Connect

    Wolf, Zachary; Levashov, Yurii; /SLAC

    2010-11-24

    The first and second field integrals in the LCLS undulators must be below a specified limit. To accurately measure the field integrals, a long coil system is used. This note describes a set of tests which were used to check the performance of the long coil system. A long coil system was constructed to measure the first and second field integrals of the LCLS undulators. The long coil measurements of the background fields were compared to field integrals obtained by sampling the background fields and numerically calculating the integrals. This test showed that the long coil has the sensitivity required to measure at the levels specified for the field integrals. Tests were also performed by making long coil measurements of short magnets of known strength placed at various positions The long coil measurements agreed with the known field integrals obtained by independent measurements and calculation. Our tests showed that the long coil measurements are a valid way to determine whether the LCLS undulator field integrals are below the specified limits.

  14. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  15. Precise Fabrication of Electromagnetic-Levitation Coils

    NASA Technical Reports Server (NTRS)

    Ethridge, E.; Curreri, P.; Theiss, J.; Abbaschian, G.

    1985-01-01

    Winding copper tubing on jig ensures reproducible performance. Sequence of steps insures consistent fabrication of levitation-and-melting coils. New method enables technician to produce eight coils per day, 95 percent of them acceptable. Method employs precise step-by-step procedure on specially designed wrapping and winding jig.

  16. Novel transcranial magnetic stimulation coil for mice

    NASA Astrophysics Data System (ADS)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  17. Completion of the Polo model coil

    SciTech Connect

    Bourquard, A.; Plat, X.; Bonnet, P.; Semal, D.; Personeni, G.; Bernaudat, M.; Hacquard, A.; Salvador, R.; Dombrowski, D.

    1996-07-01

    A superconducting poloidal field model coil as needed for tokamaks has been constructed by GEC Alsthom within the Polo project in effective collaboration with Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Germany. The manufacturing procedures for the coil and its terminals are described.

  18. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  19. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging.

    PubMed

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652

  20. A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System

    PubMed Central

    Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.

    2010-01-01

    A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066

  1. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging

    PubMed Central

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652

  2. Photoelectric detection electric arc in energetic arrangements

    NASA Astrophysics Data System (ADS)

    Leks, Jan

    2001-08-01

    The evolution of photoelectric converter, fiber optics and integrated circuits, in particular optic detectors, increases area of applying of the industrial measuring and control systems that used IR detectors. One of the more important is optic detection of electric arc in industrial energetic arrangements. That kind of detection is sure, easy to apply in existing industrial apparatus a d it is cheaper than another way of detection. Additionally optic detection of electric arc is safety for attendance persons and may work on computer system. The article presents an example of circuit with semiconductor IR photoelectric detector to detection of electric arc and points at the most important questions which should be taken into consideration in designing instruments like described one.

  3. Fuel cell crimp-resistant cooling device with internal coil

    NASA Technical Reports Server (NTRS)

    Wittel, deceased, Charles F. (Inventor)

    1986-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.

  4. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  5. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  6. MIT 12 Tesla Coil test results

    NASA Astrophysics Data System (ADS)

    Steeves, M. M.; Hoenig, M. O.

    1985-07-01

    Test results from the MIT 12 Tesla Coil experiment are presented. The coil was tested in the High Field Test Facility (HFTF) of the Lawrence Livermore National Laboratory in October 1984 and January 1985. The experiment measured the performance of an Internally Cooled, Cabled Superconductor (ICCS) of practical size, intended for use in magnetic fusion experiments. The MIT coil carried 15 kA at 11 T for 5 min with no sign of instability. A half turn length in a 10 T field was able to absorb a heat load in 4 msec of more than 200 mJ sub cm of cable volume while carrying a current of 12 kA. The MIT coil successfully met the performance requirements of the Department of Energy's 12 Tesla Coil Program.

  7. Recent advances in helix-coil theory.

    PubMed

    Doig, Andrew J

    2002-12-10

    Peptide helices in solution form a complex mixture of all helix, all coil or, most frequently, central helices with frayed coil ends. In order to interpret experiments on helical peptides and make theoretical predictions on helices, it is therefore essential to use a helix-coil theory that takes account of this equilibrium. The original Zimm-Bragg and Lifson-Roig helix-coil theories have been greatly extended in the last 10 years to include additional interactions. These include preferences for the N-cap, N1, N2, N3 and C-cap positions, capping motifs, helix dipoles, side chain interactions and 3(10)-helix formation. These have been applied to determine energies for these preferences from experimental data and to predict the helix contents of peptides. This review discusses these newly recognised structural features of helices and how they have been included in helix-coil models. PMID:12488008

  8. NMR local coil with adjustable spacing

    SciTech Connect

    Dembinski, G.T.

    1988-03-22

    A local coil assembly for use in NMR imaging is described which comprises: a base; a first local coil module mounted to the base and extending upward therefrom; sockets disposed in the base, each at a different distance from the first local coil module; a second local coil module having a connector therein which mates with each of the sockets to enable the second local coil module to be connected to the base at any one of the sockets; and a set of reactive components. The values of the respective reactive components are selected such that the second local oil module may be connected to any of the sockets without any substantial change in the resonant frequency of the assembly.

  9. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.

  10. A study on geometry effect of transmission coil for micro size magnetic induction coil

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  11. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system.

    PubMed

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100Hz to 10kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process. PMID:26852418

  12. The aesthetics of behavioral arrangements

    PubMed Central

    Hineline, Philip N.

    2005-01-01

    With their origins in scientific validation, behavior-analytic applications have understandably been developed with an engineering rather than a crafting orientation. Nevertheless, traditions of craftsmanship can be instructive for devising aesthetically pleasing arrangements—arrangements that people will try, and having tried, will choose to continue living with. Pye (1968) provides suggestions for this, particularly through his distinctions between workmanship of risk versus workmanship of certainty, and the mating of functional precision with effective or otherwise pleasing variability. Close examination of woodworking tools as well as antique machines offers instructive analogues that show, for instance, that misplaced precision can be dysfunctional when precision is not essential to a design. Variability should be allowed or even encouraged. Thus, in the design of behavioral contingencies as well as of practical or purely aesthetic objects, “precise versus variable” is not necessarily a distinction between good and bad. More generally, behavior analysts would do well to look beyond their technical experience for ways to improve the aesthetics of contingency design while continuing to understand the resulting innovations in relation to behavior-analytic principles. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9 PMID:22478437

  13. Clamp for use in winding large magnet coils

    DOEpatents

    Brown, Robert L.; Kenney, Walter J.

    1983-01-01

    In one aspect, the invention is a novel arrangement for applying forces to urns of a vertically extending helical coil which is wound about a support. The apparatus includes a first rigid member extending towards the turns. A second rigid member extends transversely from the end of the first and has a vertically extending face provided with a generally straight groove extending transversely of the turns. A longitudinal passage in the first member connects to the groove to form therewith a continuous guideway for rollable articles. A rigid lug longitudinally movable in the groove is provided with a projection which extends out of the groove and beneath the bottom of a selected turn of the coil. A train of rigid, rollable articles is disposed in the guideway inwardly of the lug. Means are provided for applying force to that end of the train which is relatively remote from the lug, to urge the latter against the bottom face of the selected turn. As a result, that turn is moved upward along the face of the support, establishing a selected spacing between that turn and the previously formed turn of the coil. When upward movement of the selected turn stops, the force applied to the lug immediately translates to a force which urges the above-mentioned grooved face against all of the formed turns, thus compressing them against the support. The above-mentioned first and second members are swingably mounted so that they can be temporarily moved out of the winding path, thus permitting continuous winding.

  14. Clamp for use in winding large magnet coils

    DOEpatents

    Brown, R.L.; Kenney, W.J.

    1981-05-05

    In one aspect, the invention is a novel arrangement for applying forces to turns of a vertically extending helical coil which is wound about a support. The apparatus includes a first rigid member extending towards the turns. A second rigid member extends transversely from the end of the first and has a vertically extending face provided with a generally straight groove extending transversely of the turns. A longitudinal passage in the first member connects to the groove to form therewith a continuous guideway for rollable articles. A rigid lug longitudinally movable in the groove is provided with a projection which extends out of the groove and beneath the bottom of a selected turn of the coil. A train of rigid, rollable articles is disposed in the guideway inwardly of the lug. Means are provided for applying force to that end of the train which is relatively remote from the lug, to urge the latter against the bottom face of the selected turn. As a result, that turn is moved upward along the face of the support, establishing a selected spacing between that turn and the previously formed turn of the coil. When upward movement of the selected turn stops, the force applied to the lug immediately translates to a force which urges the above-mentioned grooved face against all of the formed turns, thus compressing them against the support. The above-mentioned first and second members are swingably mounted so that they can be temporarily moved out of the winding path, thus permitting continuous winding.

  15. Performance improvement of a high-temperature superconducting coil by separating and grading the coil edge

    NASA Astrophysics Data System (ADS)

    Ishiguri, Shinichi; Funamoto, Taisuke

    2011-06-01

    In this paper, we establish a model to analyze the transport current performance of a high-temperature superconducting (HTS) coil, considering the dependencies of critical current and n-value of an HTS tape on magnetic field and magnetic field angles. This analysis shows that relatively large electric fields appear at the coil’s edges, preventing improvement in the transport current performance of the coil. To solve this problem, in this paper, we propose a graded coil in which several coil edges of different heights are separated and graded. Analysis of its performance shows that the coil’s critical current increases, thus confirming that there exists an optimum coil cross section at which the stored energy and central magnetic field improve 2.1 times and 45%, respectively, compared with a typical rectangular coil that employs the same total length of the HTS tape. It is recommended that these results of the coil should be applied to SMES.

  16. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    SciTech Connect

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  17. An active magnetic bearing with high T(sub c) superconducting coils and ferromagnetic cores

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high-T(sub c) superconductor (HTS) coils can be used in a high-load, active magnetic bearing in LN2. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 890 N (200 lb) radial load capacity (measured non-rotatings) and supported a shaft to 14,000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that for Cu in LN2. The bias coil, wound with non-twisted, multifilament HTS conductor, dissipated negligible power for its direct current. The control coils, wound with monofilament HTS sheathed in Ag, dissipated negligible power for direct current. AC losses increased rapidly with frequency and quadratically with AC amplitude. Above about 2 Hz, the effective resistance of the control coils exceeds that of the silver which is in electrical parallel with the oxide superconductor. These results show that twisted multifilament conductor is not needed for stable levitation but may be desired to reduce control power for sizable dynamic loads.

  18. Development of a simple MR-compatible vibrotactile stimulator using a planar-coil-type actuator.

    PubMed

    Kim, Hyung-Sik; Choi, Mi-Hyun; Chung, Yoon-Gi; Kim, Sung-Phil; Jun, Jae-Hoon; Park, Jang-Yeon; Yi, Jeong-Han; Park, Jong-Rak; Lim, Dae-Woon; Chung, Soon-Cheol

    2013-06-01

    For this study, we developed a magnetic resonance (MR)-compatible vibrotactile stimulator using a planar-coil-type actuator. The newly developed vibrotactile stimulator consists of three units: control unit, drive unit, and planar-coil-type actuator. The control unit controls frequency, intensity, time, and channel, and transfers the stimulation signals to the drive unit. The drive unit operates the planar-coil-type actuator in response to commands from the control unit. The planar-coil-type actuator, which uses a planar coil instead of conventional electric wire, generates vibrating stimulation through interaction of the current of the planar coil with the static magnetic field of the MR scanner. Even though the developed tactile stimulating system is small, simple, and inexpensive, it has a wide range of stimulation frequencies (20 ~ 400 Hz, at 40 levels) and stimulation intensities (0 ~ 7 V, at 256 levels). The stimulation intensity does not change due to frequency changes. Since the transient response time is a few microseconds, the stimulation time can be controlled on a scale of microseconds. In addition, this actuator has the advantages of providing highly repeatable stimulation, being durable, being able to assume various shapes, and having an adjustable contact area with the skin. The new stimulator operated stably in an MR environment without affecting the MR images. Using functional magnetic resonance imaging, we observed the brain activation changes resulting from stimulation frequency and intensity changes. PMID:23055173

  19. An approach to selecting the optimal sensing coil configuration structure for switched reluctance motor rotor position measurement

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Deng, Zhiquan

    2015-02-01

    Accurate rotor position signal is highly required for controlling the switched reluctance motor (SRM). The use of galvanic isolated sensing coils can provide independent circuit for position estimation without affecting the SRM actuation. However, the cross-coupling between main winding and sensing coil, and the mutual coupling between adjacent phase sensing coils may affect the position estimation performance seriously. In this paper, three sensing coil configurations in a 12/8 structure SRM are analyzed and compared for selecting an optimal configuration that can effectively minimize the bad effects of the cross-coupling factors. The finite element analysis and experimental results are provided for verification.

  20. An approach to selecting the optimal sensing coil configuration structure for switched reluctance motor rotor position measurement.

    PubMed

    Cai, Jun; Deng, Zhiquan

    2015-02-01

    Accurate rotor position signal is highly required for controlling the switched reluctance motor (SRM). The use of galvanic isolated sensing coils can provide independent circuit for position estimation without affecting the SRM actuation. However, the cross-coupling between main winding and sensing coil, and the mutual coupling between adjacent phase sensing coils may affect the position estimation performance seriously. In this paper, three sensing coil configurations in a 12/8 structure SRM are analyzed and compared for selecting an optimal configuration that can effectively minimize the bad effects of the cross-coupling factors. The finite element analysis and experimental results are provided for verification. PMID:25725876

  1. Specific fabrication techniques of the Polo Model coil and its components

    SciTech Connect

    Friesinger, G.; Forster, S.; Jeske, U.; Nyilas, A.; Schenk, G.; Schmidt, C.; Siewerdt, L.; Susser, M.; Ulbricht, A.; Wuchner, F. . Inst. fuer Technische Physik); Bonnet, P.; Bourquard, A.; Ferry, P.J. )

    1992-01-01

    Poloidal field coils of tokamak machines are characterized by their pulsed operation needed for plasma ramp up and control. They have to sustain operation faults like plasma disruptions in their superconducting state. A low loss conductor, low loss structural reinforcement and a high voltage insulation system are needed for fulfilling these requirements. The basis for this technology has been developed for a superconducting model coil which is being manufactured by GEC Alsthom, Belfort and which will be tested at the KfK Karlsruhe. In this paper the fabrication technique applied for the coil and some high voltage related components are described.

  2. Embolization of a High-Output Postnephrectomy Aortocaval Fistula with Gianturco Coils and Cyanoacrylate

    SciTech Connect

    Cekirge, Saruhan; Oguzkurt, Levent; Saatci, Isil; Boyvat, Fatih; Balkanci, Ferhun

    1996-11-15

    The authors describe the endovascular treatment of a high-output, large-caliber, postnephrectomy aortocaval fistula using a mixture of cyanoacrylate and lipiodol combined with Gianturco coil embolization. Thirty-nine coils were used to decrease the flow through the fistula so that a fast-polymerizing glue mixture could be injected into the fistula. During rapid polymerization, the N-butyl-2-cyanoacrylate (NBCA) mixture was trapped within the coils, providing an easily controllable glue cast in the fistula, thereby preventing inadvertent embolization into the lungs. This approach can be of considerable benefit for the endovascular treatment of central high-output fistulas.

  3. Process Design of Cryogenic Distribution System for CFETR CS Model Coil

    NASA Astrophysics Data System (ADS)

    Cheng, Anyi; Zhang, Qiyong; Fu, Bao; Lu, Xiaofei

    2016-02-01

    The superconducting magnet of Central Solenoid (CS) model coil of China Fusion Engineering Test Reactor (CFETR) is made of Nb3Sn/NbTi cable-in-conduit conductor (CICC), and operated by forced-flow cooling with a large amount of supercritical helium. The cryogenic circulation pump is analyzed and considered to be effective in achieving the supercritical helium (SHe) circulation for the forced-flow cooled (FFC) CICC magnet. A distributed system will be constructed for cooling the CFETR CS model coil. This paper presents the design of FFC process for the CFETR CS model coil. The equipment configuration, quench protection in the magnet and the process control are presented.

  4. Current ripple in the coils of the TJ-II Spanish stellarator

    SciTech Connect

    Perez, A.; Acero, J.; Alberdi, B.; Del Rio, J.M.; Almoguera, L.; Blaumoser, M.; Kirpitchev, I.; Mendez, P.

    1995-12-31

    High precision coil current control, stability and ripple content are very important aspects for a stellarator design. The TJ-II coils will be supplied by network commutated current converters and therefore the coil currents will contain harmonics which have to be kept to a very low level. An analytical investigation as well as numerous simulations with EMTP, SABER{reg_sign} and other softwares, have been done in order to predict the harmonic currents and to verify the completion with the specified maximum levels. The calculations and the results are presented.

  5. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  6. ENGINEERING OF THE AGS SNAKE COIL ASSEMBLY.

    SciTech Connect

    ANERELLA,M.GUPTA,R.KOVACH,P.MARONE,A.PLATE,S.POWER,K.SCHMALZLE,J.WILLEN,E.

    2003-05-12

    A 30% Snake superconducting magnet is proposed to maintain polarization in the AGS proton beam, the magnetic design of which is described elsewhere. The required helical coils for this magnet push the limits of the technology developed for the RHIC Snake coils. First, fields must be provided with differing pitch along the length of the magnet. To accomplish this, a new 3-D CAD system (''Pro/Engineer'' from PTC), which uses parametric techniques to enable fast iterations, has been employed. Revised magnetic field calculations are then based on the output of the mechanical model. Changes are made in turn to the model on the basis of those field calculations. To ensure that accuracy is maintained, the final solid model is imported directly into the CNC machine programming software, rather than by the use of graphics translating software. Next, due to the large coil size and magnetic field, there was concern whether the structure could contain the coil forces. A finite element analysis was performed, using the 3-D model, to ensure that the stresses and deflections were acceptable. Finally, a method was developed using ultrasonic energy to improve conductor placement during coil winding, in an effort to minimize electrical shorts due to conductor misplacement, a problem that occurred in the RHIC helical coil program. Each of these activities represents a significant improvement in technology over that which was used previously for the RHIC snake coils.

  7. Switching transients in a superconducting coil

    SciTech Connect

    Owen, E.W.; Shimer, D.W.

    1983-11-18

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.

  8. Microsensor coils for miniature fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Baeder, Janet S.

    2004-10-01

    Depolarized Interferometric Fiber Optic Gyroscopes (D-IFOGs) that are constructed with inexpensive single mode (SM) fiber have provided an opportunity for developers to meet Army emerging missions goals for affordable, small volume, reliable inertial guidance systems for use in small missiles, munitions, and future micro-unmanned autonomous vehicles. However, there remain several vital issues associated with substantially reducing the diameter of the sensor coil. Optical fiber that is precision-wound onto a micro coil experiences increased stress due to small radius bending, fiber distortions at crossover sites, and increased interlayer pressures as a result of multiple layers of fiber wound under tension. Tension and small radius bending stresses can have a detrimental effect on the performance of D-IFOGs. Therefore, other scenarios for the application of SM fiber to a micro-sensor coil must be considered. One scheme involves taking advantage of the bending-induced birefringence and employing the low cost SM fiber as a polarization-maintaining (PM) fiber. The mechanics of how a substantial reduction in the coil radius produces PM fiber properties in SM fiber is investigated under this research effort. Conventional and specialty SM fibers are characterized to identify optimal fibers for the development of micro-sensor coils. The results from extinction ratio measurements on the SM fibers and micro-sensor coils are presented in this paper. The significant cross coupling suggests that scattering centers are present in very small radius bending. Also, measurements show that optical loss is significant in micro IFOG coils.

  9. Phase reconstruction from multiple coil data using a virtual reference coil

    PubMed Central

    Parker, Dennis L.; Payne, Allison; Todd, Nick; Hadley, J. Rock

    2013-01-01

    Purpose This paper develops a method to obtain optimal estimates of absolute magnetization phase from multiple-coil MRI data. Methods The element-specific phases of a multi-element receiver coil array are accounted for by using the phase of a real or virtual reference coil that is sensitive over the entire imaged volume. The virtual-reference coil is generated as a weighted combination of measurements from all receiver coils. The phase-corrected multiple coil complex images are combined using the inverse covariance matrix. These methods are tested on images of an agar phantom, an in vivo breast, and an anesthetized rabbit obtained using combinations of four, nine, and three receiver channels, respectively. Results The four- and three- channel acquisitions require formation of a virtual-reference receiver coil while one channel of the nine-channel receive array has a sensitivity profile covering the entire imaged volume. Referencing to a real or virtual coil gives receiver phases that are essentially identical except for the individual receiver channel noise. The resulting combined images, which account for receiver channel noise covariance, show the expected reduction in phase variance. Conclusions The proposed virtual reference coil method determines a phase distribution for each coil from which an optimal phase map can be obtained. PMID:24006172

  10. Crystal Structure of the Central Coiled-Coil Domain from Human Liprin-[beta]2

    SciTech Connect

    Stafford, Ryan L.; Tang, Ming-Yun; Sawaya, Michael R.; Phillips, Martin L.; Bowie, James U.

    2012-02-07

    Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-{alpha}s and two liprin-{beta}s which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-{beta}2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-{beta}1 and liprin-{beta}2 coiled-coils were also identified. A 2.0 {angstrom} crystal structure of the central, protease-resistant core of the liprin-{beta}2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.

  11. Crystal Structure of a Coiled-Coil Domain from Human ROCK I

    PubMed Central

    Tu, Daqi; Li, Yiqun; Song, Hyun Kyu; Toms, Angela V.; Gould, Christopher J.; Ficarro, Scott B.; Marto, Jarrod A.; Goode, Bruce L.; Eck, Michael J.

    2011-01-01

    The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK), participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535–700). The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620) are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation. PMID:21445309

  12. Comparison of Coil and Kiil Dialysers

    PubMed Central

    Down, P. F.; Farrand, D. E.; Wood, S. E.; Lee, H. A.

    1970-01-01

    To assess the comparative efficiency, safety, and cost of maintenance dialysis, the treatment of 13 patients with a Kiil dialyser (representing 1,477 hospital and 735 home dialyses) was compared with that of 11 patients using a coil dialyser (898 hospital and 396 home dialyses). Kiil and coil dialysers proved equally satisfactory from a medical standpoint and equally acceptable to the patients. The capital costs of home dialysis were considerably reduced without any threat to safety or efficiency. The running costs of coil dialysers approximate to those of Kiil dialysers. ImagesFig. 3 PMID:4320676

  13. DESIGN, FABRICATION AND TEST OF THE REACT AND WIND, NB(3)SN, LDX FLOATING COIL CONDUCTOR.

    SciTech Connect

    SMITH,B.A.; MICHAEL,P.C.; MINERVINI,J.V.; TAKAYASU,M.; SCHULTZ,J.H.; GREGORY,E.; PYON,T.; SAMPSON,W.B.; GHOSH,A.; SCANLAN,R.

    2000-09-17

    The Levitated Dipole Experiment (LDX) is a novel approach for studying magnetic confinement of a fusion plasma. In this approach, a superconducting ring coil is magnetically levitated for up to 8 hours a day in the center of a 5 meter diameter vacuum vessel. The levitated coil, with on-board helium supply, is called the gloating Coil (F-Coil). Although the maximum field at the coil is only 5.3 tesla, a react-and-wind Nb{sub 3}Sn conductor was selected because the relatively high critical temperature will enable the coil to remain levitated while it warms from 5 K to 10 K. Since pre-reacted Nb{sub 3}Sn tape is no longer commercially available, a composite conductor was designed that contains an 18 strand Nb{sub 3}Sn Rutherford cable. The cable was reacted and then soldered into a structural copper channel that completes the conductor and also provides quench protection. The strain state of the cable was continuously controlled during fabrication steps such as: soldering into the copper channel, spooling, and coil winding, to prevent degradation of the critical current. Measurements of strand and cable critical currents are reported, as well as estimates of the effect of fabrication, winding and operating strains on critical current.

  14. Methods for Solving Highly Symmetric De Novo Designed Metalloproteins: Crystallographic Examination of a Novel Three-Stranded Coiled-Coil Structure Containing d-Amino Acids.

    PubMed

    Ruckthong, L; Stuckey, J A; Pecoraro, V L

    2016-01-01

    The core objective of de novo metalloprotein design is to define metal-protein relationships that control the structure and function of metal centers by using simplified proteins. An essential requirement to achieve this goal is to obtain high resolution structural data using either NMR or crystallographic studies in order to evaluate successful design. X-ray crystal structures have proven that a four heptad repeat scaffold contained in the three-stranded coiled coil (3SCC), called CoilSer (CS), provides an excellent motif for modeling a three Cys binding environment capable of chelating metals into geometries that resemble heavy metal sites in metalloregulatory systems. However, new generations of more complicated designs that feature, for example, a d-amino acid or multiple metal ligand sites in the helical sequence require a more stable construct. In doing so, an extra heptad was introduced into the original CS sequence, yielding a GRAND-CoilSer (GRAND-CS) to retain the 3SCC folding. An apo-(GRAND-CSL12DLL16C)3 crystal structure, designed for Cd(II)S3 complexation, proved to be a well-folded parallel 3SCC. Because this structure is novel, protocols for crystallization, structural determination, and refinements of the apo-(GRAND-CSL12DLL16C)3 are described. This report should be generally useful for future crystallographic studies of related coiled-coil designs. PMID:27586331

  15. Effect of coiled-coil peptides on the function of the type III secretion system-dependent activity of enterohemorragic Escherichia coli O157:H7 and Citrobacter rodentium.

    PubMed

    Larzábal, Mariano; Zotta, Elsa; Ibarra, Cristina; Rabinovitz, Bettina C; Vilte, Daniel A; Mercado, Elsa C; Cataldi, Ángel

    2013-01-01

    Many animal and human pathogenic Gram-negative bacteria such as Salmonella, Yersinia, enterohemorrhagic Escherichia coli (EHEC), and enteropathogenic Escherichia coli (EPEC) possess a type III secretion system (TTSS) that is used to deliver virulence proteins directly into the host cell. Recent evidence has suggested that CoilA and CoilB, two synthetic peptides corresponding to coiled-coil domains of the translocator protein EspA, are effective in inhibiting the action of TTSS from EPEC. In the current study, the action of these coiled-coil peptides on the TTSS of EHEC O157:H7 and Citrobacter rodentium was examined. CoilA and CoilB showed to be effective in reducing the red blood cell lysis mediated by EHEC O157:H7 and the in vitro secretion of translocator proteins EspB and EspD by EHEC O157:H7 and EspD by C. rodentium. Treatment of mice with CoilA and CoilB peptides prevented colon damage when the animals were inoculated with C. rodentium. Colon samples of the non-treated group showed areas with loss of superficial epithelium, damaged cells, and endoluminal mononuclear inflammatory infiltrate, consistent with histological lesions induced by C. rodentium, whereas mice treated with the synthetic peptides displayed normal surface epithelium showing a similar structure as the uninfected control group. These encouraging results prompt us to test coiled-coil peptides as treatment or vaccines in other models of bacterial infections in future work. PMID:23312797

  16. Coiled Fiber Pulsed Laser Simulator

    Energy Science and Technology Software Center (ESTSC)

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  17. Coiled Fiber Pulsed Laser Simulator

    SciTech Connect

    Hadley, G. Ronald

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a data file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.

  18. Percutaneous Injection Therapy for a Peripheral Pulmonary Artery Pseudoaneurysm After Failed Transcatheter Coil Embolization

    SciTech Connect

    Lee, Kyungwoo; Shin, Taebeom; Choi, Jinsu; Kim, Younghwan

    2008-09-15

    Coil embolization to occlude the feeding artery of a pseudoaneurysm is an effective treatment to control hemoptysis. However, a feeding artery of the pseudoaneurysm may not be identified at pulmonary angiography, resulting in a failure to obtain embolization. We describe here two cases of a Rasmussen aneurysm that was successfully treated with percutaneous injection of thrombin (case 1) and N-butyl cyanoacrylate (case 2) under ultrasonographic and fluoroscopic guidance after failed transcatheter coil embolization.

  19. (abstract) Electromagnetic Compatability Program to Accommodate a Spacecraft Magnetic Search Coil Experiment

    NASA Technical Reports Server (NTRS)

    Leung, Philip; Narvaez, Pablo

    1995-01-01

    A search coil is a very sensitive instrument that measures low frequency magnetic field radiation. In order for the search coil to achieve its objectives, an electromagnetic clean environment must be provided. On a spacecraft, there are many potential sources of low frequency magnetic field emitter. Consequently, a very stringent program is needed to control the emission from these sources. This paper describes the details of such a program.

  20. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  1. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  2. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  3. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  4. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  5. 24 CFR 401.301 - Partnership arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Partnership arrangements. 401.301 Section 401.301 Housing and Urban Development Regulations Relating to Housing and Urban Development...) § 401.301 Partnership arrangements. If the PAE is in a partnership, the PRA must specify the...

  6. 24 CFR 401.301 - Partnership arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Partnership arrangements. 401.301 Section 401.301 Housing and Urban Development Regulations Relating to Housing and Urban Development...) § 401.301 Partnership arrangements. If the PAE is in a partnership, the PRA must specify the...

  7. 29 CFR 779.229 - Other arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Leased Departments... establishment will not be considered to be other than a separate and distinct enterprise, if other arrangements... enterprise. Whether or not other arrangements have such an effect will necessarily depend upon all the...

  8. 29 CFR 779.229 - Other arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Leased Departments... establishment will not be considered to be other than a separate and distinct enterprise, if other arrangements... enterprise. Whether or not other arrangements have such an effect will necessarily depend upon all the...

  9. 29 CFR 779.229 - Other arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Leased Departments... establishment will not be considered to be other than a separate and distinct enterprise, if other arrangements... enterprise. Whether or not other arrangements have such an effect will necessarily depend upon all the...

  10. 29 CFR 779.229 - Other arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Leased Departments... establishment will not be considered to be other than a separate and distinct enterprise, if other arrangements... enterprise. Whether or not other arrangements have such an effect will necessarily depend upon all the...

  11. 75 FR 25150 - NVOCC Negotiated Rate Arrangements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... August 11, 2008 and comments on it were due by September 26, 2008. 73 FR 46625-02 (August 11, 2008). On... 46 CFR Parts 520 and 532 RIN 3072-AC38 NVOCC Negotiated Rate Arrangements AGENCY: Federal Maritime... exemption for non-vessel-operating common carriers agreeing to negotiated rate arrangements from...

  12. UWTOR-M, a stellarator power reactor utilizing modular coils

    NASA Astrophysics Data System (ADS)

    Sviatoslavsky, I. N.; Vansciver, S. W.; Kulcinski, G. I.

    1981-10-01

    The parametric considerations which led to the UWTOR-M reference design point are described. The design has 18 twisted coils utilizing a multipolarity of 3, a major radius of 24 m, a coil radius of 4.77 m and a plasma aspect ratio of 14. An assumed (ALPHA) of 5% was used. This configuration leads to a rotational transform on the edge of 1.125 giving favorable plasma physics conditions. The natural stellarator divertor is used for impurity control in conjunction with innovative high performance divertor targets. A unique blanket design which minimizes tritium inventory in the reactor is proposed. A scheme for servicing the first wall/blanket and other reactor components is described.

  13. Electrical wire insulation and electromagnetic coil

    DOEpatents

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  14. Screen-printed flexible MRI receive coils

    NASA Astrophysics Data System (ADS)

    Corea, Joseph R.; Flynn, Anita M.; Lechêne, Balthazar; Scott, Greig; Reed, Galen D.; Shin, Peter J.; Lustig, Michael; Arias, Ana C.

    2016-03-01

    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners.

  15. Electrical Wire Insulation and Electromagnetic Coil

    SciTech Connect

    Bich, G. J.; Gupta, T. K.

    1984-01-31

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  16. Screen-printed flexible MRI receive coils.

    PubMed

    Corea, Joseph R; Flynn, Anita M; Lechêne, Balthazar; Scott, Greig; Reed, Galen D; Shin, Peter J; Lustig, Michael; Arias, Ana C

    2016-01-01

    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners. PMID:26961073

  17. Arrangements of codimension-one submanifolds

    SciTech Connect

    Shnurnikov, Igor' N

    2012-09-30

    We study the number f of connected components in the complement to a finite set (arrangement) of closed submanifolds of codimension 1 in a closed manifold M. In the case of arrangements of closed geodesics on an isohedral tetrahedron, we find all possible values for the number fof connected components. We prove that the set of numbers that cannot be realized by the number f of an arrangement of n {>=} 71 projective planes in the three-dimensional real projective space is contained in the similar known set of numbers that are not realizable by arrangements of n lines on the projective plane. For Riemannian surfaces M we express the number f via a regular neighbourhood of a union of immersed circles and the multiplicities of their intersection points. For m-dimensional Lobachevskii space we find the set of all possible numbers f for hyperplane arrangements. Bibliography: 18 titles.

  18. Cooling arrangement for a tapered turbine blade

    SciTech Connect

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  19. Passive energy dump for superconducting coil protection

    DOEpatents

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  20. Heterogeneous Superconducting Low-Noise Sensing Coils

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong

    2008-01-01

    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.

  1. Nanopottery: coiling of electrospun polymer nanofibers.

    PubMed

    Kim, Ho-Young; Lee, Minhee; Park, Kun Joong; Kim, Sungho; Mahadevan, L

    2010-06-01

    We show that a nanoscale polymer solution electrojet can coil to form free-standing hollow pottery as the jet is focused onto a sharp electrode tip. A scaling law is given based on the balance of the electrostatic compression force and the elastic resistance to predict the coil radius and frequency as the functions of relevant physical parameters. The structures formed by the nanofibers can be used in diverse fields of nanotechnology, for example, as nanomagnets, bioscaffolds, and nanochannels. PMID:20486713

  2. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    PubMed Central

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  3. AC loss measurements in HTS coil assemblies with hybrid coil structures

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki

    2016-09-01

    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  4. Thermal Performance of the LDX Floating Coil

    NASA Astrophysics Data System (ADS)

    Zhukovsky, A.; Garnier, D. T.; Radovinsky, A. L.

    2006-04-01

    The Levitated Dipole Experiment (LDX) is an innovative facility to study plasma confinement in a dipole magnetic field, created by a superconducting solenoid (floating coil), which is magnetically levitated in the center of a 5 m diameter by 3 m tall vacuum chamber. The floating coil (F-coil) consists of a Nb3Sn magnet installed inside a strong vessel filled with high-pressure helium gas at room temperature. It is surrounded by a fiberglass-lead composite radiation shield and by a toroidal vacuum shell. The cryostat design provides the ability to operate the magnet for several hours of wanning while suspended in the middle of the vacuum chamber without electric and cryogenic connections to the coil. For this reason the magnet is charged/discharged inductively in a lower part of the vacuum chamber. The retractable cryogenic transfer lines serve to cool down the magnet to 4.5 K before it is lifted to the operating position. The F-coil can be re-cooled multiple times while maintaining its field and current. This paper describes the thermal performance of the F-coil.

  5. Image reconstructions with the rotating RF coil.

    PubMed

    Trakic, A; Wang, H; Weber, E; Li, B K; Poole, M; Liu, F; Crozier, S

    2009-12-01

    Recent studies have shown that rotating a single RF transceive coil (RRFC) provides a uniform coverage of the object and brings a number of hardware advantages (i.e. requires only one RF channel, averts coil-coil coupling interactions and facilitates large-scale multi-nuclear imaging). Motion of the RF coil sensitivity profile however violates the standard Fourier Transform definition of a time-invariant signal, and the images reconstructed in this conventional manner can be degraded by ghosting artifacts. To overcome this problem, this paper presents Time Division Multiplexed-Sensitivity Encoding (TDM-SENSE), as a new image reconstruction scheme that exploits the rotation of the RF coil sensitivity profile to facilitate ghost-free image reconstructions and reductions in image acquisition time. A transceive RRFC system for head imaging at 2 Tesla was constructed and applied in a number of in vivo experiments. In this initial study, alias-free head images were obtained in half the usual scan time. It is hoped that new sequences and methods will be developed by taking advantage of coil motion. PMID:19800824

  6. Image reconstructions with the rotating RF coil

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Wang, H.; Weber, E.; Li, B. K.; Poole, M.; Liu, F.; Crozier, S.

    2009-12-01

    Recent studies have shown that rotating a single RF transceive coil (RRFC) provides a uniform coverage of the object and brings a number of hardware advantages (i.e. requires only one RF channel, averts coil-coil coupling interactions and facilitates large-scale multi-nuclear imaging). Motion of the RF coil sensitivity profile however violates the standard Fourier Transform definition of a time-invariant signal, and the images reconstructed in this conventional manner can be degraded by ghosting artifacts. To overcome this problem, this paper presents Time Division Multiplexed — Sensitivity Encoding (TDM-SENSE), as a new image reconstruction scheme that exploits the rotation of the RF coil sensitivity profile to facilitate ghost-free image reconstructions and reductions in image acquisition time. A transceive RRFC system for head imaging at 2 Tesla was constructed and applied in a number of in vivo experiments. In this initial study, alias-free head images were obtained in half the usual scan time. It is hoped that new sequences and methods will be developed by taking advantage of coil motion.

  7. Divertor Coil Design and Implementation on Pegasus

    NASA Astrophysics Data System (ADS)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  8. Approaching Ultimate Intrinsic SNR in a Uniform Spherical Sample with Finite Arrays of Loop Coils

    PubMed Central

    Vaidya, Manushka V.; Sodickson, Daniel K.; Lattanzi, Riccardo

    2015-01-01

    We investigated to what degree and at what rate the ultimate intrinsic (UI) signal-to-noise ratio (SNR) may be approached using finite radiofrequency detector arrays. We used full-wave electromagnetic field simulations based on dyadic Green’s functions to compare the SNR of arrays of loops surrounding a uniform sphere with the ultimate intrinsic SNR (UISNR), for increasing numbers of elements over a range of magnetic field strengths, voxel positions, sphere sizes, and acceleration factors. We evaluated the effect of coil conductor losses and the performance of a variety of distinct geometrical arrangements such as “helmet” and “open-pole” configurations in multiple imaging planes. Our results indicate that UISNR at the center is rapidly approached with encircling arrays and performance is substantially lower near the surface, where a quadrature detection configuration tailored to voxel position is optimal. Coil noise is negligible at high field, where sample noise dominates. Central SNR for practical array configurations such as the helmet is similar to that of close-packed arrangements. The observed trends can provide physical insights to improve coil design. PMID:26097442

  9. Changes in morphology and spatial position of coiled bodies during NGF-induced neuronal differentiation of PC12 cells.

    PubMed

    Janevski, J; Park, P C; De Boni, U

    1997-11-01

    Interphase nuclei are organized into structural and functional domains. The coiled body, a nuclear organelle of unknown function, exhibits cell type-specific changes in number and morphology. Its association with nucleoli and with small nuclear ribonucleo-proteins (snRNPs) indicates that it functions in RNA processing. In cycling cells, coiled bodies are round structures not associated with nucleoli. In contrast, in neurons, they frequently present as nucleolar "caps." To test the hypothesis that neuronal differentiation is accompanied by changes in the spatial association of coiled bodies with nucleoli and in their morphology, PC12 cells were differentiated into a neuronal phenotype with nerve growth factor (NGF) and coiled bodies detected by immunocytochemical localization of p80-coilin and snRNPs. The fraction of cells that showed coiled bodies as nucleolar caps increased from 1.6 +/- 0.9% (mean +/- SEM) in controls to 16.5 +/- 1.6% in NGF-differentiated cultures. The fraction of cells with ring-like coiled bodies increased from 17.2 +/- 5.0% in controls to 57.8 +/- 4.4% in differentiated cells. This was accompanied by a decrease, from 81.2 +/- 5.7% to 25.7 +/- 3.1%, in the fraction of cells with small, round coiled bodies. SnRNPs remained associated with typical coiled bodies and with ring-like coiled bodies during NGF-induced recruitment of snRNPs to the nuclear periphery. Together with the observation that coiled bodies are also present as nucleolar caps in sensory neurons, the results indicate that coiled bodies alter their morphology and increase their association with nucleoli during NGF-induced neuronal differentiation. PMID:9358854

  10. Coiling Spaghetti: Deposition of a Thin Rod onto a Moving Substrate

    NASA Astrophysics Data System (ADS)

    Reis, Pedro; Joo, Jungseock; Mannent, Josephine; Marthelot, Joel; Kaufman, Danny; Grinspun, Eitan

    2011-03-01

    We investigate the oscillatory coiling patterns obtained when a thin elastic rod is deposited onto a moving solid boundary (conveyor belt). Through a combination of well controlled desktop experiments and numerics, we explore the phase diagram of this coiling process and identify the underlying physical ingredients. Our novel numerical method implements a discrete notion of bending and twist based on ideas ported from differential geometry, and exhibits excellent performance and robustness. This enables us to carry out predictive direct simulations of the large deformations of the thin elastic rod interacting with the moving substrate, that are in excellent agreement with our experiments. Applications of this coiling process range from the coiling of nanotubes to the laying down of transoceanic cable and pipelines in the ocean bed.

  11. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    SciTech Connect

    Flanagan, C.A.

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  12. Design and evaluation of coils for a 50 mm diameter induction coilgun launcher

    SciTech Connect

    Kaye, R.J.; Shokair, I.R.; Wavrik, R.W.; Dempsey, J.F.; Honey, W.E.; Shimp, K.J.; Douglas, G.M.

    1993-12-31

    Coilguns have the ability to provide magnetic pressure to projectiles which results in near constant acceleration. However, to achieve this performance and control projectile hearing, significant constraints are placed on the design of the coils. We are developing coils to produce an effective projectile base pressure of 100 MPa (1kbar) as a step toward reaching base pressures of 200 MPa. The design uses a scalable technology applicable to the entire range of breech to muzzle coils of a multi-stage launcher. This paper presents the design of capacitor-driven coils for launching nominal 50 mm, 350 gram projectiles. Design criteria, constraints, mechanical stress analysis, launcher performance, and test results are discussed.

  13. Method to determine the optimal layer number for the quadrupolar fiber coil

    NASA Astrophysics Data System (ADS)

    Gao, Zhongxing; Zhang, Yonggang; Gao, Wei

    2014-08-01

    For a high precision interferometric fiber optic gyroscope (IFOG) under temperature control, a short start-up time and small temperature drift are important for its applications. The start-up time and the temperature drift of IFOG with the same fiber length but with a different fiber coil layer number are investigated and compared. Simulation by finite difference time domain method is done to illustrate the existence of optimal layer number for the fiber coil wound by the quadrupolar method. Theoretical analysis is then provided and a closed-form formulation is given to calculate the optimal layer number of the fiber coil, which can effectively reduce both the start-up time and temperature drift of IFOG. Our study is meaningful in improving the thermal performance of the fiber coil.

  14. Radiation-hard electrical coil and method for its fabrication

    DOEpatents

    Grieggs, R.J.; Blake, R.D.; Gac, F.D.

    1982-06-29

    A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.

  15. Transient Heat Transfer in TCAP Coils

    SciTech Connect

    Steimke, J.L.

    1999-03-09

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly

  16. Transient Heat Transfer in TCAP Coils

    SciTech Connect

    Steimke, J.L.

    1999-03-09

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0 tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly

  17. Modifying Wire Array Z-pinch Ablation Structure and Implosion Dynamics Using Coiled Arrays

    SciTech Connect

    Hall, Gareth N.; Bland, Simon N.; Lebedev, Sergey V.; Chittenden, Jeremy P.; Palmer, James B. A.; Suzuki-Vidal, Francisco A.; Swadling, George F.; Niasse, Nicolas; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Bell, K. S.; Greenly, J. B.; Blanchard, T.; Wilhelm, H.; Hammer, D. A.; Kusse, B. R.; Bott, Simon C.

    2009-01-21

    Coiled arrays, a cylindrical array in which each wire is formed into a helix, suppress the modulation of ablation at the fundamental wavelength. Outside the vicinity of the wire cores, ablation flow from coiled arrays is modulated at the coil wavelength and has a 2-stream structure in the r,{theta} plane. Within the vicinity of the helical wires, ablation is concentrated at positions with the greatest azimuthal displacement and plasma is axially transported from these positions such that the streams become aligned with sections of the coil furthest from the array axis. The GORGON MHD code accurately reproduces this observed ablation structure, which can be understood in terms of JxB forces that result from the interaction of the global magnetic field with a helical current path as well as additional current paths suggested by the simulations. With this ability to control where ablation streamers occur, large wavelength coils were constructed such that the breaks that form in the wires had sufficient axial separation to prevent perturbations in the implosion sheath from merging. This produces a new mode of implosion in which the global instability can be controlled and perturbations correlated between all wires in an array. For large wavelength 8-wire coiled arrays, this produced a dramatic increase in x-ray power, equalling that of a 32-wire straight array. These experiments were carried out on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and the COBRA generator (1 MA, 100 ns) at Cornell University.

  18. Analysis and improvement of detection accuracy for a wireless motion sensing system using integrated coil component

    SciTech Connect

    Hashi, S.; Ishiyama, K.; Yabukami, S.; Kanetaka, H.; Arai, K. I.

    2010-05-15

    Integration of the exciting coil and the pick-up coil array for the wireless magnetic motion sensing system has been investigated to clear the limitation of the system arrangement. From the comparison of the integrated-type and the sandwich-type, which was proposed by our previous study, regardless of the lower signal-to-noise ratio of the integrated-type than that of the sandwich-type a repeatable detection accuracy of around 1 mm is obtained at the distance of 120 mm from the pick-up coil array (sandwich-type: up to 140 mm). A different tendency of the detection errors in detection was also observed. In spite of different tendency, the cause of the errors has been clarified. The impedance change of the exciting coil due to a resonance of the LC marker perturbs strength of the magnetic field which is used for marker excitation. However, the errors are able to compensate to the actual positions and orientations of the marker by using compensatory method which was already established.

  19. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction

    PubMed Central

    Pelassa, Ilaria; Corà, Davide; Cesano, Federico; Monje, Francisco J.; Montarolo, Pier Giorgio; Fiumara, Ferdinando

    2014-01-01

    The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone β-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form—alone or with polyQ and polyQA—CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2—a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion—and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases. PMID:24497578

  20. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction.

    PubMed

    Pelassa, Ilaria; Corà, Davide; Cesano, Federico; Monje, Francisco J; Montarolo, Pier Giorgio; Fiumara, Ferdinando

    2014-07-01

    The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone β-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form--alone or with polyQ and polyQA--CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2--a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion--and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases. PMID:24497578

  1. Novel Anti-Nicotine Vaccine Using a Trimeric Coiled-Coil Hapten Carrier

    PubMed Central

    Miller, Keith D.; Roque, Richard; Clegg, Christopher H.

    2014-01-01

    Tobacco addiction represents one of the largest public health problems in the world and is the leading cause of cancer and heart disease, resulting in millions of deaths a year. Vaccines for smoking cessation have shown considerable promise in preclinical models, although functional antibody responses induced in humans are only modestly effective in preventing nicotine entry into the brain. The challenge in generating serum antibodies with a large nicotine binding capacity is made difficult by the fact that this drug is non-immunogenic and must be conjugated as a hapten to a protein carrier. To circumvent the limitations of traditional carriers like keyhole limpet hemocyanin (KLH), we have synthesized a short trimeric coiled-coil peptide (TCC) that creates a series of B and T cell epitopes with uniform stoichiometry and high density. Here we compared the relative activities of a TCC-nic vaccine and two control KLH-nic vaccines using Alum as an adjuvant or GLA-SE, which contains a synthetic TLR4 agonist formulated in a stable oil-in-water emulsion. The results showed that the TCC's high hapten density correlated with a better immune response in mice as measured by anti-nicotine Ab titer, affinity, and specificity, and was responsible for a reduction in anti-carrier immunogenicity. The Ab responses achieved with this synthetic vaccine resulted in a nicotine binding capacity in serum that could prevent >90% of a nicotine dose equivalent to three smoked cigarettes (0.05 mg/kg) from reaching the brain. PMID:25494044

  2. Antiparallel Four-Stranded Coiled Coil Specified by a 3-3-1 Hyrdrophobic Heptad Repeat

    SciTech Connect

    Deng,Y.; Liu, J.; Zheng, Q.; Eliezer, D.; Kallenbach, N.; Lu, M.

    2006-01-01

    Coiled-coil sequences in proteins commonly share a seven-amino acid repeat with nonpolar side chains at the first (a) and fourth (d) positions. We investigate here the role of a 3-3-1 hydrophobic repeat containing nonpolar amino acids at the a, d, and g positions in determining the structures of coiled coils using mutants of the GCN4 leucine zipper dimerization domain. When three charged residues at the g positions in the parental sequence are replaced by nonpolar alanine or valine side chains, stable four-helix structures result. The X-ray crystal structures of the tetramers reveal antiparallel, four-stranded coiled coils in which the a, d, and g side chains interlock in a combination of knobs-into-knobs and knobs-into-holes packing. Interfacial interactions in a coiled coil can therefore be prescribed by hydrophobic-polar patterns beyond the canonical 3-4 heptad repeat. The results suggest that the conserved, charged residues at the g positions in the GCN4 leucine zipper can impart a negative design element to disfavor thermodynamically more stable, antiparallel tetramers.

  3. Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties

    PubMed Central

    Aronsson, Christopher; Dånmark, Staffan; Zhou, Feng; Öberg, Per; Enander, Karin; Su, Haibin; Aili, Daniel

    2015-01-01

    Coiled coils with defined assembly properties and dissociation constants are highly attractive components in synthetic biology and for fabrication of peptide-based hybrid nanomaterials and nanostructures. Complex assemblies based on multiple different peptides typically require orthogonal peptides obtained by negative design. Negative design does not necessarily exclude formation of undesired species and may eventually compromise the stability of the desired coiled coils. This work describe a set of four promiscuous 28-residue de novo designed peptides that heterodimerize and fold into parallel coiled coils. The peptides are non-orthogonal and can form four different heterodimers albeit with large differences in affinities. The peptides display dissociation constants for dimerization spanning from the micromolar to the picomolar range. The significant differences in affinities for dimerization make the peptides prone to thermodynamic social self-sorting as shown by thermal unfolding and fluorescence experiments, and confirmed by simulations. The peptides self-sort with high fidelity to form the two coiled coils with the highest and lowest affinities for heterodimerization. The possibility to exploit self-sorting of mutually complementary peptides could hence be a viable approach to guide the assembly of higher order architectures and a powerful strategy for fabrication of dynamic and tuneable nanostructured materials. PMID:26370878

  4. Forced Unfolding of the Coiled-Coils of Fibrinogen by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Litvinov, Rustem; Discher, Dennis; Weisel, John

    2007-03-01

    A blood clot needs to have the right degree of stiffness and plasticity for hemostasis, but the origin of these mechanical properties is unknown. Here we report the first measurements using single molecule atomic force microscopy (AFM) to study the forced unfolding of fibrinogen to begin addressing this problem. To generate longer reproducible curves than are possible using monomer, factor XIIIa cross-linked, single chain fibrinogen oligomers were used. When extended under force, these oligomers showed sawtooth shaped force-extension patterns characteristic of unfolding proteins with a peak-to-peak separation of approximately 26 nm, consistent with the independent unfolding of the coiled-coils. These results were then reproduced using a Monte Carlo simulation with parameters in the same range as those previously used for unfolding globular domains. In particular, we found that the refolding time was negligible on experimental time and force scales in contrast to previous work on simpler coiled-coils. We suggest that this difference may be due to fibrinogen's structurally and topologically more complex coiled-coils and that an interaction between the alpha C and central domains may be involved. These results suggest a new functional property of fibrinogen and that the coiled-coil is more than a passive structural element of this molecule.

  5. Electromagnetic Design of HTS D-shaped Coils for a Toroidal-type Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Liu, H.; Deng, X.; Ren, L.; Xu, Y.; He, J.; Tang, Y.

    High current and magnetic field are essential for achieving MCF (magnetic confinement fusion). Superconducting materials and technology have unique advantages to achieve high magnetic field and large-current transmission. With the commercialization of 2G HTS tapes, they are paid wide attention to in Tokamak magnet application. In order to investigate the feasibility of applying HTS into Tokamak magnets, a toroidal-type magnet has been designed using YBCO tapes by means of FEM analysis combining with Matlab. The effects of the coil number and coil arrangements on the critical current, the maximum parallel magnetic field, the inductance and the storage capacity of the magnet are analyzed. Based on that, key technological points of the electromagnetic design are discussed.

  6. 77 FR 53876 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... arrangement concerns the retransfer of 2,959,580 kg of U.S.-origin natural uranium hexafluoride (UF6) (67.60% U), 2,000,000 kg of which is uranium, from Cameco Corporation (Cameco) in Saskatoon,...

  7. 76 FR 17407 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... and the Argentine Republic Concerning Peaceful Uses of Nuclear Energy. DATES: This subsequent... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY... of Energy. ACTION: Proposed subsequent arrangement. SUMMARY: This notice is being issued under...

  8. 42 CFR 413.241 - Pharmacy arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., 2011, an ESRD facility that enters into an arrangement with a pharmacy to furnish renal dialysis... renal dialysis service drugs and biologicals to patients in a timely manner. Effective Date Note: At...

  9. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  10. Optimal hash arrangement of tentacles in jellyfish

    NASA Astrophysics Data System (ADS)

    Okabe, Takuya; Yoshimura, Jin

    2016-06-01

    At first glance, the trailing tentacles of a jellyfish appear to be randomly arranged. However, close examination of medusae has revealed that the arrangement and developmental order of the tentacles obey a mathematical rule. Here, we show that medusa jellyfish adopt the best strategy to achieve the most uniform distribution of a variable number of tentacles. The observed order of tentacles is a real-world example of an optimal hashing algorithm known as Fibonacci hashing in computer science.

  11. Optimal hash arrangement of tentacles in jellyfish.

    PubMed

    Okabe, Takuya; Yoshimura, Jin

    2016-01-01

    At first glance, the trailing tentacles of a jellyfish appear to be randomly arranged. However, close examination of medusae has revealed that the arrangement and developmental order of the tentacles obey a mathematical rule. Here, we show that medusa jellyfish adopt the best strategy to achieve the most uniform distribution of a variable number of tentacles. The observed order of tentacles is a real-world example of an optimal hashing algorithm known as Fibonacci hashing in computer science. PMID:27273762

  12. Optimal hash arrangement of tentacles in jellyfish

    PubMed Central

    Okabe, Takuya; Yoshimura, Jin

    2016-01-01

    At first glance, the trailing tentacles of a jellyfish appear to be randomly arranged. However, close examination of medusae has revealed that the arrangement and developmental order of the tentacles obey a mathematical rule. Here, we show that medusa jellyfish adopt the best strategy to achieve the most uniform distribution of a variable number of tentacles. The observed order of tentacles is a real-world example of an optimal hashing algorithm known as Fibonacci hashing in computer science. PMID:27273762

  13. Residual Stress Measurement Using Rectangular Spiral Coils

    NASA Astrophysics Data System (ADS)

    Sun, Haiyan; Plotnikov, Yuri

    2008-02-01

    Shot peening process provides compressive residual stress within a depth of about 150˜200 um from the surface. It has been demonstrated that multi-frequency eddy current measurement can be effectively used for the residual stress estimation on Ni-based superalloys. In order to measure the stress profile over the entire compressive zone, the probe needs to work in a wide frequency range from 0.1 MHz to above 50 MHz. Due to its wide bandwidth and high precision fabrication process, spiral coils fabricated on flexible substrate using photolithographic technology are good candidate for this task It is useful to develop a coil model in order to optimize coil design, minimize liftoff effect and maximize coil gauge factor. In this work, a 3D analytical model was used to simulate rectangular spiral coil response on a half-space conductor. The results were compared with commercial available 3D finite element software and experimental results. The analytical model was also used to simulate 4-point calibration process that was used to calculate apparent eddy current conductivity (AECC). The experimental setup was described and AECC profile was obtained for shot-peening samples with different peening intensity and different heat treatment.

  14. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans

    PubMed Central

    Abarca, Fernando; Gutierrez-Maldonado, Sebastian E.; Parada, Pilar; Martinez, Patricio; Maass, Alejandro

    2014-01-01

    Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm “Rosetta Fold-and-Dock”. To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic’s secondary and tertiary structure. PMID:25165619

  15. Mesenchymal stem cells and endothelial progenitor cells accelerate intra-aneurysmal tissue organization after treatment with SDF-1α-coated coils.

    PubMed

    Gao, Yuyuan; Lu, Ziming; Chen, Chengwei; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Jiang, Xiaodan; Zeng, Chi; Quan, Daping; Wang, Qiujing

    2016-04-01

    Recurrences of aneurysms remain the major drawback of detachable coils for the endovascular treatment of intracranial aneurysms. The aim of the present study is to develop new modified coils, coating the surface of platinum coils with silk fibroin (SF) consisting of stromal cell-derived factor-1α (SDF-1α), and evaluate its acceleration of organization of cavities and reduction of lumen size in a rat aneurysm model. The morphological characteristics of SDF-1α-coated coils were examined using scanning electron microscopy (SEM). Fifty experimental aneurysms were created and randomly divided into five groups: three groups were embolized with SDF-1α-coated coils (8 mm) and two of these groups need transplantation of mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs); one group was embolized with bare coils (8 mm) and another group severed as control. After coil implantation for 14 or 28 days, the coils were harvested and histological analysis was performed. SEM photographs showed that SF/SDF-1α-coated coils have uniform size and a thin film compared with bare coils. In the group treated with SDF-1α-coated coils, tissue organization was accelerated and the proliferation of α-smooth muscle actin positive cells was promoted in the aneurysmal sac. Compared with unmodified coils, on day 28, tissue organization was significantly greater in the group treated with SDF-1α-coated coils and MSC or EPC transplantation. These results suggest that SDF-1α-coated coils with MSC or EPC transplantation may be beneficial in the aneurysm healing and endothelialization at the orifice of embolized aneurysm. PMID:27125512

  16. Demonstration of a stand-alone cylindrical fiber coil for optical amplifiers

    NASA Astrophysics Data System (ADS)

    Laxton, Steven R.; Bravo, Tyler; Madsen, Christi K.

    2015-08-01

    The design, fabrication and measurement of a cylindrical fiber coil structure is presented that has applications for compact fiber-optic amplifiers. A multimode fiber is used as a surrogate for a dual clad, rare-earth doped fiber for coil fabrication and optical testing. A ray trace algorithm, written in Python, was used to simulate the behavior of light travelling along the waveguide path. An in-house fabrication method was developed using 3D printed parts designed in SolidWorks and assembled with Arduino-controlled stepper motors for coil winding. Ultraviolet-cured epoxy was used to bind the coils into a rigid cylinder. Bend losses are introduced by the coil, and a measurement of the losses for two coil lengths was obtained experimentally. The measurements confirm that bend losses through a multimode fiber, representative of pump light propagating in a dual-clad rare-earth doped fiber, are relatively wavelength independent over a large spectral range and that higher order modes are extinguished quickly while lower order modes transmit through the windings with relatively low loss.

  17. STRUCTURAL RESPONSE OF THE DIII-D TOROIDAL FIELD COIL TO INCREASED LATERAL LOADS

    SciTech Connect

    REIS,E.E; CHIN,E

    2003-10-01

    OAK-B135 Recent calibration shots in which full toroidal field (TF) coil current interacted with the maximum poloidal field coils have produced increased lateral loads on the outer sections of the TF-coil. The increased lateral loads have resulted in deflections that have been sufficient to cause the TF-coil to contact adjacent equipment and produce a transient short to ground within the coil. The six outer turns of each TF-coil bundle are clamped together by insulated preloaded studs to provide increased bending stiffness. These sections of the outer bundles depend on friction to react the lateral loads as a bundle rather than six individual turns. A major concern is that the increased loads will produce slip between turns resulting in excessive lateral deflections and possible damage to the insulating sleeve on the preloaded studs. A finite element structural model of the TF-coil was developed for the calculation of deflections and the shear load distribution throughout the coil for the applied lateral loads from a full current calibration shot. The purpose of the updated structural model is to correlate the applied lateral loads to the total shear force between the unbonded sections of the outer turns. An allowable integrated lateral load applied to the outer turns is established based on the maximum shear force that can be reacted by friction. A program that calculates the magnetic fields and integrated lateral load along the outer turns can be incorporated into the plasma control system. The integrated load can then be compared to the calculated allowable value prior to execution of calibration shots. Calibration shots with a calculated total lateral load greater than the allowable value will be prevented.

  18. Acoustic rainbow trapping by coiling up space.

    PubMed

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea. PMID:25392033

  19. Output beam analysis of high power COIL

    NASA Astrophysics Data System (ADS)

    Yu, Deli; Sang, Fengting; Jin, Yuqi; Sun, Yizhu

    2003-03-01

    As the output power of a chemical oxygen iodine laser (COIL) increases, the output laser beam instability appears as the far-field beam spot drift and deformation for the large Fresnel number unstable resonator. In order to interpret this phenomenon, an output beam mode simulation code was developed with the fast Fourier transform method. The calculation results show that the presence of the nonuniform gain in COIL produces a skewed output intensity distribution, which causes the mirror tilt and bulge due to the thermal expansion. With the output power of COIL increases, the mirror surfaces, especially the back surface of the scraper mirror, absorb more and more heat, which causes the drift and deformation of far field beam spot seriously. The initial misalignment direction is an important factor for the far field beam spot drifting and deformation.

  20. Gas Filled Coaxial Accelerator with Compression Coil

    NASA Technical Reports Server (NTRS)

    Espy, Patrick N. (Inventor)

    1976-01-01

    A self-energized plasma compressor which compresses plasma discharged from a coaxial plasma generator. The device includes a helical shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that generates a force which acts radially upon the plasma. A seal is carried on the end of the coaxial plasma generator for containing gas therein. As the plasma is accelerated out the outer end of the generator, it forces the gas outwardly also compressing such. Beads are carried adjacent the small end of the helical shaped coil for being accelerated to hypervelocities by the plasma and gas. As a result of utilizing gas in the coaxial plasma generator, such minimizes ablation of the beads as well as accelerates such to higher velocities.

  1. Coupled wave model for large magnet coils

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1980-01-01

    A wave coupled model based on field theory is evolved for analysis of fast electromagnetic transients on superconducting coils. It is expected to play a useful role in the design of protection methods against damage due to high voltages or any adverse effects that might arise from unintentional transients. The significant parameters of the coil are identified to be the turn to turn wave coupling coefficients and the travel time of an electromagnetic disturbance around a single turn. Unlike circuit theoretic inductor, the coil response evolves in discrete steps having durations equal to this travel time. It is during such intervals that high voltages are likely to occur. The model also bridges the gap between the low and high ends of the frequency spectrum.

  2. Measuring the orthogonality error of coil systems

    USGS Publications Warehouse

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.

    2012-01-01

    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  3. Acoustic rainbow trapping by coiling up space

    PubMed Central

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea. PMID:25392033

  4. Dual Frequency Coil Array for MR Imaging

    NASA Astrophysics Data System (ADS)

    Amador-Baheza, R.; Sacristan-Rock, E.; Rodríguez, A. O.

    2002-08-01

    An array coil to perform in vivo Magnetic Resonance Imaging and Spectroscopy was developed to study the intestinal wall. It consisted of two surface rectangular-shaped coils mounted on cylindrical structure forming an orthogonal assembly. Since this design is intended to generate images and spectra, each element was tuned to a different resonant frequency: a) imaging: 200 MHz (1H) and b) spectroscopy: 81 MHz (31P). However, at this stage of the research, imaging experiments were only conducted on a Bruker 4.7 Tesla animal system. High-resolution images were obtained from a saline filled phantom and from the intestinal wall of a fully anaesthetised rabbit. The dual frequency coil array can be used to study the pathophysiology of intestinal ischemia.

  5. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  6. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  7. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery

    NASA Astrophysics Data System (ADS)

    Oude Blenke, Erik E.; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico

    2016-04-01

    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes

  8. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery

    NASA Astrophysics Data System (ADS)

    Oude Blenke, Erik E.; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico

    2016-04-01

    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes

  9. Resistive demountable toroidal-field coils for tokamak reactors

    SciTech Connect

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.

  10. Integration of microfabricated low resistance and thousand-turn coils for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Yufeng; Zhao, Lurui; Sok Kim, Eun

    2016-02-01

    This paper presents two microfabrication approaches for multi-layer coils for vibration-energy harvesters. A magnet array is arranged with alternating north- and south-orientation to provide a rapidly changing magnetic field for high electromagnetic energy conversion. Multi-turn spiral coils on silicon wafer are aligned to the magnet array for maximum magnetic flux change. One type of coil is made out of 300 μm-thick copper that is electroplated with silicon mold, and the other is built on 25 μm-thick copper electroplated with photoresist mold. The low resistive coils fabricated by the first approach are integrated in a microfabricated energy harvester of 17  ×  7  ×  1.7 mm3 (=0.2 cm3) weighing 0.8 g, which generates 14.3 μW power output (into 0.7 Ω load) from vibration amplitude of 6 μm at 250 Hz. The latter approach is used to make a 1080-turn coil for a microfabricated electromagnetic energy harvester with magnet array and plastic spring. Though the size and weight of the harvester are only 44  ×  20  ×  6 mm3 (=5.3 cm3) and 12 g, respectively, it generates 1.04 mW power output (into 190 Ω load) when it is vibrated at 75 Hz with vibration amplitude of 220 μm.

  11. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  12. Boat electrofishing relative to anode arrangement

    USGS Publications Warehouse

    Miranda, L.E.; Kratochvil, M.

    2008-01-01

    We assessed the effect of boom (i.e., anode) arrangement (a single boom and double booms spaced 1.3, 1.9, and 3.2 m apart) on the characteristics of the electric field formed ahead of an electrofishing boat as well as on fish catch. Anode arrangement affected the lengthwise and crosswise characteristics of the field. As a general rule, rearranging the anodes from a single boom located centrally to a double-boom system with broadly separated anodes shifted the strength of the field outward (away from the center) and forward (away from the boat). The highest voltage gradients occurred when the anodes had the greatest separation. Catch rates varied by boom arrangement, increasing as boom separation increased. Differences in species and length selectivity with respect to boom arrangement were minor. We suggest that the double-boom arrangement with the booms placed about 1.9 m apart (but no more than about 2.5 m) is suitable for most electrofishing applications. ?? Copyright by the American Fisheries Society 2008.

  13. Induction coil as a non-contacting ultrasound transmitter and detector: Modeling of magnetic fields for improving the performance.

    PubMed

    Rueter, Dirk

    2016-02-01

    A simple copper coil without a voluminous stationary magnet can be utilized as a non-contacting transmitter and as a detector for ultrasonic vibrations in metals. Advantages of such compact EMATs without (electro-)magnet might be: applications in critical environments (hot, narrow, presence of iron filings…), potentially superior fields (then improved ultrasound transmission and more sensitive ultrasound detection). The induction field of an EMAT strongly influences ultrasound transduction in the nearby metal. Herein, a simplified analytical method for field description at high liftoff is presented. Within certain limitations this method reasonably describes magnetic fields (and resulting eddy currents, inductances, Lorentz forces, acoustic pressures) of even complex coil arrangements. The methods can be adapted to conventional EMATS with a separate stationary magnet. Increased distances (liftoff) are challenging and technically relevant, and this practical question is addressed: with limited electrical power and given free space between transducer and target metal, what would be the most efficient geometry of a circular coil? Furthermore, more complex coil geometries ("butterfly coil") with a concentrated field and relatively higher reach are briefly investigated. PMID:26522956

  14. Health among the Oldest-Old in China: Which Living Arrangements Make a Difference?

    PubMed Central

    Zhang, Jiaan; Liang, Jersey

    2016-01-01

    This study aims to (1) examine the association of living arrangements and health among oldest-old Chinese, and (2) investigate gender differences in the association of living arrangements and health. Data were from the first two waves of the Chinese Longitudinal Healthy Longevity Survey, which included 9,093 Chinese averaging 92 years old. Living arrangements had six mutually exclusive categories: living alone, with spouse, with children, with spouse and children, with others and in institutions. Using multinomial logistic regression, we found that baseline living arrangements are significantly associated with mortality, activities of daily living (ADL) disability, and self-rated health at Wave 2, controlling for baseline health, sociodemographic characteristics and availability of children. Further, the linkages between living arrangements and mortality vary by gender. Among the different living arrangements, having a spouse in the household (either with a spouse only or with both a spouse and children) provides the best health protection. Living alone and living with children are associated with both health advantages and disadvantages. Institutional living lowers mortality risk for men but not women. Living with others provides the least health benefits. Our study has extended the research on living arrangements and health to a unique population—the oldest-old in China—and clarified the health advantages and disadvantages of different living arrangements. Future research should examine the mechanisms linking living arrangements and health, and the experience of institutional living for men and women in China. PMID:19019514

  15. Characteristics of bowl-shaped coils for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki

    2015-05-01

    Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.

  16. Tool Removes Coil-Spring Thread Inserts

    NASA Technical Reports Server (NTRS)

    Collins, Gerald J., Jr.; Swenson, Gary J.; Mcclellan, J. Scott

    1991-01-01

    Tool removes coil-spring thread inserts from threaded holes. Threads into hole, pries insert loose, grips insert, then pulls insert to thread it out of hole. Effects essentially reverse of insertion process to ease removal and avoid further damage to threaded inner surface of hole.

  17. Simplified deflection-coil linearity testing

    NASA Technical Reports Server (NTRS)

    Kramer, G. P.

    1976-01-01

    Mask placed over face of image-dissecting photomultiplier tube has precision array of pinholes that permit light to impinge on tube at known points. Signals are fed to deflection coil which sweeps beam across each point without complex operator procedures.

  18. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  19. Transcatheter Coil Embolization of Splenic Artery Aneurysm

    SciTech Connect

    Yamamoto, Satoshi Hirota, Shozo; Maeda, Hiroaki; Achiwa, Sachiko Arai, Keisuke; Kobayashi, Kaoru; Nakao, Norio

    2008-05-15

    The purpose of this study was to evaluate clinical results and technical problems of transcatheter coil embolization for splenic artery aneurysm. Subjects were 16 patients (8 men, 8 women; age range, 40-80 years) who underwent transcatheter embolization for splenic artery aneurysm (14 true aneurysms, 2 false aneurysms) at one of our hospitals during the period January 1997 through July 2005. Two aneurysms (12.5%) were diagnosed at the time of rupture. Multiple splenic aneurysms were found in seven patients. Aneurysms were classified by site as proximal (or strictly ostial) (n = 3), middle (n = 3), or hilar (n = 10). The indication for transcatheter arterial embolization was a false or true aneurysm 20 mm in diameter. Embolic materials were fibered coils and interlocking detachable coils. Embolization was performed by the isolation technique, the packing technique, or both. Technically, all aneurysms were devascularized without severe complications. Embolized aneurysms were 6-40 mm in diameter (mean, 25 mm). Overall, the primary technical success rate was 88% (14 of 16 patients). In the remaining 2 patients (12.5%), partial recanalization occurred, and re-embolization was performed. The secondary technical success rate was 100%. Seven (44%) of the 16 study patients suffered partial splenic infarction. Intrasplenic branching originating from the aneurysm was observed in five patients. We conclude that transcatheter coil embolization should be the initial treatment of choice for splenic artery aneurysm.

  20. COMPACT COILED DENUDER FOR ATMOSPHERIC SAMPLING

    EPA Science Inventory

    A compact coiled denuder has been designed and its performance evaluated both theoretically and experimentally. he design is based on special features of laminar flow in a curved tube, which significantly enhance the mass transfer Sherwood number governing gas collection at the w...

  1. Cooling arrangement for a gas turbine component

    DOEpatents

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-02-10

    A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.

  2. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    SciTech Connect

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  3. Mechanical design of a high field common coil magnet

    SciTech Connect

    Caspi, S.; Chow, K.; Dietderich, D.; Gourlay, S.; Gupta, R.; McInturff, A.; Millos, G.; Scanlan, R.

    1999-03-18

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a 'conductor-friendly' option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb{sub 3}Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach.

  4. Particle confinement in EBT reactors with noncircular mirror coils

    SciTech Connect

    Owen, L.W.; Uckan, N.A.

    1983-01-01

    Methods of improving single particle confinement in the vacuum magnetic field of an ELMO Bumpy Torus (EBT) reactor have heretofore focused on enhancement of the effective magnetic aspect ratio through the addition of relatively low current supplementary coils to the basic EBT configuration of toroidally linked circular mirror coils. This method of aspect ratio enhancement is reviewed and compared to the use of noncircular, D-shaped mirror coils. A critical parameter in this evaluation is the required radial thickness delta of the blanket-shield assembly in the coil throat. Results indicate that D-coils represent an attractive alternative to the supplementary coil configurations if future neutronics calculations show that delta coils. D-coils are shown to be extremely effective in symmetrizing mod-B in the midplane, thereby giving good trapped particle confinement, hot electron ring centering, and reactor volume utilization.

  5. Coiled-Coil Irregularities and Instabilities in Group A Streptococcus M1 Are Required for Virulence

    SciTech Connect

    McNamara, Case; Zinkernagel, Annelies S.; Macheboeuf, Pauline; Cunningham, Madeleine W.; Nizet, Victor; Ghosh, Partho

    2008-07-21

    Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the -3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.

  6. Comparison of an Electromagnetic Energy Harvester Performance using Wound Coil Wire and PCB Coil

    NASA Astrophysics Data System (ADS)

    Resali, MSM; Salleh, H.

    2016-03-01

    This paper presents the performance of two types of electromagnetic energy harvester, one using manually wound coil wire (EH-EC) and the other one using printed circuit board (PCB) coil (EH-EP). The objective of the study is to measure the corresponding output voltage and power by varying the number of coils and the position of the magnet. The experiment was conducted at a fix 50 Hz of frequency and at 0.25g of acceleration. The EH-EP was found to be more effective than the 350 turns of the wound coil wire, with maximum power of 26 μW. Overall, the performance of the EH-EC showed better result with maximum power of 125 μW for 1050 turns when compared to the EH-EP.

  7. Short peptide tag for covalent protein labeling based on coiled coils.

    PubMed

    Wang, Jianpeng; Yu, Yongsheng; Xia, Jiang

    2014-01-15

    To label proteins covalently, one faces a trade-off between labeling a protein specifically and using a small tag. Often one must compromise one parameter for the other or use additional components, such as an enzyme, to satisfy both requirements. Here, we report a new reaction that covalently labels proteins by using engineered coiled-coil peptides. Harnessing the concept of "proximity-induced reactivity", the 21-amino-acid three-heptad peptides CCE/CCK were modified with a nucleophilic cysteine and an α-chloroacetyl group at selected positions. When pairs of coiled coils associated, an irreversible covalent bond spontaneously formed between the peptides. The specificity of the cross-linking reaction was characterized, the probes were improved by making them bivalent, and the system was used to label a protein in vitro and receptors on the surface of mammalian cells. PMID:24341800

  8. Boost of plasma current with active magnetic field shaping coils in rotamak discharges

    SciTech Connect

    Yang Xiaokang; Goss, Jermain; Kalaria, Dhara; Huang, Tian Sen

    2011-08-15

    A set of magnetic shaping coils is installed on the Prairie View (PV) rotamak for the study of active plasma shape control in the regimes with and without toroidal field (TF). In the spherical tokamak regime (with TF), plasma current I{sub p} can be boosted by 200% when all five shaping coils (connected in series) are energized. The enhancement of current drive efficiency is mainly attributed to the radial compression and the substantially axial extension of the plasma column; this in turn improves the impedance matching and thus increases antenna input power. In the field-reversed configuration (without TF), plasma current can be boosted by 100% when one middle coil is used; the appearance of radial shift mode limits the achievable value of I{sub p}. The experiments clearly demonstrate that the plasma shape control plays a role in effectively driving plasma current in rotamaks.

  9. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    SciTech Connect

    Singh, Pratibha; Savithri, H.S.

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  10. Electronic manufacturing process improvement (EMPI) for automatic winding of quadrupole fiber optic gyro sensor coils

    NASA Astrophysics Data System (ADS)

    Safonov, Gregory S.

    1994-09-01

    The purpose of this EMPI program was to design an Automatic Coil Winding Station (ACWS) for winding Fiber Optic Gyro (FOG) sensor coils through the use of TQM, QFD, etc., followed by use of Taguchi an other statistical techniques to optimize the coil winding process. Four phases were involved: Process Definition, Critical Factor Identification, Variability Reduction, and SPC Implementation. Winding FOG coils is both difficult and fragile in that it is a quadrupole wind - as apposed to the conventional thread wind - compounded by the requirement for low tension precision, high-fiber packing density, and always risk of damage to the delicate fiber itself. The critical factor identification in the quadrupole winding process was reduced to fiber crossover - a significant detrimental influence on gyro performance - which, in turn, was closely identified with fiber gap control. The station was completed and deployed to the field where production coils are currently being wound. The ACWS not only lowered the required labor skill but succeeded in reducing the winding cycle time to 1 hour (from 24 hours) and touch labor time to 0.3 hours (from 24 hours) while improving the yield and performance through improved process control.

  11. 25. Top 32/1. Plan of general arrangement of equipment. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Top 32/1. Plan of general arrangement of equipment. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  12. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance

  13. IMPROVED COILED-COIL DESIGN ENHANCES INTERACTION WITH BCR-ABL AND INDUCES APOPTOSIS

    PubMed Central

    Dixon, Andrew S.; Miller, Geoffrey D.; Bruno, Benjamin J.; Constance, Jonathan E.; Woessner, David W.; Fidler, Trevor P.; Robertson, James C.; Cheatham, Thomas E.; Lim, Carol S.

    2012-01-01

    The oncoprotein Bcr-Abl drives aberrant downstream activity through trans-autophosphorylation of homo-oligomers in chronic myelogenous leukemia (CML).1,2 The formation of Bcr-Abl oligomers is achieved through the coiled-coil domain at the N-terminus of Bcr.3, 4 We have previously reported a modified version of this coiled-coil domain, CCmut2, which exhibits disruption of Bcr-Abl oligomeric complexes and results in decreased proliferation of CML cells and induction of apoptosis.5 A major contributing factor to these enhanced capabilities is the destabilization of the CCmut2 homo-dimers, increasing the availability to interact with and inhibit Bcr-Abl. Here, we included an additional mutation (K39E) that could in turn further destabilize the mutant homo-dimer. Incorporation of this modification into CCmut2 (C38A, S41R, L45D, E48R, Q60E) generated what we termed CCmut3, and resulted in further improvements in the binding properties with the wild-type coiled-coil domain representative of Bcr-Abl. A separate construct containing one revert mutation, CCmut4, did not demonstrate improved oligomeric properties and indicated the importance of the L45D mutation. CCmut3 demonstrated improved oligomerization via a two-hybrid assay as well as through colocalization studies, in addition to showing similar biologic activity as CCmut2. The improved binding between CCmut3 and the Bcr-Abl coiled-coil may be used to redirect Bcr-Abl to alternative subcellular locations with interesting therapeutic implications. PMID:22136227

  14. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    PubMed Central

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  15. Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model.

    PubMed

    Yang, Jian; Shimada, Yasuhito; Olsthoorn, René C L; Snaar-Jagalska, B Ewa; Spaink, Herman P; Kros, Alexander

    2016-08-23

    The complementary coiled coil forming peptides E4 [(EIAALEK)4] and K4 [(KIAALKE)4] are known to trigger liposomal membrane fusion when tethered to lipid vesicles in the form of lipopeptides. In this study, we examined whether these coiled coil forming peptides can be used for drug delivery applications. First, we prepared E4 peptide modified liposomes containing the far-red fluorescent dye TO-PRO-3 iodide (E4-Lipo-TP3) and confirmed that E4-liposomes could deliver TP3 into HeLa cells expressing K4 peptide on the membrane (HeLa-K) under cell culture conditions in a selective manner. Next, we prepared doxorubicin-containing E4-liposomes (E4-Lipo-DOX) and confirmed that E4-liposomes could also deliver DOX into HeLa-K cells. Moreover, E4-Lipo-DOX showed enhanced cytotoxicity toward HeLa-K cells compared to free doxorubicin. To prove the suitability of E4/K4 coiled coil formation for in vivo drug delivery, we injected E4-Lipo-TP3 or E4-Lipo-DOX into zebrafish xenografts of HeLa-K. As a result, E4-liposomes delivered TP3 to the implanted HeLa-K cells, and E4-Lipo-DOX could suppress cancer proliferation in the xenograft when compared to nontargeted conditions (i.e., zebrafish xenograft with free DOX injection). These data demonstrate that coiled coil formation enables drug selectivity and efficacy in vivo. It is envisaged that these findings are a step forward toward biorthogonal targeting systems as a tool for clinical drug delivery. PMID:27504667

  16. Multiple-Coil, Pulse-Induction Metal Detector

    NASA Technical Reports Server (NTRS)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  17. Upgrades to Power Systems and Magnetic Field Coils in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Bongard, M. W.; Bradisse, M. R.; Fonck, R. J.; Lewicki, B. T.; Swager, S. M.

    2012-10-01

    A set of facility upgrades for Pegasus is currently underway to improve the control and performance of the power systems and the magnetic field coils, with the aim of increased helicity-driven current drive for non-inductive startup. The plasma current achieved through helicity injection goes as √ITF Iinj , the toroidal field rod current and injector bias current, respectively. To increase this quantity, the toroidal field power system will be upgraded. Eight new high-current IGBT bridges will replace the 6 bridges currently in place, bringing ITF from 288 kA-turns to 600 kA-turns. Iinj is increased via a new 14 kA, 2.2 kV, single-quadrant IGCT switching power supply. The main poloidal field coil system is expanded to provide faster vertical field penetration of the vessel wall, thereby providing more flexible control of plasma position during startup and current growth. The L/R time for these coils is reduced by ˜40%. New divertor coils are being installed to provide more shaping flexibility and separatrix-limited operations. Overall power supply control will be improved and simplified by deployment of digital feedback controllers using Field Programmable Gate Arrays (FPGAs) to replace PWM analog feedback controllers. FPGAs will provide faster control frequencies, improved fault-handling capability, and streamlined recording of power system operations.

  18. Leveraging intrinsic chain anisotropy to align coil-coil block copolymers with magnetic fields

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Zhang, Kai; Gopinadhan, Manesh; Larson, Steve; Majewski, Pawel; Yager, Kevin; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    Magnetic field alignment of block copolymers (BCPs) has typically relied on the presence of liquid crystalline or crystalline assemblies to provide sufficient magnetic anisotropy to drive alignment. Recent experiments however show that alignment is also possible in simple coil-coil BCPs. In particular, alignment of lamellae was observed in poly(styrene-b-4-vinylpyridine) (PS-P4VP) on cooling across the order-disorder transition at field strengths as low as 1 T, with alignment improving markedly with increasing field strength and decreasing cooling rate. Here we discuss the intrinsic chain anisotropy which drives the observed alignment, and its display as a net microdomain anisotropy due to chain tethering at the block interface. We use in-situ X-ray scattering to study the phase behavior and temperature-, time-, and field- dependent dynamics of magnetic alignment in coil-coil BCPs, highlighting the important roles of chain anisotropy and grain size in alignment. For the right combination of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly in other coil-coil systems, including cylinder-forming poly(styrene-b-dimethylsiloxane). Field alignment of PS-P4VP with PEO and other blends provides a route to form functional materials such as nanoporous films and ion conducting polymers.

  19. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement

    PubMed Central

    Stavolone, Livia; Villani, Maria Elena; Leclerc, Denis; Hohn, Thomas

    2005-01-01

    The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells. PMID:15837934

  20. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement

    NASA Astrophysics Data System (ADS)

    Stavolone, Livia; Villani, Maria Elena; Leclerc, Denis; Hohn, Thomas

    2005-04-01

    The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells. movement protein | virion-associated protein | Biacore