Sample records for control system installed

  1. Integrated propulsion/energy transfer control systems for lift-fan V/STOL aircraft. [reduction of total propulsion system and control system installation requirements

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Rolls, L. S.

    1974-01-01

    An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.

  2. View northeast of a microchip based computer control system installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast of a microchip based computer control system installed in the early 1980's to replace Lamokin Tower, at center of photograph; panels 1 and 2 at right of photograph are part of main supervisory board; panel 1 controlled Allen Lane sub-station #7; responsiblity for this portion of the system was transferred to southeast Pennsylvania transit authority (septa) in 1985; panel 2 at extreme right controls catenary switches in a coach storage yard adjacent to the station - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  3. System design and installation for RS600 programmable control system for solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Procedures for installing, operating, and maintaining a programmable control system which utilizes a F8 microprocessor to perform all timing, control, and calculation functions in order to customize system performance to meet individual requirements for solar heating, combined heating and cooling, and/or hot water systems are described. The manual discusses user configuration and options, displays, theory of operation, trouble-shooting procedures, and warranty and assistance. Wiring lists, parts lists, drawings, and diagrams are included.

  4. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  5. Solar heating system installed at Troy, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The completed system was composed of three basic subsystems: the collector system consisting of 3,264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which included a 5,000 gallon insulated steel tank; and the distribution and control system which included piping, pumping and heat transfer components as well as the solemoid activated valves and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and was, therefore, a retrofit system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  6. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Appendix I to Part 25—Installation of an Automatic Takeoff Thrust Control System (ATTCS) I25.1General. (a... crew to increase thrust or power. I25.2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS... Control System (ATTCS) I Appendix I to Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION...

  7. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) This appendix specifies additional requirements for installation of an engine power control system that... crew to increase thrust or power. I25.2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS... mechanical and electrical, that sense engine failure, transmit signals, actuate fuel controls or power levers...

  8. Installation package for a sunspot cascade solar water heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  9. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of water sprinkler systems...

  10. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of water sprinkler systems...

  11. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of water sprinkler systems...

  12. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of water sprinkler systems...

  13. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of water sprinkler systems... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the...

  14. New concept for a general purpose subsea installation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Citi, G.; Cowen, S.; Radicioni, A.

    1996-12-31

    The first use of the Agip SAF System (Sistema Alti Fondali), an installation and maintenance system for subsea production systems up to 1,000 m water depth, was successfully performed on the Luna 40 well in 180 m w.d. The system successfully installed the christmas tree, flowline jumpers, control system and high pressure cap as well as deploying the LMRP to allow the commissioning of the well. The SAF system performed all the planned tasks during the installation of the Luna 40 subsea tree and now has to be considered an operational success. The system is based around a Master Vehiclemore » that provides hydraulic power to, and controls a set of dedicated work modules. During the 2 test and 5 working dives, the Master Vehicle and the modules were subsea for a considerable period of time, up to 75 hours continuously, without any operational failures. This installation uncovered some system deficiencies that will have to be studied to improve the reliability and operability of the system. From the experience gained during this operation it has been shown that the system of a Master Vehicle providing locally generated hydraulic power is a feasible approach to many subsea installation problems. This paper describes the SAF system including improvements to be performed before being used operationally in up to 1,000 m of water and over. It also covers the necessary modifications required to allow the system to be deployed from a wide range of installation vessel.« less

  15. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possiblemore » to improve substantially the algorithms of control and protection in the short term and without changing the hardware component.« less

  16. Installation of Computerized Procedure System and Advanced Alarm System in the Human Systems Simulation Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya Lee; Spielman, Zachary Alexander; Rice, Brandon Charles

    2016-04-01

    This report describes the installation of two advanced control room technologies, an advanced alarm system and a computerized procedure system, into the Human Systems Simulation Laboratory (HSSL). Installation of these technologies enables future phases of this research by providing a platform to systematically evaluate the effect of these technologies on operator and plant performance.

  17. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  18. Static Frequency Converter System Installed and Tested

    NASA Technical Reports Server (NTRS)

    Brown, Donald P.; Sadhukhan, Debashis

    2003-01-01

    A new Static Frequency Converter (SFC) system has been installed and tested at the NASA Glenn Research Center s Central Air Equipment Building to provide consistent, reduced motor start times and improved reliability for the building s 14 large exhausters and compressors. The operational start times have been consistent around 2 min, 20 s per machine. This is at least a 3-min improvement (per machine) over the old variable-frequency motor generator sets. The SFC was designed and built by Asea Brown Boveri (ABB) and installed by Encompass Design Group (EDG) as part of a Construction of Facilities project managed by Glenn (Robert Scheidegger, project manager). The authors designed the Central Process Distributed Control Systems interface and control between the programmable logic controller, solid-state exciter, and switchgear, which was constructed by Gilcrest Electric.

  19. Control and protection system for an installation for the combined production of electrical and thermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agazzone, U.; Ausiello, F.P.

    1981-06-23

    A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less

  20. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of foam generator systems. 75.1101...-5 Installation of foam generator systems. (a) Foam generator systems shall be located so as to discharge foam to the belt drive, belt takeup, electrical controls, gear reducing unit and the conveyor belt...

  1. Solar hot water system installed at Mobile, Alabama

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes.

  2. 10 CFR 34.75 - Records of alarm system and entrance control checks at permanent radiographic installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of alarm system and entrance control checks at permanent radiographic installations. 34.75 Section 34.75 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping...

  3. 10 CFR 34.75 - Records of alarm system and entrance control checks at permanent radiographic installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of alarm system and entrance control checks at permanent radiographic installations. 34.75 Section 34.75 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping...

  4. 10 CFR 34.75 - Records of alarm system and entrance control checks at permanent radiographic installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of alarm system and entrance control checks at permanent radiographic installations. 34.75 Section 34.75 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping...

  5. 10 CFR 34.75 - Records of alarm system and entrance control checks at permanent radiographic installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of alarm system and entrance control checks at permanent radiographic installations. 34.75 Section 34.75 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping...

  6. 10 CFR 34.75 - Records of alarm system and entrance control checks at permanent radiographic installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of alarm system and entrance control checks at permanent radiographic installations. 34.75 Section 34.75 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping...

  7. Installation and management of the SPS and LEP control system computers

    NASA Astrophysics Data System (ADS)

    Bland, Alastair

    1994-12-01

    Control of the CERN SPS and LEP accelerators and service equipment on the two CERN main sites is performed via workstations, file servers, Process Control Assemblies (PCAs) and Device Stub Controllers (DSCs). This paper describes the methods and tools that have been developed to manage the file servers, PCAs and DSCs since the LEP startup in 1989. There are five operational DECstation 5000s used as file servers and boot servers for the PCAs and DSCs. The PCAs consist of 90 SCO Xenix 386 PCs, 40 LynxOS 486 PCs and more than 40 older NORD 100s. The DSCs consist of 90 OS-968030 VME crates and 10 LynxOS 68030 VME crates. In addition there are over 100 development systems. The controls group is responsible for installing the computers, starting all the user processes and ensuring that the computers and the processes run correctly. The operators in the SPS/LEP control room and the Services control room have a Motif-based X window program which gives them, in real time, the state of all the computers and allows them to solve problems or reboot them.

  8. Installation package for a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  9. Solar hot water system installed at Las Vegas, Nevada

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar energy hot water system installed in a motor inn at Las Vegas, Nevada is described. The inn is a three story building with a flat roof for installation of the solar panels. The system consists of 1,200 square feet of liquid flat plate collectors, a 2,500 gallon insulated vertical steel storage tank, two heat exchangers, and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  10. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...

  11. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...

  12. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...

  13. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...

  14. McClellan PV system installation provides key lessons

    NASA Astrophysics Data System (ADS)

    Kauffman, W. R.

    Design features and lessons learned in the installation of a 40 kWp solar cell array to supply power to a market on an airbase are outlined. The fixed-position modules interface with an inverter, ac and dc switchgear, controls, instrumentation, and an energy management system. The power control unit has a peak power tracking feature to maximize output from the 1142 cell modules. The inverter has functioned at over 98 percent efficiency near the 25 kW design range of the array. Moisture sealing to prevent ground faults was found necessary during the installation of the underground cabling.

  15. UKIRT Upgrades Program: design and installation of the Dome Ventilation System (DVS)

    NASA Astrophysics Data System (ADS)

    Neff, D. H.; Hileman, Edward A.; Kain, S. J.; Cavedoni, Charles P.; Chuter, Timothy C.

    1997-03-01

    In order to encourage adequate dome ventilation to reduce or eliminate dome seeing at the 3.8 m United Kingdom Infrared Telescope (UKIRT), a dome ventilation system (DVS) was designed to be installed in the lower dome skirt. The modifications to the dome for the new DVS apertures consisted of installing a reinforcing frame containing an insulated rollup door and adjustable louvers. This paper describes the finite element structural analysis of the reinforcing frame, the detailed design of the frame hardware, the design of the programmable language control (PLC) system for controlling the opening and closing of the rollup doors, and the fabrication and installation of a prototype frame assembly. To date, a prototype assembly has been installed that confirms the design, and fifteen production assemblies are currently under fabrication for installation by September 1996.

  16. Sprinkler System Installer. Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Chinien, Chris; Boutin, France

    This analysis covers tasks performed by a sprinkler system installer, an occupational title some provinces and territories of Canada have also identified as pipefitter--fire protection mechanic specialty; sprinkler and fire protection installer; sprinkler and fire protection systems installer; and sprinkler fitter. A guide to analysis discusses…

  17. Installation package for a domestic solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  18. Installation package for a solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  19. 14 CFR 27.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... showing compliance with paragraph (a), (b), or (c) of this section, the effects of lightning strikes on..., systems, and installations. (a) The equipment, systems, and installations whose functioning is required by... under any foreseeable operating condition. (b) The equipment, systems, and installations of a...

  20. 14 CFR 27.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... showing compliance with paragraph (a), (b), or (c) of this section, the effects of lightning strikes on..., systems, and installations. (a) The equipment, systems, and installations whose functioning is required by... under any foreseeable operating condition. (b) The equipment, systems, and installations of a...

  1. Practical aspects of instrumentation system installation, volume 13

    NASA Technical Reports Server (NTRS)

    Borek, R. W.; Pool, A. (Editor); Sanderson, K. C. (Editor)

    1981-01-01

    A review of factors influencing installation of aircraft flight test instrumentation is presented. Requirements, including such factors as environment, reliability, maintainability, and system safety are discussed. The assessment of the mission profile is followed by an overview of electrical and mechanical installation factors with emphasis on shock/vibration isolation systems and standardization of the electric wiring installation, two factors often overlooked by instrumentation engineers. A discussion of installation hardware reviews the performance capabilities of wiring, connectors, fuses and circuit breakers, and a guide to proper selections is provided. The discussion of the installation is primarily concerned with the electrical wire routing, shield terminations and grounding. Also inclued are some examples of installation mistakes that could affect system accuracy. System verification procedures and special considerations such as sneak circuits, pyrotechnics, aircraft antenna patterns, and lightning strikes are discussed.

  2. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  3. Solar system installation at Louisville, Kentucky

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The installation of a solar space heating and domestic hot water system is described. The overall philosophy used was to install both a liquid and a hot air system retrofitted to existing office and combined warehouse building. The 1080 sq. ft. office space is heated first and excess heat is dumped into the warehouse. The two systems offer a unique opportunity to measure the performance and compare results of both air and liquid at one site.

  4. Installation package for SIMS prototype system 2, solar hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The prototype system 2 solar hot water was designed for use in a single family dwelling and consists of the following subsystems: collector, storage, energy transport, and control. Guidelines are presented for utilization in the development of detailed installation plans and specifications. Instruction on operation, maintenance, and repair of the system is discussed.

  5. Installation package for integrated programmable electronic controller and hydronic subsystem - solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the Installation, Operation, and Maintenance Manual and information on the power panel and programmable microprocessor, a hydronic solar pump system and a hydronic heating hot water pumping system. These systems are integrated into various configurations for usages in solar energy management, control and monitoring, lighting control, data logging and other solar related applications.

  6. Design and installation of a next generation pilot scale fermentation system.

    PubMed

    Junker, B; Brix, T; Lester, M; Kardos, P; Adamca, J; Lynch, J; Schmitt, J; Salmon, P

    2003-01-01

    Four new fermenters were designed and constructed for use in secondary metabolite cultivations, bioconversions, and enzyme production. A new PC/PLC-based control system also was implemented using GE Fanuc PLCs, Genius I/O blocks, and Fix Dynamics SCADA software. These systems were incorporated into an industrial research fermentation pilot plant, designed and constructed in the early 1980s. Details of the design of these new fermenters and the new control system are described and compared with the existing installation for expected effectiveness. In addition, the reasoning behind selection of some of these features has been included. Key to the design was the goal of preserving similarity between the new and previously existing and successfully utilized fermenter hardware and software installations where feasible but implementing improvements where warranted and beneficial. Examples of enhancements include strategic use of Inconel as a material of construction to reduce corrosion, piping layout design for simplified hazardous energy isolation, on-line calculation and control of nutrient feed rates, and the use of field I/O modules located near the vessel to permit low-cost addition of new instrumentation.

  7. Orbiter Docking System Installation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Workers in Orbiter Processing Facility Bay 3 are installing the Orbiter Docking System (ODS) in the payload bay of the orbiter Atlantis (OV-104). The ODS includes an airlock, a supporting truss structure, a docking base, and a Russian-built docking mechanism (uppermost). The ODS is nearly 15 feet (4.6 meters) wide, 6.5 feet (2 meters) long, 13.5 feet (4.1 meters high), and weighs more than 3,500 pounds (1,588 kilograms). It is being installed near the forward end of the orbiter's payload bay and will be connected by a short tunnel to the existing airlock inside the orbiter's pressurized crew cabin.The installation will take about two hours to complete. Later this week, the Spacelab module also will be installed in OV-104's payload bay; it will connect to the ODS via a tunnel. During the first docking between the Space Shuttle Atlantis and the Russian Space Station Mir, the Russian-built docking mechanism on the ODS will be mated to a similar interface on the Krystall module docking port on Mir, allowing crew members to pass back and forth between the two spacecraft. That Shuttle mission, STS-71, is scheduled for liftoff in early June.

  8. 14 CFR 29.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... effects of lightning strikes on the rotorcraft must be considered. (Secs. 313(a), 601, 603, 604, and 605... Equipment, systems, and installations. (a) The equipment, systems, and installations whose functioning is... functions under any foreseeable operating condition. (b) The rotorcraft systems and associated components...

  9. 14 CFR 29.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... effects of lightning strikes on the rotorcraft must be considered. (Secs. 313(a), 601, 603, 604, and 605... Equipment, systems, and installations. (a) The equipment, systems, and installations whose functioning is... functions under any foreseeable operating condition. (b) The rotorcraft systems and associated components...

  10. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Position light system installation. 27.1385... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  11. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Position light system installation. 29.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  12. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Position light system installation. 25.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  13. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light system installation. 25.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  14. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light system installation. 29.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  15. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system installation. 25.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  16. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light system installation. 27.1385... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  17. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light system installation. 29.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  18. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system installation. 27.1385... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  19. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light system installation. 27.1385... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  20. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light system installation. 25.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  1. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system installation. 29.1385... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1385 Position light system installation. (a) General. Each part of each position light system must meet the applicable...

  2. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... environmental conditions, including the indirect effects of lightning strikes. (2) Any equipment and system does... Equipment General § 23.1309 Equipment, systems, and installations. The requirements of this section, except... requirements of part 23, to any equipment or system as installed in the airplane. This section is a regulation...

  3. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... environmental conditions, including the indirect effects of lightning strikes. (2) Any equipment and system does... Equipment General § 23.1309 Equipment, systems, and installations. The requirements of this section, except... requirements of part 23, to any equipment or system as installed in the airplane. This section is a regulation...

  4. Installation of automatic control at experimental breeder reactor II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, H.A.; Booty, W.F.; Chick, D.R.

    1985-08-01

    The Experimental Breeder Reactor II (EBR-II) has been modified to permit automatic control capability. Necessary mechanical and electrical changes were made on a regular control rod position; motor, gears, and controller were replaced. A digital computer system was installed that has the programming capability for varied power profiles. The modifications permit transient testing at EBR-II. Experiments were run that increased power linearly as much as 4 MW/s (16% of initial power of 25 MW(thermal)/s), held power constant, and decreased power at a rate no slower than the increase rate. Thus the performance of the automatic control algorithm, the mechanical andmore » electrical control equipment, and the qualifications of the driver fuel for future power change experiments were all demonstrated.« less

  5. An Automatic System of Testing the Best Stress of Installation for Semiconductor Refrigeration Piece

    NASA Astrophysics Data System (ADS)

    Chen, Hongyan; Song, Ping

    Concerning the problems of the impact on the factors of installation about semiconductor refrigeration piece are rarely studied in China and abroad, a reasonable structure of test device is designed, using stepper motor to test the temperature of the cold surface under different stress of installation to get the best stress of installation for the semiconductor refrigeration piece. Experiments shows that the system is of good noise immunity, high controlling and measuring precision.

  6. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Position light system installation. 23.1385... Lights § 23.1385 Position light system installation. (a) General. Each part of each position light system... requirements of §§ 23.1387 through 23.1397. (b) Left and right position lights. Left and right position lights...

  7. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light system installation. 23.1385... Lights § 23.1385 Position light system installation. (a) General. Each part of each position light system... requirements of §§ 23.1387 through 23.1397. (b) Left and right position lights. Left and right position lights...

  8. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light system installation. 23.1385... Lights § 23.1385 Position light system installation. (a) General. Each part of each position light system... requirements of §§ 23.1387 through 23.1397. (b) Left and right position lights. Left and right position lights...

  9. 14 CFR 23.1385 - Position light system installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Position light system installation. 23.1385... Lights § 23.1385 Position light system installation. (a) General. Each part of each position light system... requirements of §§ 23.1387 through 23.1397. (b) Left and right position lights. Left and right position lights...

  10. Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaba, R.L.; Petrie, T.W.

    1999-03-16

    The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed costmore » and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.« less

  11. The ATLAS Software Installation System v2: a highly available system to install and validate Grid and Cloud sites via Panda

    NASA Astrophysics Data System (ADS)

    De Salvo, A.; Kataoka, M.; Sanchez Pineda, A.; Smirnov, Y.

    2015-12-01

    The ATLAS Installation System v2 is the evolution of the original system, used since 2003. The original tool has been completely re-designed in terms of database backend and components, adding support for submission to multiple backends, including the original Workload Management Service (WMS) and the new PanDA modules. The database engine has been changed from plain MySQL to Galera/Percona and the table structure has been optimized to allow a full High-Availability (HA) solution over Wide Area Network. The servlets, running on each frontend, have been also decoupled from local settings, to allow an easy scalability of the system, including the possibility of an HA system with multiple sites. The clients can also be run in multiple copies and in different geographical locations, and take care of sending the installation and validation jobs to the target Grid or Cloud sites. Moreover, the Installation Database is used as source of parameters by the automatic agents running in CVMFS, in order to install the software and distribute it to the sites. The system is in production for ATLAS since 2013, having as main sites in HA the INFN Roma Tier 2 and the CERN Agile Infrastructure. The Light Job Submission Framework for Installation (LJSFi) v2 engine is directly interfacing with PanDA for the Job Management, the Atlas Grid Information System (AGIS) for the site parameter configurations, and CVMFS for both core components and the installation of the software itself. LJSFi2 is also able to use other plugins, and is essentially Virtual Organization (VO) agnostic, so can be directly used and extended to cope with the requirements of any Grid or Cloud enabled VO. In this work we will present the architecture, performance, status and possible evolutions to the system for the LHC Run2 and beyond.

  12. An earth anchor system: installation and design guide.

    Treesearch

    R.L. Copstead; D.D. Studier

    1990-01-01

    A system for anchoring the guylines and skylines of cable yarding equipment is presented. A description of three types of tipping plate anchors is given. Descriptions of the installation equipment and methods specific to each type are given. Procedures for determining the correct number of anchors to install are included, as are guidelines for installing the anchors so...

  13. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-60 System piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... installation and before extinguishing agent cylinders are connected. (1) Except as otherwise specified in this...

  14. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-60 System piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... installation and before extinguishing agent cylinders are connected. (1) Except as otherwise specified in this...

  15. 46 CFR 95.16-60 - System piping installation testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-60 System piping installation testing. (a) Halocarbon systems. A pressure test using the extinguishing agent, air... installation and before extinguishing agent cylinders are connected. (1) Except as otherwise specified in this...

  16. Landfill Gas Control at Military Installations.

    DTIC Science & Technology

    1984-01-01

    GAS CONTROL AT MILITARY INSTALLATIONS by R. A. Shafer A. Renta -Babb J. T. Bandy E. D. Smith P. Malone ’ ’ DTIC -.J Apodfpulrei u d 8ELECTE Approved...PERFORMING ORG. REPORT NUMBER 7. AUTNORIal 6. CONTRACT OR GRANT NUMBER(*) R. A. Shafer E. D. Smith A. Renta -Babb P. Malone J. T. Bandy 9. PERFORMING

  17. New fertilizer-producing system installed at Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A recently installed fertilizer-producing system sits near Launch Pad 39A. Using a 'scrubber,' the system captures nitrogen tetroxide vapor that develops as a by-product when it is transferred from ground storage tanks into the Shuttle storage tanks. Nitrogen tetroxide is used as the oxidizer for the hypergolic propellant in the Shuttle's on-orbit reaction control system. The scrubber then uses hydrogen peroxide to produce nitric acid, which, after adding potassium hydroxide, converts to potassium nitrate, a commercial fertilizer. Plans call for the resulting fertilizer to be used on the orange groves that KSC leases to outside companies.

  18. The effect of cleanliness control during installation work on the amount of accumulated dust in ducts of new HVAC installations.

    PubMed

    Holopainen, R; Tuomainen, M; Asikainen, V; Pasanen, P; Säteri, J; Seppänen, O

    2002-09-01

    The aim of this study was to evaluate the amount of dust in supply air ducts in recently installed ventilation systems. The samples for the determination of dust accumulation were collected from supply air ducts in 18 new buildings that have been constructed according to two different cleanliness control levels classified as category P1 (low oil residues and protected against contaminations) and category P2, as defined in the Classification of Indoor Climate, Construction and Building Materials. In the ducts installed according to the requirements of cleanliness category P1 the mean amount of accumulated dust was 0.9 g/m2 (0.4-2.9 g/m2), and in the ducts installed according to the cleanliness category P2 it was 2.3 g/m2 (1.2-4.9 g/m2). A significant difference was found in the mean amounts of dust between ducts of categories P1 and P2 (P < 0.008). The cleanliness control procedure in category P1 proved to be a useful and effective tool for preventing dust accumulation in new air ducts during the construction process. Additionally, the ducts without residual oil had lower amounts of accumulated dust indicating that the demand for oil free components in the cleanliness classification is reasonable.

  19. 47 CFR 80.877 - Controls and indicators required for VHF radiotelephone installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Controls and indicators required for VHF... Cargo Vessels Not Subject to Subpart W § 80.877 Controls and indicators required for VHF radiotelephone installation. The controls and indicators used on equipment of the VHF radiotelephone installation must meet...

  20. 47 CFR 80.877 - Controls and indicators required for VHF radiotelephone installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Controls and indicators required for VHF... Cargo Vessels Not Subject to Subpart W § 80.877 Controls and indicators required for VHF radiotelephone installation. The controls and indicators used on equipment of the VHF radiotelephone installation must meet...

  1. Design and installation of a multimode microscopy system

    NASA Astrophysics Data System (ADS)

    Helm, Johannes P.; Haug, Finn-Mogens S.; Storm, Johan F.; Ottersen, Ole-Petter

    2001-04-01

    We describe design and installation of a multi-mode microscopy core facility in an environment of varied research activity in life-sciences. The experimentators can select any combination of a) microscopes (upright, upright fixed-stage, inverted), b) microscopy modes (widefield, DIC, IRDIC, widefield epifluorescence, transmission LSM, reflection and fluorescence CLSM, MPLSM), c) imaging techniques (direct observation, video observation, photography, quantitative camera-recording, flying spot scanning), d) auxiliary systems (equipment for live specimen imaging, electrophysiology, time-coordinated laser-scanning and electrophysiology, patch-clamp). The equipment is installed on one large vibration-isolating optical table (3m X 1.5m X 0.3m). Electronics, auxiliary equipment, and a fiber-coupled, remotely controlled Ar+-Kr+ laser are mounted in a rack system fixed to the ceiling. The design of the shelves allows the head of the CSLM to be moved to any of the microscopes without increasing critical cable lengths. At the same time easy access to all the units is preserved. The beam of a Titanium-Sapphire laser, controlled by means of an EOM and a prism GVD, is coupled directly to the microscopes. Three mirrors mounted on a single precision translation table are integrated into the beam steering system so that the beam can easily be redirected to any of the microscopes. All the available instruments can be operated by the educated and trained user. The system is popular among researchers in neuroanatomy, embryology, cell biology, molecular biology - including the study of protein interactions, e.g. by means of FRET, and electrophysiology. Its colocalization with an EM facility promises to provide considerable synergy effects.

  2. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mechanical and electrical systems to be installed was approved by registered professional engineers. After... Installation of Offshore Production Platform Piping Systems; (3) Electrical system information including a plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...

  3. Meeting the challenges of installing a mobile robotic system

    NASA Technical Reports Server (NTRS)

    Decorte, Celeste

    1994-01-01

    The challenges of integrating a mobile robotic system into an application environment are many. Most problems inherent to installing the mobile robotic system fall into one of three categories: (1) the physical environment - location(s) where, and conditions under which, the mobile robotic system will work; (2) the technological environment - external equipment with which the mobile robotic system will interact; and (3) the human environment - personnel who will operate and interact with the mobile robotic system. The successful integration of a mobile robotic system into these three types of application environment requires more than a good pair of pliers. The tools for this job include: careful planning, accurate measurement data (as-built drawings), complete technical data of systems to be interfaced, sufficient time and attention of key personnel for training on how to operate and program the robot, on-site access during installation, and a thorough understanding and appreciation - by all concerned - of the mobile robotic system's role in the security mission at the site, as well as the machine's capabilities and limitations. Patience, luck, and a sense of humor are also useful tools to keep handy during a mobile robotic system installation. This paper will discuss some specific examples of problems in each of three categories, and explore approaches to solving these problems. The discussion will draw from the author's experience with on-site installations of mobile robotic systems in various applications. Most of the information discussed in this paper has come directly from knowledge learned during installations of Cybermotion's SR2 security robots. A large part of the discussion will apply to any vehicle with a drive system, collision avoidance, and navigation sensors, which is, of course, what makes a vehicle autonomous. And it is with these sensors and a drive system that the installer must become familiar in order to foresee potential trouble areas in the

  4. Installation, operation, and maintenance for the pyramidal optics solar system installed at Yacht Cover, Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water is presented. Principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system are presented. Troubleshooting charts and maintenance schedules are presented.

  5. Installation, operation, and maintenance for the pyramidal optics solar system installed at Yacht Cover, Columbia, South Carolina

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Information concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water is presented. Principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system are presented. Troubleshooting charts and maintenance schedules are presented.

  6. An Administrator's Guide to Installing a Telephone System.

    ERIC Educational Resources Information Center

    Forbes, Phyllis Rossiter

    1986-01-01

    Guidelines for administrators concerning installation of a new campus telephone system address these issues: where to start; location and emergency power; the project team; paperwork; communication among those involved in installation; working with the local operating company; existing wiring; the external cable plant; special needs; and training…

  7. 46 CFR 96.03-1 - Installation and details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Marine Engineering Systems § 96.03-1 Installation and details. (a) The installation of all systems of a marine engineering nature, together with the details of... (Marine Engineering) of this chapter. Systems of this type include the following: Steering Systems. Bilge...

  8. 46 CFR 195.03-1 - Installation and details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Marine Engineering Systems § 195.03-1 Installation and details. (a) The installation of all systems of a marine engineering nature, together with the details of... (Marine Engineering) of this chapter. Systems of this type include the following: Steering Systems. Bilge...

  9. Installation guidelines for solar heating system, single-family residence at William OBrien State Park, Stillwater, Minnesota

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.

  10. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems must I install? 60.2939 Section 60.2939 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Qualification Monitoring § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon...

  11. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Qualification Monitoring § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon... carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring system...

  12. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Qualification Monitoring § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon... carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring system...

  13. Installation package for Hyde Memorial Observatory, Lincoln, Nebraska

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information for a solar heating system installed in Hyde Memorial Observatory at Lincoln, Nebraska is presented. This package included a system operation and maintenance manual, hardware brochures, schematics, system operating modes, and drawings. This prototype solar heating system consisted of the following subsystems: solar collector, control, and storage.

  14. 46 CFR 77.03-1 - Installation and details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Marine Engineering Systems § 77.03-1 Installation and details. (a) The installation of all systems of a marine engineering nature, together with the details of design, construction...

  15. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  16. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  17. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  18. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  19. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  20. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems must I install? 60.2939 Section 60.2939 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon monoxide and for oxygen. You must...

  1. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems must I install? 60.2939 Section 60.2939 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon monoxide and for oxygen. You must...

  2. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  3. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Control system details. 25.685 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming...

  4. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Control system details. 25.685 Section 25...

  5. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Control system details. 25.685 Section 25...

  6. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system details. 25.685 Section 25...

  7. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system details. 25.685 Section 25...

  8. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, themore » necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.« less

  9. Installation of a Roof Mounted Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  10. 30 CFR 56.12040 - Installation of operating controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of operating controls. 56.12040 Section 56.12040 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  11. 30 CFR 56.12040 - Installation of operating controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of operating controls. 56.12040 Section 56.12040 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  12. 30 CFR 56.12040 - Installation of operating controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of operating controls. 56.12040 Section 56.12040 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  13. 30 CFR 56.12040 - Installation of operating controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of operating controls. 56.12040 Section 56.12040 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  14. 30 CFR 56.12040 - Installation of operating controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of operating controls. 56.12040 Section 56.12040 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  15. Logistics hardware and services control system

    NASA Technical Reports Server (NTRS)

    Koromilas, A.; Miller, K.; Lamb, T.

    1973-01-01

    Software system permits onsite direct control of logistics operations, which include spare parts, initial installation, tool control, and repairable parts status and control, through all facets of operations. System integrates logistics actions and controls receipts, issues, loans, repairs, fabrications, and modifications and assets in predicting and allocating logistics parts and services effectively.

  16. Installation Tobacco Control Programs in the U.S. Military

    PubMed Central

    Smith, Elizabeth A.; Poston, Walker S. C.; Haddock, Christopher K.; Malone, Ruth E.

    2016-01-01

    Tobacco use prevalence is unacceptably high in the U.S. military, and the Department of Defense and service branches have implemented tobacco control policies and cessation programs. To explore aspects of programs regarded as exemplary by their services, we visited four installations, nominated by their service's health promotion leaders, and conducted interviews, observations, and focus groups. Installations included Naval Hospital Guam, Tripler Army Medical Center, MacDill Air Force Base, and the Naval Hospital at Marine Corps Air Ground Combat Center Twentynine Palms. The tobacco control managers (TCMs) at the programs studied were all civilian employees, highly motivated and enthusiastic, and had remained in their positions for approximately a decade. Other commonalities included support from command, a “culture” of health, and location in warm climates. Programs varied in their involvement in establishing designated tobacco use areas, and length and requirement of attending cessation classes; however, no evaluation of cessation programs is currently underway. TCMs should be more engaged in policy discussions for the larger installations they serve. A strong policy framework and command support for TCMs will be necessary to achieve the goal of a tobacco-free military. PMID:27244072

  17. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  18. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  19. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  20. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  1. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...

  2. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  3. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up on the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  4. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    Construction workers with JP Donovan install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  5. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  6. 30 CFR 250.430 - When must I install a diverter system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.430 When must I install a diverter system? You must install a diverter system before you drill a conductor or surface hole. The diverter system...

  7. Digital control for the condensate system in a combined cycle power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez Parra, M.; Fuentes Gutierrez, J.E.; Castelo Cuevas, L.

    1994-12-31

    This paper presents the highlights by means of which development, installation and start up of the digital control system (DCS)for the condenser and hotwell (condensate system) were performed. This system belongs to the distributed control system installed by the Instituto de Investigaciones Electricas (IIE) at the Combined Cycle Power Plant in Gomez Palacio (GP), Durango, Mexico, during the February-March period, in 1993. The main steps for development of the condenser and hotwell control system include: process modeling, definition of control strategies, algorithms, design and software development, PC simulation tests, laboratory tests with an equipment similar to the one installed atmore » the GP Power Plant, installation, and finally, start up, which was a joint effort with the GP Power Plant engineering staff.« less

  8. Control system adds to precipitator efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurrole, G.

    1978-02-01

    An electrostatic precipitator in use at Lion Oil Co., Martinez, Calif., in a fluid catalytic cracking and CO boiler application, was upgraded by mechanical sectionalization of the gas passage and a new electronic control system. The electrostatic precipitator is installed upstream of the CO boiler to handle gas flow up to 4.77 ft/sec, and pressure to 4.5 psi. The independent gas chambers in the electrostatic precipitator were divided by installing gas-tight partition walls to form a total of four electrostatic fields. The precipitator was also equipped with adjustable inlet gas flow-control baffles for even gas distribution. Rows of grounded collectingmore » electrodes are parallel with the flow of gas. The emitting electrode system, powered by separate high-energy transformers for each collecting field, uses silicon-controlled rectifiers and analog electronic networks for rapid response to changing gas and dust conditions. Regulatory requirements call for efficient collection of catalyst fines with no more than 40 lb/hr escaping through the boiler stack. Currently, stack losses average about 38 lb/hr. The installation of two additional control systems with transformers and rectifiers should reduce stack losses to 34 lb/hr.« less

  9. Easily installable behavioral monitoring system with electric field sensor.

    PubMed

    Tsukamoto, Sosuke; Machida, Yuichiro; Kameda, Noriyuki; Hoshino, Hiroshi; Tamura, Toshiyo

    2007-01-01

    This paper describes a wireless behavioral monitoring system equipped with an electric field sensor. The sensor unit was designed to obtain information regarding the usage of home electric appliances such as the television, microwave oven, coffee maker, etc. by measuring the electric field surrounding them. It is assumed that these usage statistics could provide information regarding the indoor behavior of a subject. Since the sensor can be used by simply attaching it to an appliance and does not require any wiring for its installation, this system can be temporarily installed in any ordinary house. A simple interface for selecting the threshold value of appliances' power on/off states was introduced. The experimental results reveal that the proposed system can be installed by individuals in their residences in a short time and the usage statistics of home appliances can be gathered.

  10. Installation package - SIMS prototype system 1A

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.

  11. 76 FR 52918 - Positive Train Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ...-0028, Notice No. 1] RIN 2130-AC27 Positive Train Control Systems AGENCY: Federal Railroad... that requires certain passenger and freight railroads to install positive train control (PTC) systems...: Thomas McFarlin, Office of Safety Assurance and Compliance, Staff Director, Signal & Train Control...

  12. Solar heating system installed at Blakedale Professional Center, Greenwood, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information on the solar heating system installed at the Blakedale Professional Center, in Greenwood, South Carolina is presented. The information consists of site and building description, solar system description, performance evaluation, system problems and installation drawings. The solar system was designed to provide approximately 85 percent of the building's heating requirements. The system was installed concurrently with building construction and heats 4,440 square feet of the building. There are 954 square feet of liquid flat plate collectors that are proof-mounted and have a drain-down system to protect the collectors from freezing. A 5,000 gallon steel, polyurethane insulated tank buried underground provides storage. The system was fully instrumented for performance evaluation and integrated into the National Solar Data Network.

  13. Method of installing a control room console in a nuclear power plant

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  14. 16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. THE PANEL CONTROLS AIR-HANDLING EQUIPMENT AND AIR PRESSURE WITHIN THE BUILDING. (10/6/69) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  15. 75 FR 59108 - Positive Train Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... established. No railroad had supplied data supporting further track exceptions from PTC system installation...-0132, Notice No. 4] RIN 2130-AC03 Positive Train Control Systems AGENCY: Federal Railroad... Control (PTC) systems for railroads as mandated by the Rail Safety Improvement Act of 2008. With...

  16. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. 3; Leading Edge Design, Fabrication, and Installation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the design, fabrication, and installation of the suction panel and the required support structure, ducting, valving, and high-lift system (Krueger flaps) for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane.

  17. Flow Simulation of Modified Duct System Wind Turbines Installed on Vehicle

    NASA Astrophysics Data System (ADS)

    Rosly, N.; Mohd, S.; Zulkafli, M. F.; Ghafir, M. F. Abdul; Shamsudin, S. S.; Muhammad, W. N. A. Wan

    2017-10-01

    This study investigates the characteristics of airflow with a flow guide installed and output power generated by wind turbine system being installed on a pickup truck. The wind turbine models were modelled by using SolidWorks 2015 software. In order to investigate the characteristic of air flow inside the wind turbine system, a computer simulation (by using ANSYS Fluent software) is used. There were few models being designed and simulated, one without the rotor installed and another two with rotor installed in the wind turbine system. Three velocities being used for the simulation which are 16.7 m/s (60 km/h), 25 m/s (90 km/h) and 33.33 m/s (120 km/h). The study proved that the flow guide did give an impact to the output power produced by the wind turbine system. The predicted result from this study is the velocity of the air inside the ducting system of the present model is better that reference model. Besides, the flow guide implemented in the ducting system gives a big impact on the characteristics of the air flow.

  18. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Systems; (3) Electrical system information including a plan of each platform deck, outlining all hazardous... Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical Installations at Petroleum...

  19. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for... system according to the “Monitoring Requirements” in § 60.13. ...

  20. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for... system according to the “Monitoring Requirements” in § 60.13. ...

  1. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    The mobile launcher (ML) is reflected in the sunglasses of a construction worker with JP Donovan at NASA's Kennedy Space Center in Florida. A crane is lifting the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the ML. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  2. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  3. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  4. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  5. Renewable energy systems in Mexico: Installation of a hybrid system

    NASA Astrophysics Data System (ADS)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  6. Solar heating system installed at Stamford, Connecticut

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut is described. The Executive East Office Building is of moderate size with 25,000 sq ft of heated space in 2 1/2 stories. The solar system was designed to provide approximately 50 percent of the heating requirements. The system components are described. Appended data includes: the system design acceptance test, the operation and maintenance manual, and as-built drawings and photographs.

  7. Lessons learned from hybrid wind/PV village power system installations in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergey, M.

    1995-09-01

    In the last three years eight decentralized village power systems utilizing small wind turbines as the primary energy source have been installed in rural Mexico. Hybrid wind/PV systems have been installed in five States and by three vendors. Seven out of the eight systems, which range i size from 9.3--71.2kW in combined wind and PV capacity, utilize one or more 10 kW wind turbines. All of these installations have battery banks and use static inverters to provide AC power for distribution to homes, businesses, and community facilities. On all but one of the systems a diesel generator is used tomore » provide back-up power. This paper attempts to summarize the range of costs and economics, performance, and operational experiences for all eight installations. Several of the systems are monitored for performance, including one that is extensively monitored under a cooperative program between the Instituto de Investigaciones Electricas and Sandia National Laboratory. Lessons learned from these systems provide insights that may allow future village power systems of this architecture to be installed at lower costs, to be operated more effectively and efficiently, and to be better able to satisfy customer requirements.« less

  8. 77 FR 28285 - Positive Train Control Systems (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...-0028, Notice No. 3] RIN 2130-AC27 Positive Train Control Systems (RRR) AGENCY: Federal Railroad... railroads to install positive train control (PTC) systems. This final rule removes regulatory provisions... Safety Assurance and Compliance, Staff Director, Signal & Train Control Division, Federal Railroad...

  9. B-Plant Canyon Ventilation Control System Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.

  10. Installation package for the Solaron solar subsystem

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information that is intended to be a guide for installation, operation, and maintenance of the various solar subsystems is presented. The subsystems consist of the following: collectors, storage, transport (air handler) and controller for heat pump and peak storage. Two prototype residential systems were installed at Akron, Ohio, and Duffield, Virginia.

  11. 14 CFR 25.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical equipment and installations. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1353 Electrical equipment and installations. (a) Electrical equipment and controls must be...

  12. 14 CFR 25.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical equipment and installations. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1353 Electrical equipment and installations. (a) Electrical equipment and controls must be...

  13. 14 CFR 25.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical equipment and installations. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1353 Electrical equipment and installations. (a) Electrical equipment and controls must be...

  14. 14 CFR 29.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical equipment and installations. 29... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1353 Electrical equipment and installations. (a) Electrical equipment, controls, and wiring...

  15. 14 CFR 29.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical equipment and installations. 29... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1353 Electrical equipment and installations. (a) Electrical equipment, controls, and wiring...

  16. 14 CFR 25.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical equipment and installations. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1353 Electrical equipment and installations. (a) Electrical equipment and controls must be...

  17. 14 CFR 29.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical equipment and installations. 29... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1353 Electrical equipment and installations. (a) Electrical equipment, controls, and wiring...

  18. Installation Guidelines for Solar DHW Systems in One- and Two-Family Dwellings. Second Edition.

    ERIC Educational Resources Information Center

    Hollander, Peter; And Others

    Described are some of the better techniques for installing solar domestic hot water (DHW) systems. By using these guidelines, along with the manufacturer's manual, professional installation contractors and skilled homeowners should be able to install and fill a solar DHW system. Among the topics considered are system layouts, siting, mounting…

  19. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Astrophysics Data System (ADS)

    1980-04-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  20. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  1. Regional Information System for Educators: Installation and Evaluation.

    ERIC Educational Resources Information Center

    Kromer, Charles

    This document describes the installation and evaluation of the Regional Information System within the Michigan-Ohio Regional Educational Laboratory (MOREL). MOREL is an agency established to develop and test alternatives to current educational practice under Title IV of ESEA. The Regional Information System was established to provide referrals to…

  2. Installation guidelines for solar heating system, single-family residence at New Castle, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.

  3. Evaluation of the utility and energy monitoring and control system installed at the US Army, Europe, 409th Base Support Battalion, Military Community at Grafenwoehr, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broders, M.A.; Ruppel, F.R.

    1993-05-01

    Under the provisions of Interagency Agreement DOE 1938-B090-A1 between the US Department of Energy (DOE) and the US Army Europe (USAREUR), Martin Marietta Energy Systems, Inc., is providing technical assistance to USAREUR in the areas of computer science, information engineering, energy studies, and engineering and systems development. One of the initial projects authorized under this interagency agreement is the evaluation of utility and energy monitoring and control systems (UEMCSs) installed at selected US Army installations in Europe. This report is an evaluation of the overall energy-conservation effectiveness and use of the UEMCS at the 409th Base Support Battalion located inmore » Grafenwoehr, Germany. The 409th Base Support Battalion is a large USAREUR military training facility that comprises a large training area, leased housing, the main post area, and the camp areas that include Camps Aachen, Algier, Normandy, Cheb, and Kasserine. All of these facilities are consumers of electrical and thermal energy. However, only buildings and facilities in the main post area and Camps Aachen, Algier, and Normandy are under the control of the UEMCS. The focus of this evaluation report is on these specific areas. Recommendations to further increase energy and cost savings and to improve operation of the UEMCS are proposed.« less

  4. Analysis of the use of industrial control systems in simulators: state of the art and basic guidelines.

    PubMed

    Carrasco, Juan A; Dormido, Sebastián

    2006-04-01

    The use of industrial control systems in simulators facilitates the execution of engineering activities related with the installation and the optimization of the control systems in real plants. "Industrial control system" intends to be a valid term that would represent all the control systems which can be installed in an industrial plant, ranging from complex distributed control systems and SCADA packages to small single control devices. This paper summarizes the current alternatives for the development of simulators of industrial plants and presents an analysis of the process of integrating an industrial control system into a simulator, with the aim of helping in the installation of real control systems in simulators.

  5. Elimination of voltage reversal in multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFCs) stacking system by resistor control.

    PubMed

    Kim, Bongkyu; Chang, In Seop

    2018-08-01

    Voltage reversal (VR) in series connection of multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFC) is eliminated by manipulating the resistor control. Discharge test results collected from two mMEA-MFCs initially operated (designated as P1 and P2) confirm that the performance of P2 exceeds that of P1. Thus, driving P1 and P2 as serially stacked MFCs generate the VR in P1. Controlling the inserted resistor adjust the current production of P2 to maintain balance with P1, and the VR in P1 is eliminated in the operation of stacking mode. Thus, manipulating the internal resistance provide an applicable approach to suppress VR in the stacking of mMEA-MFCs system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems must I install? 60.3038 Section 60.3038 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you...

  7. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems must I install? 60.3038 Section 60.3038 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you...

  8. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems must I install? 60.3038 Section 60.3038 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you...

  9. 14 CFR 25.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1309... electrical system and equipment design and installation, critical environmental conditions must be considered. For electrical generation, distribution, and utilization equipment required by or used in complying...

  10. Solar Water Heater Installation Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  11. ENGINEERING AND ECONOMIC FACTORS AFFECTING THE INSTALLATION OF CONTROL TECHNOLOGIES FOR MULTIPOLLUTANT STRATEGIES

    EPA Science Inventory

    The report evaluates the engineering and economic factors associated with installing air pollution control technologies to meet the requirements of strategies to control sulfur dioxide (SO2), oxides of nitrogen (NOX), and mercury under the Clear Skies Act multipollutant control s...

  12. [Requirements for the successful installation of an data management system].

    PubMed

    Benson, M; Junger, A; Quinzio, L; Hempelmann, G

    2002-08-01

    Due to increasing requirements on medical documentation, especially with reference to the German Social Law binding towards quality management and introducing a new billing system (DRGs), an increasing number of departments consider to implement a patient data management system (PDMS). The installation should be professionally planned as a project in order to insure and complete a successful installation. The following aspects are essential: composition of the project group, definition of goals, finance, networking, space considerations, hardware, software, configuration, education and support. Project and finance planning must be prepared before beginning the project and the project process must be constantly evaluated. In selecting the software, certain characteristics should be considered: use of standards, configurability, intercommunicability and modularity. Our experience has taught us that vaguely defined goals, insufficient project planning and the existing management culture are responsible for the failure of PDMS installations. The software used tends to play a less important role.

  13. Development and Installation of a Continuous Water Monitoring Systems for the AEDC

    DTIC Science & Technology

    1992-08-01

    AEDC-TR-92-8 Development and Installation of Continuous Water Monitoring Systems for the AEDC ES Industries 701 South Route 73 Berlin, NJ 08009...Development and Installation of a Continuous Water Monitoring System for the AEDC E AUTHOR(S) Przybyciel, M., Behm, J., and Sampey, T. 7. PERFORMING...Maximum 200 words) A system to sample and analyze water from Rowland Creek at AEDC for hydrocarbon contaminants has been developed under a Small

  14. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and electrical systems to be installed were approved by registered professional engineers. After these... reference as specified in § 250.198). (4) Electrical system information including the following: (i) A plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...

  15. 14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...

  16. 14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...

  17. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  18. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane lifts the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  19. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    Preparations are underway to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  20. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    Seeming to hang in midair, the Orion Service Module Umbilical (OSMU) is lifted high up by crane for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  1. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  2. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  3. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan assist with preparations to lift and install the Interim Cryogenic Propulsion Stage Umbilical on the tower of the mobile launcher at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  4. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    The mobile launcher (ML) tower is lit up before early morning sunrise at NASA's Kennedy Space Center in Florida. Preparations are underway to lift and install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level on the tower. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  5. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    With a control panel visible in the foreground, a technician begins installation of the Orion crew access arm (CAA) to the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System, or SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  6. Specification for installation of the crew activity planning system coaxial cable communication system

    NASA Technical Reports Server (NTRS)

    Allen, M. A.; Roman, G. S.

    1979-01-01

    The specification used to install a broadband coaxial cable communication system to support remote terminal operations on the Crew Activity Planning system at the Lyndon B. Johnson Space Center are reported. The system supports high speed communications between a Harris Slash 8 computer and one or more Sanders Graphic 7 displays.

  7. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, B.; Bohac, D.; Huelman, P.

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronicmore » air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.« less

  8. Underground coal operators install several new longwall mining systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2008-02-15

    Several new names appear in the annual US Longwall Census, but the population remains the same: 52 although the number of longwall mines dropped from 40 to 47. CONSOL Energy remains the leader with 12 faces. Robert E. Murray owns 8 longwall mines followed by Arch Coal with 5 and Foundation Coal with 3. West Virginia has 13 longwalls followed by 9 in Pennsylvania, 7 in Utah and 6 in Alabama. The article describes CONSOL Energy's operations. A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries,more » depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs.« less

  9. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  10. Utility installation review system : implementation report.

    DOT National Transportation Integrated Search

    2009-03-01

    Each year, the Texas Department of Transportation (TxDOT) issues thousands of approvals that enable new : utility installations to occupy the state right of way (ROW). The current utility installation review process : relies on the physical delivery ...

  11. 45. STEEL RESERVOIR TANKS FOR NEW SPRINGFED WATER SYSTEM INSTALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. STEEL RESERVOIR TANKS FOR NEW SPRING-FED WATER SYSTEM INSTALLED IN 1982. LOCATED IN WAIHANAU VALLEY, THIS REPLACED THE WAIKOLU SYSTEM AND PROVIDES A MORE CONSISTENT AND CLEAN WATER SUPPLY FOR KALAUPAPA. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  12. Orion Service Module Umbilical (OSMU) Installation

    NASA Image and Video Library

    2017-03-16

    Construction workers assist as a crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  13. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    A construction worker with JP Donovan helps prepare the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) for installation high up on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  14. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan attach a heavy-lift crane to the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) to prepare for lifting and installation on the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the ML and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  15. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  16. 14 CFR 25.1385 - Position light system installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Light covers and color filters. Each light cover or color filter must be at least flame resistant and may not change color or shape or lose any appreciable light transmission during normal use. [Doc. No... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light system installation. 25.1385...

  17. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  18. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  19. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  20. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  1. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  2. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  3. Long life high reliability thermal control systems study data handbook

    NASA Technical Reports Server (NTRS)

    Scollon, T. R., Jr.; Carpitella, M. J.

    1971-01-01

    The development of thermal control systems with high reliability and long service life is discussed. Various passive and semi-active thermal control systems which have been installed on space vehicles are described. The properties of the various coatings are presented in tabular form.

  4. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Departmentmore » of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.« less

  5. Development of a Post-Installed Deepwater Monitoring System

    NASA Technical Reports Server (NTRS)

    Seaman, C.; Brower, D. V.; Tang, H.; Le, S.

    2015-01-01

    A monitoring system that can be deployed on already existing deep water risers and flowlines has been developed. This paper describes the design concepts and testing that was performed in developing the monitoring system. A major challenge of a post-installed instrumentation system is to ensure adequate coupling is achieved between the instruments and the riser or flowline. This work investigates the sensor coupling for pipelines that are suspended in both the water column (from topside platform to the seabed) and for those that are located directly on the seabed. These different environments have resulted in two sensor attachment methods: (1) subsea adhesive sensor clamp design and (2) a friction surface sensor attachment method. This paper presents the adhesive attachment method. The monitoring elements consist of fiber optic sensors that are encased in a polyurethane clamp. With a subsea adhesive, the clamp can be installed by divers in shallow depths or by use of an ROV for deeper applications. The NASA Johnson Space Center was initially involved in the selection and testing of subsea adhesives. It was determined that up to 75 percent of the bonding strength could be achieved with the adhesive from optimal dry bonding versus bonding in submerged sea water environments. The next phase of the study involved the design, fabrication, and testing of several prototype clamps that contained the fiber optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the fabrication of subscale test articles that would accommodate 4-inch and 8-inch diameter pipes. The clamps were installed with adhesive in a "wet" environment on the pipe test articles and tested in the NASA Structures Test Laboratory. The tension/compression and bending tests showed that the prototype sensor clamps achieved good coupling, and could provide high quality strain measurement for active monitoring.

  6. Solar energy system installed at Mount Rushmore National Visitor Center in Keystone, South Dakota

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design and installation of the solar energy system installed at the Mount Rushmore Visitor Center is described. The system was designed to furnish about 45 percent of the heating for the total facility and about 53 percent partial cooling for the 2000 square foot observatory.

  7. 14 CFR 29.1385 - Position light system installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... position lights and the rear position light must make a single circuit. (e) Light covers and color filters. Each light cover or color filter must be at least flame resistant and may not change color or shape or... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light system installation. 29.1385...

  8. 14 CFR 27.1385 - Position light system installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... position lights and the rear position light must make a single circuit. (e) Light covers and color filters. Each light cover or color filter must be at least flame resistant and may not change color or shape or... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light system installation. 27.1385...

  9. Understanding the needs of hand control users, driver rehabilitation specialists, and dealers/installers.

    PubMed

    Lowe, Evan; Drouin, Nathalie; Venhovens, Paul J; Brooks, Johnell O

    2014-10-01

    Understanding unique perspectives from key stakeholder groups involved in the hand control (HC) industry, including driver rehabilitation specialists (DRSs) who train users how to use their HCs, dealers/installers, and users, may become increasingly important in the United States due to increases in elderly, diabetic, and wounded warrior amputee driving populations. In this exploratory study, phone interviews were conducted with 20 DRSs, 20 dealers/installers, and 20 users regarding their perspectives about HC training, maintenance and operation, and design improvements. Results revealed common views and differences in perspectives about whether HC users should receive training and for how long, when and how often users should receive maintenance on their HCs, and what DRSs, dealers/installers, and users would like to see in the future.

  10. Control aspects of the Schuchuli Village stand-alone photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Groumpos, P. P.; Culler, J. E.; Delombard, R.

    1984-11-01

    A photovoltaic power system in an Arizona Indian village was installed. The control subsystem of this photovoltaic power system was analyzed. The four major functions of the control subsystem are: (1) voltage regulation; (2) load management; (3) water pump control; and (4) system protection. The control subsystem functions flowcharts for the control subsystem operation, and a computer program that models the control subsystem are presented.

  11. Control aspects of the Schuchuli Village stand-alone photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Groumpos, P. P.; Culler, J. E.; Delombard, R.

    1984-01-01

    A photovoltaic power system in an Arizona Indian village was installed. The control subsystem of this photovoltaic power system was analyzed. The four major functions of the control subsystem are: (1) voltage regulation; (2) load management; (3) water pump control; and (4) system protection. The control subsystem functions flowcharts for the control subsystem operation, and a computer program that models the control subsystem are presented.

  12. Intelligent systems installed in building of research centre for research purposes

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Mokry, Marian; Kolkova, Zuzana; Sedivy, Stefan

    2016-06-01

    The attractiveness of intelligent buildings is nowadays directly connected with higher level of comfort and also the economic mode of consumption energy for heating, cooling and the total consumption of electricity for electric devices. The technologies of intelligent buildings compared with conventional solutions allow dynamic optimization in real time and make it easy for operational message. The basic division of functionality in horizontal direction is possible divide in to two areas such as Economical sophisticated residential care about the comfort of people in the building and Security features. The paper deals with description of intelligent systems which has a building of Research Centre. The building has installed the latest technology for utilization of renewable energy and also latest systems of controlling and driving all devices which contribute for economy operation by achieving the highest thermal comfort and overall safety.

  13. Time and materials needed to survey, inject systemic fungicides, and install root-graft barriers for Dutch elm disease management

    Treesearch

    William N., Jr. Cannon; Jack H. Barger; Charles J. Kostichka; Charles J. Kostichka

    1986-01-01

    Dutch elm disease control practice in 15 communities showed a wide range of time and material required to apply control methods. The median time used for each method was: sanitation survey, 9.8 hours per square mile; symptom survey, 96 hours per thousand elms; systemic fungicide injection, 1.4 hours per elm; and root-graft barrier installation, 2.2 hours per barrier (5...

  14. Installation and performance evaluation of the wabocrete FMV joint system for bridge decks.

    DOT National Transportation Integrated Search

    1990-01-01

    A Wabocrete FMV bridge deck expansion joint system was installed on the Alternate Rte. 58 bridge over the Clinch River in November 1986. The bridge was placed in service in mid-1987. The report concerns an installation and performance evaluation of t...

  15. Solar hot water system installed at Anderson, South Carolina

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the solar energy hot water system installed in the Days Inns of America, Inc., at Anderson, South Carolina. The building is a low-rise, two-story 114-room motel. The solar system was designed to provide 40 percent of the total hot water demand. The collector is a flat plate, liquid with an area of 750 square feet. Operation of this system was begun in November 1977, and has performed flawlessly for one year.

  16. Development of process control capability through the Browns Ferry Integrated Computer System using Reactor Water Clanup System as an example. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.; Mowrey, J.

    1995-12-01

    This report describes the design, development and testing of process controls for selected system operations in the Browns Ferry Nuclear Plant (BFNP) Reactor Water Cleanup System (RWCU) using a Computer Simulation Platform which simulates the RWCU System and the BFNP Integrated Computer System (ICS). This system was designed to demonstrate the feasibility of the soft control (video touch screen) of nuclear plant systems through an operator console. The BFNP Integrated Computer System, which has recently. been installed at BFNP Unit 2, was simulated to allow for operator control functions of the modeled RWCU system. The BFNP Unit 2 RWCU systemmore » was simulated using the RELAP5 Thermal/Hydraulic Simulation Model, which provided the steady-state and transient RWCU process variables and simulated the response of the system to control system inputs. Descriptions of the hardware and software developed are also included in this report. The testing and acceptance program and results are also detailed in this report. A discussion of potential installation of an actual RWCU process control system in BFNP Unit 2 is included. Finally, this report contains a section on industry issues associated with installation of process control systems in nuclear power plants.« less

  17. CATS Installed on ISS

    NASA Image and Video Library

    2017-12-08

    On Jan. 22, 2015, robotic flight controllers successfully installed NASA’s Cloud Aerosol Transport System (CATS) onboard the International Space Station. CATS will collect data about clouds, volcanic ash plumes and tiny airborne particles that can help improve our understanding of aerosol and cloud interactions, and improve the accuracy of climate change models. CATS had been mounted inside the SpaceX Dragon cargo craft’s unpressurized trunk since it docked at the station on Jan. 12. Ground controllers at NASA’s Johnson Space Center in Houston, Texas, used one of the space station’s robotic arms, called the Special Purpose Dexterous Manipulator, to extract the instrument from the capsule. The NASA-controlled arm passed the instrument to a second robotic arm— like passing a baton in a relay race. This second arm, called the Japanese Experiment Module Remote Manipulator System, is controlled by the Japanese Aerospace Exploration Agency. The Japanese-controlled arm installed the instrument to the Space Station’s Japanese Experiment Module, making CATS the first NASA-developed payload to fly on the Japanese module. CATS is a lidar remote-sensing instrument designed to last from six months to three years. It is specifically intended to demonstrate a low-cost, streamlined approach to developing science payloads on the space station. CATS launched aboard the SpaceX Dragon spacecraft on Jan. 10 at Cape Canaveral Air Force Station in Florida. To learn more about the impact of CATS data, visit: www.nasa.gov/cats/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Development and installation of an advanced beam guidance system on Viking`s 2.4 megawatt EB furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motchenbacher, C.A.; Grosse, I.A.

    1994-12-31

    Viking Metallurgical is a manufacturer of titanium alloy and superalloy seamless ring forgings for the aerospace industry. For more than 20 years Viking has used electron beam cold hearth melting to recover titanium alloy scrap and to produce commercially pure titanium ingot for direct forging. In the 1970`s Viking pioneered electron beam cold hearth melting and in 1983 added a two-gun, 2.4 MW furnace. As part of Vikings efforts to improve process control we have commissioned and installed a new electron beam guidance system. The system is capable of generating virtually unlimited EB patterns resulting in improved melt control.

  19. System design package for a solar heating and cooling system installed at Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  20. Design and Integration of an Actuated Nose Strake Control System

    NASA Technical Reports Server (NTRS)

    Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.

    1996-01-01

    Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.

  1. Solar heating and cooling system installed at Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  2. System installation package for the New Hampshire Vocational Technical College, Manchester, N. H.

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A system installed in the residential solar laboratory located at the New Hampshire Vocational Technical College in Manchester, N. H. is described. General guidelines which may be utilized in development of detailed installation plans and specifications, as well as instructions on operation and maintenance are provided.

  3. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  4. Design and installation of 3 photovoltaic village power systems in Tunisia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darkazalli, G.; Rangaraian, A.; Scudder, L.

    1982-09-01

    A joint program sponsored by the United States Agency for International Development (U.S.A.I.D.) and the government of Tunisia was initiated to study the feasibility of using photovoltaics to supply electricity to remote villages in Tunisia. U.S.A.I.D. selected the NASA Lewis Research Center to implement the installation of three photovoltaic systems in the Tunisian village of Hammam Biadha Sud. In a competitive procurement, NASA selected a team proposed by the Solar Power Corporation, TriSolar Corporation, Esso Standard Tunisie and Development Sciences, Inc. to design and install the systems and train the villagers in the use of photovoltaics. The Tunisian Government counterpartmore » to NASA, is STEG, the Tunisian electrical generation authority. An overview of the systems designs is presented in this paper.« less

  5. Performance of a Dynamically Controlled Inverter in a Photovoltaic System Interconnected with a Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coddington, M. H.; Kroposki, B. D.; Basso, T.

    In 2008, a 300 kW{sub peak} photovoltaic (PV) system was installed on the rooftop of the Colorado Convention Center (CCC). The installation was unique for the electric utility, Xcel Energy, as it had not previously permitted a PV system to be interconnected on a building served by the local secondary network distribution system (network). The PV system was installed with several provisions; one to prevent reverse power flow, another called a dynamically controlled inverter (DCI), that curtails the output of the PV inverters to maintain an amount of load supplied by Xcel Energy at the CCC. The DCI system utilizesmore » current transformers (CTs) to sense power flow to insure that a minimum threshold is maintained from Xcel Energy through the network transformers. The inverters are set to track the load on each of the three phases and curtail power from the PV system when the generated PV system current reaches 95% of the current on any phase. This is achieved by the DCI, which gathers inputs from current transformers measuring the current from the PV array, Xcel, and the spot network load. Preventing reverse power flow is a critical technical requirement for the spot network which serve this part of the CCC. The PV system was designed with the expectation that the DCI system would not curtail the PV system, as the expected minimum load consumption was historically higher than the designed PV system size. However, the DCI system has operated many days during the course of a year, and the performance has been excellent. The DCI system at the CCC was installed as a secondary measure to insure that a minimum level of power flows to the CCC from the Xcel Energy network. While this DCI system was intended for localized control, the system could also reduce output percent if an external smart grid control signal was employed. This paper specifically focuses on the performance of the innovative design at this installation; however, the DCI system could also be used for

  6. 28. Credit JTL. Overview of unit 5 (installed 1908) showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Credit JTL. Overview of unit 5 (installed 1908) showing exciter, generator, deflector motor, needle valve control, impulse wheel housing, and gate valve controls. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  7. [Problems encountered during the installation of an automated anesthesia documentation system (AIMS)].

    PubMed

    Müller, H; Naujoks, F; Dietz, S

    2002-08-01

    Problems encountered during the installation and introduction of an automated anaesthesia documentation system are discussed. Difficulties have to be expected in the area of staff training because of heterogeneous experience in computer usage and in the field of online documentation of vital signs. Moreover the areas of net administration and hardware configuration as well as general administrative issues also represent possible sources of drawbacks. System administration and reliable support provided by personnel of the department of anaesthesiology assuring staff motivation and reducing time of system failures require adequately staffed departments. Based on our own experiences, we recommend that anaesthesiology departments considering the future installation and use of an automated anaesthesia documentation system should verify sufficient personnel capacities prior to their decision.

  8. 75 FR 65151 - Marine Vapor Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...The Coast Guard proposes to increase maritime domain safety by revising existing safety regulations for facility and vessel vapor control systems (VCSs). The proposed changes would make VCS requirements more compatible with new Federal and State environmental requirements, reflect industry advancements in VCS technology, and codify the standards for the design and operation of a VCS at tank barge cleaning facilities. These changes would increase the safety of operations by regulating the design, installation, and use of VCSs, but would not require anyone to install or use VCSs.

  9. Solar heating system installed at Jackson, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  10. Utility installation review (UIR) system training materials.

    DOT National Transportation Integrated Search

    2008-10-01

    The Texas Department of Transportation (TxDOT) issues thousands of approvals every year that : enable new utility installations to occupy the state right-of-way (ROW). The utility installation : review process currently in place is manual, tedious, a...

  11. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  12. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  13. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  14. A new electronic scanner of pressure designed for installation in wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Coe, C. T.; Parra, G. T.; Kauffman, R. C.

    1981-01-01

    A new electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind-tunnel models. An ESOP system includes up to 20 pressure modules, each with 48 pressure transducers, an A/D converter, a microprocessor, a data controller, a monitor unit, and a heater controller. The system is sized so that the pressure modules and A/D converter module can be installed within an average-size model tested in the Ames Aerodynamics Division wind tunnels. This paper describes the ESOP system, emphasizing the main element of the system - the pressure module. The measured performance of the overall system is also presented.

  15. Design, development, and installation of a two-node, color video-teleconferencing system for the US Navy

    NASA Astrophysics Data System (ADS)

    Vest, K. F.; Jones, P.; French, D.; Sachs, H.; Clements, F.

    1985-11-01

    This report discusses the design of a two-node, color Video-Teleconferencing System for the System for the U.S. Navy and its installation at sites in Suitland, Maryland, and Pearl Harbor. It details the development of the audio, video, and fast-facsimile parts of the system; integration of the system into the communications network; design of a teleconference room; and installation of the system.

  16. Automated installation methods for photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.

    1982-11-01

    Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.

  17. 78 FR 25840 - Installed Systems and Equipment for Use by the Flightcrew

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... certified aircraft (examples include updating avionics systems, engines, drag reduction, interior... aircraft systems, equipment, and the aircraft itself, so that they understand the situation better. Active...-1175; Amdt. No. 25-138] RIN 2120-AJ83 Installed Systems and Equipment for Use by the Flightcrew AGENCY...

  18. 14 CFR Appendix H to Part 23 - Installation of An Automatic Power Reserve (APR) System

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Installation of An Automatic Power Reserve (APR) System H Appendix H to Part 23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... AIRPLANES Pt. 23, App. H Appendix H to Part 23—Installation of An Automatic Power Reserve (APR) System H23.1...

  19. Isolation contactor state control system

    DOEpatents

    Bissontz, Jay E.

    2017-05-16

    A controller area network (CAN) installed on a hybrid electric vehicle provides one node with control of high voltage power distribution system isolation contactors and the capacity to energize a secondary electro-mechanical relay device. The output of the secondary relay provides a redundant and persistent backup signal to the output of the node. The secondary relay is relatively immune to CAN message traffic interruptions and, as a result, the high voltage isolation contactor(s) are less likely to transition open in the event that the intelligent output driver should fail.

  20. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, has been installed on the south side of the high bay. In view below are several levels of previously installed platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  1. Tracking the Sun 10: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Darghouth, Naim R.; Millstein, Dev

    Berkeley Lab’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected, residential and non-residential systems solar photovoltaic (PV) systems in the United States. The present report, the tenth edition in the series, focuses on systems installed through year-end 2016, with preliminary data for the first half of 2017. The report provides an overview of both long-term and more-recent trends, highlighting key drivers for installed price declines over different time horizons. The report also extensively characterizes the widespread variability in system pricing, comparing installed prices across states, market segments, installers, and various system andmore » technology characteristics. The trends described in this report derive from project-level data collected by state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data for this report were compiled and cleaned for more than 1.1 million individual PV systems, though the analysis in the report is based on a subset of that sample, consisting of roughly 630,000 systems with available installed price data. The full underlying dataset of project-level data (excluding any confidential information) is available in a public data file, for use by other researchers and analysts.« less

  2. Evaluation of Cable Harness Post-Installation Testing. Part B

    NASA Technical Reports Server (NTRS)

    King, M. S.; Iannello, C. J.

    2011-01-01

    The Cable Harness Post-Installation Testing Report was written in response to an action issued by the Ares Project Control Board (PCB). The action for the Ares I Avionics & Software Chief Engineer and the Avionics Integration and Vehicle Systems Test Work Breakdown Structure (WBS) Manager in the Vehicle Integration Office was to develop a set of guidelines for electrical cable harnesses. Research showed that post-installation tests have been done since the Apollo era. For Ares I-X, the requirement for post-installation testing was removed to make it consistent with the avionics processes used on the Atlas V expendable launch vehicle. Further research for the report involved surveying government and private sector launch vehicle developers, military and commercial aircraft, spacecraft developers, and harness vendors. Responses indicated crewed launch vehicles and military aircraft perform post-installation tests. Key findings in the report were as follows: Test requirements identify damage, human-rated vehicles should be tested despite the identification of statistically few failures, data does not support the claim that post-installation testing damages the harness insulation system, and proper planning can reduce overhead associated with testing. The primary recommendation of the report is for the Ares projects to retain the practice of post-fabrication and post-installation cable harness testing.

  3. 75 FR 3141 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinder Assemblies, as Installed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinder Assemblies, as Installed on Various... directive (AD), which applies to certain AVOX Systems and B/E Aerospace oxygen cylinder assemblies, as installed on various transport airplanes. That AD currently requires removing certain oxygen cylinder...

  4. Fiber Optic Control System Integration program: for optical flight control system development

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Seal, Daniel W.

    1994-10-01

    Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.

  5. Solar, Install, Mount, Production, Labor, Equipment Balance of Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, Russell; Al-Haddad, Tristan; Valdes, Francisco

    2015-08-27

    The GTRI led project team in partnership with the DOE, universities, and numerous industry leaders, have advanced the mission of the DOE EERE, the Solar Energy Technologies Program, and the SunShot Initiative by accelerating the research, development, and demonstration of solar PV technologies that provide Extreme Balance of Systems Cost Reductions (BOS-X). The research produced 132 design concepts, resulting in 19 invention disclosures, five patent applications, four 90% pre-commercial designs, and three licensed technologies. Technology practice rights were obtained by an industry partner, and a new solar commercial start-up company was launched in Atlanta as a result of this project.more » Innovations in residential, commercial, and utility scale balance of systems technologies were realized through an unprecedented multi-disciplinary university/industry partnership with over 50 students and 24 faculty members that produced 18 technical publications, a PhD thesis, and two commercially deployed operating prototypes. The technical effectiveness and economic feasibility of the multidisciplinary systems based approach executed by the project team was realized through 1) a comprehensive evaluation of industry, regulatory, and public stakeholder requirements; 2) numerous industry/student/faculty engagements in design studios, technical conferences, and at solar PV installation sites; 3) time and motion studies with domain experts that provided technical data and costs for each phase and component of the solar PV installation processes; 4) extensive wind tunnel and systems engineering modeling; and 5) design, construction, and demonstration of the selected technologies in the field at high profile sites in Atlanta. The SIMPLE BOS project has benefitted the public in the following ways: • Workforce development: The launch of a start-up company to commercialize the DOE funded SIMPLE BoS designs has directly created 9 new jobs in the State of Georgia. As of November

  6. The Logistics Of Installing Pacs In An Existing Medical Center

    NASA Astrophysics Data System (ADS)

    Saarinen, Allan O.; Goodsitt, Mitchell M.; Loop, John W.

    1989-05-01

    A largely overlooked issue in the Picture Archiving and Communication Systems (PACS) area is the tremendous amount of site planning activity required to install such a system in an existing medical center. Present PACS equipment requires significant hospital real estate, specialized electrical power, cabling, and environmental controls to operate properly. Marshaling the hospital resources necessary to install PACS equipment requires many different players. The site preparation costs are nontrivial and usually include a number of hidden expenses. This paper summarizes the experience of the University of Washington Department of Radiology in installing an extensive digital imaging network (DIN) and PACS throughout the Department and several clinics in the hospital. The major logistical problems encountered at the University are discussed, a few recommendations are made, and the installation costs are documented. Overall, the University's site preparation costs equalled about seven percent (7%) of the total PACS equipment expenditure at the site.

  7. Installation of Existing Lift Systems for the Handicapped on Light Rail Vehicles

    DOT National Transportation Integrated Search

    1985-05-01

    This report documents the results of a three-phase program to install an existing transit bus wheelchair lift system on a Boeing Light Rail Vehicle (LRV). Program activities included a review of lift requirements, evaluation of existing lift systems,...

  8. [Network Design of the Spaceport Command and Control System

    NASA Technical Reports Server (NTRS)

    Teijeiro, Antonio

    2017-01-01

    I helped the Launch Control System (LCS) hardware team sustain the network design of the Spaceport Command and Control System. I wrote the procedure that will be used to satisfy an official hardware test for the hardware carrying data from the Launch Vehicle. I installed hardware and updated design documents in support of the ongoing development of the Spaceport Command and Control System and applied firewall experience I gained during my spring 2017 semester to inspect and create firewall security policies as requested. Finally, I completed several online courses concerning networking fundamentals and Unix operating systems.

  9. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lowers the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, for installation on the south side of High Bay 3 in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  10. LightLeaves: computer controlled kinetic reflection hologram installation and a brief discussion of earlier work

    NASA Astrophysics Data System (ADS)

    Connors Chen, Betsy

    2013-02-01

    LightLeaves is an installation combining leaf shaped, white light reflection holograms of landscape images with a special kinetic lighting device that houses a lamp and moving leaf shaped masks. The masks are controlled by an Arduino microcontroller and servomotors that position the masks in front of the illumination source of the holograms. The work is the most recent in a long series of landscapes that combine multi-hologram installations with computer controlled devices that play with the motion of the holograms, the light, sound or other elements in the work. LightLeaves was first exhibited at the Peabody Essex Museum in Salem, Massachusetts in a show titled "Eye Spy: Playing with Perception".

  11. 78 FR 37958 - Special Conditions: Cessna Aircraft Company, Model J182T; Electronic Engine Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ...; Electronic Engine Control System Installation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... feature(s) associated with the installation of an electronic engine control. The applicable airworthiness...) Engines, Inc. SR305-230E-C1 which is a four-stroke, air cooled, diesel cycle engine that uses turbine (jet...

  12. 40 CFR 63.9307 - What are my continuous emissions monitoring system installation, operation, and maintenance...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...

  13. 40 CFR 63.9307 - What are my continuous emissions monitoring system installation, operation, and maintenance...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...

  14. 40 CFR 63.9307 - What are my continuous emissions monitoring system installation, operation, and maintenance...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...

  15. 40 CFR 63.9307 - What are my continuous emissions monitoring system installation, operation, and maintenance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...

  16. 40 CFR 63.9307 - What are my continuous emissions monitoring system installation, operation, and maintenance...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...

  17. Hot tap thermowell installation

    NASA Technical Reports Server (NTRS)

    Romero, C. A.

    1971-01-01

    System permits valve housings or other fillings to be installed in live steam lines or water pipes without interrupting their operation, thus eliminating current tapping restrictions. Two basic assemblies for installation under pressure are described.

  18. Tracking the Sun IX: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Darghouth, Naïm; Millstein, Dev

    Now in its ninth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and non-residential systems installed through year-end 2015, with preliminary trends for the first half of 2016. An accompanying LBNL report, Utility-Scale Solar, addresses trends in the utility-scale sector. This year’s report incorporates a number of important changes and enhancements from prior editions. Among those changes, LBNL has made available a public data file containing all non-confidential project-level data underlying themore » analysis in this report. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. Refer to the text box to the right for several key notes about these data. In total, data were collected and cleaned for more than 820,000 individual PV systems, representing 85% of U.S. residential and non-residential PV systems installed cumulatively through 2015 and 82% of systems installed in 2015. The analysis in this report is based on a subset of this sample, consisting of roughly 450,000 systems with available installed price data.« less

  19. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musyurka, A. V., E-mail: musyurkaav@burges.rushydro.ru

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  20. Solar space and water heating system installed at Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  1. Contribution of concentrator photovoltaic installations to grid stability and power quality

    NASA Astrophysics Data System (ADS)

    del Toro García, Xavier; Roncero-Sánchez, Pedro; Torres, Alfonso Parreño; Vázquez, Javier

    2012-10-01

    Large-scale integration of Photovoltaic (PV) generation systems, including Concentrator Photovoltaic (CPV) technologies, will require the contribution and support of these technologies to the management and stability of the grid. New regulations and grid codes for PV installations in countries such as Spain have recently included dynamic voltage control support during faults. The PV installation must stay connected to the grid during voltage dips and inject reactive power in order to enhance the stability of the system. The existing PV inverter technologies based on the Voltage-Source Converter (VSC) are in general well suited to provide advanced grid-support characteristics. Nevertheless, new advanced control schemes and monitoring techniques will be necessary to meet the most demanding requirements.

  2. Orion Service Module Umbilical (OSMU) Installation on Mobile Launcher (ML)

    NASA Image and Video Library

    2017-03-13

    Cranes and rigging are being used to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  3. A central microprocessor controlled electrical storage heating system

    NASA Astrophysics Data System (ADS)

    Horstmann, H.

    1980-12-01

    The use of a microprocessor to control the reloading of electrical storage heaters not only during the night, but whenever the electrical grid is cycled down, was tested. The test setup, used to control a total of about 10 MW installed storage heating in 96 dwellings, is described. It is demonstrated that additional consumers can be connected to the system without demand for more power stations.

  4. 20. SIMILAR TO THE SYSTEM INSTALLED IN THE GREY IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SIMILAR TO THE SYSTEM INSTALLED IN THE GREY IRON FOUNDRY, MALLEABLE WORKERS FILLED MOLDS TRAVELING ON A CONVEYOR FROM LADLES ATTACHED TO OVERHEAD RAILS WHILE THEY STOOD ON A PLATFORM MOVING AT THE SAME SPEED AS THE CONVEYOR, CA. 1950 - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  5. Installation and operation of a large scale RAPS system in Peru

    NASA Astrophysics Data System (ADS)

    Cole, J. F.

    In 1997, International Lead Zinc Research Organization Inc. (ILZRO), Solar Energy Industries Association (SEIA), and the Ministry of Energy and Mines (MEM) of Peru signed a Memorandum of Understanding to facilitate the installation of hybrid remote area power supply (RAPS) systems in the Amazon region of Peru. Many remote villages in this vast region have either no or limited electricity supplied by diesel generators running a few hours per day. Subsequently, ILZRO sponsored the engineering design of the hybrid RAPS system and SEIA supported a socio-economic study to determine the sustainability of such systems and the locations for pilot installations. In mid-1998, the Peruvian government approved the design of the system. ILZRO then began efforts to obtain governmental and inter-governmental funding to supplement its own funds to underwrite the cost of manufacture and installation of the systems in two villages in the Amazon region. Additional major funding has been received from the Global Environmental Facility (GEF) administered by the United Nations Development Program (UNDP) and from the Common Fund for Commodities (CFC). Funds have also been received from the US Department of Energy, the International Greenhouse Partnership (Australia) and the Peruvian government. The RAPS system consists of modules designed to provide 150 kW h per day of utility grade ac electricity over a 24 h period. Each module contains a diesel generator, battery bank using heavy-duty 2 V VRLA GEL batteries, a battery charger, a photovoltaic array and an ac/dc inverter. The batteries and electrical components are housed in modified shipping containers. The modules can be installed with a new generator or retrofitted to an existing generator. The charging and discharging regime of the batteries has been recommended by a study carried out by CSIRO, which has simulated the RAPS operation. The system will employ a partial-state-of-charge (PSOC) regime in order to optimize the life of the

  6. Usachev and Helms install SSRMS cables

    NASA Image and Video Library

    2001-03-30

    ISS002E5480 (30 March 2001) --- Cosmonaut Yury V. Usachev (foreground), Expedition Two mission commander, and astronaut Susan J. Helms, Expedition Two flight engineer, install cables for the Space Station Remote Manipulator System (SSRMS) or Canadarm2 control panel in preparation for the delivery of the Canadarm2 by the STS-100 crew in April. This image was recorded with a digital still camera.

  7. Installation of a second superconducting wiggler at SAGA-LS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.

    The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of themore » vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.« less

  8. 14 CFR 25.655 - Installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Installation. 25.655 Section 25.655 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.655 Installation. (a...

  9. 14 CFR 25.655 - Installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Installation. 25.655 Section 25.655 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.655 Installation. (a...

  10. 14 CFR 25.655 - Installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Installation. 25.655 Section 25.655 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.655 Installation. (a...

  11. 14 CFR 25.655 - Installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Installation. 25.655 Section 25.655 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.655 Installation. (a...

  12. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radio installations. 129.395 Section 129.395 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with overcurrent protection at the switchboard, must be provided for at least one radio installation. Additional...

  13. 46 CFR 183.354 - Battery installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Battery installations. 183.354 Section 183.354 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely...

  14. 46 CFR 183.354 - Battery installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Battery installations. 183.354 Section 183.354 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely...

  15. 46 CFR 183.354 - Battery installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Battery installations. 183.354 Section 183.354 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely...

  16. 46 CFR 183.354 - Battery installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Battery installations. 183.354 Section 183.354 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely...

  17. 46 CFR 183.354 - Battery installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Battery installations. 183.354 Section 183.354 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely...

  18. Solar domestic hot water system installed at Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This is the final technical report of the solar energy system located at LaQuinta Motor Inn, Texas City, Texas. The system was designed to supply 63 percent of the total hot water load for a new 98 unit motor inn. The solar energy system consists of a 2100 square feet Raypack liquid flat plate collector subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10 to the 8th power Btu/year. Abstracts from the site files, specification references, drawings, installation, operation, and maintenance instructions are included.

  19. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...(a)(1) through (5). (c) Provisions for future installation of electric clothes dryers. When wiring is... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All...

  20. Polarization variations in installed fibers and their influence on quantum key distribution systems.

    PubMed

    Ding, Yu-Yang; Chen, Hua; Wang, Shuang; He, De-Yong; Yin, Zhen-Qiang; Chen, Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2017-10-30

    Polarization variations in the installed fibers are complex and volatile, and would severely affect the performances of polarization-sensitive quantum key distribution (QKD) systems. Based on the recorded data about polarization variations of different installed fibers, we establish an analytical methodology to quantitatively evaluate the influence of polarization variations on polarization-sensitive QKD systems. Using the increased quantum bit error rate induced by polarization variations as a key criteria, we propose two parameters - polarization drift time and required tracking speed - to characterize polarization variations. For field buried and aerial fibers with different length, we quantitatively evaluate the influence of polarization variations, and also provide requirements and suggestions for polarization basis alignment modules of QKD systems deployed in different kind of fibers.

  1. 46 CFR 129.356 - Battery installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery installations. 129.356 Section 129.356 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.356 Battery installations. (a) Large. Each large battery-installation must be located in a locker, room, or enclosed box dedicated solely to the storage of...

  2. 46 CFR 129.356 - Battery installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Battery installations. 129.356 Section 129.356 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.356 Battery installations. (a) Large. Each large battery-installation must be located in a locker, room, or enclosed box dedicated solely to the storage of...

  3. 46 CFR 129.356 - Battery installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Battery installations. 129.356 Section 129.356 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.356 Battery installations. (a) Large. Each large battery-installation must be located in a locker, room, or enclosed box dedicated solely to the storage of...

  4. 46 CFR 129.356 - Battery installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Battery installations. 129.356 Section 129.356 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.356 Battery installations. (a) Large. Each large battery-installation must be located in a locker, room, or enclosed box dedicated solely to the storage of...

  5. 46 CFR 129.356 - Battery installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Battery installations. 129.356 Section 129.356 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.356 Battery installations. (a) Large. Each large battery-installation must be located in a locker, room, or enclosed box dedicated solely to the storage of...

  6. Some Contracting Controls at Mission and Installation Contracting Command, Fort Polk, Louisiana, Need Improvement

    DTIC Science & Technology

    2015-02-12

    erosion control. Work that did not meet PWS requirements included laying pavement stones for a monument walkway and installing a glossy marble -like... property structures, roads, training areas, training facilities, and utility infrastructure. The contract period of performance consisted of a base year

  7. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Large Tandemloc bars have been attached to the platform to keep it level during lifting and installation. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  8. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  9. Thiokol/Wasatch installation evaluation of the redesigned field joint protection system (concepts 1 and 3)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    The procedures, performance, and results obtained from the Thiokol Corporation/Wasatch Redesigned Field Joint Protection System (FJPS) Installation Evaluation are documented. The purpose of the evaluation was to demonstrate and develop the procedures required to install two different concepts (referred to as Concepts 1 and 3) of the redesigned FJPS. The processing capability of each configuration was then evaluated and compared. The FJPS is installed on redesigned solid rocket motors (RSRM) to protect the field joints from rain intrusion and to maintain the joint temperature sensor measurement between 85 and 122 F while the boosters are on the launch pad. The FJPS is being redesigned to reduce installation timelines at KSC and to simplify or eliminate installation processing problems related to the present design of an EPDM moisture seal/extruded cork combination. Several installation techniques were evaluated, and a preferred method of application was developed for each concept. The installations were performed with the test article in the vertical (flight) position. Comparative timelines between the two concepts were also developed. An additional evaluation of the Concept 3 configuration was performed with the test article in the horizontal position, to simulate an overhead installation on a technical evaluation motor (TEM).

  10. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  11. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  12. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  13. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  14. 46 CFR 111.33-5 - Installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...

  15. Physical installation of Pelletron and electron cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure areamore » and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.« less

  16. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  17. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  18. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  19. Improving Control System Cyber-State Awareness using Known Secure Sensor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Milos Manic; Miles McQueen

    Abstract—This paper presents design and simulation of a low cost and low false alarm rate method for improved cyber-state awareness of critical control systems - the Known Secure Sensor Measurements (KSSM) method. The KSSM concept relies on physical measurements to detect malicious falsification of the control systems state. The KSSM method can be incrementally integrated with already installed control systems for enhanced resilience. This paper reviews the previously developed theoretical KSSM concept and then describes a simulation of the KSSM system. A simulated control system network is integrated with the KSSM components. The effectiveness of detection of various intrusion scenariosmore » is demonstrated on several control system network topologies.« less

  20. Installation, maintenance and operating manual for the Lucas-type fuel injection system of the 3 B rotary engine

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The installation procedure, maintenance, adjustment and operation of a Lucas type fuel injection system for 13B rotary racing engine is outlined. Components of the fuel injection system and installation procedure and notes are described. Maintenance, adjustment, and operation are discussed.

  1. AMS Blanket and TTCS Wedge Install during EVA 32

    NASA Image and Video Library

    2015-10-28

    Close-up view of the Alpha Magnetic Spectrometer-02 (AMS-02), in the area where the Tracker Thermal Control System (TTCS) wedge will be installed. Image was taken by Extravehicular Crewmember 2 (EV2) during Extravehicular Activity 32 (EVA 32) and released on social media.

  2. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Specifications for the Design... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for... Coast Guard for clarity. 1Purpose The purpose of these Specifications is to provide specific design...

  3. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Margolis, Robert

    2017-04-01

    The vast majority of U.S. residential solar PV installers are small local-scale companies, however the industry is relatively concentrated in a few large national-scale installers. We develop a novel approach using solar PV quote data to study the price behavior of large solar PV installers in the United States. Through a paired differences approach, we find that large installer quotes are about higher, on average, than non-large installer quotes made to the same customer. The difference is statistically significant and robust after controlling for factors such as system size, equipment quality, and time effects. The results suggest that low pricesmore » are not the primary value proposition of large installer systems. We explore several hypotheses for this finding, including that large installers are able to exercise some market power and/or earn returns from reputations.« less

  4. Digital control system for space structure dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1985-01-01

    A digital controller was developed using an SKD-51 System Design Kit, which incorporates an 8031 microcontroller. The necessary interfaces were installed in the wire wrap area of the SKD-51 and a pulse width modulator was developed to drive the coil of the actuator. Also, control equations were developed, using floating-point arithmetic. The design of the digital control system is emphasized, and it is shown that, provided certain rules are followed, an adequate design can be achieved. It is recommended that the so-called w-plane design method be used, and that the time elapsed before output of the up-dated coil-force signal be kept as small as possible. However, the cycle time for the controller should be watched carefully, because very small values for this time can lead to digital noise.

  5. 40 CFR 265.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or sacrificial anodes); and (C) Electrical isolation devices such as insulating joints and flanges... stress due to settlement, vibration, expansion or contraction. Note: The piping system installation...

  6. 40 CFR 265.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or sacrificial anodes); and (C) Electrical isolation devices such as insulating joints and flanges... stress due to settlement, vibration, expansion or contraction. Note: The piping system installation...

  7. 40 CFR 265.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or sacrificial anodes); and (C) Electrical isolation devices such as insulating joints and flanges... stress due to settlement, vibration, expansion or contraction. Note: The piping system installation...

  8. 40 CFR 265.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or sacrificial anodes); and (C) Electrical isolation devices such as insulating joints and flanges... stress due to settlement, vibration, expansion or contraction. Note: The piping system installation...

  9. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenkman, Benjamin L.

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  10. Electron beam deflection control system of a welding and surface modification installation

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  11. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed at the Huntsville Senior Citizen Center is described. Detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are presented.

  12. A Framework to Survey the Energy Efficiency of Installed Motor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Prakash; Hasanbeigi, Ali; McKane, Aimee

    2013-08-01

    While motors are ubiquitous throughout the globe, there is insufficient data to properly assess their level of energy efficiency across regional boundaries. Furthermore, many of the existing data sets focus on motor efficiency and neglect the connected drive and system. Without a comprehensive survey of the installed motor system base, a baseline energy efficiency of a country or region’s motor systems cannot be developed. The lack of data impedes government agencies, utilities, manufacturers, distributers, and energy managers when identifying where to invest resources to capture potential energy savings, creating programs aimed at reducing electrical energy consumption, or quantifying the impactsmore » of such programs. This paper will outline a data collection framework for use when conducting a survey under a variety of execution models to characterize motor system energy efficiency within a country or region. The framework is intended to standardize the data collected ensuring consistency across independently conducted surveys. Consistency allows for the surveys to be leveraged against each other enabling comparisons to motor system energy efficiencies from other regions. In creating the framework, an analysis of various motor driven systems, including compressed air, pumping, and fan systems, was conducted and relevant parameters characterizing the efficiency of these systems were identified. A database using the framework will enable policymakers and industry to better assess the improvement potential of their installed motor system base particularly with respect to other regions, assisting in efforts to promote improvements to the energy efficiency of motor driven systems.« less

  13. Intelligence Control System for Landfills Based on Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  14. Heating equipment installation system

    DOEpatents

    Meuschke, Robert E.; Pomaibo, Paul P.

    1991-01-01

    A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).

  15. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...

  16. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...

  17. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...

  18. 46 CFR 129.395 - Radio installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.395 Radio installations. A separate circuit, with... radios, if installed, may be powered from a local lighting power source, such as the pilothouse lighting panel, provided each radio power source has a separate overcurrent protection device. ...

  19. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1982-01-01

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.

  20. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  1. Solar heating and hot water system installed at Cherry Hill, New Jersey

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  2. 47 CFR 80.1083 - Ship radio installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship radio installations. 80.1083 Section 80... for Ship Stations § 80.1083 Ship radio installations. (a) Ships must be provided with radio... controls for operating the radio installation; and (5) Be clearly marked with the call sign, the ship...

  3. Solar heating and hot water system installed at Listerhill, Alabama

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  4. Evaluation of Installation Time for SMASHmount by SMASHsolar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Department of Energy SunShot Incubator program provides early-stage assistance to help startup companies cross technological barriers to commercialization while encouraging private sector investment. The SunShot Incubator program aims to shorten the time it takes for a young business or company to develop an innovative product concept and make it commercially available, which includes product prototyping, deployment, and, potentially, manufacturing. SMASHsolar was selected as an Incubator awardee to develop a simple, snap-together, module-integrated photovoltaic (PV) mounting system in attempts to dramatically reduce the time, effort and skill needed to install rooftop solar. In support of this award, the National Renewablemore » Energy Laboratory worked with SMASHsolar to develop a procedure for evaluating the installation time required for the SMASHmount system vs. widely-available rail systems. Amongst several installations, NREL measured the following installation times, subject to the qualifications and conditions described later in this report. NREL found that the SMASHsolar SMASHmount system was installed between 15% and 37% faster than tested competing systems after one or two installations of the system.« less

  5. Installation package maxi-therm S-101 heating module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The installation, operation and maintenance of the Maxi-Therm S-101 Thermosypnon Heating Module is described. The Maxi-Therm S-101 is a packaged unit, complete with air filter, blower, electrical controls, and a thermosyphon liquid to air heat exchanger. It is intended for use in residential solar heating systems and can utilize off-peak electrical power.

  6. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lowers the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, into High Bay 3 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. In view below are several of the previously installed levels of platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  7. Programmable immersive peripheral environmental system (PIPES): a prototype control system for environmental feedback devices

    NASA Astrophysics Data System (ADS)

    Frend, Chauncey; Boyles, Michael

    2015-03-01

    This paper describes an environmental feedback device (EFD) control system aimed at simplifying the VR development cycle. Programmable Immersive Peripheral Environmental System (PIPES) affords VR developers a custom approach to programming and controlling EFD behaviors while relaxing the required knowledge and expertise of electronic systems. PIPES has been implemented for the Unity engine and features EFD control using the Arduino integrated development environment. PIPES was installed and tested on two VR systems, a large format CAVE system and an Oculus Rift HMD system. A photocell based end-to-end latency experiment was conducted to measure latency within the system. This work extends previously unpublished prototypes of a similar design. Development and experiments described in this paper are part of the VR community goal to understand and apply environment effects to VEs that ultimately add to users' perceived presence.

  8. 46 CFR 120.354 - Battery installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery installations. 120.354 Section 120.354 Shipping... and Distribution Systems § 120.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely dedicated to the storage of batteries...

  9. 46 CFR 120.354 - Battery installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Battery installations. 120.354 Section 120.354 Shipping... and Distribution Systems § 120.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely dedicated to the storage of batteries...

  10. 46 CFR 120.354 - Battery installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Battery installations. 120.354 Section 120.354 Shipping... and Distribution Systems § 120.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely dedicated to the storage of batteries...

  11. 46 CFR 120.354 - Battery installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Battery installations. 120.354 Section 120.354 Shipping... and Distribution Systems § 120.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely dedicated to the storage of batteries...

  12. 46 CFR 120.354 - Battery installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Battery installations. 120.354 Section 120.354 Shipping... and Distribution Systems § 120.354 Battery installations. (a) Large batteries. Each large battery installation must be located in a locker, room or enclosed box solely dedicated to the storage of batteries...

  13. ICPSU Install at Mobile Launcher

    NASA Image and Video Library

    2018-03-14

    A colorful sunrise serves as the backdrop for the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. Several launch umbilicals have been installed on the ML tower. Exploration Ground Systems is overseeing installation of umbilicals and launch accessories on the ML to prepare for the first integrated test flight of the Orion spacecraft on the agency's Space Launch System rocket on Exploration Mission-1.

  14. Instructor's Manual for Teaching and Practical Courses on Design of Systems and Sizing, Installation and Operation of Systems for Solar Heating and Cooling of Residential Buildings.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    Presented are guidelines for instructors of two courses in the design, installation, and operation of solar heating and cooling systems. These courses are: (1) Design of Systems, and (2) Sizing, Installation, and Operation of Systems. Limited in scope to active solar systems for residential buildings, these courses place primary emphasis upon…

  15. NASIS data base management system: IBM 360 TSS implementation. Volume 1: Installation standards

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The installation standards for the (NASIS) data base management system are presented. The standard approach to preparing systems documentation and the program design and coding rules and conventions are outlines. Included are instructions for preparing all major specifications and suggestions for improving the quality and efficency of the programming task.

  16. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided...

  17. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided...

  18. 46 CFR 183.392 - Radiotelephone installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.392 Radiotelephone installations. A separate circuit, with overcurrent protection at the main distribution panel, must be provided...

  19. Solar heating and domestic hot water system installed at North Dallas High School

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at the North Dallas High School, Dallas, Texas is discussed. The system is designed as a retrofit in a three story with basement, concrete frame high school building. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are included.

  20. Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

    2010-03-09

    This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  1. Optical Closed-Loop Propulsion Control System Development

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1998-01-01

    The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.

  2. 24 CFR 3286.111 - Installer certification of installation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufactured home has been installed in accordance with: (i) An installation design and instructions that have... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME INSTALLATION PROGRAM Certification of Installation in HUD...; or (ii) An installation design and instructions that have been prepared and certified by a...

  3. 40 CFR 90.128 - Installation instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an engine will be installed in its certified configuration. In particular, describe the steps needed... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Standards and Certification Provisions § 90.128 Installation instructions. (a) If you sell an engine for...

  4. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  5. Advanced mooring method for installation of Enserch Garden Banks 388 FPF mooring legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honig, H.J.; Koolwijk, W.; Scovell, D.C.

    1995-12-31

    In the fall of 1994 HeereMac v.o.f installed the 12 mooring legs for Enserch Exploration`s Floating Production Facility in Garden Banks Block 388 in the Gulf of Mexico with the SSCV Balder. The installation of the catenary mooring system, each leg comprising several varying sections of spiral strand wire and chain, required sufficient handling and maneuverability power of the vessel, while enough holding capacity and stiffness of the system had to be provided. The most important aspects of the actual installation of the mooring legs are explained, for example, the use of a purpose built tipping winch. The method selectedmore » by HeereMac for station-keeping the Balder was to use a minimum number of anchor lines in combination with a tug, in order to maintain position and at the same time have an easy and controlled method of maneuvering to a new position. The method of station-keeping the SSCV in this way is part of a development towards full position control with a spread of tugs. In this paper the station-keeping system is described and the offshore experiences with the system are discussed. Some future developments with respect to tug-assisted station-keeping systems are highlighted.« less

  6. Installation for the catalytic afterburning of exhaust gases in the exhaust gas system of an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, K.

    1974-12-06

    An installation is described for the catalytic afterburning of exhaust gases in an internal combustion engine. The system includes a line by-passing the installation for the catalytic afterburning, in which is arranged a throttle valve actuated in dependence on the temperature of the installation. The throttle valve also can be actuated independently of the temperature of the installation, but in dependence of the oil pressure which continues to exist for a short period of time after turning off the engine.

  7. Solar heating and hot water system installed at Alderson Broaddus College, Philippi, West Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data needed necessary to evaluate the design and operation of a solar energy heating and hot water system installed in a commercial application are presented. The information includes system descriptions, acceptance test data, schematics, as built drawing, problems encountered, all solutions and photographs of the system at various stages of completion.

  8. Installation of PMV Operation Program in DDC Controller and Air Conditioning Control Using PMV Directly as Set Point

    NASA Astrophysics Data System (ADS)

    Haramoto, Ken-Ichi

    In general, air conditioning control in a building is operated mainly by indoor air temperature control. Although the operators of the machine in the building accepted a claim for indoor air temperature presented by the building inhabitants, the indoor conditions have been often too cool or warm. Therefore, in an attempt to create better thermal environments, the author paid attention to the PMV that is a thermal comfort index. And then, the possibility of air conditioning control using the PMV directly as the set point was verified by employing actual equipment in an air conditioning testing room and an office building. Prior to the execution of this control, the operation program of the PMV was installed in a DDC controller for the air conditioning control. And information from indoor sensors and so on was inputted to the controller, and the computed PMV was used as the feedback variable.

  9. Development of a microprocessor controller for stand-alone photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

  10. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a construction worker assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  11. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, construction workers assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  12. 14 CFR 29.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Equipment § 29.1353 Electrical equipment and installations. (a) Electrical equipment, controls, and wiring... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical equipment and installations. 29... installations has shown that maintaining safe cell temperatures and pressures presents no problem. (3) No...

  13. Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo

    2016-08-01

    The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).

  14. HTS Transmission Cable System for installation in the Long Island Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Frank; Durand, Fabien; Maguire, James

    2015-10-05

    Department of Energy (DOE) Award DE-FC26-07NT43240 was issued on October 1, 2007. Referred to as LIPA2, the principal objectives of the project were to develop key components required to deploy and demonstrate second-generation (2G) high temperature superconductor (HTS) cables in a 600 meter (2000 feet) underground segment of a 138kV three-phase transmission circuit of the Long Island Power Authority (LIPA) power grid. A previous effort under DOE Award DE-FC36-03GO13032 (referred to as LIPA1) resulted in installation (and subsequent successful operation) of first-generation (1G) HTS cables at the LIPA site. As with LIPA1, American Superconductor (AMSC) led the effort for LIPA2more » and was responsible for overall management of the project and producing sufficient 2G wire to fabricate the required cable. Nexans' tasks included design/manufacture/installation of the cable, joint (splice), cable terminations and field repairable cryostat; while work by Air Liquide involved engineering and installation support for the refrigeration system modifications.« less

  15. Anesthesia information management systems: a review of functionality and installation considerations.

    PubMed

    Ehrenfeld, Jesse M; Rehman, Mohamed A

    2011-02-01

    The functionality and rate of implementation of Anesthesia Information Management Systems (AIMS) has markedly risen over the past decade. These systems have now become much more than the generic automated record keepers, originally proposed and developed in the 1980s. AIMS have now become complex integrated systems, which have been shown to improve patient care and, in some cases, the financial performance of a department. Although the underlying technology has improved greatly over the past 5 years, the process of selecting and completing an AIMS installation still presents a number of challenges, and must be approached carefully in order to maximize the benefits provided by these systems.

  16. Application-Program-Installer Builder

    NASA Technical Reports Server (NTRS)

    Wolgast, Paul; Demore, Martha; Lowik, Paul

    2007-01-01

    A computer program builds application programming interfaces (APIs) and related software components for installing and uninstalling application programs in any of a variety of computers and operating systems that support the Java programming language in its binary form. This program is partly similar in function to commercial (e.g., Install-Shield) software. This program is intended to enable satisfaction of a quasi-industry-standard set of requirements for a set of APIs that would enable such installation and uninstallation and that would avoid the pitfalls that are commonly encountered during installation of software. The requirements include the following: 1) Properly detecting prerequisites to an application program before performing the installation; 2) Properly registering component requirements; 3) Correctly measuring the required hard-disk space, including accounting for prerequisite components that have already been installed; and 4) Correctly uninstalling an application program. Correct uninstallation includes (1) detecting whether any component of the program to be removed is required by another program, (2) not removing that component, and (3) deleting references to requirements of the to-be-removed program for components of other programs so that those components can be properly removed at a later time.

  17. 40 CFR 63.7188 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Semiconductor Manufacturing Compliance Requirements § 63.7188 What are my monitoring installation, operation... emissions of your semiconductor process vent through a closed vent system to a control device, you must...

  18. 40 CFR 63.7188 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Semiconductor Manufacturing Compliance Requirements § 63.7188 What are my monitoring installation, operation... emissions of your semiconductor process vent through a closed vent system to a control device, you must...

  19. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Operation and installation. 76.33-20 Section 76.33-20... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so... audible alarm in the engine room. For installations contracted for on or after January 1, 1962, where...

  20. A hybrid active/passive exhaust noise control system for locomotives.

    PubMed

    Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal.

  1. NASIS data base management system - IBM 360/370 OS MVT implementation. 1: Installation standards

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The installation standards for the NASA Aerospace Safety Information System (NASIS) data base management system are presented. The standard approach to preparing systems documentation and the program design and coding rules and conventions are outlined. Included are instructions for preparing all major specifications and suggestions for improving the quality and efficiency of the programming task.

  2. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Atlanta, Georgia is described. This system provides for 81 percent of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drain whenever the collector plates approach freezing or when power is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric Domestic Hot Water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting.

  3. Evaluation of a new monochloramine generation system for controlling Legionella in building hot water systems.

    PubMed

    Duda, Scott; Kandiah, Sheena; Stout, Janet E; Baron, Julianne L; Yassin, Mohamed; Fabrizio, Marie; Ferrelli, Juliet; Hariri, Rahman; Wagener, Marilyn M; Goepfert, John; Bond, James; Hannigan, Joseph; Rogers, Denzil

    2014-11-01

    To evaluate the efficacy of a new monochloramine generation system for control of Legionella in a hospital hot water distribution system. A 495-bed tertiary care hospital in Pittsburgh, Pennsylvania. The hospital has 12 floors covering approximately 78,000 m(2). The hospital hot water system was monitored for a total of 29 months, including a 5-month baseline sampling period prior to installation of the monochloramine system and 24 months of surveillance after system installation (postdisinfection period). Water samples were collected for microbiological analysis (Legionella species, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter species, nitrifying bacteria, heterotrophic plate count [HPC] bacteria, and nontuberculous mycobacteria). Chemical parameters monitored during the investigation included monochloramine, chlorine (free and total), nitrate, nitrite, total ammonia, copper, silver, lead, and pH. A significant reduction in Legionella distal site positivity was observed between the pre- and postdisinfection periods, with positivity decreasing from an average of 53% (baseline) to an average of 9% after monochloramine application (P<0.5]). Although geometric mean HPC concentrations decreased by approximately 2 log colony-forming units per milliliter during monochloramine treatment, we did not observe significant changes in other microbial populations. This is the first evaluation in the United States of a commercially available monochloramine system installed on a hospital hot water system for Legionella disinfection, and it demonstrated a significant reduction in Legionella colonization. Significant increases in microbial populations or other negative effects previously associated with monochloramine use in large municipal cold water systems were not observed.

  4. Development of Arduino based wireless control system

    NASA Astrophysics Data System (ADS)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  5. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  6. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  7. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  8. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  9. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  10. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  11. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the south wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  12. ICPSU Install at Mobile Launcher

    NASA Image and Video Library

    2018-03-14

    A sliver of the Moon is visible just before sunrise at NASA's Kennedy Space Center in Florida. In view is one of the steel structures of the mobile launcher (ML). Several launch umbilicals have been installed on the ML tower. Exploration Ground Systems is overseeing installation of umbilicals and launch accessories on the ML to prepare for the first integrated test flight of the Orion spacecraft on the agency's Space Launch System rocket on Exploration Mission-1.

  13. Identifying the best locations to install flow control devices in sewer networks to enable in-sewer storage

    NASA Astrophysics Data System (ADS)

    Leitão, J. P.; Carbajal, J. P.; Rieckermann, J.; Simões, N. E.; Sá Marques, A.; de Sousa, L. M.

    2018-01-01

    The activation of available in-sewer storage volume has been suggested as a low-cost flood and combined sewer overflow mitigation measure. However, it is currently unknown what the attributes for suitable objective functions to identify the best location for flow control devices are and the impact of those attributes on the results. In this study, we present a novel location model and efficient algorithm to identify the best location(s) to install flow limiters. The model is a screening tool that does not require hydraulic simulations but rather considers steady state instead of simplistic static flow conditions. It also maximises in-sewer storage according to different reward functions that also considers the potential impact of flow control device failure. We demonstrate its usefulness on two real sewer networks, for which an in-sewer storage potential of approximately 2,000 m3 and 500 m3 was estimated with five flow control devices installed.

  14. Launch Control System Software Development System Automation Testing

    NASA Technical Reports Server (NTRS)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This system requires high quality testing that will measure and test the capabilities of the system. For the past two years, the Exploration and Operations Division at Kennedy Space Center (KSC) has assigned a group including interns and full-time engineers to develop automated tests to save the project time and money. The team worked on automating the testing process for the SCCS GUI that would use streamed simulated data from the testing servers to produce data, plots, statuses, etc. to the GUI. The software used to develop automated tests included an automated testing framework and an automation library. The automated testing framework has a tabular-style syntax, which means the functionality of a line of code must have the appropriate number of tabs for the line to function as intended. The header section contains either paths to custom resources or the names of libraries being used. The automation library contains functionality to automate anything that appears on a desired screen with the use of image recognition software to detect and control GUI components. The data section contains any data values strictly created for the current testing file. The body section holds the tests that are being run. The function section can include any number of functions that may be used by the current testing file or any other file that resources it. The resources and body section are required for all test files; the data and function sections can be left empty if the data values and functions being used are from a resourced library or another file. To help equip the automation team with better tools, the Project Lead of the Automated Testing Team, Jason Kapusta, assigned the task to install and train an optical character recognition (OCR

  15. Coal conversion systems design and process modeling. Volume 2: Installation of MPPM on the Signal 9 computer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Relevant differences between the MPPM resident IBM 370computer and the NASA Sigma 9 computer are described as well as the MPPM system itself and its development. Problems encountered and solutions used to overcome these difficulties during installation of the MPPM system at MSFC are discussed. Remaining work on the installation effort is summarized. The relevant hardware features incorporated in the program are described and their implications on the transportability of the MPPM source code are examined.

  16. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    NASA Technical Reports Server (NTRS)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  17. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and...

  18. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and...

  19. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and...

  20. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and...

  1. Experimental Verification of Pneumatic Transport System for the Rapid Excavation of Tunnels: Part 1. Installation of Test Facility

    DOT National Transportation Integrated Search

    1978-03-01

    This report deals with the selection of a test site, the design of a test installation, equipment selection, the installation and start-up of a pneumatic pipeline system for the transportation of tunnel muck. A review of prior pneumatic applications ...

  2. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVAL OF STATE UNDERGROUND STORAGE TANK PROGRAMS Criteria for No-Less-Stringent § 281.30 New UST...

  3. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVAL OF STATE UNDERGROUND STORAGE TANK PROGRAMS Criteria for No-Less-Stringent § 281.30 New UST...

  4. Testing an Open Source installation and server provisioning tool for the INFN CNAF Tierl Storage system

    NASA Astrophysics Data System (ADS)

    Pezzi, M.; Favaro, M.; Gregori, D.; Ricci, P. P.; Sapunenko, V.

    2014-06-01

    In large computing centers, such as the INFN CNAF Tier1 [1], is essential to be able to configure all the machines, depending on use, in an automated way. For several years at the Tier1 has been used Quattor[2], a server provisioning tool, which is currently used in production. Nevertheless we have recently started a comparison study involving other tools able to provide specific server installation and configuration features and also offer a proper full customizable solution as an alternative to Quattor. Our choice at the moment fell on integration between two tools: Cobbler [3] for the installation phase and Puppet [4] for the server provisioning and management operation. The tool should provide the following properties in order to replicate and gradually improve the current system features: implement a system check for storage specific constraints such as kernel modules black list at boot time to avoid undesired SAN (Storage Area Network) access during disk partitioning; a simple and effective mechanism for kernel upgrade and downgrade; the ability of setting package provider using yum, rpm or apt; easy to use Virtual Machine installation support including bonding and specific Ethernet configuration; scalability for managing thousands of nodes and parallel installations. This paper describes the results of the comparison and the tests carried out to verify the requirements and the new system suitability in the INFN-T1 environment.

  5. 24 CFR 3280.709 - Installation of appliances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... systems designed only to accept external cooling (i.e., self contained air conditioning systems, etc.) (7) The installation of a self contained air conditioner comfort cooling appliance shall meet the... fireplace or fireplace stove, air intake assembly, hearth extension and the chimney shall be installed in...

  6. EVA 3 - Linnehan and Grunsfeld install new PCU

    NASA Image and Video Library

    2002-03-06

    STS109-E-5660 (6 March 2002) --- Astronauts John M. Grunsfeld (top) and Richard M. Linnehan participate in a 6 hour, 48 minute space walk designed to install a new Power Control Unit (PCU) on the Hubble Space Telescope (HST). The two went on to replace the original unit launched with the telescope in April 1990. Grunsfeld is on the end of Columbia's Remote Manipulator System (RMS) robotic arm, controlled from inside the crew cabin by astronaut Nancy J. Currie. The image was recorded with a digital still camera.

  7. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  8. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  9. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  10. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  11. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    NASA Astrophysics Data System (ADS)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  12. Seismic detection system for blocking the dangerous installations in case of strong earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Corneliu Rau, Dan; Ionescu, Constantin; Grigore, Adrian

    2010-05-01

    During the last 70 years, four major earthquakes occurred in the Vrancea seismic area affected Romania territory: 10 November 1940 (Mw = 7.7, 160 km depth), 4 March 1977 (Mw = 7.5, 100 km depth), 30 August 1986 (Mw = 7.2, 140 km depth), 30 May 30 1990 (Mw = 6.9, 80 km depth). Romania is a European country with significant seismicity. So far, the 1977 event had the most catastrophic consequences: about 33,000 residences were totally destroyed or partially deteriorated, 1,571 people dies and another 11,300 were injured. Moreover, 61 natural-gas pipelines were damaged, causing destructive fires. The total losses were estimated at 3 mld. U.S. dollars. Recent studies clearly pointed out that in case of a strong earthquake occurrence in Vrancea region (Ms above 7), the biggest danger regarding the major cities comes from explosions and fires started immediately after the earthquake, and the most important factor of risk are the natural gas distribution networks. The damages are strongly amplified by the fact that, simultaneously, water and electric energy lines distributions are damaged too, making impossible the efficient firemen intervention, for localizing the fire sources. Presently, in Romania safe and efficient accepted solutions for improving the buildings securing, using antiseismic protection of the dangerous installations as natural-gas pipelines are not available. Therefore, we propose a seismic detection system based on a seismically actuated gas shut-off valve, which is automatically shut down in case of a seismic shock. The device is intended to be installed in the natural-gas supply line outside of buildings, as well at each user (group of users), inside of the buildings. The seismic detection system for blocking the dangerous installations in case of a strong earthquake occurrence was designed on the basis of 12 criteria enforced by the US regulations for seismic valves, aimed to eliminate the critical situations as fluids and under pressure gases leakage

  13. Alarm system for a nuclear control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  14. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  15. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  16. Experimental investigation of an accelerometer controlled automatic braking system

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1972-01-01

    An investigation was made to determine the feasibility of an automatic braking system for arresting the motion of an airplane by sensing and controlling braked wheel decelerations. The system was tested on a rotating drum dynamometer by using an automotive tire, wheel, and disk-brake assembly under conditions which included two tire loadings, wet and dry surfaces, and a range of ground speeds up to 70 knots. The controlling parameters were the rates at which brake pressure was applied and released and the Command Deceleration Level which governed the wheel deceleration by controlling the brake operation. Limited tests were also made with the automatic braking system installed on a ground vehicle in an effort to provide a more realistic proof of its feasibility. The results of this investigation indicate that a braking system which utilizes wheel decelerations as the control variable to restrict tire slip is feasible and capable of adapting to rapidly changing surface conditions.

  17. Tailoring the response of Autonomous Reactivity Control (ARC) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qvist, Staffan A.; Hellesen, Carl; Gradecka, Malwina

    The Autonomous Reactivity Control (ARC) system was developed to ensure inherent safety of Generation IV reactors while having a minimal impact on reactor performance and economic viability. In this study we present the transient response of fast reactor cores to postulated accident scenarios with and without ARC systems installed. Using a combination of analytical methods and numerical simulation, the principles of ARC system design that assure stability and avoids oscillatory behavior have been identified. A comprehensive transient analysis study for ARC-equipped cores, including a series of Unprotected Loss of Flow (ULOF) and Unprotected Loss of Heat Sink (ULOHS) simulations, weremore » performed for Argonne National Laboratory (ANL) Advanced Burner Reactor (ABR) designs. With carefully designed ARC-systems installed in the fuel assemblies, the cores exhibit a smooth non-oscillatory transition to stabilization at acceptable temperatures following all postulated transients. To avoid oscillations in power and temperature, the reactivity introduced per degree of temperature change in the ARC system needs to be kept below a certain threshold the value of which is system dependent, the temperature span of actuation needs to be as large as possible.« less

  18. Some Problems Involved in the Installation of Advanced Information Systems in Developing Countries.

    ERIC Educational Resources Information Center

    Robredo, Jaime; And Others

    For over 30 years the installation of information systems has been promoted in developing nations by international organizations and international consultancies in order to transfer technical expertise from the industrialized countries to the Third World. While some have questioned the value of indiscriminately transferring scientific and…

  19. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  20. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  1. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  2. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  3. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  4. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  5. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  6. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  7. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  8. Installation of seafloor cabled seismic and tsunami observation system developed by using ICT

    NASA Astrophysics Data System (ADS)

    Shinohara, M.

    2016-12-01

    A seafloor cabled system is useful for study of earth science and disaster mitigation, because real-time and long-term observation can be performed. Therefore seafloor cabled systems with seismometers and tsunami-meters have been used over the past 25 years around Japan. Because increase of a number of sensors is needed, a new system with low costs for production, deployment and operation is expected. In addition, the new system should have sufficient for flexibility of measurements after installation. To achieve these demands, we started development of a new system using Information and Communication Technologies (ICT) for data transmission and system control. The new system can be made compact since software processes various measurements. Reliability of the system is kept by using redundant system which is easily constructed using the ICT. The first system based on this concept was developed as Ocean Bottom Cabled Seismometer (OBCS) system and deployed in Japan Sea. Development of the second system started from 2012. The Ocean Bottom Cabled Seismometer and tsunami-meter (OBCST) system has both seismometers and tsunami-meters. Each observation node has an CPU and FPGAs. The OBCST system uses standard TCP/IP protocol with a speed of 1 Gbps for data transmission, system control and monitoring. IEEE-1588 (PTP) is implemented to synchronize a real-time clock, and accuracy is less than 300 ns. We developed two types of observation node. One equips a pressure gauge as tsunami sensor, and another has an external port for additional observation sensor using PoE. Deployment of the OBCST system was carried out in September 2015 by using a commercial telecommunication cable ship. The noise levels at the OBCST system are comparable to those at the existing cabled system off Sanriku. It is found that the noise levels at the OBCST system are low at frequencies greater than 2 Hz and smaller than 0.1 Hz. This level of ambient seismic noise is close to a typical system noise

  9. An Open-source Meteorological Operational System and its Installation in Portuguese- speaking Countries

    NASA Astrophysics Data System (ADS)

    Almeida, W. G.; Ferreira, A. L.; Mendes, M. V.; Ribeiro, A.; Yoksas, T.

    2007-05-01

    CPTEC, a division of Brazil’s INPE, has been using several open-source software packages for a variety of tasks in its Data Division. Among these tools are ones traditionally used in research and educational communities such as GrADs (Grid Analysis and Display System from the Center for Ocean-Land-Atmosphere Studies (COLA)), the Local Data Manager (LDM) and GEMPAK (from Unidata), andl operational tools such the Automatic File Distributor (AFD) that are popular among National Meteorological Services. In addition, some tools developed locally at CPTEC are also being made available as open-source packages. One package is being used to manage the data from Automatic Weather Stations that INPE operates. This system uses only open- source tools such as MySQL database, PERL scripts and Java programs for web access, and Unidata’s Internet Data Distribution (IDD) system and AFD for data delivery. All of these packages are get bundled into a low-cost and easy to install and package called the Meteorological Data Operational System. Recently, in a cooperation with the SICLIMAD project, this system has been modified for use by Portuguese- speaking countries in Africa to manage data from many Automatic Weather Stations that are being installed in these countries under SICLIMAD sponsorship. In this presentation we describe the tools included-in and and architecture-of the Meteorological Data Operational System.

  10. 46 CFR 76.27-15 - Operation and installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Operation and installation. 76.27-15 Section 76.27-15... EQUIPMENT Electric Fire Detecting System, Details § 76.27-15 Operation and installation. (a) The system... system. (e) All wiring and electrical circuits and equipment shall meet the applicable requirements of...

  11. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueiredo, J., E-mail: joao.figueiredo@jet.efda.org; Mailloux, J.; Kirov, K.

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguidesmore » facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.« less

  12. An arc control and protection system for the JET lower hybrid antenna based on an imaging system.

    PubMed

    Figueiredo, J; Mailloux, J; Kirov, K; Kinna, D; Stamp, M; Devaux, S; Arnoux, G; Edwards, J S; Stephen, A V; McCullen, P; Hogben, C

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  13. MARES Payload Installation

    NASA Image and Video Library

    2010-09-16

    ISS024-E-014952 (16 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.

  14. MARES Payload Installation

    NASA Image and Video Library

    2010-09-16

    ISS024-E-014934 (16 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.

  15. MARES Payload Installation

    NASA Image and Video Library

    2010-09-16

    ISS024-E-014956 (16 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.

  16. MARES Payload Installation

    NASA Image and Video Library

    2010-09-16

    ISS024-E-014930 (16 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.

  17. MARES Payload Installation

    NASA Image and Video Library

    2010-09-16

    ISS024-E-014981 (17 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.

  18. MARES Payload Installation

    NASA Image and Video Library

    2010-09-16

    ISS024-E-014973 (17 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.

  19. MARES Payload Installation

    NASA Image and Video Library

    2010-09-16

    ISS024-E-014979 (17 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.

  20. Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-16

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  1. 46 CFR 76.35-15 - Operation and installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Operation and installation. 76.35-15 Section 76.35-15... EQUIPMENT Manual Alarm System, Details § 76.35-15 Operation and installation. (a) The system shall be so... system. (d) All wiring and electrical circuits and equipment shall meet the applicable requirements of...

  2. 46 CFR 76.30-15 - Operation and installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Operation and installation. 76.30-15 Section 76.30-15... EQUIPMENT Pneumatic Fire Detecting System, Details § 76.30-15 Operation and installation. (a) The system... that it may be incorporated with the manual alarm system. (e) All wiring and electrical circuits and...

  3. 48 CFR 1850.104-70 - Lead NASA installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Lead NASA installation... Actions 1850.104-70 Lead NASA installation. (a) Contractors applying for indemnification shall determine which NASA installation has the highest dollar amount of contracts for which indemnification is...

  4. 48 CFR 1850.104-70 - Lead NASA installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Lead NASA installation... Actions 1850.104-70 Lead NASA installation. (a) Contractors applying for indemnification shall determine which NASA installation has the highest dollar amount of contracts for which indemnification is...

  5. 48 CFR 1850.104-70 - Lead NASA installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Lead NASA installation... Actions 1850.104-70 Lead NASA installation. (a) Contractors applying for indemnification shall determine which NASA installation has the highest dollar amount of contracts for which indemnification is...

  6. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  7. Invasive Species Guidebook for Department of Defense Installations in the Chesapeake Bay Watershed: Identification, Control, and Restoration

    DTIC Science & Technology

    2007-11-01

    INSTALLATIONS IN THE CHESAPEAKE BAY WATERSHED IDENTIFICATION AND CONTROL METHODS Cogongrass ( Imperata cylindrica ) Description & Biology – A large...Crown vetch Coronilla varia MD, VA 14 Leafy spurge Euphorbia esula VA 15 Ground ivy Glechoma hederacea DC, MD, PA, VA, WV 17 Cogongrass Imperata

  8. Flight experience with a fail-operational digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    Brown, S. R.; Szalai, K. J.

    1977-01-01

    The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

  9. Instrumentation and control system architecture of ECRH SST1

    NASA Astrophysics Data System (ADS)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  10. Yuma Border Patrol Lighting Retrofit: Final LED System Performance Assessment of Trial and Full Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea; Sullivan, Gregory P.; Davis, Robert G.

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial evaluation in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations, and illuminance measurements were recorded initially and at 2500 hours, 5000 hours, 7000, and 11,000 hours of operation. Additionally, four second-generation LED luminaires installed as part of the full installation were evaluated initially and again after 4,000 hours of operation. While the initial energy, lighting quality, and maintenance benefits relative to the incumbent high-pressure sodium system were very satisfactory, the study raises important questions regarding themore » long-term performance of LED lighting systems in high-temperature environments.« less

  11. 14 CFR 25.1703 - Function and installation: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Function and installation: EWIS. 25.1703... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1703 Function and installation: EWIS. (a) Each EWIS component installed in any area of the...

  12. Vehicle Support Posts Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    Construction workers on the deck of the mobile launcher prepare the platforms for installation of vehicle support posts at NASA's Kennedy Space Center in Florida. At left, four of the support posts are installed. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  13. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Day's Lodge I-85 and Shallowford Road, NE Atlanta, Georgia is described. This system is one of eleven systems planned under this grant and was designed to provide for 81% of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drains whenever the collector plates approach freezing or when powermore » is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric domestic hot water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting. Operation of this system was begun in August, 1979. The solar components were partly funded ($18,042 of $36,084 cost) by the Department of Energy.« less

  14. 46 CFR 58.16-18 - Installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Installation. 58.16-18 Section 58.16-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-18 Installation. (a) Cylinders...

  15. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxun Yan; Daniel Sexton; Steven Moore

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less

  16. 46 CFR 58.10-15 - Gas turbine installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-15 Gas turbine installations. (a) Standards. The design, construction, workmanship and tests of gas turbines and their associated... 46 Shipping 2 2010-10-01 2010-10-01 false Gas turbine installations. 58.10-15 Section 58.10-15...

  17. 46 CFR 58.10-15 - Gas turbine installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-15 Gas turbine installations. (a) Standards. The design, construction, workmanship and tests of gas turbines and their associated... 46 Shipping 2 2011-10-01 2011-10-01 false Gas turbine installations. 58.10-15 Section 58.10-15...

  18. Design requirements for SRB production control system. Volume 4: Implementation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The implementation plan which is presented was developed to provide the means for the successful implementation of the automated production control system. There are three factors which the implementation plan encompasses: detailed planning; phased implementation; and user involvement. The plan is detailed to the task level in terms of necessary activities as the system is developed, refined, installed, and tested. These tasks are scheduled, on a preliminary basis, over a two-and-one-half-year time frame.

  19. Installing Electronics in Juno Vault

    NASA Image and Video Library

    2010-12-16

    Technicians install components that will aid with guidance, navigation and control of NASA Juno spacecraft. Like most of Juno sensitive electronics, these components are situated within the spacecraft titanium radiation vault.

  20. GOES data-collection system instrumentation, installation, and maintenance manual

    USGS Publications Warehouse

    Blee, J.W.; Herlong, H.E.; Kaufmann, C.D.; Hardee, J.H.; Field, M.L.; Middelburg, R.F.

    1986-01-01

    The purpose of the manual is to describe the installation, operation, and maintenance of Geostationary Operational Environmental Satellite (GOES) data collection platforms (DCP's) and associated equipment. This manual is not a substitute for DCP manufacturers ' manuals but is additional material that describes the application of data-collection platforms in the Water Resources Division. Power supplies, encoders, antennas, Mini Monitors, voltage analog devices, and the installation of these at streamflow-gaging stations are discussed in detail. (USGS)

  1. Evaluation of an automatic-timed insecticide application system for backyard mosquito control.

    PubMed

    Cilek, J E; Hallmon, C F; Johnson, R

    2008-12-01

    Several manufacturers and pest management companies have begun to market and install outdoor automatically timed insecticide application systems that claim to provide an envelope of protection against host-seeking mosquitoes within a defined area, e.g., residential backyards. A typical system consists of a multi-gallon reservoir attached to a continuous loop of plastic tubing with multiple single spray head nozzles. Nozzles are usually placed along the perimeter of a backyard in landscaping or other areas suitable for mosquito harborage. This array is then connected to a programmable electric pump set to automatically apply an insecticide at predetermined intervals. An operational field study was conducted to evaluate this technology using previously installed MistAway systems at.3 residences in northwestern Florida. This system applied a mist-like application of 0.05% AI synergized pyrethrins for 45 sec at dawn and again at dusk in each backyard. Twice-weekly collections from ABC suction light traps, baited with carbon dioxide, were used as the evaluation tool. Female mosquitoes from treatment backyards were compared with trap collections from 3 backyards without automatic misting systems used as controls. We found that weekly mosquito reduction was highly variable and ranged from 98% to 14% during the 35-wk study. Because the primary method of reduction by these application systems was not well understood, a MistAway system was installed in an outdoor simulated residential backyard to determine exposure pathway under controlled conditions with field cage and excised-leaf bioassays. Using laboratory-reared females of Aedes albopictus and Culex quinquefasciatus in those assays, we found that reduction by the MistAway system was primarily achieved by direct exposure of the mosquitoes to the insecticide application and not from residual deposits on treated vegetation.

  2. Crime Prevention in Schools: Specification, Installation, and Maintenance of Intruder Alarm Systems. Building Bulletin 69.

    ERIC Educational Resources Information Center

    Haworth-Roberts, A., Ed.

    Greater use of expensive equipment by schools has also increased the potential for vandalism and theft, giving an increased role to intruder alarm systems. This document provides guidance on the management and technical aspects of forming policies for installing and operating intruder alarm systems in educational buildings. Also provided are…

  3. XpressWare Installation User guide

    NASA Astrophysics Data System (ADS)

    Duffey, K. P.

    XpressWare is a set of X terminal software, released by Tektronix Inc, that accommodates the X Window system on a range of host computers. The software comprises boot files (the X server image), configuration files, fonts, and font tools to support the X terminal. The files can be installed on one host or distributed across multiple hosts The purpose of this guide is to present the system or network administrator with a step-by-step account of how to install XpressWare, and how subsequently to configure the X terminals appropriately for the environment in which they operate.

  4. Installation and Test of Doppler Acoustic Sensor

    DOT National Transportation Integrated Search

    1977-12-01

    This report presents details of the installation of a Doppler acoustic vortex sensing system at JFK Runway 31R, the hardware and software improvements made since installation, vortex diagnostic and tracking data and analysis, and conclusions and reco...

  5. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  6. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  7. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  8. Platform B North Installation

    NASA Image and Video Library

    2016-12-16

    A construction worker solders a section of steel during the installation of the second half of the B-level work platforms, B north, for NASA's Space Launch System (SLS) rocket, in High Bay 3 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Construction workers will secure the large bolts that hold the platform in place on the north wall. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  9. Installation of solar PV systems in Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, M.P.T.P.

    1995-10-01

    The tropical country of Sri Lanka has hydroelectric power plants sufficient to provide electricity to only 40% of its 25,000 villages. The electric power needs of the average Sri Lankan rural communities are basic: three or four lights to illuminate their house and a power supply for their televisions. Solar radiation is abundant throughout the year. To take advantage of this resource, the Sarvodaya Rural Technical Services launched a Solar PV pilot demonstration project in the rural areas not served by the electric grid. The systems were being installed on an individual residence basis and funded by loans. Social andmore » cultural problems which have arisen during the course of the project have slowed its implementation. This study identifies the problems and makes recommendations to resolve the current problems and avoid new ones.« less

  10. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  11. Indicator system for a process plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  12. Optical analysis of a photovoltaic V-trough system installed in western India.

    PubMed

    Maiti, Subarna; Sarmah, Nabin; Bapat, Pratap; Mallick, Tapas K

    2012-12-20

    The low concentrating photovoltaic (PV) system such as a 2× V-trough system can be a promising choice for enhancing the power output from conventional PV panels with the inclusion of thermal management. This system is more attractive when the reflectors are retrofitted to the stationary PV panels installed in a high aspect ratio in the north-south direction and are tracked 12 times a year manually according to preset angles, thus eliminating the need of diurnal expensive tracking. In the present analysis, a V-trough system facing exactly the south direction is considered, where the tilt angle of the PV panels' row is kept constant at 18.34°. The system is installed on the terrace of CSIR-Central Salt and Marine Chemicals Research Institute in Bhavnagar, Gujarat, India (21.47 N, 71.15 E). The dimension of the entire PV system is 9.64 m×0.55 m. The V-troughs made of anodized aluminum reflectors (70% specular reflectivity) had the same dimensions. An in-house developed; experimentally validated Monte Carlo ray-trace model was used to study the effect of the angular variation of the reflectors throughout a year for the present assembly. Results of the ray trace for the optimized angles showed the maximum simulated optical efficiency to be 85.9%. The spatial distribution of solar intensity over the 0.55 m dimension of the PV panel due to the V-trough reflectors was also studied for the optimized days in periods that included solstices and equinoxes. The measured solar intensity profiles with and without the V-trough system were used to calculate the actual optical efficiencies for several sunny days in the year, and results were validated with the simulated efficiencies within an average error limit of 10%.

  13. Progress and plan of KSTAR plasma control system upgrade

    DOE PAGES

    Hahn, Sang-hee; Kim, Y. J.; Penaflor, B. G.; ...

    2016-06-01

    The plasma control system (PCS) has been one of essential systems in annual KSTAR plasma campaigns: starting from a single-process version in 2008, extensive upgrades are done through the previous 7 years in order to achieve major goals of KSTAR performance enhancement. Here, major implementations are explained in this paper. In consequences of successive upgrades, the present KSTAR PCS is able to achieve ~48 s of 500 kA plasma pulses with full real-time shaping controls and real-time NB power controls. It has become a huge system capable of dealing with 8 separate categories of algorithms, 26 actuators directly controllable duringmore » the shot, and real-time data communication units consisting of +180 analog channels and +600 digital input/outputs through the reflective memory (RFM) network. The next upgrade of the KSTAR PCS is planned in 2015 before the campaign. An overview of the upgrade layout will be given for this paper. The real-time system box is planned to use the CERN MRG-Realtime OS, an ITER-compatible standard operating system. New hardware is developed for faster real-time streaming system for future installations of actuators/diagnostics.« less

  14. Vehicle Support Posts Installation at Mobile Launcher

    NASA Image and Video Library

    2017-05-11

    Construction workers at the Mobile Launcher at NASA's Kennedy Space Center in Florida, prepare to install vehicle support posts. A total of eight support posts are being installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.

  15. Easily Installable Wireless Behavioral Monitoring System with Electric Field Sensor for Ordinary Houses

    PubMed Central

    Tsukamoto, S; Hoshino, H; Tamura, T

    2008-01-01

    This paper describes an indoor behavioral monitoring system for improving the quality of life in ordinary houses. It employs a device that uses weak radio waves for transmitting the obtained data and it is designed such that it can be installed by a user without requiring any technical knowledge or extra constructions. This study focuses on determining the usage statistics of home electric appliances by using an electromagnetic field sensor as a detection device. The usage of the home appliances is determined by measuring the electromagnetic field that can be observed in an area near the appliance. It is assumed that these usage statistics could provide information regarding the indoor behavior of a subject. Since the sensor is not direction sensitive and does not require precise positioning and wiring, it can be easily installed in ordinary houses by the end users. For evaluating the practicability of the sensor unit, several simple tests have been performed. The results indicate that the proposed system could be useful for collecting the usage statistics of home appliances. PMID:19415135

  16. Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing

    NASA Technical Reports Server (NTRS)

    Anchondo, Ian; Cox, Marlon; Meginnis, Carly; Westheimer, David; Vogel, Matt R.

    2016-01-01

    Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design. This advanced PLSS is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data, define set-points, evaluate control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out in 2013 and 2014 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the

  17. Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design which is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data to define set-points for control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out from 3/20/13 - 3/15/14 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA

  18. Installation of seafloor cabled seismic and tsunami observation system developed by using ICT

    NASA Astrophysics Data System (ADS)

    Shinohara, Masanao; Yamada, Tomoaki; Sakai, Shin'ichi; Shiobara, Hajime; Kanazawa, Toshihiko

    2017-04-01

    A seafloor cabled system is useful for study of earth science and disaster mitigation, because real-time and long-term observation can be performed. Therefore seafloor cabled systems with seismometers and tsunami-meters have been used over the past 25 years around Japan. Because increase of a number of sensors is needed, a new system with low costs for production, deployment and operation is expected. In addition, the new system should have sufficient for flexibility of measurements after installation. To achieve these demands, we started development of a new system using Information and Communication Technologies (ICT) for data transmission and system control. The new system can be made compact since software processes various measurements. Reliability of the system is kept by using redundant system which is easily constructed using the ICT. The first system based on this concept was developed as Ocean Bottom Cabled Seismometer (OBCS) system and deployed in Japan Sea. Development of the second system started from 2012. The Ocean Bottom Cabled Seismometer and Tsunami-meter (OBCST) system has both seismometers and tsunami-meters. Each observation node has a CPU and FPGAs. The OBCST system uses standard TCP/IP protocol with a speed of 1 Gbps for data transmission, system control and monitoring. IEEE-1588 (PTP) is implemented to synchronize a real-time clock, and accuracy is less than 300 ns. We developed two types of observation node. One equips a pressure gauge as tsunami sensor, and another has an external port for additional observation sensor using PoE. Deployment of the OBCST system was carried out in September 2015 by using a commercial telecommunication cable ship. The noise levels at the OBCST system are comparable to those at the existing cabled system off Sanriku. It is found that the noise levels at the OBCST system are low at frequencies greater than 2 Hz and smaller than 0.1 Hz. This level of ambient seismic noise is close to a typical system noise. From

  19. Thesaurus/Glossary System. User's Guide. Improved Systems for Managing the Control of Paperwork.

    ERIC Educational Resources Information Center

    Hurley, Jeanne S.; And Others

    Intended primarily for the use of NCES (National Center for Education Statistics) staff, this document contains installation-specific information for the Thesaurus/Glossary computer system as installed at the HEW (Health, Education and Welfare) Data Management Center. The first of three sections provides an overview of system objectives,…

  20. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so arranged and installed that the presence of smoke in any of the protected spaces will automatically be... automatically indicate the zone in which the smoke originated. The detecting cabinet shall normally be located...

  1. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so arranged and installed that the presence of smoke in any of the protected spaces will automatically be... automatically indicate the zone in which the smoke originated. The detecting cabinet shall normally be located...

  2. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so arranged and installed that the presence of smoke in any of the protected spaces will automatically be... automatically indicate the zone in which the smoke originated. The detecting cabinet shall normally be located...

  3. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so arranged and installed that the presence of smoke in any of the protected spaces will automatically be... automatically indicate the zone in which the smoke originated. The detecting cabinet shall normally be located...

  4. 46 CFR 76.35-15 - Operation and installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-15 Operation and installation. (a) The system shall be so arranged and installed that the presence of a fire may be reported from any of the protected spaces and be...

  5. 46 CFR 76.35-15 - Operation and installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-15 Operation and installation. (a) The system shall be so arranged and installed that the presence of a fire may be reported from any of the protected spaces and be...

  6. 46 CFR 76.35-15 - Operation and installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-15 Operation and installation. (a) The system shall be so arranged and installed that the presence of a fire may be reported from any of the protected spaces and be...

  7. 46 CFR 76.35-15 - Operation and installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Manual Alarm System, Details § 76.35-15 Operation and installation. (a) The system shall be so arranged and installed that the presence of a fire may be reported from any of the protected spaces and be...

  8. Installing the Unix Starlink Software

    NASA Astrophysics Data System (ADS)

    Bly, M. J.

    This note is the release note and installation instructions for the DEC Alpha AXP / Digital UNIX, Sun Sparc / Solaris v2.x, and Sun Sparc / SunOS 4.1.x versions of the Starlink Software Collection (USSC). You will be supplied with pre-built (and installed) versions on tape and will just need to copy the tape to disk to have a working version. The tapes (where appropriate) will contain in addition, copies of the NAG and MEMSYS libraries, and Tcl, Tk, Expect, Mosaic, TeX, Pine, Perl, Jed, Ispell, Ghostscript, LaXeX2html and Ftnchek for the relevant system. The Sun Sparc SunOS 4.1.x version of the USSC was frozen at USSC111 and no further updates are available. The instructions for installing the main section of the USSC may continue to be used for installing Sun Sparc SunOS 4.1.x version.

  9. Development of guidelines for the installation of marked crosswalks.

    DOT National Transportation Integrated Search

    2004-01-01

    The Manual on Uniform Traffic Control Devices (MUTCD) provides little guidance on the installation of marked crosswalks, especially at locations other than intersections, i.e., mid-block locations. Crosswalks have typically been installed and designe...

  10. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  11. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  12. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  13. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  14. Teaching infant car seat installation via interactive visual presence: An experimental trial.

    PubMed

    Schwebel, David C; Johnston, Anna; Rouse, Jenni

    2017-02-17

    A large portion of child restraint systems (car seats) are installed incorrectly, especially when first-time parents install infant car seats. Expert instruction greatly improves the accuracy of car seat installation but is labor intensive and difficult to obtain for many parents. This study was designed to evaluate the efficacy of 3 ways of communicating instructions for proper car seat installation: phone conversation; HelpLightning, a mobile application (app) that offers virtual interactive presence permitting both verbal and interactive (telestration) visual communication; and the manufacturer's user manual. A sample of 39 young adults of child-bearing age who had no previous experience installing car seats were recruited and randomly assigned to install an infant car seat using guidance from one of those 3 communication sources. Both the phone and interactive app were more effective means to facilitate accurate car seat installation compared to the user manual. There was a trend for the app to offer superior communication compared to the phone, but that difference was not significant in most assessments. The phone and app groups also installed the car seat more efficiently and perceived the communication to be more effective and their installation to be more accurate than those in the user manual group. Interactive communication may help parents install car seats more accurately than using the manufacturer's manual alone. This was an initial study with a modestly sized sample; if results are replicated in future research, there may be reason to consider centralized "call centers" that provide verbal and/or interactive visual instruction from remote locations to parents installing car seats, paralleling the model of centralized Poison Control centers in the United States.

  15. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  16. HFL-10 lifting body flight control system characteristics and operational experience

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Sitterle, G. J.

    1974-01-01

    A flight evaluation was made of the mechanical hydraulic flight control system and the electrohydraulic stability augmentation system installed in the HL-10 lifting body research vehicle. Flight tests performed in the speed range from landing to a Mach number of 1.86 and the altitude range from 697 meters (2300 feet) to 27,550 meters (90,300 feet) were supplemented by ground tests to identify and correct structural resonance and limit-cycle problems. Severe limit-cycle and control sensitivity problems were encountered during the first flight. Stability augmentation system structural resonance electronic filters were modified to correct the limit-cycle problem. Several changes were made to control stick gearing to solve the control sensitivity problem. Satisfactory controllability was achieved by using a nonlinear system. A limit-cycle problem due to hydraulic fluid contamination was encountered during the first powered flight, but the problem did not recur after preflight operations were improved.

  17. What is stopping you from installing solar systems? Contrasting Chilean with German homes.

    NASA Astrophysics Data System (ADS)

    Haas, J.; Caro Castro, C. P.

    2017-12-01

    Towards meeting Paris` climate change goals, a rapid shift towards clean energy sources is needed. While the deployment of centralized solar photovoltaic (PV) power plants has been remarkable in Germany and -in the last years- also in Chile, the residential PV installations in Chile lag greatly in contrast to Germany. In fact, Chile's largest PV system until 2012 was smaller than 25 kW. And, although the recently implemented net-billing scheme has brightened this scenario, most of Chile's roofs keep being bald. Beyond the evident economic contrasts among both countries, there are many other underlying differences in public acceptance of renewable technologies. Understanding them is of both conceptual and practical importance. Here, we study the variables that determine the public acceptance of residential PV systems in Germany and Chile. We survey the positions of laypersons on the support of climate change goals, on the necessity of renewable technologies, on their auto-sustainability (how much I identify myself with being sustainable), and on their auto-effectiveness (do I believe that my behavior has impact on global targets). The sample is further characterized by socioeconomic status, knowledge and experience and proximity to solar systems, esthetic perception of the systems, security of the neighborhood and house ownership, willingness of installing solar systems, and trust in the technology. We identify the main factors via data correlation analysis. From our findings, actions to improve the acceptance and literacy of solar technologies in Chile can be derived.

  18. 46 CFR 76.25-35 - Operation and installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Operation and installation. 76.25-35 Section 76.25-35... EQUIPMENT Automatic Sprinkling System, Details § 76.25-35 Operation and installation. (a) The system shall... all its components shall be used for no other purpose. (h) All wiring and electrical circuits and...

  19. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...

  20. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...

  1. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...

  2. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...

  3. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...

  4. Installation package - home solar heater

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Installation of commerical solar-heating system at two story, three bedroom house in New Hampshire is described in 65 page report. System collectors are integrated part of building replacing conventional roofing or siding. Report also includes general description of system, its operation and guidelines, orientation and references.

  5. Description and theory of operation of the computer by-pass system for the NASA F-8 digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A triplex digital flight control system was installed in a NASA F-8C airplane to provide fail operate, full authority control. The triplex digital computers and interface circuitry process the pilot commands and aircraft motion feedback parameters according to the selected control laws, and they output the surface commands as an analog signal to the servoelectronics for position control of the aircraft's power actuators. The system and theory of operation of the computer by pass and servoelectronics are described and an automated ground test for each axis is included.

  6. Handbook of experiences in the design and installation of solar heating and cooling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  7. Platform B North Installation

    NASA Image and Video Library

    2016-12-16

    Construction workers wearing safety harnesses and tethered lines assist with the installation of the second half of the B-level work platforms, B north, for NASA’s Space Launch System (SLS) rocket, high up in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. They are securing the large bolts that hold the platform securely in place on the north side of High Bay 3. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  8. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  9. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  10. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  11. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  12. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  13. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  14. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  15. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...

  16. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  17. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  18. 14 CFR 27.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installation. 27.967 Section 27.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.967 Fuel tank installation. (a...

  19. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank installations. 25.967 Section 25.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations...

  20. 14 CFR 29.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank installation. 29.967 Section 29.967 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.967 Fuel tank installation...