Science.gov

Sample records for control rod calibration

  1. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    SciTech Connect

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of the control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.

  2. CONTROL ROD

    DOEpatents

    Zinn, W.H.; Ross, H.V.

    1958-11-18

    A control rod is described for a nuclear reactor. In certaln reactor designs it becomes desirable to use a control rod having great width but relatively llttle thickness. This patent is addressed to such a need. The neutron absorbing material is inserted in a triangular tube, leaving volds between the circular insert and the corners of the triangular tube. The material is positioned within the tube by the use of dummy spacers to achleve the desired absorption pattern, then the ends of the tubes are sealed with suitable plugs. The tubes may be welded or soldered together to form two flat surfaces of any desired width, and covered with sheetmetal to protect the tubes from damage. This design provides a control member that will not distort under the action of outside forces or be ruptured by gases generated within the jacketed control member.

  3. Control rod drive

    SciTech Connect

    Hawke, Basil C.

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  4. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  5. CRUCIFORM CONTROL ROD JOINT

    DOEpatents

    Thorp, A.G. II

    1962-08-01

    An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)

  6. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  7. COMPOSITE CONTROL ROD

    DOEpatents

    Rock, H.R.

    1963-12-24

    A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)

  8. Control rod driveline and grapple

    DOEpatents

    Germer, John H.

    1987-01-01

    A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.

  9. REACTOR CONTROL ROD OPERATING SYSTEM

    DOEpatents

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  10. SAFETY SYSTEM FOR CONTROL ROD

    DOEpatents

    Paget, J.A.

    1963-05-14

    A structure for monitoring the structural continuity of a control rod foi a neutron reactor is presented. A electric conductor readily breakable under mechanical stress is fastened along the length of the control rod at a plurality of positions and forms a closed circuit with remote electrical components responsive to an open circuit. A portion of the conductor between the control rod and said components is helically wound to allow free and normally unrestricted movement of the segment of conductor secured to the control rod relative to the remote components. Any break in the circuit is indicative of control rod breakage. (AEC)

  11. Reactor control rod timing system

    DOEpatents

    Wu, Peter T. K.

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  12. Hafnium stainless steel absorber rod for control rod

    SciTech Connect

    Charnley, J.E.; Cearley, J.E.; Dixon, R.C.; Izzo, K.R.; Aiello, L.L.

    1989-08-01

    This patent describes an improvement in a control rod having a stainless steel body for enclosing a neutron absorbing poison, the control rod having movement along an axial direction for insertion into and out of a nuclear reactor for controlling a nuclear reaction. The improvement comprising: a piece of hafnium; a piece of stainless steel joined to the hafnium by a thin diffusion interface created by friction welding. The hafnium and the stainless steel oriented serially in the axial direction with the thin diffusion interface disposed normal to the axial direction of the control rod movement; means for confining the hafnium to movement along the axial direction with the control rod; and means for attaching the piece of stainless steel to the remaining portion of the control rod to load the weld therebetween under compression or tension during the control rod movement. Whereby the thin diffusion interface is loaded in tension or compression only upon dynamic movement of the control rod.

  13. Advanced gray rod control assembly

    DOEpatents

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  14. NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS

    DOEpatents

    Oakes, L.C.; Walker, C.S.

    1959-12-15

    ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

  15. Inverted Control Rod Lock-In Device

    DOEpatents

    Brussalis, W. G.; Bost, G. E.

    1962-12-01

    A mechanism which prevents control rods from dropping out of the reactor core in the event the vessel in which the reactor is mounted should capsize is described. The mechanism includes a pivoted toothed armature which engages the threaded control rod lead screw and prevents removal of the rod whenever the armature is not attracted by the provided electromagnetic means. (AEC)

  16. Fuel followed control rod installation at AFRRI

    SciTech Connect

    Moore, Mark; Owens, Chris; Forsbacka, Matt

    1992-07-01

    Fuel Followed Control Rods (FFCRs) were installed at the Armed Forces Radiobiology Research Institute's 1 MW TRIGA Reactor. The procedures for obtaining, shipping, and installing the FFCRs is described. As part of the FFCR installation, the transient rod drive was relocated. Core performance due to the addition of the fuel followed control rods is discussed. (author)

  17. Control rods in LMFBRs: a physics assessment

    SciTech Connect

    McFarlane, H.F.; Collins, P.J.

    1982-08-01

    This physics assessment is based on roughly 300 control rod worth measurements in ZPPR from 1972 to 1981. All ZPPR assemblies simulated mixed-oxide LMFBRs, representing sizes of 350, 700, and 900 MWe. Control rod worth measurements included single rods, various combinations of rods, and Ta and Eu rods. Additional measurements studied variations in B/sub 4/C enrichment, rod interaction effects, variations in rod geometry, neutron streaming in sodium-filled channels, and axial worth profiles. Analyses were done with design-equivalent methods, using ENDF/B Version IV data. Some computations for the sensitivities to approximations in the methods have been included. Comparisons of these analyses with the experiments have allowed the status of control rod physics in the US to be clearly defined.

  18. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  19. Reactor control rod timing system. [LMFBR

    DOEpatents

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  20. Control rod drive hydraulic system

    DOEpatents

    Ose, Richard A.

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  1. Control Rod Malfunction at the NRAD Reactor

    SciTech Connect

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  2. [Quality control dose calibrators].

    PubMed

    Montoza Aguado, M; Delgado García, A; Ramírez Navarro, A; Salgado García, C; Muros de Fuentes, M A; Ortega Lozano, S; Bellón Guardia, M E; Llamas Elvira, J M

    2004-01-01

    We have reviewed the legislation about the quality control of dose calibrator. The importance of verifying the correct work of these instruments, is fundamental in daily practice of radiopharmacy and nuclear medicine. The Spanish legislation establishes to include these controls as part of the quality control of radiopharmaceuticals, and the program of quality assurance in nuclear medicine. We have reviewed guides and protocols from international eminent organizations, summarizing the recommended tests and periodicity of them. PMID:15625064

  3. Variable flow control for a nuclear reactor control rod

    DOEpatents

    Carleton, Richard D.; Bhattacharyya, Ajay

    1978-01-01

    A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.

  4. Control rod for a nuclear reactor

    DOEpatents

    Roman, Walter G.; Sutton, Jr., Harry G.

    1979-01-01

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod.

  5. Magnetic switch for reactor control rod

    DOEpatents

    Germer, John H.

    1986-01-01

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  6. Magnetic switch for reactor control rod. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  7. Nuclear reactor remote disconnect control rod coupling indicator

    DOEpatents

    Vuckovich, Michael

    1977-01-01

    A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged.

  8. Regulatory perspective on incomplete control rod insertions

    SciTech Connect

    Chatterton, M.

    1997-01-01

    The incomplete control rod insertions experienced at South Texas Unit 1 and Wolf Creek are of safety concern to the NRC staff because they represent potential precursors to loss of shutdown margin. Even before it was determined if these events were caused by the control rods or by the fuel there was an apparent correlation of the problem with high burnup fuel. It was determined that there was also a correlation between high burnup and high drag forces as well as with rod drop time histories and lack of rod recoil. The NRC staff initial actions were aimed at getting a perspective on the magnitude of the problem as far as the number of plants and the amount of fuel that could be involved, as well as the safety significance in terms of shutdown margin. As tests have been performed and data has been analyzed the focus has shifted more toward understanding the problem and the ways to eliminate it. At this time the staff`s understanding of the phenomena is that it was a combination of factors including burnup, power history and temperature. The problem appears to be very sensitive to these factors, the interaction of which is not clearly understood. The model developed by Westinghouse provides a possible explanation but there is not sufficient data to establish confidence levels and sensitivity studies involving the key parameters have not been done. While several fixes to the problem have been discussed, no definitive fixes have been proposed. Without complete understanding of the phenomena, or fixes that clearly eliminate the problem the safety concern remains. The safety significance depends on the amount of shutdown margin lost due to incomplete insertion of the control rods. Were the control rods to stick high in the core, the reactor could not be shutdown by the control rods and other means such as emergency boration would be required.

  9. Radiological characterization of spent control rod assemblies

    SciTech Connect

    Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L.

    1995-10-01

    This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), {sup 60}Co and {sup 63}Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was {sup 108m}Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well ({+-}10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste.

  10. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  11. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    DOEpatents

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  12. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  13. Need and procedure for calibration of fuel rod simulators. [PWR

    SciTech Connect

    Dabbs, R.D.; Ott, L.J.

    1980-01-01

    An experimental thermocouple calibration procedure and four-part calibration program, ORTCAL (ORNL Thermocouple Calibration), have been developed to supply FRS performance information to the inverse heat conduction model and program ORINC. Case studies have shown that failure to fully classify FRSs with regard to component physical properties, gaps, etc., can result in severe errors during inverse calculations of the driving potential at the surface of the FRS (..delta..T), the spatial and temporal history of the heat flow within the FRS, and the surface heat flux.

  14. CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR

    DOEpatents

    Hawke, B.C.; Liederbach, F.J.; Lones, W.

    1963-05-14

    A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)

  15. The intercomparison of mixed nuclide rod source sets used to calibrate waste assay systems

    SciTech Connect

    Kirkpatrick, J.M.; Philips, S.; Croft, S.

    2007-07-01

    The relative activities of five sets of commercially available, certified mixed-nuclide rod gamma sources have been measured. The results are compared with one another and with the manufacturer's calibration certificates in order to evaluate the self consistency, accuracies and uncertainties of the activities claimed. The comparison measurements were made with Canberra's Tomographic Gamma Scanner (TGS) System in Segmented Gamma Scanner (SGS) mode, operated with a single segment and using a 120% relative efficiency HPGe detector. Each set of six rods was measured in a rotating 208-liter drum geometry typical of applications in which such rod source sets are commonly used for both initial calibration and operational verification measurements. Three of the five source sets were found to be consistent with one another within the experimental and claimed certificate uncertainties; however, two of the mixed-nuclide source sets were found to have nuclide-to-nuclide variations of activity significantly in excess of expectations based upon the claimed 99% confidence-level uncertainties. Such discrepancies could introduce substantial bias into waste measurement results made using the afflicted rod sets as the calibration standards. The findings of this work lead us to conclude that, where possible, the certified activities and associated uncertainties on newly acquired sources should be independently confirmed before relying on them as calibration standards. (authors)

  16. Analysis of some compliance calibration data for chevron-notch bar and rod specimens

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.; Bubsey, Raymond T.; Pierce, William S.; Shannon, John L., Jr.

    1991-01-01

    A set of equations describing certain fracture mechanics parameters for chevron-notch bar and rod specimens are presented. They are developed by fitting earlier compliance calibration data. The difficulty in determining the minimum stress intensity coefficient and the critical crack length is discussed.

  17. Measurements of control rod efficiency in RBMK critical assembly upon dropping of the rods

    SciTech Connect

    Zhitarev, V. E. Kachanov, V. M.; Sergevnin, A. Yu.; Lebedev, G. V.

    2014-12-15

    The efficiency of control rods in the RBMK critical assembly was measured in the case where one manual-control rod (MCR) is dropped from a steady critical state, and several other MCRs were additionally dropped after 44 s. The measured number of neutrons in the assembly during and after dropping of the rods was used to calculate the efficiency values of the rods by solution of the system of point kinetics equations. A series of methods of the initial data treatment for determination of the desired values of reactivity without the calculated corrections were used.

  18. Rebirth of a control rod at the Phenix power plant

    SciTech Connect

    De Carvalho, Corinne; Vignau, Bernard; Masson, Marc

    2007-07-01

    This paper outlines the operations involved in cleaning the control rod for the complementary shutdown system in the Phenix Power Plant, the French sodium-cooled fast reactor. The Phenix reactor is controlled by six control rods and a complementary shutdown system. The latter comprises a control rod and a mechanism maintaining the rod in position by means of an electromagnet. The electromagnet is continuously supplied with power and holds the rod control assembly in position by magnetisation on a plane circular surface made from pure iron. The bearing capacity of the mechanism on the rod was initially 80 daN with a rod weight of 26.3 daN. This deteriorated progressively over time. The bearing surface of the rod and the electromagnet became contaminated with a deposit of sodium oxides and metallic particles, thus creating an air gap. This reached a figure of 36 daN in 2005 and was deemed not to be sufficient to prevent the rod from dropping at the wrong time during reactor operation. The Power Plant thus decided to replace the rod mechanism in the reactor in an initial phase, followed by the control rod itself. As the Phenix Power Plant had no spare control rods left, they initiated a 'salvage' plan, over two stages, for the rod removed from the reactor and placed in the fuel storage drum: - Inspection of the bearing surface of the rod by means of a borescope to check whether the rod could be salvaged, - A cleaning operation on the bearing face and checks on the bearing capacity of the rod. The operation is subject to very stringent requirements: the rod must not be taken out of the sodium to ensure that it can be reused in the reactor. The operation must thus take place in the fuel storage drum where there are no facilities for such an operation and where operating conditions are very hostile: high temperatures (the sodium in the fuel storage drum is at a temperature of 150 deg. C, high dose rate (3 mGy/h on the bearing surface) and the bearing surface is submerged

  19. Nuclear reactor shutdown control rod assembly

    DOEpatents

    Bilibin, Konstantin

    1988-01-01

    A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

  20. CONTROL ROD FOR A NUCLEAR REACTOR AND METHOD OF PREPARATION

    DOEpatents

    Hausner, H.H.

    1958-12-30

    BS>An improved control rod is presented for a nuclear reactor. This control rod is comprised of a rare earth metal oxide or rare earth metal carbide such as gadolinium oxide or gadolinium carbide, uniformly distributed in a metal matrix having a low cross sectional area of absorption for thermal neutrons, such as aluminum, beryllium, and zirconium.

  1. DEVICE FOR CONTROLLING INSERTION OF ROD

    DOEpatents

    Beaty, B.J.

    1958-10-14

    A device for rapidly inserting a safety rod into a nuclear reactor upon a given signal or in the event of a power failure in order to prevent the possibility of extensive damage caused by a power excursion is described. A piston is slidably mounted within a vertical cylinder with provision for an electromagnetic latch at the top of the cylinder. This assembly, with a safety rod attached to the piston, is mounted over an access port to the core region of the reactor. The piston is normally latched at the top of the cylinder with the safety rod clear of the core area, however, when the latch is released, the piston and rod drop by their own weight to insert the rod. Vents along the side of the cylinder permit the escape of the air entrapped under the piston over the greater part of the distance, however, at the end of the fall the entrapped air is compressed thereby bringing the safety rod gently to rest, thus providing for a rapid automatic insertion of the rod with a minimum of structural shock.

  2. COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS

    DOEpatents

    Fox, R.J.; Oakes, L.C.

    1959-04-14

    A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.

  3. Compliance calibration of the short rod chevron-notch specimen for fracture toughness testing of brittle materials

    NASA Technical Reports Server (NTRS)

    Bubsey, R. T.; Pierce, W. S.; Shannon, J. L., Jr.; Munz, D.

    1982-01-01

    The short rod chevron-notch specimen has the advantages of (1) crack development at the chevron tip during the early stage of test loading, and (2) convenient calculation of plane-strain fracture toughness from the maximum test load and from a calibration factor which depends only on the specimen geometry and manner of loading. For generalized application, calibration of the specimen over a range of specimen proportions and chevron-notch configurations is necessary. Such was the objective of this investigation, wherein calibration of the short rod specimen was made by means of experimental compliance measurements converted into dimensionless stress intensity factor coefficients.

  4. Remotely operated gripper provides vertical control rod movement

    NASA Technical Reports Server (NTRS)

    Hutter, E.; Koch, L. J.

    1968-01-01

    Remote actuation of a gripper shaft affects vertical engagement between a drive shaft and control rod. A secondary function of the gripper is to provide remote indication of positive completion of the gripping or ungripping operation.

  5. TOP OF MTR. CONTROL RODS AND GRID PLATE EMERGE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOP OF MTR. CONTROL RODS AND GRID PLATE EMERGE FROM REACTOR TANK. INL NEGATIVE NO. 6206. R.G. Larsen, Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  7. Safety analysis forseismic motion of control rods accounting for rod misalignment

    SciTech Connect

    Osmin, W.L.; Paik, I.K.

    1992-01-01

    The purpose of this report is to provide a summary of the results of three safety analyses performed by the SRL Safety Analysis Group (SAG) to assess the safety impact of control rod motion induced by a Design Basis Earthquake (DBE).

  8. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  9. ALLOY COMPOSITION FOR NEUTRONIC REACTOR CONTROL RODS

    DOEpatents

    Lustman, B.; Losco, E.F.; Snyder, H.J.; Eggleston, R.R.

    1963-01-22

    This invention relates to alloy compositons suitable as cortrol rod material consisting of, by weight, from 85% to 85% Ag, from 2% to 20% In, from up to 10% of Cd, from up to 5% Sn, and from up to 1.5% Al, the amount of each element employed being determined by the equation X + 2Y + 3Z + 3W + 4V = 1.4 and less, where X, Y, Z, W, and V represent the atom fractions of the elements Ag, Cd, In, Al and Sn. (AEC)

  10. Feasibility study of the University of Utah TRIGA reactor power upgrade in respect to control rod system

    NASA Astrophysics Data System (ADS)

    Cutic, Avdo

    The objectives of this thesis are twofold: to determine the highest achievable power levels of the current University of Utah TRIG Reactor (UUTR) core configuration with the existing three control rods, and to design the core for higher reactor power by optimizing the control rod worth. For the current core configuration, the maximum reactor power, eigenvalue keff, shutdown margin, and excess reactivity have been measured and calculated. These calculated estimates resulted from thermal power calibrations, and the control rod worth measurements at various power levels. The results were then used as a benchmark to verify the MCNP5 core simulations for the current core and then to design a core for higher reactor power. This study showed that the maximum achievable power with the current core configuration and control rod system is 150kW, which is 50kW higher than the licensed power of the UUTR. The maximum achievable UUTR core power with the existing fuel is determined by optimizing the core configuration and control rod worth, showing that a power upgrade of 500 kW is achievable. However, it requires a new control rod system consisting of a total of four control rods. The cost of such an upgrade is $115,000.

  11. Dysprosium titanate as an absorber material for control rods

    NASA Astrophysics Data System (ADS)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  12. Horizontal displacement profiles in N Reactor horizontal control rod channels

    SciTech Connect

    Woodruff, E.M.

    1988-12-01

    One of the potential results from N Reactor graphite moderator distortion is horizontal curvature of the horizontal control rod (HCR) channels. Mockup testing has identified two possible problem scenarios resulting from such curvature: slow scram times and rod abrasion due to rubbing of the rod on the side of the channel and subsequent displacement of T-blocks that form the sides of the channels. As a result of these potential events, surveillance tools (instrumentation) to measure HCR channel horizontal displacement was recently developed. Surveillance of HCR channel 65, performed on December 11, 1987, indicated a six inch rearward displacement near the center of the channel. This approximated the displacement which mockup testing has identified as a concern with regard to T-block movement. Closed Circuit Television (CCTV) observations indicate that T-block movement has not occurred in HCR channel 65, but that there has been some rubbing of the rod on the channel sides. Review of most recent rod hot scram times indicates normal performance for HCR 65. To further evaluate this concern, horizontal deflection and CCTV surveillance was scheduled in six HCR channels surrounding HCR channel 65. Inspection of the HCR rod tip was also performed. 13 refs., 6 figs.

  13. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  14. NEUTRONIC REACTOR CONTROL ROD AND METHOD OF FABRICATION

    DOEpatents

    Porembka, S.W. Jr.

    1961-06-27

    A reactor control rod formed from a compacted powder dispersion is patented. The rod consists of titanium sheathed with a cladding alloy. The cladding alloy contains 1.3% to 1.6% by weight of tin, 0.07% to 0.12% by weight of chromium, 0.04% to 0.08% by weight of nickel, 0.09% to 0.16% by weight of iron, carbon not exceeding 0.05%, less than 0.5% by weight of incidental impurities, and the balance zirconium.

  15. VIEW OF CABLES AND TAPES ASSOCIATED WITH ADRIVE CONTROL ROD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CABLES AND TAPES ASSOCIATED WITH A-DRIVE CONTROL ROD SYSTEM, AT LEVEL +15’, DIRECTLY ABOVE PDP CONTROL ROOM, LOOKING NORTHWEST. THE CABLES FROM THE PDP ROOM GO THROUGH THE CONCRETE WALL, MAKE A RIGHT ANGLE TURN DOWNWARD, AND DESCEND INTO THE PDP CONTROL ROOM AS VERTICAL TAPES - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  16. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  17. Method and apparatus for monitoring the control rods of a nuclear reactor

    SciTech Connect

    Gravelle, A.; Marini, J.; Romy, D.

    1984-12-04

    Method and apparatus for monitoring the movement of the control rods of a nuclear reactor. The number of steps of movement in either direction of the rod from which the control rod is suspended is counted. According to the height of the step, an indication of the position of the suspension rod and of the control rod. The apparatus comprises devices for measuring the speed of movement of the control rod, for logging variations in speed higher than a given value, and for counting such variations according to their sign. The invention is particularly useful in pressurized water nuclear reactors.

  18. Visual inspections of N Reactor horizontal control rod channels

    SciTech Connect

    Woodruff, E.M.

    1990-09-01

    Safety surveillance is performed in horizontal control rod (HCR) channels to locate conditions which could slow or block rod travel. The findings guide the application of preventive measures to assure eventual rod motion impairment will not occur. Borescopes and, more recently, miniaturized closed circuit television (CCTV) cameras have been used for these examinations. Inspections and measurement results are documented in annual surveillance reports, however reported CCTV observations have been limited to highlights. The objective of this report is to catalogue the CCTV recordings in a format suitable for analysis and interpretation and to ease the access to any desired location by noting tape counter readings corresponding with each tube block in view. Searching file tapes for conditions in a specific areas in the past required counting blocks as they passed the camera to determine the distance from a feature like the edge of the reflector or a steam vent gap. This report adds the observations from recent rod channel inspections (1987 and 1988) to a comprehensive survey of graphite conditions in the moderator and reflector regions of the N Reactor core. When completed, the stand-by status of graphite components will be available for use in restart or decommissioning deliberations.

  19. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    SciTech Connect

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1989-12-19

    This patent describes, in a reconstitutable control assembly for use with a nuclear fuel assembly, the control assembly including a spider structure and at least one control rod, an attachment joint for detachable fastening the control rod to the spider structure. The attachment joint comprising: a hollow connecting finger on the spider structure; and an elongated detachable split upper end plug on the control rod having a pair of separate upper and lower plug portions, the upper plug portion having integrally-connected tandemly- arranged upper, middle and lower sections. The lower plug portion having integrally-connected tandemly-arranged upper, middle and lower segments.

  20. Implementation of CTRLPOS, a VENTURE module for control rod position criticality searches, control rod worth curve calculations, and general criticality searches

    SciTech Connect

    Smith, L.A.; Renier, J.P.

    1994-06-01

    A module in the VENTURE reactor analysis code system, CTRLPOS, is developed to position control rods and perform control rod position criticality searches. The module is variably dimensioned so that calculations can be performed with any number of control rod banks each having any number of control rods. CTRLPOS can also calculate control rod worth curves for a single control rod or a bank of control rods. Control rod depletion can be calculated to provide radiation source terms. These radiation source terms can be used to predict radiation doses to personnel and estimate the shielding and long-term storage requirements for spent control rods. All of these operations are completely automated. The numerous features of the module are discussed in detail. The necessary input data for the CTRLPOS module is explained. Several sample problems are presented to show the flexibility of the module. The results presented with the sample problems show that the CTRLPOS module is a powerful tool which allows a wide variety of calculations to be easily performed.

  1. Internal Control Rod Drive Mechanisms, Design Options for IRIS

    SciTech Connect

    Conway, Lawrence E.; Petrovic, Bojan

    2004-07-01

    IRIS (International Reactor Innovative and Secure) is a medium-power (335 MWe) PWR with an integral, primary circuit configuration, where all the reactor coolant system components are contained within the reactor vessel. This integral configuration is a key reason for the success of IRIS' 'safety-by-design' approach, whereby accident initiators are eliminated or the accident consequences and/or frequency are reduced. The most obvious example of the IRIS safety by design approach is the elimination of large LOCA's, since the integral reactor coolant system has no large loop piping. Another serious accident scenario that is being addressed in IRIS is the postulated ejection of a reactor control cluster assembly (RCCA). This accident initiator can be eliminated by locating the RCCA drive mechanisms (CRDMs) inside the reactor vessel. This eliminates the mechanical drive rod penetration between the RCCA and the external CRDM, eliminating the potential for differential pressure across the pressure boundary, and thus eliminating 'by design' the possibility for rod ejection accident. Moreover, the elimination of the 'large' drive-rod penetrations and the external CRDM pressure housings decreases the likelihood of boric acid leakage and subsequent corrosion of the reactor pressure boundary (like the Davis-Besse incident). This paper will discuss the IRIS top level design requirements and objectives for internal CRDMs, and provide examples candidate designs and their specific performance characteristics. (authors)

  2. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOEpatents

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  3. Decontamination of control rod housing from Palisades Nuclear Power Station.

    SciTech Connect

    Kaminski, M.D.; Nunez, L.; Purohit, A.

    1999-05-03

    Argonne National Laboratory has developed a novel decontamination solvent for removing oxide scales formed on ferrous metals typical of nuclear reactor piping. The decontamination process is based on the properties of the diphosphonic acids (specifically 1-hydroxyethane-1,1-diphosphonic acid or HEDPA) coupled with strong reducing-agents (e.g., sodium formaldehyde sulfoxylate, SFS, and hydroxylamine nitrate, HAN). To study this solvent further, ANL has solicited actual stainless steel piping material that has been recently removed from an operating nuclear reactor. On March 3, 1999 ANL received segments of control rod housing from Consumers Energy's Palisades Nuclear Plant (Covert, MI) containing radioactive contamination from both neutron activation and surface scale deposits. Palisades Power plant is a PWR type nuclear generating plant. A total of eight segments were received. These segments were from control rod housing that was in service for about 6.5 years. Of the eight pieces that were received two were chosen for our experimentation--small pieces labeled Piece A and Piece B. The wetted surfaces (with the reactor's pressurized water coolant/moderator) of the pieces were covered with as a scale that is best characterized visually as a smooth, shiny, adherent, and black/brown in color type oxide covering. This tenacious oxide could not be scratched or removed except by aggressive mechanical means (e.g., filing, cutting).

  4. Countercurrent flow-limiting characteristics of a Savannah River Plant control rod septifoil

    SciTech Connect

    Anderson, J.L.

    1992-07-01

    Experiments were performed at the Idaho National Engineering Laboratory to investigate the counter-current flow limiting characteristics of a Savannah River Plant control rod septifoil assembly. These experiments were unheated, using air and water as the working fluids. Results are presented in terms of the Wallis flooding correlation for several different control rod configurations. Flooding was observed to occur in the vicinity of the inlet slots/holes of the septifoil, rather than within the rod bundle at the location of the minimum flow area. Nearly identical flooding characteristics of the septifoil were observed for configurations with zero, three, and four rods inserted, but significantly different results occurred with 5 rods inserted.

  5. Final Report: Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation

    SciTech Connect

    Rowsell, David Leon

    2015-06-01

    This report documents the Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation. The review followed the approved Plan of Action (POA) and Implementation Plan (IP) using the identified core requirements. The activity was limited scope focusing on the control rod drives functional isolation and fuel element movement. The purpose of this review is to ensure the facility's readiness to move fuel elements thus supporting inspection and functionally isolate the control rod drives to maintain the required shutdown margin.

  6. Radial brake assembly for a control rod drive

    SciTech Connect

    Hekmati, A.; Gibo, E.Y.

    1992-04-07

    This patent describes a brake assembly for a control rod drive for selectively preventing travel of a control rod in a nuclear reactor vessel. It comprises a shaft having a longitudinal centerline axis; means for selectively rotating the shaft in a first direction and in a second direction, opposite to the first direction; a stationary housing having a central aperture receiving the shaft; a frame fixedly joined to the housing and having a guide hole; a rotor disc fixedly connected to the shaft for rotation therewith and having at least one rotor tooth extending radially outwardly from a perimeter thereof, the rotor tooth having a locking surface and an inclined surface extending therefrom in a circumferential direction; a brake member disposed adjacent to the rotor disc perimeter and including a base, at least one braking tooth having a locking surface extending therefrom in a circumferential direction, and a plunger extending radially outwardly from the base and slidably joined to the frame through the guide hole; the rotor tooth and the braking tooth being complementary to each other; and means for selectively positioning the brake member in a deployed position abutting the rotor disc perimeter for allowing the braking tooth locking surface to contact the rotor tooth locking surface for preventing rotation of the shaft in the first direction, and in a retracted position spaced radially away from the rotor disc for allowing the rotor disc and the shaft to rotate without restraint from the brake member, the positioning means including a tubular solenoid fixedly joined to the frame and having a central bore disposed around the brake member plunger and effective for sliding the brake member plunger relative to the frame for positioning the brake member in the deployed and retracted positions.

  7. A new automated and precise calibration method for gamma level gauges with rod detector arrangement.

    PubMed

    Peyvandi, Reza Gholipour; Taheri, Ali; Olfateh, Ali; Islami, Seyyedeh Zahra

    2016-06-01

    Gamma-ray liquid level gauging is of particular importance in several industries. Industrial vessels, tanks, and reactors, which work at high temperatures and pressures, usually have thick metal walls up to 20cm. These factors make it impossible to know the exact level of liquid or fluid while the system is operating. For this reason, the calibration process of the gamma level gauges is difficult as it is impossible to gain access to the inside of the vessels, which is important during the calibration process. In this study, a new auto-calibration method was proposed for the aforementioned situations. PMID:26974485

  8. Optimization of boiling water reactor control rod patterns using linear search

    SciTech Connect

    Kiguchi, T.; Doi, K.; Fikuzaki, T.; Frogner, B.; Lin, C.; Long, A.B.

    1984-10-01

    A computer program for searching the optimal control rod pattern has been developed. The program is able to find a control rod pattern where the resulting power distribution is optimal in the sense that it is the closest to the desired power distribution, and it satisfies all operational constraints. The search procedure consists of iterative uses of two steps: sensitivity analyses of local power and thermal margins using a three-dimensional reactor simulator for a simplified prediction model; linear search for the optimal control rod pattern with the simplified model. The optimal control rod pattern is found along the direction where the performance index gradient is the steepest. This program has been verified to find the optimal control rod pattern through simulations using operational data from the Oyster Creek Reactor.

  9. Aging assessment of BWR control rod drive systems

    SciTech Connect

    Greene, R.H.

    1991-01-01

    This study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assess the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the CRD system, and (4) personal information exchange with industry experts. As part of this study, nearly 3500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation was conducted to summarize the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented that identify specific actions utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain maintenance practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities. 5 refs., 8 figs., 2 tabs.

  10. Weed Control Sprayers: Calibration and Maintenance. Special Circular 81.

    ERIC Educational Resources Information Center

    Myers, Arthur L.

    This manual covers aspects of calibration and maintenance of weed control sprayers including variables affecting application rate, the pre-calibration check, calculations, band spraying, nozzle tip selection, agitation, and cleaning. (BB)

  11. Ultrasound control of magnet growing rod distraction in early onset scoliosis.

    PubMed

    Pérez Cervera, T; Lirola Criado, J F; Farrington Rueda, D M

    2016-01-01

    The growing rod technique is currently one of the most common procedures used in the management of early onset scoliosis. However, in order to preserve spine growth and control the deformity it requires frequent surgeries to distract the rods. Magnetically driven growing rods have recently been introduced with same treatment goal, but without the inconvenience of repeated surgical distractions. One of the limitations of this technical advance is an increase in radiation exposure due to the increase in distraction frequency compared to conventional growing rods. An improvement of the original technique is presented, proposing a solution to the inconvenience of multiple radiation exposure using ultrasound technology to control the distraction process of magnetically driven growing rods. PMID:25843064

  12. NDE Assessment of PWSCC in Control Rod Drive Mechanism Housings

    SciTech Connect

    Doctor, Steven R.; Cumblidge, Stephen E.; Schuster, George J.; Harris, Rob V.; Crawford, Susan L.

    2006-11-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are focused on assessing the effectiveness of Nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. In describing two CRDM assemblies removed from service, decontaminated, and then used in a series of NDE measurements, this paper will address the following questions: 1) What did each technique detect?, 2) What did each technique miss?, 3) How accurately did each technique characterize the detected flaws? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. One contained suspected PWSCC, based on in-service inspection data and through-wall leakage; the other contained evidence suggesting through-wall leakage, but this was unconfirmed. The selected NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on inspecting the J-groove weld and buttering. This paper will also describe the NDE methods used and discuss the NDE results. Future work will involve using the results from these NDE studies to guide the development of a destructive characterization plan to reveal the crack morphology and a comparison of the degradation found by the destructive evaluation with the recorded NDE responses.

  13. HESP: Instrument control, calibration and pipeline development

    NASA Astrophysics Data System (ADS)

    Anantha, Ch.; Roy, Jayashree; Mahesh, P. K.; Parihar, P. S.; Sangal, A. K.; Sriram, S.; Anand, M. N.; Anupama, G. C.; Giridhar, S.; Prabhu, T. P.; Sivarani, T.; Sundararajan, M. S.

    Hanle Echelle SPectrograph (HESP) is a fibre-fed, high resolution (R = 30,000 and 60,000) spectrograph being developed for the 2m HCT telescope at IAO, Hanle. The major components of the instrument are a) Cassegrain unit b) Spectrometer instrument. An instrument control system interacting with a guiding unit at Cassegrain interface as well as handling spectrograph functions is being developed. An on-axis auto-guiding using the spill-over angular ring around the input pinhole is also being developed. The stellar light from the Cassegrain unit is taken to the spectrograph using an optical fiber which is being characterized for spectral transmission, focal ratio degradation and scrambling properties. The design of the thermal enclosure and thermal control for the spectrograph housing is presented. A data pipeline for the entire Echelle spectral reduction is being developed. We also plan to implement an instrument physical model based calibration into the main data pipeline and in the maintenance and quality control operations.

  14. SPRT Calibration Uncertainties and Internal Quality Control at a Commercial SPRT Calibration Facility

    NASA Astrophysics Data System (ADS)

    Wiandt, T. J.

    2008-06-01

    The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.

  15. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    PubMed

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. PMID:26141293

  16. A hybrid attitude controller consisting of electromagnetic torque rods and an active fluid ring

    NASA Astrophysics Data System (ADS)

    Nobari, Nona A.; Misra, Arun K.

    2014-01-01

    In this paper, a novel hybrid actuation system for satellite attitude stabilization is proposed along with its feasibility analysis. The system considered consists of two magnetic torque rods and one fluid ring to produce the control torque required in the direction in which magnetic torque rods cannot produce torque. A mathematical model of the system dynamics is derived first. Then a controller is developed to stabilize the attitude angles of a satellite equipped with the abovementioned set of actuators. The effect of failure of the fluid ring or a magnetic torque rod is examined as well. It is noted that the case of failure of the magnetic torque rod whose torque is along the pitch axis is the most critical, since the coupling between the roll or yaw motion and the pitch motion is quite weak. The simulation results show that the control system proposed is quite fault tolerant.

  17. Cumulative sum quality control for calibrated breast density measurements

    SciTech Connect

    Heine, John J.; Cao Ke; Beam, Craig

    2009-12-15

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  18. Fuel integrity consequences of a misaligned control rod incident: Final report

    SciTech Connect

    Husser, D.L.; Delano, B.J.; Crist, S.H.; Mayer, J.T.; Lewis, L.Y.; Harris, K.L.

    1987-04-01

    During cycle 6 operation of the Arkansas Nuclear One Unit 1 reactor, an unanticipated transient occurred as a result of the rapid withdrawal at full power of a misaligned (27% withdrawn) control rod assembly (CRA). In less than one hour, operators realigned the assembly with the remaining rods in its group. Since the removal of the misaligned CRA was known to have caused high local power changes, the preliminary assessment was that stress corrosion cracking (SCC) occurred in the rods directly affected by the withdrawal. The potentially affected fuel assembly and certain selected additional assemblies were inspected using the Babcock and Wilcox ECHO-330 System, which permits the identification of individual rod failures. Based on the data gathered during this project, the misalignment event resulted in no occurrences of SCC-related fuel rod failures. The absence of failed rods in the assembly most significantly affected by the withdrawal clearly eliminates the SCC failure mode from consideration. The details of the power transient should be sufficient as benchmark cases to develop and verify computer codes designed to model power shock events in Zircaloy-clad fuel rods. The project is applicable to both SCC failure modeling and to such areas as load-following and power recovery operations where significant control rod movement is required. The power shock event meets the project objectives by providing a no-failure case under conditions approaching or exceeding the power change and levels typically associated with the SCC failure mode. The event also confirms the ability of pressurized water reactor fuel rods to sustain large power shocks without adverse effects.

  19. Aerosol behavior during SIC control rod failure in QUENCH-13 test

    NASA Astrophysics Data System (ADS)

    Lind, Terttaliisa; Csordás, Anna Pintér; Nagy, Imre; Stuckert, Juri

    2010-02-01

    In a nuclear reactor severe accident, radioactive fission products as well as structural materials are released from the core by evaporation, and the released gases form particles by nucleation and condensation. In addition, aerosol particles may be generated by droplet formation and fragmentation of the core. In pressurized water reactors (PWR), a commonly used control rod material is silver-indium-cadmium (SIC) covered with stainless steel cladding. The control rod elements, Cd, In and Ag, have relatively low melting temperatures, and especially Cd has also a very low boiling point. Control rods are likely to fail early on in the accident due to melting of the stainless steel cladding which can be accelerated by eutectic interaction between stainless steel and the surrounding Zircaloy guide tube. The release of the control rod materials would follow the cladding failure thus affecting aerosol source term as well as fuel rod degradation. The QUENCH experimental program at Forschungszentrum Karlsruhe investigates phenomena associated with reflood of a degrading core under postulated severe accident conditions. QUENCH-13 test was the first in this program to include a silver-indium-cadmium control rod of prototypic PWR design. To characterize the extent of aerosol release during the control rod failure, aerosol particle size distribution and concentration measurements in the off-gas pipe of the QUENCH facility were carried out. For the first time, it was possible to determine on-line the aerosol concentration and size distribution released from the core. These results are of prime importance for model development for the proper calculation of the source term resulting from control rod failure. The on-line measurement showed that the main aerosol release started at the bundle temperature maximum of T ˜ 1570 K at hottest bundle elevation. A very large burst of aerosols was detected 660 s later at the bundle temperature maximum of T ˜ 1650 K, followed by a relatively

  20. On-line monitoring of control rod integrity in BWRs using a mass spectrometer

    NASA Astrophysics Data System (ADS)

    Larsson, I.; Loner, H.; Ammon, K.; Sihver, L.; Ledergerber, G.

    2013-01-01

    Surveillance of fuel and control rod integrity in the core of a boiling water reactor is essential for maintaining a safe and reliable operation. Control rods of a boiling water reactor are mainly filled with boron carbide as a neutron absorber. Due to the irradiation of boron with neutrons, a continuous production of lithium and helium will occur inside a control rod. Most of the created helium will be retained in the boron carbide lattice; however a small part will escape into the void volume of the control blade. Therefore the integrity of control rods during operation can efficiently be followed by on-line measurements of helium concentration in the reactor off-gas system using a mass spectrometer. Since helium is a fill gas in fuel rods, the same method is a useful early warning system for primary fuel failures. In this paper, we introduce an on-line helium detector system which is installed at the nuclear power plant in Leibstadt. Furthermore the measuring experiences of control rod failure detection at the plant are presented. Different causes of increased helium levels in the off-gas system have been distinguished. There are spontaneous helium releases as well as helium releases caused by changed conditions in the reactor (power reduction, control rod movement, etc.). Helium peaks can also be characterized according to the released amount of helium, the peak shape and the duration of the release, which leads to different interpretations of the release mechanisms. In addition, the measured amount of released helium from a 50 days period (280 l) is also compared to the calculated amount of produced helium from the washed out boron during the same time period (190 l).

  1. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina

    PubMed Central

    Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P

    2015-01-01

    Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single

  2. Method and means for remote removal of guide balls from nuclear reactor control rods

    SciTech Connect

    Krieg, A.H.

    1988-11-29

    This patent describes a method of remotely removing guide balls from nuclear reactor control rods using a punch mechanism, comprising: (a) providing attachment means in the punch mechanism for attaching the punch mechanism to means for reversibly lowering the punch mechanism over the top of one of the control rods; (b) providing a die within the punch mechanism; (c) providing cylinder means within the punch mechanism operatively connected to the die for axially moving the die in a back-and-forth direction; (d) providing a die block within the punch mechanism cooperating with the die; (e) providing guide means within the punch mechanism for self-aligning the punch mechanism so that the die and the die block are automatically aligned with a first one of the guide balls therebetween when the punch mechanism is lowered over the top of the control rod; (f) lowering the punch mechanism over the control rod so that the die, the die block, and the first guide ball are in alignment; and (g) then operating the cylinder means so that the die advances into the die block, thereby removing the first guide ball from the control rod.

  3. Experience with incomplete control rod insertion in fuel with burnup exceeding approximately 40 GWD/MTU

    SciTech Connect

    Kee, E.

    1997-01-01

    Analysis and measurement experience with fuel assemblies having incomplete control rod insertion at burnups of approximately 40 GWD/MTU is presented. Control rod motion dynamics and simplified structural analyses are presented and compared to measurement data. Fuel assembly growth measurements taken with the plant Refueling Machine Z-Tape are described and presented. Bow measurements (including plug gauging) are described and potential improvements are suggested. The measurements described and analysis performed show that sufficient guide tube bow (either from creep or yield buckling) is present in some high burnup assemblies to stop the control rods before they reach their full limit of travel. Recommendations are made that, if implemented, could improve cost performance related to testing and analysis activities.

  4. Control Rod Pattern Planning of a BWR using Enhanced Nelder-Mead Method

    SciTech Connect

    Yoko Kobayashi; Eitaro Aiyoshi

    2004-07-01

    We propose a new optimization algorithm for the short-term planning of control rod patterns in an operating BWR. This algorithm is based on the enhanced Nelder-Mead simplex method in which convergence ability is improved for constrained problems in several ways. The main characteristic of this approach is it uses continuous values for the axial positions of control rods. Through calculations in an actual BWR plant, we showed that the new algorithm is effective for automation of short-term planning and reduction of the engineer's workload. (authors)

  5. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant.

    PubMed

    Ródenas, J; Abarca, A; Gallardo, S

    2011-08-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool. PMID:21093278

  6. An Analytical Study of Fuzzy Control of a Flexible Rod Mechanism

    NASA Astrophysics Data System (ADS)

    Beale, D.; Lee, S. W.; Boghiu, D.

    1998-02-01

    The non-linear nature of very high speed, flexible rod mechanisms has been previously confirmed, both experimentally and analytically in reference [1]. Therefore, effective control system design for flexible mechanisms operating at very high speeds must consider the non-linearities when designing a controller for very high speeds. Active control via fuzzy logic is assessed as means to suppress the elastic transverse bending vibration of a flexible rod of a slider crank mechanism. Several pairs of piezoelectric elements are used to provide the control action. Sensor output of deflection is fed to the fuzzy controller, which determines the voltage input to the actuators. A three mode approximation is used in the simulation study. Computer simulation shows that fuzzy control can be used to suppress bending vibrations at high speeds, and even at speeds where the uncontrolled response would be unstable.

  7. Parallel Magnetic Flow Electromagnet for Movable Coil Control-rod Driving Mechanism

    SciTech Connect

    Jige, Zhang

    2006-07-01

    The parallel magnetic flow electromagnet can effectively relax the saturation, which easily takes place in the single magnetic flow electromagnet, and accordingly can improve the drive capacity of the movable coil electromagnet drive mechanism for a mobile reactor control rod. (authors)

  8. BWR feedwater nozzle and control-rod-drive return line nozzle cracking

    SciTech Connect

    Not Available

    1981-11-01

    In its 1978 Annual Report to Congress, the Nuclear Regulatory Commission identified as an unresolved safety issue the appearance of cracks in feedwater nozzles at boiling-water reactors (BWRs). Later similar cracking, detected in return water lines for control-rod-drive systems at BWRs, was designated Part II of the issue. This article outlines the resolution of these cracking problems.

  9. Quantitative uncertainty and sensitivity analysis of a PWR control rod ejection accident

    SciTech Connect

    Pasichnyk, I.; Perin, Y.; Velkov, K.

    2013-07-01

    The paper describes the results of the quantitative Uncertainty and Sensitivity (U/S) Analysis of a Rod Ejection Accident (REA) which is simulated by the coupled system code ATHLET-QUABOX/CUBBOX applying the GRS tool for U/S analysis SUSA/XSUSA. For the present study, a UOX/MOX mixed core loading based on a generic PWR is modeled. A control rod ejection is calculated for two reactor states: Hot Zero Power (HZP) and 30% of nominal power. The worst cases for the rod ejection are determined by steady-state neutronic simulations taking into account the maximum reactivity insertion in the system and the power peaking factor. For the U/S analysis 378 uncertain parameters are identified and quantified (thermal-hydraulic initial and boundary conditions, input parameters and variations of the two-group cross sections). Results for uncertainty and sensitivity analysis are presented for safety important global and local parameters. (authors)

  10. Summary of dynamic analyses of the advanced neutron source reactor inner control rods

    SciTech Connect

    Hendrich, W.R.

    1995-08-01

    A summary of the structural dynamic analyses that were instrumental in providing design guidance to the Advanced Neutron source (ANS) inner control element system is presented in this report. The structural analyses and the functional constraints that required certain performance parameters were combined to shape and guide the design effort toward a prediction of successful and reliable control and scram operation to be provided by these inner control rods.

  11. Rod examination gauge

    SciTech Connect

    Bacvinskas, W.S.; Bayer, J.E.; Davis, W.W.; Fodor, G.; Kikta, T.J.; Matchett, R.L.; Nilsen, R.J.; Wilczynski, R.

    1991-12-31

    The present invention is directed to a semi-automatic rod examination gauge for performing a large number of exacting measurements on radioactive fuel rods. The rod examination gauge performs various measurements underwater with remote controlled machinery of high reliability. The rod examination gauge includes instruments and a closed circuit television camera for measuring fuel rod length, free hanging bow measurement, diameter measurement, oxide thickness measurement, cladding defect examination, rod ovality measurement, wear mark depth and volume measurement, as well as visual examination. A control system is provided including a programmable logic controller and a computer for providing a programmed sequence of operations for the rod examination and collection of data.

  12. Development and control of the process for the manufacture of zircaloy-4 tubing for LWBR fuel rods

    SciTech Connect

    Eyler, J.H.

    1981-01-01

    The technical requirements for the Light Water Breeder Reactor (LWBR) fuel elements (fuel rods) imposed certain unique requirements for the low hafnium Zircaloy-4 tubing used as fuel rod cladding. This report describes, in detail, the tube manufacturing process, the product and process controls used, the inspections and tests performed, and the efforts involved in refining a commercial tube reducing process to produce tubes that would satisfy the requirements for LWBR fuel rod cladding.

  13. High Temperature Electromechanical Components for Control Rod Drive Assemblies

    NASA Astrophysics Data System (ADS)

    Gleason, Thomas E.; Lazarus, Jonathan D.; Yaspo, Robert; Cole, Allan R.; Otwell, Robert L.; Schuster, Gary B.; Jaing, Thomas J.; Meyer, Raymond A.; Shukla, Jaikaran N.; Maldonado, Jerry

    1994-07-01

    The SP-100 power system converts heat generated within a compact fast spectrum nuclear reactor directly to electricity for spacecraft applications. The reactor control system contains the only moving mechanical and electromechanical components in the entire electrical generating system. The high temperature, vacuum environment presents unique challenges for these reactor control system components. This paper describes the environmental testing of these components that has been completed and that is in progress. The specific components and assemblies include electromagnetic (EM) coils, stepper motors, EM clutches, EM brakes, ball bearings, ball screw assemblies, constant torque spring motors, gear sets, position sensors, and very high temperature sliding bearings.

  14. Maintaining a Critical Spectra within Monteburns for a Gas-Cooled Reactor Array by Way of Control Rod Manipulation

    DOE PAGESBeta

    Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.; Trellue, Holly Renee

    2016-06-07

    Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less

  15. Controlled self-assembly of conjugated rod-coil block copolymers for applications in organic optoelectronics

    NASA Astrophysics Data System (ADS)

    Tao, Yuefei

    Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous

  16. Simulation and operation of the EBR-2 automatic control rod drive system

    NASA Astrophysics Data System (ADS)

    Lehto, W. K.; Larson, H. A.; Dean, E. M.; Christensen, L. J.

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control rod drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE operational reliability testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In addition, the ACRDS is used for steady state operation and will be qualified to control power ascent from initial critical to full power.

  17. Visual inspections of N Reactor horizontal control rod channels. Revision 1

    SciTech Connect

    Woodruff, E.M.

    1990-09-01

    Safety surveillance is performed in horizontal control rod (HCR) channels to locate conditions which could slow or block rod travel. The findings guide the application of preventive measures to assure eventual rod motion impairment will not occur. Borescopes and, more recently, miniaturized closed circuit television (CCTV) cameras have been used for these examinations. Inspections and measurement results are documented in annual surveillance reports, however reported CCTV observations have been limited to highlights. The objective of this report is to catalogue the CCTV recordings in a format suitable for analysis and interpretation and to ease the access to any desired location by noting tape counter readings corresponding with each tube block in view. Searching file tapes for conditions in a specific areas in the past required counting blocks as they passed the camera to determine the distance from a feature like the edge of the reflector or a steam vent gap. This report adds the observations from recent rod channel inspections (1987 and 1988) to a comprehensive survey of graphite conditions in the moderator and reflector regions of the N Reactor core. When completed, the stand-by status of graphite components will be available for use in restart or decommissioning deliberations.

  18. Synthesis of iron oxide rods coated with polymer brushes and control of their assembly in thin films.

    PubMed

    Huang, Yun; Ishige, Ryohei; Tsujii, Yoshinobu; Ohno, Kohji

    2015-01-27

    We investigated the surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate (MMA) using monodisperse rod-type particles of iron oxide, β-FeOOH. The slow hydrolysis of iron(III) chloride yielded monodisperse β-FeOOH rods with an average length-to-width ratio, L/W, of 6 (L = 210 nm and W = 35 nm on average). The surfaces of the β-FeOOH rods were modified with a triethoxysilane derivative as an ATRP-initiating site, namely, (2-bromo-2-methyl)propionyloxypropyl triethoxysilane. The SI-ATRP of MMA, mediated by a copper complex, was performed using the initiator-coated β-FeOOH rods in the presence of a "sacrificial" free initiator. Well-defined poly(methyl methacrylate) (PMMA) brushes with molecular weights of up to 700,000 could be grafted on the β-FeOOH rods with a surface density as high as 0.3 chains/nm(2). The resultant polymer-brush-afforded hybrid rods exhibited high dispersibility in various solvents for PMMA without forming aggregates. Thin films were prepared by dip-coating from a suspension of the hybrid rods, and the rods were oriented in a specific direction in the films. The arrangement of the rods could be controlled by varying the chain length of the polymer brush and the withdrawal speed during the dip-coating process. PMID:25552325

  19. A rule-based expert system for automatic control rod pattern generation for boiling water reactors

    SciTech Connect

    Lin, L.S.; Lin, C. )

    1991-07-01

    This paper reports on an expert system for generating control rod patterns that has been developed. The knowledge is transformed into IF-THEN rules. The inference engine uses the Rete pattern matching algorithm to match facts, and rule premises and conflict resolution strategies to make the system function intelligently. A forward-chaining mechanism is adopted in the inference engine. The system is implemented in the Common Lisp programming language. The three-dimensional core simulation model performs the core status and burnup calculations. The system is successfully demonstrated by generating control rod programming for the 2894-MW (thermal) Kuosheng nuclear power plant in Taiwan. The computing time is tremendously reduced compared to programs using mathematical methods.

  20. Control rod absorber section fabrication by square tube configuration and dual laser welding process

    SciTech Connect

    Aiello, L.L.; Charnley, J.E.; Mees, J.A.; Dixon, R.C.

    1990-05-15

    This patent describes a process for the assembly of a planar section of a cruciform shaped control rod from tubes. It comprises: providing tubes, the tubes having cylindrical interior volumes for the containment of neutron absorbing poisons and having square external sections for being joined by welding in side-by-side relation; filling the cylindrical interior volumes with neutron absorbing poisons; plugging the tubes to seal the neutron absorbing poisons within the tubes: providing a jig for maintaining the tubes in side-by-side relation to form a planar section of the control rod, the jig having a leading end for holding the ends of the tubes in side-by-side relation and having a trailing end for holding the tubes in side-by-side relation.

  1. USE OF THE SDO POINTING CONTROLLERS FOR INSTRUMENT CALIBRATION MANEUVERS

    NASA Technical Reports Server (NTRS)

    Vess, Melissa F.; Starin, Scott R.; Morgenstern, Wendy M.

    2005-01-01

    During the science phase of the Solar Dynamics Observatory mission, the three science instruments require periodic instrument calibration maneuvers with a frequency of up to once per month. The command sequences for these maneuvers vary in length from a handful of steps to over 200 steps, and individual steps vary in size from 5 arcsec per step to 22.5 degrees per step. Early in the calibration maneuver development, it was determined that the original attitude sensor complement could not meet the knowledge requirements for the instrument calibration maneuvers in the event of a sensor failure. Because the mission must be single fault tolerant, an attitude determination trade study was undertaken to determine the impact of adding an additional attitude sensor versus developing alternative, potentially complex, methods of performing the maneuvers in the event of a sensor failure. To limit the impact to the science data capture budget, these instrument calibration maneuvers must be performed as quickly as possible while maintaining the tight pointing and knowledge required to obtain valid data during the calibration. To this end, the decision was made to adapt a linear pointing controller by adjusting gains and adding an attitude limiter so that it would be able to slew quickly and still achieve steady pointing once on target. During the analysis of this controller, questions arose about the stability of the controller during slewing maneuvers due to the combination of the integral gain, attitude limit, and actuator saturation. Analysis was performed and a method for disabling the integral action while slewing was incorporated to ensure stability. A high fidelity simulation is used to simulate the various instrument calibration maneuvers.

  2. Factors influencing helium measurements for detection of control rod failures in BWR

    SciTech Connect

    Larsson, I.; Sihver, L.; Loner, H.; Ledergerber, G.; Schnurr, B.

    2012-07-01

    Much effort has been made to minimize the number and consequences of fuel failures at nuclear power plants. The consequences of control rod failures have also gained an increased attention. In this paper we introduce a system for on-line surveillance of control rod integrity which has several advantages comparing to the surveillance methods available today in boiling water reactors (BWRs). This system measures the helium released from failed control rods containing boron carbide (B4C). However, there are a number of factors that might influence measurements, which have to be taken into consideration when evaluating the measured data. These factors can be separated into two groups: 1) local adjustments, made on the sampling line connecting the detector to the off-gas system, and 2) plant operational parameters. The adjustments of the sample line conditions include variation of gas flow rate and gas pressure in the line. Plant operational factors that may influence helium measurements can vary from plant to plant. The factors studied at Leibstadt nuclear power plant (KKL) were helium impurities in injected hydrogen gas, variation of the total off-gas flow and regular water refill. In this paper we discuss these factors and their significance and present experimental results of measurements at KKL. (authors)

  3. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    SciTech Connect

    Weber, Jonah M.; Chin, Michael

    2002-04-30

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which the IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration.

  4. Impact of the control rod consumption on the reactivity control of a SFR break-even core

    SciTech Connect

    Blanchet, D.; Fontaine, B.

    2012-07-01

    Current design studies on Sodium Fast Reactor (SFR) differ from those performed in the past by the fact that design criteria are now those of the Generation IV reactors. In order to improve their safety, reactors with break-even cores are preferred because they minimize the needs in terms of reactivity control and limit the consequences of control rod withdrawal. Furthermore, as the reactivity control needs are low, break-even core enables the use of absorbing materials with reduced efficiency (natural boron, hafnium...). Nevertheless, the use of control rods with few absorbing materials may present the disadvantage of a non-negligible ({approx}10%) loss of efficiency due to their consumption under irradiation. This paper presents a methodology to calculate accurately and analyze this consumption. (authors)

  5. Monte Carlo simulation of a research reactor with nominal power of 7 MW to design new control safety rods

    NASA Astrophysics Data System (ADS)

    Shoushtari, M. K.; Kakavand, T.; Sadat Kiai, S. M.; Ghaforian, H.

    2010-03-01

    The Monte Carlo simulation has been established for a research reactor with nominal power of 7 MW. A detailed model of the reactor core was employed including standard and control fuel elements, reflectors, irradiation channels, control rods, reactor pool and thermal column. The following physical parameters of reactor core were calculated for the present LEU core: core reactivity ( ρ), control rod (CR) worth, thermal and epithermal neutron flux distributions, shutdown margin and delayed neutron fraction. Reduction of unfavorable effects of blockage probability of control safety rod (CSR)s in their interiors because of not enough space in their sites, and lack of suitable capabilities to fabricate very thin plates for CSR cladding, is the main aim of the present study. Making the absorber rod thinner and CSR cladding thicker by introducing a better blackness absorbing material and a new stainless steel alloy, respectively, are two studied ways to reduce the effects of mentioned problems.

  6. Calibration

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    Commercial spectrographic systems are usually supplied with some wave-length calibration, but it is essential that the experimenter performs his own calibration for reliable measurements. A number of sources emitting well-known emission lines are available, and the best values of their wavelengths may be taken from data banks accessible on the internet. Data have been critically evaluated for many decades by the National Institute of Standards and Technology (NIST) of the USA [13], see also p. 3. Special data bases have been established by the astronomy and fusion communities (Appendix B).

  7. Rodding Surgery

    MedlinePlus

    ... Rods can be made of stainless steel or titanium. Regular rods do not expand. They have many ... v regular), the rod materials (stainless steel v titanium) and the age for a first rodding surgery. ...

  8. Rapid-L Operator-Free Fast Reactor Concept Without Any Control Rods

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2003-07-15

    The 200-kW(electric) uranium-nitride-fueled lithium-cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for a lunar base power system. It is one of the variants of the RAPID (Refueling by All Pins Integrated Design) fast reactor concept, which enables quick and simplified refueling. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 2700 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 yr.Unique challenges in reactivity control systems design have been addressed in the RAPID-L concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt {sup 6}Li as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs, and LRMs, RAPID-L can be operated without an operator. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, the RAPID-L reactor concept and its transient characteristics are presented.

  9. Test-fuel power-coupling dependence on TREAT control-rod positions

    SciTech Connect

    Harrison, L.J.; Klotzkin, G.; Hart, P.R.; Swanson, R.W.

    1983-01-01

    The Transient Reactor Test (TREAT) is a graphite moderated, UO/sub 2/ fueled test reactor located at the Idaho National Engineering Laboratory and operated by Argonne National Laboratory. Test fuel is placed in containment vessels in the center of the reactor and subjected to computer-controlled transient irradiations which can result in experimental fuel melting or even vaporizing. The reactor was designed to have a strong negative temperature coefficient and to operate adiabatically. Consequently large reactivity insertions, up to 6.2% ..delta..k/k, may be required during a transient as the core temperature increases as much as 570/sup 0/C. This reactivity insertion is accomplished typically over 10 to 20 seconds by hydraulically actuated transient control rods. Evaluation of empirical data has indicated that control-rod-position changes cause power-coupling changes during a transient and usually are the primary factor in determining the ratio of the transient-averaged to steady-state test-fuel power coupling.

  10. Ink limit control for ink-jet printer color calibration

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2000-12-01

    Ink limit is an important parameter for printer color calibration, especially for inkjet printers. A GCR approach is often used to control the total ink amount for CMYK printers. However, a tradition GCR approach has the following limitations: 1) it can not reduce the total ink amount to less than 200 percent for CMYK printers; 2) it can not be applied to reduce ink for CMY printers; 3) to achieve highest image quality, ink amount may be limited to different values in different regions, in which the GCR approach fails. In this paper, a new approach is presented to control ink limit. It controls ink limit globally as well as locally. An algorithm was developed to construct a gamut boundary for gamut mapping that guarantees that the constructed gamut surface covers only colors within the ink limit. If the ink limit needs to be modified, the gamut surface is reconstructed based on the original measured data. Therefore redoing and remeasuring a target is avoided. It greatly simplifies the ink limit control and color calibration.

  11. Detection and sizing of defects in control rod drive mechanism penetrations using eddy current and ultrasonics

    SciTech Connect

    Light, G.M.; Fisher, J.L.; Tennis, R.F.; Stolte, J.S.; Hendrix, G.J.

    1996-08-01

    Over the last two years, concern has been generated about the capabilities of performing nondestructive evaluation (NDE) of the closure-head penetrations in nuclear-reactor pressure vessels. These penetrations are primarily for instrumentation and control rod drive mechanisms (CRDMs) and are usually thick-walled Inconel tubes, which are shrink-fitted into the steel closure head. The penetrations are then welded between the outside surface of the penetration and the inside surface of the closure head. Stress corrosion cracks initiating at the inner surface of the penetration have been reported at several plants. Through-wall cracks in the CRDM penetration or CRDM weld could lead to loss of coolant in the reactor vessel. The CRDM penetration presents a complex inspection geometry for conventional NDE techniques. A thermal sleeve, through which pass the mechanical linkages for operating the control rods, is inserted into the penetration in such a way that only a small annulus (nominally 3 mm) exists between the thermal sleeve and inside surface of the penetration. Ultrasonic (UT) and eddy current testing (ET) techniques that could be used to provide defect detection and sizing capability were investigated. This paper describes the ET and UT techniques, the probes developed, and the results obtained using these probes and techniques on CRDM penetration mock-ups.

  12. Some aspects of robotics calibration, design and control

    NASA Technical Reports Server (NTRS)

    Tawfik, Hazem

    1990-01-01

    The main objective is to introduce techniques in the areas of testing and calibration, design, and control of robotic systems. A statistical technique is described that analyzes a robot's performance and provides quantitative three-dimensional evaluation of its repeatability, accuracy, and linearity. Based on this analysis, a corrective action should be taken to compensate for any existing errors and enhance the robot's overall accuracy and performance. A comparison between robotics simulation software packages that were commercially available (SILMA, IGRIP) and that of Kennedy Space Center (ROBSIM) is also included. These computer codes simulate the kinematics and dynamics patterns of various robot arm geometries to help the design engineer in sizing and building the robot manipulator and control system. A brief discussion on an adaptive control algorithm is provided.

  13. User's guide to calibration of analog electronic controllers in HVAC systems

    NASA Astrophysics Data System (ADS)

    Kirts, R.

    1984-11-01

    The calibration of analog electronic proportional controllers requires the knowledge of at least three characteristics of the controller: the action, the setpoint, and the throttling range. The calibration procedure follows these steps: measure the controller input(s); calculate the predicted controller output; measure the actual controller output, and adjust the controller as required. Using this procedure, controller performance is evaluated at the control point, or actual condition, rather than the setpoint, which is the idealized, desirable condition. This means that only those controllers which are actually out of calibration need to be adjusted and controllers that are in calibration need not have any settings or adjustments changed. If a controller cannot be calibrated or will not remain calibrated for a responsible period of time, it is defective and should be repaired or replaced.

  14. Control Program for an Optical-Calibration Robot

    NASA Technical Reports Server (NTRS)

    Johnston, Albert

    2005-01-01

    A computer program provides semiautomatic control of a moveable robot used to perform optical calibration of video-camera-based optoelectronic sensor systems that will be used to guide automated rendezvous maneuvers of spacecraft. The function of the robot is to move a target and hold it at specified positions. With the help of limit switches, the software first centers or finds the target. Then the target is moved to a starting position. Thereafter, with the help of an intuitive graphical user interface, an operator types in coordinates of specified positions, and the software responds by commanding the robot to move the target to the positions. The software has capabilities for correcting errors and for recording data from the guidance-sensor system being calibrated. The software can also command that the target be moved in a predetermined sequence of motions between specified positions and can be run in an advanced control mode in which, among other things, the target can be moved beyond the limits set by the limit switches.

  15. Research relative to an advanced rod control system for quadrupole mass spectrometry applications

    NASA Technical Reports Server (NTRS)

    Carignan, George R.

    1987-01-01

    The design of a suitable amplifier output stage using available transistors and passive components is summarized. All of the analysis and calculation confirm that it is feasible to design the amplifier and quadrupole coupling circuit needed for the Advanced Rod Control System. The progress obtained so far concerning the three frequency tank circuits to be used in the oscillator for the mass spectrometer of the Cometary Rendezvous Asteroid Flyby (CRAF) project is presented. Results from this study look promising. However, it is not known what minimum impedance levels are required to make it possible for the oscillator to work properly. Therefore, it is necessary to construct a prototype circuit in the laboratory which can be measured and tested in an oscillator circuit. Continued attempts will be made to develop a useful inductor motor with better characteristics than the one being used at the moment. It is important that such a model be found if computer simulation is to reflect reality more closely.

  16. STABILIZED RARE EARTH OXIDES FOR A CONTROL ROD AND METHOD OF PREPARATION

    DOEpatents

    McNees, R.A.; Potter, R.A.

    1964-01-14

    A method is given for preparing mixed oxides of the formula MR/sub x/O/ sub 12/ wherein M is tungsten or molybdenum and R is a rare earth in the group consisting of samarium, europium, dysprosium, and gadolinium and x is 4 to 5. Oxides of this formula, and particularly the europiumcontaining species, are useful as control rod material for water-cooled nuclear reactors owing to their stability, favorable nuclear properties, and resistance to hydration. These oxides may be utilized as a dispersion in a stainlesssteel matrix. Preparation of these oxides is effected by blending tungsten oxide or molybdenum oxide with a rare earth oxide, compressing the mixture, and firing at an elevated temperature in an oxygen-containing atmosphere. (AEC)

  17. Effect of aging upon CE and B and W control rod drives

    SciTech Connect

    Grove, E.; Gunther, W.

    1992-01-01

    The effect of aging upon the Babcock Wilcox (B W) and Combustion Engineering (CE) Control Rod Drive (CRD) systems has been evaluated as part of the US NRC Nuclear Plant Aging Research (NPAR) program. Operating experience data for the 1980--1990 time period was reviewed to identify predominant failure modes, causes, and effects. These results, in conjunction with an assessment of component materials and operating environment, conclude that both systems are susceptible to age degradation. System failures have resulted in significant plant effects, including power reductions, plant shutdowns, scrams, and Engineered Safety Feature (ESF) actuation. Current industry inspection and maintenance practices were assessed. Some of these practices effectively address aging, while others do not.

  18. Effect of aging upon CE and B and W control rod drives

    SciTech Connect

    Grove, E.; Gunther, W.

    1992-05-01

    The effect of aging upon the Babcock & Wilcox (B&W) and Combustion Engineering (CE) Control Rod Drive (CRD) systems has been evaluated as part of the US NRC Nuclear Plant Aging Research (NPAR) program. Operating experience data for the 1980--1990 time period was reviewed to identify predominant failure modes, causes, and effects. These results, in conjunction with an assessment of component materials and operating environment, conclude that both systems are susceptible to age degradation. System failures have resulted in significant plant effects, including power reductions, plant shutdowns, scrams, and Engineered Safety Feature (ESF) actuation. Current industry inspection and maintenance practices were assessed. Some of these practices effectively address aging, while others do not.

  19. Nuclear Data Library Effects on Fast to Thermal Flux Shapes Around PWR Control Rod Tips

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.; Ferroukhi, H.; Zhu, T.; Pautz, A.

    2014-04-01

    The development of a high-fidelity computational scheme to estimate the accumulated fluence at the tips of PWR control rods (CR) has been initiated at the Paul Scherrer Institut (PSI). Both the fluence from high-energy (E>1 MeV) neutrons as well as for the thermal range (E<0.625 eV) are required as these affect the CR integrity through stresses/strains induced by coupled clad embrittlement / absorber swelling phenomena. The concept of the PSI scheme under development is to provide from validated core analysis models, the volumetric neutron source to a full core MCNPX model that is then used to compute the neutron fluxes. A particular aspect that needs scrutiny is the ability of the MCNPX-based calculation methodology to accurately predict the flux shapes along the control rod surfaces, especially for fully withdrawn CRs. In that case, the tip is located a short distance above the core/reflector interface and since this situation corresponds to a large part of reactor operation, the accumulated fluence will highly depend on the achieved calculation accuracy and precision in this non-fueled zone. The objective of the work presented in this paper is to quantify the influence of nuclear data on the calculated fluxes at the CR tips by (1) conducting a systematic comparison of modern neutron cross-section libraries, including JENDL-4.0, JEFF-3.1.1 and ENDF/B-VII.0, and (2) by quantifying the uncertainties in the neutron flux calculations with the help of available neutron cross-section variances/covariances data. For completeness, the magnitude of these nuclear data-based uncertainties is also assessed in relation to the influence from other typical sources of modeling uncertainties/biases.

  20. Reduction of ahead of schedule anodes through anode rod quality control

    SciTech Connect

    Baillargeon, F.; Menard, Y.; Perron, C.; Proulx, A.L.

    1996-10-01

    One of the major causes of ahead of schedule anodes reported in recent years by the P155 potroom operation was related to the inherent weakness in the rod welded joints. The development and implementation of an apparatus and procedure to measure, detect and reject the faulty rods prior to anode rodding, will be presented and discussed. The technology has not only significantly reduced the number of ahead of schedule anodes, it has also provided useful information concerning other process improvements.

  1. A Self Calibrating Remote Controllable Water Monitoring System

    NASA Astrophysics Data System (ADS)

    Croft, J. E.; Heath, G. L.

    2006-12-01

    The Idaho National Laboratory (INL) has been asked to support Mountain States Environmental (MSE) by providing an automated remote monitoring system for a treatment process of acid mine discharge from the Susie mine, which is located outside of Rimini near Helena, Montana. The mine, now abandoned, produces water year around that is contaminated with lead, zinc, cadmium and arsenic (Pb, Zn, Cd, and As). MSE is managing a project to install and test a pilot scale treatment system that will operate year around treating the discharge water to remove the metal contaminants of concern. The treatment system employs a combination of lime addition, iron addition, settling chambers, sand filters and polishing to treat the contaminated water. The system requires routine monitoring to ensure that process controls remain functional. The INL is developing a monitoring system capable of self calibrating, with two way communication, in a remote location that will provide physical and chemical water quality measurements throughout the treatment system.

  2. Small animal radiation research platform: imaging, mechanics, control and calibration.

    PubMed

    Matinfar, Mohammad; Gray, Owen; Iordachita, Iulian; Kennedy, Chris; Ford, Eric; Wong, John; Taylor, Russell H; Kazanzides, Peter

    2007-01-01

    In cancer research, well characterized small animal models of human cancer, such as transgenic mice, have greatly accelerated the pace of development of cancer treatments. The goal of the Small Animal Radiation Research Platform (SARRP) is to make those same models available for the development and evaluation of novel radiation therapies. In combination with advanced imaging methods, small animal research allows detailed study of biological processes, disease progression, and response to therapy, with the potential to provide a natural bridge to the clinical environment. The SARRP will realistically model human radiation treatment methods in standard animal models. In this paper, we describe the mechanical and control structure of the system. This system requires accurate calibration of the x-ray beam for both imaging and radiation treatment, which is presented in detail in the paper. PMID:18044657

  3. New method for calibration of a computer controlled CRT: feedback calibration

    NASA Astrophysics Data System (ADS)

    Wang, Jingping; Zhu, Zhengfang; Zhao, Dazun

    1994-08-01

    There are many formulas to describe the input and output relationship of CRT. As the radiant output of CRT submits to the statistical distribution, the prediction of the colorimetry from these formulas is not good. Some deviation of the brightness are as high as 50%. There is a need to find a new method to calibrate CRT. We have set up an automatic measurement and calibration system with PHOTO 1980B, IEEE 4888 interface board, CRT and a computer.

  4. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in barometric pressure. Calibration shall be checked within four hours before the test and the... barometric pressure are compensated for automatically and statistical process control demonstrates equal...

  5. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in barometric pressure. Calibration shall be checked within four hours before the test and the... barometric pressure are compensated for automatically and statistical process control demonstrates equal...

  6. A Self-Calibrating Remote Control Chemical Monitoring System

    SciTech Connect

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  7. Thermo-Mechanical Analysis of Coated Particle Fuel Experiencing a Fast Control Rod Ejection Transient

    SciTech Connect

    Ortensi, J.; Brian Boer; Abderrafi M. Ougouag

    2010-10-01

    A rapid increase of the temperature and the mechanical stress is expected in TRISO coated particle fuel that experiences a fast Total Control Rod Ejection (CRE) transient event. During this event the reactor power in the pebble bed core increases significantly for a short time interval. The power is deposited instantly and locally in the fuel kernel. This could result in a rapid increase of the pressure in the buffer layer of the coated fuel particle and, consequently, in an increase of the coating stresses. These stresses determine the mechanical failure probability of the coatings, which serve as the containment of radioactive fission products in the Pebble Bed Reactor (PBR). A new calculation procedure has been implemented at the Idaho National Laboratory (INL), which analyzes the transient fuel performance behavior of TRISO fuel particles in PBRs. This early capability can easily be extended to prismatic designs, given the availability of neutronic and thermal-fluid solvers. The full-core coupled neutronic and thermal-fluid analysis has been modeled with CYNOD-THERMIX. The temperature fields for the fuel kernel and the particle coatings, as well as the gas pressures in the buffer layer, are calculated with the THETRIS module explicitly during the transient calculation. Results from this module are part of the feedback loop within the neutronic-thermal fluid iterations performed for each time step. The temperature and internal pressure values for each pebble type in each region of the core are then input to the PArticle STress Analysis (PASTA) code, which determines the particle coating stresses and the fraction of failed particles. This paper presents an investigation of a Total Control Rod Ejection (TCRE) incident in the 400 MWth Pebble Bed Modular reactor design using the above described calculation procedure. The transient corresponds to a reactivity insertion of $3 (~2000 pcm) reaching 35 times the nominal power in 0.5 seconds. For each position in the core

  8. Development of a HTSMA-Actuated Surge Control Rod for High-Temperature Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Culley, Dennis; Stevens, Mark; Penney, Nicholas; Gaydosh, Darrell; Quackenbush, Todd; Carpenter, Bernie

    2007-01-01

    In recent years, a demand for compact, lightweight, solid-state actuation systems has emerged, driven in part by the needs of the aeronautics industry. However, most actuation systems used in turbomachinery require not only elevated temperature but high-force capability. As a result, shape memory alloy (SMA) based systems have worked their way to the forefront of a short list of viable options to meet such a technological challenge. Most of the effort centered on shape memory systems to date has involved binary NiTi alloys but the working temperatures required in many aeronautics applications dictate significantly higher transformation temperatures than the binary systems can provide. Hence, a high temperature shape memory alloy (HTSMA) based on NiTiPdPt, having a transformation temperature near 300 C, was developed. Various thermo-mechanical processing schemes were utilized to further improve the dimensional stability of the alloy and it was later extruded/drawn into wire form to be more compatible with envisioned applications. Mechanical testing on the finished wire form showed reasonable work output capability with excellent dimensional stability. Subsequently, the wire form of the alloy was incorporated into a benchtop system, which was shown to provide the necessary stroke requirements of approx.0.125 inches for the targeted surge-control application. Cycle times for the actuator were limited to 4 seconds due to control and cooling constraints but this cycle time was determined to be adequate for the surge control application targeted as the primary requirement was initial actuation of a surge control rod, which could be completed in approximately one second.

  9. A tetrachromatic display for the spatiotemporal control of rod and cone stimulation.

    PubMed

    Bayer, Florian S; Paulun, Vivian C; Weiss, David; Gegenfurtner, Karl R

    2015-08-01

    We present an apparatus that allows independent stimulation of rods and short (S)-, middle (M)-, and long (L)-wavelength-sensitive cones. Previously presented devices allow rod and cone stimulation independently, but only for a spatially invariant stimulus design (Pokorny, Smithson, & Quinlan, 2004; Sun, Pokorny, & Smith, 2001b). We overcame this limitation by using two spectrally filtered projectors with overlapping projections. This approach allows independent rod and cone stimulation in a dynamic two-dimensional scene with appropriate resolution in the spatial, temporal, and receptor domains. Modulation depths were ±15% for M-cones and L-cones, ±20% for rods, and ±50% for S-cones, all with respect to an equal-energy mesopic background at 3.4 cd/m2. Validation was provided by radiometric measures and behavioral data from two trichromats, one protanope, one deuteranope, and one night-blind observer. PMID:26305863

  10. Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch

    NASA Astrophysics Data System (ADS)

    Safa, Khari; Zahra, Rahmani; Behrooz, Rezaie

    2016-05-01

    An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system. In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov’s stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response, and robustness against uncertainties.

  11. Dynamic Simulation of Trapping and Controlled Rotation of a Microscale Rod Driven by Line Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Haghshenas-Jaryani, Mahdi; Bowling, Alan; Mohanty, Samarendra

    2013-03-01

    Since the invention of optical tweezers, several biological and engineering applications, especially in micro-nanofluid, have been developed. For example, development of optically driven micromotors, which has an important role in microfluidic applications, has vastly been considered. Despite extensive experimental studies in this field, there is a lack of theoretical work that can verify and analyze these observations. This work develops a dynamic model to simulate trapping and controlled rotation of a microscale rod under influence of the optical trapping forces. The laser beam, used in line optical tweezers with a varying trap's length, was modeled based on a ray-optics approach. Herein, the effects of viscosity of the surrounding fluid (water), gravity, and buoyancy were included in the proposed model. The predicted results are in overall agreement with the experimental observation, which make the theoretical model be a viable tool for investigating the dynamic behavior of small size objects manipulated by optical tweezers in fluid environments. This material is based upon work supported by the National Science Foundation under Grant No. MCB-1148541.

  12. Lifetime of PWR silver-indium-cadmium control rods. Final report

    SciTech Connect

    Sipush, P.J.; Woodcock, J.; Chickering, R.W.

    1986-03-01

    A hot cell examination was performed on selected rodlets of a lead rod cluster control assembly (RCCA) which had experienced eleven cycles of operation in Point Beach Unit 1. The principal purpose of the program was to evaluate the performance of RCCAs. The hot cell examination of the rodlets involved detailed visual inspections, profilometry, metallography, cladding chemistry, dosimetry, scanning electron microscopy, corrosion tests, microhardness tests, absorber density measurements, and cladding tensile tests. Wear scars and a hairline crack in the cladding were evaluated. The results of the examinations and analysis of WEPCO site photographs led to an estimate of the service life for RCCAs which are used in Westinghouse 14 x 14 fuel assemblies. Also, wear scar widths were correlated with wear scar depths. The correlation may be used to estimate wear scar depths based on site photographs of wear scars for 14 x 14 RCCAs. The results of the program may be used as guidelines for RCCAs for 15 x 15 and 17 x 17 Westinghouse fuel designs. 10 refs., 89 figs., 26 tabs.

  13. Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility

    SciTech Connect

    Posivak, E.J.; Berger, S.R.; Freitag, A.A.

    2008-07-01

    Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to the disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)

  14. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei

    2012-05-01

    A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.

  15. Controlled synthesis of ZnO from nanospheres to micro-rods and its gas sensing studies.

    PubMed

    Navale, Shalaka C; Gosavi, S W; Mulla, I S

    2008-06-15

    1D ZnO rods are synthesized using less explored hydrazine method. Here we find, besides being combustible hydrazine can also be used as a structure-directing agent. The ratio of zinc nitrate (ZN) to hydrazine is found to control the morphology of ZnO. At lower concentration of ZN as compared with hydrazine the morphology of ZnO is found to be spherical. As we increase the hydrazine content the morphology changes from spherical (diameter approximately 100 nm) to the elongated structures including shapes like Y, T as well dumbbell (diameter approximately 40 nm and length approximately 150 nm). Interestingly for more than 50% of hydrazine ZnO micro-rods are formed. Such rods are of diameter approximately 120 nm having length of about 1 microm for ZN to hydrazine ratio of 1:9, isolated as well as bundle of rods are seen in scanning electron microscopy (SEM). The X-ray diffraction (XRD) reveals the phase formation with average particle size of 37 nm as calculated using Scherrer's formula. The high-resolution transmission electron microscopy (HRTEM) is also done to confirm the d-spacing in ZnO. Gas sensing study for these samples shows high efficiency and selectivity towards LPG at all operating temperatures. Photoluminescence (PL) study for these samples is performed at room temperature to find potential application as photoelectric material. PMID:18585218

  16. Analysis of the dose rate produced by control rods discharged from a BWR into the irradiated fuel pool.

    PubMed

    Ródenas, J; Gallardo, S; Abarca, A; Juan, V

    2010-01-01

    BWR control rods become activated by neutron reactions into the reactor. Therefore, when they are withdrawn from the reactor, they must be stored into the storage pool for irradiated fuel at a certain depth under water. Dose rates on the pool surface and the area surrounding the pool should be lower than limits for workers. The MCNP code based on the Monte Carlo method has been applied to model this situation and to calculate dose rates at points of interest. PMID:19836252

  17. Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code

    SciTech Connect

    Tiberi, V.

    2012-07-01

    The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity of the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine

  18. Nondestructive Examination of Possible PWSCC in Control Rod Drive Mechanism Housings

    SciTech Connect

    Doctor, Steven R.; Cumblidge, Stephen E.; Schuster, George J.; Harris, Rob V.; Crawford, Susan L.

    2007-01-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. In describing two CRDM assemblies removed from service, decontaminated, and then used in a series of NDE measurements, this paper will address the following questions: 1) What did each technique detect? 2) What did each technique miss? and 3) How accurately did each technique characterize the detected flaws? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. One contained suspected PWSCC, based on in-service inspection data and through-wall leakage; the other contained evidence suggesting through-wall leakage, but this was unconfirmed. The selected NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on inspecting the J-groove weld and buttering. This paper will also describe the NDE methods used and discuss the NDE results. Future work will involve using the results from these NDE studies to guide the development of a destructive characterization plan to reveal the crack morphology and a comparison of the degradation found by the destructive evaluation with the recorded NDE responses.

  19. NDE of Possible Service-Induced PWSCC in Control Rod Drive Mechanism Housings Removed from Service

    SciTech Connect

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.; Harris, Robert V.; Crawford, Susan L.

    2006-09-22

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are being performed to assess the effectiveness of nondestructive examination (NDE) techniques on removed-from-service control rod drive mechanism (CRDM) nozzles and the associated J-groove attachment welds. This work is being performed to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE techniques such as ultrasonic testing (UT), eddy current testing (ET), and visual testing (VT) as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. The basic NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on the J-groove weld and buttering. This paper describes the NDE measurements that were employed on the two CRDMs to detect and characterize the indications and the analysis of these indications. The two CRDM assemblies were removed from service from the North Anna 2 vessel head, including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material. One nozzle contains suspected PWSCC, based on in-service inspection data; the second contains evidence suggesting through-wall leakage, although this was unconfirmed. A destructive test plan is being developed to directly characterize the indications found using nondestructive testing. The results of this destructive testing will be included when the destructive testing is completed.

  20. Application of American National Standards of calibration techniques of bulk measurements for nuclear materials control

    SciTech Connect

    Doher, L. W.; Gerald, K. B.

    1980-01-01

    In 1975 Subcommittee ANSI-INMM-8, Calibration Techniques for Nuclear Material Control under the guidance of the American National Standards Institute Committee N15 and sponsored by the Institute of Nuclear Materials Management, published four standards for calibration of bulk measurement of nuclear materials. The calibration techniques include those for mass, volume, nondestructive assay, and plutonium calorimetry measurements. Since that time, calibration and research personnel of the Rocky Flats Plant and workers at other facilities have applied the direction and guidance of these standards. Results of the applications are reported and th value of each standard discussed. Examples are included together with certain shortcomings and future revision plans.

  1. Rapid quenching of molten lithium-aluminum jets in water under loss-of-control-rod-cooling conditions

    SciTech Connect

    Greene, G.A.; Finfrock, C.C.; Schwarz, C.E.; Allison, D.K.; Hyder, M.L.

    1992-01-01

    A series of fifteen tests were performed to investigate the thermal interactions between molten LiAl control rod material and water under conditions prototypic of the loss-of-control-rod-cooling (LCRC) accident scenario. The experimental parameters such as melt mass, stream diameter, melt temperature and flowrate, water depth and water temperature were controlled or varied to agree with analytically determined conditions, thus insuring prototypicality of the experiments and applicability of the results. Experiments were performed in an actual Q-septifoil with web insert; the test section was one meter tall. Natural triggers were investigated in selected tests, to evaluate the self-triggering potential of this system. The self-triggering mechanisms that were investigated were thermal stratification of the water pool, two-phase flow in the water pool, and simultaneous drop of a control rod in parallel channel. Only benign interactions were observed during these tests with some evidence of pressurization in the tests with deepest and hottest water pools. There was no evidence of any explosive interactions in any of the tests, even those with natural triggers. The molten LiAl jets was found to undergo jet breakup and fragmentation; in some cases the debris hung up in the web, in other cases the debris settled into a loose debris bed at the bottom of the septifoil. It is concluded from these tests that molten lithium-aluminum alloy injected into water under conditions prototypic of LCRC conditions will not self-trigger to a steam explosion nor can it be triggered by naturally occurring triggers. The mode of interaction is benign jet breakup and fragmentation, followed by debris solidification. Explosive events did not occur and may not even be possible under these conditions. As a result, the LCRC accident cannot propagate damage and should not be a power-limiting concern in the K-reactor.

  2. Geometric Calibration of ZIYUAN-3 Three-Line Cameras Combining Ground Control Points and Lines

    NASA Astrophysics Data System (ADS)

    Cao, Jinshan; Yuan, Xiuxiao; Gong, Jianya

    2016-06-01

    Due to the large biases between the laboratory-calibrated values of the orientation parameters and their in-orbit true values, the initial direct georeferencing accuracy of the Ziyuan-3 (ZY-3) three-line camera (TLC) images can only reach the kilometre level. In this paper, a point-based geometric calibration model of the ZY-3 TLCs is firstly established by using the collinearity constraint, and then a line-based geometric calibration model is established by using the coplanarity constraint. With the help of both the point-based and the line-based models, a feasible in-orbit geometric calibration approach for the ZY-3 TLCs combining ground control points (GCPs) and ground control lines (GCLs) is presented. Experimental results show that like GCPs, GCLs can also provide effective ground control information for the geometric calibration of the ZY-3 TLCs. The calibration accuracy of the look angles of charge-coupled device (CCD) detectors achieved by using the presented approach reached up to about 1.0''. After the geometric calibration, the direct georeferencing accuracy of the ZY-3 TLC images without ground controls was significantly improved from the kilometre level to better than 11 m in planimetry and 9 m in height. A more satisfactory georeferencing accuracy of better than 3.5 m in planimetry and 3.0 m in height was achieved after the block adjustment with four GCPs.

  3. Evaluating Statistical Process Control (SPC) techniques and computing the uncertainty of force calibrations

    NASA Technical Reports Server (NTRS)

    Navard, Sharon E.

    1989-01-01

    In recent years there has been a push within NASA to use statistical techniques to improve the quality of production. Two areas where statistics are used are in establishing product and process quality control of flight hardware and in evaluating the uncertainty of calibration of instruments. The Flight Systems Quality Engineering branch is responsible for developing and assuring the quality of all flight hardware; the statistical process control methods employed are reviewed and evaluated. The Measurement Standards and Calibration Laboratory performs the calibration of all instruments used on-site at JSC as well as those used by all off-site contractors. These calibrations must be performed in such a way as to be traceable to national standards maintained by the National Institute of Standards and Technology, and they must meet a four-to-one ratio of the instrument specifications to calibrating standard uncertainty. In some instances this ratio is not met, and in these cases it is desirable to compute the exact uncertainty of the calibration and determine ways of reducing it. A particular example where this problem is encountered is with a machine which does automatic calibrations of force. The process of force calibration using the United Force Machine is described in detail. The sources of error are identified and quantified when possible. Suggestions for improvement are made.

  4. Temperature control and calibration issues in the growth, processing and characterization of electronic materials

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1989-01-01

    The temperature control and calibration issues encountered in the growth, processing, and characterization of electronic materials are summarized. The primary problem area is identified as temperature control during epitaxial materials growth. While qualitative thermal measurements are feasible and reproducibility is often achievable within a given system, absolute calibration is essentially impossible in many cases, precluding the possibility of portability from one system to another. The procedures utilized for thermal measurements during epitaxial growth are described, and their limitations discussed.

  5. A controlled experiment in ground water flow model calibration

    USGS Publications Warehouse

    Hill, M.C.; Cooley, R.L.; Pollock, D.W.

    1998-01-01

    Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic

  6. Flavor Tagging at Tevatron incl. calibration and control

    SciTech Connect

    Moulik, T.; /Kansas U.

    2007-01-01

    This report summarizes the flavor tagging techniques developed at the CDF and D0 experiments. Flavor tagging involves identification of the B meson flavor at production, whether its constituent is a quark or an anti-quark. It is crucial for measuring the oscillation frequency of neutral B mesons, both in the B{sup 0} and B{sub S} system. The two experiments have developed their unique approaches to flavor tagging, using neural networks, and likelihood methods to disentangle tracks from b decays from other tracks. This report discusses these techniques and the measurement of B{sup 0} mixing, as a means to calibrate the taggers.

  7. Nondestructive and Destructive Examination Studies on Removed-from-Service Control Rod Drive Mechanism Penetrations

    SciTech Connect

    Cumblidge, Stephen E.; Crawford, Susan L.; Doctor, Steven R.; Seffens, Rob J.; Schuster, George J.; Toloczko, Mychailo B.; Harris, Robert V.; Bruemmer, Stephen M.

    2007-06-07

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objectives of this work are to provide information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. Two CRDM assemblies were removed from service, decontaminated, and then used in a series of NDE and destructive examination (DE) measurements; this report addresses the following questions: 1) What did each NDE technique detect? 2) What did each NDE technique miss? 3) How accurately did each NDE technique characterize the detected flaws? 4) Why did the NDE techniques perform or not perform? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. This report focuses on a CRDM assembly that contained suspected PWSCC, based on in-service inspection data and through-wall leakage. The NDE measurements used to examine the CRDM assembly followed standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. These techniques included eddy current testing (ET), time-of-flight diffraction ultrasound, and penetrant testing. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assembly with particular emphasis on inspecting the J-groove weld and buttering. These techniques included volumetric ultrasonic inspection of the J-groove weld metal and visual testing via replicant material of the J-groove weld. The results from these NDE studies were used to

  8. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade

    PubMed Central

    Astakhova, Luba A.; Samoiliuk, Evgeniia V.; Govardovskii, Victor I.

    2012-01-01

    In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions. PMID:23008435

  9. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-07-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  10. Calibration and control for range imaging in mobile robot navigation

    SciTech Connect

    Dorum, O.H.; Hoover, A.; Jones, J.P.

    1994-06-01

    This paper addresses some issues in the development of sensor-based systems for mobile robot navigation which use range imaging sensors as the primary source for geometric information about the environment. In particular, we describe a model of scanning laser range cameras which takes into account the properties of the mechanical system responsible for image formation and a calibration procedure which yields improved accuracy over previous models. In addition, we describe an algorithm which takes the limitations of these sensors into account in path planning and path execution. In particular, range imaging sensors are characterized by a limited field of view and a standoff distance -- a minimum distance nearer than which surfaces cannot be sensed. These limitations can be addressed by enriching the concept of configuration space to include information about what can be sensed from a given configuration, and using this information to guide path planning and path following.

  11. Automatic safety rod for reactors

    DOEpatents

    Germer, John H.

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  12. Precision control of multiple quantum cascade lasers for calibration systems

    SciTech Connect

    Taubman, Matthew S. Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby, and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  13. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    SciTech Connect

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasers during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  14. Precision control of multiple quantum cascade lasers for calibration systems

    NASA Astrophysics Data System (ADS)

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-01

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1-2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby, and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  15. Calibration and seasonal adjustment for matched case-control studies of vitamin D and cancer.

    PubMed

    Gail, Mitchell H; Wu, Jincao; Wang, Molin; Yaun, Shiaw-Shyuan; Cook, Nancy R; Eliassen, A Heather; McCullough, Marjorie L; Yu, Kai; Zeleniuch-Jacquotte, Anne; Smith-Warner, Stephanie A; Ziegler, Regina G; Carroll, Raymond J

    2016-06-15

    Vitamin D measurements are influenced by seasonal variation and specific assay used. Motivated by multicenter studies of associations of vitamin D with cancer, we formulated an analytic framework for matched case-control data that accounts for seasonal variation and calibrates to a reference assay. Calibration data were obtained from controls sampled within decile strata of the uncalibrated vitamin D values. Seasonal sine-cosine series were fit to control data. Practical findings included the following: (1) failure to adjust for season and calibrate increased variance, bias, and mean square error and (2) analysis of continuous vitamin D requires a variance adjustment for variation in the calibration estimate. An advantage of the continuous linear risk model is that results are independent of the reference date for seasonal adjustment. (3) For categorical risk models, procedures based on categorizing the seasonally adjusted and calibrated vitamin D have near nominal operating characteristics; estimates of log odds ratios are not robust to choice of seasonal reference date, however. Thus, public health recommendations based on categories of vitamin D should also define the time of year to which they refer. This work supports the use of simple methods for calibration and seasonal adjustment and is informing analytic approaches for the multicenter Vitamin D Pooling Project for Breast and Colorectal Cancer. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA. PMID:27133461

  16. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOEpatents

    Thomas, G.; Ahn, J.H.; Kim, N.J.

    1986-10-28

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.

  17. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOEpatents

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  18. Adaptive Wavefront Calibration and Control for the Gemini Planet Imager

    SciTech Connect

    Poyneer, L A; Veran, J

    2007-02-02

    Quasi-static errors in the science leg and internal AO flexure will be corrected. Wavefront control will adapt to current atmospheric conditions through Fourier modal gain optimization, or the prediction of atmospheric layers with Kalman filtering.

  19. Shape-Controlled Paclitaxel Nanoparticles with Multiple Morphologies: Rod-Shaped, Worm-Like, Spherical, and Fingerprint-Like

    PubMed Central

    2015-01-01

    Although many nanocarriers have been developed to encapsulate paclitaxel (PTX), the drug loading and circulation time in vivo always are not ideal because of its rigid “brickdust” molecular structure. People usually concentrate their attention on the spherical nanocarriers, here paclitaxel nanoparticles with different geometries were established through the chemical modification of PTX, nanoprecipitation, and core-matched cargos. Previously we have developed rod-shape paclitaxel nanocrystals using block copolymer, pluronic F127. Unfortunately, the pharmacokinetic (PK) profile of PTX nanocrystals is very poor. However, when PTX was replaced by its prodrug, the geometry of the nanoparticles changed from rod-shaped to worm-like. The worm-like nanoparticles can be further changed to spherical nanoparticles using the nanoprecipitation method, and changed to fingerprint-like nanoparticles upon the addition of the core-matched PTX. The nanoparticles with nonspherical morphologies, including worm-like nanoparticles and fingerprint-like nanoparticles, offer significant advantages in regards to key PK parameters in vivo. More important, in this report the application of the core-matching technology in creating a core-matched environment capable of controlling the in vivo PK of paclitaxel was demonstrated, and it revealed a novel technique platform to construct nanoparticles and improve the poor PK profiles of the drugs. PMID:25188586

  20. Field calibration of binocular stereo vision based on fast reconstruction of 3D control field

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Liu, Changjie; Fu, Luhua; Guo, Yin

    2015-08-01

    Construction of high-speed railway in China has entered a period of rapid growth. To accurately and quickly obtain the dynamic envelope curve of high-speed vehicle is an important guarantee for safe driving. The measuring system is based on binocular stereo vision. Considering the difficulties in field calibration such as environmental changes and time limits, carried out a field calibration method based on fast reconstruction of three-dimensional control field. With the rapid assembly of pre-calibrated three-dimensional control field, whose coordinate accuracy is guaranteed by manufacture accuracy and calibrated by V-STARS, two cameras take a quick shot of it at the same time. The field calibration parameters are then solved by the method combining linear solution with nonlinear optimization. Experimental results showed that the measurement accuracy can reach up to +/- 0.5mm, and more importantly, in the premise of guaranteeing accuracy, the speed of the calibration and the portability of the devices have been improved considerably.

  1. Making Highly Pure Glass Rods

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1986-01-01

    Proposed quasi-containerless method for making glass rods or fibers minimizes contact between processing equipment and product. Method allows greater range of product sizes and shapes than achieved in experiments on containerless processing. Molten zone established in polycrystalline rod. Furnace sections separated, and glass rod solidifies between them. Clamp supports solid glass as it grows in length. Pulling clamp rapidly away from melt draws glass fiber. Fiber diameter controlled by adjustment of pulling rate.

  2. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    SciTech Connect

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

  3. Evaluation and Repair of Primary Water Stress Corrosion Cracking in Alloy 600/182 Control Rod Drive Mechanism Nozzles

    SciTech Connect

    Frye, Charles R.; Arey, Melvin L. Jr.; Robinson, Michael R.; Whitaker, David E.

    2002-07-01

    In February 2001, a routine visual inspection of the reactor vessel head of Oconee Nuclear Station Unit 3 identified boric acid crystals at nine of sixty-nine locations where control rod drive mechanism housings (CRDM nozzles) penetrate the head. The boric acid deposits resulted from primary coolant leaking from cracks in the nozzle attachment weld and from through-thickness cracks in the nozzle wall. A general overview of the inspection and repair process is presented and results of the metallurgical analysis are discussed in more detail. The analysis confirmed that primary water stress corrosion cracking (PWSCC) is the mechanism of failure of both the Alloy 182 weld filler material and the alloy 600 wrought base material. (authors)

  4. Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region

    SciTech Connect

    Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce; Hanson, Brady D.; Diaz, Aaron A.

    2011-10-01

    In this investigation, non-destructive and destructive testing were used to evaluate potential boric acid leakage paths around an Alloy 600 CRDM penetration (Nozzle 63) from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2003. For this investigation, Nozzle 63 was examined using phased array ultrasonic testing. Prior to examining Nozzle 63, a CRDM penetration mockup with known notches and boric acid deposits was used to assess probe sensitivity, resolution and calibration. Following the non-destructive testing of Nozzle 63, the nozzle was destructively examined to visually assess the leak paths. These destructive and nondestructive results are compared and results are presented. The results of this investigation may be used by NRC to evaluate licensees’ volumetric leak path assessment methodologies and to support regulatory inspection requirements.

  5. Simultaneous calibrations of Voyager celestial and inertial attitude control systems in flight

    NASA Technical Reports Server (NTRS)

    Jahanshahi, M. H.

    1982-01-01

    A mathematical description of the data reduction technique used to simultaneously calibrate the Voyager celestial and inertial attitude control subsystems is given. It is shown that knowledge of the spacecraft limit cycle motion, as measured by the celestial and the inertial sensors, is adequate to result in the estimates of a selected number of errors which adversely affect the spacecraft attitude knowledge.

  6. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Calibrations, Adjustments and Quality Control A Appendix A to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Inspection/Maintenance Program...

  7. 40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Calibrations, Adjustments and Quality Control A Appendix A to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Inspection/Maintenance Program...

  8. Composite Lightning Rods for Aircraft

    NASA Technical Reports Server (NTRS)

    Bryan, Charles F., Jr.

    1986-01-01

    Composite, lightweight sacrificial tip with graphite designed reduces lightning-strike damage to composite parts of aircraft and dissipates harmful electrical energy. Device consists of slender composite rod fabricated from highly-conductive unidirectional reinforcing fibers in matrix material. Rods strategically installed in trailing edges of aircraft wings, tails, winglets, control surfaces, and rearward-most portion of aft fuselage.

  9. Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region

    SciTech Connect

    Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce; Hanson, Brady D.; Diaz, Aaron A.

    2011-07-31

    Ultrasonic phased array data were collected on a removed-from-service CRDM nozzle specimen to assess a previously reported leak path. First a mock-up CRDM specimen was evaluated that contained two 0.076-mm (3.0-mil) interference fit regions formed from an actual Inconel CRDM tube and two 152.4-mm (6.0-in.) thick carbon steel blocks. One interference fit region has a series of precision crafted electric discharge machining (EDM) notches at various lengths, widths, depths, and spatial separations for establishing probe sensitivity, resolution and calibration. The other interference fit has zones of boric acid (crystal form) spaced periodically between the tube and block to represent an actively leaking CRDM nozzle assembly in the field. Ultrasonic phased-array evaluations were conducted using an immersion 8-element annular 5.0-MHz probe from the tube inner diameter (ID). A variety of focal laws were employed to evaluate the interference fit regions and J grove weld, where applicable. Responses from the mock-up specimen were evaluated to determine detection limits and characterization ability as well as contrast the ultrasonic response differences with the presence of boric acid in the fit region. Nozzle 63, from the North Anna Unit-2 nuclear power plant, was evaluated to assess leakage path(s) and was destructively dismantled to allow a visual verification of the leak path(s).

  10. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods.

    PubMed

    Frederiksen, Rikard; Nymark, Soile; Kolesnikov, Alexander V; Berry, Justin D; Adler, Leopold; Koutalos, Yiannis; Kefalov, Vladimir J; Cornwall, M Carter

    2016-07-01

    Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1. We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo. PMID:27353443

  11. High precision digital control LED spot light source used to calibrate camera

    NASA Astrophysics Data System (ADS)

    Du, Boyu; Xu, Xiping; Liu, Yang

    2015-04-01

    This paper introduces a method of using LED point light source as the camera calibration light. According to the characteristics of the LED point light source, the constant current source is used to provide the necessary current and the illuminometer is used to measure the luminance of the LED point light source. The constant current source is controlled by ARM MCU and exchange data with the host computer though the mode of serial communications. The PC is used as the host computer, it adjust the current according to the luminance of the LED point light source until the luminance achieve the anticipated value. By experimental analysis, we found that the LED point light source can achieve the desired requirements as the calibration light source, and the accuracy is quite better that achieve the desired effect and it can adaptive control the luminance of LED well. The system is convenient and flexible, and its performance is stable and reliable.

  12. A digitally calibrated CMOS RMS power detector for RF automatic gain control

    NASA Astrophysics Data System (ADS)

    Taotao, Yan; Hui, Wang; Jinbo, Li; Jianjun, Zhou

    2013-03-01

    This paper presents the design and implementation of a digitally calibrated CMOS wideband radio frequency (RF) root-mean-square (RMS) power detector for high accuracy RF automatic gain control (AGC). The proposed RMS power detector demonstrates accurate power detection in the presence of process, supply voltage, and temperature (PVT) variations by employing a digital calibration scheme. It also consumes low power and occupies a small chip area. The measurement results show that the scheme improves the accuracy of the detector to better than 0.3 dB over the PVT variations and wide operating frequency range from 0.2 to 0.8 GHz. Implemented in a 0.18 μm CMOS process and occupying a small die area of 263 × 214 μm2, the proposed digitally calibrated CMOS RMS power detector only consumes 1.6 mA in power detection mode and 2.1 mA in digital calibration mode from a 1.8 V supply voltage.

  13. Nonlinear Observers for Gyro Calibration Coupled with a Nonlinear Control Algorithm

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The observers are then combined. The convergence properties of all three observers, and the combined observers, are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  14. Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul

    1994-01-01

    Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.

  15. Peptidic ligands to control the three-dimensional self-assembly of quantum rods in aqueous media.

    PubMed

    Bizien, Thomas; Even-Hernandez, Pascale; Postic, Marie; Mazari, Elsa; Chevance, Soizic; Bondon, Arnaud; Hamon, Cyrille; Troadec, David; Largeau, Ludovic; Dupuis, Christophe; Gosse, Charlie; Artzner, Franck; Marchi, Valérie

    2014-09-24

    The use of peptidic ligands is validated as a generic chemical platform allowing one to finely control the organization in solid phase of semiconductor nanorods originally dispersed in an aqueous media. An original method to generate, on a macroscopic scale and with the desired geometry, three-dimensional supracrystals composed of quantum rods is introduced. In a first step, nanorods are transferred in an aqueous phase thanks to the substitution of the original capping layer by peptidic ligands. Infrared and nuclear magnetic resonance spectroscopy data prove that the exchange is complete; fluorescence spectroscopy demonstrates that the emitter optical properties are not significantly altered; electrophoresis and dynamic light scattering experiments assess the good colloidal stability of the resulting aqueous suspension. In a second step, water evaporation in a microstructured environment yields superstructures with a chosen geometry and in which nanorods obey a smectic B arrangement, as shown by electron microscopy. Incidentally, bulk drying in a capillary tube generates a similar local order, as evidenced by small angle X-ray scattering. PMID:24864008

  16. An Improvement of Pose Measurement Method Using Global Control Points Calibration

    PubMed Central

    Sun, Changku; Sun, Pengfei; Wang, Peng

    2015-01-01

    During the last decade pose measurement technologies have gained an increasing interest in the computer vision. The vision-based pose measurement method has been widely applied in complex environments. However, the pose measurement error is a problem in the measurement applications. It grows rapidly with increasing measurement range. In order to meet the demand of high accuracy in large measurement range, a measurement error reduction solution to the vision-based pose measurement method, called Global Control Point Calibration (GCPC), is proposed. GCPC is an optimized process of existing visual pose measurement methods. The core of GCPC is to divide the measurement error into two types: the control point error and the control space error. Then by creating the global control points as well as performing error calibration of object pose, the two errors are processed. The control point error can be eliminated and the control space error is minimized. GCPC is experimented on the moving target in the camera’s field of view. The results show that the RMS error is 0.175° in yaw angle, 0.189° in pitch angle, and 0.159° in roll angle, which demonstrate that GCPC works effectively and stably. PMID:26207825

  17. Design of an expert system to automatically calibrate impedance control for powered knee prostheses.

    PubMed

    Wang, Ding; Liu, Ming; Zhang, Fan; Huang, He

    2013-06-01

    Many currently available powered knee prostheses (PKP) use finite state impedance control to operate a prosthetic knee joint. The desired impedance values were usually manually calibrated with trial-and-error in order to enable near-normal walking pattern. However, such a manual approach is inaccurate, time consuming, and impractical. This paper aimed to design an expert system that can tune the control impedance for powered knee prostheses automatically and quickly. The expert system was designed based on fuzzy logic inference (FLI) to match the desired knee motion and gait timing while walking. The developed system was validated on an able-bodied subject wearing a powered prosthesis. Preliminary experimental results demonstrated that the developed expert system can converge the user's knee profile and gait timing to the desired values within 2 minutes. Additionally, after the auto-tuning procedure, the user produced more symmetrical gait. These preliminary results indicate the promise of the designed expert system for quick and accuracy impedance calibration, which can significantly improve the practical value of powered lower limb prosthesis. Continuous engineering efforts are still needed to determine the calibration objectives and validate the expert system. PMID:24187260

  18. Calibration of a calorimeter for measuring the performance of thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Houseman, John; Siebes, Georg

    1993-01-01

    The calibration to evaluate the heat leak in terms of the deviation from a perfect calorimeter is described. A thermal vacuum test was carried out to characterize the performance of the calorimeter. The calorimeter was equipped with a heater to control the sample disc temperature and with specific instrumentation to measure the heat leak. The radiation sink temperature of the black cavity target was varied from -192 to +31C, while the heater power was varied from 0 to 311 milliwatts. A steady state thermal model was developed to correlate the results. The calorimeter performance was characterized in terms of the heat leak as a percentage of the ideal heat flow of the calorimeter disc. Large deviations from ideal performance occur at low sink temperatures. The effect of the use of the heater is discussed. The effects of transient conditions during low Earth orbit are discussed. It is concluded that heat leak calibrations are necessary for a wide range of conditions.

  19. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis

    NASA Astrophysics Data System (ADS)

    Kasada, R.; Ha, Y.; Higuchi, T.; Sakamoto, K.

    2016-05-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.

  20. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis

    PubMed Central

    Kasada, R.; Ha, Y.; Higuchi, T.; Sakamoto, K.

    2016-01-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test. PMID:27161666

  1. Chemical State Mapping of Degraded B4C Control Rod Investigated with Soft X-ray Emission Spectrometer in Electron Probe Micro-analysis.

    PubMed

    Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K

    2016-01-01

    B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test. PMID:27161666

  2. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials

    PubMed Central

    Iturrate, Iñaki; Grizou, Jonathan; Omedes, Jason; Oudeyer, Pierre-Yves; Lopes, Manuel; Montesano, Luis

    2015-01-01

    This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach. PMID:26131890

  3. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials.

    PubMed

    Iturrate, Iñaki; Grizou, Jonathan; Omedes, Jason; Oudeyer, Pierre-Yves; Lopes, Manuel; Montesano, Luis

    2015-01-01

    This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach. PMID:26131890

  4. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  5. D0 Silicon Upgrade: Control Dewar Venturi Calibration Explanation for Toshiba

    SciTech Connect

    Kuwazaki, Andrew; /Fermilab

    1997-01-24

    This document is intended to explain the calibration data for the venturi, FE-3253H, which is installed in the control dewar. Further, this document will help explain how to use the venturi to make mass flow measurements during typical operating conditions. The purpose of the calibration data enclosed from the Colorado Engineering Experiment Station Inc. is to experimentally show that the venturi follows the flow equation which is enclosed as Eq. 7-36 on page 155, from the Applied Fluid Dynamics Handbook. The calibration data serves to show that the Subsonic Venturi, Serial Number 611980-18, produces results predicted by the compressible subsonic flow mass flow rate equation above and to experimentally determine the discharge coefficient C. Colorado Engineering Experiment Station Inc. ran tests at 15 independent differential pressures to conclude that use of this venturi will perform according to the mass flow rate equation. In order to verify the results from the Colorado Engineering Experiment Station Inc. we have provided you with a step-by-step procedure using the values they have chosen.

  6. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOEpatents

    Young, J.N.

    1958-04-22

    An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.

  7. Adjoint-based optimal control for black-box simulators enabled by model calibration

    NASA Astrophysics Data System (ADS)

    Chen, Han; Wang, Qiqi; Klie, Hector

    2013-11-01

    Many simulations are performed using legacy code that are difficult to modify, or commercial software without available source code. Such ``black-box'' simulator often solves a partial differential equation involving some unknown parameters, functions or discretization methods. Optimal control for black-box simulators can be performed using gradient-free methods, but these methods can be computationally expensive when the controls are high dimensional. We aim at developing a more efficient optimization methodology for black-box simulations by first inferring and calibrating a ``twin model'' of the black-box simulator. The twin model is an open-box model that mirrors the behavior of the black-box simulation using data assimilation techniques. We then apply adjoint-based optimal control to the calibrated twin model. This method is applied to a 1D Buckley-Leverett equation solver, and a black-box multi-phase porous media flow solver PSIM. Special thanks to the support from the subsurface technology group of ConocoPhillips.

  8. Sensor-based navigation control and calibration of a wafer-handling mobile robot

    SciTech Connect

    Kim, D.I.; Kim, J.K.; Sung, H.K.; Kim, S.

    1995-12-31

    In this paper, the authors propose a mobile robot composed of a free-ranging automated guided vehicle and a manipulator with six degrees of freedom, which is mounted on the vehicle. In navigation in the semiconductor manufacturing line, the mobile robot utilizes the predefined map representing the route to move in the working area with clean class 1. The map and the information about the task to be performed is transmitted to the main controller of the mobile robot through R/F communication. In navigation, the mobile robot uses the fuzzy control algorithm based on the data from the sonar sensors attached to both right and left sides of the vehicle to maintain the positioning accuracy within {+-}1 cm. The mobile robot automatically calibrates the setting position of the manipulator to calculate the exact destination point where the given task should be carried out. Then, the manipulator loads the equipment with wafer-carriers or unloads wafer-carriers from the equipment in the semiconductor manufacturing line. By the proposed navigation algorithm based on fuzzy control and the calibration algorithm of the manipulator, the mobile robot efficiently carries out the given task in the semiconductor manufacturing line.

  9. Automatic safety rod for reactors. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  10. Development and operation of a computerized source controller for a gamma calibration well

    SciTech Connect

    Halliburton, R.E.

    1986-01-01

    In the 1950s, the need for an accurately reproducible, real-time gamma calibration facility at the Oak Ridge National Laboratory (ORNL) was met with a manually operated radium source housed in a calibration well. This arrangement was quite satisfactory in the early days but was not able to keep pace with the increasing number of instruments necessary to support an expanding health physics program. Consequently, the hand crank was replaced by an electric motor in the early 1960s. This improvement made it possible to move the source at speeds up to 7 cm/s, resulting in a major increase in efficiency. This configuration served reliably for two decades but, by the 1980s, component aging and the growing scarcity of replacement parts led to the development of a third-generation source controller. The electric motor and vacuum-tube-driven power supply were replaced with a solid state power supply and a stepper motor interfaced to a microcomputer. The software written to operate the system is menu-driven, user-friendly, and provides the greatest flexibility and ease of use while minimizing learning time. The development and use of this control system will be discussed.

  11. The construction and testing of the portable Hg(2+) ultrasonic calibrator for the control of mercury speciation systems.

    PubMed

    Gorecki, Jerzy; Okonska, Anna

    2016-01-15

    During fuel combustion mercury, as Hg(0) and Hg(2+) forms, is emitted to the atmosphere. Effective reduction of mercury emission requires applying speciation systems for emission control and research. An important part of all mercury determination and speciation systems are the calibrators. Calibrators are responsible for the accuracy of mercury determination and, in consequence, the effective reduction of mercury emission. The aim of the work was to construct a portable HgCl2 calibrator. The purpose of the device was the control of mercury speciation systems for continuous measurements and study of HgCl2 sorption. As a result of previously conducted research, the portable Hg(2+) ultrasonic calibrator was designed, constructed and tested. The ultrasonic calibrator generates a stable stream of HgCl2 (RSD=2.8% for CHg=28µg/m(3)). The correlation between theoretical and reading concentration of HgCl2 was R(2)=0.9983. The average recovery of HgCl2 was 95%. The advantages of the ultrasonic Hg(2+) calibrator are: high accuracy and selectivity, low pressure of HgCl2 stream and very low cost of production. The calibrator was successfully tested, both in the laboratory and in the power plant, during a preliminary study on HgCl2 sorption on a fly ash filter. PMID:26592572

  12. Safety rod latch inspection

    SciTech Connect

    Leader, D.R.

    1992-02-01

    During an attempt to raise control rods from the 100 K reactor in December, one rod could not be withdrawn. Subsequent investigation revealed that a small button'' in the latch mechanism had broken off of the lock plunger'' and was wedged in a position that prevented rod withdrawal. Concern that this failure may have resulted from corrosion or some other metallurgical problem resulted in a request that SRL examine six typical latch mechanisms from the 100 L reactor by use of radiography and metallography. During the examination of the L-Area latches, a failed latch mechanism from the 100 K reactor was added to the investigation. Fourteen latches that had a history of problems were removed from K-Area and sent to SRL for inclusion in this study the week after the original seven assemblies were examined, bringing the total of latch assemblies discussed in this report to twenty one. Results of the examination of the K-Area latch that initiated this study is not included in this report.

  13. Safety rod latch inspection

    SciTech Connect

    Leader, D.R.

    1992-02-01

    During an attempt to raise control rods from the 100 K reactor in December, one rod could not be withdrawn. Subsequent investigation revealed that a small ``button`` in the latch mechanism had broken off of the ``lock plunger`` and was wedged in a position that prevented rod withdrawal. Concern that this failure may have resulted from corrosion or some other metallurgical problem resulted in a request that SRL examine six typical latch mechanisms from the 100 L reactor by use of radiography and metallography. During the examination of the L-Area latches, a failed latch mechanism from the 100 K reactor was added to the investigation. Fourteen latches that had a history of problems were removed from K-Area and sent to SRL for inclusion in this study the week after the original seven assemblies were examined, bringing the total of latch assemblies discussed in this report to twenty one. Results of the examination of the K-Area latch that initiated this study is not included in this report.

  14. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  15. An investigation of automatic exposure control calibration for chest imaging with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Beavis, A. W.; Saunderson, J. R.

    2014-05-01

    The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.

  16. Quality Control and Calibration of NASA Polarimetric (NPOL) Radar Data from MC3E

    NASA Astrophysics Data System (ADS)

    Marks, D. A.; Wolff, D. B.

    2011-12-01

    The Mid-Latitude Continental Convective Clouds Experiment (MC3E), a joint campaign between the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility, and the NASA Global Precipitation Measurement (GPM) program, took place in the Spring of 2011 (April 22 - June 6) and was centered at the ARM Southern Great Plains facility in central Oklahoma. A key asset for MC3E was the NPOL S-band dual-polarimetric radar. NPOL captured unique polarimetric data that will be used to improve understanding of cloud and precipitation microphysics, and will provide essential input for the development of physically based passive microwave retrieval algorithms over land. Initial quality control (QC) and calibration of NPOL data are critical for robust analyses of the observed convective systems. A modular, physically based algorithm using dual-polarimetric fields was developed for NPOL QC. Significant QC challenges include mitigation of ground clutter, range-ambiguous (multiple trip) echo, and anomalous propagation (AP) from both density gradients and nocturnal atmospheric decoupling. It was found that the standard deviation of differential phase is a reliable test for detection of ground clutter and AP, while the Signal Quality Index (SQI) filter is useful for detecting range-ambiguous echo due to inherent low coherency. The QC algorithm was developed with NASA's Radar Software Library (RSL) using the IDL programming language (RSL_in_IDL). The modular functions and procedures were written such that the program can easily be used with other polarimetric radars via passing of an RSL "radar" structure, and includes tunable parameters applied using keywords specified at execution time. Absolute reflectivity calibration was performed using a self-consistency technique that relies on the properties of the precipitation medium, where the horizontal component of reflectivity (Zh), differential reflectivity (Zdr) , and specific differential phase (Kdp) are

  17. High concentration (2500 suns), high throughput, automated flash tester with calibrated color balance and intensity control

    NASA Astrophysics Data System (ADS)

    Ludowise, Michael; Taylor, Sean; Lucow, Ewelina; Chan, Hing

    2008-08-01

    SolFocus has designed and built a flexible and adaptable solar flash tester capable of reaching in excess of 2500x suns flux using a commercially available Xenon flash and power supply. Using calibrated isotype cells and photodetectors, the intensity and color balance of the flash are controlled through software algorithms that compensate for tube aging and thermal drift. The data acquisition system dynamically normalizes each of the 1600 I-V data pairs to the lamp intensity during each flash. Up to 32 cells can be measured simultaneously, with a flash re-cycle time of 3 seconds. The dynamic current range is 100μA to 10A over 0 to 5V. Test ranges are limited by user input through a modern GUI screen. The system is mated to a commercially available probe station tester which allows automated testing of up to 150mm diameter wafers, and is capable of testing a 4000 cell wafer in less than 8 minutes. The core software and optical components are easily adaptable to receiver and full panel testing as well. Data on the calibration and performance of the flash tester, the dynamic range achieved in test, and throughputs obtained during operation are presented.

  18. Low noise frequency synthesizer with self-calibrated voltage controlled oscillator and accurate AFC algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Qin; Jinbo, Li; Jian, Kang; Xiaoyong, Li; Jianjun, Zhou

    2014-09-01

    A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm2, including bias circuits and buffers.

  19. A Destructive Validation of NDE Responses of Service-Induced PWSCC Found in North Anna 2 Control Rod Drive Nozzle 31

    SciTech Connect

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.; Harris, Robert V.; Crawford, Susan L.; Seffens, Rob J.; Toloczko, Mychailo B.; Bruemmer, Stephen M.; Moyer, C.

    2009-07-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies.

  20. Commercial off the Shelf Ground Control Supports Calibration and Conflation from Ground to Space Based Sensors

    NASA Astrophysics Data System (ADS)

    Danielová, M.; Hummel, P.

    2016-06-01

    The need for rapid deployment of aerial and satellite imagery in support of GIS and engineering integration projects require new sources of geodetic control to ensure the accuracy for geospatial projects. In the past, teams of surveyors would need to deploy to project areas to provide targeted or photo identifiable points that are used to provide data for orthorecificaion, QA/QC and calibration for multi-platform sensors. The challenge of integrating street view, UAS, airborne and Space based sensors to produce the common operational picture requires control to tie multiple sources together. Today commercial off the shelf delivery of existing photo identifiable control is increasing the speed of deployment of this data without having to revisit sites over and over again. The presentation will discuss the processes developed by CompassData to build a global library of 40,000 control points available today. International Organization for Standardization (ISO) based processes and initiatives ensure consistent quality of survey data, photo identifiable features selected and meta data to support photogrammetrist, engineers and GIS professionals to quickly deliver projects with better accuracy.

  1. Calibration of an instrumented treadmill using a precision-controlled device with artificial neural network-based error corrections.

    PubMed

    Hsieh, Hong-Jung; Lin, Hsiu-Chen; Lu, Hsuan-Lun; Chen, Ting-Yi; Lu, Tung-Wu

    2016-03-01

    Instrumented treadmills (ITs) are used to measure reaction forces (RF) and center of pressure (COP) movements for gait and balance assessment. Regular in situ calibration is essential to ensure their accuracy and to identify conditions when a factory re-calibration is needed. The current study aimed to develop and calibrate in situ an IT using a portable, precision-controlled calibration device with an artificial neural network (ANN)-based correction method. The calibration device was used to apply static and dynamic calibrating loads to the surface of the IT at 189 and 25 grid-points, respectively, at four belt speeds (0, 4, 6 and 8 km/h) without the need of a preset template. Part of the applied and measured RF and COP were used to train a threelayered, back-propagation ANN model while the rest of the data were used to evaluate the performance of the ANN. The percent errors of Fz and errors of the Px and Py were significantly decreased from a maximum of -1.15%, -1.64 mm and -0.73 mm to 0.02%, 0.02 mm and 0.03 mm during static calibration, respectively. During dynamic calibration, the corresponding values were decreasing from -3.65%, 2.58 mm and -4.92 mm to 0.30%, -0.14 mm and -0.47 mm, respectively. The results suggest that the calibration device and associated ANN will be useful for correcting measurement errors in vertical loads and COP for ITs. PMID:26979909

  2. Connexin 36 and rod bipolar cell independent rod pathways drive retinal ganglion cells and optokinetic reflexes.

    PubMed

    Cowan, Cameron S; Abd-El-Barr, Muhammad; van der Heijden, Meike; Lo, Eric M; Paul, David; Bramblett, Debra E; Lem, Janis; Simons, David L; Wu, Samuel M

    2016-02-01

    Rod pathways are a parallel set of synaptic connections which enable night vision by relaying and processing rod photoreceptor light responses. We use dim light stimuli to isolate rod pathway contributions to downstream light responses then characterize these contributions in knockout mice lacking rod transducin-α (Trα), or certain pathway components associated with subsets of rod pathways. These comparisons reveal that rod pathway driven light sensitivity in retinal ganglion cells (RGCs) is entirely dependent on Trα, but partially independent of connexin 36 (Cx36) and rod bipolar cells. Pharmacological experiments show that rod pathway-driven and Cx36-independent RGC ON responses are also metabotropic glutamate receptor 6-dependent. To validate the RGC findings in awake, behaving animals we measured optokinetic reflexes (OKRs), which are sensitive to changes in ON pathways. Scotopic OKR contrast sensitivity was lost in Trα(-/-) mice, but indistinguishable from controls in Cx36(-/-) and rod bipolar cell knockout mice. Mesopic OKRs were also altered in mutant mice: Trα(-/-) mice had decreased spatial acuity, rod BC knockouts had decreased sensitivity, and Cx36(-/-) mice had increased sensitivity. These results provide compelling evidence against the complete Cx36 or rod BC dependence of night vision's ON component. Further, the findings suggest the parallel nature of rod pathways provides considerable redundancy to scotopic light sensitivity but distinct contributions to mesopic responses through complicated interactions with cone pathways. PMID:26718442

  3. Investigation of combined free and forced convection in a 2 x 6 rod bundle during controlled flow transients

    SciTech Connect

    Bates, J.M.; Khan, E.U.

    1980-10-01

    An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program (a modified version of the COBRA-IV code).

  4. Solar Probe Plus: Motor Controllers Design for Manipulator for Calibration Purposes of SPAN-A and SPAN-B Instruments

    NASA Astrophysics Data System (ADS)

    Juache Aguilar, K.

    2015-12-01

    In preparation for the 2018 launch of Solar Probe Plus, and for the pre-flight tests of the SWEAP package, the instrument manipulator has been updated and modernized. Calibration of the Electrostatic Analyzers (ESA) is the critical last stop before launching instruments into space. The current method of controlling the instrument manipulator requires a dedicated computer, operating system, and power supplies. A novel solution integrates the power supplies, data acquisition, motor controller, and commanding microcontroller into one small enclosure. The system will also include software integration that communicates via Ethernet with electrical ground support equipment (EGSE) for full scripting automation during instrument calibration.

  5. Piston rod seal

    DOEpatents

    Lindskoug, Stefan

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  6. Quality Control of Online Calibration in Computerized Assessment. LSAC Research Report Series.

    ERIC Educational Resources Information Center

    Glas, C. A. W.

    In computerized adaptive testing, updating item parameter estimates using adaptive testing data is often called online calibration. This study investigated how to evaluate whether the adaptive testing data used for online calibration sufficiently fit the item response model used. Three approaches were investigated, based on a Lagrange multiplier…

  7. Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI

    NASA Technical Reports Server (NTRS)

    Marks, David A.; Wolff, David B.; Carey, Lawrence D.; Tokay, Ali

    2010-01-01

    Weather radars, recording information about precipitation around the globe, will soon be significantly upgraded. Most of today s weather radars transmit and receive microwave energy with horizontal orientation only, but upgraded systems have the capability to send and receive both horizontally and vertically oriented waves. These enhanced "dual-polarimetric" (DP) radars peer into precipitation and provide information on the size, shape, phase (liquid / frozen), and concentration of the falling particles (termed hydrometeors). This information is valuable for improved rain rate estimates, and for providing data on the release and absorption of heat in the atmosphere from condensation and evaporation (phase changes). The heating profiles in the atmosphere influence global circulation, and are a vital component in studies of Earth s changing climate. However, to provide the most accurate interpretation of radar data, the radar must be properly calibrated and data must be quality controlled (cleaned) to remove non-precipitation artifacts; both of which are challenging tasks for today s weather radar. The DP capability maximizes performance of these procedures using properties of the observed precipitation. In a notable paper published in 2005, scientists from the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at the University of Oklahoma developed a method to calibrate radars using statistically averaged DP measurements within light rain. An additional publication by one of the same scientists at the National Severe Storms Laboratory (NSSL) in Norman, Oklahoma introduced several techniques to perform quality control of radar data using DP measurements. Following their lead, the Topical Rainfall Measuring Mission (TRMM) Satellite Validation Office at NASA s Goddard Space Flight Center has fine-tuned these methods for specific application to the weather radar at Kwajalein Island in the Republic of the Marshall Islands, approximately 2100 miles

  8. Effect of rod gap spacing on a suction panel for laminar flow and noise control in supersonic wind tunnels. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.

    1975-01-01

    Results are presented of a coordinated experimental and theoretical study of a sound shield concept which aims to provide a means of noise reduction in the test section of supersonic wind tunnels at high Reynolds numbers. The model used consists of a planar array of circular rods aligned with the flow, with adjustable gaps between them for boundary layer removal by suction, i.e., laminar flow control. One of the basic requirements of the present sound shield concept is to achieve sonic cross flow through the gaps in order to prevent lee-side flow disturbances from penetrating back into the shielded region. Tests were conducted at Mach 6 over a local unit Reynolds number range from about 1.2 x 10 to the 6th power to 13.5 x 10 to the 6th power per foot. Measurements of heat transfer, static pressure, and sound levels were made to establish the transition characteristics of the boundary layer on the rod array and the sound shielding effectiveness.

  9. Energy spectra of the pneumatically positioned neutron sources at LLNL's Hazards control standards and calibration facility

    SciTech Connect

    Thorngate, J.H.

    1987-06-15

    The Hazards Control Department of Lawrence Livermore National Laboratory maintains a Standards and Calibration Laboratory that includes three neutron sources (two /sup 252/Cf and one /sup 238/PuBe that can be positioned pneumatically for irradiations. Ten moderators exist to modify the neutron energy spectra produced by these sources. The thicknesses and materials of these moderators are: 25-cm water; 5-, 10-, 15-, and 25-cm heavy water; 20-cm aluminum; and 2-, 5-, 10-, and 15-cm polyethylene. We used a multisphere spectrometer to measure the neutron spectra at 2 m from both the PuBe source and the smaller Cf source, with the sources bare, and in all of the moderators. These data were reduced in 25 energy groups ranging from 0.25 eV to 16 MeV. Except for the 15-m polyethylene moderator, we also made measurements using a liquid-scintillator fast-neutron spectrometer. These data were reduced in 0.1-MeV increments from 0.5 to 12.5 MeV. Spectra from the measurements and from independent calculations are presented in tabular and graphic form. Dosimetric values, calculated from both the measured and calculated spectra, are also presented.

  10. Blind RSSD-Based Indoor Localization with Confidence Calibration and Energy Control

    PubMed Central

    Zou, Tengyue; Lin, Shouying; Li, Shuyuan

    2016-01-01

    Indoor localization based on wireless sensor networks (WSNs) is an important field of research with numerous applications, such as elderly care, miner security, and smart buildings. In this paper, we present a localization method based on the received signal strength difference (RSSD) to determine a target on a map with unknown transmission information. To increase the accuracy of localization, we propose a confidence value for each anchor node to indicate its credibility for participating in the estimation. An automatic calibration device is designed to help acquire the values. The acceleration sensor and unscented Kalman filter (UKF) are also introduced to reduce the influence of measuring noise in the application. Energy control is another key point in WSN systems and may prolong the lifetime of the system. Thus, a quadtree structure is constructed to describe the region correlation between neighboring areas, and the unnecessary anchor nodes can be detected and set to sleep to save energy. The localization system is implemented on real-time Texas Instruments CC2430 and CC2431 embedded platforms, and the experimental results indicate that these mechanisms achieve a high accuracy and low energy cost. PMID:27258272

  11. Blind RSSD-Based Indoor Localization with Confidence Calibration and Energy Control.

    PubMed

    Zou, Tengyue; Lin, Shouying; Li, Shuyuan

    2016-01-01

    Indoor localization based on wireless sensor networks (WSNs) is an important field of research with numerous applications, such as elderly care, miner security, and smart buildings. In this paper, we present a localization method based on the received signal strength difference (RSSD) to determine a target on a map with unknown transmission information. To increase the accuracy of localization, we propose a confidence value for each anchor node to indicate its credibility for participating in the estimation. An automatic calibration device is designed to help acquire the values. The acceleration sensor and unscented Kalman filter (UKF) are also introduced to reduce the influence of measuring noise in the application. Energy control is another key point in WSN systems and may prolong the lifetime of the system. Thus, a quadtree structure is constructed to describe the region correlation between neighboring areas, and the unnecessary anchor nodes can be detected and set to sleep to save energy. The localization system is implemented on real-time Texas Instruments CC2430 and CC2431 embedded platforms, and the experimental results indicate that these mechanisms achieve a high accuracy and low energy cost. PMID:27258272

  12. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    SciTech Connect

    Dr. Carl Stern; Dr. Martin Lee

    1999-06-28

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models.

  13. Pull rod assembly

    DOEpatents

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  14. Control of the saturation temperature in magnetic heating by using polyethylene-glycol-coated rod-shaped nickel-ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-02-01

    Polyethylene-glycol (PEG)-coated nickel-ferrite nanoparticles were prepared for magnetic hyperthermia applications by using the co-precipitation method. The PEG coating occurred during the synthesis of the nanoparticles. The coated nanoparticles were rod-shaped with an average length of 16 nm and an average diameter of 4.5 nm, as observed using transmission electron microscopy. The PEG coating on the surfaces of the nanoparticles was confirmed from the Fourier-transform infrared spectra. The nanoparticles exhibited superparamagnetic characteristics with negligible coercive force. Further, magnetic heating effects were observed in aqueous solutions of the coated nanoparticles. The saturation temperature could be controlled at 42 ℃ by changing the concentration of the nanoparticles in the aqueous solution. Alternately, the saturation temperature could be controlled for a given concentration of nanoparticles by changing the intensity of the magnetic field. The Curie temperature of the nanoparticles was estimated to be 495 ℃. These results for the PEG-coated nickel-ferrite nanoparticles showed the possibility of utilizing them for controlled magnetic hyperthermia at 42 ℃.

  15. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  16. HTGR green rod intercomparison. I. Hydrogen assay

    SciTech Connect

    Meier, M.M.; Adams, E.L.

    1981-01-01

    A /sup 252/Cf hydrogen monitor has been used to determine the hydrogen content of each of the 144 unfired (green) fuel rods being circulated in the New Brunswick Laboratory fuel measurement evaluation program. The monitor was calibrated with standards fabricated by Los Alamos Scientific Laboratory (LASL) Analytical Chemistry Group, CMB-1. Measurements were made relative to these standards and overall accuracies of +-3% were achieved.

  17. Rod Photoreceptors Detect Rapid Flicker

    ERIC Educational Resources Information Center

    Conner, J. D.; MacLeod, Donald I. A.

    1977-01-01

    Rod-isolation techniques show that light-adapted human rods detect flicker frequencies as high as 28 hertz, and that the function relating rod critical flicker frequency to stimulus intensity contains two distinct branches. (MLH)

  18. Improving focus performance at litho using diffraction-based focus metrology, novel calibration methods, interface, and control loop

    NASA Astrophysics Data System (ADS)

    Hu, Jiarui; Chen, Y. L.; Chen, K. H.; Lee, Brian; Tsai, Frankie; Ke, C. M.; Liao, C. H.; Ngo, Desmond; Gosali, Benny; Tijssen, Robin; Huang, Vincent; Tu, Ward; Noot, Marc; Escalante Marun, Maryana; Leewis, Christian; Luijten, Carlo; Staals, Frank; Van Veen, Martijn; Furthner, Francois; Young, Stuart; Bhattacharyya, Kaustuve

    2016-03-01

    In advanced optical lithography the requirements of focus control continues to tighten. Usable depth of focus (DoF) is already quite low due to typical sources of focus errors, such as topography, wafer warpage and the thickness of photoresist. And now the usable DoF is further decreased by hotspots (design and imaging hotspots). All these have put extra challenges to improve focus metrology, scanner focus stability calibrations and on-product correction mechanisms. Asymmetric focus targets are developed to address robustness in focus measurements using diffraction-based focus (DBF and μDBF) metrology. A new layout specific calibration methodology is introduced for baseline focus setup and control in order to improve scanner focus uniformity and stability using the measurements of the above mentioned asymmetric targets. A similar metrology is also used for on product focus measurements. Moreover, a few novel alternative methods are also investigated for on-product focus measurements. Data shows good correlation between DBF and process on record (POR) method using traditional FEM. The new focus calibration demonstrated robustness, stability and speed. This technical publication will report the data from all the above activities including results from various product layers.

  19. A miniature remote deadweight calibrator

    NASA Astrophysics Data System (ADS)

    Supplee, Frank H., Jr.; Tcheng, Ping

    A miniature, computer-controlled, deadweight calibrator was developed to remotely calibrate a force transducer mounted in a cryogenic chamber. This simple mechanism allows automatic loading and unloading of deadweights placed onto a skin friction balance during calibrations. Equipment for the calibrator includes a specially designed set of five interlocking 200-milligram weights, a motorized lifting platform, and a controller box taking commands from a microcomputer on an IEEE interface. The computer is also used to record and reduce the calibration data and control other calibration parameters. The full-scale load for this device is 1,000 milligrams; however, the concept can be extended to accommodate other calibration ranges.

  20. Ultrasonic Phased Array Assessment of the Interference Fit and Leak Path of the North Anna Unit 2 Control Rod Drive Mechanism Nozzle 63 with Destructive Validation

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; MacFarlan, Paul J.; Hanson, Brady D.; Mathews, Royce

    2012-08-01

    The objective of this investigation was to evaluate the efficacy of ultrasonic testing (UT) for primary water leak path assessments of reactor pressure vessel (RPV) upper head penetrations. Operating reactors have experienced leakage when stress corrosion cracking of nickel-based alloy penetrations allowed primary water into the annulus of the interference fit between the penetration and the low-alloy steel RPV head. In this investigation, UT leak path data were acquired for an Alloy 600 control rod drive mechanism nozzle penetration, referred to as Nozzle 63, which was removed from the North Anna Unit 2 reactor when the RPV head was replaced in 2002. In-service inspection prior to the head replacement indicated that Nozzle 63 had a probable leakage path through the interference fit region. Nozzle 63 was examined using a phased-array UT probe with a 5.0-MHz, eight-element annular array. Immersion data were acquired from the nozzle inner diameter surface. The UT data were interpreted by comparing to responses measured on a mockup penetration with known features. Following acquisition of the UT data, Nozzle 63 was destructively examined to determine if the features identified in the UT examination, including leakage paths and crystalline boric acid deposits, could be visually confirmed. Additional measurements of boric acid deposit thickness and low-alloy steel wastage were made to assess how these factors affect the UT response. The implications of these findings for interpreting UT leak path data are described.

  1. WE-D-9A-06: Open Source Monitor Calibration and Quality Control Software for Enterprise Display Management

    SciTech Connect

    Bevins, N; Vanderhoek, M; Lang, S; Flynn, M

    2014-06-15

    Purpose: Medical display monitor calibration and quality control present challenges to medical physicists. The purpose of this work is to demonstrate and share experiences with an open source package that allows for both initial monitor setup and routine performance evaluation. Methods: A software package, pacsDisplay, has been developed over the last decade to aid in the calibration of all monitors within the radiology group in our health system. The software is used to calibrate monitors to follow the DICOM Grayscale Standard Display Function (GSDF) via lookup tables installed on the workstation. Additional functionality facilitates periodic evaluations of both primary and secondary medical monitors to ensure satisfactory performance. This software is installed on all radiology workstations, and can also be run as a stand-alone tool from a USB disk. Recently, a database has been developed to store and centralize the monitor performance data and to provide long-term trends for compliance with internal standards and various accrediting organizations. Results: Implementation and utilization of pacsDisplay has resulted in improved monitor performance across the health system. Monitor testing is now performed at regular intervals and the software is being used across multiple imaging modalities. Monitor performance characteristics such as maximum and minimum luminance, ambient luminance and illuminance, color tracking, and GSDF conformity are loaded into a centralized database for system performance comparisons. Compliance reports for organizations such as MQSA, ACR, and TJC are generated automatically and stored in the same database. Conclusion: An open source software solution has simplified and improved the standardization of displays within our health system. This work serves as an example method for calibrating and testing monitors within an enterprise health system.

  2. A Process-based Study of Speleothem 14C Variability: Climatic Controls and Prospects for Speleothem-based Radiocarbon Calibration

    NASA Astrophysics Data System (ADS)

    Johnson, K. R.; Magana, A. L.; Hu, C.; Ruan, J.

    2011-12-01

    Recent studies have shown that speleothems may be useful for improving the 14C calibration curve, primarily because: (1) they can be absolutely dated with the U-Th method, (2) they obtain the majority of their carbon directly from the atmosphere, and (3) the "dead carbon fraction" (DCF) obtained from the carbonate bedrock has been shown to be fairly constant over long time periods. In order to assess the stability of DCF, and hence the validity of speleothem based calibration curves, however, it is necessary to conduct detailed studies in modern cave systems and on well-dated stalagmites that overlap with the tree-ring 14C record. We will present results of a study at Heshang Cave, Hubei Province, China (30°27'N, 110°25'E; 294 m), the site of ongoing, extensive modern calibration and paleoclimate reconstruction efforts. We have conducted a detailed study of C cycling in the modern cave system through collection and analysis of the δ13C and Δ14C composition of soil CO2, dripwater DIC, and monthly modern calcite samples to investigate how seasonal environmental changes impact speleothem DCF and δ13C. In addition, we have investigated climatic controls on DCF on longer timescales through high-resolution 14C analysis of an annually laminated, U-Th dated Holocene stalagmite. Modern calcite from a site near the cave entrance shows significant seasonal Δ14C variability, ranging from 30 to 65%, which may reflect seasonal variability in atmospheric Δ14C. This suggests that cave dripwater DIC may sometimes equilibrate with cave air CO2, prior to calcite precipitation. Despite a large range in the Δ14C values of dripwater DIC samples collected from throughout the cave, individual speleothem DCF appears quite constant over the Holocene, at 9.3 ± 1.9%, with an average age offset of 838 ± 187 years. Applying this constant DCF correction over the Holocene yields an excellent correlation with the IntCal09 curve (r2 = 0.99). While minor DCF variability could introduce

  3. Station to instrumented aircraft L-band telemetry system and RF signal controller for spacecraft simulations and station calibration

    NASA Technical Reports Server (NTRS)

    Scaffidi, C. A.; Stocklin, F. J.; Feldman, M. B.

    1971-01-01

    An L-band telemetry system designed to provide the capability of near-real-time processing of calibration data is described. The system also provides the capability of performing computerized spacecraft simulations, with the aircraft as a data source, and evaluating the network response. The salient characteristics of a telemetry analysis and simulation program (TASP) are discussed, together with the results of TASP testing. The results of the L-band system testing have successfully demonstrated the capability of near-real-time processing of telemetry test data, the control of the ground-received signal to within + or - 0.5 db, and the computer generation of test signals.

  4. Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control.

    PubMed

    Brunner, C; Hoffmann, K; Thiele, T; Schedler, U; Jehle, H; Resch-Genger, U

    2015-04-01

    Commercial platforms consisting of ready-to-use microarrays printed with target-specific DNA probes, a microarray scanner, and software for data analysis are available for different applications in medical diagnostics and food analysis, detecting, e.g., viral and bacteriological DNA sequences. The transfer of these tools from basic research to routine analysis, their broad acceptance in regulated areas, and their use in medical practice requires suitable calibration tools for regular control of instrument performance in addition to internal assay controls. Here, we present the development of a novel assay-adapted calibration slide for a commercialized DNA-based assay platform, consisting of precisely arranged fluorescent areas of various intensities obtained by incorporating different concentrations of a "green" dye and a "red" dye in a polymer matrix. These dyes present "Cy3" and "Cy5" analogues with improved photostability, chosen based upon their spectroscopic properties closely matching those of common labels for the green and red channel of microarray scanners. This simple tool allows to efficiently and regularly assess and control the performance of the microarray scanner provided with the biochip platform and to compare different scanners. It will be eventually used as fluorescence intensity scale for referencing of assays results and to enhance the overall comparability of diagnostic tests. PMID:25616702

  5. A piezo-driven micro-inclination stage for calibration of a micro-acceleration transducer: structure and control strategy

    NASA Astrophysics Data System (ADS)

    Shao, Shubao; Song, Siyang; Xu, Minglong; Xie, Shilin; Li, Liang

    2016-02-01

    In some space applications, such as space navigation and vibration control of the large space structures, micro-acceleration transducers are required and have to be calibrated accurately. Unfortunately, providing extremely small static and quasi-static stimuli (accelerations) for the calibration of the micro-acceleration transducer has been a challenging task. This paper proposes a novel piezo-driven micro-inclination stage (PMIS) that can produce both discrete and continuous tumbles in a gravity field so that extremely small static and quasi-static stimuli (accelerations) can be obtained from a tiny component of the gravity constant. The proposed PMIS, which is driven by the lead zirconate titanate (PZT) stack, employs a rhombic mechanism to provide the PZT stack with a proper preload for the purpose of outputting a bidirectional force. To produce accurate static and quasi-static stimuli, the hysteresis non-linearity inherent in PZT stack is compensated by employing the strain feedback based adaptive control where the hysteresis property is identified online using the controlled auto-regressive moving average model. Furthermore, to improve the resolution of strain feedback, the strain sensitivity is maximized through structure optimization of the rhombic mechanism. The experimental results demonstrated that the proposed PMIS can produce minimal micro-inclination of {{0.1}\\prime \\prime} (corresponding to the induced micro-acceleration of 0.5μ g ) with the frequency ranging from 0 (DC) to 2 Hz.

  6. Differential Phosphorylation Provides a Switch to Control How α-Arrestin Rod1 Down-regulates Mating Pheromone Response in Saccharomyces cerevisiae

    PubMed Central

    Alvaro, Christopher G.; Aindow, Ann; Thorner, Jeremy

    2016-01-01

    G-protein-coupled receptors (GPCRs) are integral membrane proteins that initiate stimulus-dependent activation of cognate heterotrimeric G-proteins, triggering ensuing downstream cellular responses. Tight regulation of GPCR-evoked pathways is required because prolonged stimulation can be detrimental to an organism. Ste2, a GPCR in Saccharomyces cerevisiae that mediates response of MATa haploids to the peptide mating pheromone α-factor, is down-regulated by both constitutive and agonist-induced endocytosis. Efficient agonist-stimulated internalization of Ste2 requires its association with an adaptor protein, the α-arrestin Rod1/Art4, which recruits the HECT-domain ubiquitin ligase Rsp5, allowing for ubiquitinylation of the C-terminal tail of the receptor and its engagement by the clathrin-dependent endocytic machinery. We previously showed that dephosphorylation of Rod1 by calcineurin (phosphoprotein phosphatase 2B) is required for optimal Rod1 function in Ste2 down-regulation. We show here that negative regulation of Rod1 by phosphorylation is mediated by two distinct stress-activated protein kinases, Snf1/AMPK and Ypk1/SGK1, and demonstrate both in vitro and in vivo that this phospho-regulation impedes the ability of Rod1 to promote mating pathway desensitization. These studies also revealed that, in the absence of its phosphorylation, Rod1 can promote adaptation independently of Rsp5-mediated receptor ubiquitinylation, consistent with recent evidence that α-arrestins can contribute to cargo recognition by both clathrin-dependent and clathrin-independent mechanisms. However, in cells lacking a component (formin Bni1) required for clathrin-independent entry, Rod1 derivatives that are largely unphosphorylated and unable to associate with Rsp5 still promote efficient adaptation, indicating a third mechanism by which this α-arrestin promotes desensitization of the pheromone-response pathway. PMID:26920760

  7. Differential Phosphorylation Provides a Switch to Control How α-Arrestin Rod1 Down-regulates Mating Pheromone Response in Saccharomyces cerevisiae.

    PubMed

    Alvaro, Christopher G; Aindow, Ann; Thorner, Jeremy

    2016-05-01

    G-protein-coupled receptors (GPCRs) are integral membrane proteins that initiate stimulus-dependent activation of cognate heterotrimeric G-proteins, triggering ensuing downstream cellular responses. Tight regulation of GPCR-evoked pathways is required because prolonged stimulation can be detrimental to an organism. Ste2, a GPCR in Saccharomyces cerevisiae that mediates response of MATa haploids to the peptide mating pheromone α-factor, is down-regulated by both constitutive and agonist-induced endocytosis. Efficient agonist-stimulated internalization of Ste2 requires its association with an adaptor protein, the α-arrestin Rod1/Art4, which recruits the HECT-domain ubiquitin ligase Rsp5, allowing for ubiquitinylation of the C-terminal tail of the receptor and its engagement by the clathrin-dependent endocytic machinery. We previously showed that dephosphorylation of Rod1 by calcineurin (phosphoprotein phosphatase 2B) is required for optimal Rod1 function in Ste2 down-regulation. We show here that negative regulation of Rod1 by phosphorylation is mediated by two distinct stress-activated protein kinases, Snf1/AMPK and Ypk1/SGK1, and demonstrate both in vitro and in vivo that this phospho-regulation impedes the ability of Rod1 to promote mating pathway desensitization. These studies also revealed that, in the absence of its phosphorylation, Rod1 can promote adaptation independently of Rsp5-mediated receptor ubiquitinylation, consistent with recent evidence that α-arrestins can contribute to cargo recognition by both clathrin-dependent and clathrin-independent mechanisms. However, in cells lacking a component (formin Bni1) required for clathrin-independent entry, Rod1 derivatives that are largely unphosphorylated and unable to associate with Rsp5 still promote efficient adaptation, indicating a third mechanism by which this α-arrestin promotes desensitization of the pheromone-response pathway. PMID:26920760

  8. Calibration of a fuel relocation model in BISON

    SciTech Connect

    Swiler, L. P.; Williamson, R. L.; Perez, D. M.

    2013-07-01

    We demonstrate parameter calibration in the context of the BISON nuclear fuels performance analysis code. Specifically, we present the calibration of a parameter governing fuel relocation: the power level at which the relocation model is activated. This relocation activation parameter is a critical value in obtaining reasonable comparison with fuel centerline temperature measurements. It also is the subject of some debate in terms of the optimal values. We show that the optimal value does vary across the calibration to individual rods. We also demonstrate an aggregated calibration, where we calibrate to observations from six rods. (authors)

  9. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    PubMed

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time [Formula: see text] of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA. PMID:26583919

  10. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-01

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  11. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.

  12. Understanding flame rods

    SciTech Connect

    McAuley, J.A. Jr.

    1995-11-01

    The flame rod is probably the least understood method of flame detection. Although it is not recommended for oilfired equipment, it is very common on atmospheric, or {open_quotes}in-shot,{close_quotes} gas burners. It is also possible, although not common, to have an application with a constant gas pilot, monitored by a flame rod, and maintaining an oil main flame. Regardless of the application, chances are that flame rods will be encountered during the course of servicing. The technician today must be versatile and able to work on many different types of equipment. One must understand the basic principles of flame rods, and how to correct potential problems. The purpose of a flame detection system is two-fold: (1) to prove there is no flame when there shouldn`t be one, and (2) to prove there is a flame when there should be one. Flame failure response time is very important. This is the amount of time it takes to realize there is a loss of flame, two to four seconds is typical today. Prior to flame rods, either bi-metal or thermocouple type flame detectors were common. The response time for these detectors was up to three minutes, seldom less than one minute.

  13. The measurement of linear and angular displacements in prototype aircraft - Instrumentation, calibration and operational accuracy

    NASA Astrophysics Data System (ADS)

    Storm van Leeuwen, Sam

    The design and development of angular displacement transducers for flight test instrumentation systems are considered. Calibration tools, developed to meet the accuracy requirements, allowed in situ calibration with short turn around times. The design of the control surface deflection measurement channels for the Fokker 100 prototype aircraft is discussed in detail. It is demonstrated that a bellows coupling provides accurate results, and that the levers and push-pull rod drive mechanisms perform well. The results suggest that a complex mechanical drive mechanism reduces the system accuracy.

  14. Intramedullary rodding in osteogenesis imperfecta.

    PubMed

    Mulpuri, K; Joseph, B

    2000-01-01

    The results of intramedullary rodding of long bones of 16 children with osteogenesis imperfecta, over a 10-year period, were analyzed. Sheffield elongating rods or non-elongating rods were used. The frequency of fractures was dramatically reduced after implantation of either type of rod, and the ambulatory status improved in all instances. The results were significantly better after Sheffield rodding with regard to the frequency of complications requiring reoperations and the longevity of the rods. Migration of the rods, encountered frequently, appears to be related to improper placement of the rods in the bone. It seems likely that if care is taken to ensure precise placement of a rod of appropriate size, several of these complications may be avoided. PMID:10739296

  15. Rod Control Assemblies Wear Mechanisms

    SciTech Connect

    Kaczorowski, Damien; Georges, Jean-Mary; Bec, Sandrine; Vannes, Andre-Bernard; Tonck, Andre; Vernot, Jean-Philippe

    2002-07-01

    In nuclear power plants, slender tubular components are subjected to vibrations in a PHTW environment. As a result, the two contacting surfaces, tubes and their guides undergo impact at low contact pressures. The components are usually made of stainless steel and it was found that the influence of the PHTW, combined with other actions (such as corrosion, erosion, squeeze film effect, third body effect and cavitation) leads to a particular wear of the material. Therefore, this paper aims to show that the colloidal oxides, formed on the steel surfaces in PHTW, play a principal role in the wear of the surfaces. Actually, due to the specific kinematic conditions of the contact, the flow of compacted oxides abrades the surfaces. (authors)

  16. Plasmid-Based Materials as Multiplex Quality Controls and Calibrators for Clinical Next-Generation Sequencing Assays.

    PubMed

    Sims, David J; Harrington, Robin D; Polley, Eric C; Forbes, Thomas D; Mehaffey, Michele G; McGregor, Paul M; Camalier, Corinne E; Harper, Kneshay N; Bouk, Courtney H; Das, Biswajit; Conley, Barbara A; Doroshow, James H; Williams, P Mickey; Lih, Chih-Jian

    2016-05-01

    Although next-generation sequencing technologies have been widely adapted for clinical diagnostic applications, an urgent need exists for multianalyte calibrator materials and controls to evaluate the performance of these assays. Control materials will also play a major role in the assessment, development, and selection of appropriate alignment and variant calling pipelines. We report an approach to provide effective multianalyte controls for next-generation sequencing assays, referred to as the control plasmid spiked-in genome (CPSG). Control plasmids that contain approximately 1000 bases of human genomic sequence with a specific mutation of interest positioned near the middle of the insert and a nearby 6-bp molecular barcode were synthesized, linearized, quantitated, and spiked into genomic DNA derived from formalin-fixed, paraffin-embedded-prepared hapmap cell lines at defined copy number ratios. Serial titration experiments demonstrated the CPSGs performed with similar efficiency of variant detection as formalin-fixed, paraffin-embedded cell line genomic DNA. Repetitive analyses of one lot of CPSGs 90 times during 18 months revealed that the reagents were stable with consistent detection of each of the plasmids at similar variant allele frequencies. CPSGs are designed to work across most next-generation sequencing methods, platforms, and data analysis pipelines. CPSGs are robust controls and can be used to evaluate the performance of different next-generation sequencing diagnostic assays, assess data analysis pipelines, and ensure robust assay performance metrics. PMID:27105923

  17. Radiometer Calibration and Characterization

    Energy Science and Technology Software Center (ESTSC)

    1994-12-31

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating solar radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer’s response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument’s responsivity.

  18. SeaWiFS Technical Report Series. Volume 38; SeaWiFS Calibration and Validation Quality Control Procedures

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Darzi, Michael; Barnes, Robert A.; Eplee, Robert E.; Firestone, James K.; Patt, Frederick S.; Robinson, Wayne D.; Schieber, Brian D.; Woodward, Robert H.; Yeh, Eueng-nan

    1996-01-01

    This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.

  19. 40 CFR 85.2233 - Steady state test equipment calibrations, adjustments, and quality control-EPA 91.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inspections per year) and may be performed in conjunction with the gas calibration described in paragraph (e... out from testing, and requires repair of leaks. (e) Gas calibration. (1) On each operating day in high... requirements of paragraph (e)(3) of this section into the analyzer through the calibration port. No...

  20. 40 CFR 85.2233 - Steady state test equipment calibrations, adjustments, and quality control-EPA 91.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for HC, CO, and CO2 and must continually compensate for changes in barometric pressure. Calibration...-point calibration within 72 hours before each test, unless changes in barometric pressure are... tolerance range. The pressure in the sample cell must be the same with the calibration gas flowing...

  1. 40 CFR 85.2233 - Steady state test equipment calibrations, adjustments, and quality control-EPA 91.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for HC, CO, and CO2 and must continually compensate for changes in barometric pressure. Calibration...-point calibration within 72 hours before each test, unless changes in barometric pressure are... tolerance range. The pressure in the sample cell must be the same with the calibration gas flowing...

  2. 40 CFR 85.2233 - Steady state test equipment calibrations, adjustments, and quality control-EPA 91.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for HC, CO, and CO2 and must continually compensate for changes in barometric pressure. Calibration...-point calibration within 72 hours before each test, unless changes in barometric pressure are... tolerance range. The pressure in the sample cell must be the same with the calibration gas flowing...

  3. Ordering stripe structures of nanoscale rods in diblock copolymer scaffolds

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Ma, Yu-qiang

    2002-05-01

    We report a simulation on the formation of ordered stripe structures of nanoscale rods driven by symmetric diblock copolymer melts. Due to the preferential adsorption of one species of the diblock onto the mobile rods, the phase ordering process will couple with the movement of rods. We find that the self-assembly of rods on the copolymer scaffold produces the highly ordered nanowires of rods, and copolymer blends in turn form the well-oriented lamellar structure. This is due to the interplay among the micro-phase separating dynamics in the diblock copolymer, the wetting interaction between rods and diblock copolymer, and the nematic ordering dynamics of rods. We examine the influence of the domain size, the wetting strength, and the rod number density on the formation of such a nanoscale structure. Additionally, we indicate that the orientation of the pattern can be well controlled by external fields acting on the rods. The results suggest that our model system may provide a novel and simple way to control and design the ordering nanowire structure.

  4. Anchor for Fiberglas Guy Rod

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1982-01-01

    Solution to problem of anchoring fiberglas guy rods to install nut with threads on outer circumference, followed by aluminum sleeve. Sleeve has opening oval at upper and round at bottom end. End of rod is split so fiberglas wedge can be inserted to form V-shaped end. Spread end of rod fits into tapered hole in sleeve and threaded aluminum coupling is put over rod and sleeve.

  5. Biomechanical study comparing a new combined rod-plate system with conventional dual-rod and plate systems.

    PubMed

    Sha, Mo; Ding, Zheng-Qi; Ting, Hu S; Kang, Liang-Qi; Zhai, Wen-Liang; Liu, Hui

    2013-02-01

    Most anterior spinal instrumentation systems are designed as either a plate or dual-rod system and have corresponding limitations. Dual-rod designs may offer greater adjustability; however, this system also maintains a high profile and lacks a locking design. Plate systems are designed to be stiffer, but the fixed configuration is not adaptable to the variety of vertebral body shapes. The authors designed a new combined rod-plate system (D-rod) to overcome these limitations and compared its biomechanical performance with the conventional dual-rod and plate system. Eighteen pig spinal specimens were divided into 3 groups (6 per group). An L1 corpectomy was performed and fixed with the D-rod (group A; n=6), Z-plate (Sofamor Danek, Memphis, Tennessee) (group B; n=6), or Ventrofix (Synthes, Paoli, Pennsylvania) (group C; n=6) system. T13-L2 range of motion was measured with a 6 degrees of freedom (ie, flexion-extension, lateral bending, and axial rotation) spine simulator under pure moments of 6.0 Nm. The D-rod and Ventrofix specimens were significantly stiffer than the Z-plate specimens (P<.05) based on results obtained from lateral bending and flexion-extension tests. The D-rod and Z-plate specimens were significantly stiffer than the Ventrofix specimens (P<.05) in axial rotation. The D-rod combines the advantages of the plate and dual-rod systems, where the anterior rod exhibits the design of a low-profile locking plate, enhanced stability, and decreased interference of the surrounding vasculature. The posterior rods function in compression and distraction, and the dual-rod system offers greater adjustability and control over screw placement. The results indicate that it may provide adequate stability for anterior thoracolumbar reconstruction. PMID:23383624

  6. Analysis of the in-vessel control rod guide tube and subpile room shielding design for the advanced neutron source reactor

    SciTech Connect

    Gallmeier, F.X.; Bucholz, J.A.; Engle, W.W. Jr.; Williams, L.R.

    1995-08-01

    An extensive sheilding analysis of the control rod guide tube (CRGT) and the subpile room was performed for the Advanced Neutron Source (ANS) reactor. A two-dimensional model for the CRGT and subpile room was developed. Coupled 39 neutron group and 44 gamma group calculations with the multigroup DORT discrete originates transport code were done using cross sections from the ANSL-V library including photoneutron production. Different shield designs were investigated with a shield thickness of 10 to 15 mm. None of the shields affected the neutron dose rate and gamma dose rate at the top of the subpile room, which were 1 {center_dot} 10{sup 5} mrem/h and 1 {center_dot} 10{sup 3} mrem/h, respectively. An L-shaped cylindrical boral shield positioned around the core pressure boundary tube at the bottom of the reflector vessel with the horizontal part extended over the whole bottom of the reflector vessel reduced the maximal displacements per atom (DPA) level and helium production level in the primary coolant supply adapter and its flange after 40 years of reactor operation from 1 and 500 appm to 5 {center_dot} 10{sup -2} and 2 {center_dot} 10{sup -2} appm compared with the unshielded arrangement. Shields of boral and hafnium with the horizontal part of the shield restricted to a radius of 485 mm gave a maximal DPA of 5 {center_dot} 10{sup -2} and a helium production of up to 20 appm. Heat loads of up to 70 W{center_dot}cm{sup -3} were calculated at the most exposed parts of the shield both for boral and hafnium shields. A depletion/activation analysis of the hafnium shield showed that at the most exposed part of the shield, the naturally occurring isotope {sup 177}Hf is 34% depleted at the end of two years of reactor operation. This high burnup is somewhat balanced by a subsequent buildup of {sup 178}Hf, {sup 179}Hf, and {sup 180}Hf. In all other parts of the shield, the burnup is much smaller.

  7. Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region

    NASA Astrophysics Data System (ADS)

    Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa

    2016-03-01

    Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. Electronic supplementary information (ESI) available

  8. Calibrated breast density methods for full field digital mammography: A system for serial quality control and inter-system generalization

    PubMed Central

    Lu, B.; Smallwood, A. M.; Sellers, T. A.; Drukteinis, J. S.; Heine, J. J.

    2015-01-01

    Purpose: The authors are developing a system for calibrated breast density measurements using full field digital mammography (FFDM). Breast tissue equivalent (BTE) phantom images are used to establish baseline (BL) calibration curves at time zero. For a given FFDM unit, the full BL dataset is comprised of approximately 160 phantom images, acquired prior to calibrating prospective patient mammograms. BL curves are monitored serially to ensure they produce accurate calibration and require updating when calibration accuracy degrades beyond an acceptable tolerance, rather than acquiring full BL datasets repeatedly. BL updating is a special case of generalizing calibration datasets across FFDM units, referred to as cross-calibration. Serial monitoring, BL updating, and cross-calibration techniques were developed and evaluated. Methods: BL curves were established for three Hologic Selenia FFDM units at time zero. In addition, one set of serial phantom images, comprised of equal proportions of adipose and fibroglandular BTE materials (50/50 compositions) of a fixed height, was acquired biweekly and monitored with the cumulative sum (Cusum) technique. These 50/50 composition images were used to update the BL curves when the calibration accuracy degraded beyond a preset tolerance of ±4 standardized units. A second set of serial images, comprised of a wide-range of BTE compositions, was acquired biweekly to evaluate serial monitoring, BL updating, and cross-calibration techniques. Results: Calibration accuracy can degrade serially and is a function of acquisition technique and phantom height. The authors demonstrated that all heights could be monitored simultaneously while acquiring images of a 50/50 phantom with a fixed height for each acquisition technique biweekly, translating into approximately 16 image acquisitions biweekly per FFDM unit. The same serial images are sufficient for serial monitoring, BL updating, and cross-calibration. Serial calibration accuracy was

  9. Calibration, Information, and Control Strategies for Braking to Avoid a Collision

    ERIC Educational Resources Information Center

    Fajen, Brett R.

    2005-01-01

    This study explored visual control strategies for braking to avoid collision by manipulating information about speed of self-motion. Participants watched computer-generated displays and used a brake to stop at an object in the path of motion. Global optic flow rate and edge rate were manipulated by adjusting eyeheight and ground-texture size.…

  10. Path Length Control in a Nulling Coronagraph with a MEMS Deformable Mirror and a Calibration Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.; Wallacea, J. Kent; Samuele, Rocco; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul; Lane, Benjamin; Levine, B. Martin; Mendillo, Chris; Schmidtlin, Edouard; Shao, Mike; Stewart, Jason B.

    2008-01-01

    We report progress on a nulling coronagraph intended for direct imaging of extrasolar planets. White light is suppressed in an interferometer, and phase errors are measured by a second interferometer. A 1020-pixel MEMS deformable mirror in the first interferometer adjusts the path length across the pupil. A feedback control system reduces deflections of the deformable mirror to order of 1 nm rms.