Science.gov

Sample records for control underwater locomotor

  1. Buoyancy under Control: Underwater Locomotor Performance in a Deep Diving Seabird Suggests Respiratory Strategies for Reducing Foraging Effort

    PubMed Central

    Cook, Timothée R.; Kato, Akiko; Tanaka, Hideji; Ropert-Coudert, Yan; Bost, Charles-André

    2010-01-01

    Background Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth. Methodology/Principal Findings Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. Conclusions/Significance Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control. PMID:20352122

  2. Neuronal control of locomotor handedness in Drosophila

    PubMed Central

    Buchanan, Sean M.; Kain, Jamey S.; de Bivort, Benjamin L.

    2015-01-01

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  3. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  4. Dynamic Control of Posture Across Locomotor Tasks

    PubMed Central

    Earhart, Gammon M.

    2013-01-01

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment, and to ensure dynamic stability of the moving body. This paper provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks such as turning and backward walking. The impacts of aging and various movement disorders on postural control are discussed broadly in an effort to provide a general overview of the field and recommendations for assessment of dynamic postural control across different populations in both clinical and research settings. Suggestions for future research on dynamic postural control during locomotion are also provided and include discussion of opportunities afforded by new and developing technologies, the need for long-term monitoring of locomotor performance in everyday activities, gaps in our knowledge of how targeted intervention approaches modify dynamic postural control, and the relative paucity of literature regarding dynamic postural control in movement disorder populations other than Parkinson disease. PMID:24132838

  5. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    SciTech Connect

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

  6. Underwater Coatings for Contamination Control

    SciTech Connect

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included 1) Test Area North (TAN-607) with epoxy painted concrete walls; 2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; 3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and 4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55oF to 80oF dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: · Be easy to apply · Adhere well to the four surfaces of interest · Not change or have a negative impact on water chemistry or clarity · Not be hazardous in final applied form · Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected to

  7. Controllable underwater anisotropic oil-wetting

    SciTech Connect

    Yong, Jiale; Chen, Feng Yang, Qing; Farooq, Umar; Bian, Hao; Du, Guangqing; Hou, Xun

    2014-08-18

    This Letter demonstrates a simple method to achieve underwater anisotropic oil-wetting using silicon surfaces with a microgroove array produced by femtosecond laser ablation. The oil contact angles along the direction perpendicular to the grooves are consistently larger than those parallel to the microgroove arrays in water because the oil droplet is restricted by the energy barrier that exists between the non-irradiated domain and the trapped water in the laser-ablated microgrooves. This underwater anisotropic oil-wetting is able to be controlled, and the anisotropy can be tuned from 0° to ∼20° by adjusting the period of the microgroove arrays.

  8. Effects of space flight on locomotor control

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki

    1999-01-01

    In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.

  9. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  10. Underwater space suit pressure control regulator

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Cooper, C. R.; Rasquin, J. R. (Inventor)

    1973-01-01

    A device is reported for regulating the pneumatic pressure in a ventilated space suit relative to the pressure imposed on the suit when being worn by a person underwater to simulate space environment for testing and experimentation. A box unit located on the chest area of the suit comprises connections for suit air supply and return lines and carries a regulator valve that stabilizes the air pressure differential between the inside and outside of the suit. The valve and suit pressure is controlled by the suit occupant and the valve includes a mechanism for quickly dumping the suit pressure in case of emergency. Pressure monitoring and relief devices are also included in the box unit.

  11. Measurements of optical underwater turbulence under controlled conditions

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Gladysz, S.; Almeida de Sá Barros, R.; Matt, S.; Nootz, G. A.; Josset, D. B.; Hou, W.

    2016-05-01

    Laser beam propagation underwater is becoming an important research topic because of high demand for its potential applications. Namely, ability to image underwater at long distances is highly desired for scientific and military purposes, including submarine awareness, diver visibility, and mine detection. Optical communication in the ocean can provide covert data transmission with much higher rates than that available with acoustic techniques, and it is now desired for certain military and scientific applications that involve sending large quantities of data. Unfortunately underwater environment presents serious challenges for propagation of laser beams. Even in clean ocean water, the extinction due to absorption and scattering theoretically limit the useful range to few attenuation lengths. However, extending the laser light propagation range to the theoretical limit leads to significant beam distortions due to optical underwater turbulence. Experiments show that the magnitude of the distortions that are caused by water temperature and salinity fluctuations can significantly exceed the magnitude of the beam distortions due to atmospheric turbulence even for relatively short propagation distances. We are presenting direct measurements of optical underwater turbulence in controlled conditions of laboratory water tank using two separate techniques involving wavefront sensor and LED array. These independent approaches will enable development of underwater turbulence power spectrum model based directly on the spatial domain measurements and will lead to accurate predictions of underwater beam propagation.

  12. Active Gaze, Visual Look-Ahead, and Locomotor Control

    ERIC Educational Resources Information Center

    Wilkie, Richard M.; Wann, John P.; Allison, Robert S.

    2008-01-01

    The authors examined observers steering through a series of obstacles to determine the role of active gaze in shaping locomotor trajectories. Participants sat on a bicycle trainer integrated with a large field-of-view simulator and steered through a series of slalom gates. Steering behavior was determined by examining the passing distance through…

  13. A switched controller for an underactuated underwater vehicle

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, V.; Mahindrakar, Arun D.; Banavar, Ravi N.

    2008-12-01

    We present a switched control law for stabilizing an underactuated underwater vehicle (UUV) moving in a horizontal plane in a neutrally buoyant condition. The control law consists of a sequential series of control actions, each of which achieves a certain objective, finally resulting in the system being moved to the origin. Finite-time controllers are employed at each stage to achieve the desired objective. Simulation results are presented to validate the control law.

  14. EEG during pedaling: Evidence for cortical control of locomotor tasks

    PubMed Central

    Jain, Sanket; Gourab, Krishnaj; Schindler-Ivens, Sheila; Schmit, Brian D.

    2014-01-01

    Objective This study characterized the brain electrical activity during pedaling, a locomotor-like task, in humans. We postulated that phasic brain activity would be associated with active pedaling, consistent with a cortical role in locomotor tasks. Methods Sixty four channels of electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were recorded from 10 neurologically-intact volunteers while they performed active and passive (no effort) pedaling on a custom-designed stationary bicycle. Ensemble averaged waveforms, 2 dimensional topographic maps and amplitude of the β (13–35 Hz) frequency band were analyzed and compared between active and passive trials. Results The peak-to-peak amplitude (peak positive–peak negative) of the EEG waveform recorded at the Cz electrode was higher in the passive than the active trials (p < 0.01). β-band oscillations in electrodes overlying the leg representation area of the cortex were significantly desynchronized during active compared to the passive pedaling (p < 0.01). A significant negative correlation was observed between the average EEG waveform for active trials and the composite EMG (summated EMG from both limbs for each muscle) of the rectus femoris (r = −0.77, p < 0.01) the medial hamstrings (r = −0.85, p < 0.01) and the tibialis anterior (r = −0.70, p < 0.01) muscles. Conclusions These results demonstrated that substantial sensorimotor processing occurs in the brain during pedaling in humans. Further, cortical activity seemed to be greatest during recruitment of the muscles critical for transitioning the legs from flexion to extension and vice versa. Significance This is the first study demonstrating the feasibility of EEG recording during pedaling, and owing to similarities between pedaling and bipedal walking, may provide valuable insight into brain activity during locomotion in humans. PMID:23036179

  15. Effects of cocaine on locomotor activity and schedule-controlled behaviors of inbred rat strains.

    PubMed

    Witkin, J M; Goldberg, S R

    1990-10-01

    Effects of cocaine on several behaviors considered to be reflective of psychomotor stimulation were compared in F344/CR1BR and NBR/NIH inbred rat strains. Effects of cocaine on locomotor activity were compared with effects on either bar-press or nose-poke responses maintained under a multiple fixed-interval 3-min, timeout 1-min schedule of food presentation. In locomotor activity experiments, NBR rats were twice as active as F344 rats under baseline conditions and displayed dose-dependent increases in locomotion (5-20 mg/kg). Maximal increases in locomotor activity of F344 rats were only 200% compared to 1000% in NBR rats. In contrast to locomotor activity, no strain differences in the effects of cocaine were observed under the schedules of food delivery. Bar-pressing under the fixed-interval schedule was increased to a maximum of 150% of control in both rat strains. Nose-poke responding under the fixed-interval schedule was not significantly increased, but timeout rates were increased in both strains. These results suggest that NBR and F344 rats do not differ in general sensitivity to stimulant effects of cocaine but exhibit marked differences in responsivity to cocaine that are dependent upon the behavior studied. Further delineation of the behavioral specificity of strain differences in sensitivity to cocaine should help to identify neurobiological substrates underlying unique biologically determined responses to cocaine. PMID:2080195

  16. A trajectory tracking controller for an underwater hexapod vehicle.

    PubMed

    Plamondon, N; Nahon, M

    2009-09-01

    This paper describes work done in the modeling and control of a low speed underwater vehicle that uses paddles instead of thrusters to move in the water. A review of previously modeled vehicles and of controller designs for underwater applications is presented. Then, a method to accurately predict the thrust produced by an oscillating flexible paddle is developed and validated. This is followed by the development of a method to determine the ideal paddle motion to produce a desired thrust. Several controllers are then developed and tested using a numerical simulation of the vehicle. We found that some model-based controllers could improve the performance of the system while others showed no benefit. Finally, we report results from experimental trials performed in an open water environment comparing the performance of the controllers. The experimental results showed that all the model-based controllers outperform the simple proportional-derivative controller. The controller giving the best performance was the model-based nonlinear controller. We also found that the vehicle was able to follow a change of a roll angle of 90 degrees in 0.7 s and to precisely follow a sinusoidal trajectory with a period of 6.28 s and an amplitude of 5 degrees. PMID:19726834

  17. Asymmetric control of cycle period by the spinal locomotor rhythm generator in the adult cat.

    PubMed

    Frigon, Alain; Gossard, Jean-Pierre

    2009-10-01

    During walking, a change in speed is accomplished by varying the duration of the stance phase, while the swing phase remains relatively invariant. To determine if this asymmetry in the control of locomotor cycles is an inherent property of the spinal central pattern generator (CPG), we recorded episodes of fictive locomotion in decerebrate cats with or without a complete spinal transection (acute or chronic). During fictive locomotion, stance and swing phases typically correspond to extension and flexion phases, respectively. The extension and flexion phases were determined by measuring the duration of extensor and flexor bursts, respectively. In the vast majority of locomotor episodes, cycle period varied more with the extension phase. This was found without phasic sensory feedback, supraspinal structures, pharmacology or sustained stimulation. We conclude that the control of walking speed is governed by an asymmetry within the organization of the spinal CPG, which can be modified by extraneous factors. PMID:19675066

  18. Afferent control of locomotor CPG: insights from a simple neuromechanical model.

    PubMed

    Markin, Sergey N; Klishko, Alexander N; Shevtsova, Natalia A; Lemay, Michel A; Prilutsky, Boris I; Rybak, Ilya A

    2010-06-01

    A simple neuromechanical model has been developed that describes a spinal central pattern generator (CPG) controlling the locomotor movement of a single-joint limb via activation of two antagonist (flexor and extensor) muscles. The limb performs rhythmic movements under control of the muscular, gravitational and ground reaction forces. Muscle afferents provide length-dependent (types Ia and II) and force-dependent (type Ib from the extensor) feedback to the CPG. We show that afferent feedback adjusts CPG operation to the kinematics and dynamics of the limb providing stable "locomotion." Increasing the supraspinal drive to the CPG increases locomotion speed by reducing the duration of stance phase. We show that such asymmetric, extensor-dominated control of locomotor speed (with relatively constant swing duration) is provided by afferent feedback independent of the asymmetric rhythmic pattern generated by the CPG alone (in "fictive locomotion" conditions). Finally, we demonstrate the possibility of reestablishing stable locomotion after removal of the supraspinal drive (associated with spinal cord injury) by increasing the weights of afferent inputs to the CPG, which is thought to occur following locomotor training. PMID:20536917

  19. Monitoring and Controlling an Underwater Robotic Arm

    NASA Technical Reports Server (NTRS)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  20. Expert S-surface control for autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Pang, Yong-Jie; Su, Yu-Min; Zhao, Fu-Long; Qin, Zai-Bai

    2008-12-01

    S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles (AUV). However there are still problems maintaining steady precision of course due to the constant need to adjust parameters, especially where there are disturbing currents. Thus an intelligent integral was introduced to improve precision. An expert S-surface control was developed to tune the parameters on-line, based on the expert system, it provides S-surface control according to practical experience and control knowledge. To prevent control output over-compensation, a fuzzy neural network was included to adjust the production rules to the knowledge base. Experiments were conducted on an AUV simulation platform, and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents, producing good steady precision of course in a robust way.

  1. An ultradian clock controls locomotor behaviour and cell division in isolated cells of Paramecium tetraurelia.

    PubMed

    Kippert, F

    1996-04-01

    An ultradian clock operates in fast growing cells of the large ciliate, Paramecium tetraurelia. The period of around 70 minutes is well temperature-compensated over the temperature range tested, i.e. between 18 degrees C and 33 degrees C. The Q10 between 18 degrees C and 27 degrees C is 1.08; above 27 degrees C there is a slight overcompensation. The investigation of individual cells has revealed that two different cellular functions are under temporal control by this ultradian clock. First, locomotor behaviour, which is an alternation between a phase of fast swimming with only infrequent turning, and a phase of slow swimming with frequent spontaneous changes of direction. In addition, the ultradian clock is involved in the timing of cell division. Generation times are not randomly distributed, but occur in well separated clusters. At all of the six temperatures tested, the clusters are separated by around 70 minutes which corresponds well to the period of the locomotor behaviour rhythm at the respective temperatures. Whereas the interdivision times were gradually lengthened both above and below the optimum growth temperature, the underlying periodicity remained unaffected. Also cells of different clonal age had identical periods, suggesting that neither the differences in DNA content, not other changes associated with ageing in Paramecium have an effect on the clock. A constant phase relationship was observed between the rhythm in locomotor behaviour and the time window for cell division; this strongly suggests that the same ultradian clock exerts temporal control over both processes. PMID:8718678

  2. Dynamic modulation of visual and electrosensory gains for locomotor control.

    PubMed

    Sutton, Erin E; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J

    2016-05-01

    Animal nervous systems resolve sensory conflict for the control of movement. For example, the glass knifefish, Eigenmannia virescens, relies on visual and electrosensory feedback as it swims to maintain position within a moving refuge. To study how signals from these two parallel sensory streams are used in refuge tracking, we constructed a novel augmented reality apparatus that enables the independent manipulation of visual and electrosensory cues to freely swimming fish (n = 5). We evaluated the linearity of multisensory integration, the change to the relative perceptual weights given to vision and electrosense in relation to sensory salience, and the effect of the magnitude of sensory conflict on sensorimotor gain. First, we found that tracking behaviour obeys superposition of the sensory inputs, suggesting linear sensorimotor integration. In addition, fish rely more on vision when electrosensory salience is reduced, suggesting that fish dynamically alter sensorimotor gains in a manner consistent with Bayesian integration. However, the magnitude of sensory conflict did not significantly affect sensorimotor gain. These studies lay the theoretical and experimental groundwork for future work investigating multisensory control of locomotion. PMID:27170650

  3. Optimizing Optics For Remotely Controlled Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Billet, A. B.

    1984-09-01

    The past decade has shown a dramatic increase in the use of unmanned tethered vehicles in worldwide marine fields. These vehicles are used for inspection, debris removal and object retrieval. With advanced robotic technology, remotely operated vehicles (ROVs) are now able to perform a variety of jobs previously accomplished only by divers. The ROVs can be used at greater depths and for riskier jobs, and safety to the diver is increased, freeing him for safer, more cost-effective tasks requiring human capabilities. Secondly, the ROV operation becomes more cost effective to use as work depth increases. At 1000 feet a diver's 10 minutes of work can cost over $100,000 including support personnel, while an ROV operational cost might be 1/20 of the diver cost per day, based on the condition that the cost for ROV operation does not change with depth, as it does for divers. In the ROV operation the television lens must be as good as the human eye, with better light gathering capability than the human eye. The RCV-150 system is an example of these advanced technology vehicles. With the requirements of manueuverability and unusual inspection, a responsive, high performance, compact vehicle was developed. The RCV-150 viewing subsystem consists of a television camera, lights, and topside monitors. The vehicle uses a low light level Newvicon television camera. The camera is equipped with a power-down iris that closes for burn protection when the power is off. The camera can pan f 50 degrees and tilt f 85 degrees on command from the surface. Four independently controlled 250 watt quartz halogen flood lamps illuminate the viewing area as required; in addition, two 250 watt spotlights are fitted. A controlled nine inch CRT monitor provides real time camera pictures for the operator. The RCV-150 vehicle component system consists of the vehicle structure, the vehicle electronics, and hydraulic system which powers the thruster assemblies and the manipulator. For this vehicle, a light

  4. Postural control in order to prevent chronic locomotor injuries in top level athletes.

    PubMed

    Bandettini, Marina Piazza; Innocenti, Giovanni; Contini, Massimo; Paternostro, Ferdinando; Lova, Raffaele Molino

    2003-01-01

    Chronic injuries of the locomotor apparatus represent the main cause of drop-out among top level gymnasts. The aim of the present paper was to verify whether the postural control, investigated by using an integrated approach and accordingly optimized, could be an effective tool for the secondary prevention of training-related disorders of the locomotor apparatus, in a cohort of 20 young female athletes practicing rythmic gymnastic at top level. After a preliminary medical consultation all the subjects underwent a static and dynamic baropodometric test, an ophtalmological and a dental screening. Then athletes were given prescriptions based upon the results of the above named examination. After 6 months, symptoms were completely disappeared in 80% and remarkably improved in 20%, and at baropodometric test, the contact duration as well as the contact surface, the max and mean contact pressure were significantly increased in all the athletes. Our data show that the proposed integrated approach is actually an effective tool for the secondary prevention of training related disorders of the locomotor apparatus. PMID:14974501

  5. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the

  6. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    PubMed Central

    Cain, Stephen M; Gordon, Keith E; Ferris, Daniel P

    2007-01-01

    Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. PMID:18154649

  7. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  8. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements.

    PubMed

    Mushahwar, Vivian K; Gillard, Deborah M; Gauthier, Michel J A; Prochazka, Arthur

    2002-03-01

    Intraspinal microstimulation (ISMS) may provide a means for improving motor function in people suffering from spinal cord injuries, head trauma, or stroke. The goal of this study was to determine whether microstimulation of the mammalian spinal cord could generate locomotor-like stepping and feedback-controlled movements of the hindlimbs. Under pentobarbital anesthesia, 24 insulated microwires were implanted in the lumbosacral cord of three adult cats. The cats were placed in a sling leaving all limbs pendent. Bilateral alternating stepping of the hindlimbs was achieved by stimulating through as few as two electrodes in each side of the spinal cord. Typical stride lengths were 23.5 cm, and ample foot clearance was achieved during swing. Mean ground reaction force during stance was 36.4 N, sufficient for load-bearing. Feedback-controlled movements of the cat's foot were achieved by reciprocally modulating the amplitude of stimuli delivered through two intraspinal electrodes generating ankle flexion and extension such that the distance between a sensor on the cat's foot and a free sensor moved back and forth by the investigators was minimized. The foot tracked the displacements of the target sensor through its normal range of motion. Stimulation through electrodes with tips in or near lamina IX elicited movements most suitable for locomotion. In chronically implanted awake cats, stimulation through dorsally located electrodes generated paw shakes and flexion-withdrawals consistent with sensory perception but no weight-bearing extensor movements. These locations would not be suitable for ISMS in incomplete spinal cord injuries. Despite the complexity of the spinal neuronal networks, our results demonstrate that by stimulating through a few intraspinal microwires, near-normal bipedal locomotor-like stepping and feedback-controlled movements could be achieved. PMID:12173741

  9. The Interplay Between Strategic And Adaptive Control Mechanisms In Plastic Recalibration Of Locomotor Function

    NASA Technical Reports Server (NTRS)

    Richards, J. T.; Mulavara, A. P.; Bloomberg, J. J.

    2006-01-01

    We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes immediate strategic modifications (Richards et al. 2004) as well as an after effect reflecting adaptive modification of the control of position and trajectory during over-ground locomotion (Mulavara et al. 2005). The process of sensorimotor adaptation is comprised of both strategic and adaptive control mechanisms. Strategic control involves cognitive, on-line corrections to limb movements once one is aware of a sensory discordance. Over an extended period of exposure to the sensory discordance, new strategic sensorimotor coordination patterns are reinforced until they become more automatic, and therefore adaptive, in nature. The objective of this study was to investigate how strategic changes in trunk control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping. Subjects (n = 10) walked on a motorized linear treadmill while viewing a wide field-of-view virtual scene for 24 minutes. The scene was static for the first 4 minutes and then, for the last 20 minutes, depicted constant rate self-motion equivalent to walking in a counter-clockwise, circular path around the perimeter of a room. Subjects performed five stepping trials both before and after the exposure period to assess after effects. Results from our previous study showed a significant change in heading direction (HD) during post-exposure step tests that was opposite the direction in which the scene rotated during the adaptation period. For the present study, we quantified strategic modifications in trunk movement control during scene exposure using normalized root mean square (R(sub p)) variation of the subject's 3D trunk positions and normalized sum of standard deviations (R(sub o)) variation of 3D trunk orientations during scene rotation relative to that during static scene presentation

  10. The role of leg touchdown for the control of locomotor activity in the walking stick insect

    PubMed Central

    Schmitz, Joscha; Büschges, Ansgar

    2015-01-01

    Much is known on how select sensory feedback contributes to the activation of different motoneuron pools in the locomotor control system of stick insects. However, even though activation of the stance phase muscles depressor trochanteris, retractor unguis, flexor tibiae and retractor coxae is correlated with the touchdown of the leg, the potential sensory basis of this correlation or its connection to burst intensity remains unknown. In our experiments, we are using a trap door setup to investigate how ground contact contributes to stance phase muscle activation and burst intensity in different stick insect species, and which afferent input is involved in the respective changes. While the magnitude of activation is changed in all of the above stance phase muscles, only the timing of the flexor tibiae muscle is changed if the animal unexpectedly steps into a hole. Individual and combined ablation of different force sensors on the leg demonstrated influence from femoral campaniform sensilla on flexor muscle timing, causing a significant increase in the latencies during control and air steps. Our results show that specific load feedback signals determine the timing of flexor tibiae activation at the swing-to-stance transition in stepping stick insects, but that additional feedback may also be involved in flexor muscle activation during stick insect locomotion. With respect to timing, all other investigated stance phase muscles appear to be under sensory control other than that elicited through touchdown. PMID:25652931

  11. Synthesis of a PID-controller of a trim robust control system of an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Khozhaev, I. V.; Gayvoronskiy, S. A.

    2016-04-01

    Autonomous underwater vehicles are often used for performing scientific, emergency or other types of missions under harsh conditions and environments, which can have non-stable, variable parameters. So, the problem of developing autonomous underwater vehicle motion control systems, capable of operating properly in random environments, is highly relevant. The paper is dedicated to the synthesis of a PID-controller of a trim robust control system, capable of keeping an underwater vehicle stable during a translation at different angles of attack. In order to synthesize the PID-controller, two problems were solved: a new method of synthesizing a robust controller was developed and a mathematical model of an underwater vehicle motion process was derived. The newly developed mathematical model structure is simpler than others due to acceptance of some of the system parameters as interval ones. The synthesis method is based on a system poles allocation approach and allows providing the necessary transient process quality in a considered system.

  12. EFFECT OF SEX, AGE, AND BMI ON THE DEVELOPMENT OF LOCOMOTOR SKILLS AND OBJECT CONTROL SKILLS AMONG PRESCHOOL CHILDREN.

    PubMed

    Yang, Shu-Chu; Lin, Shu-Jung; Tsai, Chia-Yen

    2015-12-01

    Purposive sampling was used to recruit 1,200 preschoolers between the ages of three and seven from 12 preschools throughout Taiwan in order to examine locomotor skills, object control skills, and fundamental motor skills with respect to sex, age, and body mass index (BMI). Fundamental motor skills were measured using the TGMD-2. Only age had a significant influence on locomotor skills, object control skills, and fundamental motor skills; sex had a small influence on object control skills, and BMI had a very limited influence on all three categories. The difference from previous studies related to BMI may be due to the different items included in the various tests, the number of trials conducted, and ways in which BMI was categorized. PMID:26682607

  13. Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations.

    PubMed

    Enders, Hendrik; Nigg, Benno M

    2016-06-01

    Electrical signals encoding different forms of information can be observed at multiple levels of the human nervous system. Typically, these signals have been recorded in a rather isolated fashion with little overlap between the static recordings of electroencephalography (EEG) commonly used in neuroscience and the typical surface electromyography (EMG) recordings used in biomechanics. However, within the last decade, there has been an emerging need to link the electrical activation patterns of brain areas during movement to the behavior of the musculoskeletal system. This review discusses some of the most recent studies using the EEG and/or EMG to study the neural control of movement and human locomotion as well as studies quantifying the connectivity between brain and muscles. The focus is on rhythmic locomotor-type activities; however, results are discussed within the framework of initial work that has been done in upper and lower limbs during static and dynamic contractions. Limitations and current challenges as well as the possibility and functional interpretation of studying the connectivity between the cortex and skeletal muscles using a measure of coherence are discussed. The manuscript is geared toward scientists interested in the application of EEG in the field of locomotion, sports and exercise. PMID:26238032

  14. Fractional-order information in the visual control of lateral locomotor interception.

    PubMed

    Bootsma, Reinoud J; Ledouit, Simon; Casanova, Remy; Zaal, Frank T J M

    2016-04-01

    Previous work on locomotor interception of a target moving in the transverse plane has suggested that interception is achieved by maintaining the target's bearing angle (often inadvertently confused and/or confounded with the target heading angle) at a constant value. However, dynamics-based model simulations testing the veracity of the underlying control strategy of nulling the rate of change in the bearing angle have been restricted to limited conditions of target motion, and only a few alternatives have been considered. Exploring a wide range of target motion characteristics with straight and curving ball trajectories in a virtual reality setting, we examined how soccer goalkeepers moved along the goal line to intercept long-range shots on goal, a situation in which interception is naturally constrained to movement along a single dimension. Analyses of the movement patterns suggested reliance on combinations of optical position and velocity for straight trajectories and optical velocity and acceleration for curving trajectories. As an alternative to combining such standard integer-order derivatives, we demonstrate with a simple dynamical model that nulling a single informational variable of a self-tuned fractional (rather than integer) order efficiently captures the timing and patterning of the observed interception behaviors. This new perspective could fundamentally change the conception of what perceptual systems may actually provide, both in humans and in other animals. (PsycINFO Database Record PMID:26569338

  15. Design and implementation of control system for range-gated underwater laser imaging

    NASA Astrophysics Data System (ADS)

    Ge, Wei-long; Zhang, Xiao-hui; Han, Hong-wei; Hua, Liang-hong

    2012-01-01

    There is currently considerable in developing underwater target detection, the underwater imaging system can be divided into active imaging system and passive system. The main feature of the active imaging system is that they use light sources to illuminate the targets and collect the reflection from targets. The advantages of active imaging system over passive imaging systems are high contrast and without the affection of environment sources. In this article, a range-gated underwater laser imaging system is built, which consists of laser illumination system, photoelectric imaging system and control system. The laser illumination system includes a light-pumped solid state doubled ND-YAG laser(532nm) which laser power and frequency can be adjusted and an optics expanding system of variable ratio. The photoelectric imaging system includes a gated Intensified CCD(ICCD) cameras which ICCD scheduling, gate width, delay time and gain can be adjusted and a optics received system of variable ratio. In order to acquire effectual target image using range-gated underwater laser imaging system, appropriate control parameters that include laser power and frequency, ICCD scheduling, gate width, delay time and gain, optics expanding system ratio and optics received system ratio must be given accurately. A control system which used C8051F320 and C8051F040 (MCU) as the core is designed, the control system can effectively control seven parameters that given above. The construction of software and hardware of the control system is introduced. And target image of underwater distance 25 m and 40m is given, Experimental results showed that the control system has high control precision, safe and stable operation and good speed adjusting performance can be achieved. It can be satisfied to apply to underwater target detection.

  16. Design and implementation of control system for range-gated underwater laser imaging

    NASA Astrophysics Data System (ADS)

    Ge, Wei-Long; Zhang, Xiao-Hui; Han, Hong-Wei; Hua, Liang-Hong

    2011-11-01

    There is currently considerable in developing underwater target detection, the underwater imaging system can be divided into active imaging system and passive system. The main feature of the active imaging system is that they use light sources to illuminate the targets and collect the reflection from targets. The advantages of active imaging system over passive imaging systems are high contrast and without the affection of environment sources. In this article, a range-gated underwater laser imaging system is built, which consists of laser illumination system, photoelectric imaging system and control system. The laser illumination system includes a light-pumped solid state doubled ND-YAG laser(532nm) which laser power and frequency can be adjusted and an optics expanding system of variable ratio. The photoelectric imaging system includes a gated Intensified CCD(ICCD) cameras which ICCD scheduling, gate width, delay time and gain can be adjusted and a optics received system of variable ratio. In order to acquire effectual target image using range-gated underwater laser imaging system, appropriate control parameters that include laser power and frequency, ICCD scheduling, gate width, delay time and gain, optics expanding system ratio and optics received system ratio must be given accurately. A control system which used C8051F320 and C8051F040 (MCU) as the core is designed, the control system can effectively control seven parameters that given above. The construction of software and hardware of the control system is introduced. And target image of underwater distance 25 m and 40m is given, Experimental results showed that the control system has high control precision, safe and stable operation and good speed adjusting performance can be achieved. It can be satisfied to apply to underwater target detection.

  17. Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits

    PubMed Central

    Ivanenko, Y. P.; Cappellini, G.; Solopova, I. A.; Grishin, A. A.; MacLellan, M. J.; Poppele, R. E.; Lacquaniti, F.

    2013-01-01

    Human locomotor movements exhibit considerable variability and are highly complex in terms of both neural activation and biomechanical output. The building blocks with which the central nervous system constructs these motor patterns can be preserved in patients with various sensory-motor disorders. In particular, several studies highlighted a modular burst-like organization of the muscle activity. Here we review and discuss this issue with a particular emphasis on the various examples of adaptation of locomotor patterns in patients (with large fiber neuropathy, amputees, stroke and spinal cord injury). The results highlight plasticity and different solutions to reorganize muscle patterns in both peripheral and central nervous system lesions. The findings are discussed in a general context of compensatory gait mechanisms, spatiotemporal architecture and modularity of the locomotor program. PMID:24032016

  18. Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice.

    PubMed

    Milan, Léa; Barrière, Grégory; De Deurwaerdère, Philippe; Cazalets, Jean-René; Bertrand, Sandrine S

    2014-01-01

    Mutations in the gene that encodes Cu/Zn-superoxide dismutase (SOD1) are the cause of approximately 20% of familial forms of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While ALS symptoms appear in adulthood, spinal motoneurons exhibit functional alterations as early as the embryonic and postnatal stages in the murine model of ALS, the SOD1 mice. Monoaminergic - i.e., dopaminergic (DA), serotoninergic (5-HT), and noradrenergic (NA) - pathways powerfully control spinal networks and contribute significantly to their embryonic and postnatal maturation. Alterations in monoaminergic neuromodulation during development could therefore lead to impairments in the motoneuronal physiology. In this study, we sought to determine whether the monoaminergic spinal systems are modified in the early stages of development in SOD1 mice. Using a post-mortem analysis by high performance liquid chromatography (HPLC), monoaminergic neuromodulators and their metabolites were quantified in the lumbar spinal cord of SOD1 and wild-type (WT) mice aged one postnatal day (P1) and P10. This analysis underscores an increased content of DA in the SOD1 lumbar spinal cord compared to that of WT mice but failed to reveal any modification of the other monoaminergic contents. In a next step, we compared the efficiency of the monoaminergic compounds in triggering and modulating fictive locomotion in WT and SOD1 mice. This study was performed in P1-P3 SOD1 mice and age-matched control littermates using extracellular recordings from the lumbar ventral roots in the in vitro isolated spinal cord preparation. This analysis revealed that the spinal networks of SOD1(G93A) mice could generate normal locomotor activity in the presence of NMA-5-HT. Interestingly, we also observed that SOD1 spinal networks have an increased sensitivity to NA compared to WT spinal circuits but exhibited similar DA responses. PMID:25071458

  19. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  20. A Hypothetical Perspective on the Relative Contributions of Strategic and Adaptive Control Mechanisms in Plastic Recalibration of Locomotor Heading Direction

    NASA Technical Reports Server (NTRS)

    Richards, J. T.; Mulavara, A. P.; Ruttley, T.; Peters, B. T.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of the control of position and trajectory during over-ground locomotion, which functionally reflects adaptive changes in the sensorimotor integration of visual, vestibular, and proprioceptive cues (Mulavara et al., 2005). The objective of this study was to investigate how strategic changes in torso control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping.

  1. Modeling and control of an unmanned underwater vehicle using a mass moving system

    NASA Astrophysics Data System (ADS)

    Byun, Seung-Woo; Kim, Donghee; Choi, Hyeung-Sik; Kim, Joon-Young

    2015-03-01

    This paper describes the mathematical modeling and control algorithms of an unmanned underwater vehicle (UUV) named Minekiller. This UUV has two longitudinal thrusters, one vertical thruster, and an internal mass moving system, which can control the pitch rate. The UUV is equipped with a movable mass for pitch control. It is different from other common UUVs, in that it can maintain a static pitch angle. The UUV's 6-DOF (Degrees of Freedom) dynamics model is derived from the hydrodynamic forces and moments acting on it. We applied these hydrodynamic coefficients to dynamic modeling for numerical simulations by MATLAB/SIMULINK©. To compare the performance in various cases, we used a PID controller for depth and heading control. Also, the navigation controller can analyze the way-point tracking performance. These simulation results show the performance of the control algorithms and maneuvering performance of the underwater vehicle.

  2. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury

    PubMed Central

    Smith, Andrew C.; Mummidisetty, Chaithanya K.

    2015-01-01

    Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs. PMID:25609110

  3. Locomotor control of limb force switches from minimal intervention principle in early adaptation to noise reduction in late adaptation

    PubMed Central

    Selgrade, Brian P.

    2014-01-01

    During movement, errors are typically corrected only if they hinder performance. Preferential correction of task-relevant deviations is described by the minimal intervention principle but has not been demonstrated in the joints during locomotor adaptation. We studied hopping as a tractable model of locomotor adaptation of the joints within the context of a limb-force-specific task space. Subjects hopped while adapting to shifted visual feedback that induced them to increase peak ground reaction force (GRF). We hypothesized subjects would preferentially reduce task-relevant joint torque deviations over task-irrelevant deviations to increase peak GRF. We employed a modified uncontrolled manifold analysis to quantify task-relevant and task-irrelevant joint torque deviations for each individual hop cycle. As would be expected by the explicit goal of the task, peak GRF errors decreased in early adaptation before reaching steady state during late adaptation. Interestingly, during the early adaptation performance improvement phase, subjects reduced GRF errors by decreasing only the task-relevant joint torque deviations. In contrast, during the late adaption performance maintenance phase, all torque deviations decreased in unison regardless of task relevance. In deadaptation, when the shift in visual feedback was removed, all torque deviations decreased in unison, possibly because performance improvement was too rapid to detect changes in only the task-relevant dimension. We conclude that limb force adaptation in hopping switches from a minimal intervention strategy during performance improvement to a noise reduction strategy during performance maintenance, which may represent a general control strategy for locomotor adaptation of limb force in other bouncing gaits, such as running. PMID:25475343

  4. Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning

    NASA Astrophysics Data System (ADS)

    Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok

    2015-03-01

    In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.

  5. A Neural Auto-depth Controller for an Unmanned Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Sutton, R.; Johnson, C.; Roberts, G. N.

    Artificial neural networks offer an alternative strategy for the nonlinear control of unmanned underwater vehicles (UUVS). This paper investigates the use of a multi-layered perceptron (MLP) network in controlling an UUV over a sea-bed profile and compares the use of applying chemotaxis learning to that of the more commonly employed back propagation algorithm. The results show that, for differing sized MLPs, the chemotaxis algorithm produces a successful controller over the sea-bed profile in an improved training time. Also it will be shown that, in the presence of noise and change in vehicle mass, the neural controller out-performed a classical proportional-integral-derivative controller.

  6. The integrated platform of controlling and digital video processing for underwater range-gated laser imaging system

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Qiu, Su; Jin, Wei-qi; Yu, Bing; Li, Li; Tian, Dong-kang

    2015-04-01

    Laser range-gated imaging is one of the effective techniques of underwater optical imaging. It could make the viewing distance up to 4 to 7 times with the video image processing technology. Accordingly, the control and image processing technologies come to be the key technologies for the underwater laser range-gated imaging system. In this article, the integrated platform of controlling and digital video processing for the underwater range-gated laser imaging system based on FPGA has been introduced. It accomplishes both the communication for remote control system as the role of lower computer and the task of high-speed images grabbing and video enhance processing as the role of high-speed image processing platform. The host computer can send commands composed to the FPGA, vectoring the underwater range-gated laser imaging system to executive operation.

  7. Admixture enhanced controlled low-strength material for direct underwater injection with minimal cross-contamination

    SciTech Connect

    Hepworth, H.K.; Davidson, J.S.; Hooyman, J.L.

    1997-03-01

    Commercially available admixtures have been developed for placing traditional concrete products under water. This paper evaluates adapting anti-washout admixture (AWA) and high range water reducing admixture (HRWRA) products to enhance controlled low-strength materials (CLSMs) for underwater placement. A simple experimental scale model (based on dynamic and geometric similitude) of typical grout pump emplacement equipment has been developed to determine the percentage of cementing material washed out. The objective of this study was to identify proportions of admixtures and underwater CLSM emplacement procedures which would minimize the cross-contamination of the displaced water while maintaining the advantages of CLSM. Since the displaced water from radioactively contaminated systems must be subsequently treated prior to release to the environment, the amount of cross-contamination is important for cases in which cementing material could form hard sludges in a water treatment facility and contaminate the in-place CLSM stabilization medium.

  8. The Role of Storage Lipids in the Relation between Fecundity, Locomotor Activity, and Lifespan of Drosophila melanogaster Longevity-Selected and Control Lines

    PubMed Central

    Nasiri Moghadam, Neda; Holmstrup, Martin; Manenti, Tommaso; Brandt Mouridsen, Marie; Pertoldi, Cino; Loeschcke, Volker

    2015-01-01

    The contribution of insect fat body to multiple processes, such as development, metamorphosis, activity, and reproduction results in trade-offs between life history traits. In the present study, age-induced modulation of storage lipid composition in Drosophila melanogaster longevity-selected (L) and non-selected control (C) lines was studied and the correlation between total body fat mass and lifespan assessed. The trade-offs between fecundity, locomotor activity, and lifespan were re-evaluated from a lipid-related metabolic perspective. Fewer storage lipids in the L lines compared to the C lines supports the impact of body fat mass on extended lifespan. The higher rate of fecundity and locomotor activity in the L lines may increase the lipid metabolism and enhance the lipolysis of storage lipids, reducing fat reserves. The correlation between neutral lipid fatty acids and fecundity, as well as locomotor activity, varied across age groups and between the L and C lines. The fatty acids that correlated with egg production were different from the fatty acids that correlated with locomotor activity. The present study suggests that fecundity and locomotor activity may positively affect the lifespan of D. melanogaster through the inhibition of fat accumulation. PMID:26115349

  9. Remote-Controlled Inspection Robot for Nuclear Facilities in Underwater Environment

    SciTech Connect

    Yasuhiro Miwa; Syuichi Satoh; Naoya Hirose

    2002-07-01

    A remote-controlled inspection robot for nuclear facilities was developed. This is a underwater robot technology combined with inspection and flaw removal technologies. This report will describe the structure and performance of this robot. The inspection robot consists of two parts. The one is driving equipment, and the other is inspection and grinding units. It can swim in the tank, move around the tank wall, and stay on the inspection area. After that it starts inspection and flaw removal with a special grinding wheel. This technology had been developed to inspect some Radioactive Waste (RW) tanks in operating nuclear power plants. There are many RW tanks in these plants, which human workers can be hard to access because of a high level dose. This technology is too useful for inspection works of human-inaccessible areas. And also, in conventional inspection process, some worker go into the tank and set up scaffolding after full drainage and decontamination. It spends too much time for these preparations. If tank inspection and flaw removal can be performed in underwater, the outage period will be reduced. Remote-controlled process can be performed in underwater. This is the great advantage for plant owners. Since 1999 we have been applying this inspection robot to operating nuclear 11 facilities in Japan. (authors)

  10. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity.

    PubMed

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  11. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

    PubMed Central

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  12. Research on framework for formation control of multiple underwater robots in a dynamic environment

    NASA Astrophysics Data System (ADS)

    Meng, Xian-Song; Xu, Hong-Gen; Zhang, Ming-Jun

    2004-12-01

    In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem. The approach allows online planning of the formation paths using a Dijkstra’s search algorithm based on the current sensor data. The formation is allowed to be dynamically changed in order to avoid obstacles in the environment. A controller is designed to keep the robots in their planned trajectories. It is shown that the approach is effective and feasible by the simulation of computer.

  13. Postural Control during Upper Body Locomotor-Like Movements: Similar Synergies Based on Dissimilar Muscle Modes

    PubMed Central

    Danna-Dos-Santos, Alessander; Shapkova, Elena Yu.; Shapkova, Alexandra L.; Degani, Adriana M.; Latash, Mark L.

    2009-01-01

    We studied the organization of leg and trunk muscles into groups (M-modes) and co-variation of M-mode involvement (M-mode synergies) during whole-body tasks associated with large variations of the moment of force about the vertical body axis. Our major questions were: (1) Can muscle activation patterns during such tasks be described with a few M-modes common across tasks and subjects? (2) Do these modes form the basis for synergies stabilizing MZ time pattern? (3) Will this organization differ between an explicit body rotation task and a task associated with locomotor-like alternating arm movements? Healthy subjects stood barefoot on the force platform and performed two motor tasks while paced by the metronome at 0.7, 1.0, and 1.4 Hz: Cyclic rotation of the upper body about the vertical body axis (body rotation task), and alternating rhythmic arm movements imitating those during running or quick walking (arm movement task). Principal component analysis was used to identify three M-modes within the space of integrated indices of muscle activity. The M-mode vectors showed clustering neither across subjects nor across frequencies. Variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect the average value of MZ shift ("good variance") and the other that did. An index was computed reflecting the relative amount of the "good variance"; positive values of this index have been interpreted as reflecting a multi-M-mode synergy stabilizing the MZ trajectory. On average, the index was positive for both tasks and across all frequencies studied. However, the magnitude of the index was smaller for the intermediate frequency (1 Hz). The results show that the organization of muscles into groups during relatively complex whole-body tasks can differ significantly across both task variations and subjects. Nevertheless, the central nervous system seems to be able to build MZ stabilizing synergies based on different sets of M

  14. Robust control based on feedback linearization for roll stabilizing of autonomous underwater vehicle under wave disturbances

    NASA Astrophysics Data System (ADS)

    Pan, Li-Xin; Jin, Hong-Zhang; Wang, Lin-Lin

    2011-06-01

    In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.

  15. EFPC: An Environmentally Friendly Power Control Scheme for Underwater Sensor Networks

    PubMed Central

    Yang, Qiuling; Su, Yishan; Jin, Zhigang; Yao, Guidan

    2015-01-01

    In oceans, the limited acoustic spectrum resource is heavily shared by marine mammals and manmade systems including underwater sensor networks. In order to limit the negative impact of acoustic signal on marine mammals, we propose an environmentally friendly power control (EFPC) scheme for underwater sensor networks. EFPC allocates transmission power of sensor nodes with a consideration of the existence of marine mammals. By applying a Nash Equilibrium based utility function with a set of limitations to optimize transmission power, the proposed power control algorithm can conduct parallel transmissions to improve the network’s goodput, while avoiding interference with marine mammals. Additionally, to localize marine mammals, which is a prerequisite of EFPC, we propose a novel passive hyperboloid localization algorithm (PHLA). PHLA passively localize marine mammals with the help of the acoustic characteristic of these targets. Simulation results show that PHLA can localize most of the target with a relatively small localization error and EFPC can achieve a close goodput performance compared with an existing power control algorithm while avoiding interfering with marine mammals. PMID:26593922

  16. Remote full control, by an Internet link, of an underwater acoustics laboratory

    NASA Astrophysics Data System (ADS)

    Ranz-Guerra, Carlos; Cobo-Parra, Pedro; Siguero-Guerra, Manuel; Fernandez-Fernandez, Alejandro

    2002-11-01

    The Underwater Tank Laboratory located at the Instituto de Acustica, CSIC, Madrid, has been fully reshaped. Now, the two bridges (emission and reception) have full automatic motion control by the operator. These capabilities were complemented by a new management of signal generation, signal acquisition, processing and storing of data. This new framework makes many of the tasks to be performed in this kind of facility easier by putting at the hands of the operator specific friendly software programs that attend to the main aspects of the ongoing experiment. In one step forward, the remote control of all the functionalities was considered feasible. The potentialities of the Internet were thought to provide a new dimension to the laboratory by lowering the difficulties of taking over the full control of the installation, by any user around the world. Here is one real example of how this achievement can be carried out. The Underwater Acoustics Laboratory at the Instituto de Acustica, CSIC, is now ready to be run by any one interested. The main lines, over which this problem has been considered, are described in this paper. [Work supported by PN on Science and Technology and CSIC, Spain.

  17. Underwater acoustic sensor networks: Medium access control, routing and reliable transfer

    NASA Astrophysics Data System (ADS)

    Xie, Peng

    Recently there have been growing interests in monitoring aquatic environments for scientific exploration, commercial exploitation and coastline protection. The ideal vehicle for this type of extensive monitoring is a mobile underwater sensor network (M-UWSN), consisting of a large number of low cost underwater sensors that can move with water currents and dispersion. M-UWSNs are significantly different from terrestrial sensor networks: (1) Radio channels do not work well under water. They must be replaced by acoustic channels, which feature long propagation delays, low communication bandwidth and high channel error rates; (2) While most ground sensors are static, underwater sensor nodes may move with water currents (and other underwater activities), as introduces passive sensor mobility. Due to the very different environment properties and the unique characteristics of acoustic channels, the protocols developed for terrestrial sensor networks are not applicable to M-UWSNs, and new research at every level of the protocol suite is demanded. In this dissertation work, we investigate three fundamental networking problems in M-UWSN design: medium access control, multi-hop routing and reliable data transfer. (1) Medium access control (MAC): the long propagation delays and narrow communication bandwidth of acoustic channels pose the major challenges to the energy-efficient MAC design in M-UWSNs. For the first time, we formally investigate the random access and RTS/CTS techniques in networks with long propagation delays and low communication bandwidth (as in M-UWSNs). Based on this study, we propose a novel reservation-based MAC approach, called R-MAC, for dense underwater sensor networks with unevenly distributed (spatially and temporally) traffic. Simulation results show that R-MAC is not only energy efficient but also supports fairness. (2) Multi-hop routing: In M-UWSNs, energy efficiency and mobility handling are the two major concerns for multi-hop routing, which have

  18. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    PubMed

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. PMID:26506019

  19. Locomotor Expertise Predicts Infants' Perseverative Errors

    ERIC Educational Resources Information Center

    Berger, Sarah E.

    2010-01-01

    This research examined the development of inhibition in a locomotor context. In a within-subjects design, infants received high- and low-demand locomotor A-not-B tasks. In Experiment 1, walking 13-month-old infants followed an indirect path to a goal. In a control condition, infants took a direct route. In Experiment 2, crawling and walking…

  20. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.

    PubMed

    Huang, Stephanie; Wensman, Jeffrey P; Ferris, Daniel P

    2016-05-01

    Lower limb amputees can use electrical activity from their residual muscles for myoelectric control of a powered prosthesis. The most common approach for myoelectric control is a finite state controller that identifies behavioral states and discrete changes in motor tasks. An alternative approach to state-based myoelectric control is continuous proportional myoelectric control where ongoing electrical activity has a proportional relationship to the prosthetic joint torque or power. To test the potential of continuous proportional myoelectric control for powered lower limb prostheses, we recruited five unilateral transtibial amputees to walk on a treadmill with an experimental powered prosthesis. Subjects walked using the powered prosthesis with and without visual feedback of their control signal in real time. Amputee subjects were able to adapt their residual muscle activation patterns to alter prosthetic ankle mechanics when we provided visual feedback of their myoelectric control signal in real time. During walking with visual feedback, subjects significantly increased their peak prosthetic ankle power ( p = 0.02, ANOVA) and positive work ( p = 0.02, ANOVA) during gait above their prescribed prosthesis values. However, without visual feedback, the subjects did not increase their peak ankle power during push off. These results show that amputee users were able to volitionally alter their prosthesis mechanics during walking, but only when given an explicit goal for their residual muscle motor commands. Future studies that examine the motor and learning capabilities of lower limb amputees using their residual muscles for continuous proportional myoelectric control are needed to determine the viability of integrating continuous high-level control with existing finite state prosthetic controllers. PMID:26057851

  1. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function.

    PubMed

    Dawley, James A; Fite, Kevin B; Fulk, George D

    2013-06-01

    This paper presents the development and experimental evaluation of a volitional control architecture for a powered-knee transfemoral prosthesis that affords the amputee user with direct control of knee impedance using measured electromyogram (EMG) potentials of antagonist muscles in the residual limb. The control methodology incorporates a calibration procedure performed with each donning of the prosthesis that characterizes the co-contraction levels as the user performs volitional phantom-knee flexor and extensor contractions. The performance envelope for EMG control of impedance is then automatically shaped based on the flexor and extensor calibration datasets. The result is a control architecture that is optimized to the user's current co-contraction activity, providing performance robustness to variation in sensor placement or physiological changes in the residual-limb musculature. Experimental results with a single unilateral transfemoral amputee user demonstrate consistent and repeatable control performance for level walking at self-selected speed over a multi-week, multi-session period of evaluation. PMID:24187208

  2. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.

    PubMed

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-01-01

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018

  3. Ionically Crosslinked Polymer Networks for Underwater Adhesion and Long-Term Controlled Release

    NASA Astrophysics Data System (ADS)

    Lawrence, Patrick G.

    Underwater adhesives have several potential applications in industry as well as in medicine. Much of the recent research in this area has focused on adhesive preparation from biological or custom-designed biomimetic polymers. As a simpler alternative, we have recently shown that ionically crosslinked, gel-like underwater adhesive complexes can be prepared by the mixing of the readily-available and inexpensive polyelectrolyte, poly(allylamine hydrochloride) (PAH), with commonly-used multivalent anions, pyrophosphate (PPi) and tripolyphosphate (TPP). Remarkably, these gel-like complexes adhere to both hydrophilic and hydrophobic substrates under water with tensile adhesive strength considerably greater than that of Scotch Permanent Double Sided Tape (up to ˜400 kPa vs. ˜85 kPa when used as a pressure-sensitive adhesives) and due to the reversible nature of the ionic crosslinks, self-heal when torn. These complexes also exhibit very high storage moduli (greater than 100 kPa), indicative of a very high crosslink density. The high crosslink density allow these gel-like complexes to also entrap and deliver small molecule payloads over multiple-month timescales. Moreover, their formation and rheological/adhesion properties can be controlled using external stimuli (pH and ionic strength). In this thesis we characterize formation and rheological/adhesion properties of gel-like PAH/PPi and PAH/TPP complexes the through the use of dynamic and electrophoretic light scattering, rheology and tensile adhesion tests. We also describe their sensitivity to pH and ionic strength, and explain how the complexes can be dissolved on demand by raising or lowering the ambient pH, and can form spontaneously by increasing the NaCl concentration (which can be used for developing injectable underwater adhesive formulations). Finally, we demonstrate the ability of these adhesives to release small molecule payloads over multiple-month timescales by characterizing their ability to take up and

  4. Enhancement of Contralesional Motor Control Promotes Locomotor Recovery after Unilateral Brain Lesion

    PubMed Central

    Hua, Xu-Yun; Qiu, Yan-Qun; Wang, Meng; Zheng, Mou-Xiong; Li, Tie; Shen, Yun-Dong; Jiang, Su; Xu, Jian-Guang; Gu, Yu-Dong; Tsien, JoeZ.; Xu, Wen-Dong

    2016-01-01

    There have been controversies on the contribution of contralesional hemispheric compensation to functional recovery of the upper extremity after a unilateral brain lesion. Some studies have demonstrated that contralesional hemispheric compensation may be an important recovery mechanism. However, in many cases where the hemispheric lesion is large, this form of compensation is relatively limited, potentially due to insufficient connections from the contralesional hemisphere to the paralyzed side. Here, we used a new procedure to increase the effect of contralesional hemispheric compensation by surgically crossing a peripheral nerve at the neck in rats, which may provide a substantial increase in connections between the contralesional hemisphere and the paralyzed limb. This surgical procedure, named cross-neck C7-C7 nerve transfer, involves cutting the C7 nerve on the healthy side and transferring it to the C7 nerve on the paretic side. Intracortical microstimulation, Micro-PET and histological analysis were employed to explore the cortical changes in contralesional hemisphere and to reveal its correlation with behavioral recovery. These results showed that the contralesional hemispheric compensation was markedly strengthened and significantly related to behavioral improvements. The findings also revealed a feasible and effective way to maximize the potential of one hemisphere in controlling both limbs. PMID:26732072

  5. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    PubMed Central

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-01-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm−2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments. PMID:27484401

  6. A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements

    PubMed Central

    Britz, Olivier; Zhang, Jingming; Grossmann, Katja S; Dyck, Jason; Kim, Jun C; Dymecki, Susan; Gosgnach, Simon; Goulding, Martyn

    2015-01-01

    V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 PMID:26465208

  7. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour.

    PubMed

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R; Gather, Malte C

    2016-01-01

    Organic light emitting diodes (OLEDs) are in widespread use in today's mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm(-2)) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments. PMID:27484401

  8. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    NASA Astrophysics Data System (ADS)

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-08-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm‑2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.

  9. Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    PubMed Central

    Chen, Jiawang; Gu, Linyi

    2014-01-01

    For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time. PMID:24983004

  10. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1993-04-20

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  11. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1992-12-31

    This invention is comprised of a self-contained, waterproof, water-submersible, remote-controlled apparatus provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer {plus_minus} 45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer {plus_minus} 10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  12. Underwater manipulator

    DOEpatents

    Schrum, Phillip B.; Cohen, George H.

    1993-01-01

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer .+-.45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer .+-.10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  13. Communications and Control for Enhanced Autonomy in Underwater Vehicles for Deep Oceanographic Research

    NASA Astrophysics Data System (ADS)

    Jakuba, M.; Kinsey, J. C.; Yoerger, D. R.; Whitcomb, L. L.; Camilli, R.; Murphy, C.; Bowen, A.; German, C. R.

    2010-12-01

    NASA’s Astrobiology Science and Technology for Exploring Planets (ASTEP) program is a science-driven program to produce advances in scientific and technological capabilities for planetary exploration. Oceanographic robotic vehicles and planetary exploration robots have proven to be highly effective scientific tools for performing scientific research in remote, extreme, and hostile environments that preclude direct human presence. In both domains, the planets and the world’s oceans, human oversight of remote robotic exploration can dramatically enhance scientific return in comparison to purely pre-planned missions by combining the perception, intelligence, and domain knowledge of the human operators with the super-human physical and sensory capabilities of robots. The degree of human oversight, however, is restricted in sea and space by physical limits on the bandwidth and time delay of communications between human operators and remote robotic platforms. Enhanced robotic autonomy can alleviate this obstacle. We present a communications and control architecture for underwater oceanographic robot vehicles that has permitted us to introduce elements of enhanced autonomy into operations with the Woods Hole Oceanographic Institution's Autonomous Underwater Vehicles (AUVs) Nereus and Sentry. Our architecture is designed to facilitate: (1) autonomous distillation of scientific data and transmission of salient synopses from the remote vehicle to its human operators; (2) high-level near real-time human supervision and control of mission programming; (3) semi-supervised learning of environmental models for enhanced survey and search mission effectiveness. Specific capabilities our group has demonstrated include selective data delivery via acoustic link; near real-time reprogramming of vehicle mission programs during otherwise preplanned dives; and validation of autonomous decision-making processes with human-supervision. These elements have been recently demonstrated

  14. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Haghighi, Reza; Cloitre, Audren; Alvarado, Pablo Valdivia Y; Miao, Jianmin; Triantafyllou, Michael

    2015-06-01

    A major difference between manmade underwater robotic vehicles (URVs) and undersea animals is the dense arrays of sensors on the body of the latter which enable them to execute extreme control of their limbs and demonstrate super-maneuverability. There is a high demand for miniaturized, low-powered, lightweight and robust sensors that can perform sensing on URVs to improve their control and maneuverability. In this paper, we present the design, fabrication and experimental testing of two types of microelectromechanical systems (MEMS) sensors that benefit the situational awareness and control of a robotic stingray. The first one is a piezoresistive liquid crystal polymer haircell flow sensor which is employed to determine the velocity of propagation of the stingray. The second one is Pb(Zr(0.52)Ti(0.48))O3 piezoelectric micro-diaphragm pressure sensor which measures various flapping parameters of the stingray's fins that are key parameters to control the robot locomotion. The polymer flow sensors determine that by increasing the flapping frequency of the fins from 0.5 to 3 Hz the average velocity of the stingray increases from 0.05 to 0.4 BL s(-1), respectively. The role of these sensors in detecting errors in control and functioning of the actuators in performing tasks like flapping at a desired amplitude and frequency, swimming at a desired velocity and direction are quantified. The proposed sensors are also used to provide inputs for a model predictive control which allows the robot to track a desired trajectory. Although a robotic stingray is used as a platform to emphasize the role of the MEMS sensors, the applications can be extended to most URVs. PMID:25984934

  15. Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances

    NASA Astrophysics Data System (ADS)

    Kim, Minsung; Joe, Hangil; Kim, Jinwhan; Yu, Son-cheol

    2015-10-01

    We propose an integral sliding mode controller (ISMC) to stabilse an autonomous underwater vehicle (AUV) which is subject to modelling errors and often suffers from unknown environmental disturbances. The ISMC is effective in compensating for the uncertainties in the hydrodynamic and hydrostatic parameters of the vehicle and rejecting the unpredictable disturbance effects due to ocean waves, tides and currents. The ISMC is comprised of an equivalent controller and a switching controller to suppress the parameter uncertainties and external disturbances, and its closed-loop system is exponentially stable. Numerical simulations were performed to validate the proposed control approach, and experimental tests using Cyclops AUV were carried out to demonstrate its practical feasibility.

  16. Google™ underwater

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-10-01

    The first underwater panoramic images were added to Google Maps™, the company announced on 25 September. This first “underwater Street View collection,” launched in partnership with the Caitlin Seaview Survey, provides people with the opportunity to “become the next virtual Jacques Cousteau.” For more information, see: maps.google.com/ocean.

  17. R7BP Complexes With RGS9-2 and RGS7 in the Striatum Differentially Control Motor Learning and Locomotor Responses to Cocaine

    PubMed Central

    Anderson, Garret R; Cao, Yan; Davidson, Steve; Truong, Hai V; Pravetoni, Marco; Thomas, Mark J; Wickman, Kevin; Giesler, Glenn J; Martemyanov, Kirill A

    2010-01-01

    In the striatum, signaling through G protein-coupled dopamine receptors mediates motor and reward behavior, and underlies the effects of addictive drugs. The extent of receptor responses is determined by RGS9-2/Gβ5 complexes, a striatally enriched regulator that limits the lifetime of activated G proteins. Recent studies suggest that the function of RGS9-2/Gβ5 is controlled by the association with an additional subunit, R7BP, making elucidation of its contribution to striatal signaling essential for understanding molecular mechanisms of behaviors mediated by the striatum. In this study, we report that elimination of R7BP in mice results in motor coordination deficits and greater locomotor response to morphine administration, consistent with the essential role of R7BP in maintaining RGS9-2 expression in the striatum. However, in contrast to previously reported observations with RGS9-2 knockouts, mice lacking R7BP do not show higher sensitivity to locomotor-stimulating effects of cocaine. Using a striatum-specific knockdown approach, we show that the sensitivity of motor stimulation to cocaine is instead dependent on RGS7, whose complex formation with R7BP is dictated by RGS9-2 expression. These results indicate that dopamine signaling in the striatum is controlled by concerted interplay between two RGS proteins, RGS7 and RGS9-2, which are balanced by a common subunit, R7BP. PMID:20043004

  18. Glucosamine-containing supplement improves locomotor functions in subjects with knee pain: a randomized, double-blind, placebo-controlled study

    PubMed Central

    Kanzaki, Noriyuki; Ono, Yoshiko; Shibata, Hiroshi; Moritani, Toshio

    2015-01-01

    Background The aim of this study was to investigate the ability of a glucosamine-containing supplement to improve locomotor functions in subjects with knee pain. Methods A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted for 16 weeks in 100 Japanese subjects (age, 51.8±0.8 years) with knee pain. Subjects were randomly assigned to one of the two supplements containing 1) 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, and 5 μg of vitamin D per day (GCQID group, n=50) or 2) a placebo (placebo group, n=50). Japanese Knee Osteoarthritis Measure, visual analog scale score, normal walking speed, and knee-extensor strength were measured to evaluate the effects of the supplement on knee-joint functions and locomotor functions. Results In subjects eligible for efficacy assessment, there was no significant group × time interaction, and there were improvements in knee-joint functions and locomotor functions in both groups, but there was no significant difference between the groups. In subjects with mild-to-severe knee pain at baseline, knee-extensor strength at week 8 (104.6±5.0% body weight vs 92.3±5.5% body weight, P=0.030) and the change in normal walking speed at week 16 (0.11±0.03 m/s vs 0.05±0.02 m/s, P=0.038) were significantly greater in the GCQID group than in the placebo group. Further subgroup analysis based on Kellgren–Lawrence (K–L) grade showed that normal walking speed at week 16 (1.36±0.05 m/s vs 1.21±0.02 m/s, P<0.05) was significantly greater in the GCQID group than in the placebo group in subjects with K–L grade I. No adverse effect of treatment was identified in the safety assessment. Conclusion In subjects with knee pain, GCQID supplementation was effective for relieving knee pain and improving locomotor functions. PMID:26604721

  19. Vision Underwater.

    ERIC Educational Resources Information Center

    Levine, Joseph S.

    1980-01-01

    Provides information regarding underwater vision. Includes a discussion of optically important interfaces, increased eye size of organisms at greater depths, visual peculiarities regarding the habitat of the coastal environment, and various pigment visual systems. (CS)

  20. The 'GALS' locomotor screen.

    PubMed Central

    Doherty, M; Dacre, J; Dieppe, P; Snaith, M

    1992-01-01

    The locomotor system is complex and difficult to examine. A selective clinical process to detect important locomotor abnormalities and functional disability could prove valuable. A screen based on a tested 'minimal' history and examination system is described, together with a simple method of recording. The screen is fast and easy to perform. As well as providing a useful introduction to examination of the locomotor system, the screen includes objective observation of functional movements relevant to activities of daily living. Its inclusion in the undergraduate clerking repertoire could improve junior doctors' awareness and recognition of rheumatic disease and general disability. It could also provide a valuable screening test for use in general practice. Images PMID:1444632

  1. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    SciTech Connect

    Ballou, Philip J.

    1997-02-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor.

  2. A parallel cholinergic brainstem pathway for enhancing locomotor drive

    PubMed Central

    Smetana, Roy; Juvin, Laurent; Dubuc, Réjean; Alford, Simon

    2010-01-01

    The brainstem locomotor system is believed to be organized serially from the mesencephalic locomotor region (MLR) to reticulospinal neurons, which in turn, project to locomotor neurons in the spinal cord. In contrast, we now identify in lampreys, brainstem muscarinoceptive neurons receiving parallel inputs from the MLR and projecting back to reticulospinal cells to amplify and extend durations of locomotor output. These cells respond to muscarine with extended periods of excitation, receive direct muscarinic excitation from the MLR, and project glutamatergic excitation to reticulospinal neurons. Targeted block of muscarine receptors over these neurons profoundly reduces MLR-induced excitation of reticulospinal neurons and markedly slows MLR-evoked locomotion. Their presence forces us to rethink the organization of supraspinal locomotor control, to include a sustained feedforward loop that boosts locomotor output. PMID:20473293

  3. The role of the motor cortex in the control of accuracy of locomotor movements in the cat.

    PubMed Central

    Beloozerova, I N; Sirota, M G

    1993-01-01

    1. The impulse activity of single neurones in the motor cortex (MC) was recorded extracellularly, using movable varnish-insulated tungsten microelectrodes, in six adult, freely moving cats. Neuronal activity was recorded while the cats walked on a flat floor, as they stepped over a series of barriers, and as they walked on the flat rungs of a horizontal ladder. The mean discharge rate (mR) and the depth of frequency modulation (dM) in each cell were estimated over 10-100 steps. 2. The activity of ninety-eight MC cells (Including thirteen pyramidal tract neurones (PTNs)) was recorded during stepping over barriers 25 cm apart. The mR in 66% and the dM in 61% of these cells changed by more than 20% during locomotion with barriers compared to locomotion on the flat (an increase was more often the case). 3. The activity of nine cells was recorded during stepping over barriers 12 cm apart, and the activity of twenty-seven cells (including five PTNs) during walking with barriers only 6 cm apart. The mR in 67% and in 59% of the cells, respectively, and the dM in 56% and in 67% of the cells, respectively, were greater in these locomotor tasks than during locomotion on the flat. 4. The activity of twenty cells was recorded during walking and compared in experiments with different distances between barriers. The mR in 50% and the dM in 75% of the neurones progressively increased when the distance between successive barriers was diminished. 5. The discharge rates of thirteen cells were compared in two different locomotor tasks: (i) when the cat stepped over barriers requiring hyperflexion of the limbs and (ii) when it walked on the flat with loads attached to the distal forelimbs causing a hyperactivity of flexor muscles. The activity of nine cells was different during stepping over the barriers compared to locomotion with loadings on the forelimbs. 6. The activity of 108 cells (twenty-four PTNs) was recorded during walking along a horizontal ladder with flat rungs. The mR of

  4. Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu

    2015-10-01

    Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.

  5. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  6. Underwater Rays

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2008-01-01

    Light beams in wavy unclear water, also called underwater rays, and caustic networks of light formed at the bottom of shallow water are two faces of a single phenomenon. Derivation of the caustic using only simple geometry, Snell's law and simple derivatives accounts for observations such as the existence of the caustic network on vertical walls,…

  7. Locomotor Behaviour of Blattella germanica Modified by DEET

    PubMed Central

    Sfara, Valeria; Mougabure-Cueto, Gastón A.; Zerba, Eduardo N.; Alzogaray, Raúl A.

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  8. Locomotor behaviour of Blattella germanica modified by DEET.

    PubMed

    Sfara, Valeria; Mougabure-Cueto, Gastón A; Zerba, Eduardo N; Alzogaray, Raúl A

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm(2) of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm(2) of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm(2) of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  9. From Antarctica to space: use of telepresence and virtual reality in control of a remote underwater vehicle

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.

    1995-01-01

    We describe an experiment which simulated many aspects of control of a remote vehicle on another planetary surface. We have developed a Telepresence-controlled Remotely Operated underwater Vehicle (TROV) and used it to perform scientific exploration in an ice-covered marine environment near McMurdo Station, Antarctica. The goal of the mission was to use telepresence and virtual reality technology to operate a remote vehicle to perform a scientific study of the marine environment under the sea ice in Antarctica. The TROV was operated both locally, from a habitat building located on the sea ice above a dive hole through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using a control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link used either a stereo display monitor similar to that used locally, or a stereo head-mounted head- tracked display. The remote operators could also view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The actual vehicle was driven either from within the virtual environment or by watching stereo video. Satellite communication was used to transmit stereo video from the TROV to NASA Ames and to provide a bi-directional Internet link to the TROV control computer for command and telemetry signals. All vehicle functions could be controlled remotely over the satellite link. The TROV was operated in Antarctica nearly continuously using both local and remote control for 7 weeks. The results of our experiments suggest that surface rovers using control technology with real time telepresence could vastly expand the range of human exploration from a human base on the Moon or Mars. Planetary surface rovers can also be controlled from Earth, although

  10. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.

    PubMed

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A

    2015-04-01

    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies. PMID:25807584

  11. Effect of caffeine on cocaine locomotor stimulant activity in rats.

    PubMed

    Misra, A L; Vadlamani, N L; Pontani, R B

    1986-03-01

    The effect of caffeine on the locomotor stimulant activity induced by intravenous cocaine in rats was investigated. Low doses of caffeine (20 mg/kg IP) potentiated the locomotor activity induced by 1, 2.5 mg/kg intravenous doses of cocaine and higher doses of caffeine (50, 100 mg/kg IP) had no significant effect. The locomotor stimulant effect of 20 mg/kg IP dose of caffeine per se in vehicle was significantly higher and that with 100 mg/kg dose significantly lower than that of the vehicle control. Thus caffeine produced dose-dependent effects on cocaine-induced locomotor stimulant activity, with low dose potentiating and higher doses having no significant effect on such activity. Pharmacokinetic or dispositional factors did not appear to play a role in potentiation of cocaine locomotor stimulant activity by caffeine. PMID:3703910

  12. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  13. The evolution of locomotor rhythmicity in tetrapods.

    PubMed

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. PMID:23550769

  14. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  15. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  16. Reliability review of the remote tool delivery system locomotor

    SciTech Connect

    Chesser, J.B.

    1999-04-01

    The locomotor being built by RedZone Robotics is designed to serve as a remote tool delivery (RID) system for waste retrieval, tank cleaning, viewing, and inspection inside the high-level waste tanks 8D-1 and 8D-2 at West Valley Nuclear Services (WVNS). The RTD systm is to be deployed through a tank riser. The locomotor portion of the RTD system is designed to be inserted into the tank and is to be capable of moving around the tank by supporting itself and moving on the tank internal structural columns. The locomotor will serve as a mounting platform for a dexterous manipulator arm. The complete RTD system consists of the locomotor, dexterous manipulator arm, cameras, lights, cables, hoses, cable/hose management system, power supply, and operator control station.

  17. GE underwater test facility studies in zero G simulation

    NASA Technical Reports Server (NTRS)

    Fry, R. H.

    1972-01-01

    The underwater test facility (UTF) is described as an indoor controlled environment test facility designed specifically for zero G simulation, hydrospace manned and unmanned equipment development, and personnel training for both space and underwater exploration. Programs conducted in the UTF include: human engineering criteria for maintenance and repairs of space stations, astronaut performance, helmet distortion, underwater telemetry, and blood transfusion.

  18. Underwater lab

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The University of Southern California's Catalina Marine Science Center (CMSC) has announced plans to build an underwater marine research laboratory near Santa Catalina Island off the California coast. The project, which will take 2 years to build, will be sponsored by the National Oceanic and Atmospheric Administration (NOAA). The laboratory will be similar in concept to the U.S. Navy Sea Lab III, which was canceled some time ago.The project's purpose is to give divers access to a laboratory without having to surface. The project leader, Andrew Pilmanis, of the University of Southern California, stated recently (Industrial Research and Development, July 1983): “By the nature of the work, scientists require a lot of bottom time, and to do it by scuba isn't practical…. The only way to do that is with saturation diving. Once the diver is saturated with inert gas, whether the individual stays a few days or for months, only one decompression is required.” Divers will typically stay in the laboratory for 7-10 days. The laboratory will initially be placed at a depth of 20 m, later to be refloated and located at depths to 37 m.

  19. Underwater Sensor Nodes and Networks

    PubMed Central

    Lloret, Jaime

    2013-01-01

    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489

  20. AURP: an AUV-aided underwater routing protocol for underwater acoustic sensor networks.

    PubMed

    Yoon, Seokhoon; Azad, Abul K; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved. PMID:22438740

  1. AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Yoon, Seokhoon; Azad, Abul K.; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved. PMID:22438740

  2. The optical monitor system of anti-phobic raid underwater

    NASA Astrophysics Data System (ADS)

    Zheng, Chengdong; Weng, Yan-sheng; Liu, Xi-zhan

    2009-07-01

    The underwater security system, used in the Qingdao sailboat game of 2008 Olympic Games, combined multiple underwater cameras with sonar detectors, forms an underwater barrier, which can observe the movement of suspicious objects and get the underwater video images continuously and instantly. The lighting system can provide sufficient illumination matched with target to reach the best imaging result. The whole system with the function of centralized control, depth measurement, leakage alarm and image processing, is the original equipment in domestic underwater antiterrorism optical research area.

  3. Sex differences in locomotor effects of morphine in the rat

    PubMed Central

    Craft, Rebecca M.; Clark, James L.; Hart, Stephen P.; Pinckney, Megan K.

    2007-01-01

    Sex differences in reinforcing, analgesic and other effects of opioids have been demonstrated; however, the extent to which sex differences in motoric effects of opioids contribute to apparent sex differences in their primary effects is not known. The goal of this study was to compare the effects of the prototypic mu opioid agonist morphine on locomotor activity in male vs. female rats. Saline or morphine (1-10 mg/kg) was administered s.c. to adult Sprague-Dawley rats, which were placed into a photobeam apparatus for 3-5 hr to measure activity. Modulation of morphine's effects by gonadal hormones and by handling (either during the test session or for 4 days before the test session) were examined. Morphine initially suppressed and later increased locomotor activity in both sexes relative to their saline-injected controls, but males were more sensitive than females to the initial locomotor suppressant effect of morphine. Intermittent, brief handling during the 3-hr test session blunted morphine-induced locomotor activation in both sexes. Females in proestrus were the most sensitive to morphine's locomotor-stimulant effect, with females in estrus showing the least response to morphine. Gonadectomized (GDX) males with or without testosterone were equally sensitive to morphine's effects, whereas GDX females treated with estradiol showed a blunted response to morphine's effects, similar to intact females in estrus. Brief handling on each of 4 consecutive days pre-test attenuated morphine's locomotor suppressant effect in males but had no effect in females, thereby eliminating the sex difference. These data suggest that sex differences in morphine's effects on locomotor activity can be attributed to gonadal hormones in females, and to differential stress-induced modulation of morphine's effects in males vs. females. PMID:17217999

  4. Reducing The Cost of Transport and Increasing Walking Distance After Stroke: A Randomized Controlled Trial on Fast Locomotor Training Combined With Functional Electrical Stimulation.

    PubMed

    Awad, Louis N; Reisman, Darcy S; Pohlig, Ryan T; Binder-Macleod, Stuart A

    2016-08-01

    Background Neurorehabilitation efforts have been limited in their ability to restore walking function after stroke. Recent work has demonstrated proof-of-concept for a functional electrical stimulation (FES)-based combination therapy designed to improve poststroke walking by targeting deficits in paretic propulsion. Objectives To determine the effects on the energy cost of walking (EC) and long-distance walking ability of locomotor training that combines fast walking with FES to the paretic ankle musculature (FastFES). Methods Fifty participants >6 months poststroke were randomized to 12 weeks of gait training at self-selected speeds (SS), fast speeds (Fast), or FastFES. Participants' 6-minute walk test (6MWT) distance and EC at comfortable (EC-CWS) and fast (EC-Fast) walking speeds were measured pretraining, posttraining, and at a 3-month follow-up. A reduction in EC-CWS, independent of changes in speed, was the primary outcome. Group differences in the number of 6MWT responders and moderation by baseline speed were also evaluated. Results When compared with SS and Fast, FastFES produced larger reductions in EC (Ps ≤.03). FastFES produced reductions of 24% and 19% in EC-CWS and EC-Fast (Ps <.001), respectively, whereas neither Fast nor SS influenced EC. Between-group 6MWT differences were not observed; however, 73% of FastFES and 68% of Fast participants were responders, in contrast to 35% of SS participants. Conclusions Combining fast locomotor training with FES is an effective approach to reducing the high EC of persons poststroke. Surprisingly, differences in 6MWT gains were not observed between groups. Closer inspection of the 6MWT and EC relationship and elucidation of how reduced EC may influence walking-related disability is warranted. PMID:26621366

  5. Colorful Underwater Sea Creatures

    ERIC Educational Resources Information Center

    McCutcheon, Heather

    2011-01-01

    In this article, the author describes a project wherein students created colorful underwater sea creatures. This project began with a discussion about underwater sea creatures and how they live. The first step was making the multi-colored tissue paper that would become sea creatures and seaweed. Once students had the shapes of their sea creatures…

  6. Underwater Scene Composition

    ERIC Educational Resources Information Center

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  7. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  8. Analysis of recordings from underwater controlled sources in the Pacific Ocean received by the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

    NASA Astrophysics Data System (ADS)

    Yamada, Tomoaki; Zampolli, Mario; Haralabus, Georgios; Heaney, Kevin; Prior, Mark; Isse, Takeshi

    2016-04-01

    Controlled impulsive scientific underwater sound sources in the Northwestern Pacific were observed at two IMS hydroacoustic stations in the Pacific Ocean. Although these experiments were conducted with the aim of studying the physical properties of the plate boundaries inside the Earth, they are also suitable for the investigation of long range underwater acoustic detections. In spite of the fact that the energy of these controlled impulsive scientific sources is significantly smaller than that of nuclear explosions, the signals were obtained by IMS hydrophone stations thousands of kilometres away and also by distant ocean bottom instruments operated by various Institutes, such as the Earthquake Research Institute, University of Tokyo. These experiments provide calibrated (yield, time, location) long-range acoustic transmissions, which enable one to examine the physics of long-range acoustic propagation and to verify the capabilities of the CTBTO IMS network to detect even small explosions.The two IMS stations used are H03 (Juan Fernandez Island, Chile) off the coast of Chile in the Southeastern Pacific and H11 (Wake Island, USA) in the Western Pacific. Both stations consist of two triplets of hydrophones in the SOFAR channel, which monitor the oceans for signs of nuclear explosions. H03 detected low-yield explosions above flat terrain at distances of 15,000 km across the Pacific as well as explosions above the landward slope off the coast of Japan at distances above 16,000 km across the Pacific. These records showed that source signatures, such as short duration and bubble pulses, were preserved over the long propagation distances. It was found that the observed maximum amplitudes from each source exhibit order of magnitude variations even when the yield and detonation depth are the same. The experimental data and transmission loss simulations suggest that bathymetric features around the sources and between the sources and the receivers are the main causes for

  9. An underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  10. Modulation of locomotor activation by the rostromedial tegmental nucleus.

    PubMed

    Lavezzi, Heather N; Parsley, Kenneth P; Zahm, Daniel S

    2015-02-01

    The rostromedial tegmental nucleus (RMTg) is a strong inhibitor of dopamine neurons in the ventral tegmental area (VTA) reported to influence neurobiological and behavioral responses to reward omission, aversive and fear-eliciting stimuli, and certain drugs of abuse. Insofar as previous studies implicate ventral mesencephalic dopamine neurons as an essential component of locomotor activation, we hypothesized that the RMTg also should modulate locomotion activation. We observed that bilateral infusions into the RMTg of the gamma-aminobutyric acid A (GABAA) agonist, muscimol, indeed activate locomotion. Alternatively, bilateral RMTg infusions of the GABAA receptor antagonist, bicuculline, suppress robust activations of locomotion elicited in two distinct ways: (1) by disinhibitory stimulation of neurons in the lateral preoptic area and (2) by return of rats to an environment previously paired with amphetamine administration. The possibility that suppressive locomotor effects of RMTg bicuculline infusions were due to unintended spread of drug to the nearby VTA was falsified by a control experiment showing that bilateral infusions of bicuculline into the VTA produce activation rather than suppression of locomotion. These results objectively implicate the RMTg in the regulation of locomotor activation. The effect is important because much evidence reported in the literature suggests that locomotor activation can be an involuntary behavioral expression of expectation and/or want without which the willingness to execute adaptive behaviors is impaired. PMID:25164249

  11. Smelling and Tasting Underwater.

    ERIC Educational Resources Information Center

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  12. Underwater hydrophone location survey

    NASA Technical Reports Server (NTRS)

    Cecil, Jack B.

    1993-01-01

    The Atlantic Undersea Test and Evaluation Center (AUTEC) is a U.S. Navy test range located on Andros Island, Bahamas, and a Division of the Naval Undersea Warfare Center (NUWC), Newport, RI. The Headquarters of AUTEC is located at a facility in West Palm Beach, FL. AUTEC's primary mission is to provide the U.S. Navy with a deep-water test and evaluation facility for making underwater acoustic measurements, testing and calibrating sonars, and providing accurate underwater, surface, and in-air tracking data on surface ships, submarines, aircraft, and weapon systems. Many of these programs are in support of Antisubmarine Warfare (ASW), undersea research and development programs, and Fleet assessment and operational readiness trials. Most tests conducted at AUTEC require precise underwater tracking (plus or minus 3 yards) of multiple acoustic signals emitted with the correct waveshape and repetition criteria from either a surface craft or underwater vehicle.

  13. Advanced Concepts for Underwater Acoustic Channel Modeling

    NASA Astrophysics Data System (ADS)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  14. Woodlouse locomotor behavior in the assessment of clean and contaminated field sites

    SciTech Connect

    Bayley, M.; Baatrup, E.; Bjerregaard, P.

    1997-11-01

    Specimens of the woodlouse Oniscus asellus were collected at four clean field sites and from a recently closed iron foundry heavily contaminated with zinc, lead, chromium, and nickel. Each of the 30 woodlice per group was housed individually and acclimatized to laboratory conditions for 2 d on a humid plaster of paris substrate. Thereafter, the locomotor behavior of each animal was measured for 4 h employing automated computer-aided video tracking. Linear discriminant analysis of five locomotor parameters revealed average velocity and path length as the principle components separating the polluted site and control animals. Post hoc analysis of the discriminant variable for animals from all five sites showed that the animals from the polluted site where significantly hyperactive when compared to all controls. Further, control animals collected from sites separated by several hundred kilometers were remarkably similar in their locomotor behavior. This preliminary study highlights the potential utility of quantitative analysis of animal locomotor behavior in environmental monitoring.

  15. Survivability design for a hybrid underwater vehicle

    SciTech Connect

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  16. Involvement of nigral oxytocin in locomotor activity: A behavioral, immunohistochemical and lesion study in male rats.

    PubMed

    Angioni, Laura; Cocco, Cristina; Ferri, Gian-Luca; Argiolas, Antonio; Melis, Maria Rosaria; Sanna, Fabrizio

    2016-07-01

    Oxytocin is involved in the control of different behaviors, from sexual behavior and food consumption to empathy, social and affective behaviors. An imbalance of central oxytocinergic neurotransmission has been also associated with different mental pathologies, from depression, anxiety and anorexia/bulimia to schizophrenia, autism and drug dependence. This study shows that oxytocin may also play a role in the control of locomotor activity. Accordingly, intraperitoneal oxytocin (0.5-2000μg/kg) reduced locomotor activity of adult male rats. This effect was abolished by d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist, given into the lateral ventricles at the dose of 2μg/rat, which was ineffective on locomotor activity. Oxytocin (50-200ng/site) also reduced and d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin (2μg/site) increased locomotor activity when injected bilaterally into the substantia nigra, a key area in the control of locomotor activity. Conversely, the destruction of nigral neurons bearing oxytocin receptors by the recently characterized neurotoxin oxytocin-saporin injected into the substantia nigra, increased basal locomotor activity. Since oxytocin-saporin injected into the substantia nigra caused a marked reduction of neurons immunoreactive for tyrosine hydroxylase (e.g., nigrostriatal dopaminergic neurons) and for vesicular glutamate transporters VGluT1, VGluT2 and VGluT3 (e.g., glutamatergic neurons), but not for glutamic acid decarboxylase (e.g., GABAergic neurons), together these findings suggest that oxytocin influences locomotor activity by acting on receptors localized presynaptically in nigral glutamatergic nerve terminals (which control the activity of nigral GABAergic efferent neurons projecting to brain stem nuclei controlling locomotor activity), rather than on receptors localized in the cell bodies/dendrites of nigrostriatal dopaminergic neurons. PMID:27189764

  17. Bovine growth hormone transgenic mice display alterations in locomotor activity and brain monoamine neurochemistry.

    PubMed

    Söderpalm, B; Ericson, M; Bohlooly, M; Engel, J A; Törnell, J

    1999-12-01

    Recent clinical and experimental data indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. In the present study we have investigated whether bovine GH (bGH) transgenic mice and nontransgenic controls differ in spontaneous locomotor activity, a behavioral response related to brain dopamine (DA) and reward mechanisms, as well as in locomotor activity response to drugs of abuse known to interfere with brain DA systems. The animals were tested for locomotor activity once a week for 4 weeks. When first exposed to the test apparatus, bGH transgenic animals displayed significantly more locomotor activity than controls during the entire registration period (1 h). One week later, after acute pretreatment with saline, the two groups did not differ in locomotor activity, whereas at the third test occasion, bGH mice were significantly more stimulated by d-amphetamine (1 mg/kg, ip) than controls. At the fourth test, a tendency for a larger locomotor stimulatory effect of ethanol (2.5 g/kg, ip) was observed in bGH transgenic mice. bGH mice displayed increased tissue levels of serotonin and 5-hydroxyindoleacetic acid in several brain regions, decreased DA levels in the brain stem, and decreased levels of the DA metabolite 3,4-dihydroxyphenylacetic acid in the mesencephalon and diencephalon, compared with controls. In conclusion, bGH mice display more spontaneous locomotor activity than nontransgenic controls in a novel environment and possibly also a disturbed habituation process. The finding that bGH mice were also more sensitive to d-amphetamine-induced locomotor activity may suggest that the behavioral differences observed are related to differences in brain DA systems, indicating a hyperresponsiveness of these systems in bGH transgenic mice. These findings may constitute a neurochemical basis for the reported psychic effects of GH in humans. PMID:10579325

  18. Underwater cargo vessel utilizing variable buoyancy system for gliding propulsion

    SciTech Connect

    Qi, Z.K.; Seireg, A.

    1982-09-01

    This study deals with investigating the feasibility of an underwater glider capable of carrying cargo for long distances by alternately employing gravity and buoyancy forces for forward propulsion. The parameters controlling the vessel design, stability and control are investigated.

  19. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  20. Development of a Countermeasure to Enhance Postflight Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the

  1. Ring Wing for an underwater missile

    NASA Astrophysics Data System (ADS)

    August, Henry; Carapezza, Edward

    Hughes Aircraft has performed exploratory wind tunnel studies of compressed carriage missile designs having extendable Ring Wing and wrap-around tail control surfaces. These force and moment data indicate that significant improvements in a missile's lift and aerodynamic efficiency can be realized. Low speed test results of these data were used to estimate potential underwater improved hydrodynamic characteristics that a Ring Wing and wrap-around tails can bring to an advanced torpedo design. Estimates of improved underwater flight performance of a heavyweight torpedo (4000 lbs.) having an extendable Ring Wing and wrap-around tails were made. The compressed volume design of this underwater missile is consistent with tube-launch constraints and techniques. Study results of this novel Ring Wing torpedo design include extended flight performance in range and endurance due to lowered speeds capable of sustaining underwater level flight. Correspondingly, reduced radiated noise for enhanced stealth qualities is projected. At high speeds, greater maneuverability and aimpoint selection can be realized by a Ring Wing underwater missile.

  2. Biosensor for underwater chemical sensing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Kusterbeck, Anne W.; Deschamps, Jeffrey R.; Charles, Paul T.

    2005-05-01

    Emerging biosensor approaches may prove useful in reducing false positives and improving detection probabilities for unexploded ordnance (UXO) and underwater explosives. NRL researchers previously developed a biosensor that was field-tested and validated for use in environmental remediation to detect explosives in groundwater. The sensor relies on the selective recognition by antibodies of target analytes, including the common explosives TNT and RDX. Laboratory work has demonstrated that sensors based on these displacement immunoassay formats can detect explosives at the part-per-trillion level in seawater. More recently, participating in an Office of Naval Research program on Chemical Sensing in the Marine Environment (CSME), tests were conducted in controlled underwater experiments at San Clemente, CA and Duck, NC. Simulated UXO targets, autonomous underwater vehicles (AUV) and multiple sensor approaches were used to demonstrate the feasibility of underwater chemical sensing. Efforts are now underway to integrate the biosensor into an underwater platform as part of a broader sensor system. We will describe results of these studies and outline possible operational scenarios for applications in harbor security.

  3. Resources for Underwater Robotics Education

    ERIC Educational Resources Information Center

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  4. Autonomous underwater pipeline monitoring navigation system

    NASA Astrophysics Data System (ADS)

    Mitchell, Byrel; Mahmoudian, Nina; Meadows, Guy

    2014-06-01

    This paper details the development of an autonomous motion-control and navigation algorithm for an underwater autonomous vehicle, the Ocean Server IVER3, to track long linear features such as underwater pipelines. As part of this work, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) developed an algorithm that utilizes inputs from the vehicles state of the art sensor package, which includes digital imaging, digital 3-D Sidescan Sonar, and Acoustic Doppler Current Profilers. The resulting algorithms should tolerate real-world waterway with episodic strong currents, low visibility, high sediment content, and a variety of small and large vessel traffic.

  5. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  6. Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study With a Four-Week Follow-Up.

    PubMed

    Kim, Soo-Yeon; Yang, Li; Park, In Jae; Kim, Eun Joo; JoshuaPark, Min Su; You, Sung Hyun; Kim, Yun-Hee; Ko, Hyun-Yoon; Shin, Yong-Il

    2015-07-01

    The present clinical investigation was to ascertain whether the effects of WALKBOT-assisted locomotor training (WLT) on balance, gait, and motor recovery were superior or similar to the conventional locomotor training (CLT) in patients with hemiparetic stroke. Thirty individuals with hemiparetic stroke were randomly assigned to either WLT or CLT. WLT emphasized on a progressive, conventional locomotor retraining practice (40 min) combined with the WALKBOT-assisted, haptic guidance and random variable locomotor training (40 min) whereas CLT involved conventional physical therapy alone (80 min). Both intervention dosages were standardized and provided for 80 min, five days/week for four weeks. Clinical outcomes included function ambulation category (FAC), Berg balance scale (BBS), Korean modified Barthel index (K-MBI), modified Ashworth scale (MAS), and EuroQol-5 dimension (EQ-5D) before and after the four-week program as well as at follow-up four weeks after the intervention. Two-way repeated measure ANOVA showed significant interaction effect (time × group) for FAC (p=0.02), BBS (p=0.03) , and K-MBI (p=0.00) across the pre-training, post-training, and follow-up tests, indicating that WLT was more beneficial for balance, gait and daily activity function than CLT alone. However, no significant difference in other variables was observed. This is the first clinical trial that highlights the superior, augmented effects of the WALKBOT-assisted locomotor training on balance, gait and motor recovery when compared to the conventional locomotor training alone in patients with hemiparetic stroke. PMID:25850089

  7. NaNet3: The on-shore readout and slow-control board for the KM3NeT-Italia underwater neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Martinelli, M.; Paolucci, P. S.; Pontisso, L.; Simula, F.; Vicini, P.; Ameli, F.; Nicolau, C. A.; Pastorelli, E.; Simeone, F.; Tosoratto, L.; Lonardo, A.

    2016-04-01

    The KM3NeT-Italia underwater neutrino detection unit, the tower, consists of 14 floors. Each floor supports 6 Optical Modules containing front-end electronics needed to digitize the PMT signal, format and transmit the data and 2 hydrophones that reconstruct in real-time the position of Optical Modules, for a maximum tower throughput of more than 600 MB/s. All floor data are collected by the Floor Control Module (FCM) board and transmitted by optical bidirectional virtual point-to-point connections to the on-shore laboratory, each FCM needing an on-shore counterpart as communication endpoint. In this contribution we present NaNet3, an on-shore readout board based on Altera Stratix V GX FPGA able to manage multiple FCM data channels with a capability of 800 Mbps each. The design is a NaNet customization for the KM3NeT-Italia experiment, adding support in its I/O interface for a synchronous link protocol with deterministic latency at physical level and for a Time Division Multiplexing protocol at data level.

  8. Underwater vehicle propulsion and power generation

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2008-01-01

    An underwater vehicle includes a shaft with a propeller disposed thereon; a generator/motor having a stator and a rotor, the rotor being operable to rotate with the propeller; at least one energy storage device connected to the generator/motor; and a controller for setting the generator/motor in a charge mode, a propulsion mode and an idle mode.

  9. Design and implementation of range-gated underwater laser imaging system

    NASA Astrophysics Data System (ADS)

    Ge, Wei-long; Zhang, Xiao-hui

    2014-02-01

    A range-gated underwater laser imaging system is designed and implemented in this article, which is made up of laser illumination subsystem, photoelectric imaging subsystem and control subsystem. The experiment of underwater target drone detection has been done, the target of distance 40m far from the range-gated underwater laser imaging system can be imaged in the pool which water attenuation coefficient is 0.159m-1. Experimental results show that the range-gated underwater laser imaging system can detect underwater objects effectively.

  10. Design and implementation of an omni-directional underwater acoustic micro-modem based on a low-power micro-controller unit.

    PubMed

    Won, Tae-Hee; Park, Sung-Joon

    2012-01-01

    For decades, underwater acoustic communication has been restricted to the point-to-point long distance applications such as deep sea probes and offshore oil fields. For this reason, previous acoustic modems were typically characterized by high data rates and long working ranges at the expense of large size and high power consumption. Recently, as the need for underwater wireless sensor networks (UWSNs) has increased, the research and development of compact and low-power consuming communication devices has become the focus. From the consideration that the requisites of acoustic modems for UWSNs are low power consumption, omni-directional beam pattern, low cost and so on, in this paper, we design and implement an omni-directional underwater acoustic micro-modem satisfying these requirements. In order to execute fast digital domain signal processing and support flexible interfaces with other peripherals, an ARM Cortex-M3 is embedded in the micro-modem. Also, for the realization of small and omni-directional properties, a spherical transducer having a resonant frequency of 70 kHz and a diameter of 34 mm is utilized for the implementation. Physical layer frame format and symbol structure for efficient packet-based underwater communication systems are also investigated. The developed acoustic micro-modem is verified analytically and experimentally in indoor and outdoor environments in terms of functionality and performance. Since the modem satisfies the requirements for use in UWSNs, it could be deployed in a wide range of applications requiring underwater acoustic communication. PMID:22438765

  11. Underwater robotic suturing.

    PubMed

    Kawaguchi, Masahiko; Shimada, Masanari; Ishikawa, Norihiko; Watanabe, Go

    2016-06-01

    Background Laparoscopic and robotic surgeries have become popular, and this popularity is increasing. However, the environment in which such surgeries are performed is rarely discussed. Similar to arthrosurgery performed in water, artificial ascites could be a new environment for laparoscopic surgery. This study was performed to determine whether robotic surgery is applicable to complicated suturing underwater. Material and methods A da Vinci Surgical System S was used. A weighted fabric sheet was placed at the bottom of a tank. Identical sets were made for each environment: One tank was dry, and the other was filled with water. The suturing task involved placement of a running silk suture around the perimeter of a small circle. The task was performed eight times in each environment. The task time and integrity score were determined. The integrity score was calculated by evaluating accuracy, tightness, thread damage, and uniformity; each factor was evaluated using a five-point scale. Results Although statistically significant differences were not shown in either task time or integrity score between the underwater and air environments, robotic suturing underwater is not inferior to performance in air. Conclusions The feasibility of robotic suturing underwater was confirmed under the herein-described experimental conditions. PMID:26853072

  12. Locomotor and verbal distance judgments in action and vista space.

    PubMed

    Bergmann, Johanna; Krauss, Elsa; Münch, Agnes; Jungmann, Reiner; Oberfeld, Daniel; Hecht, Heiko

    2011-04-01

    Judging distances is crucial when interacting with the environment. For short distances in action space (up to 30 m), both explicit verbal estimates and locomotor judgments are fairly accurate. For large distances, data have remained scarce. In two laboratory experiments, our observers judged distances to visual targets presented stereoscopically, either by giving a verbal estimate or by walking the distance to the target on a treadmill. While verbal judgments remained linearly scaled over the whole range of distances from 20 to 262 m, locomotor judgments fell short at distances above 100 m, indicating that observers overestimated the distance they had traveled and increasingly did so as a function of actual target distance. This pattern persisted when controlling for the potential confound of fatigue or reluctance to walk. We discuss different approaches to explain our findings and stress the importance of a differential use of distance cues. A model of leaky path integration showed a good fit with our locomotor data. PMID:21365183

  13. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  14. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus).

    PubMed

    Walaszczyk, Erin J; Johnson, Nicholas S; Steibel, Juan Pedro; Li, Weiming

    2013-06-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species. PMID:23735501

  15. In Situ Control of Underwater-Pinning of Organic Droplets on a Surfactant-Doped Conjugated Polymer Surface.

    PubMed

    Xu, Wei; Xu, Jian; Choi, Chang-Hwan; Yang, Eui-Hyeok

    2015-11-25

    Controlling the pinning of organic droplets on solid surfaces is of fundamental and practical interest in the field of material science and engineering, which has numerous applications such as surface cleaning, water treatment, and microfluidics. Here, a rapid in situ control of pinning and actuation of organic droplets is demonstrated on dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS)) surfaces in an aqueous environment via an electrochemical redox process. A dramatic change of the pinning results from the transport of DBS(-) molecules between the PPy(DBS) surface and the aqueous environment, as well as from a simultaneous alternation of the surface oleophobicity to organic liquids during the redox process. This in situ control of the droplet pinning enables a stop-and-go droplet actuation, applicable to both polar and apolar organic droplets, at low voltages (∼0.9 V) with an extremely low roll-off angle (∼0.4°). PMID:26536473

  16. Initiation of segmental locomotor-like activities by stimulation of ventrolateral funiculus in the neonatal rat.

    PubMed

    Cheng, Jianguo; Magnuson, David S K

    2011-09-01

    Descending control is critically important for the generation of locomotor activities. Yet, our understanding of the descending control system of locomotion is limited. We hypothesized that stimulation of the ventrolateral funiculus (VLF) induces rhythmic activity in lumbar neurons that is correlated with locomotor-like activity in the neonatal rat. Intracellular recordings were conducted in the L2-L3 lumbar segments, while locomotor-like output was monitored in the L2 and L5 ventral roots. Stimulation of the VLF at thoracic segments induced locomotor-like activity in the L2 and L5 ventral roots in majority of the preparations (26/33). In a few midline split cord preparations (4/13), VLF stimulation induced rhythmic locomotor-like bursts in either L2 or L5 ventral root without alternating pattern between the ventral roots. The response latencies suggest that VLF stimulation induced antidromic activation (<1 ms, 8 cells), monosynaptic activation (1-3 ms, 18 cells), and oligosynaptic activation (3.5-5 ms, 14 cells) of segmental neurons in the lumbar region. VLF stimulation induced rhythmic membrane potential oscillations with or without bursting of action potentials in 9 of 40 putative interneurons. The membrane potential oscillations were in phase with the locomotor-like output of the L2 ventral root in 7 of the 9 cells while the other 2 cells oscillated in phase with the L5 ventral root activity. We have thus demonstrated that descending axons exist in the VLF which make synaptic connections with segmental neurons in the lumbar region that may be a critical element of the locomotor neural network for the initiation of locomotion. PMID:21858680

  17. Initiation of segmental locomotor-like activities by stimulation of ventrolateral funiculus in the neonatal rat

    PubMed Central

    Magnuson, David S. K.

    2011-01-01

    Descending control is critically important for the generation of locomotor activities. Yet, our understanding of the descending control system of locomotion is limited. We hypothesized that stimulation of the ventrolateral funiculus (VLF) induces rhythmic activity in lumbar neurons that is correlated with locomotor-like activity in the neonatal rat. Intracellular recordings were conducted in the L2–L3 lumbar segments, while locomotor-like output was monitored in the L2 and L5 ventral roots. Stimulation of the VLF at thoracic segments induced locomotor-like activity in the L2 and L5 ventral roots in majority of the preparations (26/33). In a few midline split cord preparations (4/13), VLF stimulation induced rhythmic locomotor-like bursts in either L2 or L5 ventral root without alternating pattern between the ventral roots. The response latencies suggest that VLF stimulation induced antidromic activation (<1 ms, 8 cells), monosynaptic activation (1–3 ms, 18 cells), and oligosynaptic activation (3.5–5 ms, 14 cells) of segmental neurons in the lumbar region. VLF stimulation induced rhythmic membrane potential oscillations with or without bursting of action potentials in 9 of 40 putative interneurons. The membrane potential oscillations were in phase with the locomotor-like output of the L2 ventral root in 7 of the 9 cells while the other 2 cells oscillated in phase with the L5 ventral root activity. We have thus demonstrated that descending axons exist in the VLF which make synaptic connections with segmental neurons in the lumbar region that may be a critical element of the locomotor neural network for the initiation of locomotion. PMID:21858680

  18. Underwater welding, cutting and inspection

    SciTech Connect

    Tsai, C.L. . Ohio Underwater Welding Center)

    1995-02-01

    Underwater welding, cutting and inspection of offshore, inland waterway and port facilities are becoming a requirement for both military and industrial communities, as maintenance and repair costs continue to escalate, and as many of the facilities are in operation well beyond their intended design life. In nuclear applications, underwater welding, cutting and inspection for repair and modification of irradiated nuclear power plant components are also a requirement. This article summarizes recent developments in this emerging underwater technology.

  19. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  20. Locomotor Experience Affects Self and Emotion

    ERIC Educational Resources Information Center

    Uchiyama, Ichiro; Anderson, David I.; Campos, Joseph J.; Witherington, David; Frankel, Carl B.; Lejeune, Laure; Barbu-Roth, Marianne

    2008-01-01

    Two studies investigated the role of locomotor experience on visual proprioception in 8-month-old infants. "Visual proprioception" refers to the sense of self-motion induced in a static person by patterns of optic flow. A moving room apparatus permitted displacement of an entire enclosure (except for the floor) or the side walls and ceiling. In…

  1. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; Oddsson, L. I.; Seidler, R. D.

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  2. Altered Patterns of Reflex Excitability, Balance, and Locomotion Following Spinal Cord Injury and Locomotor Training

    PubMed Central

    Bose, Prodip K.; Hou, Jiamei; Parmer, Ronald; Reier, Paul J.; Thompson, Floyd J.

    2012-01-01

    Spasticity is an important problem that complicates daily living in many individuals with spinal cord injury (SCI). While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Thus the main objective of our present studies was to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, 30 animals received midthoracic SCI using the standard Multicenter Animal Spinal cord Injury Studies (MASCIS) protocol (10 g 2.5 cm weight drop). They were divided randomly into three equal groups: control (contused untrained), contused treadmill trained, and contused cycle trained. Treadmill and cycle training were started on post-injury day 8. Velocity-dependent ankle torque was tested across a wide range of velocities (612–49°/s) to permit quantitation of tonic (low velocity) and dynamic (high velocity) contributions to lower limb spasticity. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity-dependent spasticity was detected at postcontusion weeks 8–12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350–612°/s). Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and open field

  3. The Developmental Effect of Concurrent Cognitive and Locomotor Skills: Time-Sharing from a Dynamical Perspective.

    ERIC Educational Resources Information Center

    Whitall, Jill

    1991-01-01

    Presents research on the effects of concurrent verbal cognition on locomotor skills. Results revealed no interference with coordination variables across age, but some interference with control variables, particularly in younger subjects. Coordination of gait required less attention than setting of control parameters. This coordination was in place…

  4. Particle Swarm Inspired Underwater Sensor Self-Deployment

    PubMed Central

    Du, Huazheng; Xia, Na; Zheng, Rong

    2014-01-01

    Underwater sensor networks (UWSNs) can be applied in sea resource reconnaissance, pollution monitoring and assistant navigation, etc., and have become a hot research field in wireless sensor networks. In open and complicated underwater environments, targets (events) tend to be highly dynamic and uncertain. It is important to deploy sensors to cover potential events in an optimal manner. In this paper, the underwater sensor deployment problem and its performance evaluation metrics are introduced. Furthermore, a particle swarm inspired sensor self-deployment algorithm is presented. By simulating the flying behavior of particles and introducing crowd control, the proposed algorithm can drive sensors to cover almost all the events, and make the distribution of sensors match that of events. Through extensive simulations, we demonstrate that it can solve the underwater sensor deployment problem effectively, with fast convergence rate, and amiable to distributed implementation. PMID:25195852

  5. Particle swarm inspired underwater sensor self-deployment.

    PubMed

    Du, Huazheng; Xia, Na; Zheng, Rong

    2014-01-01

    Underwater sensor networks (UWSNs) can be applied in sea resource reconnaissance, pollution monitoring and assistant navigation, etc., and have become a hot research field in wireless sensor networks. In open and complicated underwater environments, targets (events) tend to be highly dynamic and uncertain. It is important to deploy sensors to cover potential events in an optimal manner. In this paper, the underwater sensor deployment problem and its performance evaluation metrics are introduced. Furthermore, a particle swarm inspired sensor self-deployment algorithm is presented. By simulating the flying behavior of particles and introducing crowd control, the proposed algorithm can drive sensors to cover almost all the events, and make the distribution of sensors match that of events. Through extensive simulations, we demonstrate that it can solve the underwater sensor deployment problem effectively, with fast convergence rate, and amiable to distributed implementation. PMID:25195852

  6. Hearing and underwater noise exposure

    NASA Astrophysics Data System (ADS)

    Smith, P. F.

    1985-08-01

    Exposure of divers to intense noise in water is increasing, yet there is no general hearing conservation standard for such exposures. This paper reviews three theories of underwater hearing as well as empirical data in order to identify some requirements that an underwater conservation standard must meet. Among the problems considered are hearing sensitivity in water, the frequency and dynamic ranges of the water-immersed ear, and nonauditory effects of underwater sound. It is concluded that: first, no well developed theoretical basis exists for extrapolating hearing conservation standards for airborne noise to the underwater situation; second, the empirical data on underwater hearing suggest that the frequency range covered by an underwater hearing conservation standard must be broader than is the case in air; third, in order to establish a general hearing conservation standard for underwater noise exposure further research is required on the dynamic range of the ear in water; fourth, underwater noise exposure may involve hazards to other body systems than the ear; and fifth, some exposure conditions may interfere with job performance of divers.

  7. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, Walter David

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available “Scallop” vehicle1, but has been modified by Department of Energy’s Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a “head-tohead” fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  8. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive

  9. Underwater power source study

    NASA Astrophysics Data System (ADS)

    Newhouse, H. L.; Payne, P. R.

    1981-11-01

    This report is concerned with the development of an ultra low cost underwater propulsion that can horizontally deploy 500 - 1000 feet of sonobuoy cable at depths between 500 and 1000 feet. A trade-off analysis shows that the best system is based on a gas driven water pulsejet (hydropulse) and that the best source of gas is a reaction between Lithium aluminum hydride (LiAlH4) and seawater. The fuel cost for -15 minutes of operation is about $2.00. A design for the pulsejet engine was then prepared (the drawings are in Appendix C) together with reaction rate measuring equipment. This culminates Phase I of the contract.

  10. Underwater gas tornado

    NASA Astrophysics Data System (ADS)

    Byalko, Alexey V.

    2013-07-01

    We present the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Simple measurements show that the tornado forms a vortex of the Rankine type, i.e. the rising gas rotates as a solid body and the liquid rotates with a velocity decreasing hyperbolically with the radius. We obtain the dependence of the tornado radius a on the gas stream value j theoretically: a ∼ j2/5. Processing of a set of experiments yielded the value 0.36 for the exponent in this expression. We also report the initial stages of the theoretical study of this phenomenon.

  11. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a

  12. Comments on computational underwater acoustics

    SciTech Connect

    Hedstrom, G.

    1993-04-01

    Two fundamental facts control the choice of computational methods in underwater acoustics. One is that over most of the ocean the sound speed varies much more rapidly with depth than in the horizontal directions. The other is that upon going down from the surface, the sound speed usually decreases to a minimum and then increases from there to the bottom. These properties of the medium imply that the ocean often acts as a waveguide, with energy trapped in a depth-band about the sound-speed minimum. One consequence of these facts is that approximation by normal modes is valid over large regions of the ocean, particularly if correction is made for the slow variation of the modes caused by variation in bottom depth and horizontal variation in sound speed. In portions of the ocean where approximation by normal modes is not valid, we may still often use a paraxial approximation. Paraxial approximations may be used when the wave motion is primarily in a single direction, with slow variation of the signal in directions tangent to the wave front. They are often called ``parabolic`` equations in ocean acoustics, but the term ``paraxial`` is standard in other branches of physics, inducting optics and seismology. Finite-difference approximations are also sometimes used in underwater acoustics, but they are much more computationally intensive than normal modes or paraxial approximations. Finite differences are therefore ordinarily used only where these other methods are not valid, such as in shallow water with rapidly varying depth. One could also use finite elements in these instances, but for acoustics problems finite elements are a special class of finite-difference methods. We discuss finite differences only briefly in this report, because they are not generally used in long-range acoustics.

  13. Comments on computational underwater acoustics

    SciTech Connect

    Hedstrom, G.

    1993-04-01

    Two fundamental facts control the choice of computational methods in underwater acoustics. One is that over most of the ocean the sound speed varies much more rapidly with depth than in the horizontal directions. The other is that upon going down from the surface, the sound speed usually decreases to a minimum and then increases from there to the bottom. These properties of the medium imply that the ocean often acts as a waveguide, with energy trapped in a depth-band about the sound-speed minimum. One consequence of these facts is that approximation by normal modes is valid over large regions of the ocean, particularly if correction is made for the slow variation of the modes caused by variation in bottom depth and horizontal variation in sound speed. In portions of the ocean where approximation by normal modes is not valid, we may still often use a paraxial approximation. Paraxial approximations may be used when the wave motion is primarily in a single direction, with slow variation of the signal in directions tangent to the wave front. They are often called parabolic'' equations in ocean acoustics, but the term paraxial'' is standard in other branches of physics, inducting optics and seismology. Finite-difference approximations are also sometimes used in underwater acoustics, but they are much more computationally intensive than normal modes or paraxial approximations. Finite differences are therefore ordinarily used only where these other methods are not valid, such as in shallow water with rapidly varying depth. One could also use finite elements in these instances, but for acoustics problems finite elements are a special class of finite-difference methods. We discuss finite differences only briefly in this report, because they are not generally used in long-range acoustics.

  14. The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence

    PubMed Central

    Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J.

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  15. The Drosophila insulin receptor independently modulates lifespan and locomotor senescence.

    PubMed

    Ismail, Mohd Zamri Bin Haji; Hodges, Matt D; Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  16. Overview of a hybrid underwater camera system

    NASA Astrophysics Data System (ADS)

    Church, Philip; Hou, Weilin; Fournier, Georges; Dalgleish, Fraser; Butler, Derek; Pari, Sergio; Jamieson, Michael; Pike, David

    2014-05-01

    The paper provides an overview of a Hybrid Underwater Camera (HUC) system combining sonar with a range-gated laser camera system. The sonar is the BlueView P900-45, operating at 900kHz with a field of view of 45 degrees and ranging capability of 60m. The range-gated laser camera system is based on the third generation LUCIE (Laser Underwater Camera Image Enhancer) sensor originally developed by the Defence Research and Development Canada. LUCIE uses an eye-safe laser generating 1ns pulses at a wavelength of 532nm and at the rate of 25kHz. An intensified CCD camera operates with a gating mechanism synchronized with the laser pulse. The gate opens to let the camera capture photons from a given range of interest and can be set from a minimum delay of 5ns with increments of 200ps. The output of the sensor is a 30Hz video signal. Automatic ranging is achieved using a sonar altimeter. The BlueView sonar and LUCIE sensors are integrated with an underwater computer that controls the sensors parameters and displays the real-time data for the sonar and the laser camera. As an initial step for data integration, graphics overlays representing the laser camera field-of-view along with the gate position and width are overlaid on the sonar display. The HUC system can be manually handled by a diver and can also be controlled from a surface vessel through an umbilical cord. Recent test data obtained from the HUC system operated in a controlled underwater environment will be presented along with measured performance characteristics.

  17. Underwater Hearing in Turtles.

    PubMed

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought. PMID:26611091

  18. Underwater green laser vibrometry

    NASA Astrophysics Data System (ADS)

    Antończak, Arkadiusz J.; Kozioł, Paweł; Wąż, Adam T.; Sotor, Jarosław Z.; Dudzik, Grzegorz; Kaczmarek, Paweł R.; Abramski, Krzysztof M.

    2012-06-01

    We have developed a laser vibrometer based on an monolithic single-frequency green laser operating at 532 nm. This wavelength can be particularly useful in the case of underwater vibrometry, especially with regard to the minimum of water absorption for this wavelength range (blue-green window). Using polarizing optics, we proposed a configuration that allows the elimination of parasitic reflections at the air-glass-water boundary. A measurement of heterodyne signals as a mixing result of scattered and reference beams has been performed. The study was conducted in aqueous medium for the scattering waterproof paper and retro-reflective surface. In both configurations we have obtained signals with a relatively high S/N ratio > 20 dB (for scattering surface) and > 31 dB (for retro-reflective tape) with the Resolution Bandwidth RBW 10 kHz for a vibrometer output power of 5 mW and the distance to the moving object 1.2 m (including 0.3 m in air). In our opinion, laser Doppler vibrometry LDV based on high-performance single frequency solid-state lasers with a wavelength range corresponding to the blue-green window allows effective measurement of vibration in the underwater environment.

  19. Effect of physical exercise prelabyrinthectomy on locomotor balance compensation in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Igarashi, M.; Ohashi, K.; Yoshihara, T.; MacDonald, S.

    1989-01-01

    This study examines the effectiveness of physical exercise, during a prepathology state, on locomotor balance compensation after subsequent unilateral labyrinthectomy in squirrel monkeys. An experimental group underwent 3 hr. of daily running exercise on a treadmill for 3 mo. prior to the surgery, whereas a control group was not exercised. Postoperatively, the locomotor balance function of both groups was tested for 3 mo. There was no significant difference in gait deviation counts in the acute phase of compensation. However, in the chronic compensation maintenance phase, the number of gait deviation counts was fewer in the exercise group, which showed significantly better performance stability.

  20. Optimal Sensor Layouts in Underwater Locomotory Systems

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Kanso, Eva

    2015-11-01

    Retrieving and understanding global flow characteristics from local sensory measurements is a challenging but extremely relevant problem in fields such as defense, robotics, and biomimetics. It is an inverse problem in that the goal is to translate local information into global flow properties. In this talk we present techniques for optimization of sensory layouts within the context of an idealized underwater locomotory system. Using techniques from fluid mechanics and control theory, we show that, under certain conditions, local measurements can inform the submerged body about its orientation relative to the ambient flow, and allow it to recognize local properties of shear flows. We conclude by commenting on the relevance of these findings to underwater navigation in engineered systems and live organisms.

  1. Underwater splice for submarine coaxial cable

    SciTech Connect

    Inouye, A.T.; Roe, T. Jr.; Tausing, W.R.; Wilson, J.V.

    1984-10-30

    The invention is a device for splicing submarine coaxial cable underwater on the seafloor with a simple push-on operation to restore and maintain electrical and mechanical strength integrity; the splice device is mateable directly with the severed ends of a coaxial cable to be repaired. Splicing assemblies comprise a dielectric pressure compensating fluid filled guide cavity, a gelled castor oil cap and wiping seals for exclusion of seawater, electrical contacts, a cable strength restoration mechanism, and a pressure compensation system for controlled extrusion of and depletion loss prevention of dielectric seal fluid during cable splicing. A splice is made underwater by directly inserting prepared ends of coaxial cable, having no connector attachments, into splicing assemblies.

  2. Differential Effects of Sex Pheromone Compounds on Adult Female Sea Lamprey (Petromyzon marinus) Locomotor Patterns.

    PubMed

    Walaszczyk, Erin J; Goheen, Benjamin B; Steibel, Juan Pedro; Li, Weiming

    2016-06-01

    Synchronization of male and female locomotor activity plays a critical role in ensuring reproductive success, especially in semelparous species. The goal of this study was to elucidate the effects of individual chemical signals, or pheromones, on the locomotor activity in the sea lamprey (Petromyzon marinus). In their native habitat, adult preovulated females (POF) and ovulated females (OF) are exposed to sex pheromone compounds that are released from spermiated males and attract females to nests during their migration and spawning periods. In this study, locomotor activity of individual POF and OF was measured hourly in controlled laboratory conditions using an automated video-tracking system. Differences in the activity between a baseline day (no treatment exposure) and a treatment day (sex pheromone compound or control exposure) were examined for daytime and nighttime periods. Results showed that different pheromone compound treatments affected both POF and OF sea lamprey (p < 0.05) but in different ways. Spermiated male washings (SMW) and one of its main components, 7α,12α,24-trihydroxy-5α-cholan-3-one 24 sulfate (3kPZS), decreased activity of POF during the nighttime. SMW also reduced activity in POF during the daytime. In contrast, SMW increased activity of OF during the daytime, and an additional compound found in SMW, petromyzonol sulfate (PZS), decreased the activity during the nighttime. In addition, we examined factors that allowed us to infer the overall locomotor patterns. SMW increased the maximum hourly activity during the daytime, decreased the maximum hourly activity during the nighttime, and reduced the percentage of nocturnal activity in OF. Our findings suggest that adult females have evolved to respond to different male compounds in regards to their locomotor activity before and after final maturation. This is a rare example of how species-wide chemosensory stimuli can affect not only the amounts of activity but also the overall locomotor

  3. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    PubMed

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications). PMID:18626130

  4. Underwater boom box

    NASA Astrophysics Data System (ADS)

    White, M. Catherine

    So far, there is no evidence that humpback whales are negatively affected by noise emitted from underwater speakers that may one day be used to measure warming in the oceans. A group of independent biologists from Cornell University monitored the behavior of the whales before, during, and after a scaled-down version of the controversial Acoustic Thermometry of Ocean Climate (ATOC) experiment off the coast of Hawaii. In 84 trials from February through March, they “saw no overt response from the whales.” Previous observations of similar sound transmissions at California's Pioneer Seamount, the other site planned for the experiment, also found no sign of disturbance among marine mammals, including elephant seals and several whale species. More observations are needed, however, before the experiment can be deemed safe, the Cornell biologists advised.

  5. Kinematic study of locomotor recovery after spinal cord clip compression injury in rats.

    PubMed

    Alluin, Olivier; Karimi-Abdolrezaee, Soheila; Delivet-Mongrain, Hugo; Leblond, Hugues; Fehlings, Michael G; Rossignol, Serge

    2011-09-01

    After spinal cord injury (SCI), precise assessment of motor recovery is essential to evaluate the outcome of new therapeutic approaches. Very little is known on the recovery of kinematic parameters after clinically-relevant severe compressive/contusive incomplete spinal cord lesions in experimental animal models. In the present study we evaluated the time-course of kinematic parameters during a 6-week period in rats walking on a treadmill after a severe thoracic clip compression SCI. The effect of daily treadmill training was also assessed. During the recovery period, a significant amount of spontaneous locomotor recovery occurred in 80% of the rats with a return of well-defined locomotor hindlimb pattern, regular plantar stepping, toe clearance and homologous hindlimb coupling. However, substantial residual abnormalities persisted up to 6 weeks after SCI including postural deficits, a bias of the hindlimb locomotor cycle toward the back of the animals with overextension at the swing/stance transition, loss of lateral balance and impairment of weight bearing. Although rats never recovered the antero-posterior (i.e. homolateral) coupling, different levels of decoupling between the fore and hindlimbs were measured. We also showed that treadmill training increased the swing duration variability during locomotion suggesting an activity-dependent compensatory mechanism of the motor control system. However, no effect of training was observed on the main locomotor parameters probably due to a ceiling effect of self-training in the cage. These findings constitute a kinematic baseline of locomotor recovery after clinically relevant SCI in rats and should be taken into account when evaluating various therapeutic strategies aimed at improving locomotor function. PMID:21770755

  6. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  7. Astronauts Practice Station Spacewalk Underwater

    NASA Video Gallery

    Astronauts Robert Satcher Jr. and Rick Sturckow conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Sp...

  8. Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait

    PubMed Central

    Fling, Brett W.; Cohen, Rajal G.; Mancini, Martina; Carpenter, Samuel D.; Fair, Damien A.; Nutt, John G.; Horak, Fay B.

    2014-01-01

    Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss

  9. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  10. [The heart and underwater diving].

    PubMed

    Lafay, V

    2006-11-01

    Cardiovascular examination of a certain number of candidates for underwater diving raises justifiable questions of aptitude. An indicative list of contraindications has been proposed by the French Federation of Underwater Studies and Sports but a physiopathological basis gives a better understanding of what is involved. During diving, the haemodynamic changes due not only to the exercise but also to cold immersion, hyperoxaemia and decompression impose the absence of any symptomatic cardiac disease. Moreover, the vasoconstriction caused by the cold and hyperoxaemia should incite great caution in both coronary and hypertensive patients. The contraindication related to betablocker therapy is controversial and the debate has not been settled in France. The danger of drowning makes underwater diving hazardous in all pathologies carrying a risk of syncope. Pacemaker patients should be carefully assessed and the depth of diving limited. Finally, the presence of right-to-left intracardiac shunts increases the risk of complications during decompressionand contraindicates underwater diving. Patent foramen ovale is a special case but no special investigation is required for its detection. The cardiologist examining candidates for underwater diving should take all these factors into consideration because, although underwater diving is a sport associated with an increased risk, each year there are more and more people, with differing degrees of aptitude, who wish to practice it. PMID:17181043

  11. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    PubMed

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. PMID:26336260

  12. Pipeline inspection using an autonomous underwater vehicle

    SciTech Connect

    Egeskov, P.; Bech, M.; Bowley, R.; Aage, C.

    1995-12-31

    Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, as well as the launch and recovery systems are described.

  13. Modelling the locomotor energetics of extinct hominids.

    PubMed

    Kramer, P A

    1999-10-01

    Bipedality is the defining characteristic of Hominidae and, as such, an understanding of the adaptive significance and functional implications of bipedality is imperative to any study of human evolution. Hominid bipedality is, presumably, a solution to some problem for the early hominids, one that has much to do with energy expenditure. Until recently, however, little attention could be focused on the quantifiable energetic aspects of bipedality as a unique locomotor form within Primates because of the inability to measure empirically the energy expenditure of non-modern hominids. A recently published method provides a way of circumventing the empirical measurement dilemma by calculating energy expenditure directly from anatomical variables and movement profiles. Although the origins of bipedality remain clouded, two discernible forms of locomotor anatomy are present in the hominid fossil record: the australopithecine and modern configurations. The australopithecine form is best represented by AL 288-1, a partial skeleton of Australopithecus afarensis, and is characterized as having short legs and a wide pelvis. The modern form is represented by modern humans and has long legs and a narrow pelvis. Human walking is optimized to take advantage of the changing levels of potential and kinetic energy that occur as the body and limbs move through the stride cycle. Although this optimization minimizes energy expenditure, some energy is required to maintain motion. I quantify this energy by developing a dynamic model that uses kinematic equations to determine energy expenditure. By representing both configurations with such a model, I can compare their rates of energy expenditure. I find that the australopithecine configuration uses less energy than that of a modern human. Despite arguments presented in the anthropological literature, the shortness of the legs of AL 288-1 provides no evidence that she was burdened with a compromised or transitional locomotor anatomy

  14. Effects of Cholestasis on Learning and Locomotor Activity in Bile Duct Ligated Rats

    PubMed Central

    HOSSEINI, Nasrin; ALAEI, Hojjatallah; NASEHI, Mohammad; RADAHMADI, Maryam; Mohammad Reza, ZARRINDAST

    2014-01-01

    Background: Cognitive functions are impaired in patients with liver disease. Bile duct ligation causes cholestasis that impairs liver function. This study investigated the impact of cholestasis progression on the acquisition and retention times in the passive avoidance test and on the locomotor activity of rats. Methods: Cholestasis was induced in male Wistar rats by ligating the main bile duct. Locomotor activity, learning and memory were assessed by the passive avoidance learning test at day 7, day 14, and day 21 post-bile duct ligation. The serum levels of bilirubin, alanine aminotransferase, and alkaline phosphatase were measured. Results: The results showed that acquisition time and locomotor activity were not affected at day 7 and day 14, but they were significantly (P < 0.05) impaired at day 21 post-bile duct ligation compared with the results for the control group. Additionally, memory was significantly impaired on day 7 (P < 0.01), day 14, and day 21 (P < 0.001) compared with the control groups. The levels of total bilirubin, direct bilirubin, indirect bilirubin, alanine aminotransferase, and alkaline phosphatase were significantly higher at day 7, day 14, and day 21 post-bile duct ligation compared with the levels in the sham group. Conclusion: Based on these findings, both liver and memory function were affected in the early stage of cholestasis (7 days after bile duct ligation), while learning and locomotor activity were impaired at 21 days after bile duct ligation following the progression of cholestasis. PMID:24639608

  15. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae.

    PubMed

    Godoy, Rafael; Noble, Sandra; Yoon, Kevin; Anisman, Hymie; Ekker, Marc

    2015-10-01

    To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons. PMID:26118896

  16. Covert underwater acoustic communications.

    PubMed

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data. PMID:21110585

  17. Linear optoacoustic underwater communication.

    PubMed

    Blackmon, Fletcher; Estes, Lee; Fain, Gilbert

    2005-06-20

    The linear mechanism for optical-to-acoustic energy conversion is explored for optoacoustic communication from an in-air platform or surface vessel to a submerged vessel such as a submarine or unmanned undersea vehicle. The communication range that can be achieved is addressed. A number of conventional signals used in underwater acoustic telemetry applications are shown to be capable of being generated experimentally through the linear optoacoustic regime conversion process. These results are in agreement with simulation based on current theoretical models. A number of practical issues concerning linear optoacoustic communication are addressed that lead to a formulation of a linear-regime optoacoustic communication scheme. The use of oblique laser beam incidence at the air-water interface to obtain considerable in-air range from the laser source to the in-water receiver is addressed. Also, the effect of oblique incidence on in-water range is examined. Next, the optimum and suboptimum linear optoacoustic sound-generation techniques for selecting the optical wavelength and signaling frequency for optimizing in-water range are addressed and discussed. Optoacoustic communication techniques employing M-ary frequency shift keying and multifrequency shift keying are then compared with regard to communication parameters such as bandwidth, data rate, range coverage, and number of lasers employed. PMID:15989059

  18. Underwater branch connection study

    SciTech Connect

    Not Available

    1992-06-01

    This report was prepared with the object of developing guidelines for designing underwater connections of branch pipelines to main lines at existing tap valves and with hot taps in diver accessible water depths. The report considers ANSI Classes 600 and 900 branch pipelines of up to twelve inches in diameter that conform to API Specification 5L minimum. Loads due to gravity, buoyancy, intemal and external pressure, thermal expansion, hydrodynamics and random events are considered. External corrosion, temperature, cover, bottom conditions, stability, testing, commissioning, trenching, and pigging are also addressed. A general discussion of these issues is included in the body of the report. Methods of analysis are included in the appendices and in various references. Lotus 123'' spreadsheets that compute the expansion stresses resulting from pressure and temperature at points on a generic piping geometry are presented. A program diskette is included with the report. The report summarizes, and draws from, the results of a survey of the relevant practice and experience of fifteen gas pipeline operating companies. The survey indicates that most existing branch connections do not provide for pigging of the lateral lines, but that there is a growing consensus that cleaning and inspection pigging of lateral lines is desirable or necessary.

  19. Robust underwater visibility parameter.

    PubMed

    Zaneveld, J Ronald; Pegau, W

    2003-11-17

    We review theoretical models to show that contrast reduction at a specific wavelength in the horizontal direction depends directly on the beam attenuation coefficient at that wavelength. If a black target is used, the inherent contrast is always negative unity, so that the visibility of a black target in the horizontal direction depends on a single parameter only. That is not the case for any other target or viewing arrangement. We thus propose the horizontal visibility of a black target to be the standard for underwater visibility. We show that the appropriate attenuation coefficient can readily be measured with existing simple instrumentation. Diver visibility depends on the photopic beam attenuation coefficient, which is the attenuation of the natural light spectrum convolved with the spectral responsivity of the human eye (photopic response function). In practice, it is more common to measure the beam attenuation coefficient at one or more wavelength bands. We show that the relationship: visibility is equal to 4.8 divided by the photopic beam attenuation coefficient; originally derived by Davies-Colley [1], is accurate with an average error of less than 10% in a wide variety of coastal and inland waters and for a wide variety of viewing conditions. We also show that the beam attenuation coefficient measured at 532 nm, or attenuation measured by a WET Labs commercial 20 nm FWHM transmissometer with a peak at 528nm are adequate substitutes for the photopic beam attenuation coefficient, with minor adjustments. PMID:19471421

  20. The GALS locomotor screen and disability.

    PubMed Central

    Plant, M J; Linton, S; Dodd, E; Jones, P W; Dawes, P T

    1993-01-01

    OBJECTIVES--Examination of the locomotor system is frequently neglected. Therefore, the GALS locomotor screen (Gait, Arms, Legs, Spine) has been proposed by Doherty et al as a practical method of identifying functionally important problems. This study was designed to test whether this screen reflects functional impairment, as measured by accepted health status measures. METHODS--Two observers performed the GALS screen in a total of 83 patients with a variety of musculoskeletal conditions. The examination components of GALS were rated by a simple 0 to 3 scale. Physical ability was further assessed by Health Activity Questionnaire (HAQ), Barthel index and Steinbrocker's ARA classification. RESULTS--For the total patient group, Spearman correlations between GALS and the three functional indices were good (r = 0.62 to 0.71, p < 0.001). Correlations were equally good for rheumatoid arthritis patients alone (r = 0.65 to 0.70, p < 0.001), but less good although still significant for the other miscellaneous rheumatic conditions (r = 0.31 to 0.46, p < 0.05). Observed proportional agreement between the two observers for the individual scores was > 70%, with a kappa statistic k = 0.49 to 0.74. CONCLUSIONS--The GALS screen is a reliable and valid measure of functional ability, compared with standard accepted indices in a variety of musculoskeletal diseases. This supports the proposal for its use as a screening test by general practitioners and medical students. PMID:8311541

  1. Development of a spinal locomotor rheostat.

    PubMed

    Zhang, Hong-Yan; Issberner, Jon; Sillar, Keith T

    2011-07-12

    Locomotion in immature animals is often inflexible, but gradually acquires versatility to enable animals to maneuver efficiently through their environment. Locomotor activity in adults is produced by complex spinal cord networks that develop from simpler precursors. How does complexity and plasticity emerge during development to bestow flexibility upon motor behavior? And how does this complexity map onto the peripheral innervation fields of motorneurons during development? We show in postembryonic Xenopus laevis frog tadpoles that swim motorneurons initially form a homogenous pool discharging single action potential per swim cycle and innervating most of the dorsoventral extent of the swimming muscles. However, during early larval life, in the prelude to a free-swimming existence, the innervation fields of motorneurons become restricted to a more limited sector of each muscle block, with individual motorneurons reaching predominantly ventral, medial, or dorsal regions. Larval motorneurons then can also discharge multiple action potentials in each cycle of swimming and differentiate in terms of their firing reliability during swimming into relatively high-, medium-, or low-probability members. Many motorneurons fall silent during swimming but can be recruited with increasing locomotor frequency and intensity. Each region of the myotome is served by motorneurons spanning the full range of firing probabilities. This unfolding developmental plan, which occurs in the absence of movement, probably equips the organism with the neuronal substrate to bend, pitch, roll, and accelerate during swimming in ways that will be important for survival during the period of free-swimming larval life that ensues. PMID:21709216

  2. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model.

    PubMed

    Bruinsma, Caroline F; Schonewille, Martijn; Gao, Zhenyu; Aronica, Eleonora M A; Judson, Matthew C; Philpot, Benjamin D; Hoebeek, Freek E; van Woerden, Geeske M; De Zeeuw, Chris I; Elgersma, Ype

    2015-11-01

    Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am-/p+ mouse model of AS. VOR phase-reversal learning was singularly impaired in these animals and correlated with reduced tonic inhibition between Golgi cells and granule cells. Purkinje cell physiology, in contrast, was normal in AS mice as shown by synaptic plasticity and spontaneous firing properties that resembled those of controls. Accordingly, neither VOR phase-reversal learning nor locomotion was impaired following selective deletion of Ube3a in Purkinje cells. However, genetic normalization of αCaMKII inhibitory phosphorylation fully rescued locomotor deficits despite failing to improve cerebellar learning in AS mice, suggesting extracerebellar circuit involvement in locomotor learning. We confirmed this hypothesis through cerebellum-specific reinstatement of Ube3a, which ameliorated cerebellar learning deficits but did not rescue locomotor deficits. This double dissociation of locomotion and cerebellar phenotypes strongly suggests that the locomotor deficits of AS mice do not arise from impaired cerebellar cortex function. Our results provide important insights into the etiology of the motor deficits associated with AS. PMID:26485287

  3. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    PubMed

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought. PMID:23535307

  4. Quantitative Trait Loci for Locomotor Behavior in Drosophila melanogaster

    PubMed Central

    Jordan, Katherine W.; Morgan, Theodore J.; Mackay, Trudy F. C.

    2006-01-01

    Locomotion is an integral component of most animal behaviors and many human diseases and disorders are associated with locomotor deficits, but little is known about the genetic basis of natural variation in locomotor behavior. Locomotion is a complex trait, with variation attributable to the joint segregation of multiple interacting quantitative trait loci (QTL), with effects that are sensitive to the environment. We assessed variation in a component of locomotor behavior (locomotor reactivity) in a population of 98 recombinant inbred lines of Drosophila melanogaster and mapped four QTL affecting locomotor reactivity by linkage to polymorphic roo transposable element insertion sites. We used complementation tests of deficiencies to fine map these QTL to 12 chromosomal regions and complementation tests of mutations to identify 13 positional candidate genes affecting locomotor reactivity, including Dopa decarboxylase (Ddc), which catalyzes the final step in the synthesis of serotonin and dopamine. Linkage disequilibrium mapping in a population of 164 second chromosome substitution lines derived from a single natural population showed that polymorphisms at Ddc were associated with naturally occurring genetic variation in locomotor behavior. These data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in locomotor reactivity. PMID:16783013

  5. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    NASA Astrophysics Data System (ADS)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  6. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    PubMed Central

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy. PMID:26175796

  7. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.

    PubMed

    Le Gal, Jean-Patrick; Juvin, Laurent; Cardoit, Laura; Morin, Didier

    2016-01-20

    Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best

  8. Underwater measurements of muon intensity

    NASA Technical Reports Server (NTRS)

    Fedorov, V. M.; Pustovetov, V. P.; Trubkin, Y. A.; Kirilenkov, A. V.

    1985-01-01

    Experimental measurements of cosmic ray muon intensity deep underwater aimed at determining a muon absorption curve are of considerable interest, as they allow to reproduce independently the muon energy spectrum at sea level. The comparison of the muon absorption curve in sea water with that in rock makes it possible to determine muon energy losses caused by nuclear interactions. The data available on muon absorption in water and that in rock are not equivalent. Underground measurements are numerous and have been carried out down to the depth of approx. 15km w.e., whereas underwater muon intensity have been measured twice and only down to approx. 3km deep.

  9. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  10. Differential Effects of Inhaled Toluene on Locomotor Activity in Adolescent and Adult Rats

    PubMed Central

    Batis, Jeffery C.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Inhalant abuse is a world-wide public health concern among adolescents. Most preclinical studies have assessed inhalant effects in adult animals leaving unclear how behavioral effects differ in younger animals. We exposed adolescent (postnatal day [PN] 28) and adult (PN90) male rats to toluene using 1 of 3 exposure patterns. These patterns modeled those reported in toluene abuse in teens and varied concentration, number and length of exposures, as well as the inter-exposure interval. Animals were exposed repeatedly over 12 days to toluene concentrations of 0, 8,000 or 16,000 parts per million (ppm). Locomotor activity was quantified during toluene exposures and for 30 min following completion of the final daily toluene exposure. For each exposure pattern, there were significant toluene concentration-related increases and decreases in locomotor activity compared to the 0-ppm “air” controls at both ages. These changes depended upon when activity was measured – during or following exposure. Compared to adults, adolescents displayed greater locomotor activity on the first day and generally greater increases in activity over days than adults during toluene exposure. Adults displayed greater locomotor activity than adolescents in the “recovery” period following exposure on the first and subsequent days. Age group differences were clearest following the pattern of paced, brief (5-min) repeated binge exposures. The results suggest that locomotor behavior in rats during and following inhalation of high concentrations of toluene depends on age and the pattern of exposure. The results are consistent with dose-dependent shifts in sensitivity and sensitization or tolerance to repeated toluene in the adolescent animals compared to the adult animals. Alternate interpretations are possible and our interpretation is limited by the range of very high concentrations of toluene used. The results imply that both pharmacological and psychosocial factors contribute to the teen

  11. Assaying Locomotor Activity to Study Circadian Rhythms and Sleep Parameters in Drosophila

    PubMed Central

    Chiu, Joanna C.; Low, Kwang Huei; Pike, Douglas H.; Yildirim, Evrim; Edery, Isaac

    2010-01-01

    Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties. PMID:20972399

  12. Functional redundancy of ventral spinal locomotor pathways.

    PubMed

    Loy, David N; Magnuson, David S K; Zhang, Y Ping; Onifer, Stephen M; Mills, Michael D; Cao, Qi-lin; Darnall, Jessica B; Fajardo, Lily C; Burke, Darlene A; Whittemore, Scott R

    2002-01-01

    Identification of long tracts responsible for the initiation of spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. Pathways derived from the mesencephalic locomotor region and pontomedullary medial reticular formation responsible for fictive locomotion in decerebrate preparations project to the thoracolumbar levels of the spinal cord via reticulospinal axons in the ventrolateral funiculus (VLF). However, white matter regions critical for spontaneous over-ground locomotion remain unclear because cats, monkeys, and humans display varying degrees of locomotor recovery after ventral SCIs. We studied the contributions of myelinated tracts in the VLF and ventral columns (VC) to spontaneous over-ground locomotion in the adult rat using demyelinating lesions. Animals received ethidium bromide plus photon irradiation producing discrete demyelinating lesions sufficient to stop axonal conduction in the VLF, VC, VLF-VC, or complete ventral white matter (CV). Behavior [open-field Basso, Beattie, and Bresnahan (BBB) scores and grid walking] and transcranial magnetic motor-evoked potentials (tcMMEP) were studied at 1, 2, and 4 weeks after lesion. VLF lesions resulted in complete loss or severe attenuation of tcMMEPs, with mean BBB scores of 18.0, and no grid walking deficits. VC lesions produced behavior similar to VLF-lesioned animals but did not significantly affect tcMMEPs. VC-VLF and CV lesions resulted in complete loss of tcMMEP signals with mean BBB scores of 12.7 and 6.5, respectively. Our data support a diffuse arrangement of axons within the ventral white matter that may comprise a system of multiple descending pathways subserving spontaneous over-ground locomotion in the intact animal. PMID:11756515

  13. On the efficient swimming of a ray-inspired underwater vehicle Part I: Experimental study on swimming optimization of control and fin structure

    NASA Astrophysics Data System (ADS)

    Zhu, Jianzhong; Lopez, Mervyn; Williams, Ventress; Aluko, Theophilus; Dong, Haibo; Bart-Smith, Hilary

    2014-11-01

    Batoid fish such as manta and cownose rays are among the most agile and energy efficient swimming creatures. These capabilities arise from flapping and bending their dorsally flattened pectoral fins. To assess this contribution, this study focuses on the study of a bio-inspired underwater vehicle--the MantaBot--where biological design criteria are applied. The MantaBot consists of two parts: a rigid body rendered from a CT scanning image of a cownose ray and two flexible fins driven by tensegrity actuators. The experiments were conducted in a water tank where the MantaBot was attached to a rail for rectilinear swimming. Three stereo-videos were taken and digitized to measure the 3D kinematics. Results showed that the fins conduct deformations in both spanwise and chordwise directions during steady swimming. Optimal operation conditions were determined for fastest swimming by surveying a wide range of parameters. Contributions of thrust generation and amplitude hindrance of various portions of the fin volume were examined. Additionally, fin tip structure, material and bending properties were studied for optimal swimming. This research was supported by the Office of Naval Research (ONR) under the Multidisciplinary University Research Initiative (MURI) Grant N00014-08-1-0642 and Grant N00014-14-1-0533.

  14. Effects of coal mine wastewater on locomotor and non-locomotor activities of empire gudgeons (Hypseleotris compressa).

    PubMed

    Lanctôt, C; Melvin, S D; Fabbro, L; Leusch, F D L; Wilson, S P

    2016-05-01

    Coal mining represents an important industry in many countries, but concerns exist about the possible adverse effects of minewater releases on aquatic animals and ecosystems. Coal mining generates large volumes of complex wastewater, which often contains high concentrations of dissolved solids, suspended solids, metals, hydrocarbons, salts and other compounds. Traditional toxicological testing has generally involved the assessment of acute toxicity or chronic toxicity with longer-term tests, and while such tests provide useful information, they are poorly suited to ongoing monitoring or rapid assessment following accidental discharge events. As such, there is considerable interest in developing rapid and sensitive approaches to environmental monitoring, and particularly involving the assessment of sub-lethal behavioural responses in locally relevant aquatic species. We therefore investigated behavioural responses of a native Australian fish to coal mine wastewater, to evaluate its potential use for evaluating sub-lethal effects associated with wastewater releases on freshwater ecosystems. Empire gudgeons (Hypseleotris compressa) were exposed to wastewater from two dams located at an open cut coal mine in Central Queensland, Australia and activity levels were monitored using the Multispecies Freshwater Biomonitor® (LimCo International GmbH). A general decrease in locomotor activity (i.e., low frequency movement) and increase in non-locomotor activity (i.e., high frequency movement including ventilation and small fin movement) was observed in exposed fish compared to those in control water. Altered activity levels were observable within the first hour of exposure and persisted throughout the 15-d experiment. Results demonstrate the potential for using behavioural endpoints as tools for monitoring wastewater discharges using native fish species, but more research is necessary to identify responsible compounds and response thresholds, and to understand the relevance

  15. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score. PMID:26513783

  16. Visual training improves underwater vision in children.

    PubMed

    Gislén, Anna; Warrant, Eric J; Dacke, Marie; Kröger, Ronald H H

    2006-10-01

    Children in a tribe of sea-gypsies from South-East Asia have been found to have superior underwater vision compared to European children. In this study, we show that the improved underwater vision of these Moken children is not due to better contrast sensitivity in general. We also show that European children can achieve the same underwater acuity as the Moken children. After 1 month of underwater training (11 sessions) followed by 4 months with no underwater activities, European children showed improved underwater vision and distinct bursts of pupil constriction. When tested 8 months after the last training session in an outdoor pool in bright sunlight-comparable to light environments in South-East Asia-the children had attained the same underwater acuity as the sea-gypsy children. The achieved performance can be explained by the combined effect of pupil constriction and strong accommodation. PMID:16806388

  17. Human factors in underwater systems.

    PubMed

    Crosson, D

    1993-10-01

    Applications of human factors to undersea engineering and the relationship to aerospace science are explored. Cooperative ventures include the TEKTITE underwater habitat and development of better procedures to prevent decompression sickness. Other research involved the use of alternate gases in diving systems, remote-operation vehicles, and diving system tests. PMID:11541030

  18. Underwater Robots Surface in Utah

    ERIC Educational Resources Information Center

    Hurd, Randy C.; Hacking, Kip S.; Damarjian, Jennifer L.; Wright, Geoffrey A.; Truscott, Tadd

    2015-01-01

    Underwater robots (or ROVs: Remotely Operated Vehicles as they are typically called in industry) have recently become a very popular instructional STEM activity. Nationally, ROVs have been used in science and technology classrooms for several years in cities such as Seattle, San Diego, Virginia Beach, and other coastal areas. In the past two…

  19. Angular scale expansion theory and the misperception of egocentric distance in locomotor space

    PubMed Central

    Durgin, Frank H.

    2014-01-01

    Perception is crucial for the control of action, but perception need not be scaled accurately to produce accurate actions. This paper reviews evidence for an elegant new theory of locomotor space perception that is based on the dense coding of angular declination so that action control may be guided by richer feedback. The theory accounts for why so much direct-estimation data suggests that egocentric distance is underestimated despite the fact that action measures have been interpreted as indicating accurate perception. Actions are calibrated to the perceived scale of space and thus action measures are typically unable to distinguish systematic (e.g., linearly scaled) misperception from accurate perception. Whereas subjective reports of the scaling of linear extent are difficult to evaluate in absolute terms, study of the scaling of perceived angles (which exist in a known scale, delimited by vertical and horizontal) provides new evidence regarding the perceptual scaling of locomotor space. PMID:25610539

  20. Visuo-locomotor coordination for direction changes in a manual wheelchair as compared to biped locomotion in healthy subjects.

    PubMed

    Charette, Caroline; Routhier, François; McFadyen, Bradford J

    2015-02-19

    The visual system during walking provides travel path and environmental information. Although the manual wheelchair (MWC) is also a frequent mode of locomotion, its underlying visuo-locomotor control is not well understood. This study begins to understand the visuo-locomotor coordination for MWC navigation in relation to biped gait during direction changes in healthy subjects. Eight healthy male subjects (26.9±6.4 years) were asked to walk as well as to propel a MWC straight ahead and while changing direction by 45° to the right guided by a vertical pole. Body and MWC movement (speed, minimal clearance, point of deviation, temporal body coordination, relative timing of body rotations) and gaze behavior were analysed. There was a main speed effect for direction and a direction by mode interaction with slower speeds for MWC direction change. Point of deviation was later for MWC direction change and always involved a counter movement (seen for vehicular control) with greater minimal distance from the vertical pole as compared to biped gait. In straight ahead locomotion, subjects predominantly fixed their gaze on the end target for both locomotor modes while there was a clear trend for subjects to fixate on the vertical pole more for MWC direction change. When changing direction, head movement always preceded gaze changes, which was followed by trunk movement for both modes. Yet while subjects turned the trunk at the same time during approach regardless of locomotor mode, head movement was earlier for MWC locomotion. These results suggest that MWC navigation combines both biped locomotor and vehicular-based movement control. Head movement to anticipate path deviations and lead steering for locomotion appears to be stereotypic across locomotor modes, while specific gaze behavior predominantly depends on the environmental demands. PMID:25562632

  1. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, W D

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available "Scallop" vehicle 1 , but has been modified by the Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a "head-to-head" fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  2. Human pendulum approach to simulate and quantify locomotor impact loading.

    PubMed

    Lafortune, M A; Lake, M J

    1995-09-01

    The understanding of impact mechanics during locomotion is important for research within the fields of injury prevention and footwear design. Instrumented missiles offer a worthy solution to the lack of control inherent in in vivo activities and to the isolated nature of tissue studies. However, missiles cannot mimic the magnitude and temporal characteristics of locomotion impacts. A human pendulum approach employed the subject's own body as the missile to impart controlled impacts to the lower extremity. The subject is swung toward a force platform instrumented wall while lying supine on a suspended lightweight bed. The ability of the pendulum to reproduce locomotor impact loading was assessed for heel-toe running. Axial reaction force and shank acceleration patterns recorded during pendulum tests in ten subjects were found to closely resemble running patterns and they were obtained without discomfort to the subjects. This new approach relies upon one's own body to impart impacts representative of locomotion. It should prove useful to study human impact loading in a controlled manner. PMID:7559680

  3. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  4. [The new technologies of kinesiotherapy for the rehabilitation of the patients suffering from the post-stroke locomotor disorders].

    PubMed

    Gusarova, S A; Styazhkina, E M; Gurkina, M V; Chesnikova, E I; Sycheva, A Yu

    2016-01-01

    This paper was designed to report the results of the application of two therapeutic modalities for the rehabilitation of 44 patients presenting with post-stroke locomotor disorders in the form of spastic hemiparesis. The patients allocated to the main group were treated with the use of the new kinesiotherapeutic methods including cryomassage and the Armeo robotic complex. The patients of the control group had to perform traditional therapeutic physical exercises in combination with classical massage and remedial gymnastics. It is concluded that the application of the combination of the modern kinesiotherapeutic factors exerting the positive corrective influence on different aspects of the locomotor deficiency in the upper extremities and the psychoemotional status of the patients has advantages over traditional physical exercise therapy in terms of clinical efficiency because it enhances the rehabilitative potential for these patients with serious locomotor problems. PMID:27213941

  5. Underwater sediment-contact radiation survey method

    SciTech Connect

    Lee, D.R.; St. Aubin, M.; Welch, S.J. )

    1991-11-01

    The authors are striving to produce a practical system for mapping lateral distributions in gamma activity on submerged sediments. This is in response to the need for quality control and interpretation of data obtainable by sediment sampling and analyses near nuclear utilities. A prototype gamma probe has been constructed and tested. The prototype is essentially a background survey meter packaged in a 53-cm-long {times} 5.4-cm-diam waterproof vehicle. This usage-shaped vehicle is connected to a cable for towing in contact with bottom sediments of lakes, rivers, and coastal waters. This vehicle, or sediment probe as it is called, was initially developed for measuring sediment electrical conductances, a parameter that can be used to locate underwater areas of groundwater and contaminant upwelling. During towing, the probe does not roll or twist around its longitudinal axis by more than 10 deg, so that sensors, which have been fixed within the vehicle, can be oriented to look up, down, or sideways. In over 450 lin-km of underwater survey, only a single sediment probe has been irretrievably snagged on sunken rocks or other debris. Work in the Ottawa River near the Chalk River Laboratories has shown good agreement among point measurements of river sediment with continuous measurements using the moving probe.

  6. Locomotor stereotypy produced by dexbenzetimide and scopolamine is reduced by SKF 83566, not sulpiride.

    PubMed

    Fritts, M E; Mueller, K; Morris, L

    1998-07-01

    Like amphetamine, scopolamine produces locomotor stereotypy (repetitive routes of locomotion) in an open field. To determine whether locomotor stereotypy is a common behavioral effect of anticholingeric agents, several doses of the anticholinergic dexbenzetimide were tested for the ability to produce locomotor stereotypy; like scopolamine, dexbenzetimide produced locomotor stereotypy. To investigate a possible role of dopamine in anticholinergic-induced locomotor stereotypy, we tested the ability of the dopamine D1 antagonist SKF 83566 and the D2 antagonist sulpiride to block the locomotor stereotypy induced by scopolamine as well as dexbenzetimide. SKF 83566 blocked scopolamine- and dexbenzetimide-induced locomotor stereotypy; sulpiride did not reduce dexbenzetimide-induced locomotor stereotypy, but enhanced scopolamine-induced locomotor stereotypy. Hyperlocomotion was reduced by both dopamine antagonists. Results are interpreted in support of the notion that dopamine is the likely candidate mediating locomotor stereotypy. PMID:9678647

  7. Analysis of MCP gain selection for underwater range-gated imaging applications based on ICCD

    NASA Astrophysics Data System (ADS)

    Fu, Bo; Yang, Kecheng; Rao, Jionghui; Xia, Min

    2010-03-01

    In this paper, the gain and noise of underwater laser range-gated imaging systems based on intensified CCD (ICCD) are theoretically analyzed. Combined with experimental results, the quality of underwater images at different system parameters is objectively evaluated from the aspect of modulation degree and histogram of grayscale distribution. Comprehensive selection disciplines of micro-channel plate (MCP) gain in applications is generalized according to the coherence between theory and experiment, and a scheme of auto gain control (AGC) based on image analysis is proposed for underwater range-gated imaging systems.

  8. Fabrication of Long-Term Underwater Superoleophobic Al Surfaces and Application on Underwater Lossless Manipulation of Non-Polar Organic Liquids

    PubMed Central

    Song, Jinlong; Huang, Liu; Lu, Yao; Liu, Xin; Deng, Xu; Yang, Xiaolong; Huang, Shuai; Sun, Jing; Jin, Zhuji; Parkin, Ivan P.

    2016-01-01

    Underwater superoleophobic surfaces have different applications in fields from oil/water separation to underwater lossless manipulation. This kind of surfaces can be easily transformed from superhydrophilic surfaces in air, which means the stability of superhydrophilicity in air determines the stability of underwater superoleophobicity. However, superhydrophilic surfaces fabricated by some existing methods easily become hydrophobic or superhydrophobic in air with time. Here, a facile method combined with electrochemical etching and boiling water immersion is developed to fabricate long-term underwater superoleophobic surfaces. The surface morphologies and chemical compositions are investigated. The results show that the electrochemically etched and boiling-water immersed Al surfaces have excellent long-term superhydrophilicity in air for over 1 year and boehmite plays an important role in maintaining long-term stability of wettability. Based on the fabricated underwater superoleophobic surfaces, a special method and device were developed to realize the underwater lossless manipulation of immiscible organic liquid droplets with a large volume. The capture and release of liquid droplets were realized by controlling the resultant force of the applied driving pressure, gravity and buoyancy. The research has potential application in research-fields such as the transfer of valuable reagents, accurate control of miniature chemical reactions, droplet-based reactors, and eliminates contamination of manipulator components. PMID:27550427

  9. Fabrication of Long-Term Underwater Superoleophobic Al Surfaces and Application on Underwater Lossless Manipulation of Non-Polar Organic Liquids.

    PubMed

    Song, Jinlong; Huang, Liu; Lu, Yao; Liu, Xin; Deng, Xu; Yang, Xiaolong; Huang, Shuai; Sun, Jing; Jin, Zhuji; Parkin, Ivan P

    2016-01-01

    Underwater superoleophobic surfaces have different applications in fields from oil/water separation to underwater lossless manipulation. This kind of surfaces can be easily transformed from superhydrophilic surfaces in air, which means the stability of superhydrophilicity in air determines the stability of underwater superoleophobicity. However, superhydrophilic surfaces fabricated by some existing methods easily become hydrophobic or superhydrophobic in air with time. Here, a facile method combined with electrochemical etching and boiling water immersion is developed to fabricate long-term underwater superoleophobic surfaces. The surface morphologies and chemical compositions are investigated. The results show that the electrochemically etched and boiling-water immersed Al surfaces have excellent long-term superhydrophilicity in air for over 1 year and boehmite plays an important role in maintaining long-term stability of wettability. Based on the fabricated underwater superoleophobic surfaces, a special method and device were developed to realize the underwater lossless manipulation of immiscible organic liquid droplets with a large volume. The capture and release of liquid droplets were realized by controlling the resultant force of the applied driving pressure, gravity and buoyancy. The research has potential application in research-fields such as the transfer of valuable reagents, accurate control of miniature chemical reactions, droplet-based reactors, and eliminates contamination of manipulator components. PMID:27550427

  10. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity.

    PubMed

    Stewart, Adam Michael; Kaluyeva, Alexandra A; Poudel, Manoj K; Nguyen, Michael; Song, Cai; Kalueff, Allan V

    2015-10-01

    Zebrafish are emerging as an important model organism for neurobehavioral phenomics research. Given the likely variation of zebrafish behavioral phenotypes between and within laboratories, in this study, we examine the influence and variability of several common environmental modifiers on adult zebrafish anxiety and locomotor activity. Utilizing the novel tank paradigm, this study assessed the role of various laboratory factors, including experimenter/handling, testing time and days, batch, and the order of testing, on the behavior of a large population of experimentally naive control fish. Although time of the day, experimenter identity, and order of testing had little effect on zebrafish anxiety and locomotor activity levels, subtle differences were found for testing days and batches. Our study establishes how zebrafish behaviors are modulated by common environmental/laboratory factors and outlines several implications for zebrafish neurobehavioral phenomics research. PMID:26244595

  11. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Tao; Zhang, Xiao-Hui; Ge, Wei-Long

    2011-11-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  12. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  13. Slipping, sliding and stability: locomotor strategies for overcoming low-friction surfaces.

    PubMed

    Clark, Andrew J; Higham, Timothy E

    2011-04-15

    Legged terrestrial animals must avoid falling while negotiating unexpected perturbations inherent to their structurally complex environments. Among humans, fatal and nonfatal injuries frequently result from slip-induced falls precipitated by sudden unexpected encounters with low-friction surfaces. Although studies using walking human models have identified some causes of falls and mechanisms underlying slip prevention, it is unclear whether these apply to various locomotor speeds and other species. We used high-speed video and inverse dynamics to investigate the locomotor biomechanics of helmeted guinea fowl traversing slippery surfaces at variable running speeds (1.3-3.6 m s(-1)). Falls were circumvented when limb contact angles exceeded 70 deg, though lower angles were tolerated at faster running speeds (>3.0 m s(-1)). These prerequisites permitted a forward shift of the body's center of mass over the limb's base of support, which kept slip distances below 10 cm (the threshold distance for falls) and maximized the vertical ground reaction forces, thus facilitating limb retraction and the conclusion of the stance phase. These postural control strategies for slip avoidance parallel those in humans, demonstrating the applicability of these strategies across locomotor gaits and the potential for guinea fowl as an insightful model for invasive approaches to understanding limb neuromuscular control on slippery surfaces. PMID:21430214

  14. Discriminative and locomotor effects of five synthetic cathinones in rats and mice

    PubMed Central

    Gatch, Michael B.; Rutledge, Margaret; Forster, Michael J.

    2014-01-01

    Rationale Synthetic cathinones continue to be sold as “legal” alternatives to methamphetamine or cocaine. As these marginally legal compounds become controlled, suppliers move to other, unregulated compounds. Objectives The purpose of these experiments was to determine whether several temporarily controlled cathinone compounds, which are currently abused on the street, stimulate motor activity and have discriminative stimulus effects similar to cocaine and/or methamphetamine. Methods Methcathinone, pentedrone, pentylone, 3-fluoromethcathinone (3-FMC), and 4-methylethcathinone (4-MEC) were tested for locomotor stimulant effects in mice and subsequently for substitution in rats trained to discriminate cocaine (10 mg/kg, i.p.) or methamphetamine (1 mg/kg, i.p.) from saline. Results Methcathinone, pentedrone, and pentylone produced locomotor stimulant effects which lasted up to 6 hours. In addition, pentylone produced convulsions and lethality at 100 mg/kg. 4-MEC produced locomotor stimulant effects which lasted up to 2 hours. Methcathinone, pentedrone, pentylone, 3-FMC, and 4-MEC each produced discriminative stimulus effects similar to those of cocaine and methamphetamine. Conclusions All of the tested compounds produce discriminative stimulus effects similar to either those of cocaine, methamphetamine or both, which suggests that these compounds are likely to have similar abuse liability to cocaine and/or methamphetamine. Pentylone may be more dangerous on the street, as it produced adverse effects at doses that produced maximal stimulant-like effects. PMID:25281225

  15. Compressive line sensing underwater imaging system

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Dalgleish, F. R.; Vuorenkoski, A. K.; Caimi, F. M.; Britton, W.

    2013-05-01

    Compressive sensing (CS) theory has drawn great interest and led to new imaging techniques in many different fields. In recent years, the FAU/HBOI OVOL has conducted extensive research to study the CS based active electro-optical imaging system in the scattering medium such as the underwater environment. The unique features of such system in comparison with the traditional underwater electro-optical imaging system are discussed. Building upon the knowledge from the previous work on a frame based CS underwater laser imager concept, more advantageous for hover-capable platforms such as the Hovering Autonomous Underwater Vehicle (HAUV), a compressive line sensing underwater imaging (CLSUI) system that is more compatible with the conventional underwater platforms where images are formed in whiskbroom fashion, is proposed in this paper. Simulation results are discussed.

  16. Operation of electrothermal and electrostatic MUMPs microactuators underwater

    NASA Astrophysics Data System (ADS)

    Sameoto, Dan; Hubbard, Ted; Kujath, Marek

    2004-10-01

    Surface-micromachined actuators made in multi-user MEMS processes (MUMPs) have been operated underwater without modifying the manufacturing process. Such actuators have generally been either electro-thermally or electro-statically actuated and both actuator styles are tested here for suitability underwater. This is believed to be the first time that thermal and electrostatic actuators have been compared for deflection underwater relative to air performance. A high-frequency ac square wave is used to replicate a dc-driven actuator output without the associated problem of electrolysis in water. This method of ac activation, with frequencies far above the mechanical resonance frequencies of the MEMS actuators, has been termed root mean square (RMS) operation. Both thermal and electrostatic actuators have been tested and proved to work using RMS control. Underwater performance has been evaluated by using in-air operation of these actuators as a benchmark. When comparing deflection per volt applied, thermal actuators operate between 5 and 9% of in-air deflection and electrostatic actuators show an improvement in force per volt applied of upwards of 6000%. These results agree with predictions based on the physical properties of the surrounding medium.

  17. TECHNOLOGY DEMONSTRATION UNDERWATER HYDROLASING PHASE 0 & 1 & 2 TECHNICAL REPORT

    SciTech Connect

    CHRONISTER, G.B.

    2005-06-08

    From September 10 through December 17th, 2003, S.A.Robotics executed Phases 0, I, and II of the Technology Demonstration - Underwater Hydrolasing. Phase 0 was performed at the S.A.Robotics facility in Loveland, Colorado, while Phases I and II were performed at the Hanford K-Basin East Site. The purpose of the demonstrations was to show (1) underwater hydrolasing is a feasible method of removing contaminated concrete underwater to a required depth, (2) the hydrolasing head could be controlled during operation, (3) the depth of contamination in the concrete structure could be accurately measured, and (4) a characterization of the waste stream during hydrolasing activities could be recorded. Video monitoring was also used during all demonstrations. All phases of the demonstration were completed and deemed a success by both the observers and the demonstration team. Single and multiple passes were made using variable cutting rates, different stand-off distances were tested, and stationary cuts were executed. Hot and cold hyrdolasing was performed with radiological and depth scans of the affected surfaces. Specially designed equipment was installed and operated within the contaminated environment of 100-K East Basin. Separate results are documented below by phase. The Phase II radiological demonstration was performed to determine the feasibility of underwater hydrolasing technology for decontamination of the DOE spent fuel basins at Hanford 100-K area. This project demonstration was conducted at 105 KE Basin with the expectation that, once proven, this technology can be implemented at Hanford and other DOE sites.

  18. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.L.; Kulp, T.J.

    1995-03-10

    Practical limitations of underwater imaging systems are reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and the resolution necessary for target discovery and identification. The advent of high power lasers operating in the oceanic transmission window of the visible spectrum (blue-green portion) has led to improved experimental illumination systems for underwater imaging The properties of laser bearm in range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence effect of common volume back scatter to reduce or eliminate noise, increase signal to noise levels. Synchronously scanned systems rely on the highly collimated nature of the laser beam for spatial rejection of common volume back scatter. A synchronous, raster-scanning underwater laser imaging system (UWLIS) has been developed at Lawrence liver-more National Laboratory. The present UWLIS system differs from earlier synchronous scanners in its ability to scan in two dimensions at conventional video frame rate (30 Hz). The imaging performance of the present UWLIS was measured at distances of up to 6.3 AL (at a physical distance of 15.2 meters) during an in-water tank test and 4.5 to 5.0 AL (at a physical distance of 30 meters) during open water oceanic testing. The test results indicate that the UWLIS system is already capable of extending the underwater imaging range beyond that of conventional floodlight illuminated SIT cameras. The real or near real time frame rates of the UWLIS make possible operations in a mode in which the platform speed is randomly varied. This is typical of the operational environment in which the platform is often maneuvered above and around rugged seafloor terrain`s and obstacles.

  19. Solidification of underwater wet welds

    SciTech Connect

    Pope, A.M.; Medeiros, R.C. de; Liu, S.

    1995-12-31

    It is well known that the shape of a weld pool can influence the microstructure and segregation pattern of the final solidified weld metal. Mechanical properties and susceptibility to defects are consequently affected by the solidification mode of the weld. In this work the solidification behavior of weld beads deposited in air and underwater wet welding using rutile electrodes were compared. The welds were deposited by gravity feed, on low carbon, manganese steel plates using similar welding conditions. Macroscopic observation of the weld craters showed that welds deposited in air presented an elliptical weld pool. The underwater wet welds, on the other hand, solidified with a tear drop shape. Although the welds differed in shape, their lengths were approximately the same. Microscopic examinations carried out on transverse, normal and longitudinal sections revealed a coarser columnar grain structure in the underwater welds. These results suggest that the tear-drop shaped pool induced solidification in a preferred orientation with segregation more likely in welds deposited under wet conditions. This change in weld pool geometry can be explained by the surface heat loss conditions that occur in a wet weld: slower when covered by the steam bubble and faster in the region in contact with water behind the pool.

  20. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats

    PubMed Central

    Pan, Leilei; Qi, Ruirui; Wang, Junqin; Zhou, Wei; Liu, Jiluo; Cai, Yiling

    2016-01-01

    Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3,3′-iminodipropionitrile (IDPN)-induced vestibular lesion (AVL or IVL) on the orexin-A (OXA) labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.). The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v.) on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48, and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders. PMID:27507932

  1. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats.

    PubMed

    Pan, Leilei; Qi, Ruirui; Wang, Junqin; Zhou, Wei; Liu, Jiluo; Cai, Yiling

    2016-01-01

    Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3,3'-iminodipropionitrile (IDPN)-induced vestibular lesion (AVL or IVL) on the orexin-A (OXA) labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.). The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v.) on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48, and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders. PMID:27507932

  2. Taiwan's underwater cultural heritage documentation management

    NASA Astrophysics Data System (ADS)

    Tung, Y.-Y.

    2015-09-01

    Taiwan is an important trading and maritime channels for many countries since ancient time. Numerous relics lie underwater due to weather, wars, and other factors. In the year of 2006, Bureau of Cultural Heritage (BOCH) entrusted the Underwater Archaeological Team of Academia Sinica to execute the underwater archaeological investigation projects. Currently, we verified 78 underwater targets, with 78 site of those had been recognized as shipwrecks sites. Up to date, there is a collection of 638 underwater objects from different underwater archaeological sites. Those artefacts are distributed to different institutions and museums. As very diverse management methods/systems are applied for every individual institution, underwater cultural heritage data such as survey, excavation report, research, etc. are poorly organized and disseminated for use. For better communication regarding to Taiwan's underwater cultural heritage in every level, a universal format of documentation should be established. By comparing the existing checklist used in Taiwan with guidelines that are followed in other countries, a more intact and appropriate underwater cultural heritage condition documentation system can be established and adapted in Taiwan.

  3. Bathymetric Mapping: Making Underwater Profile Charts.

    ERIC Educational Resources Information Center

    Pettus, Alvin M.

    1998-01-01

    Focuses on mapping activities designed to provide simulated experiences that help students understand the techniques used to measure and represent underwater terrain without making direct visual observations. (DDR)

  4. Crocodiles don't focus underwater.

    PubMed

    Fleishman, L J; Howland, H C; Howland, M J; Rand, A S; Davenport, M L

    1988-08-01

    Crocodilians are amphibious reptiles which hunt prey both on land and in water. Previous refractive and anatomical studies have suggested that their eyes can focus objects in air and that their ability to refocus the eye underwater may be limited. Examination of the plane of focus of six species of crocodilians both in air and underwater has revealed that they are generally well focused in air for distant targets and severely defocused underwater. These results suggest that sensory systems other than vision must play an important role in prey capture underwater. PMID:3184006

  5. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females

    PubMed Central

    Lima-Camara, Tamara Nunes; Codeço, Claudia Torres; Honório, Nildimar Alves; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio; Lounibos, Leon Philip

    2013-01-01

    Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus . PMID:24473799

  6. The effect of early environmental manipulation on locomotor sensitivity and methamphetamine conditioned place preference reward.

    PubMed

    Hensleigh, E; Pritchard, L M

    2014-07-15

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 min per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference. PMID:24713150

  7. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  8. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    PubMed

    Lemieux, Maxime; D Laflamme, Olivier; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. PMID:26683069

  9. THE EFFECT OF EARLY ENVIRONMENTAL MANIPULATION ON LOCOMOTOR SENSITIVITY AND METHAMPHETAMINE CONDITIONED PLACE PREFERENCE REWARD

    PubMed Central

    Hensleigh, E.; Pritchard, L. M.

    2014-01-01

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 minutes per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference. PMID:24713150

  10. Muscle-specific modulation of vestibular reflexes with increased locomotor velocity and cadence.

    PubMed

    Dakin, Christopher J; Inglis, John Timothy; Chua, Romeo; Blouin, Jean-Sébastien

    2013-07-01

    Vestibular information is one of the many sensory signals used to stabilize the body during locomotion. When locomotor velocity increases, the influence of these signals appears to wane. It is unclear whether vestibular signals are globally attenuated with velocity or are influenced by factors such as whether a muscle is contributing to balance control. Here we investigate how vestibular sensory signals influence muscles of the leg during locomotion and what causes their attenuation with increasing locomotor velocity. We hypothesized that 1) vestibular signals influence the activity of all muscles engaged in the maintenance of medio-lateral stability during locomotion and 2) increases in both cadence and velocity would be associated with attenuation of these signals. We used a stochastic vestibular stimulus and recorded electromyographic signals from muscles of the ankle, knee, and hip. Participants walked using two cadences (52 and 78 steps/min) and two walking velocities (0.4 and 0.8 m/s). We observed phase-dependent modulation of vestibular influence over ongoing muscle activity in all recorded muscles. Within a stride, reversals of the muscle responses were observed in the biceps femoris, tibialis anterior, and rectus femoris. Vestibular-muscle coupling decreases with increases in both cadence and walking velocity. These results show that the observed vestibular suppression is muscle- and phase dependent. We suggest that the phase- and muscle-specific influence of vestibular signals on locomotor activity is organized according to each muscle's functional role in body stabilization during locomotion. PMID:23576695

  11. Effect of Temporal Organization of the Visuo-Locomotor Coupling on the Predictive Steering

    PubMed Central

    Rybarczyk, Yves Philippe; Mestre, Daniel

    2012-01-01

    Studies on the direction of a driver’s gaze while taking a bend show that the individual looks toward the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street turns a corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behavior, executes an internal model of the trajectory that anticipates the completion of the path, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to manipulate in an easy and precise way the temporal organization of the visuo-locomotor coupling. The results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables (i) a significant smoothness of the trajectory and (ii) a velocity-curvature relationship that follows the “2/3 Power Law.” These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the formation of the path seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding. PMID:22798955

  12. Effect of temporal organization of the visuo-locomotor coupling on the predictive steering.

    PubMed

    Rybarczyk, Yves Philippe; Mestre, Daniel

    2012-01-01

    Studies on the direction of a driver's gaze while taking a bend show that the individual looks toward the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street turns a corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behavior, executes an internal model of the trajectory that anticipates the completion of the path, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to manipulate in an easy and precise way the temporal organization of the visuo-locomotor coupling. The results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables (i) a significant smoothness of the trajectory and (ii) a velocity-curvature relationship that follows the "2/3 Power Law." These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the formation of the path seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding. PMID:22798955

  13. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. PMID:27469058

  14. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish

    PubMed Central

    Chen, Audrey; Chiu, Cindy N.; Mosser, Eric A.; Kahn, Sohini; Spence, Rory

    2016-01-01

    The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control. SIGNIFICANCE STATEMENT The hypothalamus is thought to play a key role in regulating sleep in vertebrate animals, but few sleep-promoting signaling pathways that function in the hypothalamus have been identified. Here we use the zebrafish, a diurnal vertebrate, to functionally and anatomically characterize the neuropeptide QRFP. We show that QRFP is exclusively expressed in a small number of neurons in the larval zebrafish hypothalamus that project widely in the brain. We also show that QRFP overexpression reduces locomotor activity, whereas animals that lack QRFP signaling are more active and sleep less. These results suggest that QRFP signaling participates in the hypothalamic regulation of sleep. PMID:26865608

  15. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits

    PubMed Central

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait. PMID:26941592

  16. The effects of inhaled isoparaffins on locomotor activity and operant performance in mice.

    PubMed

    Bowen, S E; Balster, R L

    1998-11-01

    Very little is known qualitatively or quantitatively about the acute central nervous system effects of isoparaffin solvents that are widely used in household and commercial applications. Four isoparaffinic hydrocarbon solvent products differing in predominant carbon number and volatility (ISOPAR-C, -E -G, -H) were tested for their acute effects on locomotor activity and operant performance after inhalation exposure in mice. For both measures, concentration-effect curves were obtained for 30-min exposures using a within-subject design. The more volatile products, ISOPAR-C and -E, were as easily vaporized under our conditions as vapors such as toluene and TCE, which have acute effects on human behavior and are abused. ISOPAR-G was slowly volatilized and ISOPAR-H could not be completely volatilized within our 30-min exposures, suggesting that acute human exposures may be less likely and that it may be more difficult to abuse them. ISOPAR-C, -E, and -G produced reversible increases in locomotor activity of mice at 4000 and 6000 ppm while ISOPAR-C and -E produced reversible concentration-dependent decreases in rates of schedule-controlled operant behavior in approximately the same concentration range as they affected locomotor activity. The fact that only locomotor activity increases were observed with these isoparaffins provides evidence that they produce a different pattern of effects than those reported for abused solvents such as toluene and TCE. Further research will be needed to determine if this different pattern of effects on animal behavior between isoparaffins and abused solvents is correlated with a different pattern of acute intoxication and abuse potential in humans. PMID:9768561

  17. Sex differences in Siberian hamster ultradian locomotor rhythms.

    PubMed

    Prendergast, Brian J; Stevenson, Tyler J; Zucker, Irving

    2013-02-17

    Sex differences in ultradian activity rhythms (URs) and circadian rhythms (CRs) were assessed in Siberian hamsters kept in long day (LD) or short day (SD) photoperiods for 40 weeks. For both sexes URs of locomotor activity were more prevalent, greater in amplitude and more robust in SDs. The UR period was longer in females than males in both day lengths. The reproductive system underwent regression and body mass declined during the initial 10 weeks of SD treatment, and in both sexes these traits spontaneously reverted to the LD phenotype at or before 40 weeks in SD, reflecting the development of neuroendocrine refractoriness to SD patterns of melatonin secretion. Hamsters of both sexes, however, continued to display SD-like URs at the 40 weeks time point. CRs were less prevalent and the waveform less robust and lower in amplitude in SDs than LDs; the SD circadian waveform also did not revert to the long-day phenotype after 40 weeks of SD treatment. Short day lengths enhanced ultradian and diminished circadian rhythms in both sexes. Day length controls several UR characteristics via gonadal steroid and melatonin-independent mechanisms. Sex differences in ultradian timing may contribute to sex diphenisms in rhythms of sleep, food intake and exercise. PMID:23333554

  18. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    PubMed Central

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  19. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.

    PubMed

    Molkov, Yaroslav I; Bacak, Bartholomew J; Talpalar, Adolfo E; Rybak, Ilya A

    2015-05-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized "hopping" pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left-right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  20. Modular diversification of the locomotor system in damselfishes (Pomacentridae).

    PubMed

    Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H

    2016-05-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. J. Morphol. 277:603-614, 2016. © 2016 Wiley Periodicals, Inc. PMID:26919129

  1. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    PubMed

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. PMID:27237044

  2. Rotation, locomotor activity and individual differences in voluntary ethanol consumption.

    PubMed

    Nielsen, D M; Crosley, K J; Keller, R W; Glick, S D; Carlson, J N

    1999-03-27

    Spontaneous turning behavior and locomotor activity were evaluated for their ability to predict differences in the voluntary consumption of ethanol in male Long-Evans rats. Animals were assessed for their preferred direction of turning behavior and for high vs. low levels of spontaneous locomotor activity, as determined during nocturnal testing in a rotometer. Subsequently, preference for a 10% ethanol solution vs. water was determined in a 24-h two-bottle home-cage free-choice paradigm. Rats exhibiting a right-turning preference consumed more ethanol than rats showing a left-turning preference. While locomotor activity alone did not predict differences in drinking, turning and locomotor activity together predicted differences in ethanol consumption. Low-activity right-turning rats consumed more ethanol than all the other groups of rats. Previous studies from this laboratory have shown that individual differences in turning behavior are accompanied by different asymmetries in dopamine (DA) function in the medial prefrontal cortex (mPFC). Individual differences in locomotor activity are associated with differences in nucleus accumbens (NAS) DA function. The present data suggest that variations in mPFC DA asymmetry and NAS DA function may underlie differences in the voluntary consumption of ethanol. PMID:10095014

  3. Visual inspection of sea bottom structures by an autonomous underwater vehicle.

    PubMed

    Foresti, G L

    2001-01-01

    This paper describes a vision-based system for inspections of underwater structures, e.g., pipelines, cables, etc., by an autonomous underwater vehicle (AUV). Usually underwater inspections are performed by remote operated vehicles (ROVs) driven by human operators placed in a support vessel. However, this task is often challenging, especially in conditions of poor visibility or in presence of strong currents. The system proposed allows the AUV to accomplish the task in autonomy. Moreover, the use of a three-dimensional (3-D) model of the environment and of an extended Kalman filter (EKF) allows the guidance and the control of the vehicle in real time. Experiments done on real underwater images have demonstrated the validity of the proposed method and its efficiency in the case of critical and complex situations. PMID:18244834

  4. Seeking Teachers for Underwater Robotics PD Program

    ERIC Educational Resources Information Center

    McGrath, Beth; Sayres, Jason

    2012-01-01

    With funding from the National Science Foundation (NSF), ITEEA members will contribute to the development of a hybrid professional development program designed to facilitate the scale-up of an innovative underwater robotics curriculum. WaterBotics[TM] is an underwater robotics curriculum that targets students in middle and high school classrooms…

  5. Multipurpose ROV system for underwater monitoring

    SciTech Connect

    Graczyk, T.

    1995-12-31

    The paper presents achievements of the Underwater Team at the Faculty of Maritime Technology of the Szczecin Technical University in the field of designing the equipment destined for the underwater monitoring. The multipurpose remotely operated vehicle system is described. Technical specification, some laboratory tank test results, research techniques, operational range, experience and development trends have been discussed.

  6. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired...

  7. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster...

  8. Improved Underwater Excitation-Emission Matrix Fluorometer

    NASA Technical Reports Server (NTRS)

    Moore, Casey; daCunha, John; Rhoades, Bruce; Twardowski, Michael

    2007-01-01

    settings. In addition, the design of the present 2D EEMF incorporates improvements over the one prior commercial underwater 2D EEMF, developed in 1994 by the same company that developed the present one. Notable advanced features of the present EEMF include the following: 1) High sensitivity and spectral resolution are achieved by use of an off-the-shelf grating spectrometer equipped with a sensor in the form of a commercial astronomical- grade 256 532-pixel charge-coupled-device (CCD) array. 2) All of the power supply, timing, control, and readout circuits for the illumination source and the CCD, ancillary environmental monitoring sensors, and circuitry for controlling a shutter or filter motor are custom-designed and mounted compactly on three circuit boards below a fourth circuit board that holds the CCD (see figure). 3) The compactness of the grating spectrometer, CCD, and circuit assembly makes it possible to fit the entire instrument into a compact package that is intended to be maneuverable underwater by one person. 4) In mass production, the cost of the complete instrument would be relatively low - estimated at approximately $30,000 at 2005 prices.

  9. Alterations in locomotor activity after microinjections of GBR-12909, selective dopamine antagonists or neurotensin into the medial prefrontal cortex.

    PubMed

    Radcliffe, R A; Erwin, V G

    1996-06-01

    It has been postulated that increased dopamine (DA) activity in the medial prefrontal cortex (mPFC) exerts an inhibitory influence over DA release in the nucleus accumbens and, thus, also over locomotor activity. Experiments were designed to examine the role of mPFC DA and neurotensin (NT), a neuropeptide which interacts with DA, in spontaneous locomotor activity. LS/IBG mice were injected bilaterally with either GBR-12909, a selective DA uptake blocker, the DA D1 receptor antagonist R-(+)-SCH-23390, the DA D2 receptor antagonist epidepride, NT or a combination of drugs. GBR-12909 produced a U-shaped dose-response curve with a maximum inhibition of 47% of control. Postmortem tissue levels of DA, 5-hydroxytryptamine, norepinephrine and their major metabolites were determined after microinjections of GBR-12909. Tissue levels of these compounds were not significantly affected by GBR-12909. However, the ratios of homovanilic acid/DA and homovanilic acid + 3,4-dihyroxyphenylacetic acid/DA were significantly decreased, whereas the 5-hydroxyindoleacetic acid/5-hydroxytryptamine ratio was not affected by GBR-12909, suggesting a selective effect on DAergic processes. By itself, R-(+)-SCH-23390 had no effect on locomotor activity except at a very high dose which caused locomotor inhibition (49% of control). Epidepride caused a dose-dependent inhibition of locomotor activity with a maximum inhibition of 49% of control. When coinjected with an inhibitory dose of GBR-12909, both epidepride and R-(+)-SCH-23390 attenuated the GBR-12909 effect in a dose-dependent manner. A broad range of doses of NT was found to have no consistent effect on locomotor activity. However, when coinjected with an inhibitory dose of GBR-12909, NT attenuated the GBR-12909-induced inhibition in a dose-dependent manner. The results suggest that stimulation of DA receptors in the mPFC, both DA D1 and DA D2 receptors mediates locomotor inhibition. Furthermore, stimulation of NT receptors appears to

  10. Noise From Shallow Underwater Explosions

    NASA Astrophysics Data System (ADS)

    Soloway, Alexander G.

    Naval activities such as ordnance disposal, demolition and requisite training, can involve detonation of small explosive charges in shallow water that have the potential to harm nearby marine life. Measurements of the underwater sound generated by sub-surface explosions were collected as part of a naval training exercise. In this thesis the noise levels from these explosions will be investigated using peak pressure, sound exposure level and energy spectral density. Measurements of very-low frequency Scholte interface waves will also be presented and used to investigate elastic parameters in the sediment.