Science.gov

Sample records for control underwater locomotor

  1. Buoyancy under Control: Underwater Locomotor Performance in a Deep Diving Seabird Suggests Respiratory Strategies for Reducing Foraging Effort

    PubMed Central

    Cook, Timothée R.; Kato, Akiko; Tanaka, Hideji; Ropert-Coudert, Yan; Bost, Charles-André

    2010-01-01

    Background Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth. Methodology/Principal Findings Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. Conclusions/Significance Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control. PMID:20352122

  2. Neuronal control of locomotor handedness in Drosophila

    PubMed Central

    Buchanan, Sean M.; Kain, Jamey S.; de Bivort, Benjamin L.

    2015-01-01

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  3. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  4. Dynamic Control of Posture Across Locomotor Tasks

    PubMed Central

    Earhart, Gammon M.

    2013-01-01

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment, and to ensure dynamic stability of the moving body. This paper provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks such as turning and backward walking. The impacts of aging and various movement disorders on postural control are discussed broadly in an effort to provide a general overview of the field and recommendations for assessment of dynamic postural control across different populations in both clinical and research settings. Suggestions for future research on dynamic postural control during locomotion are also provided and include discussion of opportunities afforded by new and developing technologies, the need for long-term monitoring of locomotor performance in everyday activities, gaps in our knowledge of how targeted intervention approaches modify dynamic postural control, and the relative paucity of literature regarding dynamic postural control in movement disorder populations other than Parkinson disease. PMID:24132838

  5. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    SciTech Connect

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

  6. Underwater Coatings for Contamination Control

    SciTech Connect

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included 1) Test Area North (TAN-607) with epoxy painted concrete walls; 2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; 3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and 4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55oF to 80oF dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: · Be easy to apply · Adhere well to the four surfaces of interest · Not change or have a negative impact on water chemistry or clarity · Not be hazardous in final applied form · Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected to

  7. Controllable underwater anisotropic oil-wetting

    SciTech Connect

    Yong, Jiale; Chen, Feng Yang, Qing; Farooq, Umar; Bian, Hao; Du, Guangqing; Hou, Xun

    2014-08-18

    This Letter demonstrates a simple method to achieve underwater anisotropic oil-wetting using silicon surfaces with a microgroove array produced by femtosecond laser ablation. The oil contact angles along the direction perpendicular to the grooves are consistently larger than those parallel to the microgroove arrays in water because the oil droplet is restricted by the energy barrier that exists between the non-irradiated domain and the trapped water in the laser-ablated microgrooves. This underwater anisotropic oil-wetting is able to be controlled, and the anisotropy can be tuned from 0° to ∼20° by adjusting the period of the microgroove arrays.

  8. Effects of space flight on locomotor control

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki

    1999-01-01

    In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.

  9. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  10. Underwater space suit pressure control regulator

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Cooper, C. R.; Rasquin, J. R. (Inventor)

    1973-01-01

    A device is reported for regulating the pneumatic pressure in a ventilated space suit relative to the pressure imposed on the suit when being worn by a person underwater to simulate space environment for testing and experimentation. A box unit located on the chest area of the suit comprises connections for suit air supply and return lines and carries a regulator valve that stabilizes the air pressure differential between the inside and outside of the suit. The valve and suit pressure is controlled by the suit occupant and the valve includes a mechanism for quickly dumping the suit pressure in case of emergency. Pressure monitoring and relief devices are also included in the box unit.

  11. Measurements of optical underwater turbulence under controlled conditions

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Gladysz, S.; Almeida de Sá Barros, R.; Matt, S.; Nootz, G. A.; Josset, D. B.; Hou, W.

    2016-05-01

    Laser beam propagation underwater is becoming an important research topic because of high demand for its potential applications. Namely, ability to image underwater at long distances is highly desired for scientific and military purposes, including submarine awareness, diver visibility, and mine detection. Optical communication in the ocean can provide covert data transmission with much higher rates than that available with acoustic techniques, and it is now desired for certain military and scientific applications that involve sending large quantities of data. Unfortunately underwater environment presents serious challenges for propagation of laser beams. Even in clean ocean water, the extinction due to absorption and scattering theoretically limit the useful range to few attenuation lengths. However, extending the laser light propagation range to the theoretical limit leads to significant beam distortions due to optical underwater turbulence. Experiments show that the magnitude of the distortions that are caused by water temperature and salinity fluctuations can significantly exceed the magnitude of the beam distortions due to atmospheric turbulence even for relatively short propagation distances. We are presenting direct measurements of optical underwater turbulence in controlled conditions of laboratory water tank using two separate techniques involving wavefront sensor and LED array. These independent approaches will enable development of underwater turbulence power spectrum model based directly on the spatial domain measurements and will lead to accurate predictions of underwater beam propagation.

  12. Active Gaze, Visual Look-Ahead, and Locomotor Control

    ERIC Educational Resources Information Center

    Wilkie, Richard M.; Wann, John P.; Allison, Robert S.

    2008-01-01

    The authors examined observers steering through a series of obstacles to determine the role of active gaze in shaping locomotor trajectories. Participants sat on a bicycle trainer integrated with a large field-of-view simulator and steered through a series of slalom gates. Steering behavior was determined by examining the passing distance through…

  13. A switched controller for an underactuated underwater vehicle

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, V.; Mahindrakar, Arun D.; Banavar, Ravi N.

    2008-12-01

    We present a switched control law for stabilizing an underactuated underwater vehicle (UUV) moving in a horizontal plane in a neutrally buoyant condition. The control law consists of a sequential series of control actions, each of which achieves a certain objective, finally resulting in the system being moved to the origin. Finite-time controllers are employed at each stage to achieve the desired objective. Simulation results are presented to validate the control law.

  14. EEG during pedaling: Evidence for cortical control of locomotor tasks

    PubMed Central

    Jain, Sanket; Gourab, Krishnaj; Schindler-Ivens, Sheila; Schmit, Brian D.

    2014-01-01

    Objective This study characterized the brain electrical activity during pedaling, a locomotor-like task, in humans. We postulated that phasic brain activity would be associated with active pedaling, consistent with a cortical role in locomotor tasks. Methods Sixty four channels of electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were recorded from 10 neurologically-intact volunteers while they performed active and passive (no effort) pedaling on a custom-designed stationary bicycle. Ensemble averaged waveforms, 2 dimensional topographic maps and amplitude of the β (13–35 Hz) frequency band were analyzed and compared between active and passive trials. Results The peak-to-peak amplitude (peak positive–peak negative) of the EEG waveform recorded at the Cz electrode was higher in the passive than the active trials (p < 0.01). β-band oscillations in electrodes overlying the leg representation area of the cortex were significantly desynchronized during active compared to the passive pedaling (p < 0.01). A significant negative correlation was observed between the average EEG waveform for active trials and the composite EMG (summated EMG from both limbs for each muscle) of the rectus femoris (r = −0.77, p < 0.01) the medial hamstrings (r = −0.85, p < 0.01) and the tibialis anterior (r = −0.70, p < 0.01) muscles. Conclusions These results demonstrated that substantial sensorimotor processing occurs in the brain during pedaling in humans. Further, cortical activity seemed to be greatest during recruitment of the muscles critical for transitioning the legs from flexion to extension and vice versa. Significance This is the first study demonstrating the feasibility of EEG recording during pedaling, and owing to similarities between pedaling and bipedal walking, may provide valuable insight into brain activity during locomotion in humans. PMID:23036179

  15. Effects of cocaine on locomotor activity and schedule-controlled behaviors of inbred rat strains.

    PubMed

    Witkin, J M; Goldberg, S R

    1990-10-01

    Effects of cocaine on several behaviors considered to be reflective of psychomotor stimulation were compared in F344/CR1BR and NBR/NIH inbred rat strains. Effects of cocaine on locomotor activity were compared with effects on either bar-press or nose-poke responses maintained under a multiple fixed-interval 3-min, timeout 1-min schedule of food presentation. In locomotor activity experiments, NBR rats were twice as active as F344 rats under baseline conditions and displayed dose-dependent increases in locomotion (5-20 mg/kg). Maximal increases in locomotor activity of F344 rats were only 200% compared to 1000% in NBR rats. In contrast to locomotor activity, no strain differences in the effects of cocaine were observed under the schedules of food delivery. Bar-pressing under the fixed-interval schedule was increased to a maximum of 150% of control in both rat strains. Nose-poke responding under the fixed-interval schedule was not significantly increased, but timeout rates were increased in both strains. These results suggest that NBR and F344 rats do not differ in general sensitivity to stimulant effects of cocaine but exhibit marked differences in responsivity to cocaine that are dependent upon the behavior studied. Further delineation of the behavioral specificity of strain differences in sensitivity to cocaine should help to identify neurobiological substrates underlying unique biologically determined responses to cocaine. PMID:2080195

  16. A trajectory tracking controller for an underwater hexapod vehicle.

    PubMed

    Plamondon, N; Nahon, M

    2009-09-01

    This paper describes work done in the modeling and control of a low speed underwater vehicle that uses paddles instead of thrusters to move in the water. A review of previously modeled vehicles and of controller designs for underwater applications is presented. Then, a method to accurately predict the thrust produced by an oscillating flexible paddle is developed and validated. This is followed by the development of a method to determine the ideal paddle motion to produce a desired thrust. Several controllers are then developed and tested using a numerical simulation of the vehicle. We found that some model-based controllers could improve the performance of the system while others showed no benefit. Finally, we report results from experimental trials performed in an open water environment comparing the performance of the controllers. The experimental results showed that all the model-based controllers outperform the simple proportional-derivative controller. The controller giving the best performance was the model-based nonlinear controller. We also found that the vehicle was able to follow a change of a roll angle of 90 degrees in 0.7 s and to precisely follow a sinusoidal trajectory with a period of 6.28 s and an amplitude of 5 degrees. PMID:19726834

  17. Asymmetric control of cycle period by the spinal locomotor rhythm generator in the adult cat.

    PubMed

    Frigon, Alain; Gossard, Jean-Pierre

    2009-10-01

    During walking, a change in speed is accomplished by varying the duration of the stance phase, while the swing phase remains relatively invariant. To determine if this asymmetry in the control of locomotor cycles is an inherent property of the spinal central pattern generator (CPG), we recorded episodes of fictive locomotion in decerebrate cats with or without a complete spinal transection (acute or chronic). During fictive locomotion, stance and swing phases typically correspond to extension and flexion phases, respectively. The extension and flexion phases were determined by measuring the duration of extensor and flexor bursts, respectively. In the vast majority of locomotor episodes, cycle period varied more with the extension phase. This was found without phasic sensory feedback, supraspinal structures, pharmacology or sustained stimulation. We conclude that the control of walking speed is governed by an asymmetry within the organization of the spinal CPG, which can be modified by extraneous factors. PMID:19675066

  18. Afferent control of locomotor CPG: insights from a simple neuromechanical model.

    PubMed

    Markin, Sergey N; Klishko, Alexander N; Shevtsova, Natalia A; Lemay, Michel A; Prilutsky, Boris I; Rybak, Ilya A

    2010-06-01

    A simple neuromechanical model has been developed that describes a spinal central pattern generator (CPG) controlling the locomotor movement of a single-joint limb via activation of two antagonist (flexor and extensor) muscles. The limb performs rhythmic movements under control of the muscular, gravitational and ground reaction forces. Muscle afferents provide length-dependent (types Ia and II) and force-dependent (type Ib from the extensor) feedback to the CPG. We show that afferent feedback adjusts CPG operation to the kinematics and dynamics of the limb providing stable "locomotion." Increasing the supraspinal drive to the CPG increases locomotion speed by reducing the duration of stance phase. We show that such asymmetric, extensor-dominated control of locomotor speed (with relatively constant swing duration) is provided by afferent feedback independent of the asymmetric rhythmic pattern generated by the CPG alone (in "fictive locomotion" conditions). Finally, we demonstrate the possibility of reestablishing stable locomotion after removal of the supraspinal drive (associated with spinal cord injury) by increasing the weights of afferent inputs to the CPG, which is thought to occur following locomotor training. PMID:20536917

  19. Monitoring and Controlling an Underwater Robotic Arm

    NASA Technical Reports Server (NTRS)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  20. Expert S-surface control for autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Pang, Yong-Jie; Su, Yu-Min; Zhao, Fu-Long; Qin, Zai-Bai

    2008-12-01

    S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles (AUV). However there are still problems maintaining steady precision of course due to the constant need to adjust parameters, especially where there are disturbing currents. Thus an intelligent integral was introduced to improve precision. An expert S-surface control was developed to tune the parameters on-line, based on the expert system, it provides S-surface control according to practical experience and control knowledge. To prevent control output over-compensation, a fuzzy neural network was included to adjust the production rules to the knowledge base. Experiments were conducted on an AUV simulation platform, and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents, producing good steady precision of course in a robust way.

  1. An ultradian clock controls locomotor behaviour and cell division in isolated cells of Paramecium tetraurelia.

    PubMed

    Kippert, F

    1996-04-01

    An ultradian clock operates in fast growing cells of the large ciliate, Paramecium tetraurelia. The period of around 70 minutes is well temperature-compensated over the temperature range tested, i.e. between 18 degrees C and 33 degrees C. The Q10 between 18 degrees C and 27 degrees C is 1.08; above 27 degrees C there is a slight overcompensation. The investigation of individual cells has revealed that two different cellular functions are under temporal control by this ultradian clock. First, locomotor behaviour, which is an alternation between a phase of fast swimming with only infrequent turning, and a phase of slow swimming with frequent spontaneous changes of direction. In addition, the ultradian clock is involved in the timing of cell division. Generation times are not randomly distributed, but occur in well separated clusters. At all of the six temperatures tested, the clusters are separated by around 70 minutes which corresponds well to the period of the locomotor behaviour rhythm at the respective temperatures. Whereas the interdivision times were gradually lengthened both above and below the optimum growth temperature, the underlying periodicity remained unaffected. Also cells of different clonal age had identical periods, suggesting that neither the differences in DNA content, not other changes associated with ageing in Paramecium have an effect on the clock. A constant phase relationship was observed between the rhythm in locomotor behaviour and the time window for cell division; this strongly suggests that the same ultradian clock exerts temporal control over both processes. PMID:8718678

  2. Dynamic modulation of visual and electrosensory gains for locomotor control.

    PubMed

    Sutton, Erin E; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J

    2016-05-01

    Animal nervous systems resolve sensory conflict for the control of movement. For example, the glass knifefish, Eigenmannia virescens, relies on visual and electrosensory feedback as it swims to maintain position within a moving refuge. To study how signals from these two parallel sensory streams are used in refuge tracking, we constructed a novel augmented reality apparatus that enables the independent manipulation of visual and electrosensory cues to freely swimming fish (n = 5). We evaluated the linearity of multisensory integration, the change to the relative perceptual weights given to vision and electrosense in relation to sensory salience, and the effect of the magnitude of sensory conflict on sensorimotor gain. First, we found that tracking behaviour obeys superposition of the sensory inputs, suggesting linear sensorimotor integration. In addition, fish rely more on vision when electrosensory salience is reduced, suggesting that fish dynamically alter sensorimotor gains in a manner consistent with Bayesian integration. However, the magnitude of sensory conflict did not significantly affect sensorimotor gain. These studies lay the theoretical and experimental groundwork for future work investigating multisensory control of locomotion. PMID:27170650

  3. Optimizing Optics For Remotely Controlled Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Billet, A. B.

    1984-09-01

    The past decade has shown a dramatic increase in the use of unmanned tethered vehicles in worldwide marine fields. These vehicles are used for inspection, debris removal and object retrieval. With advanced robotic technology, remotely operated vehicles (ROVs) are now able to perform a variety of jobs previously accomplished only by divers. The ROVs can be used at greater depths and for riskier jobs, and safety to the diver is increased, freeing him for safer, more cost-effective tasks requiring human capabilities. Secondly, the ROV operation becomes more cost effective to use as work depth increases. At 1000 feet a diver's 10 minutes of work can cost over $100,000 including support personnel, while an ROV operational cost might be 1/20 of the diver cost per day, based on the condition that the cost for ROV operation does not change with depth, as it does for divers. In the ROV operation the television lens must be as good as the human eye, with better light gathering capability than the human eye. The RCV-150 system is an example of these advanced technology vehicles. With the requirements of manueuverability and unusual inspection, a responsive, high performance, compact vehicle was developed. The RCV-150 viewing subsystem consists of a television camera, lights, and topside monitors. The vehicle uses a low light level Newvicon television camera. The camera is equipped with a power-down iris that closes for burn protection when the power is off. The camera can pan f 50 degrees and tilt f 85 degrees on command from the surface. Four independently controlled 250 watt quartz halogen flood lamps illuminate the viewing area as required; in addition, two 250 watt spotlights are fitted. A controlled nine inch CRT monitor provides real time camera pictures for the operator. The RCV-150 vehicle component system consists of the vehicle structure, the vehicle electronics, and hydraulic system which powers the thruster assemblies and the manipulator. For this vehicle, a light

  4. Postural control in order to prevent chronic locomotor injuries in top level athletes.

    PubMed

    Bandettini, Marina Piazza; Innocenti, Giovanni; Contini, Massimo; Paternostro, Ferdinando; Lova, Raffaele Molino

    2003-01-01

    Chronic injuries of the locomotor apparatus represent the main cause of drop-out among top level gymnasts. The aim of the present paper was to verify whether the postural control, investigated by using an integrated approach and accordingly optimized, could be an effective tool for the secondary prevention of training-related disorders of the locomotor apparatus, in a cohort of 20 young female athletes practicing rythmic gymnastic at top level. After a preliminary medical consultation all the subjects underwent a static and dynamic baropodometric test, an ophtalmological and a dental screening. Then athletes were given prescriptions based upon the results of the above named examination. After 6 months, symptoms were completely disappeared in 80% and remarkably improved in 20%, and at baropodometric test, the contact duration as well as the contact surface, the max and mean contact pressure were significantly increased in all the athletes. Our data show that the proposed integrated approach is actually an effective tool for the secondary prevention of training related disorders of the locomotor apparatus. PMID:14974501

  5. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the

  6. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    PubMed Central

    Cain, Stephen M; Gordon, Keith E; Ferris, Daniel P

    2007-01-01

    Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. PMID:18154649

  7. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  8. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements.

    PubMed

    Mushahwar, Vivian K; Gillard, Deborah M; Gauthier, Michel J A; Prochazka, Arthur

    2002-03-01

    Intraspinal microstimulation (ISMS) may provide a means for improving motor function in people suffering from spinal cord injuries, head trauma, or stroke. The goal of this study was to determine whether microstimulation of the mammalian spinal cord could generate locomotor-like stepping and feedback-controlled movements of the hindlimbs. Under pentobarbital anesthesia, 24 insulated microwires were implanted in the lumbosacral cord of three adult cats. The cats were placed in a sling leaving all limbs pendent. Bilateral alternating stepping of the hindlimbs was achieved by stimulating through as few as two electrodes in each side of the spinal cord. Typical stride lengths were 23.5 cm, and ample foot clearance was achieved during swing. Mean ground reaction force during stance was 36.4 N, sufficient for load-bearing. Feedback-controlled movements of the cat's foot were achieved by reciprocally modulating the amplitude of stimuli delivered through two intraspinal electrodes generating ankle flexion and extension such that the distance between a sensor on the cat's foot and a free sensor moved back and forth by the investigators was minimized. The foot tracked the displacements of the target sensor through its normal range of motion. Stimulation through electrodes with tips in or near lamina IX elicited movements most suitable for locomotion. In chronically implanted awake cats, stimulation through dorsally located electrodes generated paw shakes and flexion-withdrawals consistent with sensory perception but no weight-bearing extensor movements. These locations would not be suitable for ISMS in incomplete spinal cord injuries. Despite the complexity of the spinal neuronal networks, our results demonstrate that by stimulating through a few intraspinal microwires, near-normal bipedal locomotor-like stepping and feedback-controlled movements could be achieved. PMID:12173741

  9. The Interplay Between Strategic And Adaptive Control Mechanisms In Plastic Recalibration Of Locomotor Function

    NASA Technical Reports Server (NTRS)

    Richards, J. T.; Mulavara, A. P.; Bloomberg, J. J.

    2006-01-01

    We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes immediate strategic modifications (Richards et al. 2004) as well as an after effect reflecting adaptive modification of the control of position and trajectory during over-ground locomotion (Mulavara et al. 2005). The process of sensorimotor adaptation is comprised of both strategic and adaptive control mechanisms. Strategic control involves cognitive, on-line corrections to limb movements once one is aware of a sensory discordance. Over an extended period of exposure to the sensory discordance, new strategic sensorimotor coordination patterns are reinforced until they become more automatic, and therefore adaptive, in nature. The objective of this study was to investigate how strategic changes in trunk control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping. Subjects (n = 10) walked on a motorized linear treadmill while viewing a wide field-of-view virtual scene for 24 minutes. The scene was static for the first 4 minutes and then, for the last 20 minutes, depicted constant rate self-motion equivalent to walking in a counter-clockwise, circular path around the perimeter of a room. Subjects performed five stepping trials both before and after the exposure period to assess after effects. Results from our previous study showed a significant change in heading direction (HD) during post-exposure step tests that was opposite the direction in which the scene rotated during the adaptation period. For the present study, we quantified strategic modifications in trunk movement control during scene exposure using normalized root mean square (R(sub p)) variation of the subject's 3D trunk positions and normalized sum of standard deviations (R(sub o)) variation of 3D trunk orientations during scene rotation relative to that during static scene presentation

  10. The role of leg touchdown for the control of locomotor activity in the walking stick insect

    PubMed Central

    Schmitz, Joscha; Büschges, Ansgar

    2015-01-01

    Much is known on how select sensory feedback contributes to the activation of different motoneuron pools in the locomotor control system of stick insects. However, even though activation of the stance phase muscles depressor trochanteris, retractor unguis, flexor tibiae and retractor coxae is correlated with the touchdown of the leg, the potential sensory basis of this correlation or its connection to burst intensity remains unknown. In our experiments, we are using a trap door setup to investigate how ground contact contributes to stance phase muscle activation and burst intensity in different stick insect species, and which afferent input is involved in the respective changes. While the magnitude of activation is changed in all of the above stance phase muscles, only the timing of the flexor tibiae muscle is changed if the animal unexpectedly steps into a hole. Individual and combined ablation of different force sensors on the leg demonstrated influence from femoral campaniform sensilla on flexor muscle timing, causing a significant increase in the latencies during control and air steps. Our results show that specific load feedback signals determine the timing of flexor tibiae activation at the swing-to-stance transition in stepping stick insects, but that additional feedback may also be involved in flexor muscle activation during stick insect locomotion. With respect to timing, all other investigated stance phase muscles appear to be under sensory control other than that elicited through touchdown. PMID:25652931

  11. Synthesis of a PID-controller of a trim robust control system of an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Khozhaev, I. V.; Gayvoronskiy, S. A.

    2016-04-01

    Autonomous underwater vehicles are often used for performing scientific, emergency or other types of missions under harsh conditions and environments, which can have non-stable, variable parameters. So, the problem of developing autonomous underwater vehicle motion control systems, capable of operating properly in random environments, is highly relevant. The paper is dedicated to the synthesis of a PID-controller of a trim robust control system, capable of keeping an underwater vehicle stable during a translation at different angles of attack. In order to synthesize the PID-controller, two problems were solved: a new method of synthesizing a robust controller was developed and a mathematical model of an underwater vehicle motion process was derived. The newly developed mathematical model structure is simpler than others due to acceptance of some of the system parameters as interval ones. The synthesis method is based on a system poles allocation approach and allows providing the necessary transient process quality in a considered system.

  12. EFFECT OF SEX, AGE, AND BMI ON THE DEVELOPMENT OF LOCOMOTOR SKILLS AND OBJECT CONTROL SKILLS AMONG PRESCHOOL CHILDREN.

    PubMed

    Yang, Shu-Chu; Lin, Shu-Jung; Tsai, Chia-Yen

    2015-12-01

    Purposive sampling was used to recruit 1,200 preschoolers between the ages of three and seven from 12 preschools throughout Taiwan in order to examine locomotor skills, object control skills, and fundamental motor skills with respect to sex, age, and body mass index (BMI). Fundamental motor skills were measured using the TGMD-2. Only age had a significant influence on locomotor skills, object control skills, and fundamental motor skills; sex had a small influence on object control skills, and BMI had a very limited influence on all three categories. The difference from previous studies related to BMI may be due to the different items included in the various tests, the number of trials conducted, and ways in which BMI was categorized. PMID:26682607

  13. Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations.

    PubMed

    Enders, Hendrik; Nigg, Benno M

    2016-06-01

    Electrical signals encoding different forms of information can be observed at multiple levels of the human nervous system. Typically, these signals have been recorded in a rather isolated fashion with little overlap between the static recordings of electroencephalography (EEG) commonly used in neuroscience and the typical surface electromyography (EMG) recordings used in biomechanics. However, within the last decade, there has been an emerging need to link the electrical activation patterns of brain areas during movement to the behavior of the musculoskeletal system. This review discusses some of the most recent studies using the EEG and/or EMG to study the neural control of movement and human locomotion as well as studies quantifying the connectivity between brain and muscles. The focus is on rhythmic locomotor-type activities; however, results are discussed within the framework of initial work that has been done in upper and lower limbs during static and dynamic contractions. Limitations and current challenges as well as the possibility and functional interpretation of studying the connectivity between the cortex and skeletal muscles using a measure of coherence are discussed. The manuscript is geared toward scientists interested in the application of EEG in the field of locomotion, sports and exercise. PMID:26238032

  14. Fractional-order information in the visual control of lateral locomotor interception.

    PubMed

    Bootsma, Reinoud J; Ledouit, Simon; Casanova, Remy; Zaal, Frank T J M

    2016-04-01

    Previous work on locomotor interception of a target moving in the transverse plane has suggested that interception is achieved by maintaining the target's bearing angle (often inadvertently confused and/or confounded with the target heading angle) at a constant value. However, dynamics-based model simulations testing the veracity of the underlying control strategy of nulling the rate of change in the bearing angle have been restricted to limited conditions of target motion, and only a few alternatives have been considered. Exploring a wide range of target motion characteristics with straight and curving ball trajectories in a virtual reality setting, we examined how soccer goalkeepers moved along the goal line to intercept long-range shots on goal, a situation in which interception is naturally constrained to movement along a single dimension. Analyses of the movement patterns suggested reliance on combinations of optical position and velocity for straight trajectories and optical velocity and acceleration for curving trajectories. As an alternative to combining such standard integer-order derivatives, we demonstrate with a simple dynamical model that nulling a single informational variable of a self-tuned fractional (rather than integer) order efficiently captures the timing and patterning of the observed interception behaviors. This new perspective could fundamentally change the conception of what perceptual systems may actually provide, both in humans and in other animals. (PsycINFO Database Record PMID:26569338

  15. Design and implementation of control system for range-gated underwater laser imaging

    NASA Astrophysics Data System (ADS)

    Ge, Wei-long; Zhang, Xiao-hui; Han, Hong-wei; Hua, Liang-hong

    2012-01-01

    There is currently considerable in developing underwater target detection, the underwater imaging system can be divided into active imaging system and passive system. The main feature of the active imaging system is that they use light sources to illuminate the targets and collect the reflection from targets. The advantages of active imaging system over passive imaging systems are high contrast and without the affection of environment sources. In this article, a range-gated underwater laser imaging system is built, which consists of laser illumination system, photoelectric imaging system and control system. The laser illumination system includes a light-pumped solid state doubled ND-YAG laser(532nm) which laser power and frequency can be adjusted and an optics expanding system of variable ratio. The photoelectric imaging system includes a gated Intensified CCD(ICCD) cameras which ICCD scheduling, gate width, delay time and gain can be adjusted and a optics received system of variable ratio. In order to acquire effectual target image using range-gated underwater laser imaging system, appropriate control parameters that include laser power and frequency, ICCD scheduling, gate width, delay time and gain, optics expanding system ratio and optics received system ratio must be given accurately. A control system which used C8051F320 and C8051F040 (MCU) as the core is designed, the control system can effectively control seven parameters that given above. The construction of software and hardware of the control system is introduced. And target image of underwater distance 25 m and 40m is given, Experimental results showed that the control system has high control precision, safe and stable operation and good speed adjusting performance can be achieved. It can be satisfied to apply to underwater target detection.

  16. Design and implementation of control system for range-gated underwater laser imaging

    NASA Astrophysics Data System (ADS)

    Ge, Wei-Long; Zhang, Xiao-Hui; Han, Hong-Wei; Hua, Liang-Hong

    2011-11-01

    There is currently considerable in developing underwater target detection, the underwater imaging system can be divided into active imaging system and passive system. The main feature of the active imaging system is that they use light sources to illuminate the targets and collect the reflection from targets. The advantages of active imaging system over passive imaging systems are high contrast and without the affection of environment sources. In this article, a range-gated underwater laser imaging system is built, which consists of laser illumination system, photoelectric imaging system and control system. The laser illumination system includes a light-pumped solid state doubled ND-YAG laser(532nm) which laser power and frequency can be adjusted and an optics expanding system of variable ratio. The photoelectric imaging system includes a gated Intensified CCD(ICCD) cameras which ICCD scheduling, gate width, delay time and gain can be adjusted and a optics received system of variable ratio. In order to acquire effectual target image using range-gated underwater laser imaging system, appropriate control parameters that include laser power and frequency, ICCD scheduling, gate width, delay time and gain, optics expanding system ratio and optics received system ratio must be given accurately. A control system which used C8051F320 and C8051F040 (MCU) as the core is designed, the control system can effectively control seven parameters that given above. The construction of software and hardware of the control system is introduced. And target image of underwater distance 25 m and 40m is given, Experimental results showed that the control system has high control precision, safe and stable operation and good speed adjusting performance can be achieved. It can be satisfied to apply to underwater target detection.

  17. Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits

    PubMed Central

    Ivanenko, Y. P.; Cappellini, G.; Solopova, I. A.; Grishin, A. A.; MacLellan, M. J.; Poppele, R. E.; Lacquaniti, F.

    2013-01-01

    Human locomotor movements exhibit considerable variability and are highly complex in terms of both neural activation and biomechanical output. The building blocks with which the central nervous system constructs these motor patterns can be preserved in patients with various sensory-motor disorders. In particular, several studies highlighted a modular burst-like organization of the muscle activity. Here we review and discuss this issue with a particular emphasis on the various examples of adaptation of locomotor patterns in patients (with large fiber neuropathy, amputees, stroke and spinal cord injury). The results highlight plasticity and different solutions to reorganize muscle patterns in both peripheral and central nervous system lesions. The findings are discussed in a general context of compensatory gait mechanisms, spatiotemporal architecture and modularity of the locomotor program. PMID:24032016

  18. Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice.

    PubMed

    Milan, Léa; Barrière, Grégory; De Deurwaerdère, Philippe; Cazalets, Jean-René; Bertrand, Sandrine S

    2014-01-01

    Mutations in the gene that encodes Cu/Zn-superoxide dismutase (SOD1) are the cause of approximately 20% of familial forms of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While ALS symptoms appear in adulthood, spinal motoneurons exhibit functional alterations as early as the embryonic and postnatal stages in the murine model of ALS, the SOD1 mice. Monoaminergic - i.e., dopaminergic (DA), serotoninergic (5-HT), and noradrenergic (NA) - pathways powerfully control spinal networks and contribute significantly to their embryonic and postnatal maturation. Alterations in monoaminergic neuromodulation during development could therefore lead to impairments in the motoneuronal physiology. In this study, we sought to determine whether the monoaminergic spinal systems are modified in the early stages of development in SOD1 mice. Using a post-mortem analysis by high performance liquid chromatography (HPLC), monoaminergic neuromodulators and their metabolites were quantified in the lumbar spinal cord of SOD1 and wild-type (WT) mice aged one postnatal day (P1) and P10. This analysis underscores an increased content of DA in the SOD1 lumbar spinal cord compared to that of WT mice but failed to reveal any modification of the other monoaminergic contents. In a next step, we compared the efficiency of the monoaminergic compounds in triggering and modulating fictive locomotion in WT and SOD1 mice. This study was performed in P1-P3 SOD1 mice and age-matched control littermates using extracellular recordings from the lumbar ventral roots in the in vitro isolated spinal cord preparation. This analysis revealed that the spinal networks of SOD1(G93A) mice could generate normal locomotor activity in the presence of NMA-5-HT. Interestingly, we also observed that SOD1 spinal networks have an increased sensitivity to NA compared to WT spinal circuits but exhibited similar DA responses. PMID:25071458

  19. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  20. A Hypothetical Perspective on the Relative Contributions of Strategic and Adaptive Control Mechanisms in Plastic Recalibration of Locomotor Heading Direction

    NASA Technical Reports Server (NTRS)

    Richards, J. T.; Mulavara, A. P.; Ruttley, T.; Peters, B. T.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of the control of position and trajectory during over-ground locomotion, which functionally reflects adaptive changes in the sensorimotor integration of visual, vestibular, and proprioceptive cues (Mulavara et al., 2005). The objective of this study was to investigate how strategic changes in torso control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping.

  1. Modeling and control of an unmanned underwater vehicle using a mass moving system

    NASA Astrophysics Data System (ADS)

    Byun, Seung-Woo; Kim, Donghee; Choi, Hyeung-Sik; Kim, Joon-Young

    2015-03-01

    This paper describes the mathematical modeling and control algorithms of an unmanned underwater vehicle (UUV) named Minekiller. This UUV has two longitudinal thrusters, one vertical thruster, and an internal mass moving system, which can control the pitch rate. The UUV is equipped with a movable mass for pitch control. It is different from other common UUVs, in that it can maintain a static pitch angle. The UUV's 6-DOF (Degrees of Freedom) dynamics model is derived from the hydrodynamic forces and moments acting on it. We applied these hydrodynamic coefficients to dynamic modeling for numerical simulations by MATLAB/SIMULINK©. To compare the performance in various cases, we used a PID controller for depth and heading control. Also, the navigation controller can analyze the way-point tracking performance. These simulation results show the performance of the control algorithms and maneuvering performance of the underwater vehicle.

  2. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury

    PubMed Central

    Smith, Andrew C.; Mummidisetty, Chaithanya K.

    2015-01-01

    Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs. PMID:25609110

  3. Locomotor control of limb force switches from minimal intervention principle in early adaptation to noise reduction in late adaptation

    PubMed Central

    Selgrade, Brian P.

    2014-01-01

    During movement, errors are typically corrected only if they hinder performance. Preferential correction of task-relevant deviations is described by the minimal intervention principle but has not been demonstrated in the joints during locomotor adaptation. We studied hopping as a tractable model of locomotor adaptation of the joints within the context of a limb-force-specific task space. Subjects hopped while adapting to shifted visual feedback that induced them to increase peak ground reaction force (GRF). We hypothesized subjects would preferentially reduce task-relevant joint torque deviations over task-irrelevant deviations to increase peak GRF. We employed a modified uncontrolled manifold analysis to quantify task-relevant and task-irrelevant joint torque deviations for each individual hop cycle. As would be expected by the explicit goal of the task, peak GRF errors decreased in early adaptation before reaching steady state during late adaptation. Interestingly, during the early adaptation performance improvement phase, subjects reduced GRF errors by decreasing only the task-relevant joint torque deviations. In contrast, during the late adaption performance maintenance phase, all torque deviations decreased in unison regardless of task relevance. In deadaptation, when the shift in visual feedback was removed, all torque deviations decreased in unison, possibly because performance improvement was too rapid to detect changes in only the task-relevant dimension. We conclude that limb force adaptation in hopping switches from a minimal intervention strategy during performance improvement to a noise reduction strategy during performance maintenance, which may represent a general control strategy for locomotor adaptation of limb force in other bouncing gaits, such as running. PMID:25475343

  4. Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning

    NASA Astrophysics Data System (ADS)

    Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok

    2015-03-01

    In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.

  5. A Neural Auto-depth Controller for an Unmanned Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Sutton, R.; Johnson, C.; Roberts, G. N.

    Artificial neural networks offer an alternative strategy for the nonlinear control of unmanned underwater vehicles (UUVS). This paper investigates the use of a multi-layered perceptron (MLP) network in controlling an UUV over a sea-bed profile and compares the use of applying chemotaxis learning to that of the more commonly employed back propagation algorithm. The results show that, for differing sized MLPs, the chemotaxis algorithm produces a successful controller over the sea-bed profile in an improved training time. Also it will be shown that, in the presence of noise and change in vehicle mass, the neural controller out-performed a classical proportional-integral-derivative controller.

  6. The integrated platform of controlling and digital video processing for underwater range-gated laser imaging system

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Qiu, Su; Jin, Wei-qi; Yu, Bing; Li, Li; Tian, Dong-kang

    2015-04-01

    Laser range-gated imaging is one of the effective techniques of underwater optical imaging. It could make the viewing distance up to 4 to 7 times with the video image processing technology. Accordingly, the control and image processing technologies come to be the key technologies for the underwater laser range-gated imaging system. In this article, the integrated platform of controlling and digital video processing for the underwater range-gated laser imaging system based on FPGA has been introduced. It accomplishes both the communication for remote control system as the role of lower computer and the task of high-speed images grabbing and video enhance processing as the role of high-speed image processing platform. The host computer can send commands composed to the FPGA, vectoring the underwater range-gated laser imaging system to executive operation.

  7. Admixture enhanced controlled low-strength material for direct underwater injection with minimal cross-contamination

    SciTech Connect

    Hepworth, H.K.; Davidson, J.S.; Hooyman, J.L.

    1997-03-01

    Commercially available admixtures have been developed for placing traditional concrete products under water. This paper evaluates adapting anti-washout admixture (AWA) and high range water reducing admixture (HRWRA) products to enhance controlled low-strength materials (CLSMs) for underwater placement. A simple experimental scale model (based on dynamic and geometric similitude) of typical grout pump emplacement equipment has been developed to determine the percentage of cementing material washed out. The objective of this study was to identify proportions of admixtures and underwater CLSM emplacement procedures which would minimize the cross-contamination of the displaced water while maintaining the advantages of CLSM. Since the displaced water from radioactively contaminated systems must be subsequently treated prior to release to the environment, the amount of cross-contamination is important for cases in which cementing material could form hard sludges in a water treatment facility and contaminate the in-place CLSM stabilization medium.

  8. The Role of Storage Lipids in the Relation between Fecundity, Locomotor Activity, and Lifespan of Drosophila melanogaster Longevity-Selected and Control Lines

    PubMed Central

    Nasiri Moghadam, Neda; Holmstrup, Martin; Manenti, Tommaso; Brandt Mouridsen, Marie; Pertoldi, Cino; Loeschcke, Volker

    2015-01-01

    The contribution of insect fat body to multiple processes, such as development, metamorphosis, activity, and reproduction results in trade-offs between life history traits. In the present study, age-induced modulation of storage lipid composition in Drosophila melanogaster longevity-selected (L) and non-selected control (C) lines was studied and the correlation between total body fat mass and lifespan assessed. The trade-offs between fecundity, locomotor activity, and lifespan were re-evaluated from a lipid-related metabolic perspective. Fewer storage lipids in the L lines compared to the C lines supports the impact of body fat mass on extended lifespan. The higher rate of fecundity and locomotor activity in the L lines may increase the lipid metabolism and enhance the lipolysis of storage lipids, reducing fat reserves. The correlation between neutral lipid fatty acids and fecundity, as well as locomotor activity, varied across age groups and between the L and C lines. The fatty acids that correlated with egg production were different from the fatty acids that correlated with locomotor activity. The present study suggests that fecundity and locomotor activity may positively affect the lifespan of D. melanogaster through the inhibition of fat accumulation. PMID:26115349

  9. Remote-Controlled Inspection Robot for Nuclear Facilities in Underwater Environment

    SciTech Connect

    Yasuhiro Miwa; Syuichi Satoh; Naoya Hirose

    2002-07-01

    A remote-controlled inspection robot for nuclear facilities was developed. This is a underwater robot technology combined with inspection and flaw removal technologies. This report will describe the structure and performance of this robot. The inspection robot consists of two parts. The one is driving equipment, and the other is inspection and grinding units. It can swim in the tank, move around the tank wall, and stay on the inspection area. After that it starts inspection and flaw removal with a special grinding wheel. This technology had been developed to inspect some Radioactive Waste (RW) tanks in operating nuclear power plants. There are many RW tanks in these plants, which human workers can be hard to access because of a high level dose. This technology is too useful for inspection works of human-inaccessible areas. And also, in conventional inspection process, some worker go into the tank and set up scaffolding after full drainage and decontamination. It spends too much time for these preparations. If tank inspection and flaw removal can be performed in underwater, the outage period will be reduced. Remote-controlled process can be performed in underwater. This is the great advantage for plant owners. Since 1999 we have been applying this inspection robot to operating nuclear 11 facilities in Japan. (authors)

  10. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

    PubMed Central

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  11. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity.

    PubMed

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  12. Research on framework for formation control of multiple underwater robots in a dynamic environment

    NASA Astrophysics Data System (ADS)

    Meng, Xian-Song; Xu, Hong-Gen; Zhang, Ming-Jun

    2004-12-01

    In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem. The approach allows online planning of the formation paths using a Dijkstra’s search algorithm based on the current sensor data. The formation is allowed to be dynamically changed in order to avoid obstacles in the environment. A controller is designed to keep the robots in their planned trajectories. It is shown that the approach is effective and feasible by the simulation of computer.

  13. Postural Control during Upper Body Locomotor-Like Movements: Similar Synergies Based on Dissimilar Muscle Modes

    PubMed Central

    Danna-Dos-Santos, Alessander; Shapkova, Elena Yu.; Shapkova, Alexandra L.; Degani, Adriana M.; Latash, Mark L.

    2009-01-01

    We studied the organization of leg and trunk muscles into groups (M-modes) and co-variation of M-mode involvement (M-mode synergies) during whole-body tasks associated with large variations of the moment of force about the vertical body axis. Our major questions were: (1) Can muscle activation patterns during such tasks be described with a few M-modes common across tasks and subjects? (2) Do these modes form the basis for synergies stabilizing MZ time pattern? (3) Will this organization differ between an explicit body rotation task and a task associated with locomotor-like alternating arm movements? Healthy subjects stood barefoot on the force platform and performed two motor tasks while paced by the metronome at 0.7, 1.0, and 1.4 Hz: Cyclic rotation of the upper body about the vertical body axis (body rotation task), and alternating rhythmic arm movements imitating those during running or quick walking (arm movement task). Principal component analysis was used to identify three M-modes within the space of integrated indices of muscle activity. The M-mode vectors showed clustering neither across subjects nor across frequencies. Variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect the average value of MZ shift ("good variance") and the other that did. An index was computed reflecting the relative amount of the "good variance"; positive values of this index have been interpreted as reflecting a multi-M-mode synergy stabilizing the MZ trajectory. On average, the index was positive for both tasks and across all frequencies studied. However, the magnitude of the index was smaller for the intermediate frequency (1 Hz). The results show that the organization of muscles into groups during relatively complex whole-body tasks can differ significantly across both task variations and subjects. Nevertheless, the central nervous system seems to be able to build MZ stabilizing synergies based on different sets of M

  14. Robust control based on feedback linearization for roll stabilizing of autonomous underwater vehicle under wave disturbances

    NASA Astrophysics Data System (ADS)

    Pan, Li-Xin; Jin, Hong-Zhang; Wang, Lin-Lin

    2011-06-01

    In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.

  15. EFPC: An Environmentally Friendly Power Control Scheme for Underwater Sensor Networks

    PubMed Central

    Yang, Qiuling; Su, Yishan; Jin, Zhigang; Yao, Guidan

    2015-01-01

    In oceans, the limited acoustic spectrum resource is heavily shared by marine mammals and manmade systems including underwater sensor networks. In order to limit the negative impact of acoustic signal on marine mammals, we propose an environmentally friendly power control (EFPC) scheme for underwater sensor networks. EFPC allocates transmission power of sensor nodes with a consideration of the existence of marine mammals. By applying a Nash Equilibrium based utility function with a set of limitations to optimize transmission power, the proposed power control algorithm can conduct parallel transmissions to improve the network’s goodput, while avoiding interference with marine mammals. Additionally, to localize marine mammals, which is a prerequisite of EFPC, we propose a novel passive hyperboloid localization algorithm (PHLA). PHLA passively localize marine mammals with the help of the acoustic characteristic of these targets. Simulation results show that PHLA can localize most of the target with a relatively small localization error and EFPC can achieve a close goodput performance compared with an existing power control algorithm while avoiding interfering with marine mammals. PMID:26593922

  16. Remote full control, by an Internet link, of an underwater acoustics laboratory

    NASA Astrophysics Data System (ADS)

    Ranz-Guerra, Carlos; Cobo-Parra, Pedro; Siguero-Guerra, Manuel; Fernandez-Fernandez, Alejandro

    2002-11-01

    The Underwater Tank Laboratory located at the Instituto de Acustica, CSIC, Madrid, has been fully reshaped. Now, the two bridges (emission and reception) have full automatic motion control by the operator. These capabilities were complemented by a new management of signal generation, signal acquisition, processing and storing of data. This new framework makes many of the tasks to be performed in this kind of facility easier by putting at the hands of the operator specific friendly software programs that attend to the main aspects of the ongoing experiment. In one step forward, the remote control of all the functionalities was considered feasible. The potentialities of the Internet were thought to provide a new dimension to the laboratory by lowering the difficulties of taking over the full control of the installation, by any user around the world. Here is one real example of how this achievement can be carried out. The Underwater Acoustics Laboratory at the Instituto de Acustica, CSIC, is now ready to be run by any one interested. The main lines, over which this problem has been considered, are described in this paper. [Work supported by PN on Science and Technology and CSIC, Spain.

  17. Underwater acoustic sensor networks: Medium access control, routing and reliable transfer

    NASA Astrophysics Data System (ADS)

    Xie, Peng

    Recently there have been growing interests in monitoring aquatic environments for scientific exploration, commercial exploitation and coastline protection. The ideal vehicle for this type of extensive monitoring is a mobile underwater sensor network (M-UWSN), consisting of a large number of low cost underwater sensors that can move with water currents and dispersion. M-UWSNs are significantly different from terrestrial sensor networks: (1) Radio channels do not work well under water. They must be replaced by acoustic channels, which feature long propagation delays, low communication bandwidth and high channel error rates; (2) While most ground sensors are static, underwater sensor nodes may move with water currents (and other underwater activities), as introduces passive sensor mobility. Due to the very different environment properties and the unique characteristics of acoustic channels, the protocols developed for terrestrial sensor networks are not applicable to M-UWSNs, and new research at every level of the protocol suite is demanded. In this dissertation work, we investigate three fundamental networking problems in M-UWSN design: medium access control, multi-hop routing and reliable data transfer. (1) Medium access control (MAC): the long propagation delays and narrow communication bandwidth of acoustic channels pose the major challenges to the energy-efficient MAC design in M-UWSNs. For the first time, we formally investigate the random access and RTS/CTS techniques in networks with long propagation delays and low communication bandwidth (as in M-UWSNs). Based on this study, we propose a novel reservation-based MAC approach, called R-MAC, for dense underwater sensor networks with unevenly distributed (spatially and temporally) traffic. Simulation results show that R-MAC is not only energy efficient but also supports fairness. (2) Multi-hop routing: In M-UWSNs, energy efficiency and mobility handling are the two major concerns for multi-hop routing, which have

  18. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    PubMed

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. PMID:26506019

  19. Locomotor Expertise Predicts Infants' Perseverative Errors

    ERIC Educational Resources Information Center

    Berger, Sarah E.

    2010-01-01

    This research examined the development of inhibition in a locomotor context. In a within-subjects design, infants received high- and low-demand locomotor A-not-B tasks. In Experiment 1, walking 13-month-old infants followed an indirect path to a goal. In a control condition, infants took a direct route. In Experiment 2, crawling and walking…

  20. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.

    PubMed

    Huang, Stephanie; Wensman, Jeffrey P; Ferris, Daniel P

    2016-05-01

    Lower limb amputees can use electrical activity from their residual muscles for myoelectric control of a powered prosthesis. The most common approach for myoelectric control is a finite state controller that identifies behavioral states and discrete changes in motor tasks. An alternative approach to state-based myoelectric control is continuous proportional myoelectric control where ongoing electrical activity has a proportional relationship to the prosthetic joint torque or power. To test the potential of continuous proportional myoelectric control for powered lower limb prostheses, we recruited five unilateral transtibial amputees to walk on a treadmill with an experimental powered prosthesis. Subjects walked using the powered prosthesis with and without visual feedback of their control signal in real time. Amputee subjects were able to adapt their residual muscle activation patterns to alter prosthetic ankle mechanics when we provided visual feedback of their myoelectric control signal in real time. During walking with visual feedback, subjects significantly increased their peak prosthetic ankle power ( p = 0.02, ANOVA) and positive work ( p = 0.02, ANOVA) during gait above their prescribed prosthesis values. However, without visual feedback, the subjects did not increase their peak ankle power during push off. These results show that amputee users were able to volitionally alter their prosthesis mechanics during walking, but only when given an explicit goal for their residual muscle motor commands. Future studies that examine the motor and learning capabilities of lower limb amputees using their residual muscles for continuous proportional myoelectric control are needed to determine the viability of integrating continuous high-level control with existing finite state prosthetic controllers. PMID:26057851

  1. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function.

    PubMed

    Dawley, James A; Fite, Kevin B; Fulk, George D

    2013-06-01

    This paper presents the development and experimental evaluation of a volitional control architecture for a powered-knee transfemoral prosthesis that affords the amputee user with direct control of knee impedance using measured electromyogram (EMG) potentials of antagonist muscles in the residual limb. The control methodology incorporates a calibration procedure performed with each donning of the prosthesis that characterizes the co-contraction levels as the user performs volitional phantom-knee flexor and extensor contractions. The performance envelope for EMG control of impedance is then automatically shaped based on the flexor and extensor calibration datasets. The result is a control architecture that is optimized to the user's current co-contraction activity, providing performance robustness to variation in sensor placement or physiological changes in the residual-limb musculature. Experimental results with a single unilateral transfemoral amputee user demonstrate consistent and repeatable control performance for level walking at self-selected speed over a multi-week, multi-session period of evaluation. PMID:24187208

  2. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.

    PubMed

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-01-01

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018

  3. Ionically Crosslinked Polymer Networks for Underwater Adhesion and Long-Term Controlled Release

    NASA Astrophysics Data System (ADS)

    Lawrence, Patrick G.

    Underwater adhesives have several potential applications in industry as well as in medicine. Much of the recent research in this area has focused on adhesive preparation from biological or custom-designed biomimetic polymers. As a simpler alternative, we have recently shown that ionically crosslinked, gel-like underwater adhesive complexes can be prepared by the mixing of the readily-available and inexpensive polyelectrolyte, poly(allylamine hydrochloride) (PAH), with commonly-used multivalent anions, pyrophosphate (PPi) and tripolyphosphate (TPP). Remarkably, these gel-like complexes adhere to both hydrophilic and hydrophobic substrates under water with tensile adhesive strength considerably greater than that of Scotch Permanent Double Sided Tape (up to ˜400 kPa vs. ˜85 kPa when used as a pressure-sensitive adhesives) and due to the reversible nature of the ionic crosslinks, self-heal when torn. These complexes also exhibit very high storage moduli (greater than 100 kPa), indicative of a very high crosslink density. The high crosslink density allow these gel-like complexes to also entrap and deliver small molecule payloads over multiple-month timescales. Moreover, their formation and rheological/adhesion properties can be controlled using external stimuli (pH and ionic strength). In this thesis we characterize formation and rheological/adhesion properties of gel-like PAH/PPi and PAH/TPP complexes the through the use of dynamic and electrophoretic light scattering, rheology and tensile adhesion tests. We also describe their sensitivity to pH and ionic strength, and explain how the complexes can be dissolved on demand by raising or lowering the ambient pH, and can form spontaneously by increasing the NaCl concentration (which can be used for developing injectable underwater adhesive formulations). Finally, we demonstrate the ability of these adhesives to release small molecule payloads over multiple-month timescales by characterizing their ability to take up and

  4. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    PubMed Central

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-01-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm−2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments. PMID:27484401

  5. A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements

    PubMed Central

    Britz, Olivier; Zhang, Jingming; Grossmann, Katja S; Dyck, Jason; Kim, Jun C; Dymecki, Susan; Gosgnach, Simon; Goulding, Martyn

    2015-01-01

    V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 PMID:26465208

  6. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    NASA Astrophysics Data System (ADS)

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-08-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm‑2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.

  7. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour.

    PubMed

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R; Gather, Malte C

    2016-01-01

    Organic light emitting diodes (OLEDs) are in widespread use in today's mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm(-2)) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments. PMID:27484401

  8. Enhancement of Contralesional Motor Control Promotes Locomotor Recovery after Unilateral Brain Lesion

    PubMed Central

    Hua, Xu-Yun; Qiu, Yan-Qun; Wang, Meng; Zheng, Mou-Xiong; Li, Tie; Shen, Yun-Dong; Jiang, Su; Xu, Jian-Guang; Gu, Yu-Dong; Tsien, JoeZ.; Xu, Wen-Dong

    2016-01-01

    There have been controversies on the contribution of contralesional hemispheric compensation to functional recovery of the upper extremity after a unilateral brain lesion. Some studies have demonstrated that contralesional hemispheric compensation may be an important recovery mechanism. However, in many cases where the hemispheric lesion is large, this form of compensation is relatively limited, potentially due to insufficient connections from the contralesional hemisphere to the paralyzed side. Here, we used a new procedure to increase the effect of contralesional hemispheric compensation by surgically crossing a peripheral nerve at the neck in rats, which may provide a substantial increase in connections between the contralesional hemisphere and the paralyzed limb. This surgical procedure, named cross-neck C7-C7 nerve transfer, involves cutting the C7 nerve on the healthy side and transferring it to the C7 nerve on the paretic side. Intracortical microstimulation, Micro-PET and histological analysis were employed to explore the cortical changes in contralesional hemisphere and to reveal its correlation with behavioral recovery. These results showed that the contralesional hemispheric compensation was markedly strengthened and significantly related to behavioral improvements. The findings also revealed a feasible and effective way to maximize the potential of one hemisphere in controlling both limbs. PMID:26732072

  9. Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    PubMed Central

    Chen, Jiawang; Gu, Linyi

    2014-01-01

    For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time. PMID:24983004

  10. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1993-04-20

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  11. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1992-12-31

    This invention is comprised of a self-contained, waterproof, water-submersible, remote-controlled apparatus provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer {plus_minus} 45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer {plus_minus} 10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  12. Underwater manipulator

    DOEpatents

    Schrum, Phillip B.; Cohen, George H.

    1993-01-01

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer .+-.45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer .+-.10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  13. Communications and Control for Enhanced Autonomy in Underwater Vehicles for Deep Oceanographic Research

    NASA Astrophysics Data System (ADS)

    Jakuba, M.; Kinsey, J. C.; Yoerger, D. R.; Whitcomb, L. L.; Camilli, R.; Murphy, C.; Bowen, A.; German, C. R.

    2010-12-01

    NASA’s Astrobiology Science and Technology for Exploring Planets (ASTEP) program is a science-driven program to produce advances in scientific and technological capabilities for planetary exploration. Oceanographic robotic vehicles and planetary exploration robots have proven to be highly effective scientific tools for performing scientific research in remote, extreme, and hostile environments that preclude direct human presence. In both domains, the planets and the world’s oceans, human oversight of remote robotic exploration can dramatically enhance scientific return in comparison to purely pre-planned missions by combining the perception, intelligence, and domain knowledge of the human operators with the super-human physical and sensory capabilities of robots. The degree of human oversight, however, is restricted in sea and space by physical limits on the bandwidth and time delay of communications between human operators and remote robotic platforms. Enhanced robotic autonomy can alleviate this obstacle. We present a communications and control architecture for underwater oceanographic robot vehicles that has permitted us to introduce elements of enhanced autonomy into operations with the Woods Hole Oceanographic Institution's Autonomous Underwater Vehicles (AUVs) Nereus and Sentry. Our architecture is designed to facilitate: (1) autonomous distillation of scientific data and transmission of salient synopses from the remote vehicle to its human operators; (2) high-level near real-time human supervision and control of mission programming; (3) semi-supervised learning of environmental models for enhanced survey and search mission effectiveness. Specific capabilities our group has demonstrated include selective data delivery via acoustic link; near real-time reprogramming of vehicle mission programs during otherwise preplanned dives; and validation of autonomous decision-making processes with human-supervision. These elements have been recently demonstrated

  14. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Haghighi, Reza; Cloitre, Audren; Alvarado, Pablo Valdivia Y; Miao, Jianmin; Triantafyllou, Michael

    2015-06-01

    A major difference between manmade underwater robotic vehicles (URVs) and undersea animals is the dense arrays of sensors on the body of the latter which enable them to execute extreme control of their limbs and demonstrate super-maneuverability. There is a high demand for miniaturized, low-powered, lightweight and robust sensors that can perform sensing on URVs to improve their control and maneuverability. In this paper, we present the design, fabrication and experimental testing of two types of microelectromechanical systems (MEMS) sensors that benefit the situational awareness and control of a robotic stingray. The first one is a piezoresistive liquid crystal polymer haircell flow sensor which is employed to determine the velocity of propagation of the stingray. The second one is Pb(Zr(0.52)Ti(0.48))O3 piezoelectric micro-diaphragm pressure sensor which measures various flapping parameters of the stingray's fins that are key parameters to control the robot locomotion. The polymer flow sensors determine that by increasing the flapping frequency of the fins from 0.5 to 3 Hz the average velocity of the stingray increases from 0.05 to 0.4 BL s(-1), respectively. The role of these sensors in detecting errors in control and functioning of the actuators in performing tasks like flapping at a desired amplitude and frequency, swimming at a desired velocity and direction are quantified. The proposed sensors are also used to provide inputs for a model predictive control which allows the robot to track a desired trajectory. Although a robotic stingray is used as a platform to emphasize the role of the MEMS sensors, the applications can be extended to most URVs. PMID:25984934

  15. Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances

    NASA Astrophysics Data System (ADS)

    Kim, Minsung; Joe, Hangil; Kim, Jinwhan; Yu, Son-cheol

    2015-10-01

    We propose an integral sliding mode controller (ISMC) to stabilse an autonomous underwater vehicle (AUV) which is subject to modelling errors and often suffers from unknown environmental disturbances. The ISMC is effective in compensating for the uncertainties in the hydrodynamic and hydrostatic parameters of the vehicle and rejecting the unpredictable disturbance effects due to ocean waves, tides and currents. The ISMC is comprised of an equivalent controller and a switching controller to suppress the parameter uncertainties and external disturbances, and its closed-loop system is exponentially stable. Numerical simulations were performed to validate the proposed control approach, and experimental tests using Cyclops AUV were carried out to demonstrate its practical feasibility.

  16. Google™ underwater

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-10-01

    The first underwater panoramic images were added to Google Maps™, the company announced on 25 September. This first “underwater Street View collection,” launched in partnership with the Caitlin Seaview Survey, provides people with the opportunity to “become the next virtual Jacques Cousteau.” For more information, see: maps.google.com/ocean.

  17. R7BP Complexes With RGS9-2 and RGS7 in the Striatum Differentially Control Motor Learning and Locomotor Responses to Cocaine

    PubMed Central

    Anderson, Garret R; Cao, Yan; Davidson, Steve; Truong, Hai V; Pravetoni, Marco; Thomas, Mark J; Wickman, Kevin; Giesler, Glenn J; Martemyanov, Kirill A

    2010-01-01

    In the striatum, signaling through G protein-coupled dopamine receptors mediates motor and reward behavior, and underlies the effects of addictive drugs. The extent of receptor responses is determined by RGS9-2/Gβ5 complexes, a striatally enriched regulator that limits the lifetime of activated G proteins. Recent studies suggest that the function of RGS9-2/Gβ5 is controlled by the association with an additional subunit, R7BP, making elucidation of its contribution to striatal signaling essential for understanding molecular mechanisms of behaviors mediated by the striatum. In this study, we report that elimination of R7BP in mice results in motor coordination deficits and greater locomotor response to morphine administration, consistent with the essential role of R7BP in maintaining RGS9-2 expression in the striatum. However, in contrast to previously reported observations with RGS9-2 knockouts, mice lacking R7BP do not show higher sensitivity to locomotor-stimulating effects of cocaine. Using a striatum-specific knockdown approach, we show that the sensitivity of motor stimulation to cocaine is instead dependent on RGS7, whose complex formation with R7BP is dictated by RGS9-2 expression. These results indicate that dopamine signaling in the striatum is controlled by concerted interplay between two RGS proteins, RGS7 and RGS9-2, which are balanced by a common subunit, R7BP. PMID:20043004

  18. Glucosamine-containing supplement improves locomotor functions in subjects with knee pain: a randomized, double-blind, placebo-controlled study

    PubMed Central

    Kanzaki, Noriyuki; Ono, Yoshiko; Shibata, Hiroshi; Moritani, Toshio

    2015-01-01

    Background The aim of this study was to investigate the ability of a glucosamine-containing supplement to improve locomotor functions in subjects with knee pain. Methods A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted for 16 weeks in 100 Japanese subjects (age, 51.8±0.8 years) with knee pain. Subjects were randomly assigned to one of the two supplements containing 1) 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, and 5 μg of vitamin D per day (GCQID group, n=50) or 2) a placebo (placebo group, n=50). Japanese Knee Osteoarthritis Measure, visual analog scale score, normal walking speed, and knee-extensor strength were measured to evaluate the effects of the supplement on knee-joint functions and locomotor functions. Results In subjects eligible for efficacy assessment, there was no significant group × time interaction, and there were improvements in knee-joint functions and locomotor functions in both groups, but there was no significant difference between the groups. In subjects with mild-to-severe knee pain at baseline, knee-extensor strength at week 8 (104.6±5.0% body weight vs 92.3±5.5% body weight, P=0.030) and the change in normal walking speed at week 16 (0.11±0.03 m/s vs 0.05±0.02 m/s, P=0.038) were significantly greater in the GCQID group than in the placebo group. Further subgroup analysis based on Kellgren–Lawrence (K–L) grade showed that normal walking speed at week 16 (1.36±0.05 m/s vs 1.21±0.02 m/s, P<0.05) was significantly greater in the GCQID group than in the placebo group in subjects with K–L grade I. No adverse effect of treatment was identified in the safety assessment. Conclusion In subjects with knee pain, GCQID supplementation was effective for relieving knee pain and improving locomotor functions. PMID:26604721

  19. Vision Underwater.

    ERIC Educational Resources Information Center

    Levine, Joseph S.

    1980-01-01

    Provides information regarding underwater vision. Includes a discussion of optically important interfaces, increased eye size of organisms at greater depths, visual peculiarities regarding the habitat of the coastal environment, and various pigment visual systems. (CS)

  20. The 'GALS' locomotor screen.

    PubMed Central

    Doherty, M; Dacre, J; Dieppe, P; Snaith, M

    1992-01-01

    The locomotor system is complex and difficult to examine. A selective clinical process to detect important locomotor abnormalities and functional disability could prove valuable. A screen based on a tested 'minimal' history and examination system is described, together with a simple method of recording. The screen is fast and easy to perform. As well as providing a useful introduction to examination of the locomotor system, the screen includes objective observation of functional movements relevant to activities of daily living. Its inclusion in the undergraduate clerking repertoire could improve junior doctors' awareness and recognition of rheumatic disease and general disability. It could also provide a valuable screening test for use in general practice. Images PMID:1444632

  1. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    SciTech Connect

    Ballou, Philip J.

    1997-02-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor.

  2. A parallel cholinergic brainstem pathway for enhancing locomotor drive

    PubMed Central

    Smetana, Roy; Juvin, Laurent; Dubuc, Réjean; Alford, Simon

    2010-01-01

    The brainstem locomotor system is believed to be organized serially from the mesencephalic locomotor region (MLR) to reticulospinal neurons, which in turn, project to locomotor neurons in the spinal cord. In contrast, we now identify in lampreys, brainstem muscarinoceptive neurons receiving parallel inputs from the MLR and projecting back to reticulospinal cells to amplify and extend durations of locomotor output. These cells respond to muscarine with extended periods of excitation, receive direct muscarinic excitation from the MLR, and project glutamatergic excitation to reticulospinal neurons. Targeted block of muscarine receptors over these neurons profoundly reduces MLR-induced excitation of reticulospinal neurons and markedly slows MLR-evoked locomotion. Their presence forces us to rethink the organization of supraspinal locomotor control, to include a sustained feedforward loop that boosts locomotor output. PMID:20473293

  3. The role of the motor cortex in the control of accuracy of locomotor movements in the cat.

    PubMed Central

    Beloozerova, I N; Sirota, M G

    1993-01-01

    1. The impulse activity of single neurones in the motor cortex (MC) was recorded extracellularly, using movable varnish-insulated tungsten microelectrodes, in six adult, freely moving cats. Neuronal activity was recorded while the cats walked on a flat floor, as they stepped over a series of barriers, and as they walked on the flat rungs of a horizontal ladder. The mean discharge rate (mR) and the depth of frequency modulation (dM) in each cell were estimated over 10-100 steps. 2. The activity of ninety-eight MC cells (Including thirteen pyramidal tract neurones (PTNs)) was recorded during stepping over barriers 25 cm apart. The mR in 66% and the dM in 61% of these cells changed by more than 20% during locomotion with barriers compared to locomotion on the flat (an increase was more often the case). 3. The activity of nine cells was recorded during stepping over barriers 12 cm apart, and the activity of twenty-seven cells (including five PTNs) during walking with barriers only 6 cm apart. The mR in 67% and in 59% of the cells, respectively, and the dM in 56% and in 67% of the cells, respectively, were greater in these locomotor tasks than during locomotion on the flat. 4. The activity of twenty cells was recorded during walking and compared in experiments with different distances between barriers. The mR in 50% and the dM in 75% of the neurones progressively increased when the distance between successive barriers was diminished. 5. The discharge rates of thirteen cells were compared in two different locomotor tasks: (i) when the cat stepped over barriers requiring hyperflexion of the limbs and (ii) when it walked on the flat with loads attached to the distal forelimbs causing a hyperactivity of flexor muscles. The activity of nine cells was different during stepping over the barriers compared to locomotion with loadings on the forelimbs. 6. The activity of 108 cells (twenty-four PTNs) was recorded during walking along a horizontal ladder with flat rungs. The mR of

  4. Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu

    2015-10-01

    Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.

  5. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  6. Underwater Rays

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2008-01-01

    Light beams in wavy unclear water, also called underwater rays, and caustic networks of light formed at the bottom of shallow water are two faces of a single phenomenon. Derivation of the caustic using only simple geometry, Snell's law and simple derivatives accounts for observations such as the existence of the caustic network on vertical walls,…

  7. Locomotor Behaviour of Blattella germanica Modified by DEET

    PubMed Central

    Sfara, Valeria; Mougabure-Cueto, Gastón A.; Zerba, Eduardo N.; Alzogaray, Raúl A.

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  8. Locomotor behaviour of Blattella germanica modified by DEET.

    PubMed

    Sfara, Valeria; Mougabure-Cueto, Gastón A; Zerba, Eduardo N; Alzogaray, Raúl A

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm(2) of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm(2) of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm(2) of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  9. From Antarctica to space: use of telepresence and virtual reality in control of a remote underwater vehicle

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.

    1995-01-01

    We describe an experiment which simulated many aspects of control of a remote vehicle on another planetary surface. We have developed a Telepresence-controlled Remotely Operated underwater Vehicle (TROV) and used it to perform scientific exploration in an ice-covered marine environment near McMurdo Station, Antarctica. The goal of the mission was to use telepresence and virtual reality technology to operate a remote vehicle to perform a scientific study of the marine environment under the sea ice in Antarctica. The TROV was operated both locally, from a habitat building located on the sea ice above a dive hole through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using a control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link used either a stereo display monitor similar to that used locally, or a stereo head-mounted head- tracked display. The remote operators could also view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The actual vehicle was driven either from within the virtual environment or by watching stereo video. Satellite communication was used to transmit stereo video from the TROV to NASA Ames and to provide a bi-directional Internet link to the TROV control computer for command and telemetry signals. All vehicle functions could be controlled remotely over the satellite link. The TROV was operated in Antarctica nearly continuously using both local and remote control for 7 weeks. The results of our experiments suggest that surface rovers using control technology with real time telepresence could vastly expand the range of human exploration from a human base on the Moon or Mars. Planetary surface rovers can also be controlled from Earth, although

  10. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.

    PubMed

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A

    2015-04-01

    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies. PMID:25807584

  11. Effect of caffeine on cocaine locomotor stimulant activity in rats.

    PubMed

    Misra, A L; Vadlamani, N L; Pontani, R B

    1986-03-01

    The effect of caffeine on the locomotor stimulant activity induced by intravenous cocaine in rats was investigated. Low doses of caffeine (20 mg/kg IP) potentiated the locomotor activity induced by 1, 2.5 mg/kg intravenous doses of cocaine and higher doses of caffeine (50, 100 mg/kg IP) had no significant effect. The locomotor stimulant effect of 20 mg/kg IP dose of caffeine per se in vehicle was significantly higher and that with 100 mg/kg dose significantly lower than that of the vehicle control. Thus caffeine produced dose-dependent effects on cocaine-induced locomotor stimulant activity, with low dose potentiating and higher doses having no significant effect on such activity. Pharmacokinetic or dispositional factors did not appear to play a role in potentiation of cocaine locomotor stimulant activity by caffeine. PMID:3703910

  12. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  13. The evolution of locomotor rhythmicity in tetrapods.

    PubMed

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. PMID:23550769

  14. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  15. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  16. Reliability review of the remote tool delivery system locomotor

    SciTech Connect

    Chesser, J.B.

    1999-04-01

    The locomotor being built by RedZone Robotics is designed to serve as a remote tool delivery (RID) system for waste retrieval, tank cleaning, viewing, and inspection inside the high-level waste tanks 8D-1 and 8D-2 at West Valley Nuclear Services (WVNS). The RTD systm is to be deployed through a tank riser. The locomotor portion of the RTD system is designed to be inserted into the tank and is to be capable of moving around the tank by supporting itself and moving on the tank internal structural columns. The locomotor will serve as a mounting platform for a dexterous manipulator arm. The complete RTD system consists of the locomotor, dexterous manipulator arm, cameras, lights, cables, hoses, cable/hose management system, power supply, and operator control station.

  17. GE underwater test facility studies in zero G simulation

    NASA Technical Reports Server (NTRS)

    Fry, R. H.

    1972-01-01

    The underwater test facility (UTF) is described as an indoor controlled environment test facility designed specifically for zero G simulation, hydrospace manned and unmanned equipment development, and personnel training for both space and underwater exploration. Programs conducted in the UTF include: human engineering criteria for maintenance and repairs of space stations, astronaut performance, helmet distortion, underwater telemetry, and blood transfusion.

  18. Underwater lab

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The University of Southern California's Catalina Marine Science Center (CMSC) has announced plans to build an underwater marine research laboratory near Santa Catalina Island off the California coast. The project, which will take 2 years to build, will be sponsored by the National Oceanic and Atmospheric Administration (NOAA). The laboratory will be similar in concept to the U.S. Navy Sea Lab III, which was canceled some time ago.The project's purpose is to give divers access to a laboratory without having to surface. The project leader, Andrew Pilmanis, of the University of Southern California, stated recently (Industrial Research and Development, July 1983): “By the nature of the work, scientists require a lot of bottom time, and to do it by scuba isn't practical…. The only way to do that is with saturation diving. Once the diver is saturated with inert gas, whether the individual stays a few days or for months, only one decompression is required.” Divers will typically stay in the laboratory for 7-10 days. The laboratory will initially be placed at a depth of 20 m, later to be refloated and located at depths to 37 m.

  19. Underwater Sensor Nodes and Networks

    PubMed Central

    Lloret, Jaime

    2013-01-01

    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489

  20. AURP: an AUV-aided underwater routing protocol for underwater acoustic sensor networks.

    PubMed

    Yoon, Seokhoon; Azad, Abul K; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved. PMID:22438740

  1. AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Yoon, Seokhoon; Azad, Abul K.; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved. PMID:22438740

  2. The optical monitor system of anti-phobic raid underwater

    NASA Astrophysics Data System (ADS)

    Zheng, Chengdong; Weng, Yan-sheng; Liu, Xi-zhan

    2009-07-01

    The underwater security system, used in the Qingdao sailboat game of 2008 Olympic Games, combined multiple underwater cameras with sonar detectors, forms an underwater barrier, which can observe the movement of suspicious objects and get the underwater video images continuously and instantly. The lighting system can provide sufficient illumination matched with target to reach the best imaging result. The whole system with the function of centralized control, depth measurement, leakage alarm and image processing, is the original equipment in domestic underwater antiterrorism optical research area.

  3. Sex differences in locomotor effects of morphine in the rat

    PubMed Central

    Craft, Rebecca M.; Clark, James L.; Hart, Stephen P.; Pinckney, Megan K.

    2007-01-01

    Sex differences in reinforcing, analgesic and other effects of opioids have been demonstrated; however, the extent to which sex differences in motoric effects of opioids contribute to apparent sex differences in their primary effects is not known. The goal of this study was to compare the effects of the prototypic mu opioid agonist morphine on locomotor activity in male vs. female rats. Saline or morphine (1-10 mg/kg) was administered s.c. to adult Sprague-Dawley rats, which were placed into a photobeam apparatus for 3-5 hr to measure activity. Modulation of morphine's effects by gonadal hormones and by handling (either during the test session or for 4 days before the test session) were examined. Morphine initially suppressed and later increased locomotor activity in both sexes relative to their saline-injected controls, but males were more sensitive than females to the initial locomotor suppressant effect of morphine. Intermittent, brief handling during the 3-hr test session blunted morphine-induced locomotor activation in both sexes. Females in proestrus were the most sensitive to morphine's locomotor-stimulant effect, with females in estrus showing the least response to morphine. Gonadectomized (GDX) males with or without testosterone were equally sensitive to morphine's effects, whereas GDX females treated with estradiol showed a blunted response to morphine's effects, similar to intact females in estrus. Brief handling on each of 4 consecutive days pre-test attenuated morphine's locomotor suppressant effect in males but had no effect in females, thereby eliminating the sex difference. These data suggest that sex differences in morphine's effects on locomotor activity can be attributed to gonadal hormones in females, and to differential stress-induced modulation of morphine's effects in males vs. females. PMID:17217999

  4. Reducing The Cost of Transport and Increasing Walking Distance After Stroke: A Randomized Controlled Trial on Fast Locomotor Training Combined With Functional Electrical Stimulation.

    PubMed

    Awad, Louis N; Reisman, Darcy S; Pohlig, Ryan T; Binder-Macleod, Stuart A

    2016-08-01

    Background Neurorehabilitation efforts have been limited in their ability to restore walking function after stroke. Recent work has demonstrated proof-of-concept for a functional electrical stimulation (FES)-based combination therapy designed to improve poststroke walking by targeting deficits in paretic propulsion. Objectives To determine the effects on the energy cost of walking (EC) and long-distance walking ability of locomotor training that combines fast walking with FES to the paretic ankle musculature (FastFES). Methods Fifty participants >6 months poststroke were randomized to 12 weeks of gait training at self-selected speeds (SS), fast speeds (Fast), or FastFES. Participants' 6-minute walk test (6MWT) distance and EC at comfortable (EC-CWS) and fast (EC-Fast) walking speeds were measured pretraining, posttraining, and at a 3-month follow-up. A reduction in EC-CWS, independent of changes in speed, was the primary outcome. Group differences in the number of 6MWT responders and moderation by baseline speed were also evaluated. Results When compared with SS and Fast, FastFES produced larger reductions in EC (Ps ≤.03). FastFES produced reductions of 24% and 19% in EC-CWS and EC-Fast (Ps <.001), respectively, whereas neither Fast nor SS influenced EC. Between-group 6MWT differences were not observed; however, 73% of FastFES and 68% of Fast participants were responders, in contrast to 35% of SS participants. Conclusions Combining fast locomotor training with FES is an effective approach to reducing the high EC of persons poststroke. Surprisingly, differences in 6MWT gains were not observed between groups. Closer inspection of the 6MWT and EC relationship and elucidation of how reduced EC may influence walking-related disability is warranted. PMID:26621366

  5. Colorful Underwater Sea Creatures

    ERIC Educational Resources Information Center

    McCutcheon, Heather

    2011-01-01

    In this article, the author describes a project wherein students created colorful underwater sea creatures. This project began with a discussion about underwater sea creatures and how they live. The first step was making the multi-colored tissue paper that would become sea creatures and seaweed. Once students had the shapes of their sea creatures…

  6. Underwater Scene Composition

    ERIC Educational Resources Information Center

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  7. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  8. Analysis of recordings from underwater controlled sources in the Pacific Ocean received by the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

    NASA Astrophysics Data System (ADS)

    Yamada, Tomoaki; Zampolli, Mario; Haralabus, Georgios; Heaney, Kevin; Prior, Mark; Isse, Takeshi

    2016-04-01

    Controlled impulsive scientific underwater sound sources in the Northwestern Pacific were observed at two IMS hydroacoustic stations in the Pacific Ocean. Although these experiments were conducted with the aim of studying the physical properties of the plate boundaries inside the Earth, they are also suitable for the investigation of long range underwater acoustic detections. In spite of the fact that the energy of these controlled impulsive scientific sources is significantly smaller than that of nuclear explosions, the signals were obtained by IMS hydrophone stations thousands of kilometres away and also by distant ocean bottom instruments operated by various Institutes, such as the Earthquake Research Institute, University of Tokyo. These experiments provide calibrated (yield, time, location) long-range acoustic transmissions, which enable one to examine the physics of long-range acoustic propagation and to verify the capabilities of the CTBTO IMS network to detect even small explosions.The two IMS stations used are H03 (Juan Fernandez Island, Chile) off the coast of Chile in the Southeastern Pacific and H11 (Wake Island, USA) in the Western Pacific. Both stations consist of two triplets of hydrophones in the SOFAR channel, which monitor the oceans for signs of nuclear explosions. H03 detected low-yield explosions above flat terrain at distances of 15,000 km across the Pacific as well as explosions above the landward slope off the coast of Japan at distances above 16,000 km across the Pacific. These records showed that source signatures, such as short duration and bubble pulses, were preserved over the long propagation distances. It was found that the observed maximum amplitudes from each source exhibit order of magnitude variations even when the yield and detonation depth are the same. The experimental data and transmission loss simulations suggest that bathymetric features around the sources and between the sources and the receivers are the main causes for

  9. An underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  10. Modulation of locomotor activation by the rostromedial tegmental nucleus.

    PubMed

    Lavezzi, Heather N; Parsley, Kenneth P; Zahm, Daniel S

    2015-02-01

    The rostromedial tegmental nucleus (RMTg) is a strong inhibitor of dopamine neurons in the ventral tegmental area (VTA) reported to influence neurobiological and behavioral responses to reward omission, aversive and fear-eliciting stimuli, and certain drugs of abuse. Insofar as previous studies implicate ventral mesencephalic dopamine neurons as an essential component of locomotor activation, we hypothesized that the RMTg also should modulate locomotion activation. We observed that bilateral infusions into the RMTg of the gamma-aminobutyric acid A (GABAA) agonist, muscimol, indeed activate locomotion. Alternatively, bilateral RMTg infusions of the GABAA receptor antagonist, bicuculline, suppress robust activations of locomotion elicited in two distinct ways: (1) by disinhibitory stimulation of neurons in the lateral preoptic area and (2) by return of rats to an environment previously paired with amphetamine administration. The possibility that suppressive locomotor effects of RMTg bicuculline infusions were due to unintended spread of drug to the nearby VTA was falsified by a control experiment showing that bilateral infusions of bicuculline into the VTA produce activation rather than suppression of locomotion. These results objectively implicate the RMTg in the regulation of locomotor activation. The effect is important because much evidence reported in the literature suggests that locomotor activation can be an involuntary behavioral expression of expectation and/or want without which the willingness to execute adaptive behaviors is impaired. PMID:25164249

  11. Smelling and Tasting Underwater.

    ERIC Educational Resources Information Center

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  12. Underwater hydrophone location survey

    NASA Technical Reports Server (NTRS)

    Cecil, Jack B.

    1993-01-01

    The Atlantic Undersea Test and Evaluation Center (AUTEC) is a U.S. Navy test range located on Andros Island, Bahamas, and a Division of the Naval Undersea Warfare Center (NUWC), Newport, RI. The Headquarters of AUTEC is located at a facility in West Palm Beach, FL. AUTEC's primary mission is to provide the U.S. Navy with a deep-water test and evaluation facility for making underwater acoustic measurements, testing and calibrating sonars, and providing accurate underwater, surface, and in-air tracking data on surface ships, submarines, aircraft, and weapon systems. Many of these programs are in support of Antisubmarine Warfare (ASW), undersea research and development programs, and Fleet assessment and operational readiness trials. Most tests conducted at AUTEC require precise underwater tracking (plus or minus 3 yards) of multiple acoustic signals emitted with the correct waveshape and repetition criteria from either a surface craft or underwater vehicle.

  13. Advanced Concepts for Underwater Acoustic Channel Modeling

    NASA Astrophysics Data System (ADS)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  14. Woodlouse locomotor behavior in the assessment of clean and contaminated field sites

    SciTech Connect

    Bayley, M.; Baatrup, E.; Bjerregaard, P.

    1997-11-01

    Specimens of the woodlouse Oniscus asellus were collected at four clean field sites and from a recently closed iron foundry heavily contaminated with zinc, lead, chromium, and nickel. Each of the 30 woodlice per group was housed individually and acclimatized to laboratory conditions for 2 d on a humid plaster of paris substrate. Thereafter, the locomotor behavior of each animal was measured for 4 h employing automated computer-aided video tracking. Linear discriminant analysis of five locomotor parameters revealed average velocity and path length as the principle components separating the polluted site and control animals. Post hoc analysis of the discriminant variable for animals from all five sites showed that the animals from the polluted site where significantly hyperactive when compared to all controls. Further, control animals collected from sites separated by several hundred kilometers were remarkably similar in their locomotor behavior. This preliminary study highlights the potential utility of quantitative analysis of animal locomotor behavior in environmental monitoring.

  15. Survivability design for a hybrid underwater vehicle

    SciTech Connect

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  16. Involvement of nigral oxytocin in locomotor activity: A behavioral, immunohistochemical and lesion study in male rats.

    PubMed

    Angioni, Laura; Cocco, Cristina; Ferri, Gian-Luca; Argiolas, Antonio; Melis, Maria Rosaria; Sanna, Fabrizio

    2016-07-01

    Oxytocin is involved in the control of different behaviors, from sexual behavior and food consumption to empathy, social and affective behaviors. An imbalance of central oxytocinergic neurotransmission has been also associated with different mental pathologies, from depression, anxiety and anorexia/bulimia to schizophrenia, autism and drug dependence. This study shows that oxytocin may also play a role in the control of locomotor activity. Accordingly, intraperitoneal oxytocin (0.5-2000μg/kg) reduced locomotor activity of adult male rats. This effect was abolished by d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist, given into the lateral ventricles at the dose of 2μg/rat, which was ineffective on locomotor activity. Oxytocin (50-200ng/site) also reduced and d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin (2μg/site) increased locomotor activity when injected bilaterally into the substantia nigra, a key area in the control of locomotor activity. Conversely, the destruction of nigral neurons bearing oxytocin receptors by the recently characterized neurotoxin oxytocin-saporin injected into the substantia nigra, increased basal locomotor activity. Since oxytocin-saporin injected into the substantia nigra caused a marked reduction of neurons immunoreactive for tyrosine hydroxylase (e.g., nigrostriatal dopaminergic neurons) and for vesicular glutamate transporters VGluT1, VGluT2 and VGluT3 (e.g., glutamatergic neurons), but not for glutamic acid decarboxylase (e.g., GABAergic neurons), together these findings suggest that oxytocin influences locomotor activity by acting on receptors localized presynaptically in nigral glutamatergic nerve terminals (which control the activity of nigral GABAergic efferent neurons projecting to brain stem nuclei controlling locomotor activity), rather than on receptors localized in the cell bodies/dendrites of nigrostriatal dopaminergic neurons. PMID:27189764

  17. Bovine growth hormone transgenic mice display alterations in locomotor activity and brain monoamine neurochemistry.

    PubMed

    Söderpalm, B; Ericson, M; Bohlooly, M; Engel, J A; Törnell, J

    1999-12-01

    Recent clinical and experimental data indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. In the present study we have investigated whether bovine GH (bGH) transgenic mice and nontransgenic controls differ in spontaneous locomotor activity, a behavioral response related to brain dopamine (DA) and reward mechanisms, as well as in locomotor activity response to drugs of abuse known to interfere with brain DA systems. The animals were tested for locomotor activity once a week for 4 weeks. When first exposed to the test apparatus, bGH transgenic animals displayed significantly more locomotor activity than controls during the entire registration period (1 h). One week later, after acute pretreatment with saline, the two groups did not differ in locomotor activity, whereas at the third test occasion, bGH mice were significantly more stimulated by d-amphetamine (1 mg/kg, ip) than controls. At the fourth test, a tendency for a larger locomotor stimulatory effect of ethanol (2.5 g/kg, ip) was observed in bGH transgenic mice. bGH mice displayed increased tissue levels of serotonin and 5-hydroxyindoleacetic acid in several brain regions, decreased DA levels in the brain stem, and decreased levels of the DA metabolite 3,4-dihydroxyphenylacetic acid in the mesencephalon and diencephalon, compared with controls. In conclusion, bGH mice display more spontaneous locomotor activity than nontransgenic controls in a novel environment and possibly also a disturbed habituation process. The finding that bGH mice were also more sensitive to d-amphetamine-induced locomotor activity may suggest that the behavioral differences observed are related to differences in brain DA systems, indicating a hyperresponsiveness of these systems in bGH transgenic mice. These findings may constitute a neurochemical basis for the reported psychic effects of GH in humans. PMID:10579325

  18. Underwater cargo vessel utilizing variable buoyancy system for gliding propulsion

    SciTech Connect

    Qi, Z.K.; Seireg, A.

    1982-09-01

    This study deals with investigating the feasibility of an underwater glider capable of carrying cargo for long distances by alternately employing gravity and buoyancy forces for forward propulsion. The parameters controlling the vessel design, stability and control are investigated.

  19. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  20. Development of a Countermeasure to Enhance Postflight Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the

  1. Ring Wing for an underwater missile

    NASA Astrophysics Data System (ADS)

    August, Henry; Carapezza, Edward

    Hughes Aircraft has performed exploratory wind tunnel studies of compressed carriage missile designs having extendable Ring Wing and wrap-around tail control surfaces. These force and moment data indicate that significant improvements in a missile's lift and aerodynamic efficiency can be realized. Low speed test results of these data were used to estimate potential underwater improved hydrodynamic characteristics that a Ring Wing and wrap-around tails can bring to an advanced torpedo design. Estimates of improved underwater flight performance of a heavyweight torpedo (4000 lbs.) having an extendable Ring Wing and wrap-around tails were made. The compressed volume design of this underwater missile is consistent with tube-launch constraints and techniques. Study results of this novel Ring Wing torpedo design include extended flight performance in range and endurance due to lowered speeds capable of sustaining underwater level flight. Correspondingly, reduced radiated noise for enhanced stealth qualities is projected. At high speeds, greater maneuverability and aimpoint selection can be realized by a Ring Wing underwater missile.

  2. Biosensor for underwater chemical sensing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Kusterbeck, Anne W.; Deschamps, Jeffrey R.; Charles, Paul T.

    2005-05-01

    Emerging biosensor approaches may prove useful in reducing false positives and improving detection probabilities for unexploded ordnance (UXO) and underwater explosives. NRL researchers previously developed a biosensor that was field-tested and validated for use in environmental remediation to detect explosives in groundwater. The sensor relies on the selective recognition by antibodies of target analytes, including the common explosives TNT and RDX. Laboratory work has demonstrated that sensors based on these displacement immunoassay formats can detect explosives at the part-per-trillion level in seawater. More recently, participating in an Office of Naval Research program on Chemical Sensing in the Marine Environment (CSME), tests were conducted in controlled underwater experiments at San Clemente, CA and Duck, NC. Simulated UXO targets, autonomous underwater vehicles (AUV) and multiple sensor approaches were used to demonstrate the feasibility of underwater chemical sensing. Efforts are now underway to integrate the biosensor into an underwater platform as part of a broader sensor system. We will describe results of these studies and outline possible operational scenarios for applications in harbor security.

  3. Resources for Underwater Robotics Education

    ERIC Educational Resources Information Center

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  4. Autonomous underwater pipeline monitoring navigation system

    NASA Astrophysics Data System (ADS)

    Mitchell, Byrel; Mahmoudian, Nina; Meadows, Guy

    2014-06-01

    This paper details the development of an autonomous motion-control and navigation algorithm for an underwater autonomous vehicle, the Ocean Server IVER3, to track long linear features such as underwater pipelines. As part of this work, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) developed an algorithm that utilizes inputs from the vehicles state of the art sensor package, which includes digital imaging, digital 3-D Sidescan Sonar, and Acoustic Doppler Current Profilers. The resulting algorithms should tolerate real-world waterway with episodic strong currents, low visibility, high sediment content, and a variety of small and large vessel traffic.

  5. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  6. Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study With a Four-Week Follow-Up.

    PubMed

    Kim, Soo-Yeon; Yang, Li; Park, In Jae; Kim, Eun Joo; JoshuaPark, Min Su; You, Sung Hyun; Kim, Yun-Hee; Ko, Hyun-Yoon; Shin, Yong-Il

    2015-07-01

    The present clinical investigation was to ascertain whether the effects of WALKBOT-assisted locomotor training (WLT) on balance, gait, and motor recovery were superior or similar to the conventional locomotor training (CLT) in patients with hemiparetic stroke. Thirty individuals with hemiparetic stroke were randomly assigned to either WLT or CLT. WLT emphasized on a progressive, conventional locomotor retraining practice (40 min) combined with the WALKBOT-assisted, haptic guidance and random variable locomotor training (40 min) whereas CLT involved conventional physical therapy alone (80 min). Both intervention dosages were standardized and provided for 80 min, five days/week for four weeks. Clinical outcomes included function ambulation category (FAC), Berg balance scale (BBS), Korean modified Barthel index (K-MBI), modified Ashworth scale (MAS), and EuroQol-5 dimension (EQ-5D) before and after the four-week program as well as at follow-up four weeks after the intervention. Two-way repeated measure ANOVA showed significant interaction effect (time × group) for FAC (p=0.02), BBS (p=0.03) , and K-MBI (p=0.00) across the pre-training, post-training, and follow-up tests, indicating that WLT was more beneficial for balance, gait and daily activity function than CLT alone. However, no significant difference in other variables was observed. This is the first clinical trial that highlights the superior, augmented effects of the WALKBOT-assisted locomotor training on balance, gait and motor recovery when compared to the conventional locomotor training alone in patients with hemiparetic stroke. PMID:25850089

  7. NaNet3: The on-shore readout and slow-control board for the KM3NeT-Italia underwater neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Martinelli, M.; Paolucci, P. S.; Pontisso, L.; Simula, F.; Vicini, P.; Ameli, F.; Nicolau, C. A.; Pastorelli, E.; Simeone, F.; Tosoratto, L.; Lonardo, A.

    2016-04-01

    The KM3NeT-Italia underwater neutrino detection unit, the tower, consists of 14 floors. Each floor supports 6 Optical Modules containing front-end electronics needed to digitize the PMT signal, format and transmit the data and 2 hydrophones that reconstruct in real-time the position of Optical Modules, for a maximum tower throughput of more than 600 MB/s. All floor data are collected by the Floor Control Module (FCM) board and transmitted by optical bidirectional virtual point-to-point connections to the on-shore laboratory, each FCM needing an on-shore counterpart as communication endpoint. In this contribution we present NaNet3, an on-shore readout board based on Altera Stratix V GX FPGA able to manage multiple FCM data channels with a capability of 800 Mbps each. The design is a NaNet customization for the KM3NeT-Italia experiment, adding support in its I/O interface for a synchronous link protocol with deterministic latency at physical level and for a Time Division Multiplexing protocol at data level.

  8. Underwater vehicle propulsion and power generation

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2008-01-01

    An underwater vehicle includes a shaft with a propeller disposed thereon; a generator/motor having a stator and a rotor, the rotor being operable to rotate with the propeller; at least one energy storage device connected to the generator/motor; and a controller for setting the generator/motor in a charge mode, a propulsion mode and an idle mode.

  9. Design and implementation of range-gated underwater laser imaging system

    NASA Astrophysics Data System (ADS)

    Ge, Wei-long; Zhang, Xiao-hui

    2014-02-01

    A range-gated underwater laser imaging system is designed and implemented in this article, which is made up of laser illumination subsystem, photoelectric imaging subsystem and control subsystem. The experiment of underwater target drone detection has been done, the target of distance 40m far from the range-gated underwater laser imaging system can be imaged in the pool which water attenuation coefficient is 0.159m-1. Experimental results show that the range-gated underwater laser imaging system can detect underwater objects effectively.

  10. Design and implementation of an omni-directional underwater acoustic micro-modem based on a low-power micro-controller unit.

    PubMed

    Won, Tae-Hee; Park, Sung-Joon

    2012-01-01

    For decades, underwater acoustic communication has been restricted to the point-to-point long distance applications such as deep sea probes and offshore oil fields. For this reason, previous acoustic modems were typically characterized by high data rates and long working ranges at the expense of large size and high power consumption. Recently, as the need for underwater wireless sensor networks (UWSNs) has increased, the research and development of compact and low-power consuming communication devices has become the focus. From the consideration that the requisites of acoustic modems for UWSNs are low power consumption, omni-directional beam pattern, low cost and so on, in this paper, we design and implement an omni-directional underwater acoustic micro-modem satisfying these requirements. In order to execute fast digital domain signal processing and support flexible interfaces with other peripherals, an ARM Cortex-M3 is embedded in the micro-modem. Also, for the realization of small and omni-directional properties, a spherical transducer having a resonant frequency of 70 kHz and a diameter of 34 mm is utilized for the implementation. Physical layer frame format and symbol structure for efficient packet-based underwater communication systems are also investigated. The developed acoustic micro-modem is verified analytically and experimentally in indoor and outdoor environments in terms of functionality and performance. Since the modem satisfies the requirements for use in UWSNs, it could be deployed in a wide range of applications requiring underwater acoustic communication. PMID:22438765

  11. Underwater robotic suturing.

    PubMed

    Kawaguchi, Masahiko; Shimada, Masanari; Ishikawa, Norihiko; Watanabe, Go

    2016-06-01

    Background Laparoscopic and robotic surgeries have become popular, and this popularity is increasing. However, the environment in which such surgeries are performed is rarely discussed. Similar to arthrosurgery performed in water, artificial ascites could be a new environment for laparoscopic surgery. This study was performed to determine whether robotic surgery is applicable to complicated suturing underwater. Material and methods A da Vinci Surgical System S was used. A weighted fabric sheet was placed at the bottom of a tank. Identical sets were made for each environment: One tank was dry, and the other was filled with water. The suturing task involved placement of a running silk suture around the perimeter of a small circle. The task was performed eight times in each environment. The task time and integrity score were determined. The integrity score was calculated by evaluating accuracy, tightness, thread damage, and uniformity; each factor was evaluated using a five-point scale. Results Although statistically significant differences were not shown in either task time or integrity score between the underwater and air environments, robotic suturing underwater is not inferior to performance in air. Conclusions The feasibility of robotic suturing underwater was confirmed under the herein-described experimental conditions. PMID:26853072

  12. Locomotor and verbal distance judgments in action and vista space.

    PubMed

    Bergmann, Johanna; Krauss, Elsa; Münch, Agnes; Jungmann, Reiner; Oberfeld, Daniel; Hecht, Heiko

    2011-04-01

    Judging distances is crucial when interacting with the environment. For short distances in action space (up to 30 m), both explicit verbal estimates and locomotor judgments are fairly accurate. For large distances, data have remained scarce. In two laboratory experiments, our observers judged distances to visual targets presented stereoscopically, either by giving a verbal estimate or by walking the distance to the target on a treadmill. While verbal judgments remained linearly scaled over the whole range of distances from 20 to 262 m, locomotor judgments fell short at distances above 100 m, indicating that observers overestimated the distance they had traveled and increasingly did so as a function of actual target distance. This pattern persisted when controlling for the potential confound of fatigue or reluctance to walk. We discuss different approaches to explain our findings and stress the importance of a differential use of distance cues. A model of leaky path integration showed a good fit with our locomotor data. PMID:21365183

  13. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus).

    PubMed

    Walaszczyk, Erin J; Johnson, Nicholas S; Steibel, Juan Pedro; Li, Weiming

    2013-06-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species. PMID:23735501

  14. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  15. In Situ Control of Underwater-Pinning of Organic Droplets on a Surfactant-Doped Conjugated Polymer Surface.

    PubMed

    Xu, Wei; Xu, Jian; Choi, Chang-Hwan; Yang, Eui-Hyeok

    2015-11-25

    Controlling the pinning of organic droplets on solid surfaces is of fundamental and practical interest in the field of material science and engineering, which has numerous applications such as surface cleaning, water treatment, and microfluidics. Here, a rapid in situ control of pinning and actuation of organic droplets is demonstrated on dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS)) surfaces in an aqueous environment via an electrochemical redox process. A dramatic change of the pinning results from the transport of DBS(-) molecules between the PPy(DBS) surface and the aqueous environment, as well as from a simultaneous alternation of the surface oleophobicity to organic liquids during the redox process. This in situ control of the droplet pinning enables a stop-and-go droplet actuation, applicable to both polar and apolar organic droplets, at low voltages (∼0.9 V) with an extremely low roll-off angle (∼0.4°). PMID:26536473

  16. Initiation of segmental locomotor-like activities by stimulation of ventrolateral funiculus in the neonatal rat.

    PubMed

    Cheng, Jianguo; Magnuson, David S K

    2011-09-01

    Descending control is critically important for the generation of locomotor activities. Yet, our understanding of the descending control system of locomotion is limited. We hypothesized that stimulation of the ventrolateral funiculus (VLF) induces rhythmic activity in lumbar neurons that is correlated with locomotor-like activity in the neonatal rat. Intracellular recordings were conducted in the L2-L3 lumbar segments, while locomotor-like output was monitored in the L2 and L5 ventral roots. Stimulation of the VLF at thoracic segments induced locomotor-like activity in the L2 and L5 ventral roots in majority of the preparations (26/33). In a few midline split cord preparations (4/13), VLF stimulation induced rhythmic locomotor-like bursts in either L2 or L5 ventral root without alternating pattern between the ventral roots. The response latencies suggest that VLF stimulation induced antidromic activation (<1 ms, 8 cells), monosynaptic activation (1-3 ms, 18 cells), and oligosynaptic activation (3.5-5 ms, 14 cells) of segmental neurons in the lumbar region. VLF stimulation induced rhythmic membrane potential oscillations with or without bursting of action potentials in 9 of 40 putative interneurons. The membrane potential oscillations were in phase with the locomotor-like output of the L2 ventral root in 7 of the 9 cells while the other 2 cells oscillated in phase with the L5 ventral root activity. We have thus demonstrated that descending axons exist in the VLF which make synaptic connections with segmental neurons in the lumbar region that may be a critical element of the locomotor neural network for the initiation of locomotion. PMID:21858680

  17. Initiation of segmental locomotor-like activities by stimulation of ventrolateral funiculus in the neonatal rat

    PubMed Central

    Magnuson, David S. K.

    2011-01-01

    Descending control is critically important for the generation of locomotor activities. Yet, our understanding of the descending control system of locomotion is limited. We hypothesized that stimulation of the ventrolateral funiculus (VLF) induces rhythmic activity in lumbar neurons that is correlated with locomotor-like activity in the neonatal rat. Intracellular recordings were conducted in the L2–L3 lumbar segments, while locomotor-like output was monitored in the L2 and L5 ventral roots. Stimulation of the VLF at thoracic segments induced locomotor-like activity in the L2 and L5 ventral roots in majority of the preparations (26/33). In a few midline split cord preparations (4/13), VLF stimulation induced rhythmic locomotor-like bursts in either L2 or L5 ventral root without alternating pattern between the ventral roots. The response latencies suggest that VLF stimulation induced antidromic activation (<1 ms, 8 cells), monosynaptic activation (1–3 ms, 18 cells), and oligosynaptic activation (3.5–5 ms, 14 cells) of segmental neurons in the lumbar region. VLF stimulation induced rhythmic membrane potential oscillations with or without bursting of action potentials in 9 of 40 putative interneurons. The membrane potential oscillations were in phase with the locomotor-like output of the L2 ventral root in 7 of the 9 cells while the other 2 cells oscillated in phase with the L5 ventral root activity. We have thus demonstrated that descending axons exist in the VLF which make synaptic connections with segmental neurons in the lumbar region that may be a critical element of the locomotor neural network for the initiation of locomotion. PMID:21858680

  18. Underwater welding, cutting and inspection

    SciTech Connect

    Tsai, C.L. . Ohio Underwater Welding Center)

    1995-02-01

    Underwater welding, cutting and inspection of offshore, inland waterway and port facilities are becoming a requirement for both military and industrial communities, as maintenance and repair costs continue to escalate, and as many of the facilities are in operation well beyond their intended design life. In nuclear applications, underwater welding, cutting and inspection for repair and modification of irradiated nuclear power plant components are also a requirement. This article summarizes recent developments in this emerging underwater technology.

  19. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  20. Locomotor Experience Affects Self and Emotion

    ERIC Educational Resources Information Center

    Uchiyama, Ichiro; Anderson, David I.; Campos, Joseph J.; Witherington, David; Frankel, Carl B.; Lejeune, Laure; Barbu-Roth, Marianne

    2008-01-01

    Two studies investigated the role of locomotor experience on visual proprioception in 8-month-old infants. "Visual proprioception" refers to the sense of self-motion induced in a static person by patterns of optic flow. A moving room apparatus permitted displacement of an entire enclosure (except for the floor) or the side walls and ceiling. In…

  1. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; Oddsson, L. I.; Seidler, R. D.

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  2. Altered Patterns of Reflex Excitability, Balance, and Locomotion Following Spinal Cord Injury and Locomotor Training

    PubMed Central

    Bose, Prodip K.; Hou, Jiamei; Parmer, Ronald; Reier, Paul J.; Thompson, Floyd J.

    2012-01-01

    Spasticity is an important problem that complicates daily living in many individuals with spinal cord injury (SCI). While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Thus the main objective of our present studies was to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, 30 animals received midthoracic SCI using the standard Multicenter Animal Spinal cord Injury Studies (MASCIS) protocol (10 g 2.5 cm weight drop). They were divided randomly into three equal groups: control (contused untrained), contused treadmill trained, and contused cycle trained. Treadmill and cycle training were started on post-injury day 8. Velocity-dependent ankle torque was tested across a wide range of velocities (612–49°/s) to permit quantitation of tonic (low velocity) and dynamic (high velocity) contributions to lower limb spasticity. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity-dependent spasticity was detected at postcontusion weeks 8–12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350–612°/s). Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and open field

  3. The Developmental Effect of Concurrent Cognitive and Locomotor Skills: Time-Sharing from a Dynamical Perspective.

    ERIC Educational Resources Information Center

    Whitall, Jill

    1991-01-01

    Presents research on the effects of concurrent verbal cognition on locomotor skills. Results revealed no interference with coordination variables across age, but some interference with control variables, particularly in younger subjects. Coordination of gait required less attention than setting of control parameters. This coordination was in place…

  4. Particle Swarm Inspired Underwater Sensor Self-Deployment

    PubMed Central

    Du, Huazheng; Xia, Na; Zheng, Rong

    2014-01-01

    Underwater sensor networks (UWSNs) can be applied in sea resource reconnaissance, pollution monitoring and assistant navigation, etc., and have become a hot research field in wireless sensor networks. In open and complicated underwater environments, targets (events) tend to be highly dynamic and uncertain. It is important to deploy sensors to cover potential events in an optimal manner. In this paper, the underwater sensor deployment problem and its performance evaluation metrics are introduced. Furthermore, a particle swarm inspired sensor self-deployment algorithm is presented. By simulating the flying behavior of particles and introducing crowd control, the proposed algorithm can drive sensors to cover almost all the events, and make the distribution of sensors match that of events. Through extensive simulations, we demonstrate that it can solve the underwater sensor deployment problem effectively, with fast convergence rate, and amiable to distributed implementation. PMID:25195852

  5. Particle swarm inspired underwater sensor self-deployment.

    PubMed

    Du, Huazheng; Xia, Na; Zheng, Rong

    2014-01-01

    Underwater sensor networks (UWSNs) can be applied in sea resource reconnaissance, pollution monitoring and assistant navigation, etc., and have become a hot research field in wireless sensor networks. In open and complicated underwater environments, targets (events) tend to be highly dynamic and uncertain. It is important to deploy sensors to cover potential events in an optimal manner. In this paper, the underwater sensor deployment problem and its performance evaluation metrics are introduced. Furthermore, a particle swarm inspired sensor self-deployment algorithm is presented. By simulating the flying behavior of particles and introducing crowd control, the proposed algorithm can drive sensors to cover almost all the events, and make the distribution of sensors match that of events. Through extensive simulations, we demonstrate that it can solve the underwater sensor deployment problem effectively, with fast convergence rate, and amiable to distributed implementation. PMID:25195852

  6. Hearing and underwater noise exposure

    NASA Astrophysics Data System (ADS)

    Smith, P. F.

    1985-08-01

    Exposure of divers to intense noise in water is increasing, yet there is no general hearing conservation standard for such exposures. This paper reviews three theories of underwater hearing as well as empirical data in order to identify some requirements that an underwater conservation standard must meet. Among the problems considered are hearing sensitivity in water, the frequency and dynamic ranges of the water-immersed ear, and nonauditory effects of underwater sound. It is concluded that: first, no well developed theoretical basis exists for extrapolating hearing conservation standards for airborne noise to the underwater situation; second, the empirical data on underwater hearing suggest that the frequency range covered by an underwater hearing conservation standard must be broader than is the case in air; third, in order to establish a general hearing conservation standard for underwater noise exposure further research is required on the dynamic range of the ear in water; fourth, underwater noise exposure may involve hazards to other body systems than the ear; and fifth, some exposure conditions may interfere with job performance of divers.

  7. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive

  8. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, Walter David

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available “Scallop” vehicle1, but has been modified by Department of Energy’s Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a “head-tohead” fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  9. Underwater power source study

    NASA Astrophysics Data System (ADS)

    Newhouse, H. L.; Payne, P. R.

    1981-11-01

    This report is concerned with the development of an ultra low cost underwater propulsion that can horizontally deploy 500 - 1000 feet of sonobuoy cable at depths between 500 and 1000 feet. A trade-off analysis shows that the best system is based on a gas driven water pulsejet (hydropulse) and that the best source of gas is a reaction between Lithium aluminum hydride (LiAlH4) and seawater. The fuel cost for -15 minutes of operation is about $2.00. A design for the pulsejet engine was then prepared (the drawings are in Appendix C) together with reaction rate measuring equipment. This culminates Phase I of the contract.

  10. Underwater gas tornado

    NASA Astrophysics Data System (ADS)

    Byalko, Alexey V.

    2013-07-01

    We present the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Simple measurements show that the tornado forms a vortex of the Rankine type, i.e. the rising gas rotates as a solid body and the liquid rotates with a velocity decreasing hyperbolically with the radius. We obtain the dependence of the tornado radius a on the gas stream value j theoretically: a ∼ j2/5. Processing of a set of experiments yielded the value 0.36 for the exponent in this expression. We also report the initial stages of the theoretical study of this phenomenon.

  11. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a

  12. Comments on computational underwater acoustics

    SciTech Connect

    Hedstrom, G.

    1993-04-01

    Two fundamental facts control the choice of computational methods in underwater acoustics. One is that over most of the ocean the sound speed varies much more rapidly with depth than in the horizontal directions. The other is that upon going down from the surface, the sound speed usually decreases to a minimum and then increases from there to the bottom. These properties of the medium imply that the ocean often acts as a waveguide, with energy trapped in a depth-band about the sound-speed minimum. One consequence of these facts is that approximation by normal modes is valid over large regions of the ocean, particularly if correction is made for the slow variation of the modes caused by variation in bottom depth and horizontal variation in sound speed. In portions of the ocean where approximation by normal modes is not valid, we may still often use a paraxial approximation. Paraxial approximations may be used when the wave motion is primarily in a single direction, with slow variation of the signal in directions tangent to the wave front. They are often called ``parabolic`` equations in ocean acoustics, but the term ``paraxial`` is standard in other branches of physics, inducting optics and seismology. Finite-difference approximations are also sometimes used in underwater acoustics, but they are much more computationally intensive than normal modes or paraxial approximations. Finite differences are therefore ordinarily used only where these other methods are not valid, such as in shallow water with rapidly varying depth. One could also use finite elements in these instances, but for acoustics problems finite elements are a special class of finite-difference methods. We discuss finite differences only briefly in this report, because they are not generally used in long-range acoustics.

  13. Comments on computational underwater acoustics

    SciTech Connect

    Hedstrom, G.

    1993-04-01

    Two fundamental facts control the choice of computational methods in underwater acoustics. One is that over most of the ocean the sound speed varies much more rapidly with depth than in the horizontal directions. The other is that upon going down from the surface, the sound speed usually decreases to a minimum and then increases from there to the bottom. These properties of the medium imply that the ocean often acts as a waveguide, with energy trapped in a depth-band about the sound-speed minimum. One consequence of these facts is that approximation by normal modes is valid over large regions of the ocean, particularly if correction is made for the slow variation of the modes caused by variation in bottom depth and horizontal variation in sound speed. In portions of the ocean where approximation by normal modes is not valid, we may still often use a paraxial approximation. Paraxial approximations may be used when the wave motion is primarily in a single direction, with slow variation of the signal in directions tangent to the wave front. They are often called parabolic'' equations in ocean acoustics, but the term paraxial'' is standard in other branches of physics, inducting optics and seismology. Finite-difference approximations are also sometimes used in underwater acoustics, but they are much more computationally intensive than normal modes or paraxial approximations. Finite differences are therefore ordinarily used only where these other methods are not valid, such as in shallow water with rapidly varying depth. One could also use finite elements in these instances, but for acoustics problems finite elements are a special class of finite-difference methods. We discuss finite differences only briefly in this report, because they are not generally used in long-range acoustics.

  14. The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence

    PubMed Central

    Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J.

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  15. The Drosophila insulin receptor independently modulates lifespan and locomotor senescence.

    PubMed

    Ismail, Mohd Zamri Bin Haji; Hodges, Matt D; Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  16. Overview of a hybrid underwater camera system

    NASA Astrophysics Data System (ADS)

    Church, Philip; Hou, Weilin; Fournier, Georges; Dalgleish, Fraser; Butler, Derek; Pari, Sergio; Jamieson, Michael; Pike, David

    2014-05-01

    The paper provides an overview of a Hybrid Underwater Camera (HUC) system combining sonar with a range-gated laser camera system. The sonar is the BlueView P900-45, operating at 900kHz with a field of view of 45 degrees and ranging capability of 60m. The range-gated laser camera system is based on the third generation LUCIE (Laser Underwater Camera Image Enhancer) sensor originally developed by the Defence Research and Development Canada. LUCIE uses an eye-safe laser generating 1ns pulses at a wavelength of 532nm and at the rate of 25kHz. An intensified CCD camera operates with a gating mechanism synchronized with the laser pulse. The gate opens to let the camera capture photons from a given range of interest and can be set from a minimum delay of 5ns with increments of 200ps. The output of the sensor is a 30Hz video signal. Automatic ranging is achieved using a sonar altimeter. The BlueView sonar and LUCIE sensors are integrated with an underwater computer that controls the sensors parameters and displays the real-time data for the sonar and the laser camera. As an initial step for data integration, graphics overlays representing the laser camera field-of-view along with the gate position and width are overlaid on the sonar display. The HUC system can be manually handled by a diver and can also be controlled from a surface vessel through an umbilical cord. Recent test data obtained from the HUC system operated in a controlled underwater environment will be presented along with measured performance characteristics.

  17. Underwater Hearing in Turtles.

    PubMed

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought. PMID:26611091

  18. Underwater green laser vibrometry

    NASA Astrophysics Data System (ADS)

    Antończak, Arkadiusz J.; Kozioł, Paweł; Wąż, Adam T.; Sotor, Jarosław Z.; Dudzik, Grzegorz; Kaczmarek, Paweł R.; Abramski, Krzysztof M.

    2012-06-01

    We have developed a laser vibrometer based on an monolithic single-frequency green laser operating at 532 nm. This wavelength can be particularly useful in the case of underwater vibrometry, especially with regard to the minimum of water absorption for this wavelength range (blue-green window). Using polarizing optics, we proposed a configuration that allows the elimination of parasitic reflections at the air-glass-water boundary. A measurement of heterodyne signals as a mixing result of scattered and reference beams has been performed. The study was conducted in aqueous medium for the scattering waterproof paper and retro-reflective surface. In both configurations we have obtained signals with a relatively high S/N ratio > 20 dB (for scattering surface) and > 31 dB (for retro-reflective tape) with the Resolution Bandwidth RBW 10 kHz for a vibrometer output power of 5 mW and the distance to the moving object 1.2 m (including 0.3 m in air). In our opinion, laser Doppler vibrometry LDV based on high-performance single frequency solid-state lasers with a wavelength range corresponding to the blue-green window allows effective measurement of vibration in the underwater environment.

  19. Effect of physical exercise prelabyrinthectomy on locomotor balance compensation in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Igarashi, M.; Ohashi, K.; Yoshihara, T.; MacDonald, S.

    1989-01-01

    This study examines the effectiveness of physical exercise, during a prepathology state, on locomotor balance compensation after subsequent unilateral labyrinthectomy in squirrel monkeys. An experimental group underwent 3 hr. of daily running exercise on a treadmill for 3 mo. prior to the surgery, whereas a control group was not exercised. Postoperatively, the locomotor balance function of both groups was tested for 3 mo. There was no significant difference in gait deviation counts in the acute phase of compensation. However, in the chronic compensation maintenance phase, the number of gait deviation counts was fewer in the exercise group, which showed significantly better performance stability.

  20. Underwater splice for submarine coaxial cable

    SciTech Connect

    Inouye, A.T.; Roe, T. Jr.; Tausing, W.R.; Wilson, J.V.

    1984-10-30

    The invention is a device for splicing submarine coaxial cable underwater on the seafloor with a simple push-on operation to restore and maintain electrical and mechanical strength integrity; the splice device is mateable directly with the severed ends of a coaxial cable to be repaired. Splicing assemblies comprise a dielectric pressure compensating fluid filled guide cavity, a gelled castor oil cap and wiping seals for exclusion of seawater, electrical contacts, a cable strength restoration mechanism, and a pressure compensation system for controlled extrusion of and depletion loss prevention of dielectric seal fluid during cable splicing. A splice is made underwater by directly inserting prepared ends of coaxial cable, having no connector attachments, into splicing assemblies.

  1. Optimal Sensor Layouts in Underwater Locomotory Systems

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Kanso, Eva

    2015-11-01

    Retrieving and understanding global flow characteristics from local sensory measurements is a challenging but extremely relevant problem in fields such as defense, robotics, and biomimetics. It is an inverse problem in that the goal is to translate local information into global flow properties. In this talk we present techniques for optimization of sensory layouts within the context of an idealized underwater locomotory system. Using techniques from fluid mechanics and control theory, we show that, under certain conditions, local measurements can inform the submerged body about its orientation relative to the ambient flow, and allow it to recognize local properties of shear flows. We conclude by commenting on the relevance of these findings to underwater navigation in engineered systems and live organisms.

  2. Differential Effects of Sex Pheromone Compounds on Adult Female Sea Lamprey (Petromyzon marinus) Locomotor Patterns.

    PubMed

    Walaszczyk, Erin J; Goheen, Benjamin B; Steibel, Juan Pedro; Li, Weiming

    2016-06-01

    Synchronization of male and female locomotor activity plays a critical role in ensuring reproductive success, especially in semelparous species. The goal of this study was to elucidate the effects of individual chemical signals, or pheromones, on the locomotor activity in the sea lamprey (Petromyzon marinus). In their native habitat, adult preovulated females (POF) and ovulated females (OF) are exposed to sex pheromone compounds that are released from spermiated males and attract females to nests during their migration and spawning periods. In this study, locomotor activity of individual POF and OF was measured hourly in controlled laboratory conditions using an automated video-tracking system. Differences in the activity between a baseline day (no treatment exposure) and a treatment day (sex pheromone compound or control exposure) were examined for daytime and nighttime periods. Results showed that different pheromone compound treatments affected both POF and OF sea lamprey (p < 0.05) but in different ways. Spermiated male washings (SMW) and one of its main components, 7α,12α,24-trihydroxy-5α-cholan-3-one 24 sulfate (3kPZS), decreased activity of POF during the nighttime. SMW also reduced activity in POF during the daytime. In contrast, SMW increased activity of OF during the daytime, and an additional compound found in SMW, petromyzonol sulfate (PZS), decreased the activity during the nighttime. In addition, we examined factors that allowed us to infer the overall locomotor patterns. SMW increased the maximum hourly activity during the daytime, decreased the maximum hourly activity during the nighttime, and reduced the percentage of nocturnal activity in OF. Our findings suggest that adult females have evolved to respond to different male compounds in regards to their locomotor activity before and after final maturation. This is a rare example of how species-wide chemosensory stimuli can affect not only the amounts of activity but also the overall locomotor

  3. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    PubMed

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications). PMID:18626130

  4. Underwater boom box

    NASA Astrophysics Data System (ADS)

    White, M. Catherine

    So far, there is no evidence that humpback whales are negatively affected by noise emitted from underwater speakers that may one day be used to measure warming in the oceans. A group of independent biologists from Cornell University monitored the behavior of the whales before, during, and after a scaled-down version of the controversial Acoustic Thermometry of Ocean Climate (ATOC) experiment off the coast of Hawaii. In 84 trials from February through March, they “saw no overt response from the whales.” Previous observations of similar sound transmissions at California's Pioneer Seamount, the other site planned for the experiment, also found no sign of disturbance among marine mammals, including elephant seals and several whale species. More observations are needed, however, before the experiment can be deemed safe, the Cornell biologists advised.

  5. Kinematic study of locomotor recovery after spinal cord clip compression injury in rats.

    PubMed

    Alluin, Olivier; Karimi-Abdolrezaee, Soheila; Delivet-Mongrain, Hugo; Leblond, Hugues; Fehlings, Michael G; Rossignol, Serge

    2011-09-01

    After spinal cord injury (SCI), precise assessment of motor recovery is essential to evaluate the outcome of new therapeutic approaches. Very little is known on the recovery of kinematic parameters after clinically-relevant severe compressive/contusive incomplete spinal cord lesions in experimental animal models. In the present study we evaluated the time-course of kinematic parameters during a 6-week period in rats walking on a treadmill after a severe thoracic clip compression SCI. The effect of daily treadmill training was also assessed. During the recovery period, a significant amount of spontaneous locomotor recovery occurred in 80% of the rats with a return of well-defined locomotor hindlimb pattern, regular plantar stepping, toe clearance and homologous hindlimb coupling. However, substantial residual abnormalities persisted up to 6 weeks after SCI including postural deficits, a bias of the hindlimb locomotor cycle toward the back of the animals with overextension at the swing/stance transition, loss of lateral balance and impairment of weight bearing. Although rats never recovered the antero-posterior (i.e. homolateral) coupling, different levels of decoupling between the fore and hindlimbs were measured. We also showed that treadmill training increased the swing duration variability during locomotion suggesting an activity-dependent compensatory mechanism of the motor control system. However, no effect of training was observed on the main locomotor parameters probably due to a ceiling effect of self-training in the cage. These findings constitute a kinematic baseline of locomotor recovery after clinically relevant SCI in rats and should be taken into account when evaluating various therapeutic strategies aimed at improving locomotor function. PMID:21770755

  6. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  7. Astronauts Practice Station Spacewalk Underwater

    NASA Video Gallery

    Astronauts Robert Satcher Jr. and Rick Sturckow conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Sp...

  8. Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait

    PubMed Central

    Fling, Brett W.; Cohen, Rajal G.; Mancini, Martina; Carpenter, Samuel D.; Fair, Damien A.; Nutt, John G.; Horak, Fay B.

    2014-01-01

    Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss

  9. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  10. [The heart and underwater diving].

    PubMed

    Lafay, V

    2006-11-01

    Cardiovascular examination of a certain number of candidates for underwater diving raises justifiable questions of aptitude. An indicative list of contraindications has been proposed by the French Federation of Underwater Studies and Sports but a physiopathological basis gives a better understanding of what is involved. During diving, the haemodynamic changes due not only to the exercise but also to cold immersion, hyperoxaemia and decompression impose the absence of any symptomatic cardiac disease. Moreover, the vasoconstriction caused by the cold and hyperoxaemia should incite great caution in both coronary and hypertensive patients. The contraindication related to betablocker therapy is controversial and the debate has not been settled in France. The danger of drowning makes underwater diving hazardous in all pathologies carrying a risk of syncope. Pacemaker patients should be carefully assessed and the depth of diving limited. Finally, the presence of right-to-left intracardiac shunts increases the risk of complications during decompressionand contraindicates underwater diving. Patent foramen ovale is a special case but no special investigation is required for its detection. The cardiologist examining candidates for underwater diving should take all these factors into consideration because, although underwater diving is a sport associated with an increased risk, each year there are more and more people, with differing degrees of aptitude, who wish to practice it. PMID:17181043

  11. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    PubMed

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. PMID:26336260

  12. Pipeline inspection using an autonomous underwater vehicle

    SciTech Connect

    Egeskov, P.; Bech, M.; Bowley, R.; Aage, C.

    1995-12-31

    Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, as well as the launch and recovery systems are described.

  13. Modelling the locomotor energetics of extinct hominids.

    PubMed

    Kramer, P A

    1999-10-01

    Bipedality is the defining characteristic of Hominidae and, as such, an understanding of the adaptive significance and functional implications of bipedality is imperative to any study of human evolution. Hominid bipedality is, presumably, a solution to some problem for the early hominids, one that has much to do with energy expenditure. Until recently, however, little attention could be focused on the quantifiable energetic aspects of bipedality as a unique locomotor form within Primates because of the inability to measure empirically the energy expenditure of non-modern hominids. A recently published method provides a way of circumventing the empirical measurement dilemma by calculating energy expenditure directly from anatomical variables and movement profiles. Although the origins of bipedality remain clouded, two discernible forms of locomotor anatomy are present in the hominid fossil record: the australopithecine and modern configurations. The australopithecine form is best represented by AL 288-1, a partial skeleton of Australopithecus afarensis, and is characterized as having short legs and a wide pelvis. The modern form is represented by modern humans and has long legs and a narrow pelvis. Human walking is optimized to take advantage of the changing levels of potential and kinetic energy that occur as the body and limbs move through the stride cycle. Although this optimization minimizes energy expenditure, some energy is required to maintain motion. I quantify this energy by developing a dynamic model that uses kinematic equations to determine energy expenditure. By representing both configurations with such a model, I can compare their rates of energy expenditure. I find that the australopithecine configuration uses less energy than that of a modern human. Despite arguments presented in the anthropological literature, the shortness of the legs of AL 288-1 provides no evidence that she was burdened with a compromised or transitional locomotor anatomy

  14. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae.

    PubMed

    Godoy, Rafael; Noble, Sandra; Yoon, Kevin; Anisman, Hymie; Ekker, Marc

    2015-10-01

    To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons. PMID:26118896

  15. Effects of Cholestasis on Learning and Locomotor Activity in Bile Duct Ligated Rats

    PubMed Central

    HOSSEINI, Nasrin; ALAEI, Hojjatallah; NASEHI, Mohammad; RADAHMADI, Maryam; Mohammad Reza, ZARRINDAST

    2014-01-01

    Background: Cognitive functions are impaired in patients with liver disease. Bile duct ligation causes cholestasis that impairs liver function. This study investigated the impact of cholestasis progression on the acquisition and retention times in the passive avoidance test and on the locomotor activity of rats. Methods: Cholestasis was induced in male Wistar rats by ligating the main bile duct. Locomotor activity, learning and memory were assessed by the passive avoidance learning test at day 7, day 14, and day 21 post-bile duct ligation. The serum levels of bilirubin, alanine aminotransferase, and alkaline phosphatase were measured. Results: The results showed that acquisition time and locomotor activity were not affected at day 7 and day 14, but they were significantly (P < 0.05) impaired at day 21 post-bile duct ligation compared with the results for the control group. Additionally, memory was significantly impaired on day 7 (P < 0.01), day 14, and day 21 (P < 0.001) compared with the control groups. The levels of total bilirubin, direct bilirubin, indirect bilirubin, alanine aminotransferase, and alkaline phosphatase were significantly higher at day 7, day 14, and day 21 post-bile duct ligation compared with the levels in the sham group. Conclusion: Based on these findings, both liver and memory function were affected in the early stage of cholestasis (7 days after bile duct ligation), while learning and locomotor activity were impaired at 21 days after bile duct ligation following the progression of cholestasis. PMID:24639608

  16. Linear optoacoustic underwater communication.

    PubMed

    Blackmon, Fletcher; Estes, Lee; Fain, Gilbert

    2005-06-20

    The linear mechanism for optical-to-acoustic energy conversion is explored for optoacoustic communication from an in-air platform or surface vessel to a submerged vessel such as a submarine or unmanned undersea vehicle. The communication range that can be achieved is addressed. A number of conventional signals used in underwater acoustic telemetry applications are shown to be capable of being generated experimentally through the linear optoacoustic regime conversion process. These results are in agreement with simulation based on current theoretical models. A number of practical issues concerning linear optoacoustic communication are addressed that lead to a formulation of a linear-regime optoacoustic communication scheme. The use of oblique laser beam incidence at the air-water interface to obtain considerable in-air range from the laser source to the in-water receiver is addressed. Also, the effect of oblique incidence on in-water range is examined. Next, the optimum and suboptimum linear optoacoustic sound-generation techniques for selecting the optical wavelength and signaling frequency for optimizing in-water range are addressed and discussed. Optoacoustic communication techniques employing M-ary frequency shift keying and multifrequency shift keying are then compared with regard to communication parameters such as bandwidth, data rate, range coverage, and number of lasers employed. PMID:15989059

  17. Covert underwater acoustic communications.

    PubMed

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data. PMID:21110585

  18. Robust underwater visibility parameter.

    PubMed

    Zaneveld, J Ronald; Pegau, W

    2003-11-17

    We review theoretical models to show that contrast reduction at a specific wavelength in the horizontal direction depends directly on the beam attenuation coefficient at that wavelength. If a black target is used, the inherent contrast is always negative unity, so that the visibility of a black target in the horizontal direction depends on a single parameter only. That is not the case for any other target or viewing arrangement. We thus propose the horizontal visibility of a black target to be the standard for underwater visibility. We show that the appropriate attenuation coefficient can readily be measured with existing simple instrumentation. Diver visibility depends on the photopic beam attenuation coefficient, which is the attenuation of the natural light spectrum convolved with the spectral responsivity of the human eye (photopic response function). In practice, it is more common to measure the beam attenuation coefficient at one or more wavelength bands. We show that the relationship: visibility is equal to 4.8 divided by the photopic beam attenuation coefficient; originally derived by Davies-Colley [1], is accurate with an average error of less than 10% in a wide variety of coastal and inland waters and for a wide variety of viewing conditions. We also show that the beam attenuation coefficient measured at 532 nm, or attenuation measured by a WET Labs commercial 20 nm FWHM transmissometer with a peak at 528nm are adequate substitutes for the photopic beam attenuation coefficient, with minor adjustments. PMID:19471421

  19. Underwater branch connection study

    SciTech Connect

    Not Available

    1992-06-01

    This report was prepared with the object of developing guidelines for designing underwater connections of branch pipelines to main lines at existing tap valves and with hot taps in diver accessible water depths. The report considers ANSI Classes 600 and 900 branch pipelines of up to twelve inches in diameter that conform to API Specification 5L minimum. Loads due to gravity, buoyancy, intemal and external pressure, thermal expansion, hydrodynamics and random events are considered. External corrosion, temperature, cover, bottom conditions, stability, testing, commissioning, trenching, and pigging are also addressed. A general discussion of these issues is included in the body of the report. Methods of analysis are included in the appendices and in various references. Lotus 123'' spreadsheets that compute the expansion stresses resulting from pressure and temperature at points on a generic piping geometry are presented. A program diskette is included with the report. The report summarizes, and draws from, the results of a survey of the relevant practice and experience of fifteen gas pipeline operating companies. The survey indicates that most existing branch connections do not provide for pigging of the lateral lines, but that there is a growing consensus that cleaning and inspection pigging of lateral lines is desirable or necessary.

  20. Development of a spinal locomotor rheostat.

    PubMed

    Zhang, Hong-Yan; Issberner, Jon; Sillar, Keith T

    2011-07-12

    Locomotion in immature animals is often inflexible, but gradually acquires versatility to enable animals to maneuver efficiently through their environment. Locomotor activity in adults is produced by complex spinal cord networks that develop from simpler precursors. How does complexity and plasticity emerge during development to bestow flexibility upon motor behavior? And how does this complexity map onto the peripheral innervation fields of motorneurons during development? We show in postembryonic Xenopus laevis frog tadpoles that swim motorneurons initially form a homogenous pool discharging single action potential per swim cycle and innervating most of the dorsoventral extent of the swimming muscles. However, during early larval life, in the prelude to a free-swimming existence, the innervation fields of motorneurons become restricted to a more limited sector of each muscle block, with individual motorneurons reaching predominantly ventral, medial, or dorsal regions. Larval motorneurons then can also discharge multiple action potentials in each cycle of swimming and differentiate in terms of their firing reliability during swimming into relatively high-, medium-, or low-probability members. Many motorneurons fall silent during swimming but can be recruited with increasing locomotor frequency and intensity. Each region of the myotome is served by motorneurons spanning the full range of firing probabilities. This unfolding developmental plan, which occurs in the absence of movement, probably equips the organism with the neuronal substrate to bend, pitch, roll, and accelerate during swimming in ways that will be important for survival during the period of free-swimming larval life that ensues. PMID:21709216

  1. The GALS locomotor screen and disability.

    PubMed Central

    Plant, M J; Linton, S; Dodd, E; Jones, P W; Dawes, P T

    1993-01-01

    OBJECTIVES--Examination of the locomotor system is frequently neglected. Therefore, the GALS locomotor screen (Gait, Arms, Legs, Spine) has been proposed by Doherty et al as a practical method of identifying functionally important problems. This study was designed to test whether this screen reflects functional impairment, as measured by accepted health status measures. METHODS--Two observers performed the GALS screen in a total of 83 patients with a variety of musculoskeletal conditions. The examination components of GALS were rated by a simple 0 to 3 scale. Physical ability was further assessed by Health Activity Questionnaire (HAQ), Barthel index and Steinbrocker's ARA classification. RESULTS--For the total patient group, Spearman correlations between GALS and the three functional indices were good (r = 0.62 to 0.71, p < 0.001). Correlations were equally good for rheumatoid arthritis patients alone (r = 0.65 to 0.70, p < 0.001), but less good although still significant for the other miscellaneous rheumatic conditions (r = 0.31 to 0.46, p < 0.05). Observed proportional agreement between the two observers for the individual scores was > 70%, with a kappa statistic k = 0.49 to 0.74. CONCLUSIONS--The GALS screen is a reliable and valid measure of functional ability, compared with standard accepted indices in a variety of musculoskeletal diseases. This supports the proposal for its use as a screening test by general practitioners and medical students. PMID:8311541

  2. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model.

    PubMed

    Bruinsma, Caroline F; Schonewille, Martijn; Gao, Zhenyu; Aronica, Eleonora M A; Judson, Matthew C; Philpot, Benjamin D; Hoebeek, Freek E; van Woerden, Geeske M; De Zeeuw, Chris I; Elgersma, Ype

    2015-11-01

    Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am-/p+ mouse model of AS. VOR phase-reversal learning was singularly impaired in these animals and correlated with reduced tonic inhibition between Golgi cells and granule cells. Purkinje cell physiology, in contrast, was normal in AS mice as shown by synaptic plasticity and spontaneous firing properties that resembled those of controls. Accordingly, neither VOR phase-reversal learning nor locomotion was impaired following selective deletion of Ube3a in Purkinje cells. However, genetic normalization of αCaMKII inhibitory phosphorylation fully rescued locomotor deficits despite failing to improve cerebellar learning in AS mice, suggesting extracerebellar circuit involvement in locomotor learning. We confirmed this hypothesis through cerebellum-specific reinstatement of Ube3a, which ameliorated cerebellar learning deficits but did not rescue locomotor deficits. This double dissociation of locomotion and cerebellar phenotypes strongly suggests that the locomotor deficits of AS mice do not arise from impaired cerebellar cortex function. Our results provide important insights into the etiology of the motor deficits associated with AS. PMID:26485287

  3. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    PubMed

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought. PMID:23535307

  4. Quantitative Trait Loci for Locomotor Behavior in Drosophila melanogaster

    PubMed Central

    Jordan, Katherine W.; Morgan, Theodore J.; Mackay, Trudy F. C.

    2006-01-01

    Locomotion is an integral component of most animal behaviors and many human diseases and disorders are associated with locomotor deficits, but little is known about the genetic basis of natural variation in locomotor behavior. Locomotion is a complex trait, with variation attributable to the joint segregation of multiple interacting quantitative trait loci (QTL), with effects that are sensitive to the environment. We assessed variation in a component of locomotor behavior (locomotor reactivity) in a population of 98 recombinant inbred lines of Drosophila melanogaster and mapped four QTL affecting locomotor reactivity by linkage to polymorphic roo transposable element insertion sites. We used complementation tests of deficiencies to fine map these QTL to 12 chromosomal regions and complementation tests of mutations to identify 13 positional candidate genes affecting locomotor reactivity, including Dopa decarboxylase (Ddc), which catalyzes the final step in the synthesis of serotonin and dopamine. Linkage disequilibrium mapping in a population of 164 second chromosome substitution lines derived from a single natural population showed that polymorphisms at Ddc were associated with naturally occurring genetic variation in locomotor behavior. These data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in locomotor reactivity. PMID:16783013

  5. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    NASA Astrophysics Data System (ADS)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  6. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    PubMed Central

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy. PMID:26175796

  7. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.

    PubMed

    Le Gal, Jean-Patrick; Juvin, Laurent; Cardoit, Laura; Morin, Didier

    2016-01-20

    Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best

  8. Underwater measurements of muon intensity

    NASA Technical Reports Server (NTRS)

    Fedorov, V. M.; Pustovetov, V. P.; Trubkin, Y. A.; Kirilenkov, A. V.

    1985-01-01

    Experimental measurements of cosmic ray muon intensity deep underwater aimed at determining a muon absorption curve are of considerable interest, as they allow to reproduce independently the muon energy spectrum at sea level. The comparison of the muon absorption curve in sea water with that in rock makes it possible to determine muon energy losses caused by nuclear interactions. The data available on muon absorption in water and that in rock are not equivalent. Underground measurements are numerous and have been carried out down to the depth of approx. 15km w.e., whereas underwater muon intensity have been measured twice and only down to approx. 3km deep.

  9. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  10. Differential Effects of Inhaled Toluene on Locomotor Activity in Adolescent and Adult Rats

    PubMed Central

    Batis, Jeffery C.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Inhalant abuse is a world-wide public health concern among adolescents. Most preclinical studies have assessed inhalant effects in adult animals leaving unclear how behavioral effects differ in younger animals. We exposed adolescent (postnatal day [PN] 28) and adult (PN90) male rats to toluene using 1 of 3 exposure patterns. These patterns modeled those reported in toluene abuse in teens and varied concentration, number and length of exposures, as well as the inter-exposure interval. Animals were exposed repeatedly over 12 days to toluene concentrations of 0, 8,000 or 16,000 parts per million (ppm). Locomotor activity was quantified during toluene exposures and for 30 min following completion of the final daily toluene exposure. For each exposure pattern, there were significant toluene concentration-related increases and decreases in locomotor activity compared to the 0-ppm “air” controls at both ages. These changes depended upon when activity was measured – during or following exposure. Compared to adults, adolescents displayed greater locomotor activity on the first day and generally greater increases in activity over days than adults during toluene exposure. Adults displayed greater locomotor activity than adolescents in the “recovery” period following exposure on the first and subsequent days. Age group differences were clearest following the pattern of paced, brief (5-min) repeated binge exposures. The results suggest that locomotor behavior in rats during and following inhalation of high concentrations of toluene depends on age and the pattern of exposure. The results are consistent with dose-dependent shifts in sensitivity and sensitization or tolerance to repeated toluene in the adolescent animals compared to the adult animals. Alternate interpretations are possible and our interpretation is limited by the range of very high concentrations of toluene used. The results imply that both pharmacological and psychosocial factors contribute to the teen

  11. Assaying Locomotor Activity to Study Circadian Rhythms and Sleep Parameters in Drosophila

    PubMed Central

    Chiu, Joanna C.; Low, Kwang Huei; Pike, Douglas H.; Yildirim, Evrim; Edery, Isaac

    2010-01-01

    Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties. PMID:20972399

  12. Functional redundancy of ventral spinal locomotor pathways.

    PubMed

    Loy, David N; Magnuson, David S K; Zhang, Y Ping; Onifer, Stephen M; Mills, Michael D; Cao, Qi-lin; Darnall, Jessica B; Fajardo, Lily C; Burke, Darlene A; Whittemore, Scott R

    2002-01-01

    Identification of long tracts responsible for the initiation of spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. Pathways derived from the mesencephalic locomotor region and pontomedullary medial reticular formation responsible for fictive locomotion in decerebrate preparations project to the thoracolumbar levels of the spinal cord via reticulospinal axons in the ventrolateral funiculus (VLF). However, white matter regions critical for spontaneous over-ground locomotion remain unclear because cats, monkeys, and humans display varying degrees of locomotor recovery after ventral SCIs. We studied the contributions of myelinated tracts in the VLF and ventral columns (VC) to spontaneous over-ground locomotion in the adult rat using demyelinating lesions. Animals received ethidium bromide plus photon irradiation producing discrete demyelinating lesions sufficient to stop axonal conduction in the VLF, VC, VLF-VC, or complete ventral white matter (CV). Behavior [open-field Basso, Beattie, and Bresnahan (BBB) scores and grid walking] and transcranial magnetic motor-evoked potentials (tcMMEP) were studied at 1, 2, and 4 weeks after lesion. VLF lesions resulted in complete loss or severe attenuation of tcMMEPs, with mean BBB scores of 18.0, and no grid walking deficits. VC lesions produced behavior similar to VLF-lesioned animals but did not significantly affect tcMMEPs. VC-VLF and CV lesions resulted in complete loss of tcMMEP signals with mean BBB scores of 12.7 and 6.5, respectively. Our data support a diffuse arrangement of axons within the ventral white matter that may comprise a system of multiple descending pathways subserving spontaneous over-ground locomotion in the intact animal. PMID:11756515

  13. On the efficient swimming of a ray-inspired underwater vehicle Part I: Experimental study on swimming optimization of control and fin structure

    NASA Astrophysics Data System (ADS)

    Zhu, Jianzhong; Lopez, Mervyn; Williams, Ventress; Aluko, Theophilus; Dong, Haibo; Bart-Smith, Hilary

    2014-11-01

    Batoid fish such as manta and cownose rays are among the most agile and energy efficient swimming creatures. These capabilities arise from flapping and bending their dorsally flattened pectoral fins. To assess this contribution, this study focuses on the study of a bio-inspired underwater vehicle--the MantaBot--where biological design criteria are applied. The MantaBot consists of two parts: a rigid body rendered from a CT scanning image of a cownose ray and two flexible fins driven by tensegrity actuators. The experiments were conducted in a water tank where the MantaBot was attached to a rail for rectilinear swimming. Three stereo-videos were taken and digitized to measure the 3D kinematics. Results showed that the fins conduct deformations in both spanwise and chordwise directions during steady swimming. Optimal operation conditions were determined for fastest swimming by surveying a wide range of parameters. Contributions of thrust generation and amplitude hindrance of various portions of the fin volume were examined. Additionally, fin tip structure, material and bending properties were studied for optimal swimming. This research was supported by the Office of Naval Research (ONR) under the Multidisciplinary University Research Initiative (MURI) Grant N00014-08-1-0642 and Grant N00014-14-1-0533.

  14. Effects of coal mine wastewater on locomotor and non-locomotor activities of empire gudgeons (Hypseleotris compressa).

    PubMed

    Lanctôt, C; Melvin, S D; Fabbro, L; Leusch, F D L; Wilson, S P

    2016-05-01

    Coal mining represents an important industry in many countries, but concerns exist about the possible adverse effects of minewater releases on aquatic animals and ecosystems. Coal mining generates large volumes of complex wastewater, which often contains high concentrations of dissolved solids, suspended solids, metals, hydrocarbons, salts and other compounds. Traditional toxicological testing has generally involved the assessment of acute toxicity or chronic toxicity with longer-term tests, and while such tests provide useful information, they are poorly suited to ongoing monitoring or rapid assessment following accidental discharge events. As such, there is considerable interest in developing rapid and sensitive approaches to environmental monitoring, and particularly involving the assessment of sub-lethal behavioural responses in locally relevant aquatic species. We therefore investigated behavioural responses of a native Australian fish to coal mine wastewater, to evaluate its potential use for evaluating sub-lethal effects associated with wastewater releases on freshwater ecosystems. Empire gudgeons (Hypseleotris compressa) were exposed to wastewater from two dams located at an open cut coal mine in Central Queensland, Australia and activity levels were monitored using the Multispecies Freshwater Biomonitor® (LimCo International GmbH). A general decrease in locomotor activity (i.e., low frequency movement) and increase in non-locomotor activity (i.e., high frequency movement including ventilation and small fin movement) was observed in exposed fish compared to those in control water. Altered activity levels were observable within the first hour of exposure and persisted throughout the 15-d experiment. Results demonstrate the potential for using behavioural endpoints as tools for monitoring wastewater discharges using native fish species, but more research is necessary to identify responsible compounds and response thresholds, and to understand the relevance

  15. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score. PMID:26513783

  16. Visual training improves underwater vision in children.

    PubMed

    Gislén, Anna; Warrant, Eric J; Dacke, Marie; Kröger, Ronald H H

    2006-10-01

    Children in a tribe of sea-gypsies from South-East Asia have been found to have superior underwater vision compared to European children. In this study, we show that the improved underwater vision of these Moken children is not due to better contrast sensitivity in general. We also show that European children can achieve the same underwater acuity as the Moken children. After 1 month of underwater training (11 sessions) followed by 4 months with no underwater activities, European children showed improved underwater vision and distinct bursts of pupil constriction. When tested 8 months after the last training session in an outdoor pool in bright sunlight-comparable to light environments in South-East Asia-the children had attained the same underwater acuity as the sea-gypsy children. The achieved performance can be explained by the combined effect of pupil constriction and strong accommodation. PMID:16806388

  17. Human factors in underwater systems.

    PubMed

    Crosson, D

    1993-10-01

    Applications of human factors to undersea engineering and the relationship to aerospace science are explored. Cooperative ventures include the TEKTITE underwater habitat and development of better procedures to prevent decompression sickness. Other research involved the use of alternate gases in diving systems, remote-operation vehicles, and diving system tests. PMID:11541030

  18. Underwater Robots Surface in Utah

    ERIC Educational Resources Information Center

    Hurd, Randy C.; Hacking, Kip S.; Damarjian, Jennifer L.; Wright, Geoffrey A.; Truscott, Tadd

    2015-01-01

    Underwater robots (or ROVs: Remotely Operated Vehicles as they are typically called in industry) have recently become a very popular instructional STEM activity. Nationally, ROVs have been used in science and technology classrooms for several years in cities such as Seattle, San Diego, Virginia Beach, and other coastal areas. In the past two…

  19. Angular scale expansion theory and the misperception of egocentric distance in locomotor space

    PubMed Central

    Durgin, Frank H.

    2014-01-01

    Perception is crucial for the control of action, but perception need not be scaled accurately to produce accurate actions. This paper reviews evidence for an elegant new theory of locomotor space perception that is based on the dense coding of angular declination so that action control may be guided by richer feedback. The theory accounts for why so much direct-estimation data suggests that egocentric distance is underestimated despite the fact that action measures have been interpreted as indicating accurate perception. Actions are calibrated to the perceived scale of space and thus action measures are typically unable to distinguish systematic (e.g., linearly scaled) misperception from accurate perception. Whereas subjective reports of the scaling of linear extent are difficult to evaluate in absolute terms, study of the scaling of perceived angles (which exist in a known scale, delimited by vertical and horizontal) provides new evidence regarding the perceptual scaling of locomotor space. PMID:25610539

  20. Visuo-locomotor coordination for direction changes in a manual wheelchair as compared to biped locomotion in healthy subjects.

    PubMed

    Charette, Caroline; Routhier, François; McFadyen, Bradford J

    2015-02-19

    The visual system during walking provides travel path and environmental information. Although the manual wheelchair (MWC) is also a frequent mode of locomotion, its underlying visuo-locomotor control is not well understood. This study begins to understand the visuo-locomotor coordination for MWC navigation in relation to biped gait during direction changes in healthy subjects. Eight healthy male subjects (26.9±6.4 years) were asked to walk as well as to propel a MWC straight ahead and while changing direction by 45° to the right guided by a vertical pole. Body and MWC movement (speed, minimal clearance, point of deviation, temporal body coordination, relative timing of body rotations) and gaze behavior were analysed. There was a main speed effect for direction and a direction by mode interaction with slower speeds for MWC direction change. Point of deviation was later for MWC direction change and always involved a counter movement (seen for vehicular control) with greater minimal distance from the vertical pole as compared to biped gait. In straight ahead locomotion, subjects predominantly fixed their gaze on the end target for both locomotor modes while there was a clear trend for subjects to fixate on the vertical pole more for MWC direction change. When changing direction, head movement always preceded gaze changes, which was followed by trunk movement for both modes. Yet while subjects turned the trunk at the same time during approach regardless of locomotor mode, head movement was earlier for MWC locomotion. These results suggest that MWC navigation combines both biped locomotor and vehicular-based movement control. Head movement to anticipate path deviations and lead steering for locomotion appears to be stereotypic across locomotor modes, while specific gaze behavior predominantly depends on the environmental demands. PMID:25562632

  1. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, W D

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available "Scallop" vehicle 1 , but has been modified by the Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a "head-to-head" fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  2. Human pendulum approach to simulate and quantify locomotor impact loading.

    PubMed

    Lafortune, M A; Lake, M J

    1995-09-01

    The understanding of impact mechanics during locomotion is important for research within the fields of injury prevention and footwear design. Instrumented missiles offer a worthy solution to the lack of control inherent in in vivo activities and to the isolated nature of tissue studies. However, missiles cannot mimic the magnitude and temporal characteristics of locomotion impacts. A human pendulum approach employed the subject's own body as the missile to impart controlled impacts to the lower extremity. The subject is swung toward a force platform instrumented wall while lying supine on a suspended lightweight bed. The ability of the pendulum to reproduce locomotor impact loading was assessed for heel-toe running. Axial reaction force and shank acceleration patterns recorded during pendulum tests in ten subjects were found to closely resemble running patterns and they were obtained without discomfort to the subjects. This new approach relies upon one's own body to impart impacts representative of locomotion. It should prove useful to study human impact loading in a controlled manner. PMID:7559680

  3. [The new technologies of kinesiotherapy for the rehabilitation of the patients suffering from the post-stroke locomotor disorders].

    PubMed

    Gusarova, S A; Styazhkina, E M; Gurkina, M V; Chesnikova, E I; Sycheva, A Yu

    2016-01-01

    This paper was designed to report the results of the application of two therapeutic modalities for the rehabilitation of 44 patients presenting with post-stroke locomotor disorders in the form of spastic hemiparesis. The patients allocated to the main group were treated with the use of the new kinesiotherapeutic methods including cryomassage and the Armeo robotic complex. The patients of the control group had to perform traditional therapeutic physical exercises in combination with classical massage and remedial gymnastics. It is concluded that the application of the combination of the modern kinesiotherapeutic factors exerting the positive corrective influence on different aspects of the locomotor deficiency in the upper extremities and the psychoemotional status of the patients has advantages over traditional physical exercise therapy in terms of clinical efficiency because it enhances the rehabilitative potential for these patients with serious locomotor problems. PMID:27213941

  4. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  5. Underwater sediment-contact radiation survey method

    SciTech Connect

    Lee, D.R.; St. Aubin, M.; Welch, S.J. )

    1991-11-01

    The authors are striving to produce a practical system for mapping lateral distributions in gamma activity on submerged sediments. This is in response to the need for quality control and interpretation of data obtainable by sediment sampling and analyses near nuclear utilities. A prototype gamma probe has been constructed and tested. The prototype is essentially a background survey meter packaged in a 53-cm-long {times} 5.4-cm-diam waterproof vehicle. This usage-shaped vehicle is connected to a cable for towing in contact with bottom sediments of lakes, rivers, and coastal waters. This vehicle, or sediment probe as it is called, was initially developed for measuring sediment electrical conductances, a parameter that can be used to locate underwater areas of groundwater and contaminant upwelling. During towing, the probe does not roll or twist around its longitudinal axis by more than 10 deg, so that sensors, which have been fixed within the vehicle, can be oriented to look up, down, or sideways. In over 450 lin-km of underwater survey, only a single sediment probe has been irretrievably snagged on sunken rocks or other debris. Work in the Ottawa River near the Chalk River Laboratories has shown good agreement among point measurements of river sediment with continuous measurements using the moving probe.

  6. Locomotor stereotypy produced by dexbenzetimide and scopolamine is reduced by SKF 83566, not sulpiride.

    PubMed

    Fritts, M E; Mueller, K; Morris, L

    1998-07-01

    Like amphetamine, scopolamine produces locomotor stereotypy (repetitive routes of locomotion) in an open field. To determine whether locomotor stereotypy is a common behavioral effect of anticholingeric agents, several doses of the anticholinergic dexbenzetimide were tested for the ability to produce locomotor stereotypy; like scopolamine, dexbenzetimide produced locomotor stereotypy. To investigate a possible role of dopamine in anticholinergic-induced locomotor stereotypy, we tested the ability of the dopamine D1 antagonist SKF 83566 and the D2 antagonist sulpiride to block the locomotor stereotypy induced by scopolamine as well as dexbenzetimide. SKF 83566 blocked scopolamine- and dexbenzetimide-induced locomotor stereotypy; sulpiride did not reduce dexbenzetimide-induced locomotor stereotypy, but enhanced scopolamine-induced locomotor stereotypy. Hyperlocomotion was reduced by both dopamine antagonists. Results are interpreted in support of the notion that dopamine is the likely candidate mediating locomotor stereotypy. PMID:9678647

  7. Analysis of MCP gain selection for underwater range-gated imaging applications based on ICCD

    NASA Astrophysics Data System (ADS)

    Fu, Bo; Yang, Kecheng; Rao, Jionghui; Xia, Min

    2010-03-01

    In this paper, the gain and noise of underwater laser range-gated imaging systems based on intensified CCD (ICCD) are theoretically analyzed. Combined with experimental results, the quality of underwater images at different system parameters is objectively evaluated from the aspect of modulation degree and histogram of grayscale distribution. Comprehensive selection disciplines of micro-channel plate (MCP) gain in applications is generalized according to the coherence between theory and experiment, and a scheme of auto gain control (AGC) based on image analysis is proposed for underwater range-gated imaging systems.

  8. Fabrication of Long-Term Underwater Superoleophobic Al Surfaces and Application on Underwater Lossless Manipulation of Non-Polar Organic Liquids

    PubMed Central

    Song, Jinlong; Huang, Liu; Lu, Yao; Liu, Xin; Deng, Xu; Yang, Xiaolong; Huang, Shuai; Sun, Jing; Jin, Zhuji; Parkin, Ivan P.

    2016-01-01

    Underwater superoleophobic surfaces have different applications in fields from oil/water separation to underwater lossless manipulation. This kind of surfaces can be easily transformed from superhydrophilic surfaces in air, which means the stability of superhydrophilicity in air determines the stability of underwater superoleophobicity. However, superhydrophilic surfaces fabricated by some existing methods easily become hydrophobic or superhydrophobic in air with time. Here, a facile method combined with electrochemical etching and boiling water immersion is developed to fabricate long-term underwater superoleophobic surfaces. The surface morphologies and chemical compositions are investigated. The results show that the electrochemically etched and boiling-water immersed Al surfaces have excellent long-term superhydrophilicity in air for over 1 year and boehmite plays an important role in maintaining long-term stability of wettability. Based on the fabricated underwater superoleophobic surfaces, a special method and device were developed to realize the underwater lossless manipulation of immiscible organic liquid droplets with a large volume. The capture and release of liquid droplets were realized by controlling the resultant force of the applied driving pressure, gravity and buoyancy. The research has potential application in research-fields such as the transfer of valuable reagents, accurate control of miniature chemical reactions, droplet-based reactors, and eliminates contamination of manipulator components. PMID:27550427

  9. Fabrication of Long-Term Underwater Superoleophobic Al Surfaces and Application on Underwater Lossless Manipulation of Non-Polar Organic Liquids.

    PubMed

    Song, Jinlong; Huang, Liu; Lu, Yao; Liu, Xin; Deng, Xu; Yang, Xiaolong; Huang, Shuai; Sun, Jing; Jin, Zhuji; Parkin, Ivan P

    2016-01-01

    Underwater superoleophobic surfaces have different applications in fields from oil/water separation to underwater lossless manipulation. This kind of surfaces can be easily transformed from superhydrophilic surfaces in air, which means the stability of superhydrophilicity in air determines the stability of underwater superoleophobicity. However, superhydrophilic surfaces fabricated by some existing methods easily become hydrophobic or superhydrophobic in air with time. Here, a facile method combined with electrochemical etching and boiling water immersion is developed to fabricate long-term underwater superoleophobic surfaces. The surface morphologies and chemical compositions are investigated. The results show that the electrochemically etched and boiling-water immersed Al surfaces have excellent long-term superhydrophilicity in air for over 1 year and boehmite plays an important role in maintaining long-term stability of wettability. Based on the fabricated underwater superoleophobic surfaces, a special method and device were developed to realize the underwater lossless manipulation of immiscible organic liquid droplets with a large volume. The capture and release of liquid droplets were realized by controlling the resultant force of the applied driving pressure, gravity and buoyancy. The research has potential application in research-fields such as the transfer of valuable reagents, accurate control of miniature chemical reactions, droplet-based reactors, and eliminates contamination of manipulator components. PMID:27550427

  10. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity.

    PubMed

    Stewart, Adam Michael; Kaluyeva, Alexandra A; Poudel, Manoj K; Nguyen, Michael; Song, Cai; Kalueff, Allan V

    2015-10-01

    Zebrafish are emerging as an important model organism for neurobehavioral phenomics research. Given the likely variation of zebrafish behavioral phenotypes between and within laboratories, in this study, we examine the influence and variability of several common environmental modifiers on adult zebrafish anxiety and locomotor activity. Utilizing the novel tank paradigm, this study assessed the role of various laboratory factors, including experimenter/handling, testing time and days, batch, and the order of testing, on the behavior of a large population of experimentally naive control fish. Although time of the day, experimenter identity, and order of testing had little effect on zebrafish anxiety and locomotor activity levels, subtle differences were found for testing days and batches. Our study establishes how zebrafish behaviors are modulated by common environmental/laboratory factors and outlines several implications for zebrafish neurobehavioral phenomics research. PMID:26244595

  11. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Tao; Zhang, Xiao-Hui; Ge, Wei-Long

    2011-11-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  12. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  13. Discriminative and locomotor effects of five synthetic cathinones in rats and mice

    PubMed Central

    Gatch, Michael B.; Rutledge, Margaret; Forster, Michael J.

    2014-01-01

    Rationale Synthetic cathinones continue to be sold as “legal” alternatives to methamphetamine or cocaine. As these marginally legal compounds become controlled, suppliers move to other, unregulated compounds. Objectives The purpose of these experiments was to determine whether several temporarily controlled cathinone compounds, which are currently abused on the street, stimulate motor activity and have discriminative stimulus effects similar to cocaine and/or methamphetamine. Methods Methcathinone, pentedrone, pentylone, 3-fluoromethcathinone (3-FMC), and 4-methylethcathinone (4-MEC) were tested for locomotor stimulant effects in mice and subsequently for substitution in rats trained to discriminate cocaine (10 mg/kg, i.p.) or methamphetamine (1 mg/kg, i.p.) from saline. Results Methcathinone, pentedrone, and pentylone produced locomotor stimulant effects which lasted up to 6 hours. In addition, pentylone produced convulsions and lethality at 100 mg/kg. 4-MEC produced locomotor stimulant effects which lasted up to 2 hours. Methcathinone, pentedrone, pentylone, 3-FMC, and 4-MEC each produced discriminative stimulus effects similar to those of cocaine and methamphetamine. Conclusions All of the tested compounds produce discriminative stimulus effects similar to either those of cocaine, methamphetamine or both, which suggests that these compounds are likely to have similar abuse liability to cocaine and/or methamphetamine. Pentylone may be more dangerous on the street, as it produced adverse effects at doses that produced maximal stimulant-like effects. PMID:25281225

  14. Slipping, sliding and stability: locomotor strategies for overcoming low-friction surfaces.

    PubMed

    Clark, Andrew J; Higham, Timothy E

    2011-04-15

    Legged terrestrial animals must avoid falling while negotiating unexpected perturbations inherent to their structurally complex environments. Among humans, fatal and nonfatal injuries frequently result from slip-induced falls precipitated by sudden unexpected encounters with low-friction surfaces. Although studies using walking human models have identified some causes of falls and mechanisms underlying slip prevention, it is unclear whether these apply to various locomotor speeds and other species. We used high-speed video and inverse dynamics to investigate the locomotor biomechanics of helmeted guinea fowl traversing slippery surfaces at variable running speeds (1.3-3.6 m s(-1)). Falls were circumvented when limb contact angles exceeded 70 deg, though lower angles were tolerated at faster running speeds (>3.0 m s(-1)). These prerequisites permitted a forward shift of the body's center of mass over the limb's base of support, which kept slip distances below 10 cm (the threshold distance for falls) and maximized the vertical ground reaction forces, thus facilitating limb retraction and the conclusion of the stance phase. These postural control strategies for slip avoidance parallel those in humans, demonstrating the applicability of these strategies across locomotor gaits and the potential for guinea fowl as an insightful model for invasive approaches to understanding limb neuromuscular control on slippery surfaces. PMID:21430214

  15. Compressive line sensing underwater imaging system

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Dalgleish, F. R.; Vuorenkoski, A. K.; Caimi, F. M.; Britton, W.

    2013-05-01

    Compressive sensing (CS) theory has drawn great interest and led to new imaging techniques in many different fields. In recent years, the FAU/HBOI OVOL has conducted extensive research to study the CS based active electro-optical imaging system in the scattering medium such as the underwater environment. The unique features of such system in comparison with the traditional underwater electro-optical imaging system are discussed. Building upon the knowledge from the previous work on a frame based CS underwater laser imager concept, more advantageous for hover-capable platforms such as the Hovering Autonomous Underwater Vehicle (HAUV), a compressive line sensing underwater imaging (CLSUI) system that is more compatible with the conventional underwater platforms where images are formed in whiskbroom fashion, is proposed in this paper. Simulation results are discussed.

  16. Operation of electrothermal and electrostatic MUMPs microactuators underwater

    NASA Astrophysics Data System (ADS)

    Sameoto, Dan; Hubbard, Ted; Kujath, Marek

    2004-10-01

    Surface-micromachined actuators made in multi-user MEMS processes (MUMPs) have been operated underwater without modifying the manufacturing process. Such actuators have generally been either electro-thermally or electro-statically actuated and both actuator styles are tested here for suitability underwater. This is believed to be the first time that thermal and electrostatic actuators have been compared for deflection underwater relative to air performance. A high-frequency ac square wave is used to replicate a dc-driven actuator output without the associated problem of electrolysis in water. This method of ac activation, with frequencies far above the mechanical resonance frequencies of the MEMS actuators, has been termed root mean square (RMS) operation. Both thermal and electrostatic actuators have been tested and proved to work using RMS control. Underwater performance has been evaluated by using in-air operation of these actuators as a benchmark. When comparing deflection per volt applied, thermal actuators operate between 5 and 9% of in-air deflection and electrostatic actuators show an improvement in force per volt applied of upwards of 6000%. These results agree with predictions based on the physical properties of the surrounding medium.

  17. TECHNOLOGY DEMONSTRATION UNDERWATER HYDROLASING PHASE 0 & 1 & 2 TECHNICAL REPORT

    SciTech Connect

    CHRONISTER, G.B.

    2005-06-08

    From September 10 through December 17th, 2003, S.A.Robotics executed Phases 0, I, and II of the Technology Demonstration - Underwater Hydrolasing. Phase 0 was performed at the S.A.Robotics facility in Loveland, Colorado, while Phases I and II were performed at the Hanford K-Basin East Site. The purpose of the demonstrations was to show (1) underwater hydrolasing is a feasible method of removing contaminated concrete underwater to a required depth, (2) the hydrolasing head could be controlled during operation, (3) the depth of contamination in the concrete structure could be accurately measured, and (4) a characterization of the waste stream during hydrolasing activities could be recorded. Video monitoring was also used during all demonstrations. All phases of the demonstration were completed and deemed a success by both the observers and the demonstration team. Single and multiple passes were made using variable cutting rates, different stand-off distances were tested, and stationary cuts were executed. Hot and cold hyrdolasing was performed with radiological and depth scans of the affected surfaces. Specially designed equipment was installed and operated within the contaminated environment of 100-K East Basin. Separate results are documented below by phase. The Phase II radiological demonstration was performed to determine the feasibility of underwater hydrolasing technology for decontamination of the DOE spent fuel basins at Hanford 100-K area. This project demonstration was conducted at 105 KE Basin with the expectation that, once proven, this technology can be implemented at Hanford and other DOE sites.

  18. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.L.; Kulp, T.J.

    1995-03-10

    Practical limitations of underwater imaging systems are reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and the resolution necessary for target discovery and identification. The advent of high power lasers operating in the oceanic transmission window of the visible spectrum (blue-green portion) has led to improved experimental illumination systems for underwater imaging The properties of laser bearm in range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence effect of common volume back scatter to reduce or eliminate noise, increase signal to noise levels. Synchronously scanned systems rely on the highly collimated nature of the laser beam for spatial rejection of common volume back scatter. A synchronous, raster-scanning underwater laser imaging system (UWLIS) has been developed at Lawrence liver-more National Laboratory. The present UWLIS system differs from earlier synchronous scanners in its ability to scan in two dimensions at conventional video frame rate (30 Hz). The imaging performance of the present UWLIS was measured at distances of up to 6.3 AL (at a physical distance of 15.2 meters) during an in-water tank test and 4.5 to 5.0 AL (at a physical distance of 30 meters) during open water oceanic testing. The test results indicate that the UWLIS system is already capable of extending the underwater imaging range beyond that of conventional floodlight illuminated SIT cameras. The real or near real time frame rates of the UWLIS make possible operations in a mode in which the platform speed is randomly varied. This is typical of the operational environment in which the platform is often maneuvered above and around rugged seafloor terrain`s and obstacles.

  19. Solidification of underwater wet welds

    SciTech Connect

    Pope, A.M.; Medeiros, R.C. de; Liu, S.

    1995-12-31

    It is well known that the shape of a weld pool can influence the microstructure and segregation pattern of the final solidified weld metal. Mechanical properties and susceptibility to defects are consequently affected by the solidification mode of the weld. In this work the solidification behavior of weld beads deposited in air and underwater wet welding using rutile electrodes were compared. The welds were deposited by gravity feed, on low carbon, manganese steel plates using similar welding conditions. Macroscopic observation of the weld craters showed that welds deposited in air presented an elliptical weld pool. The underwater wet welds, on the other hand, solidified with a tear drop shape. Although the welds differed in shape, their lengths were approximately the same. Microscopic examinations carried out on transverse, normal and longitudinal sections revealed a coarser columnar grain structure in the underwater welds. These results suggest that the tear-drop shaped pool induced solidification in a preferred orientation with segregation more likely in welds deposited under wet conditions. This change in weld pool geometry can be explained by the surface heat loss conditions that occur in a wet weld: slower when covered by the steam bubble and faster in the region in contact with water behind the pool.

  20. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats

    PubMed Central

    Pan, Leilei; Qi, Ruirui; Wang, Junqin; Zhou, Wei; Liu, Jiluo; Cai, Yiling

    2016-01-01

    Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3,3′-iminodipropionitrile (IDPN)-induced vestibular lesion (AVL or IVL) on the orexin-A (OXA) labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.). The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v.) on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48, and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders. PMID:27507932

  1. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats.

    PubMed

    Pan, Leilei; Qi, Ruirui; Wang, Junqin; Zhou, Wei; Liu, Jiluo; Cai, Yiling

    2016-01-01

    Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3,3'-iminodipropionitrile (IDPN)-induced vestibular lesion (AVL or IVL) on the orexin-A (OXA) labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.). The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v.) on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48, and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders. PMID:27507932

  2. Bathymetric Mapping: Making Underwater Profile Charts.

    ERIC Educational Resources Information Center

    Pettus, Alvin M.

    1998-01-01

    Focuses on mapping activities designed to provide simulated experiences that help students understand the techniques used to measure and represent underwater terrain without making direct visual observations. (DDR)

  3. Taiwan's underwater cultural heritage documentation management

    NASA Astrophysics Data System (ADS)

    Tung, Y.-Y.

    2015-09-01

    Taiwan is an important trading and maritime channels for many countries since ancient time. Numerous relics lie underwater due to weather, wars, and other factors. In the year of 2006, Bureau of Cultural Heritage (BOCH) entrusted the Underwater Archaeological Team of Academia Sinica to execute the underwater archaeological investigation projects. Currently, we verified 78 underwater targets, with 78 site of those had been recognized as shipwrecks sites. Up to date, there is a collection of 638 underwater objects from different underwater archaeological sites. Those artefacts are distributed to different institutions and museums. As very diverse management methods/systems are applied for every individual institution, underwater cultural heritage data such as survey, excavation report, research, etc. are poorly organized and disseminated for use. For better communication regarding to Taiwan's underwater cultural heritage in every level, a universal format of documentation should be established. By comparing the existing checklist used in Taiwan with guidelines that are followed in other countries, a more intact and appropriate underwater cultural heritage condition documentation system can be established and adapted in Taiwan.

  4. Crocodiles don't focus underwater.

    PubMed

    Fleishman, L J; Howland, H C; Howland, M J; Rand, A S; Davenport, M L

    1988-08-01

    Crocodilians are amphibious reptiles which hunt prey both on land and in water. Previous refractive and anatomical studies have suggested that their eyes can focus objects in air and that their ability to refocus the eye underwater may be limited. Examination of the plane of focus of six species of crocodilians both in air and underwater has revealed that they are generally well focused in air for distant targets and severely defocused underwater. These results suggest that sensory systems other than vision must play an important role in prey capture underwater. PMID:3184006

  5. The effect of early environmental manipulation on locomotor sensitivity and methamphetamine conditioned place preference reward.

    PubMed

    Hensleigh, E; Pritchard, L M

    2014-07-15

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 min per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference. PMID:24713150

  6. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  7. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females

    PubMed Central

    Lima-Camara, Tamara Nunes; Codeço, Claudia Torres; Honório, Nildimar Alves; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio; Lounibos, Leon Philip

    2013-01-01

    Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus . PMID:24473799

  8. THE EFFECT OF EARLY ENVIRONMENTAL MANIPULATION ON LOCOMOTOR SENSITIVITY AND METHAMPHETAMINE CONDITIONED PLACE PREFERENCE REWARD

    PubMed Central

    Hensleigh, E.; Pritchard, L. M.

    2014-01-01

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 minutes per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference. PMID:24713150

  9. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    PubMed

    Lemieux, Maxime; D Laflamme, Olivier; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. PMID:26683069

  10. Muscle-specific modulation of vestibular reflexes with increased locomotor velocity and cadence.

    PubMed

    Dakin, Christopher J; Inglis, John Timothy; Chua, Romeo; Blouin, Jean-Sébastien

    2013-07-01

    Vestibular information is one of the many sensory signals used to stabilize the body during locomotion. When locomotor velocity increases, the influence of these signals appears to wane. It is unclear whether vestibular signals are globally attenuated with velocity or are influenced by factors such as whether a muscle is contributing to balance control. Here we investigate how vestibular sensory signals influence muscles of the leg during locomotion and what causes their attenuation with increasing locomotor velocity. We hypothesized that 1) vestibular signals influence the activity of all muscles engaged in the maintenance of medio-lateral stability during locomotion and 2) increases in both cadence and velocity would be associated with attenuation of these signals. We used a stochastic vestibular stimulus and recorded electromyographic signals from muscles of the ankle, knee, and hip. Participants walked using two cadences (52 and 78 steps/min) and two walking velocities (0.4 and 0.8 m/s). We observed phase-dependent modulation of vestibular influence over ongoing muscle activity in all recorded muscles. Within a stride, reversals of the muscle responses were observed in the biceps femoris, tibialis anterior, and rectus femoris. Vestibular-muscle coupling decreases with increases in both cadence and walking velocity. These results show that the observed vestibular suppression is muscle- and phase dependent. We suggest that the phase- and muscle-specific influence of vestibular signals on locomotor activity is organized according to each muscle's functional role in body stabilization during locomotion. PMID:23576695

  11. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. PMID:27469058

  12. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish

    PubMed Central

    Chen, Audrey; Chiu, Cindy N.; Mosser, Eric A.; Kahn, Sohini; Spence, Rory

    2016-01-01

    The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control. SIGNIFICANCE STATEMENT The hypothalamus is thought to play a key role in regulating sleep in vertebrate animals, but few sleep-promoting signaling pathways that function in the hypothalamus have been identified. Here we use the zebrafish, a diurnal vertebrate, to functionally and anatomically characterize the neuropeptide QRFP. We show that QRFP is exclusively expressed in a small number of neurons in the larval zebrafish hypothalamus that project widely in the brain. We also show that QRFP overexpression reduces locomotor activity, whereas animals that lack QRFP signaling are more active and sleep less. These results suggest that QRFP signaling participates in the hypothalamic regulation of sleep. PMID:26865608

  13. Effect of Temporal Organization of the Visuo-Locomotor Coupling on the Predictive Steering

    PubMed Central

    Rybarczyk, Yves Philippe; Mestre, Daniel

    2012-01-01

    Studies on the direction of a driver’s gaze while taking a bend show that the individual looks toward the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street turns a corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behavior, executes an internal model of the trajectory that anticipates the completion of the path, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to manipulate in an easy and precise way the temporal organization of the visuo-locomotor coupling. The results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables (i) a significant smoothness of the trajectory and (ii) a velocity-curvature relationship that follows the “2/3 Power Law.” These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the formation of the path seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding. PMID:22798955

  14. Effect of temporal organization of the visuo-locomotor coupling on the predictive steering.

    PubMed

    Rybarczyk, Yves Philippe; Mestre, Daniel

    2012-01-01

    Studies on the direction of a driver's gaze while taking a bend show that the individual looks toward the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street turns a corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behavior, executes an internal model of the trajectory that anticipates the completion of the path, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to manipulate in an easy and precise way the temporal organization of the visuo-locomotor coupling. The results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables (i) a significant smoothness of the trajectory and (ii) a velocity-curvature relationship that follows the "2/3 Power Law." These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the formation of the path seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding. PMID:22798955

  15. The effects of inhaled isoparaffins on locomotor activity and operant performance in mice.

    PubMed

    Bowen, S E; Balster, R L

    1998-11-01

    Very little is known qualitatively or quantitatively about the acute central nervous system effects of isoparaffin solvents that are widely used in household and commercial applications. Four isoparaffinic hydrocarbon solvent products differing in predominant carbon number and volatility (ISOPAR-C, -E -G, -H) were tested for their acute effects on locomotor activity and operant performance after inhalation exposure in mice. For both measures, concentration-effect curves were obtained for 30-min exposures using a within-subject design. The more volatile products, ISOPAR-C and -E, were as easily vaporized under our conditions as vapors such as toluene and TCE, which have acute effects on human behavior and are abused. ISOPAR-G was slowly volatilized and ISOPAR-H could not be completely volatilized within our 30-min exposures, suggesting that acute human exposures may be less likely and that it may be more difficult to abuse them. ISOPAR-C, -E, and -G produced reversible increases in locomotor activity of mice at 4000 and 6000 ppm while ISOPAR-C and -E produced reversible concentration-dependent decreases in rates of schedule-controlled operant behavior in approximately the same concentration range as they affected locomotor activity. The fact that only locomotor activity increases were observed with these isoparaffins provides evidence that they produce a different pattern of effects than those reported for abused solvents such as toluene and TCE. Further research will be needed to determine if this different pattern of effects on animal behavior between isoparaffins and abused solvents is correlated with a different pattern of acute intoxication and abuse potential in humans. PMID:9768561

  16. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits

    PubMed Central

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait. PMID:26941592

  17. Sex differences in Siberian hamster ultradian locomotor rhythms.

    PubMed

    Prendergast, Brian J; Stevenson, Tyler J; Zucker, Irving

    2013-02-17

    Sex differences in ultradian activity rhythms (URs) and circadian rhythms (CRs) were assessed in Siberian hamsters kept in long day (LD) or short day (SD) photoperiods for 40 weeks. For both sexes URs of locomotor activity were more prevalent, greater in amplitude and more robust in SDs. The UR period was longer in females than males in both day lengths. The reproductive system underwent regression and body mass declined during the initial 10 weeks of SD treatment, and in both sexes these traits spontaneously reverted to the LD phenotype at or before 40 weeks in SD, reflecting the development of neuroendocrine refractoriness to SD patterns of melatonin secretion. Hamsters of both sexes, however, continued to display SD-like URs at the 40 weeks time point. CRs were less prevalent and the waveform less robust and lower in amplitude in SDs than LDs; the SD circadian waveform also did not revert to the long-day phenotype after 40 weeks of SD treatment. Short day lengths enhanced ultradian and diminished circadian rhythms in both sexes. Day length controls several UR characteristics via gonadal steroid and melatonin-independent mechanisms. Sex differences in ultradian timing may contribute to sex diphenisms in rhythms of sleep, food intake and exercise. PMID:23333554

  18. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    PubMed Central

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  19. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.

    PubMed

    Molkov, Yaroslav I; Bacak, Bartholomew J; Talpalar, Adolfo E; Rybak, Ilya A

    2015-05-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized "hopping" pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left-right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  20. Modular diversification of the locomotor system in damselfishes (Pomacentridae).

    PubMed

    Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H

    2016-05-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. J. Morphol. 277:603-614, 2016. © 2016 Wiley Periodicals, Inc. PMID:26919129

  1. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    PubMed

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. PMID:27237044

  2. Rotation, locomotor activity and individual differences in voluntary ethanol consumption.

    PubMed

    Nielsen, D M; Crosley, K J; Keller, R W; Glick, S D; Carlson, J N

    1999-03-27

    Spontaneous turning behavior and locomotor activity were evaluated for their ability to predict differences in the voluntary consumption of ethanol in male Long-Evans rats. Animals were assessed for their preferred direction of turning behavior and for high vs. low levels of spontaneous locomotor activity, as determined during nocturnal testing in a rotometer. Subsequently, preference for a 10% ethanol solution vs. water was determined in a 24-h two-bottle home-cage free-choice paradigm. Rats exhibiting a right-turning preference consumed more ethanol than rats showing a left-turning preference. While locomotor activity alone did not predict differences in drinking, turning and locomotor activity together predicted differences in ethanol consumption. Low-activity right-turning rats consumed more ethanol than all the other groups of rats. Previous studies from this laboratory have shown that individual differences in turning behavior are accompanied by different asymmetries in dopamine (DA) function in the medial prefrontal cortex (mPFC). Individual differences in locomotor activity are associated with differences in nucleus accumbens (NAS) DA function. The present data suggest that variations in mPFC DA asymmetry and NAS DA function may underlie differences in the voluntary consumption of ethanol. PMID:10095014

  3. Visual inspection of sea bottom structures by an autonomous underwater vehicle.

    PubMed

    Foresti, G L

    2001-01-01

    This paper describes a vision-based system for inspections of underwater structures, e.g., pipelines, cables, etc., by an autonomous underwater vehicle (AUV). Usually underwater inspections are performed by remote operated vehicles (ROVs) driven by human operators placed in a support vessel. However, this task is often challenging, especially in conditions of poor visibility or in presence of strong currents. The system proposed allows the AUV to accomplish the task in autonomy. Moreover, the use of a three-dimensional (3-D) model of the environment and of an extended Kalman filter (EKF) allows the guidance and the control of the vehicle in real time. Experiments done on real underwater images have demonstrated the validity of the proposed method and its efficiency in the case of critical and complex situations. PMID:18244834

  4. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster...

  5. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired...

  6. Multipurpose ROV system for underwater monitoring

    SciTech Connect

    Graczyk, T.

    1995-12-31

    The paper presents achievements of the Underwater Team at the Faculty of Maritime Technology of the Szczecin Technical University in the field of designing the equipment destined for the underwater monitoring. The multipurpose remotely operated vehicle system is described. Technical specification, some laboratory tank test results, research techniques, operational range, experience and development trends have been discussed.

  7. Seeking Teachers for Underwater Robotics PD Program

    ERIC Educational Resources Information Center

    McGrath, Beth; Sayres, Jason

    2012-01-01

    With funding from the National Science Foundation (NSF), ITEEA members will contribute to the development of a hybrid professional development program designed to facilitate the scale-up of an innovative underwater robotics curriculum. WaterBotics[TM] is an underwater robotics curriculum that targets students in middle and high school classrooms…

  8. Improved Underwater Excitation-Emission Matrix Fluorometer

    NASA Technical Reports Server (NTRS)

    Moore, Casey; daCunha, John; Rhoades, Bruce; Twardowski, Michael

    2007-01-01

    settings. In addition, the design of the present 2D EEMF incorporates improvements over the one prior commercial underwater 2D EEMF, developed in 1994 by the same company that developed the present one. Notable advanced features of the present EEMF include the following: 1) High sensitivity and spectral resolution are achieved by use of an off-the-shelf grating spectrometer equipped with a sensor in the form of a commercial astronomical- grade 256 532-pixel charge-coupled-device (CCD) array. 2) All of the power supply, timing, control, and readout circuits for the illumination source and the CCD, ancillary environmental monitoring sensors, and circuitry for controlling a shutter or filter motor are custom-designed and mounted compactly on three circuit boards below a fourth circuit board that holds the CCD (see figure). 3) The compactness of the grating spectrometer, CCD, and circuit assembly makes it possible to fit the entire instrument into a compact package that is intended to be maneuverable underwater by one person. 4) In mass production, the cost of the complete instrument would be relatively low - estimated at approximately $30,000 at 2005 prices.

  9. Alterations in locomotor activity after microinjections of GBR-12909, selective dopamine antagonists or neurotensin into the medial prefrontal cortex.

    PubMed

    Radcliffe, R A; Erwin, V G

    1996-06-01

    It has been postulated that increased dopamine (DA) activity in the medial prefrontal cortex (mPFC) exerts an inhibitory influence over DA release in the nucleus accumbens and, thus, also over locomotor activity. Experiments were designed to examine the role of mPFC DA and neurotensin (NT), a neuropeptide which interacts with DA, in spontaneous locomotor activity. LS/IBG mice were injected bilaterally with either GBR-12909, a selective DA uptake blocker, the DA D1 receptor antagonist R-(+)-SCH-23390, the DA D2 receptor antagonist epidepride, NT or a combination of drugs. GBR-12909 produced a U-shaped dose-response curve with a maximum inhibition of 47% of control. Postmortem tissue levels of DA, 5-hydroxytryptamine, norepinephrine and their major metabolites were determined after microinjections of GBR-12909. Tissue levels of these compounds were not significantly affected by GBR-12909. However, the ratios of homovanilic acid/DA and homovanilic acid + 3,4-dihyroxyphenylacetic acid/DA were significantly decreased, whereas the 5-hydroxyindoleacetic acid/5-hydroxytryptamine ratio was not affected by GBR-12909, suggesting a selective effect on DAergic processes. By itself, R-(+)-SCH-23390 had no effect on locomotor activity except at a very high dose which caused locomotor inhibition (49% of control). Epidepride caused a dose-dependent inhibition of locomotor activity with a maximum inhibition of 49% of control. When coinjected with an inhibitory dose of GBR-12909, both epidepride and R-(+)-SCH-23390 attenuated the GBR-12909 effect in a dose-dependent manner. A broad range of doses of NT was found to have no consistent effect on locomotor activity. However, when coinjected with an inhibitory dose of GBR-12909, NT attenuated the GBR-12909-induced inhibition in a dose-dependent manner. The results suggest that stimulation of DA receptors in the mPFC, both DA D1 and DA D2 receptors mediates locomotor inhibition. Furthermore, stimulation of NT receptors appears to

  10. Noise From Shallow Underwater Explosions

    NASA Astrophysics Data System (ADS)

    Soloway, Alexander G.

    Naval activities such as ordnance disposal, demolition and requisite training, can involve detonation of small explosive charges in shallow water that have the potential to harm nearby marine life. Measurements of the underwater sound generated by sub-surface explosions were collected as part of a naval training exercise. In this thesis the noise levels from these explosions will be investigated using peak pressure, sound exposure level and energy spectral density. Measurements of very-low frequency Scholte interface waves will also be presented and used to investigate elastic parameters in the sediment.

  11. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  12. Developing Sensorimotor Countermeasures to Mitigate Post-Flight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Cohen, H.; Miller, C. A.; Richards, J. T.; Houser, J.; McDonald, P. V.; Seidler, R. D.; Merkle, L. A.; Stelmach, G. E.

    2001-01-01

    Following spaceflight, crewmembers experience postural and locomotor instability. The magnitude and duration of post-flight sensorimotor disturbances increase with longer duration exposure to microgravity. These post-flight postural and locomotor alterations can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. Gait instabilities could prevent or extend the time required to make an emergency egress from the Orbiter, Crew Return Vehicle or a future Martian lander leading to compromised mission objectives. We propose a countermeasure that aids in maintaining functional locomotor performance. This includes retaining the ability to perform vehicular egress and meet early mission objectives soon after landing on a planetary surface.

  13. Effects of Sodium Butyrate on Methamphetamine-Sensitized Locomotor Activity

    PubMed Central

    Harkness, John H.; Hitzemann, Robert J.; Edmunds, Stephanie; Phillips, Tamara J.

    2012-01-01

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge in mice treated repeatedly with MA (10 days of 2 mg/kg MA) or saline (10 days), and then locomotor response to MA challenge was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2 mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, appeared to increase striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior. PMID:23137698

  14. Association of locomotor complaints and disability in the Rotterdam study.

    PubMed Central

    Odding, E; Valkenburg, H A; Algra, D; Vandenouweland, F A; Grobbee, D E; Hofman, A

    1995-01-01

    OBJECTIVE--To determine the association between joint complaints and locomotor disability. METHODS--During a home interview survey 1901 men and 3135 women aged 55 years and over (the Rotterdam Study) were asked about joint pain and morning stiffness in the past month, and locomotor disability was assessed by six questions from the Health Assessment Questionnaire (HAQ). RESULTS--The prevalence of locomotor disability was 24.5% for men and 40.5% for women. The prevalence of joint pain in men was 0.7% for pain in the hips, knees, and feet simultaneously, 3.7% for pain at two joint sites, 16.0% for pain at one joint site, and 20.4% for pain in the hips and/or knees and/or feet (any joint site); the corresponding estimates for women were 1.9%, 9.0%, 23.7%, and 34.5%, respectively. The prevalence of generalised morning stiffness was 4.9% for men and 10.4% for women. The age adjusted odds ratios for locomotor disability in men ranged from 2.4 of pain at one joint site to 8.8 of pain at all three joint sites; for women these odds ratios varied between 2.5 and 5.7, respectively. The age adjusted odds ratios of generalised morning stiffness were 8.0 for men and 7.3 for women. CONCLUSION--There is a strong and independent association between locomotor disability and age, joint pain, and generalised morning stiffness in people aged 55 years and over. The odds for locomotor disability increase onefold for every year increase in age, while the presence of generalised morning stiffness is of greater influence than the presence of joint pain. PMID:7495342

  15. Comparison of different camera calibration approaches for underwater applications.

    PubMed

    Silvatti, Amanda Piaia; Dias, Fabio Augusto Salve; Cerveri, Pietro; Barros, Ricardo M L

    2012-04-01

    The purpose of this study was to compare three camera calibration approaches applied to underwater applications: (1) static control points with nonlinear DLT; (2) moving wand with nonlinear camera model and bundle adjustment; (3) moving plate with nonlinear camera model. The DVideo kinematic analysis system was used for underwater data acquisition. The system consisted of two gen-locked Basler cameras working at 100 Hz, with wide angle lenses that were enclosed in housings. The accuracy of the methods was compared in a dynamic rigid bar test (acquisition volume-4.5×1×1.5 m(3)). The mean absolute errors were 6.19 mm for the nonlinear DLT, 1.16 mm for the wand calibration, 1.20 mm for the 2D plate calibration using 8 control points and 0.73 mm for the 2D plane calibration using 16 control points. The results of the wand and 2D plate camera calibration methods were less associated to the rigid body position in the working volume and provided better accuracy than the nonlinear DLT. Wand and 2D plate camera calibration methods presented similar and highly accurate results, being alternatives for underwater 3D motion analysis. PMID:22284990

  16. Determination of the Spontaneous Locomotor Activity in Drosophila melanogaster

    PubMed Central

    Woods, Jared K.; Kowalski, Suzanne; Rogina, Blanka

    2014-01-01

    Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases. PMID:24747955

  17. Determination of the spontaneous locomotor activity in Drosophila melanogaster.

    PubMed

    Woods, Jared K; Kowalski, Suzanne; Rogina, Blanka

    2014-01-01

    Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases. PMID:24747955

  18. Genotypic structure of a Drosophila population for adult locomotor activity

    SciTech Connect

    Grechanyi, G.V.; Korzun, V.M.

    1995-01-01

    Analysis of the variation of adult locomotor activity in four samples taken at different times from a natural population of Drosophila melanogaster showed that the total variation of this trait is relatively stable in time and has a substantial genetic component. Genotypic structure of the population for locomotor activity is characterized by the presence of large groups of genotypes with high and low values of this trait. A possible explanation for the presence of such groups in a population is cyclic density-dependent selection.

  19. Fish kill from underwater explosions

    USGS Publications Warehouse

    Stuart, David J.

    1962-01-01

    The U.S. Geological Survey has used 23 different shotpoints during two seasons of field work in our seismic study of crustal structure in western United States. Without exception, it has been found that under-water shotpoints result in a more efficient conversion of explosive energy into seismic energy than do drilled-hole shotpoints. This experience, together with elimination of drilling costs, has led to the use of underwater shotpoints wherever possible. Three of the 23 shotpoints were in the Pacific Ocean, and for these we have no detailed information on the fish kill. Another six shotpoints were located in inland bodies of water. These are: * Soda Lake near Fallon, Nevada * Mono Lake near Lee Vining, California * Lake Mead near Boulder City, Nevada * Shasta Lake near Redding, California * C.J. Strike Reservoir near Bruneau, Idaho * Lucky Peak Reservoir near Boise, Idaho The 22 high-explosive charges, weighing a total of 95,100 pounds, that were fired in lakes containing fish life resulted in the known death of 2,413 game fish with a total weight of 759 pounds. The average mortality was 110 game fish or 34.5 pounds of game fish killed per average shot of 4,325 pounds of high-explosives.

  20. Polarimetric imaging of underwater targets

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Carrizo, Carlos; Tonizzo, Alberto; Ibrahim, Amir; El-Habashi, Ahmed; Foster, Robert; Ahmed, Samir

    2013-06-01

    Underwater imaging is challenging because of the significant attenuation of light due to absorption and scattering of light in water. Using polarization properties of light is one of the options for improving image quality. We present results of imaging of a polarized target in open ocean (Curacao) and coastal (NY Bight) waters. The target in the shape of a square is divided into several smaller squares, each of which is covered with a polarizing film with different polarization orientations or transmission coefficients was placed on a mirror and imaged under water by a green-band full-Stokes polarimetric video camera at the full range of azimuth angles against the Sun. The values of the Stokes vector components from the images are compared with the modeled image of the target using radiative transfer code for the atmosphere-ocean system combined with the simple imaging model. It is shown that even in clear water the impact of the water body on the polarized underwater image is very significant and retrieval of target polarization characteristics from the image is extremely challenging.

  1. Underwater camera with depth measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  2. Next generation of underwater vehicles

    SciTech Connect

    Winchester, R.G.J.

    1995-11-01

    The needs of undersea defense, and indeed those of the scientific community, overlap those of the offshore oil and gas industry, not least when it comes to subsea operations. They share problems encountered in the design and use of unmanned underwater vehicles, particularly in relation to reliability, efficiency, cost-effectiveness, and capabilities. The U.K. Marine Technology Directorate Ltd. (MTD) is managing a research program - Technology for Unmanned Underwater Vehicles (TUUV) - formulated with the particular aim of solving the problems identified by industry in relation to the operation of UUVs. The overall goal of the first three TUUV phases is to provide a convincing demonstration that the production of such advanced systems is practical, credible and cost-effective. Despite the advances in TUUV1, discussions with operators and program participants show that broad concerns over vehicle operations remain. TUUV2 and TUUV3 will transform the current purely technical and largely independent projects into an integrated concept demonstration that will justify the mainly industrial investment needed to make TUUV4 a reality in time for the millennium.

  3. Evaluation of a high exposure solar UV dosimeter for underwater use.

    PubMed

    Schouten, Peter W; Parisi, Alfio V; Turnbull, David J

    2007-01-01

    Solar ultraviolet radiation (UV) is known to have a significant effect upon the marine ecosystem. This has been documented by many previous studies using a variety of measurement methods in aquatic environments such as oceans, streams and lakes. Evidence gathered from these investigations has shown that UVB radiation (280-320 nm) can negatively affect numerous aquatic life forms, while UVA radiation (320-400 nm) can both damage and possibly even repair certain types of underwater life. Chemical dosimeters such as polysulphone have been tested to record underwater UV exposures and in turn quantify the relationship between water column depth and dissolved organic carbon levels to the distribution of biologically damaging UV underwater. However, these studies have only been able to intercept UV exposures over relatively short time intervals. This paper reports on the evaluation of a high exposure UV dosimeter for underwater use. The UV dosimeter was fabricated from poly 2,6-dimethyl-1,4-phenylene oxide (PPO) film. This paper presents the dose response, cosine response, exposure additivity and watermarking effect relating to the PPO dosimeter as measured in a controlled underwater environment and will also detail the overnight dark reaction and UVA and visible radiation response of the PPO dosimeter, which can be used for error correction to improve the reliability of the UV data measured by the PPO dosimeters. These results show that this dosimeter has the potential for long-term underwater UV exposure measurements. PMID:17645666

  4. Analysis of movement for unmanned underwater vehicle using a low cost integrated sensor

    NASA Astrophysics Data System (ADS)

    Aras, Mohd Shahrieel Mohd; Abdullah, Shahrum Shah; Rahman, Ahmad Fadzli Nizam Abdul; Basar, Mohd Farriz; Kassim, Anuar Mohamed; Jaafar, Hazriq Izzuan

    2015-05-01

    This paper presents the development of low cost integrated Smart Sensor for Unmanned Underwater Vehicle (UUV) namely as underwater Remotely Operated Vehicle (ROV). In the underwater industries, the most crucial issues are the sensors that are needed for the underwater task. The sensors that are utilized in this area are quite expensive and sensitive. Every sensors used in the underwater vehicle are not in the form of integrated sensors and most of them based on case to case basis. However, nowadays, a lot of industries are involved in the development of the integrated sensor in order to reduce the production cost as well as to increase accuracies, efficiencies and productivities. Therefore, this research proposes an integrated sensor to be applied in the underwater operations. The integrated sensor is designed based on three goal performances which are; the accuracies; the sensitivities and the cost efficiencies. This integrated sensor is the combination of pressure sensor, inertial measurement unit (IMU), digital compass and temperature sensor that are placed in a waterproof casing. This integrated sensor is targeted to be used to control the movement of ROV to maintain its position called station keeping. The purpose of the station keeping is to ensure the ROV to remain stationary at the desired depth by utilizing the pressure sensor. The experimental studies have been carried out in order to see the responses of each sensor.

  5. miR-124 Regulates the Phase of Drosophila Circadian Locomotor Behavior

    PubMed Central

    Lamba, Pallavi; Guo, Peiyi

    2016-01-01

    Animals use circadian rhythms to anticipate daily environmental changes. Circadian clocks have a profound effect on behavior. In Drosophila, for example, brain pacemaker neurons dictate that flies are mostly active at dawn and dusk. miRNAs are small, regulatory RNAs (≈22 nt) that play important roles in posttranscriptional regulation. Here, we identify miR-124 as an important regulator of Drosophila circadian locomotor rhythms. Under constant darkness, flies lacking miR-124 (miR-124KO) have a dramatically advanced circadian behavior phase. However, whereas a phase defect is usually caused by a change in the period of the circadian pacemaker, this is not the case in miR-124KO flies. Moreover, the phase of the circadian pacemaker in the clock neurons that control rhythmic locomotion is not altered either. Therefore, miR-124 modulates the output of circadian clock neurons rather than controlling their molecular pacemaker. Circadian phase is also advanced under temperature cycles, but a light/dark cycle partially corrects the defects in miR-124KO flies. Indeed, miR-124KO shows a normal evening phase under the latter conditions, but morning behavioral activity is suppressed. In summary, miR-124 controls diurnal activity and determines the phase of circadian locomotor behavior without affecting circadian pacemaker function. It thus provides a potent entry point to elucidate the mechanisms by which the phase of circadian behavior is determined. SIGNIFICANCE STATEMENT In animals, molecular circadian clocks control the timing of behavioral activities to optimize them with the day/night cycle. This is critical for their fitness and survival. The mechanisms by which the phase of circadian behaviors is determined downstream of the molecular pacemakers are not yet well understood. Recent studies indicate that miRNAs are important regulators of circadian outputs. We found that miR-124 shapes diurnal behavioral activity and has a striking impact on the phase of circadian

  6. Model based image restoration for underwater images

    NASA Astrophysics Data System (ADS)

    Stephan, Thomas; Frühberger, Peter; Werling, Stefan; Heizmann, Michael

    2013-04-01

    The inspection of offshore parks, dam walls and other infrastructure under water is expensive and time consuming, because such constructions must be inspected manually by divers. Underwater buildings have to be examined visually to find small cracks, spallings or other deficiencies. Automation of underwater inspection depends on established water-proved imaging systems. Most underwater imaging systems are based on acoustic sensors (sonar). The disadvantage of such an acoustic system is the loss of the complete visual impression. All information embedded in texture and surface reflectance gets lost. Therefore acoustic sensors are mostly insufficient for these kind of visual inspection tasks. Imaging systems based on optical sensors feature an enormous potential for underwater applications. The bandwidth from visual imaging systems reach from inspection of underwater buildings via marine biological applications through to exploration of the seafloor. The reason for the lack of established optical systems for underwater inspection tasks lies in technical difficulties of underwater image acquisition and processing. Lightening, highly degraded images make a computational postprocessing absolutely essential.

  7. Locomotor disability: meaning, causes and effects of interventions.

    PubMed

    Ebrahim, Shah; Adamson, Joy; Ayis, Salma; Beswick, Andrew; Gooberman-Hill, Rachael

    2008-10-01

    This paper provides a synopsis of a long-term programme of MRC-funded work on locomotor disability in older people. Specifically it describes the meaning and experience of disability, examines the risk factors for disability and systematically reviews the evidence from randomized trials of complex interventions for disability. We undertook a national prospective study of a representative sample of 999 people aged 65 years or more plus in-depth interviews with a small subsample and a selected sample obtained from hospital sources. Secondary analysis of several large prospective studies was carried out and a systematic review and meta-analysis of published randomized controlled trials of the effects of complex interventions for disability. Very few participants subscribed to the constructs of longstanding illness, disability or infirmity that surveys often use. A wide range of social and psychological factors, independently of chronic diseases, were strongly associated with disability. People with greater functional reserve capacity and those with greater self-efficacy were generally less likely to suffer from catastrophic decline in ability and had better quality of life in the face of disability. In reviewing 89 trials (over 97,000 participants) of complex interventions for disability, evidence of benefits was found although no relationship with intensity of intervention was apparent. Our findings on the meaning and experience of disability suggest the need for modifications to routinely used survey questions and for different ways of understanding the need for and receipt of care among older people with disabilities. The diverse risk factors for disability suggest that novel approaches across social, psychological as well as more traditional rehabilitation and behavioural risk factor modification would be worth exploring. Complex interventions appeared to help older people to live independently and limit functional decline irrespective of age and health status

  8. General and Specific Strategies Used to Facilitate Locomotor Maneuvers

    PubMed Central

    Wu, Mengnan; Matsubara, Jesse H.; Gordon, Keith E.

    2015-01-01

    People make anticipatory changes in gait patterns prior to initiating a rapid change of direction. How they prepare will change based on their knowledge of the maneuver. To investigate specific and general strategies used to facilitate locomotor maneuvers, we manipulated subjects’ ability to anticipate the direction of an upcoming lateral “lane-change” maneuver. To examine specific anticipatory adjustments, we observed the four steps immediately preceding a maneuver that subjects were instructed to perform at a known time in a known direction. We hypothesized that to facilitate a specific change of direction, subjects would proactively decrease margin of stability in the future direction of travel. Our results support this hypothesis: subjects significantly decreased lateral margin of stability by 69% on the side ipsilateral to the maneuver during only the step immediately preceding the maneuver. This gait adaptation may have improved energetic efficiency and simplified the control of the maneuver. To examine general anticipatory adjustments, we observed the two steps immediately preceding the instant when subjects received information about the direction of the maneuver. When the maneuver direction was unknown, we hypothesized that subjects would make general anticipatory adjustments that would improve their ability to actively initiate a maneuver in multiple directions. This second hypothesis was partially supported as subjects increased step width and stance phase hip flexion during these anticipatory steps. These modifications may have improved subjects’ ability to generate forces in multiple directions and maintain equilibrium during the onset and execution of the rapid maneuver. However, adapting these general anticipatory strategies likely incurred an additional energetic cost. PMID:26167931

  9. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  10. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  11. A Model of Locomotor-Respiratory Coupling in Quadrupeds

    ERIC Educational Resources Information Center

    Giuliodori,, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; DiCarlo, Stephen E.

    2009-01-01

    Locomotion and respiration are not independent phenomena in running mammals because locomotion and respiration both rely on cyclic movements of the ribs, sternum, and associated musculature. Thus, constraints are imposed on locomotor and respiratory function by virtue of their linkage. Specifically, locomotion imposes mechanical constraints on…

  12. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  13. Locomotor Experience and Use of Social Information Are Posture Specific

    ERIC Educational Resources Information Center

    Adolph, Karen E.; Tamis-LeMonda, Catherine S.; Ishak, Shaziela; Karasik, Lana B.; Lobo, Sharon A.

    2008-01-01

    The authors examined the effects of locomotor experience on infants' perceptual judgments in a potentially risky situation--descending steep and shallow slopes--while manipulating social incentives to determine where perceptual judgments are most malleable. Twelve-month-old experienced crawlers and novice walkers were tested on an adjustable…

  14. Inter-Individual and Inter-Strain Variations in Zebrafish Locomotor Ontogeny

    PubMed Central

    Lange, Merlin; Neuzeret, Frederic; Fabreges, Benoit; Froc, Cynthia; Bedu, Sebastien; Bally-Cuif, Laure; Norton, William H. J.

    2013-01-01

    Zebrafish exhibit remarkable alterations in behaviour and morphology as they develop from early larval stages to mature adults. In this study we compare the locomotion parameters of six common zebrafish strains from two different laboratories to determine the stability and repeatability of these behaviours. Our results demonstrate large variability in locomotion and fast swim events between strains and between laboratories across time. These data highlight the necessity for careful, strain-specific controls when analysing locomotor phenotypes and open up the possibility of standardising the quantification of zebrafish behaviour at multiple life stages. PMID:23950910

  15. Home tank water versus novel water differentially affect alcohol-induced locomotor activity and anxiety related behaviours in zebrafish.

    PubMed

    Tran, Steven; Facciol, Amanda; Gerlai, Robert

    2016-05-01

    The zebrafish may be uniquely well suited for studying alcohol's mechanisms of action in vivo, since alcohol can be administered via immersion in a non-invasive manner. Despite the robust behavioural effects of alcohol administration in mammals, studies reporting the locomotor stimulant and anxiolytic effects of alcohol in zebrafish have been inconsistent. In the current study, we examined whether differences in the type of water used for alcohol exposure and behavioural testing contribute to these inconsistencies. To answer this question, we exposed zebrafish to either home water from their housing tanks or novel water from an isolated reservoir (i.e. water lacking zebrafish chemosensory and olfactory cues) with 0% or 1% v/v alcohol for 30min, a 2×2 between subject experimental designs. Behavioural responses were quantified throughout the 30-minute exposure session via a video tracking system. Although control zebrafish exposed to home water and novel water were virtually indistinguishable in their behavioural responses, alcohol's effect on locomotor activity and anxiety-like behavioural responses were dependent on the type of water used for testing. Alcohol exposure in home tank water produced a mild anxiolytic and locomotor stimulant effect, whereas alcohol exposure in novel water produced an anxiogenic effect without altering locomotor activity. These results represent a dissociation between alcohol's effects on locomotor and anxiety related responses, and also illustrate how environmental factors, in this case familiarity with the water, may interact with such effects. In light of these findings, we urge researchers to explicitly state the type of water used. PMID:26921455

  16. Flexibility in locomotor-feeding integration during prey capture in varanid lizards: effects of prey size and velocity.

    PubMed

    Montuelle, Stéphane J; Herrel, Anthony; Libourel, Paul-Antoine; Daillie, Sandra; Bels, Vincent L

    2012-11-01

    Feeding movements are adjusted in response to food properties, and this flexibility is essential for omnivorous predators as food properties vary routinely. In most lizards, prey capture is no longer considered to solely rely on the movements of the feeding structures (jaws, hyolingual apparatus) but instead is understood to require the integration of the feeding system with the locomotor system (i.e. coordination of movements). Here, we investigated flexibility in the coordination pattern between jaw, neck and forelimb movements in omnivorous varanid lizards feeding on four prey types varying in length and mobility: grasshoppers, live newborn mice, adult mice and dead adult mice. We tested for bivariate correlations between 3D locomotor and feeding kinematics, and compared the jaw-neck-forelimb coordination patterns across prey types. Our results reveal that locomotor-feeding integration is essential for the capture of evasive prey, and that different jaw-neck-forelimb coordination patterns are used to capture different prey types. Jaw-neck-forelimb coordination is indeed significantly altered by the length and speed of the prey, indicating that a similar coordination pattern can be finely tuned in response to prey stimuli. These results suggest feed-forward as well as feed-back modulation of the control of locomotor-feeding integration. As varanids are considered to be specialized in the capture of evasive prey (although they retain their ability to feed on a wide variety of prey items), flexibility in locomotor-feeding integration in response to prey mobility is proposed to be a key component in their dietary specialization. PMID:22899521

  17. Effects of maternal low-protein diet on parameters of locomotor activity in a rat model of cerebral palsy.

    PubMed

    Silva, Kássia Oliveira Gomes da; Pereira, Sabrina da Conceição; Portovedo, Mariana; Milanski, Marciane; Galindo, Lígia Cristina Monteiro; Guzmán-Quevedo, Omar; Manhães-de-Castro, Raul; Toscano, Ana Elisa

    2016-08-01

    Children with cerebral palsy have feeding difficulties that can contribute to undernutrition. The aim of this study was to investigate the effect of early undernutrition on locomotor activity and the expression of the myofibrillar protein MuRF-1 in an experimental model of cerebral palsy (CP). In order to achieve this aim, pregnant rats were divided into two groups according to the diet provided: Normal Protein (NP, n=9) and Low Protein (LP, n=12) groups. After birth, the pups were divided into four groups: Normal Protein Sham (NPS, n=16), Normal Protein Cerebral Palsy (NPCP, n=21), Low Protein Sham (LPS, n=20) and Low Protein Cerebral Palsy (LPCP, n=18) groups. The experimental cerebral palsy protocol consisted of two episodes of anoxia at birth and during the first days of life. Each day, nitrogen flow was used (9l/min during 12min). After nitrogen exposure, sensorimotor restriction was performed 16h per day, from the 2nd to the 28th postnatal day (PND). Locomotor activity was evaluated at 8th, 14th, 17th, 21th and 28th PND. At PND 29, soleus muscles were collected to analyse myofibrillar protein MuRF-1. Our results show that CP animals decreased body weight (p<0.001), which were associated with alterations of various parameters of locomotor activity (p<0.05), compared to their control. Undernourished animals also showed a decrease (p<0.05) in body weight and locomotor activity parameters. Moreover, CP decreased MuRF-1 levels in nourished rats (p=0.015) but not in undernourished rats. In summary, perinatal undernutrition exacerbated the negative effects of cerebral palsy on locomotor activity and muscle atrophy, but it appears not be mediated by changes in MuRF-1 levels. PMID:27211347

  18. Down-Regulation of Decapping Protein 2 Mediates Chronic Nicotine Exposure-Induced Locomotor Hyperactivity in Drosophila

    PubMed Central

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence. PMID:23300696

  19. Activation of neurotensin receptor type 1 attenuates locomotor activity.

    PubMed

    Vadnie, Chelsea A; Hinton, David J; Choi, Sun; Choi, YuBin; Ruby, Christina L; Oliveros, Alfredo; Prieto, Miguel L; Park, Jun Hyun; Choi, Doo-Sup

    2014-10-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  20. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    PubMed Central

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  1. Underwater probing with laser radar

    NASA Technical Reports Server (NTRS)

    Carswell, A. I.; Sizgoric, S.

    1975-01-01

    Recent advances in laser and electro optics technology have greatly enhanced the feasibility of active optical probing techniques aimed at the remote sensing of water parameters. This paper describes a LIDAR (laser radar) that has been designed and constructed for underwater probing. The influence of the optical properties of water on the general design parameters of a LIDAR system is considered. Discussion of the specific details in the choice of the constructed LIDAR is given. This system utilizes a cavity dumped argon ion laser transmitter capable of 50 watt peak powers, 10 nanosecond pulses and megahertz pulse repetition rates at 10 different wavelengths in the blue green region of the spectrum. The performance of the system, in proving various types of water, is demonstrated by summarizing the results of initial laboratory and field experiments.

  2. Change detection in underwater imagery.

    PubMed

    Seemakurthy, Karthik; Rajagopalan, A N

    2016-03-01

    In this work, we deal with the problem of change detection in an underwater scenario given an unblurred-blurred image pair of a planar scene taken at different times. The blur is primarily due to the dynamic nature of the water surface and its nature is space-invariant in the presence of cyclic water flows. Exploiting the sparsity of the induced blur as well as the occlusions, we propose a distort-difference pipeline that employs an alternating minimization framework to perform change detection in the presence of geometric distortions (skew) as well as photometric degradations (blur and global illumination variations). The method can effectively yield both sharp and blurred occluder maps. Using synthetic as well as real data, we demonstrate how the proposed technique advances the state of the art. PMID:26974899

  3. Jellyfish inspired underwater unmanned vehicle

    NASA Astrophysics Data System (ADS)

    Villanueva, Alex; Bresser, Scott; Chung, Sanghun; Tadesse, Yonas; Priya, Shashank

    2009-03-01

    An unmanned underwater vehicle (UUV) was designed inspired by the form and functionality of a Jellyfish. These natural organisms were chosen as bio-inspiration for a multitude of reasons including: efficiency of locomotion, lack of natural predators, proper form and shape to incorporate payload, and varying range of sizes. The structure consists of a hub body surrounded by bell segments and microcontroller based drive system. The locomotion of UUV was achieved by shape memory alloy "Biometal Fiber" actuation which possesses large strain and blocking force with adequate response time. The main criterion in design of UUV was the use of low-profile shape memory alloy actuators which act as artificial muscles. In this manuscript, we discuss the design of two Jellyfish prototypes and present experimental results illustrating the performance and power consumption.

  4. Comparison of three underwater antennas for use in radiotelemetry

    USGS Publications Warehouse

    Beeman, J.W.; Grant, C.; Haner, P.V.

    2004-01-01

    The radiation patterns of three versions of underwater radiotelemetry antennas were measured to compare the relative reception ranges in the horizontal and vertical planes, which are important considerations when designing detection systems. The received signal strengths of an antenna made by stripping shielding from a section of coaxial cable (stripped coax) and by two versions of a dipole antenna were measured at several orientations relative to a dipole transmit antenna under controlled field conditions. The received signal strengths were greater when the transmit and receive antennas were parallel to each other than when they were perpendicular, indicating that a parallel orientation provides optimal detection range. The horizontal plane radiation pattern of the flexible, stripped coax antenna was similar to that of a rigid dipole antenna, but movement of underwater stripped coax antennas in field applications could affect the orientation of transmit and receive antennas in some applications, resulting in decreased range and variation in received signal strengths. Compared with a standard dipole, a dipole antenna armored by housing within a polyvinyl chloride fitting had a smaller radiation pattern in the horizontal plane but a larger radiation pattern in the vertical plane. Each of these types of underwater antenna can be useful, but detection ranges can be maximized by choosing an appropriate antenna after consideration of the location, relation between transmit and receive antenna orientations, radiation patterns, and overall antenna resiliency.

  5. Administrator Bolden Calls Underwater NEEMO Crew

    NASA Video Gallery

    From outside their underwater laboratory in Florida, NASA Astronaut and NEEMO 16 Commander Dottie Metcalf-Lindenburger and European Space Agency astronaut Timothy Peake took a call from NASA Admini...

  6. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  7. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  8. Active-imaging-based underwater navigation

    NASA Astrophysics Data System (ADS)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  9. A neurorobotic platform for locomotor prosthetic development in rats and mice

    NASA Astrophysics Data System (ADS)

    von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire

    2016-04-01

    Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.

  10. Underwater turning movement during foraging in Hydromedusa maximiliani (Testudines, Chelidae) from southeastern Brazil.

    PubMed

    Rocha-Barbosa, O; Hohl, L S L; Novelli, I A; Sousa, B M; Gomides, S C; Loguercio, M F C

    2014-11-01

    A type of locomotor behavior observed in animals with rigid bodies, that can be found in many animals with exoskeletons, shells, or other forms of body armor, to change direction, is the turning behavior. Aquatic floated-turning behavior among rigid bodies animals have been studied in whirligig beetles, boxfish, and more recently in freshwater turtle, Chrysemys picta. In the laboratory we observed a different kind of turning movement that consists in an underwater turning movement during foraging, wherein the animal pivoted its body, using one of the hindlimbs as the fixed-point support in the substratum. We describe, analyze and quantify this movement during foraging in Hydromedusa maximiliani, using observations made in the laboratory. We studied 3 adult specimens (2 males, 1 female) and 2 non-sexed juveniles of H. maximiliani. They were kept individually in an aquarium filled with water and small fish. They were filmed, in dorsal view, at 30 frames per second. Sequences were analyzed frame by frame and points were marked on limbs and shell to enable analysis of variation in limb flexion and extension, as well as rotation movements. While foraging, turtles frequently turned their bodies, using one hind leg as the pivot point. This underwater turning movement, in addition to slow movements with the neck stretched, or staying nearly immobile and scanning the surroundings with lateral movements of the neck (in arcs up to 180°), and fast attacks of neck, may increase prey capture rates. PMID:25627611

  11. The design of underwater superoleophobic Ni/NiO microstructures with tunable oil adhesion

    NASA Astrophysics Data System (ADS)

    Zhang, Enshuang; Cheng, Zhongjun; Lv, Tong; Li, Li; Liu, Yuyan

    2015-11-01

    Controlling oil adhesion in water is a fundamental issue in many practical applications for surfaces. Currently, almost all studies on underwater oil adhesion control are concentrated on regulating surface chemistry on polymer surfaces, and structure-dependent underwater oil adhesion is still rare, especially on inorganic materials. Herein, we report a series of underwater superoleophobic Ni/NiO surfaces with controlled oil adhesions by combining electro-deposition and heating techniques. The adhesive forces between an oil droplet and the surfaces can be adjusted from an extremely low (less than 1 μN) to a very high value (about 60 μN), and the tunable effect can be attributed to different wetting states that result from different microstructures on the surfaces. Moreover, the oil-adhesion controllability for different types of oils was also analyzed and the applications of the surface including oil droplet transportation and self-cleaning were discussed. The results reported herein provide a new feasible method for fabrication of underwater superoleophobic surfaces with controlled adhesion, and improve the understanding of the relationship between surface microstructures, adhesion, and the fabrication principle of tunable oil adhesive surfaces.Controlling oil adhesion in water is a fundamental issue in many practical applications for surfaces. Currently, almost all studies on underwater oil adhesion control are concentrated on regulating surface chemistry on polymer surfaces, and structure-dependent underwater oil adhesion is still rare, especially on inorganic materials. Herein, we report a series of underwater superoleophobic Ni/NiO surfaces with controlled oil adhesions by combining electro-deposition and heating techniques. The adhesive forces between an oil droplet and the surfaces can be adjusted from an extremely low (less than 1 μN) to a very high value (about 60 μN), and the tunable effect can be attributed to different wetting states that result from

  12. Affordable underwater wireless optical communication using LEDs

    NASA Astrophysics Data System (ADS)

    Pilipenko, Vladimir; Arnon, Shlomi

    2013-09-01

    In recent years the need for high data rate underwater wireless communication (WC) has increased. Nowadays, the conventional technology for underwater communication is acoustic. However, the maximum data rate that acoustic technology can provide is a few kilobits per second. On the other hand, emerging applications such as underwater imaging, networks of sensors and swarms of underwater vehicles require much faster data rates. As a result, underwater optical WC, which can provide much higher data rates, has been proposed as an alternative means of communication. In addition to high data rates, affordable communication systems become an important feature in the development requirements. The outcome of these requirements is a new system design based on off-the-shelf components such as blue and green light emitting diodes (LEDs). This is due to the fact that LEDs offer solutions characterized by low cost, high efficiency, reliability and compactness. However, there are some challenges to be met when incorporating LEDs as part of the optical transmitter, such as low modulation rates and non linearity. In this paper, we review the main challenges facing the incorporation of LEDs as an integral part of underwater WC systems and propose some techniques to mitigate the LED limitations in order to achieve high data rate communication

  13. Dynamics modeling and simulation of autonomous underwater vehicles with appendages

    NASA Astrophysics Data System (ADS)

    Su, Yumin; Zhao, Jinxin; Cao, Jian; Zhang, Guocheng

    2013-03-01

    To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.

  14. Conditional Sox9 ablation improves locomotor recovery after spinal cord injury by increasing reactive sprouting.

    PubMed

    McKillop, William M; York, Elisa M; Rubinger, Luc; Liu, Tony; Ossowski, Natalie M; Xu, Kathy; Hryciw, Todd; Brown, Arthur

    2016-09-01

    The absence of axonal regeneration after spinal cord injury (SCI) has been attributed to the up-regulation of axon-repelling molecules, such as chondroitin sulfate proteoglycans (CSPGs) present in the glial scar that forms post-SCI. We previously identified the transcription factor SOX9 as a key up-regulator of CSPG production and also demonstrated that conditional Sox9 ablation leads to decreased CSPG levels and improved recovery of hind limb function after SCI. We herein demonstrate increased neural input onto spinal neurons caudal to the lesion in spinal cord injured Sox9 conditional knock out mice as indicated by increased levels of the presynaptic markers synaptophysin and vesicular glutamate transporter 1 (VGLUT1) compared to controls. Axonal sparing, long-range axonal regeneration and reactive sprouting were investigated as possible explanations for the increase in neural inputs caudal to the lesion and for the improved locomotor outcomes in spinal cord-injured Sox9 conditional knock out mice. Whereas retrograde tract-tracing studies failed to reveal any evidence for increased axonal sparing or for long-range regeneration in the Sox9 conditional knock out mice, anterograde tract-tracing experiments demonstrated increased reactive sprouting caudal to the lesion after SCI. Finally we demonstrate that application of a broad spectrum MMP inhibitor to reduce CSPG degradation in Sox9 conditional knock out mice prevents the improvements in locomotor recovery observed in untreated Sox9 conditional knock out mice. These results suggest that improved recovery of locomotor function in Sox9 conditional knock out mice after SCI is due to increased reactive sprouting secondary to reduced CSPG levels distal to the lesion. PMID:27235933

  15. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    PubMed

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (p<0.05). In contrast, we observed that both SLA and Tb were higher during the dark-phase (p<0.01). Notably, the correlation analysis between the amount of SLA and the running capacity observed at each phase of the daily cycle revealed that, regardless of the time of the day, both types of locomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, p<0.01) without a direct relationship between them. This finding provides further support for the existence of specific control mechanisms for each type of physical activity. In conclusion, our data indicate that the relationship between the body temperature and different types of physical activity might be affected by the light/dark cycle. These results mean that, although exercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. PMID:25479573

  16. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish

    PubMed Central

    Kung, Tiffany S.; Richardson, Jason R.; Cooper, Keith R.; White, Lori A.

    2015-01-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25–0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3–72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  17. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles.

    PubMed

    Currie, Stephen P; Combes, Denis; Scott, Nicholas W; Simmers, John; Sillar, Keith T

    2016-03-01

    Locomotor control requires functional flexibility to support an animal's full behavioral repertoire. This flexibility is partly endowed by neuromodulators, allowing neural networks to generate a range of motor output configurations. In hatchling Xenopus tadpoles, before the onset of free-swimming behavior, the gaseous modulator nitric oxide (NO) inhibits locomotor output, shortening swim episodes and decreasing swim cycle frequency. While populations of nitrergic neurons are already present in the tadpole's brain stem at hatching, neurons positive for the NO-synthetic enzyme, NO synthase, subsequently appear in the spinal cord, suggesting additional as yet unidentified roles for NO during larval development. Here, we first describe the expression of locomotor behavior during the animal's change from an early sessile to a later free-swimming lifestyle and then compare the effects of NO throughout tadpole development. We identify a discrete switch in nitrergic modulation from net inhibition to overall excitation, coincident with the transition to free-swimming locomotion. Additionally, we show in isolated brain stem-spinal cord preparations of older larvae that NO's excitatory effects are manifested as an increase in the probability of spontaneous swim episode occurrence, as found previously for the neurotransmitter dopamine, but that these effects are mediated within the brain stem. Moreover, while the effects of NO and dopamine are similar, the two modulators act in parallel rather than NO operating serially by modulating dopaminergic signaling. Finally, NO's activation of neurons in the brain stem also leads to the release of NO in the spinal cord that subsequently contributes to NO's facilitation of swimming. PMID:26763775

  18. Enhanced locomotor adaptation aftereffect in the “broken escalator” phenomenon using anodal tDCS

    PubMed Central

    Kaski, D.; Quadir, S.; Patel, M.; Yousif, N.

    2012-01-01

    The everyday experience of stepping onto a stationary escalator causes a stumble, despite our full awareness that the escalator is broken. In the laboratory, this “broken escalator” phenomenon is reproduced when subjects step onto an obviously stationary platform (AFTER trials) that was previously experienced as moving (MOVING trials) and attests to a process of motor adaptation. Given the critical role of M1 in upper limb motor adaptation and the potential for transcranial direct current stimulation (tDCS) to increase cortical excitability, we hypothesized that anodal tDCS over leg M1 and premotor cortices would increase the size and duration of the locomotor aftereffect. Thirty healthy volunteers received either sham or real tDCS (anodal bihemispheric tDCS; 2 mA for 15 min at rest) to induce excitatory effects over the primary motor and premotor cortex before walking onto the moving platform. The real tDCS group, compared with sham, displayed larger trunk sway and increased gait velocity in the first AFTER trial and a persistence of the trunk sway aftereffect into the second AFTER trial. We also used transcranial magnetic stimulation to probe changes in cortical leg excitability using different electrode montages and eyeblink conditioning, before and after tDCS, as well as simulating the current flow of tDCS on the human brain using a computational model of these different tDCS montages. Our data show that anodal tDCS induces excitability changes in lower limb motor cortex with resultant enhancement of locomotor adaptation aftereffects. These findings might encourage the use of tDCS over leg motor and premotor regions to improve locomotor control in patients with neurological gait disorders. PMID:22323638

  19. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles

    PubMed Central

    Currie, Stephen P.; Combes, Denis; Scott, Nicholas W.; Simmers, John

    2016-01-01

    Locomotor control requires functional flexibility to support an animal's full behavioral repertoire. This flexibility is partly endowed by neuromodulators, allowing neural networks to generate a range of motor output configurations. In hatchling Xenopus tadpoles, before the onset of free-swimming behavior, the gaseous modulator nitric oxide (NO) inhibits locomotor output, shortening swim episodes and decreasing swim cycle frequency. While populations of nitrergic neurons are already present in the tadpole's brain stem at hatching, neurons positive for the NO-synthetic enzyme, NO synthase, subsequently appear in the spinal cord, suggesting additional as yet unidentified roles for NO during larval development. Here, we first describe the expression of locomotor behavior during the animal's change from an early sessile to a later free-swimming lifestyle and then compare the effects of NO throughout tadpole development. We identify a discrete switch in nitrergic modulation from net inhibition to overall excitation, coincident with the transition to free-swimming locomotion. Additionally, we show in isolated brain stem-spinal cord preparations of older larvae that NO's excitatory effects are manifested as an increase in the probability of spontaneous swim episode occurrence, as found previously for the neurotransmitter dopamine, but that these effects are mediated within the brain stem. Moreover, while the effects of NO and dopamine are similar, the two modulators act in parallel rather than NO operating serially by modulating dopaminergic signaling. Finally, NO's activation of neurons in the brain stem also leads to the release of NO in the spinal cord that subsequently contributes to NO's facilitation of swimming. PMID:26763775

  20. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish.

    PubMed

    Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A

    2015-08-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  1. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult

    PubMed Central

    2012-01-01

    Background Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. Results We show that overexpression of the Alzheimer’s-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Conclusions Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer’s disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the

  2. Chronotype and stability of spontaneous locomotor activity rhythm in BMAL1-deficient mice.

    PubMed

    Pfeffer, Martina; Korf, Horst-Werner; von Gall, Charlotte

    2015-02-01

    Behavior, physiological functions and cognitive performance change over the time of the day. These daily rhythms are either externally driven by rhythmic environmental cues such as the light/dark cycle (masking) or controlled by an internal circadian clock, the suprachiasmatic nucleus (SCN), which can be entrained to the light/dark cycle. Within a given species, there is genetically determined variability in the temporal preference for the onset of the active phase, the chronotype. The chronotype is the phase of entrainment between external and internal time and is largely regulated by the circadian clock. Genetic variations in clock genes and environmental influences contribute to the distribution of chronotypes in a given population. However, little is known about the determination of the chronotype, the stability of the locomotor rhythm and the re-synchronization capacity to jet lag in an animal without a functional endogenous clock. Therefore, we analyzed the chronotype of BMAL1-deficient mice (BMAL1-/-) as well as the effects of repeated experimental jet lag on locomotor activity rhythms. Moreover, light-induced period expression in the retina was analyzed to assess the responsiveness of the circadian light input system. In contrast to wild-type mice, BMAL1-/- showed a significantly later chronotype, adapted more rapidly to both phase advance and delay but showed reduced robustness of rhythmic locomotor activity after repeated phase shifts. However, photic induction of Period in the retina was not different between the two genotypes. Our findings suggest that a disturbed clockwork is associated with a late chronotype, reduced rhythm stability and higher vulnerability to repeated external desynchronization. PMID:25216070

  3. Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers.

    PubMed

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols. PMID:24399155

  4. Robust analysis of an underwater navigational strategy in electrically heterogeneous corridors.

    PubMed

    Dimble, Kedar D; Ranganathan, Badri N; Keshavan, Jishnu; Humbert, J Sean

    2016-01-01

    Obstacles and other global stimuli provide relevant navigational cues to a weakly electric fish. In this work, robust analysis of a control strategy based on electrolocation for performing obstacle avoidance in electrically heterogeneous corridors is presented and validated. Static output feedback control is shown to achieve the desired goal of reflexive obstacle avoidance in such environments in simulation and experimentation. The proposed approach is computationally inexpensive and readily implementable on a small scale underwater vehicle, making underwater autonomous navigation feasible in real-time. PMID:27478091

  5. Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers

    PubMed Central

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols. PMID:24399155

  6. Decreased aggressive and locomotor behaviors in Betta splendens after exposure to fluoxetine.

    PubMed

    Kohlert, Jess G; Mangan, Brian P; Kodra, Christine; Drako, Linsay; Long, Emily; Simpson, Holly

    2012-02-01

    The failure of sewage treatment plants to remove pharmaceuticals such as fluoxetine from waste water has become a concern given that these products are being detected in the surface waters of many countries of the world. The effects of fluoxetine in sub-lethal doses on the neural systems and behaviors of aquatic life are worthy of investigation. This study investigated the effects of sub-lethal amounts fluoxetine dissolved in water on the aggressive and locomotor behaviors of 44 male Betta splendens. Fish treated with 705 microg/l of fluoxetine and 350 microg/l of fluoxetine generally demonstrated significant decreases in locomotion and number of aggressive attacks compared to 0 microg/l of fluoxetine (controls) on Days 11 and 19 of drug exposure and persisted for at least 13 days after removal of fluoxetine. Consistent with decreases in the number of aggressive attacks, there was a significant increase in aggression-response time to a perceived intruder for treated males on Days 11 and 19 and persisted for 6 days following removal of fluoxetine. However, the differences in aggressive and locomotor behaviors seen in the fluoxetine-treated groups were indistinguishable from controls three weeks following drug removal. PMID:22489377

  7. Density of muscle spindles in prosimian shoulder muscles reflects locomotor adaptation.

    PubMed

    Higurashi, Yasuo; Taniguchi, Yuki; Kumakura, Hiroo

    2006-01-01

    We examined the correlation between the density of muscle spindles in shoulder muscles and the locomotor mode in three species of prosimian primates: the slow loris (Nycticebus coucang), Garnett's galago (Otolemur garnettii), and the ring-tailed lemur (Lemur catta). The shoulder muscles (supraspinatus, infraspinatus, teres major, teres minor, and subscapularis) were embedded in celloidin and cut into transverse serial thin sections (40 microm); then, every tenth section was stained using the Azan staining technique. The relative muscle weights and the density of the muscle spindles were determined. The slow loris muscles were heavier and had sparser muscle spindles, as compared to Garnett's galago. These features suggest that the shoulder muscles of the slow loris are more adapted to generating propulsive force and stabilizing the shoulder joint during locomotion and play a less controlling role in forelimb movements. In contrast, Garnett's galago possessed smaller shoulder muscles with denser spindles that are suitable for the control of more rapid locomotor movements. The mean relative weight and the mean spindle density in the shoulder muscles of the ring-tailed lemur were between those of the other primates, suggesting that the spindle density is not simply a consequence of taxonomic status. PMID:17361082

  8. Autonomous Underwater Vehicle Magnetic Mapping System

    NASA Astrophysics Data System (ADS)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional

  9. Effects of underwater treadmill walking training on the peak torque of the knee in hemiplegic patients

    PubMed Central

    Lee, Dong-geol; Jeong, Seong-kwan; Kim, Young-dong

    2015-01-01

    [Purpose] This study investigated the effects of underwater treadmill walking training on the peak torque of the knee in hemiplegic patients. [Subjects and Methods] Thirty-two subjects, who were randomly allocated to an experimental group (n=16) and a control group (n=16), performed underwater treadmill walking training and overground treadmill walking training, respectively, for 30 minutes/session, 3 sessions/week, for 6 weeks. An isokinetic dynamometer was used to assess the peak torque. [Results] The subjects in the experimental group showed an increase in the peak knee extension torque compared to the control group. [Conclusion] The results suggested that underwater treadmill walking training has a greater effect on peak knee extension torque at velocities of 60°/sec and 120°/sec than overground treadmill walking training. PMID:26504314

  10. Force wave transmission through the human locomotor system.

    PubMed

    Voloshin, A; Wosk, J; Brull, M

    1981-02-01

    A method to measure the capability of the human shock absorber system to attenuate input dynamic loading during the gait is presented. The experiments were carried out with two groups: healthy subjects and subjects with various pathological conditions. The results of the experiments show a considerable difference in the capability of each group's shock absorbers to attenuate force transmitted through the locomotor system. Comparison shows that healthy subjects definitely possess a more efficient shock-absorbing capacity than do those subjects with joint disorders. Presented results show that degenerative changes in joints reduce their shock absorbing capacity, which leads to overloading of the next shock absorber in the locomotor system. So, the development of osteoarthritis may be expected to result from overloading of a shock absorber's functional capacity. PMID:7253613

  11. Multi-terrain locomotor interactions in flying snakes

    NASA Astrophysics Data System (ADS)

    Yeaton, Isaac; Baumgardner, Grant; Ross, Shane; Socha, John

    Arboreal snakes of the genus Chrysopelea are the only known snakes to glide. To execute aerial locomotion, a snake uses one of several stereotyped jumps from a tree into the air, while simultaneously flattening its body into an aerodynamically favorable shape. Large amplitude traveling waves are propagated posteriorly during the stable glide, while landing involves body wrapping, passive body compression, and energy absorption through compliance in the landing substrate to dissipate the accumulated kinetic energy from the glide. In all of these locomotor events, from interacting with cylindrical branches, falling through the air, grasping compliant tree branches and leaves, to landing on solid ground, snakes appropriate the same body morphology and perhaps the same basic neural mechanisms. Here we discuss our use of computational models and animal experiments to understand how flying snakes interact with and locomote on and through multiple media, potentially providing principles for legless locomotor designs. Supported by NSF 1351322.

  12. MDMA (ecstasy) modulates locomotor and prefrontal cortex sensory evoked activity.

    PubMed

    Atkins, Kristal; Burks, Tilithia; Swann, Alan C; Dafny, Nachum

    2009-12-11

    Ingestion of 3, 4-methylenedioxymethamphetamine (MDMA) leads to heightened response to sensory stimulation; thus, MDMA is referred to as "ecstasy" because it produces pleasurable enhancement of such sensation. There have been no electrophysiological studies that report the consequences of MDMA on sensory input. The present study was initiated to study the effects of acute and chronic MDMA on locomotor activity and sensory evoked field potential from freely behaving rats previously implanted with permanent electrodes in the prefrontal cortex (PFC). The main findings of this study are that: (1) acute MDMA augments locomotor behavior and attenuates the incoming sensory input, (2) chronic treatment of MDMA elicits behavioral sensitization, (3) chronic administration of MDMA results in attenuation of the baseline activity of the sensory evoked field potential, and (4) administration of rechallenge MDMA result in enhancement of the PFC sensory evoked field potential. PMID:19769950

  13. Underwater tunable organ-pipe sound source.

    PubMed

    Morozov, Andrey K; Webb, Douglas C

    2007-08-01

    A highly efficient frequency-controlled sound source based on a tunable high-Q underwater acoustic resonator is described. The required spectrum width was achieved by transmitting a linear frequency-modulated signal and simultaneously tuning the resonance frequency, keeping the sound source in resonance at the instantaneous frequency of the signal transmitted. Such sound sources have applications in ocean-acoustic tomography and deep-penetration seismic tomography. Mathematical analysis and numerical simulation show the Helmholtz resonator's ability for instant resonant frequency switching and quick adjustment of its resonant frequency to the instantaneous frequency signal. The concept of a quick frequency adjustment filter is considered. The discussion includes the simplest lumped resonant source as well as the complicated distributed system of a tunable organ pipe. A numerical model of the tunable organ pipe is shown to have a form similar to a transmission line segment. This provides a general form for the principal results, which can be applied to tunable resonators of a different physical nature. The numerical simulation shows that the "state-switched" concept also works in the high-Q tunable organ pipe, and the speed of frequency sweeping in a high-Q tunable organ pipe is analyzed. The simulation results were applied to a projector design for ocean-acoustic tomography. PMID:17672628

  14. Human Injury Criteria for Underwater Blasts.

    PubMed

    Lance, Rachel M; Capehart, Bruce; Kadro, Omar; Bass, Cameron R

    2015-01-01

    Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study. PMID:26606655

  15. Human Injury Criteria for Underwater Blasts

    PubMed Central

    Lance, Rachel M.; Capehart, Bruce; Kadro, Omar; Bass, Cameron R.

    2015-01-01

    Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study. PMID:26606655

  16. Assessing locomotor-stimulating effects of cocaine in rodents.

    PubMed

    Morgan, Drake; Dupree, Jameson P; Bibbey, Alex D; Sizemore, Glen M

    2012-01-01

    Locomotor activity procedures are useful for characterizing the behavioral effects of a drug, the influence of pharmacological, neurobiological, and environmental manipulations on drug sensitivity, and changes in activity following repeated administration (e.g., tolerance or sensitization) are thought to be related to the development of an addiction-like behavioral phenotype. The effects of cocaine on locomotor activity have been relatively extensively characterized. Many of the published studies use between-subject experimental designs, even though changes in sensitivity within a particular individual due to experimental manipulations, or behavioral and pharmacological histories is potentially the most important outcome as these changes may relate to differential development of an addiction-like phenotype in some, but not all, animals (including humans). The two behavioral protocols described herein allow extensive within-subject analyses. The first protocol uses daily locomotor activity levels as a stable baseline to assess the effects of experimental manipulations, and the second uses a pre- versus post-session experimental design to demonstrate the importance of drug-environment interactions in determining the behavioral effects of cocaine. PMID:22231824

  17. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  18. Sigma ligand S14905 and locomotor activity in mice.

    PubMed

    Hascoet, M; Bourin, M; Payeur, R; Lombet, A; Peglion, J L

    1995-12-01

    The binding and locomotor profile of a new sigma ligand, S14905, (isobutyl-N-(1-indan-2yl-piperid-4-yl)N-methyl carbamate, furamate) was studied. The binding data revealed that S14905 has a high affinity for sigma receptors and very low affinity for both dopamine D1 and D2 receptors. We have demonstrated that this sigma ligand prevents the locomotor stimulation induced by morphine (32 and 64 mg/kg), cocaine (16 mg/kg), amphetamine (4 mg/kg) and adrafinil (32 mg/kg) at doses lower than those required to depress spontaneous locomotor activity. The antagonism observed in the present study seems to be more specific of morphine induced hyperlocomotion. The high affinity of this compound for sigma receptors makes it a good choice to study the role of this receptor in the CNS. In addition, S14905 does not directly block dopamine receptors but may modulate them in some manner, and would thus warrant further study as a potential atypical antipsychotic agent, and an antagonist for the hyperactivity induced by opiate drug. PMID:8998401

  19. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila

    PubMed Central

    van der Voet, M; Harich, B; Franke, B; Schenck, A

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619

  20. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila.

    PubMed

    van der Voet, M; Harich, B; Franke, B; Schenck, A

    2016-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619

  1. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans.

    PubMed

    Yozu, Arito; Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro

    2016-01-01

    To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555

  2. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans

    PubMed Central

    Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro

    2016-01-01

    To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555

  3. Timing of Locomotor Recovery from Anoxia Modulated by the white Gene in Drosophila.

    PubMed

    Xiao, Chengfeng; Robertson, R Meldrum

    2016-06-01

    Locomotor recovery from anoxia follows the restoration of disordered ion distributions and neuronal excitability. The time taken for locomotor recovery after 30 sec anoxia (around 10 min) is longer than the time for the propagation of action potentials to be restored (<1 min) in Drosophila wild type. We report here that the white (w) gene modulates the timing of locomotor recovery. Wild-type flies displayed fast and consistent recovery of locomotion from anoxia, whereas mutants of w showed significantly delayed and more variable recovery. Genetic analysis including serial backcrossing revealed a strong association between the w locus and the timing of locomotor recovery, and haplo-insufficient function of w(+) in promoting fast recovery. The locomotor recovery phenotype was independent of classic eye pigmentation, although both are associated with the w gene. Introducing up to four copies of mini-white (mw(+)) into w1118 was insufficient to promote fast and consistent locomotor recovery. However, flies carrying w(+) duplicated to the Y chromosome showed wild-type-like fast locomotor recovery. Furthermore, Knockdown of w by RNA interference (RNAi) in neurons but not glia delayed locomotor recovery, and specifically, knockdown of w in subsets of serotonin neurons was sufficient to delay the locomotor recovery. These data reveal an additional role for w in modulating the timing of locomotor recovery from anoxia. PMID:27029736

  4. Functional Electrical Stimulation Alters the Postural Component of Locomotor Activity in Healthy Humans

    PubMed Central

    Talis, Vera; Ballay, Yves; Grishin, Alexander; Pozzo, Thierry

    2015-01-01

    Knowledge of the effects of Functional Electrical Stimulation (FES) of different intensity on postural stability during walking in healthy subjects is necessary before these relationships in patients with postural disorders can be assessed and understood. We examined healthy subjects in Control group walking on a treadmill for 40 min and in FES group—provided with 30 min of stimulation, which intensity increased every 10 min. The main difference between Control and FES group was the progressive increase of trunk oscillations in sagittal, frontal, and horizontal planes and an increase of relative stance duration in parallel with FES intensity increase. Both Control and FES groups exhibited shank elevation angle increase as an after-effect. It is concluded, that high intensity FES significantly changes the postural component of locomotor activity, but the fatigue signs afterwards were not FES specific. PMID:26733791

  5. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles.

    PubMed

    Verdú, José R; Cortez, Vieyle; Ortiz, Antonio J; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-01-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin's effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung. PMID:26350768

  6. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    PubMed Central

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-01-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung. PMID:26350768

  7. High levels of impulsivity in rats are not accompanied by sensorimotor gating deficits and locomotor hyperactivity.

    PubMed

    Feja, M; Lang, M; Deppermann, L; Yüksel, A; Wischhof, L

    2015-12-01

    High levels of impulsivity have been linked to a number of psychiatric disorders, including attention-deficit/hyperactivity disorder, drug abuse and schizophrenia. Additionally, schizophrenia patients commonly show deficits in another rather preattentive form of response inhibition, called sensorimotor gating. Given that higher-order functions, such as impulse control, are protected by early and preattentive processes, disturbed gating mechanisms may hamper more complex cognitive-executive functions. In the present study, we therefore tested whether high levels of impulsivity are accompanied by impaired sensorimotor gating in rats. High (HI) and low impulsive (LI) rats were identified based on the number of premature responses in the 5-choice serial reaction time task. Here, LI rats showed higher numbers of omission errors which may suggest attentional deficits while HI rats completed significantly less trials which could indicate a decrease in motivation. However, HI and LI rats did not differ in terms of impulsive decision-making in a delay-based decision-making T-maze task, prepulse inhibition of the acoustic startle response (a measure of sensorimotor gating mechanisms) or locomotor activity levels. Overall, our data indicate that high motor impulsivity is not a suitable predictor of deficient sensorimotor gating and is further not necessarily associated with attentional deficits and/or locomotor hyperactivity in rats. PMID:26484709

  8. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    NASA Astrophysics Data System (ADS)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  9. The expression of locomotor circadian rhythm in female German cockroach, Blattella germanica (L.).

    PubMed

    Lin, T M; Lee, H J

    1996-07-01

    Fifteen percent of intact female German cockroaches (n = 13), Blattella germanica (L.) (Dictyoptera: Blattellidae), had weak free-running locomotor rhythmicity under 28 degrees C and constant darkness conditions. However, 86% of ovariectomized females (n = 14) showed a strong free-running rhythm under the same conditions with a circadian period of 23.60 +/- 0.15 h, similar to the male's period of 23.45 +/- 0.03 h. In addition, the locomotory activities occurred mainly during the subjective night under DD conditions as was the case in males. These results indicated that female locomotion was under the control of a circadian oscillator, which was masked by the existence of ovaries. This internal masking effect could be removed by the existence of males, but females had no effect on the locomotor pattern of another female. Since the male failed to entrain female locomotion, its role as a zeitgeber was excluded. That the locomotory pattern of the females still coincided with their reproductive cycle when exposed to male odor suggests that exposure to a male only partially removed the internal masking effects. PMID:8877117

  10. Locomotor stability and adaptation during perturbed walking across the adult female lifespan.

    PubMed

    McCrum, Christopher; Epro, Gaspar; Meijer, Kenneth; Zijlstra, Wiebren; Brüggemann, Gert-Peter; Karamanidis, Kiros

    2016-05-01

    The aim of this work was to examine locomotor stability and adaptation across the adult female lifespan during perturbed walking on the treadmill. 11 young, 11 middle and 14 older-aged female adults (mean and SD: 25.5(2.1), 50.6(6.4) and 69.0(4.7) years old respectively) walked on a treadmill. We applied a sustained perturbation to the swing phase of the right leg for 18 consecutive gait cycles, followed by a step with the resistance unexpectedly removed, via an ankle strap connected to a break-and-release system. The margin of stability (MoS) at foot touchdown was calculated as the difference between the anterior boundary of the base of support (BoS) and extrapolated center of mass. Older participants showed lower MoS adaptation magnitude in the early adaptation phase (steps 1-3) compared to the young and middle-aged groups. However, in the late adaptation phase (steps 16-18) there were no significant differences in adaptation magnitude between the three age groups. After removing the resistance, all three age groups showed similar aftereffects (i.e. increased BoS). The current results suggest that in old age, the ability to recalibrate locomotion to control stability is preserved, but the rate of adaptive improvement in locomotor stability is diminished. PMID:26970886

  11. Omnidirectional underwater camera design and calibration.

    PubMed

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Ribas, David

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV) simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3) and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach. PMID:25774707

  12. New approach for underwater imaging and processing

    NASA Astrophysics Data System (ADS)

    Wen, Yanan; Tian, Weijian; Zheng, Bing; Zhou, Guozun; Dong, Hui; Wu, Qiong

    2014-05-01

    Due to the absorptive and scattering nature of water, the characteristic of underwater image is different with it in the air. Underwater image is characterized by their poor visibility and noise. Getting clear original image and image processing are two important problems to be solved in underwater clear vision area. In this paper a new approach technology is presented to solve these problems. Firstly, an inhomogeneous illumination method is developed to get the clear original image. Normal illumination image system and inhomogeneous illumination image system are used to capture the image in same distance. The result shows that the contrast and definition of processed image is get great improvement by inhomogeneous illumination method. Secondly, based on the theory of photon transmitted in the water and the particularity of underwater target detecting, the characters of laser scattering on underwater target surface and spatial and temporal characters of oceanic optical channel have been studied. Based on the Monte Carlo simulation, we studied how the parameters of water quality and other systemic parameters affect the light transmitting through water at spatial and temporal region and provided the theoretical sustentation of enhancing the SNR and operational distance.

  13. Underwater Calibration of Dome Port Pressure Housings

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  14. Underwater blast injury: a review of standards.

    PubMed

    Lance, Rachel M; Bass, Cameron R

    2015-09-01

    The first cases of underwater blast injury appeared in the scientific literature in 1917, and thousands of service members and civilians were injured or killed by underwater blast during WWII. The prevalence of underwater blast injuries and occupational blasting needs led to the development of many safety standards to prevent injury or death. Most of these standards were not supported by experimental data or testing. In this review, we describe existing standards, discuss their origins, and we comprehensively compare their prescriptions across standards. Surprisingly, we found that most safety standards had little or no scientific basis, and prescriptions across standards often varied by at least an order of magnitude. Many published standards traced back to a US Navy 500 psi guideline, which was intended to provide a peak pressure at which injuries were likely to occur. This standard itself seems to have been based upon a completely unfounded assertion that has propagated throughout the literature in subsequent years. Based on the limitations of the standards discussed, we outline future directions for underwater blast injury research, such as the compilation of epidemiological data to examine actual injury risk by human beings subjected to underwater blasts. PMID:26415071

  15. Omnidirectional Underwater Camera Design and Calibration

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Ribas, David

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV) simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3) and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach. PMID:25774707

  16. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice.

    PubMed

    Zhou, Peng; Werner, John H; Lee, Donghoon; Sheppard, Aaron D; Liangpunsakul, Suthat; Duffield, Giles E

    2015-06-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ∼4-h and ∼6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ∼11 h and ∼6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian

  17. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice

    PubMed Central

    Zhou, Peng; Werner, John H.; Lee, Donghoon; Sheppard, Aaron D.; Liangpunsakul, Suthat; Duffield, Giles E.

    2015-01-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ~4-h and ~6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ~11 h and ~6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian timing

  18. 46 CFR 167.05-40 - Underwater survey.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Underwater survey. 167.05-40 Section 167.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-40 Underwater survey. Underwater survey means the examination of the vessel's...

  19. 46 CFR 167.05-40 - Underwater survey.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Underwater survey. 167.05-40 Section 167.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-40 Underwater survey. Underwater survey means the examination of the vessel's...

  20. 46 CFR 167.05-40 - Underwater survey.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Underwater survey. 167.05-40 Section 167.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-40 Underwater survey. Underwater survey means the examination of the vessel's...

  1. 46 CFR 167.05-40 - Underwater survey.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Underwater survey. 167.05-40 Section 167.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-40 Underwater survey. Underwater survey means the examination of the vessel's...

  2. 46 CFR 167.05-40 - Underwater survey.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Underwater survey. 167.05-40 Section 167.05-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Definitions § 167.05-40 Underwater survey. Underwater survey means the examination of the vessel's...

  3. The spatial structure of underwater noise due to shipping activities in the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2014-05-01

    Underwater noise is now classed as pollution alongside chemical pollution and marine litter (MSFD, 2012). Underwater noise from man-made sources arises from a number of sources including shipping activities. There are numerous examples of sound-induced effects recorded for various marine mammals, either in controlled situations, or opportunistically (MSFD-GES, 2012). Broad or narrow band continuous sounds, as well as pulses, have been documented to cause effects ranging from slight behaviour change, to activity disruption, avoidance or abandonment of preferred habitat (see Clark et al., 2009). Underwater ambient noise generated by shipping activities has increased significantly over the past decades (e.g. Mcdonald et al., 2006). Noise from shipping is a major contributor to the ambient noise levels in ocean, particularly at low (

  4. Observer based output feedback tuning for underwater remotely operated vehicle based on linear quadratic performance

    NASA Astrophysics Data System (ADS)

    Aras, Mohd Shahrieel Mohd; Abdullah, Shahrum Shah; Kamarudin, Muhammad Nizam; Rahman, Ahmad Fadzli Nizam Abdul; Azis, Fadilah Abd; Jaafar, Hazriq Izzuan

    2015-05-01

    This paper describes the effectiveness of observer-based output feedback for Unmanned Underwater Vehicle (UUV) with Linear Quadratic Regulation (LQR) performance. Tuning of observer parameters is crucial for tracking purpose. Prior to tuning facility, the ranges of observer and LQR parameters are obtained via system output cum error. The validation of this technique using unmanned underwater vehicles called Remotely Operated Vehicle (ROV) modelling helps to improve steady state performance of system response. The ROV modeling is focused for depth control using ROV 1 developed by the Underwater Technology Research Group (UTeRG). The results are showing that this technique improves steady state performances in term of overshoot and settling time of the system response.

  5. Underwater photogrammetric theoretical equations and technique

    NASA Astrophysics Data System (ADS)

    Fan, Ya-bing; Huang, Guiping; Qin, Gui-qin; Chen, Zheng

    2011-12-01

    In order to have a high level of accuracy of measurement in underwater close-range photogrammetry, this article deals with a study of three varieties of model equations according to the way of imaging upon the water. First, the paper makes a careful analysis for the two varieties of theoretical equations and finds out that there are some serious limitations in practical application and has an in-depth study for the third model equation. Second, one special project for this measurement has designed correspondingly. Finally, one rigid antenna has been tested by underwater photogrammetry. The experimental results show that the precision of 3D coordinates measurement is 0.94mm, which validates the availability and operability in practical application with this third equation. It can satisfy the measurement requirements of refraction correction, improving levels of accuracy of underwater close-range photogrammetry, as well as strong antijamming and stabilization.

  6. Magnetic gradiometer for underwater detection applications

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Skvoretz, D. C.; Moeller, C. R.; Ebbert, M. J.; Perry, A. R.; Ostrom, R. K.; Tzouris, A.; Bennett, S. L.; Czipott, P. V.; Sulzberger, G.; Allen, G. I.; Bono, J.; Clem, T. R.

    2006-05-01

    We have designed and constructed a magnetic gradiometer for underwater mine detection, location and tracking. The United States Naval Surface Warfare Center (NSWC PC) in Panama City, FL has conducted sea tests of the system using an unmanned underwater vehicle (UUV). The Real-Time Tracking Gradiometer (RTG) measures the magnetic field gradients caused by the presence of a mine in the Earth's magnetic field. These magnetic gradients can then be used to detect and locate a target with the UUV in motion. Such a platform can also be used for other applications, including the detection and tracking of vessels and divers for homeland (e.g., port) security and the detection of underwater pipelines. Data acquired by the RTG in sea tests is presented in this paper.

  7. Underwater work by remotely operated vehicles (ROV's)

    SciTech Connect

    Batten, C.J. )

    1988-01-01

    This paper describes experience with respect to underwater work carried out by Remotely Operated Vehicles (ROV's) on the North West Shelf Development Project, North Rankin A field located off the North West coast of Australia. Typical work includes detailed pipeline and platform inspections, underwater support for the installation of gravity anchors and associated guy wires, general construction support, underwater cutting, marine fouling removal, scour protection installation and pipeline stabilization. The paper describes special tooling procedures and systems developed to perform the work. Also presented are new information and statistics associated with bulk marine fouling removal by purpose designed/built remotely operated equipment. Specific data related to time/costs associated with performance of significant aspects of the work are presented.

  8. Age-related forgetting in locomotor adaptation

    PubMed Central

    Malone, Laura A.; Bastian, Amy J.

    2016-01-01

    The healthy aging process affects the ability to learn and remember new facts and tasks. Prior work has shown that motor learning can be adversely affected by non-motor deficits, such as time. Here we investigated how age, and a dual task influence the learning and forgetting of a new walking pattern. We studied healthy younger (<30 yo) and older adults (>50 yo) as they alternated between 5-minute bouts of split-belt treadmill walking and resting. Older subjects learned a new walking pattern at the same rate as younger subjects, but forgot some of the new pattern during the rest breaks. We tested if forgetting was due to reliance on a cognitive strategy that was not fully engaged after rest breaks. When older subjects performed a dual cognitive task to reduce strategic control of split-belt walking, their adaptation rate slowed, but they still forgot much of the new pattern during the rest breaks. Our results demonstrate that the healthy aging process weakens motor memories during rest breaks and that this phenomenon cannot be explained solely by reliance on a conscious strategy in older adults. PMID:26589520

  9. Brain Stimulation Paired with Novel Locomotor Training with Robotic Gait Orthosis in Chronic Stroke: a Feasibility Study

    PubMed Central

    Danzl, Megan M.; Chelette, Kenneth C.; Lee, Kara; Lykins, Dana; Sawaki, Lumy

    2015-01-01

    Objectives 1) to investigate the feasibility of combining transcranial direct current stimulation (tDCS) to the lower extremity (LE) motor cortex with novel locomotor training to facilitate gait in subjects with chronic stroke and low ambulatory status, and 2) to obtain insight from study subjects and their caregivers to inform future trial design. Methods Double-blind, randomized controlled study with additional qualitative exploratory descriptive design. One-month follow-up.10 subjects with stroke were recruited and randomized to active tDCS or sham tDCS for 12 sessions. Both groups participated in identical locomotor training with a robotic gait orthosis (RGO) following each tDCS session. RGO training protocol was designed to harness cortical neuroplasticity. Data analysis included assessment of functional and participation outcome measures and qualitative thematic analysis. Results Eight subjects completed the study. Both groups demonstrated trends toward improvement, but the active tDCS group showed greater improvement than the sham group. Qualitative analyses indicate beneficial effects of this combined intervention. Conclusions It is feasible to combine tDCS targeting the LE motor cortex with our novel locomotor training. It appears that tDCS has the potential to enhance the effectiveness of gait training in chronic stroke. Insights from participants provide additional guidance in designing future trials. PMID:23949035

  10. The Effects of 4-Methylethcathinone on Conditioned Place Preference, Locomotor Sensitization, and Anxiety-Like Behavior: A Comparison with Methamphetamine

    PubMed Central

    Xu, Peng; Qiu, Yi; Zhang, Yizhi; Βai, Yanping; Xu, Pengfei; Liu, Yuan; Kim, Jee Hyun

    2016-01-01

    Background: 4-Methylethcathinone is a drug that belongs to the second generation of synthetic cathinones, and recently it has been ranked among the most popular “legal highs”. Although it has similar in vitro neurochemical actions to other drugs such as cocaine, the behavioral effects of 4-methylethcathinone remain to be determined. Methods: The addictive potential and locomotor potentiation by 4-methylethcathinone were investigated in rats using the conditioned place preference and sensitization paradigm. Methamphetamine was used as a positive control. Because synthetic cathinones can have psychological effects, we also examined anxiety-like behavior using the elevated plus maze. Results: A conditioning dose of 10mg/kg 4-methylethcathinone was able to induce conditioned place preference and reinstatement (following 2 weeks of withdrawal). Acute or repeated injections of 4-methylethcathinone at 3 or 10mg/kg failed to alter locomotor activity. At 30mg/kg, however, acute 4-methylethcathinone increased locomotor activity compared with saline, while chronic 4-methylethcathinone induced a delayed and attenuated sensitization compared with methamphetamine. Additionally, repeated daily injections of 4-methylethcathinone (30mg/kg) reduced, whereas methamphetamine increased time spent by rats in the open arm of an elevated plus maze compared with saline injections. Interestingly, a 2-week withdrawal period following chronic injections of 4-methylethcathinone or methamphetamine increased time spent in the open arm in all rats. Conclusions: The rewarding properties of 4-methylethcathinone were found to be dissociated from its effects on locomotor activity. Additionally, chronic 4-methylethcathinone use may trigger abnormal anxious behaviors. These behavioral effects caused by 4-methylethcathinone appear to last even after a withdrawal period. PMID:26612552

  11. Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord.

    PubMed

    Ziskind-Conhaim, Lea; Wu, Linying; Wiesner, Eric P

    2008-10-01

    Neurochemically induced membrane voltage oscillations and firing episodes in spinal excitatory interneurons expressing the HB9 protein (Hb9 INs) are synchronous with locomotor-like rhythmic motor outputs, suggesting that they contribute to the excitatory drive of motoneurons during locomotion. Similar to central pattern generator neurons in other systems, Hb9 INs are interconnected via electrical coupling, and their rhythmic activity does not depend on fast glutamatergic synaptic transmission. The primary objective of this study was to determine the contribution of fast excitatory and inhibitory synaptic transmission and subthreshold voltage-dependent currents to the induced membrane oscillations in Hb9 INs in the postnatal mouse spinal cord. The non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) reduced the amplitude of voltage oscillations but did not alter their frequency. CNQX suppressed rhythmic motor activity. Blocking glycine and GABAA receptor-mediated inhibitory synapses as well as cholinergic transmission did not change the properties of CNQX-resistant membrane oscillations. However, disinhibition triggered new episodes of slow motor bursting that were not correlated with induced locomotor-like rhythms in Hb9 INs. Our observations indicated that fast excitatory and inhibitory synaptic inputs did not control the frequency of induced rhythmic activity in Hb9 INs. We next examined the contribution of persistent sodium current (INaP) to subthreshold membrane oscillations in the absence of primary glutamatergic, GABAergic and glycinergic synaptic drive to Hb9 INs. Low concentrations of riluzole that blocked the slow-inactivating component of sodium current gradually suppressed the amplitude and reduced the frequency of voltage oscillations. Our finding that INaP regulates locomotor-related rhythmic activity in Hb9 INs independently of primary synaptic transmission supports the concept that these neurons constitute an

  12. Sources of Underwater Sound and Their Characterization.

    PubMed

    Ainslie, Michael A; de Jong, Christ A F

    2016-01-01

    Because of the history of sonar and sonar engineering, the concept of "source level" is widely used to characterize anthropogenic sound sources, but is it useful for sources other than sonar transmitters? The concept and applicability of source level are reviewed for sonar, air guns, explosions, ships, and pile drivers. International efforts toward the harmonization of the terminology for underwater sound and measurement procedures for underwater sound sources are summarized, with particular attention to the initiatives of the International Organization for Standardization. PMID:26610941

  13. Remotely operated submersible underwater suction apparatus

    DOEpatents

    Kristan, Louis L.

    1990-01-01

    A completely submersible, remotely operated underwater suction device for collection of irradiated materials in a nuclear pool is disclosed. The device includes a pump means for pumping water through the device, a filter means for capturing irradiated debris, remotely operated releasable connector means, a collection means and a means for remotely maneuvering the collection means. The components of the suction device may be changed and replaced underwater to take advantage of the excellent radiation shielding ability of water to thereby minimize exposure of personnel to radiation.

  14. Cascading multi-hop reservation and transmission in underwater acoustic sensor networks.

    PubMed

    Lee, Jae-Won; Cho, Ho-Shin

    2014-01-01

    The long propagation delay in an underwater acoustic channel makes designing an underwater media access control (MAC) protocol more challenging. In particular, handshaking-based MAC protocols widely used in terrestrial radio channels have been known to be inappropriate in underwater acoustic channels, because of the inordinately large latency involved in exchanging control packets. Furthermore, in the case of multi-hop relaying in a hop-by-hop handshaking manner, the end-to-end delay significantly increases. In this paper, we propose a new MAC protocol named cascading multi-hop reservation and transmission (CMRT). In CMRT, intermediate nodes between a source and a destination may start handshaking in advance for the next-hop relaying before handshaking for the previous node is completed. By this concurrent relaying, control packet exchange and data delivery cascade down to the destination. In addition, to improve channel utilization, CMRT adopts a packet-train method where multiple data packets are sent together by handshaking once. Thus, CMRT reduces the time taken for control packet exchange and accordingly increases the throughput. The performance of CMRT is evaluated and compared with that of two conventional MAC protocols (multiple-access collision avoidance for underwater (MACA-U) and MACA-U with packet trains (MACA-UPT)). The results show that CMRT outperforms other MAC protocols in terms of both throughput and end-to-end delay. PMID:25275349

  15. Olfaction: underwater 'sniffing' by semi-aquatic mammals.

    PubMed

    Catania, Kenneth C

    2006-12-21

    Terrestrial species that forage underwater face challenges because their body parts and senses are adapted for land--for example, it is widely held that mammals cannot use olfaction underwater because it is impossible for them to inspire air (sniff) to convey odorants to the olfactory epithelium. Here I describe a mechanism for underwater sniffing used by the semi-aquatic star-nosed mole (Condylura cristata) and water shrew (Sorex palustris). While underwater, both species exhale air bubbles onto objects or scent trails and then re-inspire the bubbles to carry the smell back through the nose. This newly described behaviour provides a mechanism for mammalian olfaction underwater. PMID:17183311

  16. Monitoring Locomotor Load in Soccer: Is Metabolic Power, Powerful?

    PubMed

    Buchheit, M; Manouvrier, C; Cassirame, J; Morin, J-B

    2015-12-01

    The aim of the present study was to examine the validity and reliability of metabolic power (P) estimated from locomotor demands during soccer-specific drills. 14 highly-trained soccer players performed a soccer-specific circuit with the ball (3×1-min bouts, interspersed with 30-s passive recovery) on 2 different occasions. Locomotor activity was monitored with 4-Hz GPSs, while oxygen update (VO2) was collected with a portable gas analyzer. P was calculated using either net VO2 responses and traditional calorimetry principles (PVO2, W.kg(-1)) or locomotor demands (PGPS, W.kg(-1)). Distance covered into different speed, acceleration and P zones was recorded. While PGPS was 29±10% lower than PVO2 (d<- 3) during the exercise bouts, it was 85±7% lower (d<- 8) during recovery phases. The typical error between PGPS vs. PVO2 was moderate: 19.8%, 90% confidence limits: (18.4;21.6). The correlation between both estimates of P was small: 0.24 (0.14;0.33). Very large day-to-day variations were observed for acceleration, deceleration and > 20 W.kg(-1) distances (all CVs > 50%), while average Po2 and PGPS showed CVs < 10%. ICC ranged from very low- (acceleration and > 20 W.kg(-1) distances) to-very high (PVO2). PGPS largely underestimates the energy demands of soccer-specific drills, especially during the recovery phases. The poor reliability of PGPS >20 W.kg(-1) questions its value for monitoring purposes in soccer. PMID:26393813

  17. Sound Stabilizes Locomotor-Respiratory Coupling and Reduces Energy Cost

    PubMed Central

    Hoffmann, Charles P.; Torregrosa, Gérald; Bardy, Benoît G.

    2012-01-01

    A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC) is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-)stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences. PMID:23028849

  18. Locomotor energetics and leg length in hominid bipedality.

    PubMed

    Kramer, P A; Eck, G G

    2000-05-01

    Because bipedality is the quintessential characteristic of Hominidae, researchers have compared ancient forms of bipedality with modern human gait since the first clear evidence of bipedal australopithecines was unearthed over 70 years ago. Several researchers have suggested that the australopithecine form of bipedality was transitional between the quadrupedality of the African apes and modern human bipedality and, consequently, inefficient. Other researchers have maintained that australopithecine bipedality was identical to that of Homo. But is it reasonable to require that all forms of hominid bipedality must be the same in order to be optimized? Most attempts to evaluate the locomotor effectiveness of the australopithecines have, unfortunately, assumed that the locomotor anatomy of modern humans is the exemplar of consummate bipedality. Modern human anatomy is, however, the product of selective pressures present in the particular milieu in which Homo arose and it is not necessarily the only, or even the most efficient, bipedal solution possible. In this report, we investigate the locomotion of Australopithecus afarensis, as represented by AL 288-1, using standard mechanical analyses. The osteological anatomy of AL 288-1 and movement profiles derived from modern humans are applied to a dynamic model of a biped, which predicts the mechanical power required by AL 288-1 to walk at various velocities. This same procedure is used with the anatomy of a composite modern woman and a comparison made. We find that AL 288-1 expends less energy than the composite woman when locomoting at walking speeds. This energetic advantage comes, however, at a price: the preferred transition speed (from a walk to a run) of AL 288-1 was lower than that of the composite woman. Consequently, the maximum daily range of AL 288-1 may well have been substantially smaller than that of modern people. The locomotor anatomy of A. afarensis may have been optimized for a particular ecological niche

  19. Towards Restoration of Missing Underwater Forests

    PubMed Central

    Vergés, Adriana; Coleman, Melinda A.; Steinberg, Peter D.

    2014-01-01

    Degradation of natural habitats due to urbanization is a major cause of biodiversity loss. Anthropogenic impacts can drive phase shifts from productive, complex ecosystems to less desirable, less diverse systems that provide fewer services. Macroalgae are the dominant habitat-forming organisms on temperate coastlines, providing habitat and food to entire communities. In recent decades, there has been a decline in macroalgal cover along some urbanised shorelines, leading to a shift from diverse algal forests to more simple turf algae or barren habitats. Phyllospora comosa, a major habitat forming macroalga in south-eastern Australia, has disappeared from the urban shores of Sydney. Its disappearance is coincident with heavy sewage outfall discharges along the metropolitan coast during 1970s and 1980s. Despite significant improvements in water-quality since that time, Phyllospora has not re-established. We experimentally transplanted adult Phyllospora into two rocky reefs in the Sydney metropolitan region to examine the model that Sydney is now suitable for the survival and recruitment of Phyllospora and thus assess the possibility of restoring Phyllospora back onto reefs where it was once abundant. Survival of transplanted individuals was high overall, but also spatially variable: at one site most individuals were grazed, while at the other site survival was similar to undisturbed algae and procedural controls. Transplanted algae reproduced and recruitment rates were higher than in natural populations at one experimental site, with high survival of new recruits after almost 18 months. Low supply and settlement success of propagules in the absence of adults and herbivory (in some places) emerge as three potential processes that may have been preventing natural re-establishment of this alga. Understanding of the processes and interactions that shape this system are necessary to provide ecologically sensible goals and the information needed to successfully restore

  20. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  1. Development of Underwater Laser Cladding and Underwater Laser Seal Welding Techniques for Reactor Components (II)

    SciTech Connect

    Masataka Tamura; Shohei Kawano; Wataru Kouno; Yasushi Kanazawa

    2006-07-01

    Stress corrosion cracking (SCC) is one of the major reasons to reduce the reliability of aged reactor components. Toshiba has been developing underwater laser welding onto surface of the aged components as maintenance and repair techniques. Because most of the reactor internal components to apply this underwater laser welding technique have 3-dimensional shape, effect of welding positions and welded shapes are examined and presented in this report. (authors)

  2. Design and implementation of omni-directional light source and receiving system used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Chen, Nannan

    2013-08-01

    Underwater wireless optical communication is a communication mode which uses light as an information carrier and water as transmission medium. As a result of the inherent characteristics of the light waves, underwater wireless optical communication has the advantages of high transmission rate, good security, and strong anti-interference ability. It is suitable for high-speed, short-range communication between underwater mobile vehicles. Underwater optical wireless communication system designed in this paper is composed of the omni-directional communication light source and the receiving system. In the omni-directional communication light source, the laser beams with small divergence angle of 532nm wavelength produced by modulated laser are expanded through a combination refraction-reflection solid and then obtain more than 2π space divergence angle. The paper use TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and test in the air and underwater, the result shows that the effect is fine. Unlike in the air, light attenuation is heavy in the water and a large range of variations in light intensity at different distances appear during underwater optical communication. In order to overcome this problem, the paper use a small photomultiplier as the detection device, design the receiving system using the automatic gain control technique. Underwater wireless optical communication system designed in this paper has the characteristics of small size, low power dissipation and the omni-directional communication function, it is suitable for application in the UUV, AUV, Swimmer Delivery Vehicle (SDV) and other underwater mobile platform, it realizes point-to-point communications and point-to-multipoint communications.

  3. GPS-based positioning for autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Huang, Wenling; Fang, Huajing; Chen, Yingchun; Yuan, Bingcheng; Zhou, Xuchang

    2005-11-01

    GPS-based positioning for AUV is a field of active researches, which integrates DGPS, radio sonobuoy, DSP, high speed data transmission technology with underwater telecommunication technogy. Many problems remain to be solved for GPS application to AUV because of the peculiarity of underwater environment. Some subjects in a GPS-based positioning system for AUV are reviewed in the paper. The development of underwater positioning and underwater GPS technology is introduced first. Secondly, the methods of underwater positioning are analyzed, followed with GPS-based AUV positioning algorithms. Thirdly, the origin of GPS error and its countermeasures are tudied. Finally, a conclusion is drawn that the GPS-based positioning system can provide high precesion positioning for 3D AUV in real time. It is promising in underwater applications. Some key technologies in underwater positioning are presented for future work.

  4. Serotonergic activation of locomotor behavior and posture in one-day old rats.

    PubMed

    Swann, Hillary E; Kempe, R Blaine; Van Orden, Ashley M; Brumley, Michele R

    2016-04-01

    The purpose of this study was to determine what dose of quipazine, a serotonergic agonist, facilitates air-stepping and induces postural control and patterns of locomotion in newborn rats. Subjects in both experiments were 1-day-old rat pups. In Experiment 1, pups were restrained and tested for air-stepping in a 35-min test session. Immediately following a 5-min baseline, pups were treated with quipazine (1.0, 3.0, or 10.0mg/kg) or saline (vehicle control), administered intraperitoneally in a 50μL injection. Bilateral alternating stepping occurred most frequently following treatment with 10.0mg/kg quipazine, however the percentage of alternating steps, interlimb phase, and step period were very similar between the 3.0 and 10.0mg/kg doses. For interlimb phase, the forelimbs and hindlimbs maintained a near perfect anti-phase pattern of coordination, with step period averaging about 1s. In Experiment 2, pups were treated with 3.0 or 10.0mg/kg quipazine or saline, and then were placed on a surface (open field, unrestrained). Both doses of quipazine resulted in developmentally advanced postural control and locomotor patterns, including head elevation, postural stances, pivoting, crawling, and a few instances of quadrupedal walking. The 3.0mg/kg dose of quipazine was the most effective at evoking sustained locomotion. Between the 2 experiments, behavior exhibited by the rat pup varied based on testing environment, emphasizing the role that environment and sensory cues exert over motor behavior. Overall, quipazine administered at a dose of 3.0mg/kg was highly effective at promoting alternating limb coordination and inducing locomotor activity in both testing environments. PMID:26795091

  5. Training Enhances Both Locomotor and Cognitive Adaptability to a Novel Sensory Environment

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory

  6. Amplified piezoelectric actuators: from aerospace to underwater applications

    NASA Astrophysics Data System (ADS)

    Bouchilloux, Philippe; Claeyssen, Frank; Le Letty, Ronan

    2004-07-01

    Aerospace and underwater applications typically require actuators capable of large displacements, precise positioning, and fast response times. To meet these requirements, several classes of actuators based on low-voltage piezoelectric materials have been developed, and, in the case of the Amplified Piezoelectric Actuators (APA series), space qualified. The APA actuators offer large displacements (up to 1mm), large deformations (up to 3%), and large forces (up to 1kN) at low electrical power. These actuators can withstand large external forces and have successfully passed severe qualification tests such as centrifugal accelerations and vibration forces encountered during space launch. Aerospace applications of APAs include scientific instrumentation, such as telescopes and microscopes, microsatellite propulsion valves, and structural vibration control. Aeronautical applications include active flap control in aircraft wings and helicopter blades. Underwater applications focus on the silencing of ships, the piezodiagnostic (NDE) of structural defects in pipelines and hulls, and guidance systems of unmanned vehicles. This paper reviews the use of piezoelectric actuators, in particular APAs, in such applications. Qualification results, when available, are presented and discussed.

  7. Ecology and Caudal Skeletal Morphology in Birds: The Convergent Evolution of Pygostyle Shape in Underwater Foraging Taxa

    PubMed Central

    Felice, Ryan N.; O’Connor, Patrick M.

    2014-01-01

    Birds exhibit a specialized tail that serves as an integral part of the flight apparatus, supplementing the role of the wings in facilitating high performance aerial locomotion. The evolution of this function for the tail contributed to the diversification of birds by allowing them to utilize a wider range of flight behaviors and thus exploit a greater range of ecological niches. The shape of the wings and the tail feathers influence the aerodynamic properties of a bird. Accordingly, taxa that habitually utilize different flight behaviors are characterized by different flight apparatus morphologies. This study explores whether differences in flight behavior are also associated with variation in caudal vertebra and pygostyle morphology. Details of the tail skeleton were characterized in 51 Aequornithes and Charadriiformes species. Free caudal vertebral morphology was measured using linear metrics. Variation in pygostyle morphology was characterized using Elliptical Fourier Analysis, a geometric morphometric method for the analysis of outline shapes. Each taxon was categorized based on flight style (flap, flap-glide, dynamic soar, etc.) and foraging style (aerial, terrestrial, plunge dive, etc.). Phylogenetic MANOVAs and Flexible Discriminant Analyses were used to test whether caudal skeletal morphology can be used to predict flight behavior. Foraging style groups differ significantly in pygostyle shape, and pygostyle shape predicts foraging style with less than 4% misclassification error. Four distinct lineages of underwater foraging birds exhibit an elongate, straight pygostyle, whereas aerial and terrestrial birds are characterized by a short, dorsally deflected pygostyle. Convergent evolution of a common pygostyle phenotype in diving birds suggests that this morphology is related to the mechanical demands of using the tail as a rudder during underwater foraging. Thus, distinct locomotor behaviors influence not only feather attributes but also the underlying

  8. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.

    PubMed

    Rezende, Enrico L; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2009-01-01

    Locomotion is central to behavior and intrinsic to many fitness-critical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from "postural costs" (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S

  9. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  10. Evolution: Fossil Ears and Underwater Sonar.

    PubMed

    Lambert, Olivier

    2016-08-22

    A key innovation in the history of whales was the evolution of a sonar system together with high-frequency hearing. Fossils of an archaic toothed whale's inner ear bones provide clues for a stepwise emergence of underwater echolocation ability. PMID:27554653

  11. KE Basin underwater visual fuel survey

    SciTech Connect

    Pitner, A.L.

    1995-02-01

    Results of an underwater video fuel survey in KE Basin using a high resolution camera system are presented. Quantitative and qualitative information on fuel degradation are given, and estimates of the total fraction of ruptured fuel elements are provided. Representative photographic illustrations showing the range of fuel conditions observed in the survey are included.

  12. Communication and cooperation in underwater acoustic networks

    NASA Astrophysics Data System (ADS)

    Yerramalli, Srinivas

    In this thesis, we present a study of several problems related to underwater point to point communications and network formation. We explore techniques to improve the achievable data rate on a point to point link using better physical layer techniques and then study sensor cooperation which improves the throughput and reliability in an underwater network. Robust point-to-point communications in underwater networks has become increasingly critical in several military and civilian applications related to underwater communications. We present several physical layer signaling and detection techniques tailored to the underwater channel model to improve the reliability of data detection. First, a simplified underwater channel model in which the time scale distortion on each path is assumed to be the same (single scale channel model in contrast to a more general multi scale model). A novel technique, which exploits the nature of OFDM signaling and the time scale distortion, called Partial FFT Demodulation is derived. It is observed that this new technique has some unique interference suppression properties and performs better than traditional equalizers in several scenarios of interest. Next, we consider the multi scale model for the underwater channel and assume that single scale processing is performed at the receiver. We then derive optimized front end pre-processing techniques to reduce the interference caused during single scale processing of signals transmitted on a multi-scale channel. We then propose an improvised channel estimation technique using dictionary optimization methods for compressive sensing and show that significant performance gains can be obtained using this technique. In the next part of this thesis, we consider the problem of sensor node cooperation among rational nodes whose objective is to improve their individual data rates. We first consider the problem of transmitter cooperation in a multiple access channel and investigate the stability of

  13. A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson disease.

    PubMed

    Riemensperger, Thomas; Issa, Abdul-Raouf; Pech, Ulrike; Coulom, Hélène; Nguyễn, Mỹ-Vân; Cassar, Marlène; Jacquet, Mélanie; Fiala, André; Birman, Serge

    2013-11-27

    Expression of the human Parkinson-disease-associated protein α-synuclein in all Drosophila neurons induces progressive locomotor deficits. Here, we identify a group of 15 dopaminergic neurons per hemisphere in the anterior medial region of the brain whose disruption correlates with climbing impairments in this model. These neurons selectively innervate the horizontal β and β' lobes of the mushroom bodies, and their connections to the Kenyon cells are markedly reduced when they express α-synuclein. Using selective mushroom body drivers, we show that blocking or overstimulating neuronal activity in the β' lobe, but not the β or γ lobes, significantly inhibits negative geotaxis behavior. This suggests that modulation of the mushroom body β' lobes by this dopaminergic pathway is specifically required for an efficient control of startle-induced locomotion in flies. PMID:24239353

  14. Waved-1 mutant mice are hypersensitive to the locomotor actions of cocaine.

    PubMed

    Stanwood, Gregg D; Levitt, Pat

    2007-04-01

    Transforming growth factor-alpha (TGFalpha) is a well-known regulator of many developmental processes, and is expressed heavily in basal forebrain and striatal regions. When TGFalpha is reduced in Waved-1 (Wa-1) mutant mice, brain anatomy, biogenic amines, stress response, and behavior are normal prior to, but altered following puberty. As an initial screen for possible alterations in nigrostriatal and mesolimbic dopamine (DA) systems, we tested adult Wa-1 mutant mice in an open field, following acute injection with cocaine (15 mg/kg). Wa-1 mice exhibited significantly greater ambulatory distance, number of ambulatory episodes, and cocaine-induced motor stereotypies than do controls. These data indicate that adult Wa-1 mice are hypersensitive to the locomotor effects of cocaine and provide a new potential link between neurodevelopmental processes and adult psychostimulant responsiveness. PMID:17230552

  15. Locomotor stimulant and discriminative stimulus effects of 'bath salt' cathinones.

    PubMed

    Gatch, Michael B; Taylor, Cynthia M; Forster, Michael J

    2013-09-01

    A number of psychostimulant-like cathinone compounds are being sold as 'legal' alternatives to methamphetamine or cocaine. The purpose of these experiments was to determine whether cathinone compounds stimulate motor activity and have discriminative stimulus effects similar to those of cocaine and/or methamphetamine. 3,4-Methylenedioxypyrovalerone (MDPV), methylone, mephedrone, naphyrone, flephedrone, and butylone were tested for locomotor stimulant effects in mice and subsequently for substitution in rats trained to discriminate cocaine (10 mg/kg, intraperitoneally) or methamphetamine (1 mg/kg, intraperitoneally) from saline. All compounds fully substituted for the discriminative stimulus effects of cocaine and methamphetamine. Several commonly marketed cathinones produce discriminative stimulus effects comparable with those of cocaine and methamphetamine, which suggests that these compounds are likely to have similar abuse liabilities. MDPV and naphyrone produced locomotor stimulant effects that lasted much longer than those of cocaine or methamphetamine and therefore may be of particular concern, particularly because MDPV is one of the most commonly found substances associated with emergency room visits because of adverse effects of taking 'bath salts'. PMID:23839026

  16. Dopamine: a parallel pathway for the modulation of spinal locomotor networks

    PubMed Central

    Sharples, Simon A.; Koblinger, Kathrin; Humphreys, Jennifer M.; Whelan, Patrick J.

    2014-01-01

    The spinal cord contains networks of neurons that can produce locomotor patterns. To readily respond to environmental conditions, these networks must be flexible yet at the same time robust. Neuromodulators play a key role in contributing to network flexibility in a variety of invertebrate and vertebrate networks. For example, neuromodulators contribute to altering intrinsic properties and synaptic weights that, in extreme cases, can lead to neurons switching between networks. Here we focus on the role of dopamine in the control of stepping networks in the spinal cord. We first review the role of dopamine in modulating rhythmic activity in the stomatogastric ganglion (STG) and the leech, since work from these preparations provides a foundation to understand its role in vertebrate systems. We then move to a discussion of dopamine’s role in modulation of swimming in aquatic species such as the larval xenopus, lamprey and zebrafish. The control of terrestrial walking in vertebrates by dopamine is less studied and we review current evidence in mammals with a focus on rodent species. We discuss data suggesting that the source of dopamine within the spinal cord is mainly from the A11 area of the diencephalon, and then turn to a discussion of dopamine’s role in modulating walking patterns from both in vivo and in vitro preparations. Similar to the descending serotonergic system, the dopaminergic system may serve as a potential target to promote recovery of locomotor function following spinal cord injury (SCI); evidence suggests that dopaminergic agonists can promote recovery of function following SCI. We discuss pharmacogenetic and optogenetic approaches that could be deployed in SCI and their potential tractability. Throughout the review we draw parallels with both noradrenergic and serotonergic modulatory effects on spinal cord networks. In all likelihood, a complementary monoaminergic enhancement strategy should be deployed following SCI. PMID:24982614

  17. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease

    PubMed Central

    Grieb, Benjamin; von Nicolai, Constantin; Engler, Gerhard; Sharott, Andrew; Papageorgiou, Ismini; Hamel, Wolfgang; Engel, Andreas K.; Moll, Christian K.

    2013-01-01

    Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinson's disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinson's disease. PMID:24348346

  18. Increased Adaptation Rates and Reduction in Trial-by-Trial Variability in Subjects with Cerebral Palsy Following a Multi-session Locomotor Adaptation Training

    PubMed Central

    Mawase, Firas; Bar-Haim, Simona; Joubran, Katherin; Rubin, Lihi; Karniel, Amir; Shmuelof, Lior

    2016-01-01

    Cerebral Palsy (CP) results from an insult to the developing brain and is associated with deficits in locomotor and manual skills and in sensorimotor adaptation. We hypothesized that the poor sensorimotor adaptation in persons with CP is related to their high execution variability and does not reflect a general impairment in adaptation learning. We studied the interaction between performance variability and adaptation deficits using a multi-session locomotor adaptation design in persons with CP. Six adolescents with diplegic CP were exposed, during a period of 15 weeks, to a repeated split-belt treadmill perturbation spread over 30 sessions and were tested again 6 months after the end of training. Compared to age-matched healthy controls, subjects with CP showed poor adaptation and high execution variability in the first exposure to the perturbation. Following training they showed marked reduction in execution variability and an increase in learning rates. The reduction in variability and the improvement in adaptation were highly correlated in the CP group and were retained 6 months after training. Interestingly, despite reducing their variability in the washout phase, subjects with CP did not improve learning rates during washout phases that were introduced only four times during the experiment. Our results suggest that locomotor adaptation in subjects with CP is related to their execution variability. Nevertheless, while variability reduction is generalized to other locomotor contexts, the development of savings requires both reduction in execution variability and multiple exposures to the perturbation. PMID:27199721

  19. The expression of methiopropamine-induced locomotor sensitization requires dopamine D2, but not D1, receptor activation in the rat.

    PubMed

    Yoon, Hyung Shin; Cai, Wen Ting; Lee, Young Hun; Park, Kyung Tae; Lee, Yong Sup; Kim, Jeong-Hoon

    2016-09-15

    Methiopropamine (MPA) is a structural analog to methamphetamine and is categorized as a novel psychoactive substance that needs to be controlled. However, no study has been performed to determine whether MPA actually develops an addiction-like behavior similar to those arising from other psychomotor stimulants. Thus, we attempted to determine whether MPA produces locomotor sensitization in a manner similar to amphetamine. In the first experiment, rats were pre-exposed to either saline or one of three different doses of MPA (0.2, 1.0, or 5.0mg/kg, IP) with a total of four injections, respectively. After a 2-week withdrawal period, when they were challenged with the same dose of MPA, only the group that was pre-exposed to high dose of MPA (5.0mg/kg) showed sensitized locomotor activity. In the second experiment, all rats were pre-exposed to MPA (5.0mg/kg) only. Interestingly, the expression of MPA-induced locomotor sensitization was inhibited by a pre-injection of a dopamine D2 receptor antagonist, eticlopride (0.05mg/kg, IP), though not by a dopamine D1 receptor antagonist, SCH23390 (0.01mg/kg, IP). These results suggest that repeated injection of MPA in the rat provokes certain neuronal changes involving specific, likely D2, dopamine receptor-mediated pathways that contribute to the expression of MPA-induced locomotor sensitization. PMID:27265782

  20. Locomotor behavior and long bone morphology in individual free-ranging chimpanzees.

    PubMed

    Carlson, Kristian J; Doran-Sheehy, Diane M; Hunt, Kevin D; Nishida, Toshisada; Yamanaka, Atsushi; Boesch, Christophe

    2006-04-01

    We combine structural limb data and behavioral data for free-ranging chimpanzees from Taï (Ivory Coast) and Mahale National Parks (Tanzania) to begin to consider the relationship between individual variation in locomotor activity and morphology. Femoral and humeral cross sections of ten individuals were acquired via computed tomography. Locomotor profiles of seven individuals were constructed from 3387 instantaneous time-point observations (87.4 hours). Within the limited number of suitable chimpanzees, individual variation in locomotor profiles displayed neither clear nor consistent trends with diaphyseal cross-sectional shapes. The percentages of specific locomotor modes did not relate well to diaphyseal shapes since neither infrequent nor frequent locomotor modes varied consistently with shapes. The percentage of arboreal locomotion, rather than estimated body mass, apparently had comparatively greater biological relevance to variation in diaphyseal shape. The mechanical consequences of locomotor modes on femoral and humeral diaphyseal shapes (e.g., orientation of bending strains) may overlap between naturalistic modes more than currently is recognized. Alternatively, diaphyseal shape may be unresponsive to mechanical demands of these specific locomotor modes. More data are needed in order to discern between these possibilities. Increasing the sample to include additional free-ranging chimpanzees, or primates in general, as well as devoting more attention to the mechanics of a greater variety of naturalistic locomotor modes would be fruitful to understanding the behavioral basis of diaphyseal shapes. PMID:16376413

  1. Locomotor Tests Predict Community Mobility in Children and Youth with Cerebral Palsy

    ERIC Educational Resources Information Center

    Ferland, Chantale; Moffet, Helene; Maltais, Desiree

    2012-01-01

    Ambulatory children and youth with cerebral palsy have limitations in locomotor capacities and in community mobility. The ability of three locomotor tests to predict community mobility in this population (N = 49, 27 boys, 6-16 years old) was examined. The tests were a level ground walking test, the 6-min-Walk-Test (6MWT), and two tests of advanced…

  2. A tiered approach to mitigating the environmental effects of underwater blasting

    SciTech Connect

    Keevin, T.M.; Hempen, G.L.

    1995-12-31

    Currently two states, Oregon and Pennsylvania, have permit application forms specific to underwater explosive use and natural resource protection, while Canada currently has draft mitigation recommendations. Many other state natural resource agencies regulate underwater blasting by requiring permits, based on various regulatory authorities. Under the Fish and Wildlife Coordination Act, state natural resource agencies have the authority to review and comment on applications for federal permits (e.g., Section 404 of the Clean Water Act) or on projects involving federal funding. Blaster designers can anticipate more regulatory control over underwater explosive use rather than less. Blasting companies will probably have to work more closely with natural resource agencies to reduce potential impacts. The alternative to working in a cooperative manner with the permitting agency may be not to work at all. State natural resource agency regulatory controls over underwater explosive use, gathered during a mail survey, are reviewed. A tiered mitigation approach is presented based on: (1) the blasting design; (2) biological criteria; and (3) use of physical mitigation features. The goal is to provide the necessary information to the blasting community to work effectively with natural resource agencies.

  3. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury

    PubMed Central

    2014-01-01

    Background In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities—characterized by increases in the over-ground walking speed and endurance—is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Methods Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient’s maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. Results After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. Conclusions The improvements of the kinematic and kinetic

  4. Trajectory-Based Visual Localization in Underwater Surveying Missions

    PubMed Central

    Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel

    2015-01-01

    We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates. PMID:25594602

  5. Trajectory-based visual localization in underwater surveying missions.

    PubMed

    Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel

    2015-01-01

    We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates. PMID:25594602

  6. Underwater Coatings Testing for INEEL Fuel Basin Applications

    SciTech Connect

    Julia L. Tripp

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature.

  7. A facile approach for fabrication of underwater superoleophobic alloy

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Luo, Hao; Ma, Jun; Wang, Pengwei; Xu, Xinlong; Jing, Guangyin

    2013-11-01

    Superoleophobicity developed by creating roughness at multiple scales or lowering the surface energy has drawn extensive attention for technological applications. Currently, most methods for fabrication of superoleophobic surfaces employ either the complicated manufacture of micro/nano structures or delicate chemical decorations. Here, the sharp wetting transition from an oleophilic state to an oleophobic one has been practically realized, and the mechanism successfully interpreted. The underwater superoleophobic surfaces are newly realized and successfully controlled by subtly tuning the surface morphology of the alloy by practical corrosion plus a naturally obtained, stable, high-energy inorganic coating layer which induces the sharp wetting transition from oleophilic state to oleophobic state. The contact angle (CA) variations are quantitatively analyzed based on the wetting model by employing a roughness geometrical structure and a corrosion mechanism, which agree well with the measured results. Additionally, the dependence of the roughness on the corrosion procedure is modeled microscopically. Our method uncovers a facile fabrication protocol for optimum underwater superoleophobic surfaces by modifying the microstructures of alloy surfaces in the manufacturing process, which furthermore offers significant insights into the design and creation of other novel antifouling materials.

  8. Locomotor Trajectories of Stroke Patients during Oriented Gait and Turning

    PubMed Central

    Van Hamme, Angele; Bensmail, Djamel

    2016-01-01

    Background The Timed Up and Go (TUG) test is widely used to assess locomotion in patients with stroke and is considered to predict the risk of falls. The analysis of locomotor trajectories during the TUG appears pertinent in stroke patients. The aims of this study were i) to analyze locomotor trajectories in patients with stroke during the walking and turning sub-tasks of the TUG, and to compare them with healthy subjects, ii) to determine whether trajectory parameters provide additional information to that provided by the conventional measure (performance time), iii) to compare the trajectory parameters of fallers and non-fallers with stroke and of patients with right and left hemisphere stroke, and iv) to evaluate correlations between trajectory parameters and Berg Balance Scale scores. Methods 29 patients with stroke (mean age 54.2±12.2 years, 18 men, 8 fallers) and 25 healthy subjects (mean age 51.6±8.7 years, 11 men) underwent three-dimensional analysis of the TUG. The trajectory of the center of mass was analyzed by calculation of the global trajectory length, Hausdorff distance and Dynamic Time Warping. The parameters were compared with a reference trajectory during the total task and each sub-task (Go, Turn, Return) of the TUG. Results Values of trajectory parameters were significantly higher for the stroke group during the total TUG and the Go and Turn sub-tasks (p<0.05). Moreover, logistic regression indicated that these parameters better discriminated stroke patients and healthy subjects than the conventional timed performance during the Go sub-task. In addition, fallers were distinguished by higher Dynamic Time Warping during the Go (p<0.05). There were no differences between patients with right and left hemisphere stroke. Discussion and Conclusion The trajectories of the stroke patients were longer and more deviated during the turn and the preceding phase. Trajectory parameters provided additional information to timed performance of this locomotor

  9. AUV technology heads for new depths[Autonomous Underwater Vehicle

    SciTech Connect

    Hayes, D.

    2000-04-01

    High-tech unmanned submarine technologies initially developed by the US Navy are being adapted for a new role to assist the oil and gas industry's shift into deeper waters. To address the problem of costly data acquisition and inaccurate survey data, C and C Technologies of Lafayette, La., has hired Kongsberg Simrad to construct the Hugin 3000 deepwater autonomous underwater vehicle (AUV). As the technology is applied to energy exploration and production advances to meet the deepwater challenges beyond the continental shelf, AUVs will be increasingly employed, it is believed. The paper describes the Hugin project, unexpected situations, the vehicle position tracking system, vehicle operation and real-time data quality control, real-time data monitoring and control, Hugin field experience, and pipe route surveying.

  10. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    NASA Astrophysics Data System (ADS)

    Emokpae, Lloyd

    -of-sight (LOS) and NLOS links by utilizing directional antennas, which will boost the signal-to-noise ratio (SNR) at the receiver while promoting NLOS usage. In our model, we employ a directional underwater acoustic antenna composed of an array of hydrophones that can be summed up at various phases and amplitudes resulting in a beam-former. We have also adopted a practical multimodal directional transducer concept which generates both directional and omni-directional beam patterns by combining the fundamental vibration modes of a cylindrical acoustic radiator. This allows the transducer to be electrically controlled and steered by simply adjusting the electrical voltage weights. A prototype acoustic modem is then developed to utilize the multimodal directional transducer for both LOS and NLOS communication. The acoustic modem has also been used as a platform for empirically validating our SBR communication model in a tank and with empirical data. Networking protocols have been developed to exploit the SBR communication model. These protocols include node discovery and localization, directional medium access control (D-MAC) and geographical routing. In node discovery and localization, each node will utilize SBR-based range measurements to its neighbors to determine their relative position. The D-MAC protocol utilizes directional antennas to increase the network throughput due to the spatial efficiency of the antenna model. In the proposed reflection-enabled directional MAC protocol (RED-MAC), each source node will be able to determine if an obstacle is blocking the LOS link to the destination and switch to the best NLOS link by utilizing surface/bottom reflections. Finally, we have developed a geographical routing algorithm which aims to establish the best stable route from a source node to a destination node. The optimized route is selected to achieve maximum network throughput. Extensive analysis of the network throughput when utilizing directional antennas is also presented

  11. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles.

    PubMed

    Bradley, Nina S; Ryu, Young U; Yeseta, Marie C

    2014-03-15

    Chicks initiate bilateral alternating steps several days before hatching and adaptively walk within hours of hatching, but emergence of precocious walking skills is not well understood. One of our aims was to determine whether interactions between environment and movement experience prior to hatching are instrumental in establishing precocious motor skills. However, physiological evidence of proprioceptor development in the chick has yet to be established; thus, one goal of this study was to determine when in embryogenesis proprioception circuits can code changes in muscle length. A second goal was to determine whether proprioception circuits can modulate leg muscle activity during repetitive limb movements for stepping (RLMs). We hypothesized that proprioception circuits code changes in muscle length and/or tension, and modulate locomotor circuits producing RLMs in anticipation of adaptive locomotion at hatching. To this end, leg muscle activity and kinematics were recorded in embryos during normal posture and after fitting one ankle with a restraint that supported the limb in an atypical posture. We tested the hypotheses by comparing leg muscle activity during spontaneous RLMs in control posture and ankle extension restraint. The results indicated that proprioceptors detect changes in muscle length and/or muscle tension 3 days before hatching. Ankle extension restraint produced autogenic excitation of the ankle flexor and reciprocal inhibition of the ankle extensor. Restraint also modified knee extensor activity during RLMs 1 day before hatching. We consider the strengths and limitations of these results and propose that proprioception contributes to precocious locomotor development during the final 3 days before hatching. PMID:24265423

  12. Effects of caffeine on locomotor activity of horses: determination of the no-effect threshold.

    PubMed

    Queiroz-Neto, A; Zamur, G; Carregaro, A B; Mataqueiro, M I; Salvadori, M C; Azevedo, C P; Harkins, J D; Tobin, T

    2001-01-01

    Caffeine is the legal stimulant consumed most extensively by the human world population and may be found eventually in the urine and/or blood of race horses. The fact that caffeine is in foods led us to determine the highest no-effect dose (HNED) of caffeine on the spontaneous locomotor activity of horses and then to quantify this substance in urine until it disappeared. We built two behavioural stalls equipped with juxtaposed photoelectric sensors that emit infrared beams that divide the stall into nine sectors in a 'tic-tac-toe' fashion. Each time a beam was interrupted by a leg of the horse, a pulse was generated; the pulses were counted at 5-min intervals and stored by a microcomputer. Environmental effects were minimized by installing exhaust fans producing white noise that obscured outside sounds. One-way observation windows prevented the animals from seeing outside. The sensors were turned on 45 min before drug administration (saline control or caffeine). The animals were observed for up to 8 h after i.v. administration of 2.0, 2.5, 3.0 or 5.0 mg caffeine kg(-1). The HNED of caffeine for stimulation of the spontaneous locomotor activity of horses was 2.0 mg kg(-1). The quantification of caffeine in urine and plasma samples was done by gradient HPLC with UV detection. The no-effect threshold should not be greater than 2.0 microg caffeine ml(-1) plasma or 5.0 microg caffeine ml(-1) urine. PMID:11404835

  13. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    PubMed

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  14. Vestibular Lesion-Induced Developmental Plasticity in Spinal Locomotor Networks during Xenopus laevis Metamorphosis

    PubMed Central

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  15. Suppression of Locomotor Activity in Female C57Bl/6J Mice Treated with Interleukin-1β: Investigating a Method for the Study of Fatigue in Laboratory Animals

    PubMed Central

    Bonsall, David R.; Kim, Hyunji; Tocci, Catherine; Ndiaye, Awa; Petronzio, Abbey; McKay-Corkum, Grace; Molyneux, Penny C.; Scammell, Thomas E.; Harrington, Mary E.

    2015-01-01

    Fatigue is a disabling symptom in patients with multiple sclerosis and Parkinson’s Disease, and is also common in patients with traumatic brain injury, cancer, and inflammatory disorders. Little is known about the neurobiology of fatigue, in part due to the lack of an approach to induce fatigue in laboratory animals. Fatigue is a common response to systemic challenge by pathogens, a response in part mediated through action of the pro-inflammatory cytokine interleukin-1 beta (IL-1β). We investigated the behavioral responses of mice to IL-1β. Female C57Bl/6J mice of 3 ages were administered IL-1β at various doses i.p. Interleukin-1β reduced locomotor activity, and sensitivity increased with age. Further experiments were conducted with middle-aged females. Centrally administered IL-1β dose-dependently reduced locomotor activity. Using doses of IL-1β that caused suppression of locomotor activity, we measured minimal signs of sickness, such as hyperthermia, pain or anhedonia (as measured with abdominal temperature probes, pre-treatment with the analgesic buprenorphine and through sucrose preference, respectively), all of which are responses commonly reported with higher doses. We found that middle-aged orexin-/- mice showed equivalent effects of IL-1β on locomotor activity as seen in wild-type controls, suggesting that orexins are not necessary for IL-1β -induced reductions in wheel-running. Given that the availability and success of therapeutic treatments for fatigue is currently limited, we examined the effectiveness of two potential clinical treatments, modafinil and methylphenidate. We found that these treatments were variably successful in restoring locomotor activity after IL-1β administration. This provides one step toward development of a satisfactory animal model of the multidimensional experience of fatigue, a model that could allow us to determine possible pathways through which inflammation induces fatigue, and could lead to novel treatments for

  16. Maneuvering hydrodynamics of fish and small underwater vehicles.

    PubMed

    Bandyopadhyay, Promode R

    2002-02-01

    The understanding of fish maneuvering and its application to underwater rigid bodies are considered. The goal is to gain insight into stealth. The recent progress made in NUWC is reviewed. Fish morphology suggests that control fins for maneuverability have unique scalar relationships irrespective of their speed type. Maneuvering experiments are carried out with fish that are fast yet maneuverable. The gap in maneuverability between fish and small underwater vehicles is quantified. The hydrodynamics of a dorsal fin based brisk maneuvering device and a dual flapping foil device, as applied to rigid cylindrical bodies, are described. The role of pectoral wings in maneuvering and station keeping near surface waves is discussed. A pendulum model of dolphin swimming is presented to show that body length and tail flapping frequency are related. For nearly neutrally buoyant bodies, Froude number and maneuverability are related. Analysis of measurements indicates that the Strouhal number of dolphins is a constant. The mechanism of discrete and deterministic vortex shedding from oscillating control surfaces has the property of large amplitude unsteady forcing and an exquisite phase dependence, which makes it inherently amenable to active control for precision maneuvering. Theoretical control studies are carried out to demonstrate the feasibility of maneuverability of biologically inspired bodies under surface waves. The application of fish hydrodynamics to the silencing of propulsors is considered. Two strategies for the reduction of radiated noise are developed. The effects of a reduction of rotational rate are modeled. The active cambering of blades made of digitally programmable artificial muscles, and their thrust enhancement, are demonstrated. Next, wake momentum filling is carried out by artificial muscles at the trailing edge of a stator blade of an upstream stator propulsor, and articulating them like a fish tail. A reduction of radiated noise, called blade tonals

  17. Computer simulations of WIGWAM underwater experiment

    SciTech Connect

    Kamegai, Minao; White, J.W.

    1993-11-01

    We performed computer simulations of the WIGWAM underwater experiment with a 2-D hydro-code, CALE. First, we calculated the bubble pulse and the signal strength at the closest gauge in one-dimensional geometry. The calculation shows excellent agreement with the measured data. Next, we made two-dimensional simulations of WIGWAM applying the gravity over-pressure, and calculated the signals at three selected gauge locations where measurements were recorded. The computed peak pressures at those gauge locations come well within the 15% experimental error bars. The signal at the farthest gauge is of the order of 200 bars. This is significant, because at this pressure the CALE output can be linked to a hydro-acoustics computer program, NPE Code (Nonlinear Progressive Wave-equation Code), to analyze the long distance propagation of acoustical signals from the underwater explosions on a global scale.

  18. Ocean Research Enabled by Underwater Gliders

    NASA Astrophysics Data System (ADS)

    Rudnick, Daniel L.

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  19. Ocean Research Enabled by Underwater Gliders.

    PubMed

    Rudnick, Daniel L

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation. PMID:26291384

  20. Computer simulation of underwater nuclear effects

    SciTech Connect

    Kamegai, M.

    1987-01-30

    We investigated underwater nuclear effects by computer simulations. First, we computed a long distance wave propagation in water by the 1-D LASNEX code by modeling the energy source and the underwater environment. The pressure-distance data were calculated for two quite different yields; pressures range from 300 GPa to 15 MPa. They were found to be in good agreement with Snay's theoretical points and the Wigwam measurements. The computed data also agree with the similarity solution at high pressures and the empirical equation at low pressures. After completion of the 1-D study, we investigated a free surface effect commonly referred to as irregular surface rarefaction by applying two hydrocodes (LASNEX and ALE), linked at the appropriate time. Using these codes, we simulated near-surface explosions for three depths of burst (3 m, 21 m and 66.5 m), which represent the strong, intermediate, and weak surface shocks, respectively.

  1. Detecting underwater improvised explosive threats (DUIET)

    NASA Astrophysics Data System (ADS)

    Feeley, Terry

    2010-04-01

    Improvised Explosive Devices (IEDs) have presented a major threat in the wars in Afghanistan and Iraq. These devices are powerful homemade land mines that can be small and easily hidden near roadsides. They are then remotely detonated when Coalition Forces pass by either singly or in convoys. Their rapid detection, classification and destruction is key to the safety of troops in the area. These land based bombs will have an analogue in the underwater theater especially in ports, lakes, rivers and streams. These devices may be used against Americans on American soil as an element of the global war on terrorism (GWOT) Rapid detection and classification of underwater improvised explosive devices (UIED) is critical to protecting innocent lives and maintaining the day to day flow of commerce. This paper will discuss a strategy and tool set to deal with this potential threat.

  2. Visualizing underwater acoustic matched-field processing

    NASA Astrophysics Data System (ADS)

    Rosenblum, Lawrence; Kamgar-Parsi, Behzad; Karahalios, Margarida; Heitmeyer, Richard

    1991-06-01

    Matched-field processing is a new technique for processing ocean acoustic data measured by an array of hydrophones. It produces estimates of the location of sources of acoustic energy. This method differs from source localization techniques in other disciplines in that it uses the complex underwater acoustic environment to improve the accuracy of the source localization. An unexplored problem in matched-field processing has been to separate multiple sources within a matched-field ambiguity function. Underwater acoustic processing is one of many disciplines where a synthesis of computer graphics and image processing is producing new insight. The benefits of different volume visualization algorithms for matched-field display are discussed. The authors show how this led to a template matching scheme for identifying a source within the matched-field ambiguity function that can help move toward an automated source localization process.

  3. Microcomputerized measurement of the circadian locomotor rhythm in microorganisms.

    PubMed

    Tanakadate, A; Ishikawa, H; Hasegawa, K

    1985-02-01

    A computerized close-up video/photoamplifier system was implemented for the study of circadian locomotor rhythm in a population of a ciliate protozoan, Paramecium. This fully microcomputerized system facilitated automatic long-term measurement of three parameters in parallel: (1) numbers of specimens per 10 min traversing beneath a fixed point in an experimental vessel, (2) times taken by specimens to traverse the point, and (3) interval times between subsequent specimens traversing the point. Stochastic analyses using these parameters can derive the circadian fluctuation of physiological variables, such as swimming speed and the frequency of avoiding reaction (abrupt change in swimming direction). The computerized system simultaneously accomplished the acquisition of these three sets of data, their transient storage, and their graphic display according to given format. The system software was constituted so that an experimenter with little computer knowledge, could easily operate the system by answering questions displayed on the computer monitor. PMID:3839082

  4. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs

    NASA Astrophysics Data System (ADS)

    Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.

    2016-06-01

    Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  5. Assessment of laser tracking and data transfer for underwater optical communications

    NASA Astrophysics Data System (ADS)

    Watson, Malcolm A.; Blanchard, Paul M.; Stace, Chris; Bhogul, Priya K.; White, Henry J.; Kelly, Anthony E.; Watson, Scott; Valyrakis, Manousos; Najda, Stephen P.; Marona, Lucja; Perlin, Piotr

    2014-10-01

    We report on an investigation into optical alignment and tracking for high bandwidth, laser-based underwater optical communication links. Link acquisition approaches (including scanning of narrow laser beams versus a wide-angle `beacon' approach) for different underwater laser-based communications scenarios are discussed. An underwater laserbased tracking system was tested in a large water flume facility using water whose scattering properties resembled that of a turbid coastal or harbour region. The lasers used were state-of-the-art, temperature-controlled, high modulation bandwidth gallium nitride (GaN) devices. These operate at blue wavelengths and can achieve powers up to ~100 mW. The tracking performance and characteristics of the system were studied as the light-scattering properties of the water were increased using commercial antacid (Maalox) solution, and the results are reported here. Optical tracking is expected to be possible even in high scattering water environments, assuming better components are developed commercially; in particular, more sensitive detector arrays. High speed data transmission using underwater optical links, based on blue light sources, is also reported.

  6. 46 CFR 169.230 - Underwater Survey in Lieu of Drydocking (UWILD).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.230 Underwater Survey in Lieu... procedure for carrying out the underwater survey; (2) The time and place of the underwater survey; (3)...

  7. 46 CFR 169.230 - Underwater Survey in Lieu of Drydocking (UWILD).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.230 Underwater Survey in Lieu... procedure for carrying out the underwater survey; (2) The time and place of the underwater survey; (3)...

  8. Novel locomotor muscle design in extreme deep-diving whales.

    PubMed

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives. PMID:23393275

  9. Ejectable underwater sound source recovery assembly

    NASA Technical Reports Server (NTRS)

    Irick, S. C. (Inventor)

    1974-01-01

    An underwater sound source is described that may be ejectably mounted on any mobile device that travels over water, to facilitate in the location and recovery of the device when submerged. A length of flexible line maintains a connection between the mobile device and the sound source. During recovery, the sound source is located be particularly useful in the recovery of spent rocket motors that bury in the ocean floor upon impact.

  10. Design for Underwater Aplanatic Straubel Acoustic Mirror

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Mizutani, Koichi; Wakatsuki, Naoto; Nakamura, Toshiaki

    2011-07-01

    An aplanatic Fresnel lens was developed in a previous study to reduce the thickness of underwater acoustic lenses. Showing better convergence properties than aplanatic biconvex and hyperbolic Fresnel lenses, the aplanatic Fresnel lens had limitations in terms of frequency and number of waves owing to its shape. An underwater aplanatic Straubel acoustic mirror, the concept o which is based on a Straubel mirror, was designed to remove the two limitations of aplanatic Fresnel lenses. When the lens is used for underwater imaging sonar, the range resolution deteriorates because of these problems. The shape of the aplanatic Straubel mirror was designed using a numerical optimization method, and its convergence properties were evaluated in simulations. The mirror could correct spherical and coma aberrations in accordance with ray theory. In a comparison of the aplanatic Straubel mirror with an aplanatic Fresnel lens, the mirror had less coma aberration and field curvature than the lens. Additionally, the aplanatic Straubel mirror did not have the two limitations of the lens. Therefore, the aplanatic Straubel mirror showed better convergence than the aplanatic Fresnel lens.

  11. Investigation of underwater welding of steel

    SciTech Connect

    Shannon, G.J.; Watson, J.; Deans, W.F. . Dept. of Engineering)

    1994-12-01

    The preliminary underwater welding study described forms part of a European funded research program (EUREKA EU194) which involves a feasibility study into laser welding applications in the offshore oil industry. An investigation was undertaken using a 1.2 KW carbon dioxide laser for underwater butt welding of BS 4360 43A and 50D steel, in order to assess the quality of the welds and to achieve an understanding of the laser/water/material interaction. Using a high-speed camera, the temporal behavior of the melt pool and ''plasma'' dynamics surrounded by an aqueous environment were monitored. Experiments were undertaken to characterize the attenuation of the laser beam in the water as a function of various focal length optics and depth of water. The effect of energy input conditions on the weld bead appearance and mechanical properties were also examined. The interaction of the laser beam with water produced a wave-guiding mechanism in which the focused beam instantaneously vaporizes the water and directs the beam on to the workpiece. The underwater weld beads exhibited sound microstructures over a range of weld energy inputs, mainly due to the formation of a ''dry region'' during welding. Metallurgical analysis of the welds showed a slight increase in hardness, though other post-weld mechanical strengths were similar to in-air results.

  12. Computer simulation of underwater nuclear events

    SciTech Connect

    Kamegai, M.

    1986-09-01

    This report describes the computer simulation of two underwater nuclear explosions, Operation Wigwam and a modern hypothetical explosion of greater yield. The computer simulations were done in spherical geometry with the LASNEX computer code. Comparison of the LASNEX calculation with Snay's analytical results and the Wigwam measurements shows that agreement in the shock pressure versus range in water is better than 5%. The results of the calculations are also consistent with the cube root scaling law for an underwater blast wave. The time constant of the wave front was determined from the wave profiles taken at several points. The LASNEX time-constant calculation and Snay's theoretical results agree to within 20%. A time-constant-versus-range relation empirically fitted by Snay is valid only within a limited range at low pressures, whereas a time-constant formula based on Sedov's similarity solution holds at very high pressures. This leaves the intermediate pressure range with neither an empirical nor a theoretical formula for the time constant. These one-dimensional simulations demonstrate applicability of the computer code to investigations of this nature, and justify the use of this technique for more complex two-dimensional problems, namely, surface effects on underwater nuclear explosions. 16 refs., 8 figs., 2 tabs.

  13. Correction methods for underwater turbulence degraded imaging

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Hou, W.; Restaino, S. R.; Matt, S.; Gładysz, S.

    2014-10-01

    The use of remote sensing techniques such as adaptive optics and image restoration post processing to correct for aberrations in a wavefront of light propagating through turbulent environment has become customary for many areas including astronomy, medical imaging, and industrial applications. EO imaging underwater has been mainly concentrated on overcoming scattering effects rather than dealing with underwater turbulence. However, the effects of turbulence have crucial impact over long image-transmission ranges and under extreme turbulence conditions become important over path length of a few feet. Our group has developed a program that attempts to define under which circumstances application of atmospheric remote sensing techniques could be envisioned. In our experiments we employ the NRL Rayleigh-Bénard convection tank for simulated turbulence environment at Stennis Space Center, MS. A 5m long water tank is equipped with heating and cooling plates that generate a well measured thermal gradient that in turn produces various degrees of turbulence. The image or laser beam spot can be propagated along the tank's length where it is distorted by induced turbulence. In this work we report on the experimental and theoretical findings of the ongoing program. The paper will introduce the experimental setup, the techniques used, and the measurements made as well as describe novel methods for postprocessing and correction of images degraded by underwater turbulence.

  14. Afocal viewport optics for underwater imaging

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2014-09-01

    A conventional camera can be adapted for underwater use by enclosing it in a sealed waterproof pressure housing with a viewport. The viewport, as an optical interface between water and air needs to consider both the camera and water optical characteristics while also providing a high pressure water seal. Limited hydrospace visibility drives a need for wide angle viewports. Practical optical interfaces between seawater and air vary from simple flat plate windows to complex water contact lenses. This paper first provides a brief overview of the physical and optical properties of the ocean environment along with suitable optical materials. This is followed by a discussion of the characteristics of various afocal underwater viewport types including flat windows, domes and the Ivanoff corrector lens, a derivative of a Galilean wide angle camera adapter. Several new and interesting optical designs derived from the Ivanoff corrector lens are presented including a pair of very compact afocal viewport lenses that are compatible with both in water and in air environments and an afocal underwater hyper-hemispherical fisheye lens.

  15. Biosensor UUV payload for underwater detection

    NASA Astrophysics Data System (ADS)

    Kusterbeck, Anne W.; Charles, Paul T.; Melde, Brian J.; Trammell, Scott A.; Adams, André A.; Deschamps, Jeffrey R.

    2010-04-01

    Increased emphasis on maritime domain awareness and port security has led to the development of unmanned underwater vehicles (UUVs) capable of extended missions. These systems rely most frequently on well-developed side scan sonar and acoustic methods to locate potential targets. The Naval Research Laboratory (NRL) is developing biosensors for underwater explosives detection that complement acoustic sensors and can be used as UUV payloads to monitor areas for port and harbor security or in detection of underwater unexploded ordnance (UXO) and biochemical threats. The prototype sensor has recently been demonstrated to detect explosives in seawater at trace levels when run in a continuous sampling mode. To overcome ongoing issues with sample preparation and facilitate rapid detection at trace levels in a marine environment, we have been developing new mesoporous materials for in-line preconcentration of explosives and other small molecules, engineering microfluidic components to improve the signal, and testing alternative signal transduction methods. Additional work is being done to optimize the optical components and sensor response time. Highlights of these current studies and our ongoing efforts to integrate the biosensor with existing detection technologies to reduce false positives are described. In addition, we present the results of field tests that demonstrate the prototype biosensor performance as a UUV payload.

  16. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization.

    PubMed

    Todtenkopf, M S; Carreiras, T; Melloni, R H; Stellar, J R

    2002-04-01

    The mesolimbic dopamine system has been intensely studied as the neural circuit mediating the locomotor response to psychostimulants and behavioral sensitization. In particular, the dopaminergic innervation of the nucleus accumbens has been implicated as a site responsible for the manifestations of behavioral sensitization. Previous studies have demonstrated an augmented release of dopamine in the nucleus accumbens upon a systemic injection of a psychostimulant. In addition, alterations in the dopaminergic innervation patterns in this brain region have been demonstrated in animals that received repeated injections of cocaine. Furthermore, lesions of projection sites that have terminations in the nucleus accumbens have demonstrated alterations in psychostimulant induced locomotion, both acutely, as well as in sensitization paradigms. Since dopamine in the nucleus accumbens is believed to regulate several excitatory amino acid inputs, the present study examined the effects of a localized electrolytic lesion in the dorsomedial shell of the nucleus accumbens in order to better understand the functional role this brain region has in behavioral sensitization. All animals received bi-daily injections of 15 mg/kg i.p. cocaine. Only those demonstrating behavioral sensitization after a subsequent challenge dose were included in the analysis. Following acute exposure to cocaine, lesioned animals did not show any difference in their locomotor response when compared with sham controls. However, after repeated exposure to cocaine, sensitized animals demonstrated a significant attenuation in locomotor behavior when compared with sensitized sham controls. This decrease in horizontal locomotion persisted 2 days into withdrawal, yet dissipated in the sensitized animals that were challenged 2 weeks following their last injection. The data presented here demonstrate that the dorsomedial shell of the nucleus accumbens plays an important role in the initial stages of behavioral

  17. Bioaccumulation and locomotor effects of manganese sulfate in Sprague-Dawley rats following subchronic (90 days) inhalation exposure

    SciTech Connect

    Tapin, Danielle; Kennedy, Greg; Lambert, Jean; Zayed, Joseph . E-mail: joseph.zayed@umontreal.ca

    2006-03-01

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic compound that was introduced as an antiknock additive to replace lead in unleaded fuel. The combustion of MMT results in the emission of fine Mn particulates mainly in the form of manganese sulfate and manganese phosphate. The objective of this study is to determine the effects of subchronic exposure to Mn sulfate in different tissues, on locomotor activity, on neuropathology, and on blood serum biochemical parameters. A control group and three groups of 30 male Sprague-Dawley rats were exposed 6-h/day, 5 days/week for 13 consecutive weeks at 30, 300, or 3000 {mu}g/m{sup 3} Mn sulfate. Locomotor activity was measured during 36 h using an Auto-Track System. Blood and the following tissues were collected and analyzed for manganese content by neutron activation analysis: olfactory bulb, globus pallidus, caudate/putamen, cerebellum, frontal cortex, liver, lung, testis, and kidney. Neuronal cell counts were obtained for the caudate/putamen and the globus pallidus and clinical biochemistry was assessed. Manganese concentrations were increased in blood, kidney, lung, and testis and in all brain regions in the 3000 {mu}g/m{sup 3} exposure group. Significant differences were also noted in the 300 {mu}g/m{sup 3} exposure group. Neuronal cell counts for the globus pallidus were significantly different between the two highest exposed groups and the controls. Locomotor activity for all exposure concentrations and resting time for the middle and highest concentrations for the two night resting periods were significantly increased. Total ambulatory count was decreased significantly for all exposure concentrations. Biochemical profiles also presented significant differences. No body weight loss was observed between all groups. These results suggest that neurotoxicity could occur at low exposure levels of Mn sulfate, one of the main combustion products of MMT.

  18. Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI.

    PubMed

    Perrine, Shane A; Ghoddoussi, Farhad; Desai, Kirtan; Kohler, Robert J; Eapen, Ajay T; Lisieski, Michael J; Angoa-Perez, Mariana; Kuhn, Donald M; Bosse, Kelly E; Conti, Alana C; Bissig, David; Berkowitz, Bruce A

    2015-11-01

    A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence. PMID:26411897

  19. On the optical theory of underwater vision in humans

    NASA Astrophysics Data System (ADS)

    Gislén, Anna; Gislén, Lars

    2004-11-01

    Defocus changes the visual contrast sensitivity function, thereby creating a complex curve with local dips and peaks. Since underwater vision in humans is severely defocused, we used optical theory and the phenomenon of spurious resolution to predict how well humans can see in this environment. The values obtained correspond well with experimental measurements of underwater human acuity from earlier studies and even point to an opportunity for humans with exceptional contrast sensitivity to see better underwater than the children in those studies. The same theory could be useful when discussing the visual acuity of amphibious animals, as they may use pupil constriction as a means of improving underwater vision.

  20. On the optical theory of underwater vision in humans.

    PubMed

    Gislén, Anna; Gislén, Lars

    2004-11-01

    Defocus changes the visual contrast sensitivity function, thereby creating a complex curve with local dips and peaks. Since underwater vision in humans is severely defocused, we used optical theory and the phenomenon of spurious resolution to predict how well humans can see in this environment. The values obtained correspond well with experimental measurements of underwater human acuity from earlier studies and even point to an opportunity for humans with exceptional contrast sensitivity to see better underwater than the children in those studies. The same theory could be useful when discussing the visual acuity of amphibious animals, as they may use pupil constriction as a means of improving underwater vision. PMID:15535363

  1. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  2. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  3. Apparatus for use in placing a submarine structure on the sea bed alongside an underwater well and method of drilling a plurality of closely spaced underwater wells

    SciTech Connect

    Shotbolt, K.

    1982-03-02

    A template for spacing a submarine structure such as an anchor block or a guide base for a second underwater well alongside an existing underwater well comprises a beam attached at one end, by means of a hinge, to a lowering guide which can be threaded over and be lowered along two guide wires of the first well, and at the other end by a remote-controlled release mechanism to the submarine structure such as the anchor block itself or a guide base for a second well. The beam, with such a submarine structure attached, is lowered down the guide wires while held in a vertical configuration, and is then swung into a generally horizontal configuration at the sea bed.

  4. 46 CFR 71.50-27 - Alternative Hull Examination (AHE) program options: Divers or underwater remotely operated...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Divers or underwater remotely operated vehicle (ROV). 71.50-27 Section 71.50-27 Shipping COAST GUARD... (ROV). To conduct the underwater survey portion of the AHE, you may use divers or an underwater ROV. (a.... (b) You may use an underwater ROV to conduct the underwater survey. The underwater ROV operating...

  5. 46 CFR 71.50-27 - Alternative Hull Examination (AHE) program options: Divers or underwater remotely operated...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Divers or underwater remotely operated vehicle (ROV). 71.50-27 Section 71.50-27 Shipping COAST GUARD... (ROV). To conduct the underwater survey portion of the AHE, you may use divers or an underwater ROV. (a.... (b) You may use an underwater ROV to conduct the underwater survey. The underwater ROV operating...

  6. 46 CFR 71.50-27 - Alternative Hull Examination (AHE) program options: Divers or underwater remotely operated...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: Divers or underwater remotely operated vehicle (ROV). 71.50-27 Section 71.50-27 Shipping COAST GUARD... (ROV). To conduct the underwater survey portion of the AHE, you may use divers or an underwater ROV. (a.... (b) You may use an underwater ROV to conduct the underwater survey. The underwater ROV operating...

  7. 46 CFR 71.50-27 - Alternative Hull Examination (AHE) program options: Divers or underwater remotely operated...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Divers or underwater remotely operated vehicle (ROV). 71.50-27 Section 71.50-27 Shipping COAST GUARD... (ROV). To conduct the underwater survey portion of the AHE, you may use divers or an underwater ROV. (a.... (b) You may use an underwater ROV to conduct the underwater survey. The underwater ROV operating...

  8. 46 CFR 71.50-27 - Alternative Hull Examination (AHE) program options: Divers or underwater remotely operated...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Divers or underwater remotely operated vehicle (ROV). 71.50-27 Section 71.50-27 Shipping COAST GUARD... (ROV). To conduct the underwater survey portion of the AHE, you may use divers or an underwater ROV. (a.... (b) You may use an underwater ROV to conduct the underwater survey. The underwater ROV operating...

  9. Enkephalin and dynorphin neuropeptides are differently correlated with locomotor hypersensitivity and levodopa-induced dyskinesia in parkinsonian rats.

    PubMed

    Sgroi, Stefania; Capper-Loup, Christine; Paganetti, Paolo; Kaelin-Lang, Alain

    2016-06-01

    The opioidergic neuropeptides dynorphin (DYN) and enkephalin (ENK) and the D1 and D2 dopaminergic receptors (D1R, D2R) are involved in the striatal control of motor and behavioral function. In Parkinson's disease, motor disturbances such as "on-off" motor fluctuations and involuntary movements (dyskinesia) are severe complications that often arise after chronic l-dihydroxyphenylalanine (l-DOPA) treatment. Changes in the striatal expression of preproENK (PPENK), proDYN (PDYN), D1R, and D2R mRNA have been observed in parkinsonian animals treated with l-DOPA. Enhanced opioidergic transmission has been found in association with l-DOPA-induced dyskinesia, but the connection of PPENK, PDYN, D1R, and D2R mRNA expression with locomotor activity remains unclear. In this study, we measured PPENK, PDYN, D1R and D2R mRNA levels by in situ hybridization in the striatum of 6-OHDA hemi-parkinsonian rats treated with l-DOPA (PD+l-DOPA group), along with two control groups (PD+saline and naive+l-DOPA). We found different levels of expression of PPENK, PDYN, D1R and D2R mRNA across the experimental groups and correlated the changes in mRNA expression with dyskinesia and locomotor variables assessed by open field test during several phases of l-DOPA treatment. Both PDYN and PPENK mRNA levels were correlated with the severity of dyskinesia, while PPENK mRNA levels were also correlated with the frequency of contralateral rotational movements and with locomotor variables. Moreover, a strong correlation was found between D1R mRNA expression and D2R mRNA expression in the PD+l-DOPA group. These findings suggest that, in parkinsonian animals treated with l-DOPA, high levels of PPENK are a prerequisite for a locomotor sensitization to l-DOPA treatment, while PDYN overexpression is responsible only for the development of dyskinesia. PMID:27072528

  10. Understanding and exploiting the acoustic propagation delay in underwater sensor networks

    NASA Astrophysics Data System (ADS)

    Syed, Affan Ahmed

    An understanding of the key areas of difference in acoustic underwater sensor networks and their impact on network design is essential for a rapid deployment of aquatic sensornets. Such an understanding will allow system designers to harvest the vast literature of research present in RF sensornets and focus on just those key aspects that are different for acoustic sensornets. Most complexities at the physical layer will eventually be handled either by assuming short ranges or with technology advancements making complex algorithms both cost and power efficient. However, the impact of large latency and the resulting magnification of multipath will remain a great impediment for developing robust sensor networks. This thesis contributes towards an understanding of, and solutions to, the impact of latency on sensornet migration to an underwater acoustic environment. The thesis of this dissertation is that Latency-awareness allows both migration of existing terrestrial sensornet protocols and design of new underwater protocols that can overcome and exploit the large propagation delay inherent to acoustic underwater networks. We present four studies that contribute to this thesis. First, we formalize the impact of large propagation delay on networking protocols in the concept of space-time uncertainty. Second, we use the understanding developed from this concept to design the first high-latency aware time synchronization protocol for acoustic sensor networks that is able to overcome an error source unique to the underwater environment. Third, we exploit the space-time volume during medium access to propose T-Lohi, a new class of energy and throughput efficient medium access control (MAC) protocols. Last, with our protocol implementations we are able to indicate the importance of a different type of multipath which we call self-multipath. This self-multipath adversely affects the throughput of T-Lohi MAC, and to overcome this affect we develop a novel Bayesian learning

  11. Imagery-derived modulation transfer function and its applications for underwater imaging

    NASA Astrophysics Data System (ADS)

    Hou, Weilin; Weidemann, Alan D.; Gray, Deric J.; Fournier, Georges R.

    2007-09-01

    The main challenge working with underwater imagery results from both rapid decay of signals due to absorption, which leads to poor signal to noise returns, and the blurring caused by strong scattering by the water itself and constituents within, especially particulates. The modulation transfer function (MTF) of an optical system gives the detailed and precise information regarding the system behavior. Underwater imageries can be better restored with the knowledge of the system MTF or the point spread function (PSF), the Fourier transformed equivalent, extending the performance range as well as the information retrieval from underwater electro-optical system. This is critical in many civilian and military applications, including target and especially mine detection, search and rescue, and diver visibility. This effort utilizes test imageries obtained by the Laser Underwater Camera Imaging Enhancer (LUCIE) from Defense Research and Development Canada (DRDC), during an April-May 2006 trial experiment in Panama City, Florida. Imaging of a standard resolution chart with various spatial frequencies were taken underwater in a controlled optical environment, at varying distances. In-water optical properties during the experiment were measured, which included the absorption and attenuation coefficients, particle size distribution, and volume scattering function. Resulting images were preprocessed to enhance signal to noise ratio by averaging multiple frames, and to remove uneven illumination at target plane. The MTF of the medium was then derived from measurement of above imageries, subtracting the effect of the camera system. PSFs converted from the measured MTF were then used to restore the blurred imageries by different deconvolution methods. The effects of polarization from source to receiver on resulting MTFs were examined and we demonstrate that matching polarizations do enhance system transfer functions. This approach also shows promise in deriving medium optical

  12. Effects of fentanyl administration on locomotor response in horses with the G57C μ-opioid receptor polymorphism.

    PubMed

    Wetmore, Lois A; Pascoe, Peter J; Shilo-Benjamini, Yael; Lindsey, Jane C

    2016-08-01

    OBJECTIVE To determine the locomotor response to the administration of fentanyl in horses with and without the G57C polymorphism of the μ-opioid receptor. ANIMALS 20 horses of various breeds and ages (10 horses heterozygous for the G57C polymorphism and 10 age-, breed-, and sex-matched horses that did not have the G57C polymorphism). PROCEDURES The number of steps each horse took was counted over consecutive 2-minute periods for 20 minutes to determine a baseline value. The horse then received a bolus of fentanyl (20 μg/kg, IV), and the number of steps was again counted during consecutive 2-minute periods for 60 minutes. The mean baseline value was subtracted from each 2-minute period after fentanyl administration; step counts with negative values were assigned a value of 0. Data were analyzed by use of a repeated-measures ANOVA. RESULTS Data for 19 of 20 horses (10 horses with the G57C polymorphism and 9 control horses without the G57C polymorphism) were included in the analysis. Horses with the G57C polymorphism had a significant increase in locomotor activity, compared with results for horses without the polymorphism. There was a significant group-by-time interaction. CONCLUSIONS AND CLINICAL RELEVANCE Horses heterozygous for the G57C polymorphism of the μ-opioid receptor had an increased locomotor response to fentanyl administration, compared with the response for horses without this polymorphism. The clinical impact of this finding should be investigated. PMID:27463545

  13. Melatonin treatment during the incubation of sensitization attenuates methamphetamine-induced locomotor sensitization and MeCP2 expression.

    PubMed

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2016-02-01

    Behavior sensitization is a long-lasting enhancement of locomotor activity after exposure to psychostimulants. Incubation of sensitization is a phenomenon of remarkable augmentation of locomotor response after withdrawal and reflects certain aspects of compulsive drug craving. However, the mechanisms underlying these phenomena remain elusive. Here we pay special attention to the incubation of sensitization and suppose that the intervention of this procedure will finally decrease the expression of sensitization. Melatonin is an endogenous hormone secreted mainly by the pineal gland. It is effective in treating sleep disorder, which turns out to be one of the major withdrawal symptoms of methamphetamine (MA) addiction. Furthermore, melatonin can also protect neuronal cells against MA-induced neurotoxicity. In the present experiment, we treated mice with low dose (10mg/kg) of melatonin for 14 consecutive days during the incubation of sensitization. We found that melatonin significantly attenuated the expression of sensitization. In contrast, the vehicle treated mice showed prominent enhancement of locomotor activity after incubation. MeCP2 expression was also elevated in the vehicle treated mice and melatonin attenuated its expression. Surprisingly, correlation analysis suggested significant correlation between MeCP2 expression in the nucleus accumbens (NAc) and locomotion in both saline control and vehicle treated mice, but not in melatonin treated ones. MA also induced MeCP2 over-expression in PC12 cells. However, melatonin failed to reduce MeCP2 expression in vitro. Our results suggest that melatonin treatment during the incubation of sensitization attenuates MA-induced expression of sensitization and decreases MeCP2 expression in vivo. PMID:26416230

  14. Adenosine (A)(2A)receptor modulation of nicotine-induced locomotor sensitization. A pharmacological and transgenic approach.

    PubMed

    Jastrzębska, Joanna; Nowak, Ewa; Smaga, Irena; Bystrowska, Beata; Frankowska, Małgorzata; Bader, Michael; Filip, Małgorzata; Fuxe, Kjell

    2014-06-01

    Preclinical evidence indicates an important role of adenosine (A)(2A) receptors in drug addiction while their therapeutic relevance is still a matter of debate. We examined the influence of the A(2A) receptor agonist CGS 21680 and the antagonist KW 6002 on nicotine sensitization and conditioned locomotor activity in adult (8-week old) male Sprague-Dawley rats (WT). Moreover, behavioral responses to nicotine were studied in rats overexpressing A(2A) receptors under the control of the neuronal specific enolase (NSE) promotor. Changes in the levels of dopamine, glutamate and γ-aminobutyric acid in wild type (WT) and NSEA(2A) rats were determined with using LC-MS. KW 6002 significantly enhanced expression of nicotine sensitization and conditioned locomotion, while CGS 21680 reduced all these effects in WT rats. A reduction of the expression of nicotine-evoked conditioned locomotor activity was also observed in the NSEA(2A) animals. The transgenic rats displayed a reduced basal tissue level of glutamate in the prefrontal cortex and hippocampus while dopamine basal levels in the nucleus accumbens were raised. Chronic nicotine treatment caused a significant reduction in the glutamate tissue level in the dorsal and ventral striatum, prefrontal cortex and cerebellum in wild type rats. In NSEA(2A) animals the same drug treatment instead produced a rise of glutamate levels in the hippocampus and dorsal striatum. Taken together, A(2A) receptor signaling in the rat brain can counteract locomotor sensitization and conditioned locomotion to nicotine which are related to nicotine reward-learning. It is suggested that treatment with A(2A) receptor agonists can help counteract the abuse actions of nicotine. PMID:24632528

  15. Underwater Chaotic Lidar using Blue Laser Diodes

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Luke K.

    The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal

  16. Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice.

    PubMed

    Yamada, Hiromi; Ito, Daisuke; Oki, Yoshinao; Kitagawa, Masato; Matsumoto, Taro; Watari, Tosihiro; Kano, Koichiro

    2014-11-14

    Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n=22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord. PMID:25451251

  17. Locomotor Dysfunction after Long-Duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Wood, S. J.; Cohen, H. S.; Bloomberg, J. J.

    2012-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth s gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight.

  18. Locomotor Sensory Organization Test: How Sensory Conflict Affects the Temporal Structure of Sway Variability During Gait.

    PubMed

    Chien, Jung Hung; Mukherjee, Mukul; Siu, Ka-Chun; Stergiou, Nicholas

    2016-05-01

    When maintaining postural stability temporally under increased sensory conflict, a more rigid response is used where the available degrees of freedom are essentially frozen. The current study investigated if such a strategy is also utilized during more dynamic situations of postural control as is the case with walking. This study attempted to answer this question by using the Locomotor Sensory Organization Test (LSOT). This apparatus incorporates SOT inspired perturbations of the visual and the somatosensory system. Ten healthy young adults performed the six conditions of the traditional SOT and the corresponding six conditions on the LSOT. The temporal structure of sway variability was evaluated from all conditions. The results showed that in the anterior posterior direction somatosensory input is crucial for postural control for both walking and standing; visual input also had an effect but was not as prominent as the somatosensory input. In the medial lateral direction and with respect to walking, visual input has a much larger effect than somatosensory input. This is possibly due to the added contributions by peripheral vision during walking; in standing such contributions may not be as significant for postural control. In sum, as sensory conflict increases more rigid and regular sway patterns are found during standing confirming the previous results presented in the literature, however the opposite was the case with walking where more exploratory and adaptive movement patterns are present. PMID:26329924

  19. Locomotor behavior in mice following exposure to fission-neutron irradiation and trauma

    SciTech Connect

    Landauer, M.R.; Ledney, G.D.; Davis, H.D.

    1987-12-01

    Locomotor activity, body weights, and food and water consumption were monitored in female mice for 35 d following a sublethal wound (W), burn (B), exposure to 3 Gray fission-neutron radiation (R), or combination of these injuries: radiation-wound (RW) and radiation burn (RB). Activity in groups W and RW was depressed immediately after injury, with recovery to control levels after 5 and 14 d, respectively. Mice that received radiation alone showed a biphasic response with decrements in activity on days 0-4 and 9-11. Groups B and RB exhibited depressed activity levels that differed significantly from control levels until day 17. Food intake was reduced for about 6d in groups R, W, RW, and RB. Body weights decreased for 4 d in groups R, W, RW, and RB, but returned to control levels by the end of the experiment. Animals in group B did not show significant reduction in food intake or body weight. Water consumption was reduced for 5-6 d in groups R and RB and was increased in groups W, RW, and B. The data suggest that behavioral responses to fission-neutron radiation are exacerbated by tissue trauma.

  20. UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production.

    PubMed

    Ghanizadeh Kazerouni, Ensiyeh; Franklin, Craig E; Seebacher, Frank

    2016-01-01

    Ultraviolet B radiation (UV-B) can reduce swimming performance by increasing reactive oxygen species (ROS) formation. High concentrations of ROS can damage mitochondria, resulting in reduced ATP production. ROS can also damage muscle proteins, thereby leading to impaired muscle contractile function. We have shown previously that UV-B exposure reduces locomotor performance in mosquitofish (Gambusia holbrooki) without affecting metabolic scope. Our aim was therefore to test whether UV-B influences swimming performance of mosquitofish by ROS-induced damage to muscle proteins without affecting mitochondrial function. In a fully factorial design, we exposed mosquitofish to UV-B and no-UV-B controls in combination with exposure to N-acetylcysteine (NAC) plus no-NAC controls. We used NAC, a precursor of glutathione, as an antioxidant to test whether any effects of UV-B on swimming performance were at least partly due to UV-B-induced ROS. UV-B significantly reduced critical sustained swimming performance and tail beat frequencies, and it increased ROS-induced damage (protein carbonyl concentrations and lipid peroxidation) in muscle. However, UV-B did not affect the activity of sarco-endoplasmic reticulum ATPase (SERCA), an enzyme associated with muscle calcium cycling and muscle relaxation. UV-B did not affect ADP phosphorylation (state 3) rates of mitochondrial respiration, and it did not alter the amount of ATP produced per atom of oxygen consumed (P:O ratio). However, UV-B reduced the mitochondrial respiratory control ratio. Under UV-B exposure, fish treated with NAC showed greater swimming performance and tail beat frequencies, higher glutathione concentrations, and lower protein carbonyl concentrations and lipid peroxidation than untreated fish. Tail beat amplitude was not affected by any treatment. Our results showed, firstly, that the effects of UV-B on locomotor performance were mediated by ROS and, secondly, that reduced swimming performance was not caused by

  1. 76 FR 52734 - Underwater Locating Devices (Acoustic) (Self-Powered)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ...This notice announces the planned revocation of all Technical Standard Order authorizations (TSOA) issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), with a minimum performance......

  2. 77 FR 13174 - Underwater Locating Devices (Acoustic) (Self-Powered)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ...This is a confirmation notice for the planned revocation of all Technical Standard Order authorizations issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), minimum performance......

  3. Visual-adaptation-mechanism based underwater object extraction

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Wang, Huibin; Xu, Lizhong; Shen, Jie

    2014-03-01

    Due to the major obstacles originating from the strong light absorption and scattering in a dynamic underwater environment, underwater optical information acquisition and processing suffer from effects such as limited range, non-uniform lighting, low contrast, and diminished colors, causing it to become the bottleneck for marine scientific research and projects. After studying and generalizing the underwater biological visual mechanism, we explore its advantages in light adaption which helps animals to precisely sense the underwater scene and recognize their prey or enemies. Then, aiming to transform the significant advantage of the visual adaptation mechanism into underwater computer vision tasks, a novel knowledge-based information weighting fusion model is established for underwater object extraction. With this bionic model, the dynamical adaptability is given to the underwater object extraction task, making them more robust to the variability of the optical properties in different environments. The capability of the proposed method to adapt to the underwater optical environments is shown, and its outperformance for the object extraction is demonstrated by comparison experiments.

  4. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    SciTech Connect

    White, R.A.; Angeliu, T.M.

    1997-12-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA) and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H{sub 2}SO{sub 4}. The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process.

  5. Astronaut Edwin Aldrin during underwater zero-gravity training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin Aldrin, pilot for the Gemini 12 space flight, assumes a rest position during underwater zero-gravity training. The underwater environment creates similar conditions to those found in space. He is secured to the adapter section of the spacecraft by special foot plates.

  6. Relaxation effects in humans of underwater exercise of moderate intensity.

    PubMed

    Oda, S; Matsumoto, T; Nakagawa, K; Moriya, K

    1999-09-01

    In this study we investigated the effects of underwater exercise in warm water (34 degrees C) on physiological and psychological relaxation. Eight healthy young men (aged 20-26 years) volunteered for the experiment. The experiment consisted of the following three successive segments: a pre-exercise period of 20 min, during which the subjects rested in a semi-supine posture with their eyes closed for the final 10 min; an underwater exercise period of approximately 60 min, during which the subjects performed gymnastic exercises or aerobic dancing with occasional movements or jumping; a post-exercise recovery of 20 min, which was similar to the pre-exercise rest period. We compared the relative power values (power %) of the electroencephalogram alpha bands (8-13 Hz) and profile of moods states (POMS) before and after the underwater exercise. We also estimated the percentage of maximal heart rate (%HRmax) throughout the experiment to ascertain the intensity of the underwater exercise. The results of %HRmax indicated that the intensity of underwater exercises practised in the experiments ranged from low to moderate. The power % of EEG alpha bands had increased significantly after the underwater exercise compared with the pre-exercise rest (P<0.05). From the POMS results, we observed that positive mood (vigour) increased and negative mood (tension and anxiety, depression and dejection) decreased significantly after the underwater exercise (P<0.05). This study found that the subjects showed increased physiological and psychological indices of relaxation after underwater exercise. PMID:10483793

  7. DEVELOPMENT OF LOCOMOTOR ACTIVITY OF RAT PUPS EXPOSED TO HEAVY METALS

    EPA Science Inventory

    Cadmium (Cd), triethyltin (TET), and trimethyltin (TMT) are heavy metals which are neurotoxic to developing animals. In the present experiment, preweaning assessment of locomotor activity was used to detect and differentiate between the developmental toxicity of these metals. On ...

  8. Impairment of locomotor activity induced by the novel N-acylhydrazone derivatives LASSBio-785 and LASSBio-786 in mice

    PubMed Central

    Silva, G.A.P.; Kummerle, A.E.; Antunes, F.; Fraga, C.A.M.; Barreiro, E.J.; Zapata-Sudo, G.; Sudo, R.T.

    2013-01-01

    The N-acylhydrazone (NAH) analogues N-methyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-785) and N-benzyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-786) were prepared from 2-thienylidene 3,4-methylenedioxybenzoylhydrazine (LASSBio-294). The ability of LASSBio-785 and LASSBio-786 to decrease central nervous system activity was investigated in male Swiss mice. LASSBio-785 or LASSBio-786 (30 mg/kg, ip) reduced locomotor activity from 209 ± 26 (control) to 140 ± 18 (P < 0.05) or 146 ± 15 crossings/min (P < 0.05), respectively. LASSBio-785 (15 or 30 mg/kg, iv) also reduced locomotor activity from 200 ± 15 to 116 ± 29 (P < 0.05) or 60 ± 16 crossings/min (P < 0.01), respectively. Likewise, LASSBio-786 (15 or 30 mg/kg, iv) reduced locomotor activity from 200 ± 15 to 127 ± 10 (P < 0.01) or 96 ± 14 crossings/min (P < 0.01), respectively. Pretreatment with flumazenil (20 mg/kg, ip) prevented the locomotor impairment induced by NAH analogues (15 mg/kg, iv), providing evidence that the benzodiazepine (BDZ) receptor is involved. This finding was supported by the structural similarity of NAH analogues to midazolam. However, LASSBio-785 showed weak binding to the BDZ receptor. LASSBio-785 or LASSBio-786 (30 mg/kg, ip, n = 10) increased pentobarbital-induced sleeping time from 42 ± 5 (DMSO) to 66 ± 6 (P < 0.05) or 75 ± 4 min (P < 0.05), respectively. The dose required to achieve 50% hypnosis (HD50) following iv injection of LASSBio-785 or LASSBio-786 was 15.8 or 9.5 mg/kg, respectively. These data suggest that both NAH analogues might be useful for the development of new neuroactive drugs for the treatment of insomnia or for use in conjunction with general anesthesia. PMID:23558854

  9. Impairment of locomotor activity induced by the novel N-acylhydrazone derivatives LASSBio-785 and LASSBio-786 in mice.

    PubMed

    Silva, G A P; Kummerle, A E; Antunes, F; Fraga, C A M; Barreiro, E J; Zapata-Sudo, G; Sudo, R T

    2013-03-01

    The N-acylhydrazone (NAH) analogues N-methyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-785) and N-benzyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-786) were prepared from 2-thienylidene 3,4-methylenedioxybenzoylhydrazine (LASSBio-294). The ability of LASSBio-785 and LASSBio-786 to decrease central nervous system activity was investigated in male Swiss mice. LASSBio-785 or LASSBio-786 (30 mg/kg, ip) reduced locomotor activity from 209 ± 26 (control) to 140 ± 18 (P < 0.05) or 146 ± 15 crossings/min (P < 0.05), respectively. LASSBio-785 (15 or 30 mg/kg, iv) also reduced locomotor activity from 200 ± 15 to 116 ± 29 (P < 0.05) or 60 ± 16 crossings/min (P < 0.01), respectively. Likewise, LASSBio-786 (15 or 30 mg/kg, iv) reduced locomotor activity from 200 ± 15 to 127 ± 10 (P < 0.01) or 96 ± 14 crossings/min (P < 0.01), respectively. Pretreatment with flumazenil (20 mg/kg, ip) prevented the locomotor impairment induced by NAH analogues (15 mg/kg, iv), providing evidence that the benzodiazepine (BDZ) receptor is involved. This finding was supported by the structural similarity of NAH analogues to midazolam. However, LASSBio-785 showed weak binding to the BDZ receptor. LASSBio-785 or LASSBio-786 (30 mg/kg, ip, n = 10) increased pentobarbital-induced sleeping time from 42 ± 5 (DMSO) to 66 ± 6 (P < 0.05) or 75 ± 4 min (P < 0.05), respectively. The dose required to achieve 50% hypnosis (HD50) following iv injection of LASSBio-785 or LASSBio-786 was 15.8 or 9.5 mg/kg, respectively. These data suggest that both NAH analogues might be useful for the development of new neuroactive drugs for the treatment of insomnia or for use in conjunction with general anesthesia. PMID:23558854

  10. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  11. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks.

    PubMed

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  12. Design and implementation of an underwater sound recording device

    SciTech Connect

    Martinez, Jayson J.; Myers, Joshua R.; Carlson, Thomas J.; Deng, Zhiqun; Rohrer, John S.; Caviggia, Kurt A.

    2011-09-19

    The purpose of this study was to design and build two versions of an underwater sound recording device. The device designed is referred to as the Underwater Sound Recorder (USR), which can be connected to one or two hydrophones or other underwater sound sensors. The URS contains a 26 dB preamplifier and a user selectable gain that permits additional amplification of input to the system from 26 dB to 46 dB. Signals within the frequency range up to 15 kHz may be recorded using the USR. Examples of USR applications are monitoring underwater processes that have the potential to create large pressure waves that could potentially harm fish or other aquatic life, such as underwater explosions or pile driving. Additional applications are recording sound generated by vessels or the vocalizations of some marine mammals, such as the calls from many species of whales.

  13. Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Underwater Imaging Applications.

    PubMed

    Song, Jinlong; Xue, Chenyang; He, Changde; Zhang, Rui; Mu, Linfeng; Cui, Juan; Miao, Jing; Liu, Yuan; Zhang, Wendong

    2015-01-01

    A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V) characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The -6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20 Vpp excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system. PMID:26389902

  14. Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Underwater Imaging Applications

    PubMed Central

    Song, Jinlong; Xue, Chenyang; He, Changde; Zhang, Rui; Mu, Linfeng; Cui, Juan; Miao, Jing; Liu, Yuan; Zhang, Wendong

    2015-01-01

    A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V) characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The −6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20 Vpp excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system. PMID:26389902

  15. The underwater camera calibration based on virtual camera lens distortion

    NASA Astrophysics Data System (ADS)

    Qin, Dahui; Mao, Ting; Cheng, Peng; Zhang, Zhiliang

    2011-08-01

    The machine view is becoming more and more popular in underwater. It is a challenge to calibrate the camera underwater because of the complicated light ray path in underwater and air environment. In this paper we firstly analyzed characteristic of the camera when light transported from air to water. Then we proposed a new method that takes the high-level camera distortion model to compensate the deviation of the light refraction when light ray come through the water and air media. In the end experience result shows the high-level distortion model can simulate the effect made by the underwater light refraction which also makes effect on the camera's image in the process of the camera underwater calibration.

  16. Underwater Chaotic Lidar using Blue Laser Diodes

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Luke K.

    The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal

  17. Color image simulation for underwater optics.

    PubMed

    Boffety, Matthieu; Galland, Frédéric; Allais, Anne-Gaëlle

    2012-08-10

    Underwater optical image simulation is a valuable tool for oceanic science, especially for the characterization of image processing techniques such as color restoration. In this context, simulating images with a correct color rendering is crucial. This paper presents an extension of existing image simulation models to RGB imaging. The influence of the spectral discretization of the model parameters on the color rendering of the simulated images is studied. It is especially shown that, if only RGB data of the scene chosen for simulations are available, a spectral reconstruction step prior to the simulations improves the image color rendering. PMID:22885575

  18. Underwater seismic source. [for petroleum exploration

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1979-01-01

    Apparatus for generating a substantially oscillation-free seismic signal for use in underwater petroleum exploration, including a bag with walls that are flexible but substantially inelastic, and a pressured gas supply for rapidly expanding the bag to its fully expanded condition is described. The inelasticity of the bag permits the application of high pressure gas to rapidly expand it to full size, without requiring a venting mechanism to decrease the pressure as the bag approaches a predetermined size to avoid breaking of the bag.

  19. Dynamics of the locomotor-respiratory coupling at different frequencies.

    PubMed

    Hoffmann, Charles P; Bardy, Benoît G

    2015-05-01

    The locomotor-respiratory coupling (LRC) is a universal phenomenon reported for various forms of rhythmic exercise. In this study, we investigated the effect of movement and respiratory frequencies on LRC. Participants were instructed to cycle or breath in synchrony with a periodic auditory stimulation at preferred and non-preferred frequencies. LRC stability was assessed by frequency and phase coupling indexes using the theory of nonlinear coupled oscillators through the sine circle map model, and the Farey tree. Results showed a stabilizing effect of sound on LRC for all frequencies and for the two systems paced. The sound-induced effect was more prominent when the rhythm of the stimulation corresponded to the preferred frequencies. The adoption of cycling or respiratory frequencies far off preferential ones led to a loss of stability in LRC. Contrary to previous findings, our results suggest that LRC is not unidirectional-from locomotion onto respiration-but bidirectional between the two systems. They also suggest that auditory information plays an important role in the modulation of LRC. PMID:25796188

  20. Reconstructing the locomotor repertoire of Protopithecus brasiliensis. I. Body size.

    PubMed

    Halenar, Lauren B

    2011-12-01

    An accurate body size estimate is essential for reconstructing and interpreting many aspects of the paleobiology of an extinct taxon. With this in mind, the purpose of this study is two-fold: first, to create statistically robust predictive regression equations for body mass, total body length, and head and body length from postcranial elements using a platyrrhine reference sample, data that do not exist elsewhere in the literature; and, second, to apply those regression equations to the "giant" subfossil platyrrhine Protopithecus brasiliensis, a little-studied taxon represented by a nearly complete skeleton. Building on results of previous work with other primate groups, different skeletal elements, subgroups of the reference sample, and regression models lead to different body size estimates with different standard errors and prediction errors. However, relatively tight clusters of estimates around 20 kg, total length of 1,675 mm, and head and body length of 710 mm are obtained, placing the fossil in the size range of a large male baboon. While not quite as large as the original 25 kg body mass estimate for the fossil, this new estimate is still approximately 150% larger than the largest living New World monkey. Confirmation of its place in a large-bodied size class of platyrrhines has a profound effect on reconstructing the locomotor repertoire of Protopithecus and the evolutionary trajectory of the alouattin lineage. PMID:22042663

  1. Locomotor head movements and semicircular canal morphology in primates

    PubMed Central

    Malinzak, Michael D.; Kay, Richard F.; Hullar, Timothy E.

    2012-01-01

    Animal locomotion causes head rotations, which are detected by the semicircular canals of the inner ear. Morphologic features of the canals influence rotational sensitivity, and so it is hypothesized that locomotion and canal morphology are functionally related. Most prior research has compared subjective assessments of animal “agility” with a single determinant of rotational sensitivity: the mean canal radius of curvature (R). In fact, the paired variables of R and body mass are correlated with agility and have been used to infer locomotion in extinct species. To refine models of canal functional morphology and to improve locomotor inferences for extinct species, we compare 3D vector measurements of head rotation during locomotion with 3D vector measures of canal sensitivity. Contrary to the predictions of conventional models that are based upon R, we find that axes of rapid head rotation are not aligned with axes of either high or low sensitivity. Instead, animals with fast head rotations have similar sensitivities in all directions, which they achieve by orienting the three canals of each ear orthogonally (i.e., along planes at 90° angles to one another). The extent to which the canal configuration approaches orthogonality is correlated with rotational head speed independent of body mass and phylogeny, whereas R is not. PMID:23045679

  2. The Glucagon-Like Peptide 1 Analogue Exendin-4 Attenuates the Nicotine-Induced Locomotor Stimulation, Accumbal Dopamine Release, Conditioned Place Preference as well as the Expression of Locomotor Sensitization in Mice

    PubMed Central

    Egecioglu, Emil; Engel, Jörgen A.; Jerlhag, Elisabet

    2013-01-01

    The gastrointestinal peptide glucagon-like peptide 1 (GLP-1) is known to regulate consummatory behavior and is released in response to nutrient ingestion. Analogues of this peptide recently emerged as novel pharmacotherapies for treatment of type II diabetes since they reduce gastric emptying, glucagon secretion as well as enhance glucose-dependent insulin secretion. The findings that GLP-1 targets reward related areas including mesolimbic dopamine areas indicate that the physiological role of GLP-1 extends beyond food intake and glucose homeostasis control to include reward regulation. The present series of experiments was therefore designed to investigate the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4), on established nicotine-induced effects on the mesolimbic dopamine system in mice. Specifically, we show that treatment with Ex4, at a dose with no effect per se, attenuate nicotine-induced locomotor stimulation, accumbal dopamine release as well as the expression of conditioned place preference in mice. In accordance, Ex4 also blocks nicotine-induced expression of locomotor sensitization in mice. Given that development of nicotine addiction largely depends on the effects of nicotine on the mesolimbic dopamine system these findings indicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for nicotine cessations in humans. PMID:24204788

  3. Seasonality in circadian locomotor activity and serum testosterone level in the subtropical tree sparrow (Passer montanus).

    PubMed

    Dixit, Anand S; Singh, Namram S

    2016-05-01

    Seasonality in daily locomotor activity pattern was investigated in the subtropical tree sparrow by exposing a group of birds to natural day lengths (NDL) for 30days and another group to 12L/12D for 14days followed by transfer to constant dim light (LLdim) for another 15days in four different seasons of the year. Serum testosterone levels were also measured during different seasons. Sparrows, under NDL, exhibited distinct circadian rhythmicity in their locomotor activity with almost similar general pattern in different seasons that restricted mainly to the light hours. However, they showed season-dependent differences in the characteristics of circadian locomotor activity rhythm. Birds, when exposed to 12L/12D, showed entrainment of their locomotor activity rhythm with the activity confined mainly during the light phase. Though, tau (τ) under free run conditions did not show any significant difference, the activity period varied significantly in different seasons. The highest level of testosterone was recorded in the spring season that corresponded with the maximum locomotor activity in spring months. The seasonality in daily locomotor activity correlates with the seasonal changes in testosterone levels suggesting the influence of gonadal steroids on endogenous circadian system which is indicative of adaptation of tree sparrow to local photoperiodic conditions. PMID:26945648

  4. Locomotor, feeding and melatonin daily rhythms in sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Vera, L M; Madrid, J A; Sánchez-Vázquez, F J

    2006-06-15

    Sharpsnout seabream is a marine teleost of increasing interest for Mediterranean aquaculture, but there is still a lack of information regarding its circadian organization. In this study, we have investigated sharpsnout seabream locomotor activity, feeding and plasma melatonin daily rhythms under a 12:12-h LD cycle, as well as the persistence of locomotor activity circadian rhythmicity under constant light (LL) conditions. When submitted to an LD cycle, most sharpsnout seabream displayed a diurnal locomotor pattern, with an average 74% of activity recorded during daytime. However, along the experiment 40% of fish spontaneously changed their locomotor rhythm phasing and became nocturnal. Feeding behaviour, nevertheless, remained strictly diurnal in all cases, with 97% of food demands being made during the light period. Free-running locomotor rhythms were recorded in one third of the fish kept under LL. Daily plasma melatonin levels displayed a rhythmic profile, with low daytime values (111 pg/ml) and high nighttime concentrations (791 pg/ml). Taken together, these results evidence a high degree of plasticity for sharpsnout seabream activity patterns, as well as phasing independence of locomotor and feeding rhythms. Finally, the existence of a well-defined daily rhythm of plasma melatonin was found. PMID:16682061

  5. Disparate effects of pramipexole on locomotor activity and sensorimotor gating in Sprague-Dawley rats.

    PubMed

    Chang, Wei-li; Breier, Michelle R; Yang, Alex; Swerdlow, Neal R

    2011-10-01

    Prepulse inhibition (PPI) of acoustic startle and locomotor activity are both widely studied in the preclinical development of dopaminergic agents, including those acting at D3 dopamine receptors. In mice, the dopamine D3 receptor-preferential agonist pramipexole (PPX) alters locomotor activity in a biphasic manner at doses that have no effect on PPI. The present study examined the time-course of PPX effects on locomotion and PPI in rats. In adult male Sprague-Dawley rats, PPX (0, 0.1, 0.3, 1.0mg/kg) was injected prior to measurement of locomotor activity for 90 min in photobeam chambers. Based on disparate early vs. late effects of PPX on locomotion, the effects of PPX (0 vs. 0.3mg/kg) on PPI were tested 20 and 80 min after injection. All doses of PPX decreased locomotor activity for 30 min compared to vehicle, and the higher doses stimulated hyperlocomotion later in the session; the late hyperlocomotion, but not the early hypolocomotion, was blocked by the D2-selective antagonist, L741626 (1.0mg/kg sc). In contrast to its locomotor effects, PPX caused a similar reduction in PPI at 20 and 80 min after administration. These findings suggest both a temporal and pharmacological dissociation between PPX effects on locomotor activity and PPI; these two behavioral measures contribute non-redundant information to the investigation of D3-related behavioral pharmacology. PMID:21683731

  6. LOCOMOTOR SENSORY ORGANIZATION TEST: A NOVEL PARADIGM FOR THE ASSESSMENT OF SENSORY CONTRIBUTIONS IN GAIT

    PubMed Central

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-01-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body’s movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure (netCOP) sway variability was used. This corresponds to the performance index of the center of pressure (COP) trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient

  7. Stability of underwater periodic locomotion

    NASA Astrophysics Data System (ADS)

    Jing, Fangxu; Kanso, Eva

    2013-07-01

    Most aquatic vertebrates swim by lateral flapping of their bodies and caudal fins. While much effort has been devoted to understanding the flapping kinematics and its influence on the swimming efficiency, little is known about the stability (or lack of) of periodic swimming. It is believed that stability limits maneuverability and body designs/flapping motions that are adapted for stable swimming are not suitable for high maneuverability and vice versa. In this paper, we consider a simplified model of a planar elliptic body undergoing prescribed periodic heaving and pitching in potential flow. We show that periodic locomotion can be achieved due to the resulting hydrodynamic forces, and its value depends on several parameters including the aspect ratio of the body, the amplitudes and phases of the prescribed flapping.We obtain closedform solutions for the locomotion and efficiency for small flapping amplitudes, and numerical results for finite flapping amplitudes. This efficiency analysis results in optimal parameter values that are in agreement with values reported for some carangiform fish. We then study the stability of the (finite amplitude flapping) periodic locomotion using Floquet theory. We find that stability depends nonlinearly on all parameters. Interesting trends of switching between stable and unstable motions emerge and evolve as we continuously vary the parameter values. This suggests that, for live organisms that control their flapping motion, maneuverability and stability need not be thought of as disjoint properties, rather the organism may manipulate its motion in favor of one or the other depending on the task at hand.

  8. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  9. Night locomotor activity and quality of sleep in quetiapine-treated patients with depression.

    PubMed

    Todder, Doron; Caliskan, Serdal; Baune, Bernhard T

    2006-12-01

    This research assesses the development of the night-activity rhythm and quality of sleep during course of treatment among patients with unipolar or bipolar depression and receiving antidepressant treatment plus quetiapine. Twenty-seven patients with major depressive episode were included into a 4-week follow-up study and compared with 27 healthy controls. Motor activity was continuously measured with an electronic wrist device (actigraphy), sleep was assessed with the Pittsburgh Sleep Quality Index, and patients were clinically assessed with the Hamilton depression score. All patients received a standard antidepressant treatment plus quetiapine. Whereas we found a rapid and maintaining improvement of subjective sleep parameters during the 4-week study, we observed a rapid improvement of some objective sleep parameters (actigraph) within the first week, but no further significant change of objective sleep parameters during the rest of the study. Another main finding of this study is that changes of subjectively and objectively assessed sleep parameters do not necessarily reflect clinical improvement of depression during the same timeline. Despite partial clinical remission, objective sleep parameters still showed significantly different patterns compared with controls. This study is the first to examine the effect of quetiapine on locomotor activity alongside with sleep in depression. As the studied patients with depression showed improvement in subjective and objective sleep parameters, quetiapine may be a promising drug for patients with depression and insomnia. Further studies need to investigate in detail the timeline of clinical remission and alterations of objective and subjective sleep parameters. PMID:17110822

  10. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors. PMID:15574737

  11. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment.

    PubMed

    Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce

    2015-04-01

    Circumvention around an obstacle entails a dynamic interaction with the obstacle to maintain a safe clearance. We used a novel mathematical interpolation method based on the modified Shepard's method of Inverse Distance Weighting to compute dynamic clearance that reflected this interaction as well as minimal clearance. This proof-of-principle study included seven young healthy, four post-stroke and four healthy age-matched individuals. A virtual environment designed to assess obstacle circumvention was used to administer a locomotor (walking) and a perceptuo-motor (navigation with a joystick) task. In both tasks, participants were asked to navigate towards a target while avoiding collision with a moving obstacle that approached from either head-on, or 30° left or right. Among young individuals, dynamic clearance did not differ significantly between obstacle approach directions in both tasks. Post-stroke individuals maintained larger and smaller dynamic clearance during the locomotor and the perceptuo-motor task respectively as compared to age-matched controls. Dynamic clearance was larger than minimal distance from the obstacle irrespective of the group, task and obstacle approach direction. Also, in contrast to minimal distance, dynamic clearance can respond differently to different avoidance behaviors. Such a measure can be beneficial in contrasting obstacle avoidance behaviors in different populations with mobility problems. PMID:25682376

  12. 46 CFR 176.650 - Alternative Hull Examination Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... underwater ROV. 176.650 Section 176.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Examinations § 176.650 Alternative Hull Examination Program options: Divers or underwater ROV. To complete the underwater survey portion of the AHE, you may use divers or an underwater remotely operated vehicle (ROV)....

  13. 46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: Divers or underwater ROV. 115.650 Section 115.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater survey, you may use divers or an underwater remotely operated vehicle (ROV). (a) If you use divers...

  14. 46 CFR 176.650 - Alternative Hull Examination Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... underwater ROV. 176.650 Section 176.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Examinations § 176.650 Alternative Hull Examination Program options: Divers or underwater ROV. To complete the underwater survey portion of the AHE, you may use divers or an underwater remotely operated vehicle (ROV)....

  15. 46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Divers or underwater ROV. 115.650 Section 115.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater survey, you may use divers or an underwater remotely operated vehicle (ROV). (a) If you use divers...

  16. 46 CFR 176.650 - Alternative Hull Examination Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... underwater ROV. 176.650 Section 176.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Examinations § 176.650 Alternative Hull Examination Program options: Divers or underwater ROV. To complete the underwater survey portion of the AHE, you may use divers or an underwater remotely operated vehicle (ROV)....

  17. 46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Divers or underwater ROV. 115.650 Section 115.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater survey, you may use divers or an underwater remotely operated vehicle (ROV). (a) If you use divers...

  18. 46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Divers or underwater ROV. 115.650 Section 115.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater survey, you may use divers or an underwater remotely operated vehicle (ROV). (a) If you use divers...

  19. 46 CFR 176.650 - Alternative Hull Examination Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... underwater ROV. 176.650 Section 176.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Examinations § 176.650 Alternative Hull Examination Program options: Divers or underwater ROV. To complete the underwater survey portion of the AHE, you may use divers or an underwater remotely operated vehicle (ROV)....

  20. 46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Divers or underwater ROV. 115.650 Section 115.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater survey, you may use divers or an underwater remotely operated vehicle (ROV). (a) If you use divers...

  1. 46 CFR 176.650 - Alternative Hull Examination Program options: Divers or underwater ROV.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... underwater ROV. 176.650 Section 176.650 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Examinations § 176.650 Alternative Hull Examination Program options: Divers or underwater ROV. To complete the underwater survey portion of the AHE, you may use divers or an underwater remotely operated vehicle (ROV)....

  2. Impacts of optical turbulence on underwater imaging

    NASA Astrophysics Data System (ADS)

    Hou, Weilin; Woods, S.; Goode, W.; Jarosz, E.; Weidemann, A.

    2011-06-01

    Optical signal transmission underwater is of vital interests to both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties determines the effectiveness of EO technology. These applications include diver visibility, search and rescue, mine detection and identification, and optical communications. The impact of optical turbulence on underwater imaging has been postulated and observed by many researchers. However, no quantative studies have been done until recently, in terms of both the environmental conditions, and impacts on image quality as a function of range and spatial frequencies. Image data collected from field measurements during SOTEX (Skaneateles Optical Turbulence Exercise, July 22-31, 2010) using the Image Measurement Assembly for Subsurface Turbulence (IMAST) are presented. Optical properties of the water column in the field were measured using WETLab's ac-9 and Laser In Situ Scattering and Transmissometer (LISST, Sequoia Scientific), in coordination with physical properties including CTD (Seabird), dissipation rate of kinetic energy and heat, using both the Vector velocimeter and CT combo (Nortek and PME), and shear probe based Vertical Microstructure Profiler (VMP, Rockland). The strong stratification structure in the water column provides great opportunity to observe various dissipation strengths throughout the water column, which corresponds directly with image quality as shown. Initial results demonstrate general agreement between data collected and model prediction, while discrepancies between measurements and model suggest higher spatial and temporal observations are needed in the future.

  3. Hydrogel microphones for stealthy underwater listening

    PubMed Central

    Gao, Yang; Song, Jingfeng; Li, Shumin; Elowsky, Christian; Zhou, You; Ducharme, Stephen; Chen, Yong Mei; Zhou, Qin; Tan, Li

    2016-01-01

    Exploring the abundant resources in the ocean requires underwater acoustic detectors with a high-sensitivity reception of low-frequency sound from greater distances and zero reflections. Here we address both challenges by integrating an easily deformable network of metal nanoparticles in a hydrogel matrix for use as a cavity-free microphone. Since metal nanoparticles can be densely implanted as inclusions, and can even be arranged in coherent arrays, this microphone can detect static loads and air breezes from different angles, as well as underwater acoustic signals from 20 Hz to 3 kHz at amplitudes as low as 4 Pa. Unlike dielectric capacitors or cavity-based microphones that respond to stimuli by deforming the device in thickness directions, this hydrogel device responds with a transient modulation of electric double layers, resulting in an extraordinary sensitivity (217 nF kPa−1 or 24 μC N−1 at a bias of 1.0 V) without using any signal amplification tools. PMID:27554792

  4. Image processing of underwater multispectral imagery

    USGS Publications Warehouse

    Zawada, D.G.

    2003-01-01

    Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.

  5. Modelling cavitating flow around underwater missiles

    NASA Astrophysics Data System (ADS)

    Petitpas, Fabien; Saurel, Richard; Ahn, Byoung-Kwon; Ko, Sungho

    2011-12-01

    The diffuse interface model of Saurel et al. (2008) is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009) is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile). Performance data are then computed showing method ability to predict forces acting on the system.

  6. SPH and Eulerian underwater bubble collapse simulations

    SciTech Connect

    Swegle, J.W.; Kipp, M.E.

    1998-05-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. Previously, the SPH algorithm has been subjected to detailed testing and analysis to determine the feasibility of using the coupled finite-element/SPH code PRONTO/SPH for the analysis of various types of underwater explosion problems involving fluid-structure and shock-structure interactions. Here, SPH and Eulerian simulations are used to study the details of underwater bubble collapse, particularly the formation of re-entrant jets during collapse, and the loads generated on nearby structures by the jet and the complete collapse of the bubble. Jet formation is shown to be due simply to the asymmetry caused by nearby structures which disrupt the symmetry of the collapse. However, the load generated by the jet is a minor precursor to the major loads which occur at the time of complete collapse of the bubble.

  7. Underwater loudness for pure tones: Duration effects

    NASA Astrophysics Data System (ADS)

    Cudahy, Edward A.; Schwaller, Derek; Fothergill, David; Wolgemuth, Keith

    2003-04-01

    The loudness of underwater pure tones was measured by loudness matching for pure tones from 100 to 16,000 Hz. The standard was a one second tone at 1000 Hz. The signal duration was varied from 20 milliseconds to 5 seconds. Subjects were instructed to match the loudness of the comparison tone at one of the test frequencies to the loudness of the standard tone. Loudness was measured at the threshold, the most comfortable loudness, and the maximum tolerable loudness. The intensity of the standard was varied randomly across the test series. The subjects were bareheaded U.S. Navy divers tested at a depth of 3 meters. All subjects had normal in-air hearing. Tones were presented to the right side of the subject from an array of underwater sound projectors. The sound pressure level was calibrated at the location of the subject's head with the subject absent. Loudness increased and threshold decreased as duration increased. The effect was greatest at the lowest and highest frequencies. The shape of the loudness contours across frequency and duration derived from these measurements are different from in-air measurements. [Research supported by ONR.

  8. Range Imaging for Underwater Vision Enhancement

    SciTech Connect

    Rish, J.W.; Blume, B.; Nellums, B.; Sackos, J.; Foster, J.; Wood, J.L.

    1999-04-19

    This paper presents results from a series of preliminary tests to evaluate a scannerless range-imaging device as a potential sensory enhancement tool for divers and as a potential identification sensor for deployment on small unmanned underwater vehicles. The device, developed by Sandia National Laboratories, forms an image on the basis of point-to-point range to the target rather than an intensity map. The range image is constructed through a classical continuous wave phase detection technique in which the light source is amplitude modulated at radio frequencies. The receiver incorporates a gain-modulated image intensifier, and range information is calculated on the basis of the phase difference between the transmitted and reflected signal. The initial feasibility test at the Coastal Systems Station showed the device to be effective at imaging low-contrast underwater targets such as concertina wire. It also demonstrated success at imaging a 21-inch sphere at a depth of 10 feet in the water column through a wavy air-water interface.

  9. Hydrogel microphones for stealthy underwater listening.

    PubMed

    Gao, Yang; Song, Jingfeng; Li, Shumin; Elowsky, Christian; Zhou, You; Ducharme, Stephen; Chen, Yong Mei; Zhou, Qin; Tan, Li

    2016-01-01

    Exploring the abundant resources in the ocean requires underwater acoustic detectors with a high-sensitivity reception of low-frequency sound from greater distances and zero reflections. Here we address both challenges by integrating an easily deformable network of metal nanoparticles in a hydrogel matrix for use as a cavity-free microphone. Since metal nanoparticles can be densely implanted as inclusions, and can even be arranged in coherent arrays, this microphone can detect static loads and air breezes from different angles, as well as underwater acoustic signals from 20 Hz to 3 kHz at amplitudes as low as 4 Pa. Unlike dielectric capacitors or cavity-based microphones that respond to stimuli by deforming the device in thickness directions, this hydrogel device responds with a transient modulation of electric double layers, resulting in an extraordinary sensitivity (217 nF kPa(-1) or 24 μC N(-1) at a bias of 1.0 V) without using any signal amplification tools. PMID:27554792

  10. Development of scanning laser sensor for underwater 3D imaging with the coaxial optics

    NASA Astrophysics Data System (ADS)

    Ochimizu, Hideaki; Imaki, Masaharu; Kameyama, Shumpei; Saito, Takashi; Ishibashi, Shoujirou; Yoshida, Hiroshi

    2014-06-01

    We have developed the scanning laser sensor for underwater 3-D imaging which has the wide scanning angle of 120º (Horizontal) x 30º (Vertical) with the compact size of 25 cm diameter and 60 cm long. Our system has a dome lens and a coaxial optics to realize both the wide scanning angle and the compactness. The system also has the feature in the sensitivity time control (STC) circuit, in which the receiving gain is increased according to the time of flight. The STC circuit contributes to detect a small signal by suppressing the unwanted signals backscattered by marine snows. We demonstrated the system performance in the pool, and confirmed the 3-D imaging with the distance of 20 m. Furthermore, the system was mounted on the autonomous underwater vehicle (AUV), and demonstrated the seafloor mapping at the depth of 100 m in the ocean.

  11. Field-deployed underwater mass spectrometers for investigations of transient chemical systems.

    PubMed

    Kibelka, Gottfried P G; Timothy Short, R; Toler, Strawn K; Edkins, John E; Byrne, Robert H

    2004-11-15

    The mass spectrometer developments and underwater deployments described in this work are directed toward observations of important reactive and influential inorganic and organic chemicals. Mass spectrometer systems for measurement of dissolved gases and volatile hydrocarbons were created by coupling a membrane analyte-introduction system with linear quadrupole and ion trap mass analyzers. For molecular masses up to 100amu, the in situ quadrupole system has detection limits on the order of 1-5ppb. For masses up to approximately 300amu, the underwater ion trap system detects many volatile hydrocarbons at concentrations below 1ppb. Both instruments can function autonomously or via interactive communications from a remote control site. Continuous operations can be sustained for up to approximately 12 days. Deployments have initially involved shallow water proof-of-concept operations at depths less than 30m. Future modifications are planned that will allow operational depths to 200m. PMID:18969697

  12. Features of underwater acoustics from Aristotle to our time

    NASA Astrophysics Data System (ADS)

    Bjørnø, Leif

    2003-01-01

    Underwater acoustics has been one of the fastest growing fields of research in acoustics. In particular, the 20th Century has taken our understanding of underwater acoustics phenomena a great step forward. The two World Wars contributed to the recognition of the importance of research in underwater acoustics, and the momentum in research and development gained during World War II did not reduce in the years after the war. The so-called cold war and the development in computer technology both contributed substantially to the development in underwater acoustics over the second half of the 20th Century. However, the very widespread field of underwater acoustic activities started nearly 2300 years ago with human curiosity about the fundamental nature of sound in the sea. From primitive philosophical and experimental studies of the velocity of sound in the sea and through centuries of successes and failures, the knowledge about underwater acoustics has developed into its high-technological status of today. In particular the development through the period from Aristotle (384 322 BC) to 1960 formed the basis for the tremendous research and development efforts we have witnessed in our time. In this paper most emphasis will be put on the development in underwater acoustics through this period of nearly 2300 years duration, and only the main trends in later research will be mentioned.

  13. Protocols for Image Processing based Underwater Inspection of Infrastructure Elements

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; Pakrashi, Vikram

    2015-07-01

    Image processing can be an important tool for inspecting underwater infrastructure elements like bridge piers and pile wharves. Underwater inspection often relies on visual descriptions of divers who are not necessarily trained in specifics of structural degradation and the information may often be vague, prone to error or open to significant variation of interpretation. Underwater vehicles, on the other hand can be quite expensive to deal with for such inspections. Additionally, there is now significant encouragement globally towards the deployment of more offshore renewable wind turbines and wave devices and the requirement for underwater inspection can be expected to increase significantly in the coming years. While the merit of image processing based assessment of the condition of underwater structures is understood to a certain degree, there is no existing protocol on such image based methods. This paper discusses and describes an image processing protocol for underwater inspection of structures. A stereo imaging image processing method is considered in this regard and protocols are suggested for image storage, imaging, diving, and inspection. A combined underwater imaging protocol is finally presented which can be used for a variety of situations within a range of image scenes and environmental conditions affecting the imaging conditions. An example of detecting marine growth is presented of a structure in Cork Harbour, Ireland.

  14. An Inventory of Underwater Landslides in Lake Baikal Suggests a Strong Link with Gas Hydrates

    NASA Astrophysics Data System (ADS)

    De Batist, M. A. O.; Naudts, L.; Casier, R.; Khlystov, O.; Khabuev, A.; Minami, H.; Grachev, M.; Shoji, H.

    2014-12-01

    Multibeam bathymetry data from Lake Baikal were analyzed for the identification of morphologies that could indicate the presence of underwater landslides. The data were collected in 2009 by a Belgian-Russian-Japanese consortium, using a 50 kHz Seabeam 1050 echosounder, operated from RV Titov. The data cover the entire lake floor -in water depths between 200 m and 1637 m- of the Southern and Central Basins, i.e. a total surface of 15,000 km2. Our analysis revealed the presence of 26 possible underwater landslides. At least 11 of these are characterized by distinctive headwalls, scars and overall morphology, and were confirmed to be mass-wasting features by high-resolution reflection seismic data. Most of the identified underwater landslides scar the slopes of the Selenga river delta, and the sediment-charged slopes of the shoaling eastern margin of the half-graben basins. Most of the underwater landslides have a headwall occurring at water depths between 300 and 450 m; only a few occur at larger water depths. All underwater landslides occur in areas in which gas hydrates have been inferred (i.e. based on the observation of bottom-simulating reflections on seismic data) or confirmed (i.e. by deep drilling or shallow coring). The clustering of many headwalls at a water depth that is not characterized by any distinct change in slope gradient or stratigraphy, but that is close to the stability limit of gas hydrates (i.e. ca. 380 m, for pure methane hydrates, under Lake Baikal conditions), suggests that the presence of the hydrates may be one of the most important controlling factors in conditioning the underwater slopes of Lake Baikal and rendering them unstable and prone to failure. The exact conditioning process remains, however, unclear as the hydrate reservoir in Lake Baikal is considered to have remained stable, even over relatively long time scales, in the absence of any important fluctuations in lake-level and in bottom-water temperature.

  15. Novel technology for modulating locomotor activity as an operant response in the mouse: implications for neuroscience studies involving “exercise” in rodents

    PubMed Central

    Fantegrossi, William E.; Xiao, Wenjie; Zimmerman, Sarah M.

    2012-01-01

    We have developed a novel, low-cost device designed to monitor and modulate locomotor activity in murine subjects. This technology has immediate application to the study of effects of physical exercise on various neurobiological endpoints, and will also likely be useful in the study of psychomotor sensitization and drug addiction. Here we demonstrate the capacity of these devices to establish locomotor activity as an operant response reinforced by food pellet presentations, and show that schedules of reinforcement can reliably control this behavior. Importantly, these data show that varying degrees of increased locomotor activity (in other words, “exercise”) can be elicited and maintained in mice by manipulating the schedule of reinforcement. Our findings argue that the present technology might reduce the imposition of stress and motivational bias inherent in more traditional procedures for establishing exercise in laboratory rodents, while allowing for true random assignment to experimental groups. As interest in physical exercise as a modulating factor in numerous clinical conditions continues to grow, technologies like the one proposed here are likely to become critical in conducting future experiments along these lines. PMID:23164960

  16. Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity.

    PubMed

    David, Hélène N; Abraini, Jacques H

    2002-03-01

    Evidence for functional interactions between metabotropic glutamate (mGlu) receptors and dopamine (DA) neurotransmission is now clearly established. In the present study, we investigated interactions between group III mGlu receptors and D1- and D2-like receptors in the nucleus accumbens (NAcc). Administration, into the NAcc, of the selective group III mGlu receptor agonist, AP4, resulted in an increase in locomotor activity, which was blocked by pretreatment with the group III mGlu receptor antagonist, MPPG. In addition, pretreatment with AP4 further blocked the increase in motor activity induced by the D1-like receptor agonist, SKF 38393, but potentiated the locomotor responses induced by either the D2-like receptor agonist, quinpirole, or coinfusion of SKF 38393 and quinpirole. MPPG reversed the effects of AP4 on the motor responses induced by D1-like and/or D2-like receptor activation. These results confirm that glutamate transmission may control DA-dependent locomotor function through mGlu receptors and further indicate that group III mGlu receptors oppose the behavioural response produced by D1-like receptor activation and favour those produced by D2-like receptor activation. PMID:11906529

  17. Continuous exposure to a novel stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep-wake cycles in mice.

    PubMed

    Miyazaki, Koyomi; Itoh, Nanako; Ohyama, Sumika; Kadota, Koji; Oishi, Katsutaka

    2013-01-01

    Psychological stressors prominently affect diurnal rhythms, including locomotor activity, sleep, blood pressure, and body temperature, in humans. Here, we found that a novel continuous stress imposed by the perpetual avoidance of water on a wheel (PAWW) affected several physiological diurnal rhythms in mice. One week of PAWW stress decayed robust circadian locomotor rhythmicity, while locomotor activity was evident even during the light period when the mice are normally asleep. Daytime activity was significantly upregulated, whereas nighttime activity was downregulated, resulting in a low amplitude of activity. Total daily activity gradually decreased with increasing exposure to PAWW stress. The mice could be exposed to PAWW stress for over 3 weeks without adaptation. Furthermore, continuous PAWW stress enhanced food intake, but decreased body weight and plasma leptin levels, indicating that sleep loss and PAWW stress altered the energy balance in these mice. The diurnal rhythm of corticosterone levels was not severely affected. The body temperature rhythm was diurnal in the stressed mice, but significantly dysregulated during the dark period. Plasma catecholamines were elevated in the stressed mice. Continuous PAWW stress reduced the duration of daytime sleep, especially during the first half of the light period, and increased nighttime sleepiness. Continuous PAWW stress also simultaneously obscured sleep/wake and locomotor activity rhythms compared with control mice. These sleep architecture phenotypes under stress are similar to those of patients with insomnia. The stressed mice could be entrained to the light/dark cycle, and when they were transferred to constant darkness, they exhibited a free-running circadian rhythm with a timing of activity onset predicted by the phase of their entrained rhythms. Circadian gene expression in the liver and muscle was unaltered, indicating that the peripheral clocks in these tissues remained intact. PMID:23383193

  18. Central Regulation of Locomotor Behavior of Drosophila melanogaster Depends on a CASK Isoform Containing CaMK-Like and L27 Domains

    PubMed Central

    Slawson, Justin B.; Kuklin, Elena A.; Ejima, Aki; Mukherjee, Konark; Ostrovsky, Lilly; Griffith, Leslie C.

    2011-01-01

    Genetic causes for disturbances of locomotor behavior can be due to muscle, peripheral neuron, or central nervous system pathologies. The Drosophila melanogaster homolog of human CASK (also known as caki or camguk) is a molecular scaffold that has been postulated to have roles in both locomotion and plasticity. These conclusions are based on studies using overlapping deficiencies that largely eliminate the entire CASK locus, but contain additional chromosomal aberrations as well. More importantly, analysis of the sequenced Drosophila genome suggests the existence of multiple protein variants from the CASK locus, further complicating the interpretation of experiments using deficiency strains. In this study, we generated small deletions within the CASK gene that eliminate gene products containing the CaMK-like and L27 domains (CASK-β), but do not affect transcripts encoding the smaller forms (CASK-α), which are structurally homologous to vertebrate MPP1. These mutants have normal olfactory habituation, but exhibit a striking array of locomotor problems that includes both initiation and motor maintenance defects. Previous studies had suggested that presynaptic release defects at the neuromuscular junction in the multigene deficiency strain were the likely basis of its locomotor phenotype. The locomotor phenotype of the CASK-β mutant, however, cannot be rescued by expression of a CASK-β transgene in motor neurons. Expression in a subset of central neurons that does not include the ellipsoid body, a well-known pre-motor neuropil, provides complete rescue. Full-length CASK-β, while widely expressed in the nervous system, appears to have a unique role within central circuits that control motor output. PMID:21059886

  19. Effect of Ambient Temperature on the Thermoregulatory and Locomotor Stimulant Effects of 4-Methylmethcathinone in Wistar and Sprague-Dawley Rats

    PubMed Central

    Wright, M. Jerry; Angrish, Deepshikha; Aarde, Shawn M.; Barlow, Deborah J.; Buczynski, Matthew W.; Creehan, Kevin M.; Vandewater, Sophia A.; Parsons, Loren H.; Houseknecht, Karen L.; Dickerson, Tobin J.; Taffe, Michael A.

    2012-01-01

    The drug 4-methylmethcathinone (4-MMC; aka, mephedrone, MMCAT, “plant food”, “bath salts”) is a recent addition to the list of popular recreational psychomotor-stimulant compounds. Relatively little information about this drug is available in the scientific literature, but popular media reports have driven recent drug control actions in the UK and several US States. Online user reports of subjective similarity to 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) prompted the current investigation of the thermoregulatory and locomotor effects of 4-MMC. Male Wistar and Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1–10 mg/kg ) using an implantable radiotelemetry system under conditions of low (23°C) and high (27°C) ambient temperature. A reliable reduction of body temperature was produced by 4-MMC in Wistar rats at 23°C or 27°C with only minimal effect in Sprague-Dawley rats. Increased locomotor activity was observed after 4-MMC administration in both strains with significantly more activity produced in the Sprague-Dawley strain. The 10 mg/kg s.c. dose evoked greater increase in extracellular serotonin, compared with dopamine, in the nucleus accumbens. Follow-up studies confirmed that the degree of locomotor stimulation produced by 10 mg/kg 4-MMC was nearly identical to that produced by 1 mg/kg d-methamphetamine in each strain. Furthermore, hypothermia produced by the serotonin 1A/7 receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) was similar in each strain. These results show that the cathinone analog 4-MMC exhibits thermoregulatory and locomotor properties that are distinct from those established for methamphetamine or MDMA in prior work, despite recent evidence of neuropharmacological similarity with MDMA. PMID:22952999

  20. The sublethal effects of endosulfan on the circadian rhythms and locomotor activity of two sympatric parasitoid species.

    PubMed

    Delpuech, Jean-Marie; Bussod, Sophie; Amar, Aurelien

    2015-08-01

    The organochlorine insecticide endosulfan is dispersed worldwide and significantly contributes to environmental pollution. It is an antagonist of the neurotransmitter gamma-aminobutyric acid (GABA), which is also indirectly involved in photoperiodic time measurement. In this study, we show that endosulfan at a dose as low as LC 0.1 modified the rhythm of locomotor activity of two sympatric parasitoid species, Leptopilina boulardi and Leptopilina heterotoma. The insecticide strongly increased the nocturnal activity of both species and synchronized their diurnal activity; these activities were not synchronized under control conditions. Parasitoids are important species in ecosystems because they control the populations of other insects. In this paper, we discuss the possible consequences of these sublethal effects and highlight the importance of such effects in evaluating the consequences of environmental pollution due to insecticides. PMID:25898969