Science.gov

Sample records for controlled laminar airflow

  1. Effect of a novel temperature-controlled laminar airflow device on personal breathing zone aeroallergen exposure.

    PubMed

    Gore, R B; Boyle, R J; Gore, C; Custovic, A; Hanna, H; Svensson, P; Warner, J O

    2015-02-01

    Temperature-controlled laminar airflow improves symptoms in atopic asthmatics, but its effects on personal allergen exposure are unknown. We aimed to evaluate its effects on personal cat allergen and particulate exposures in a simulated bedroom environment. Five healthy volunteers lay under an active and an inactive temperature-controlled laminar airflow device for 175 min, in a simulated bedroom containing bedding from a cat owner. Total airborne particles (≥0.5 - ≥10 μm diameter) were quantified with a laser particle counter. Airborne allergen was sampled with Institute of Occupational Medicine filters. Inhaled exposure was sampled with nasal air samplers. Allergen-containing particles were quantified by immunoassay. Treatment reduced total airborne particles (>0.5 μm diameter) by >99% (P < 0.001) and reduced airborne allergen concentration within the breathing zone (ratio of median counts = 30, P = 0.043). Treatment reduced inhaled allergen (ratio of median counts = 7, P = 0.043). Treatment was not associated with a change in airborne allergen concentration outside of the breathing zone (P = 0.160). Temperature-controlled laminar airflow treatment of individuals in an allergen-rich experimental environment results in significant reductions in breathing zone allergenic and non-allergenic particle exposure, and in inhaled cat allergen exposure. These findings may explain the clinical benefits of temperature-controlled laminar airflow. PMID:24750266

  2. Economic analysis of temperature-controlled laminar airflow (TLA) for the treatment of patients with severe persistent allergic asthma

    PubMed Central

    Brazier, Peter; Schauer, Uwe; Hamelmann, Eckard; Holmes, Steve; Pritchard, Clive; Warner, John O

    2016-01-01

    Introduction Chronic asthma is a significant burden for individual sufferers, adversely impacting their quality of working and social life, as well as being a major cost to the National Health Service (NHS). Temperature-controlled laminar airflow (TLA) therapy provides asthma patients at BTS/SIGN step 4/5 an add-on treatment option that is non-invasive and has been shown in clinical studies to improve quality of life for patients with poorly controlled allergic asthma. The objective of this study was to quantify the cost-effectiveness of TLA (Airsonett AB) technology as an add-on to standard asthma management drug therapy in the UK. Methods The main performance measure of interest is the incremental cost per quality-adjusted life year (QALY) for patients using TLA in addition to usual care versus usual care alone. The incremental cost of TLA use is based on an observational clinical study monitoring the incidence of exacerbations with treatment valued using NHS cost data. The clinical effectiveness, used to derive the incremental QALY data, is based on a randomised double-blind placebo-controlled clinical trial comprising participants with an equivalent asthma condition. Results For a clinical cohort of asthma patients as a whole, the incremental cost-effectiveness ratio (ICER) is £8998 per QALY gained, that is, within the £20 000/QALY cost-effectiveness benchmark used by the National Institute for Health and Care Excellence (NICE). Sensitivity analysis indicates that ICER values range from £18 883/QALY for the least severe patients through to TLA being dominant, that is, cost saving as well as improving quality of life, for individuals with the most severe and poorly controlled asthma. Conclusions Based on our results, Airsonett TLA is a cost-effective addition to treatment options for stage 4/5 patients. For high-risk individuals with more severe and less well controlled asthma, the use of TLA therapy to reduce incidence of hospitalisation would be a cost

  3. Airflow control system

    DOEpatents

    Motszko, Sean Ronald; McEnaney, Ryan Patrick; Brush, Jeffrey Alan; Zimmermann, Daniel E.

    2007-03-13

    A dual airflow control system for an environment having a first air zone and a second air zone. The system includes a first input device operable to generate a first input signal indicative of a desired airflow to the first zone and a second input device operable to generate a second input signal indicative of a desired airflow to the second zone. First and second flow regulators are configured to regulate airflow to the first and second zones, respectively, such that the first and second regulators selectively provide the airflow to each of the first and second zones based on the first and second input signals. A single actuator is associated with the first and second flow regulators. The actuator is operable to simultaneously actuate the first and second flow regulators based on an input from the first and second input devices to allow the desired airflows to the first and the second zones.

  4. Improved asthma control in patients with severe, persistent allergic asthma after 12 months of nightly temperature-controlled laminar airflow: an observational study with retrospective comparisons

    PubMed Central

    Schauer, Uwe; Bergmann, Karl-Christian; Gerstlauer, Michael; Lehmann, Sylvia; Gappa, Monika; Brenneken, Amelie; Schulz, Christian; Ahrens, Peter; Schreiber, Jens; Wittmann, Michael; Hamelmann, Eckard

    2015-01-01

    Introduction Continuous or episodic allergen exposure is a major risk factor of frequent symptoms and exacerbations for patients with allergic asthma. It has been shown that temperature-controlled laminar airflow (TLA) significantly reduced allergen exposure and airway inflammation and improved quality of life of patients with poorly controlled allergic asthma. Objective The objective was to evaluate the effects of nighttime TLA when used during real-life conditions for 12 consecutive months in addition to the patients’ regular medication. Methods This multicenter, pre- and postretrospective observational study included patients with inadequately controlled moderate-to-severe allergic asthma who received add-on treatment with TLA for 12 consecutive months. Data on medication use, asthma control, asthma symptoms, lung function, use of hospital resources, and exacerbations were collected after 4 and 12 months and compared with corresponding data collected retrospectively from medical records during the year prior to inclusion in the study. Results Data from 30 patients (mean age 28; range 8–70) completing 4 months and 27 patients completing 12 months of TLA use are presented. The mean number of exacerbations was reduced from 3.6 to 1.3 (p<0.0001), and the ratio of asthma-related emergency room visits or hospitalizations diminished from 72.4 to 23.3% (p=0.001) or from 44.8 to 20.0% (p<0.05), respectively, after 12 months of TLA use. The Asthma Control Test index increased from 14.1 to 18.5 (p<0.0001). After 4 months of TLA use, clear improvements can be shown for most variables in line with the data collected after 12 months. Conclusions The addition of TLA to the patients’ regular medication significantly reduced exacerbations, asthma symptoms, and the utilization of hospital resources. The data support that TLA may be an important new non-pharmacological approach in the management of poorly controlled allergic asthma. PMID:26557252

  5. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  6. MICROPROCESSOR CONTROL OF ROTOGRAVURE AIRFLOWS

    EPA Science Inventory

    The report discusses the technical and economic viability of using micro-processor-based control technology to collect volatile organic compound (VOC) emissions from a paper coating operation. The microprocessor-based control system monitors and controls both the airflow rate and...

  7. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique will be studied. The primary tasks of the research apply to the NASA/Ames PoC and LFSWT's nozzle design with laminar flow control and are listed as follows: Predictions of supersonic laminar boundary layer stability and transition; Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; Effects of a conducted-vs-pulse wall temperature distribution for the LFSWT; and Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  8. Microbiological Studies on the Performance of a Laminar Airflow Biological Cabinet

    PubMed Central

    Mcdade, Joseph J.; Sabel, Fred L.; Akers, Ronald L.; Walker, Robert J.

    1968-01-01

    Engineering and microbiological tests indicated that a typical, commercial laminar airflow cabinet was not effective in providing either product protection or agent containment. The cabinet was modified and tested through a series of alternate configurations to establish a set of design criteria. A mock-up cabinet was developed from these design criteria. The mock-up unit was evaluated for efficiency in providing both product protection and agent containment. In these evaluations, challenge methods were developed to simulate normal, in-use laboratory operations. Controlled bacterial or viral aerosol challenges were used at higher than normal levels to provide stringent test conditions. Test results indicated that the mock-up unit was considerably better in preventing agent penetration (0.1 to 0.2 particles per 100 ft3 of air) than the commercial cabinet (5 to 6 particles per 100 ft3 of air) during product protection tests. Similarly, agent containment was considerably better in the new cabinet (particle escape of 2 to 3 per 100 ft3 of air at only one of the five test sites) than in the commercial cabinet (particle escape of 2 to 14 per 100 ft3 of air at three of the five test sites). PMID:4874462

  9. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, C. F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques are developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique are studied. The primary tasks of the research apply to the NASA/Ames Proof-of-Concept (PoC) and the Laminar Flow Supersonic Wind Tunnel's (LFSWT's) nozzle design with laminar flow control and are listed as follows: (1) Predictions of supersonic laminar boundary layer stability and transition; (2) Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; (3) Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; (4) Effects of a conducted -vs- pulse wall temperature distribution for the LFSWT; and (5) Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  10. Overview of Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    The history of Laminar Flow Control (LFC) from the 1930s through the 1990s is reviewed and the current status of the technology is assessed. Early studies related to the natural laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. Although most of this publication is about slot-, porous-, and perforated-suction LFC concept studies in wind tunnel and flight experiments, some mention is made of thermal LFC. Theoretical and computational tools to describe the LFC aerodynamics are included for completeness.

  11. Hybrid laminar flow control study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Hybrid laminar flow control (HLFC) in which leading edge suction is used in conjunction with wing pressure distribution tailoring to postpone boundary layer transition and reduce friction drag was examined. Airfoil design characteristics required for laminar flow control (LFC) were determined. The aerodynamic design of the HLFC wing for a 178 passenger commercial turbofan transport was developed, and a drag was estimated. Systems changes required to install HLFC were defined, and weights and fuel economy were estimated. The potential for 9% fuel reduction for a 3926-km (2120-nmi) mission is identified.

  12. Supersonic laminar-flow control

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Malik, Mujeeb R.

    1987-01-01

    Detailed, up to date systems studies of the application of laminar flow control (LFC) to various supersonic missions and/or vehicles, both civilian and military, are not yet available. However, various first order looks at the benefits are summarized. The bottom line is that laminar flow control may allow development of a viable second generation SST. This follows from a combination of reduced fuel, structure, and insulation weight permitting operation at higher altitudes, thereby lowering sonic boom along with improving performance. The long stage lengths associated with the emerging economic importance of the Pacific Basin are creating a serious and renewed requirement for such a vehicle. Supersonic LFC techniques are discussed.

  13. Laminar flow control is maturing

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D.; Bartlett, Dennis W.; Maddalon, Dal V.

    1988-01-01

    Recent research demonstrates that laminar flow (LF) can be reliable in flight and that the support system need not be complex. Shaping produces favorable pressure gradients for maintaining natural laminar flow (NLF), and laminar flow control (LFC) techniques such as full chord suction promise a fuel-saving payoff of up to 30 percent on long-range missions. For large aircraft, current research is concentrated on hybrid LFC concepts which combine suction and pressure-gradient control. At NASA Ames, an F-14 with variable wing sweep has been flight tested with smooth surface gloves on the wings; preliminary results indicate high transition Reynolds numbers to sweep angles as large as 25 deg. In addition, a 757 was flight tested with an NLF glove on the right wing just outboard of the engine pylon; and the LF was found to be suprisingly robust.

  14. Laminar flow control for transport aircraft applications

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  15. Supersonic laminar flow control

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.

    1992-01-01

    A development status evaluation is presented for the theoretical understanding and design conceptualization of boundary layer control (BLC) systems applicable to supersonic transports, such as the currently envisioned NASA High Speed Civil Transport. By reducing fuel burned, supersonic BLC techniques could expand ranges to Pacific-crossing scales, while lowering sonic boom effects and upper-atmosphere pollution and even reducing skin friction temperature. The critical consideration for supersonic BLC is the presence of wave effects.

  16. Development of laminar flow control wing surface porous structure

    NASA Technical Reports Server (NTRS)

    Klotzsche, M.; Pearce, W.; Anderson, C.; Thelander, J.; Boronow, W.; Gallimore, F.; Brown, W.; Matsuo, T.; Christensen, J.; Primavera, G.

    1984-01-01

    It was concluded that the chordwise air collection method, which actually combines chordwise and spanwise air collection, is the best of the designs conceived up to this time for full chord laminar flow control (LFC). Its shallower ducting improved structural efficiency of the main wing box resulting in a reduction in wing weight, and it provided continuous support of the chordwise panel joints, better matching of suction and clearing airflow requirements, and simplified duct to suction source minifolding. Laminar flow control on both the upper and lower surfaces was previously reduced to LFC suction on the upper surface only, back to 85 percent chord. The study concludes that, in addition to reduced wing area and other practical advantages, this system would be lighter because of the increase in effective structural wing thickness.

  17. Research in Natural Laminar Flow and Laminar-Flow Control, part 3

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 3 of the Symposium proceedings contains papers addressing advanced airfoil development, flight research experiments, and supersonic transition/laminar flow control research. Specific topics include the design and testing of natural laminar flow (NLF) airfoils, NLF wing gloves, and NLF nacelles; laminar boundary-layer stability over fuselage forebodies; the design of low noise supersonic/hypersonic wind tunnels; and boundary layer instability mechanisms on swept leading edges at supersonic speeds.

  18. Design Considerations for Laminar Flow Control Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.

    1976-01-01

    A study was conducted to investigate major design considerations involved in the application of laminar flow control to the wings and empennage of long range subsonic transport aircraft compatible with initial operation in 1985. For commercial transports with a design mission range of 10,186 km (5500 n mil) and a payload of 200 passengers, parametric configuration analyses were conducted to evaluate the effect of aircraft performance, operational, and geometric parameters on fuel efficiency. Study results indicate that major design goals for aircraft optimization include maximization of aspect ratio and wing loading and minimization of wing sweep consistent with wing volume and airport performance requirements.

  19. Airflow control system for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A. (Inventor); Sanders, B. W.

    1974-01-01

    In addition to fixed and variable bleed devices provided for controlling the position of a terminal shock wave in a supersonic inlet, a plurality of free piston valves are disposed around the periphery of a cowling of a supersonic engine inlet. The free piston valves are disposed in dump passageways, each of which begin at a bleed port in the cowling that is located in the throat region of the inlet, where the diameter of the centerbody is near maximum, and terminates at an opening in the cowling adjacent a free piston valve. Each valve is controlled by reference pressure.

  20. Laminar flow control SPF/08 feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Ecklund, R. C.; Williams, N. R.

    1981-01-01

    The feasibility of applying superplastic forming/diffusion bonding (SPF/DB) technology to laminar flow control (LFC) system concepts was demonstrated. Procedures were developed to produce smooth, flat titanium panels, using thin -0.016 inch sheets, meeting LFC surface smoothness requirements. Two large panels 28 x 28 inches were fabricated as final demonstration articles. The first was flat on the top and bottom sides demonstrating the capability of the tooling and the forming and diffusion bonding procedures to produce flat, defect free surfaces. The second panel was configurated for LFC porous panel treatment by forming channels with dimpled projections on the top side. The projections were machined away leaving holes extending into the panel. A perforated titanium sheet was adhesively bonded over this surface to complete the LFC demonstration panel. The final surface was considered flat enough to meet LFC requirements for a jet transport aircraft in cruising flight.

  1. Toward a laminar-flow-control transport

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    Analyses were conducted to define a practical design for an advanced technology laminar flow control (LRC) transport for initial passenger operation in the early 1990's. Mission requirements, appropriate design criteria, and level of technology for the study aircraft were defined. The characteristics of the selected configuration were established, aircraft and LFC subsystems compatible with the mission requirements were defined, and the aircraft was evaluated in terms of fuel efficiency. A wing design integrating the LFC ducting and metering system into advanced composite wing structure was developed, manufacturing procedures for the surface panel design were established, and environmental and structural testing of surface panel components were conducted. Test results revealed a requirement for relatively minor changes in the manufacturing procedures employed, but have shown the general compatibility of both the selected design and the use of composite materials with the requirements of LFC wing surface panels.

  2. Laminar flow control perforated wing panel development

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1986-01-01

    Many structural concepts for a wing leading edge laminar flow control hybrid panel were analytically investigated. After many small, medium, and large tests, the selected design was verified. New analytic methods were developed to combine porous titanium sheet bonded to a substructure of fiberglass and carbon/epoxy cloth. At -65 and +160 F test conditions, the critical bond of the porous titanium to the composite failed at lower than anticipated test loads. New cure cycles, design improvements, and test improvements significantly improved the strength and reduced the deflections from thermal and lateral loadings. The wave tolerance limits for turbulence were not exceeded. Consideration of the beam column midbay deflections from the combinations of the axial and lateral loadings and thermal bowing at -65 F, room temperature, and +160 F were included. Many lap shear tests were performed at several cure cycles. Results indicate that sufficient verification was obtained to fabricate a demonstration vehicle.

  3. Research in natural laminar flow and laminar-flow control, part 1

    SciTech Connect

    Hefner, J.N.; Sabo, F.E.

    1987-12-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  4. Research in Natural Laminar Flow and Laminar-Flow Control, part 1

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  5. Advanced stability theory analyses for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1980-01-01

    Recent developments of the SALLY computer code for stability analysis of laminar flow control wings are summarized. Extensions of SALLY to study three dimensional compressible flows, nonparallel and nonlinear effects are discussed.

  6. Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.

  7. Laminar flow control, 1976 - 1982: A selected annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Maddalon, D. V.

    1982-01-01

    Laminar Flow Control technology development has undergone tremendous progress in recent years as focused research efforts in materials, aerodynamics, systems, and structures have begun to pay off. A virtual explosion in the number of research papers published on this subject has occurred since interest was first stimulated by the 1976 introduction of NASA's Aircraft Energy Efficiency Laminar Flow Control Program. The purpose of this selected bibliography is to list available, unclassified laminar flow (both controlled and natural) research completed from about 1975 to mid 1982. Some earlier pertinent reports are included but listed separately in the Appendix. Reports listed herein emphasize aerodynamics and systems studies, but some structures work is also summarized. Aerodynamic work is mainly limited to the subsonic and transonic sped regimes. Because wind-tunnel flow qualities, such as free stream disturbance level, play such an important role in boundary-layer transition, much recent research has been done in this area and it is also included.

  8. Lockheed laminar-flow control systems development and applications

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1987-01-01

    Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.

  9. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-01-01

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands. PMID:25405953

  10. Application of stability theory to laminar flow control

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Bushnell, D. M.

    1979-01-01

    The paper summarizes the state-of-the-art for application of stability theory to laminar flow control using suction, wall temperature and/or favorable pressure gradient ('natural laminar flow'). Discussions include current LFC problem areas requiring stability analyses, methods of relating stability theory to transition with results from data and theory comparisons available thus far, and a summary of low disturbance data available for theory calibration on swept wings. Critical issues highlighted are problems peculiar to suction LFC on high performance transonic wings and application of the e-to-the-n-power method to both low and high speed flight data.

  11. Sequence types of Staphylococcus epidermidis associated with prosthetic joint infections are not present in the laminar airflow during prosthetic joint surgery.

    PubMed

    Månsson, Emeli; Hellmark, Bengt; Sundqvist, Martin; Söderquist, Bo

    2015-07-01

    Molecular characterization of Staphylococcus epidermidis isolates from prosthetic joint infections (PJIs) has demonstrated a predominance of healthcare-associated multi-drug resistant sequence types (ST2 and ST215). How, and when, patients acquire these nosocomial STs is not known. The aim was to investigate if sequence types of S. epidermidis associated with PJIs are found in the air during prosthetic joint surgery. Air sampling was undertaken during 17 hip/knee arthroplasties performed in operating theaters equipped with mobile laminar airflow units in a 500-bed hospital in central Sweden. Species identification was performed using MALDI-TOF MS and 16S rRNA gene analysis. Isolates identified as S. epidermidis were further characterized by MLST and antibiotic susceptibility testing. Seven hundred and thirty-five isolates were available for species identification. Micrococcus spp. (n = 303) and coagulase-negative staphylococci (n = 217) constituted the majority of the isolates. Thirty-two isolates of S. epidermidis were found. S. epidermidis isolates demonstrated a high level of allelic diversity with 18 different sequence types, but neither ST2 nor ST215 was found. Commensals with low pathogenic potential dominated among the airborne microorganisms in the operating field during prosthetic joint surgery. Nosocomial sequence types of S. epidermidis associated with PJIs were not found, and other routes of inoculation are therefore of interest in future studies. PMID:25951935

  12. Application of porous materials for laminar flow control

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1978-01-01

    Fairly smooth porous materials were elected for study Doweave; Fibermetal; Dynapore; and perforated titanium sheet. Factors examined include: surface smoothness; suction characteristics; porosity; surface impact resistance; and strain compatibility. A laminar flow control suction glove arrangement was identified with material combinations compatible with thermal expansion and structural strain.

  13. Application of laminar flow control to supersonic transport configurations

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Nagel, A. L.

    1990-01-01

    The feasibility and impact of implementing a laminar flow control system on a supersonic transport configuration were investigated. A hybrid laminar flow control scheme consisting of suction controlled and natural laminar flow was developed for a double-delta type wing planform. The required suction flow rates were determined from boundary layer stability analyses using representative wing pressure distributions. A preliminary design of structural modifications needed to accommodate suction through a perforated titanium skin was carried out together with the ducting and systems needed to collect, compress and discharge the suction air. The benefits of reduced aerodynamic drag were weighed against the weight, volume and power requirement penalties of suction system installation in a mission performance and sizing program to assess the net benefits. The study showed a feasibility of achieving significant laminarization of the wing surface by use of a hybrid scheme, leading to an 8.2 percent reduction in the cruise drag. This resulted in an 8.5 percent reduction in the maximum takeoff weight and a 12 percent reduction in the fuel burn after the inclusion of the LFC system installation penalties. Several research needs were identified for a resolution of aerodynamics, structural and systems issues before these potential benefits could be realized in a practical system.

  14. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  15. Ground vibration test of the laminar flow control JStar airplane

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.

    1985-01-01

    A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.

  16. Natural laminar flow and airplane stability and control

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1986-01-01

    Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.

  17. Automating the Solar DRYER—AIRFLOW Control Utilizing Pressure Diffrence Concept

    NASA Astrophysics Data System (ADS)

    Luk, T. B.; Vakhguelt, A.

    2009-08-01

    The presence of a chimney in natural convective solar dryer has proven its benefit in accelerated transport of moist air from the drying compartment and thus shortening the drying time for intended crops. The experiment and simulation studies done by various parties have guaranteed increases in the airflow in relation to the physical height of chimney. A simple automated control system is proposed to assist the controls of airflow rate so that a near optimum mass flow rate could be achieved for the best possible dried product quality in the shortest possible drying period.

  18. Aircraft energy efficiency laminar flow control wing design study

    NASA Technical Reports Server (NTRS)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  19. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  20. Stability theory applications to laminar-flow control

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.

    1987-01-01

    In order to design Laminar Flow Control (LFC) configurations, reliable methods are needed for boundary-layer transition predictions. Among the available methods, there are correlations based upon R sub e, shape factors, Goertler number and crossflow Reynolds number. The most advanced transition prediction method is based upon linear stability theory in the form of the e sup N method which has proven to be successful in predicting transition in two- and three-dimensional boundary layers. When transition occurs in a low disturbance environment, the e sup N method provides a viable design tool for transition prediction and LFC in both 2-D and 3-D subsonic/supersonic flows. This is true for transition dominated by either TS, crossflow, or Goertler instability. If Goertler/TS or crossflow/TS interaction is present, the e sup N will fail to predict transition. However, there is no evidence of such interaction at low amplitudes of Goertler and crossflow vortices.

  1. GASP cloud encounter statistics - Implications for laminar flow control flight

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.

    1984-01-01

    The cloud observation archive from the NASA Global Atmospheric Sampling Program (GASP) is analyzed in order to derive the probability of cloud encounter at altitudes normally flown by commercial airliners, for application to a determination of the feasability of Laminar Flow Control (LFC) on long-range routes. The probability of cloud encounter is found to vary significantly with season. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover. The cloud encounter data are shown to be consistent with the classical midlatitude cyclone model with more clouds encountered in highs than in lows. Aircraft measurements of route-averaged time-in-clouds fit a gamma probability distribution model which is applied to estimate the probability of extended cloud encounter, and the associated loss of LFC effectiveness along seven high-density routes. The probability is demonstrated to be low.

  2. Laminar separation control effects of shortfin mako shark skin

    NASA Astrophysics Data System (ADS)

    Bradshaw, Michael Thomas

    Shark skin is investigated as a means of laminar flow separation control due to its preferential flow direction as well as the potential for scales to erect and obstruct low-momentum backflow resulting from an adverse pressure gradient acting on the boundary layer. In this study, the effect of the scales on flow reversal is observed in laminar flow conditions. This is achieved by comparing the flow over a pectoral fin from a shortfin mako shark to that over the same fin that is painted to neutralize the effect of the scales on the flow. The effect of the scales on flow reversal is also observed by comparing the flow over a smooth PVC cylinder to that over the same cylinder with samples of mako shark skin affixed to the entire circumference of the cylinder. These samples were taken from the flank region of the shark because the scales at this location have been shown to have the greatest angle of erection compared to the scales on the rest of the shark's body. Scales at this location have an average crown length of 220 microm with a maximum bristling angle of proximately 50 degrees. Because these scales have the highest bristling angle, they have the best potential for separation control. All data was taken using time-resolved Digital Particle Image Velocimetry. The flow over the pectoral fin was analyzed at multiple angles of attack. It was found that the shark skin had the effect of decreasing the size of the separated region over both the pectoral fin and the cylinder as well as decreasing the magnitudes of the reversing flow found in these regions. For all Reynolds numbers tested, drag reduction over 28% was found when applying the sharkskin to the cylinder.

  3. SMA actuators for vibration control and experimental determination of model parameters dependent on ambient airflow velocity

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.

    2016-05-01

    This article demonstrates the practical applicability of a method of modelling shape memory alloys (SMAs) as actuators. For this study, a pair of SMA wires was installed in an antagonistic manner to form an actuator, and a linear differential equation that describes the behaviour of the actuator’s generated force relative to its input voltage was derived for the limited range below the austenite onset temperature. In this range, hysteresis need not be considered, and the proposed SMA actuator can therefore be practically applied in linear control systems, which is significant because large deformations accompanied by hysteresis do not necessarily occur in most vibration control cases. When specific values of the parameters used in the differential equation were identified experimentally, it became clear that one of the parameters was dependent on ambient airflow velocity. The values of this dependent parameter were obtained using an additional SMA wire as a sensor. In these experiments, while the airflow distribution around the SMA wires was varied by changing the rotational speed of the fans in the wind tunnels, an input voltage was conveyed to the SMA actuator circuit, and the generated force was measured. In this way, the parameter dependent on airflow velocity was estimated in real time, and it was validated that the calculated force was consistent with the measured one.

  4. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  5. The NASA Langley laminar flow control airfoil experiment

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Pride, J. D.

    1982-01-01

    A large chord swept supercritical LFC airfoil has been constructed for NASA-Langley's research program to determine the compatibility of supercritical airfoils with suction laminarization and to establish a technology base for future transport designs. Features include a high design Mach number and shock-free flow, as well as the minimization of the laminarization suction through a choice of airfoil geometry and pressure distribution. Two suction surface concepts and a variety of hybrid suction concepts involving combinations of natural and forced laminar flow are to be investigated. The test facility has been modified to insure achievement of required flow quality and transonic interference-free flow over the yawed LFC airfoil.

  6. Aircraft energy efficiency laminar flow control glove flight conceptual design study

    NASA Technical Reports Server (NTRS)

    Wright, A. S.

    1979-01-01

    A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.

  7. A perspective of laminar-flow control. [aircraft energy efficiency program

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Muraca, R. J.

    1978-01-01

    A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.

  8. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles

    NASA Technical Reports Server (NTRS)

    Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.

    1991-01-01

    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.

  9. Distributed acoustic receptivity in laminar flow control configurations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1992-01-01

    A model problem related to distributed receptivity to free-stream acoustic waves in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfield framework, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized disturbances on the airfoil surface. The results, thus, complement the earlier work on the receptivity produced by local variations in the surface suction and/or surface admittance. In particular, we show that the cumulative effect of the distributed receptivity can be substantially larger than that of a single, isolated suction strip or slot. Furthermore, even if the receptivity is spread out over very large distances, the most effective contributions come from a relatively short region in vicinity of the lower branch of the neutral stability curve. The length scale of this region is intermediate to that of the mean of these two length scales. Finally, it is found that the receptivity is effectively dominated by a narrow band of Fourier components from the wall-suction and admittance distributions, roughly corresponding to a detuning of less than ten percent with respect to the neutral instability wavenumber at the frequency under consideration. The results suggest that the drop-off in receptivity magnitudes away from the resonant wavenumber is nearly independent of the frequency parameter.

  10. Development of laminar flow control wing surface composite structures

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments under NAS1-16235 LFC Laminar-Flow-Control Wing Panel Structural Design And Development (WSSD); Design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joints were demonstrated by fabricating and testing complex, concept selection specimens. Cost of the baseline LFC aircraft was estimated and compared to the turbulent aircraft. The mission fuel weight was 21.7 percent lower for the LFC aircraft. The calculation shows that the lower fuel costs for LFC offset the higher incremental costs of LFC in less than six months.

  11. Note: Background Oriented Schlieren as a diagnostics for airflow control by plasma actuators.

    PubMed

    Biganzoli, I; Capone, C; Barni, R; Riccardi, C

    2015-02-01

    Background Oriented Schlieren (BOS) is an optical technique sensitive to the first spatial derivative of the refractive index inside a light-transmitting medium. Compared to other Schlieren-like techniques, BOS is more versatile and allows to capture bi-dimensional gradients rather than just one spatial component. We propose to adopt BOS for studying the capabilities of surface dielectric barrier discharges to work like plasma actuators in flow control applications. The characteristics of the BOS we implemented at this purpose are discussed, together with few results concerning the ionic wind produced by the discharge in absence of an external airflow. PMID:25725896

  12. Fabrication of a graphite/epoxy composite leading edge for laminar flow control

    NASA Technical Reports Server (NTRS)

    Beall, R. T.

    1980-01-01

    Lockheed, under NASA contract, has recently completed the first phase of a program to evaluate laminar flow control concepts for transport aircraft. Achievement of laminar flow over a wing surface requires a system of slots, metering holes, ducts and pumps to be used to remove the turbulent air adjacent to the surface. This requirement poses severe restrictions on conventional metallic structure. Graphite/epoxy composite with its unique properties appears to be the material that might solve the very complex structural problems associated with a laminar flow control aircraft. A six-foot span graphite/epoxy test article incorporating provisions for leading edge cleaning, deicing and laminar flow control was designed, fabricated and tested.

  13. Hybrid laminar flow control tests in the Boeing Research Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Lund, D. W.; George-Falvy, D.; Nagel, A. L.

    1990-01-01

    The hybrid laminar flow control (HLFC) concept has undergone wind tunnel testing at near full-scale Reynolds number on an infinite wing of 30-deg sweep on which boundary-layer suction was furnished over the first 20 percent of chord of the upper surface. Depending on the external pressure distribution, the HLFC extended the laminarity of the boundary layer as far back as 45 percent of chord; this corresponds to a transition Reynolds number of about 11 million. The maximum chordwise extent of laminar run was found to be insensitive to the suction level over a wide range.

  14. Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Harvey, W. D.; Harris, J. E.; Holley, B. B.

    1973-01-01

    One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented.

  15. A flight test of laminar flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Wright, A. S., Jr.; Wagner, R. D.

    1983-01-01

    NASA's program for development of a laminar flow technology base for application to commercial transports has made significant progress since its inception in 1976. Current efforts are focused on development of practical reliable systems for the leading-edge region where the most difficult problems in applying laminar flow exist. Practical solutions to these problems will remove many concerns about the ultimate practicality of laminar flow. To address these issues, two contractors performed studies, conducted development tests, and designed and fabricated fully functional leading-edge test articles for installation on the NASA JetStar aircraft. Systems evaluation and performance testing will be conducted to thoroughly evaluate all system capabilities and characteristics. A simulated airline service flight test program will be performed to obtain the operational sensitivity, maintenance, and reliability data needed to establish that practical solutions exist for the difficult leading-edge area of a future commercial transport employing laminar flow control.

  16. Laminar flow control leading edge systems in simulated airline service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    The feasibility of two candidate leading-edge flow laminarization systems applicable to airline service was tested using representative airline operational conditions with respect to air traffic, weather, and airport insect infestation. One of the systems involved a perforated Ti alloy suction surface with about 1 million 0.0025-in. diameter holes drilled by electron beam, as well as a Krueger-type flap that offered protective shielding against insect impingement; the other supplied surface suction through a slotted Ti alloy skin with 27 spanwise slots on the upper and lower surface.

  17. A History of Suction-Type Laminar Flow Control with Emphasis on Flight Research

    NASA Technical Reports Server (NTRS)

    Braslow, Albert L.

    1999-01-01

    Laminar-flow control is an area of aeronautical research that has a long history at NASA's Langley Research Center, Dryden Flight Research Center, their predecessor organizations, and elsewhere. In this monograph, the author, who spent much of his career at Langley working with this research, presents a history of that portion of laminar-flow technology known as active laminar-flow control, which employs suction of a small quantity of air through airplane surfaces. This important technique offers the potential for significant reduction in drag and, thereby, for large increases in range or reductions in fuel usage for aircraft. For transport aircraft, the reductions in fuel consumed as a result of laminar-flow control may equal 30 percent of present consumption. Given such potential, it is obvious that active laminar-flow control with suction is an important technology. In this study, the author covers the early history of the subject and brings the story all the way to the mid-1990s with an emphasis on flight research, much of which has occurred at Dryden. This is an important monograph that not only encapsulates a lot of history in a brief compass but also does so in language that is accessible to non-technical readers. NASA is publishing it in a format that will enable it to reach the wide audience the subject deserves.

  18. History of Suction-Type Laminar-Flow Control with Emphasis on Flight Resrearch: Monographs in Aerospace History Number 13

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.

    1999-01-01

    The paper contains the following sections: Foreword; Preface; Laminar-Flow Control Concepts and Scope of Monograph; Early Research on Suction-Type Laminar-Flow Control (Research from the 1930s through the War Years; Research from after World War II to the Mid-1960s); Post X-21 Research on Suction-Type Laminar-Flow Control; Status of Laminar-Flow Control Technology in the Mid-1990s; Glossary; Document 1-Aeronautics Panel, AACB, R&D Review, Report of the Subpanel on Aeronautic Energy Conservation/Fuels; Document 2-Report of Review Group on X-21A Laminar Flow Control Program; Document 3-Langley Research Center Announcement, Establishment of Laminar Flow Control Working Group; Document 4-Intercenter Agreement for Laminar Flow Control Leading Edge Glove Flights, LaRC and DFRC; Document 5-Flight Report NLF-144, of AFTIF-111 Aircraft with the TACT Wing Modified by a Natural Laminar Flow Glove; Document 6-Flight Record, F-16XL Supersonic Laminar Flow Control Aircraft; Index; and About the Author.

  19. Feasibility and benefits of laminar flow control on supersonic cruise airplanes

    NASA Technical Reports Server (NTRS)

    Powell, A. G.; Agrawal, S.; Lacey, T. R.

    1989-01-01

    An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated.

  20. Control of laminar separation over airfoils by acoustic excitation

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Mckinzie, D. J.

    1988-01-01

    The effect of acoustic excitation in reducing laminar separation over two-dimensional airfoils at low angles of attack is investigated experimentally. Airfoils of two different cross sections, each with two different chord lengths, are studied in the chord Reynolds number range of 25,000 is less than R sub c is less than 100,000. While keeping the amplitude of the excitation induced velocity perturbation a constant, it is found that the most effective frequency scales as U (sup 3/2)(sub infinity). The parameter St/R (sup 1/2)(sub c), corresponding to the most effective f sub p for all the cases studied, falls in the range of 0.02 to 0.03, St being the Strouhal number based on the chord.

  1. Boundary-Layer Transition Results from the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    1999-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport (HSCT). Boundary-layer transition data have been obtained on the titanium glove primarily at Mach 2.0 and altitudes of 53,000-55,000 ft. The objectives of this supersonic laminar flow control flight experiment have been to achieve 50- to 60-percent-chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point (Mach 1.9 at an altitude of 50,000 ft). At Mach 2.0 and an altitude of 53,000 ft, which corresponds to a Reynolds number of 22.7 X 10(exp 6), optimum suction levels have allowed long runs of a minimum of 46-percent-chord laminar flow to be achieved. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  2. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow

    SciTech Connect

    Wang Jian; Li Yinghong; Xing Fei

    2009-10-01

    Wedge oblique shock wave control by arc discharge plasma in supersonic airflow was investigated theoretically, experimentally, and numerically in this paper. Using thermal choking model, the change in oblique shock wave was deduced, which refer that the start point of shock wave shifts upstream, the shock wave angle decreases, and its intensity weakens. Then the theoretical results were validated experimentally in a Mach 2.2 wind tunnel. On the test conditions of arc discharge power of approx1 kW and arc plasma temperature of approx3000 K, schlieren photography and gas pressure measurements indicated that the start point of shock wave shifted upstream of approx4 mm, the shock wave angle decreased 8.6%, and its intensity weakened 8.8%. The deduced theoretical results match the test results qualitatively, so thermal mechanism and thermal choking model are rational to explain the problem of oblique shock wave control by arc discharge plasma. Finally, numerical simulation was developed. Based on thermal mechanism, the arc discharge plasma was simplified as a thermal source term that added to the Navier-Stokes equations. The simulation results of the change in oblique shock wave were consistent with the test results, so the thermal mechanism indeed dominates the oblique shock wave control process.

  3. Digital data acquisition and preliminary instrumentation study for the F-16 laminar flow control vehicle

    NASA Technical Reports Server (NTRS)

    Ostowari, Cyrus

    1992-01-01

    Preliminary studies have shown that maintenance of laminar flow through active boundary-layer control is viable. Current research activity at NASA Langley and NASA Dryden is utilizing the F-16XL-1 research vehicle fitted with a laminar-flow suction glove that is connected to a vacuum manifold in order to create and control laminar flow at supersonic flight speeds. This experimental program has been designed to establish the feasibility of obtaining laminar flow at supersonic speeds with highly swept wing and to provide data for computational fluid dynamics (CFD) code calibration. Flight experiments conducted as supersonic speeds have indicated that it is possible to achieve laminar flow under controlled suction at flight Mach numbers greater than 1. Currently this glove is fitted with a series of pressure belts and flush mounted hot film sensors for the purpose of determining the pressure distributions and the extent of laminar flow region past the stagnation point. The present mode of data acquisition relies on out-dated on board multi-channel FM analogue tape recorder system. At the end of each flight, the analogue data is digitized through a long laborious process and then analyzed. It is proposed to replace this outdated system with an on board state-of-the-art digital data acquisition system capable of a through put rate of up to 1 MegaHertz. The purpose of this study was three-fold: (1) to develop a simple algorithm for acquiring data via 2 analogue-to-digital convertor boards simultaneously (total of 32 channels); (2) to interface hot-film/wire anemometry instrumentation with a PCAT type computer; and (3) to characterize the frequency response of a flush mounted film sensor. A brief description of each of the above tasks along with recommendations are given.

  4. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. Report 2; Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the aerodynamic design of an experimental hybrid laminar flow control (HLFC) wing panel intended for use on a Boeing 757 airplane to provide a facility for flight research on high Reynolds number HLFC and to demonstrate practical HLFC operation on a full-scale commercial transport airplane. The design consists of revised wing leading edge contour designed to produce a pressure distribution favorable to laminar flow, definition of suction flow requirements to laminarize the boundary layer, provisions at the inboard end of the test panel to prevent attachment-line boundary layer transition, and a Krueger leading edge flap that serves both as a high lift device and as a shield to prevent insect accretion on the leading edge when the airplane is taking off or landing.

  5. Technology developments for laminar boundary layer control on subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fischer, M. C.

    1984-01-01

    An overview of laminar flow control (LFC) technology developments is presented, along with a description of NASA's broadened program concerning laminar flow concepts for commercial transports. Topics covered include developments in LFC airfoils, wing surface panels, and leading-edge systems, as well as the effects of high altitude ice particles and insect impacts. It is suggested that the electron beam perforated titanium surface is superior to the Dynapore surface. The Douglas LFC wing design, the Krueger flap, the Lockheed, and the Douglas leading-edge concepts are covered. Future research includes an evaluation of a hybrid LFC concept, which combines LFC suction in the leading-edge region with natural laminar flow over the wing box.

  6. Application of superplastically formed and diffusion bonded aluminum to a laminar flow control leading edge

    NASA Technical Reports Server (NTRS)

    Goodyear, M. D.

    1987-01-01

    NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.

  7. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  8. Analysis and evaluation of an integrated laminar flow control propulsion system

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dewitt, Kenneth J.

    1993-01-01

    Reduction of drag has been a major goal of the aircraft industry as no other single quantity influences the operating costs of transport aircraft more than aerodynamic drag. It has been estimated that even modest reduction of frictional drag could reduce fuel costs by anywhere from 2 to 5 percent. Current research on boundary layer drag reduction deals with various approaches to reduce turbulent skin friction drag as a means of improving aircraft performance. One of the techniques belonging to this category is laminar flow control in which extensive regions of laminar flow are maintained over aircraft surfaces by delaying transition to turbulence through the ingestion of boundary layer air. While problems of laminar flow control have been studied in some detail, the prospect of improving the propulsion system of an aircraft by the use of ingested boundary layer air has received very little attention. An initial study for the purpose of reducing propulsion system requirements by utilizing the kinetic energy of boundary layer air was performed in the mid-1970's at LeRC. This study which was based on ingesting the boundary layer air at a single location, did not yield any significant overall propulsion benefits; therefore, the concept was not pursued further. However, since then it has been proposed that if the boundary layer air were ingested at various locations on the aircraft surface instead of just at one site, an improvement in the propulsion system might be realized. The present report provides a review of laminar flow control by suction and focuses on the problems of reducing skin friction drag by maintaining extensive regions of laminar flow over the aircraft surfaces. In addition, it includes an evaluation of an aircraft propulsion system that is augmented by ingested boundary layer air.

  9. Application of stability theory to laminar flow control - Progress and requirements

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Malik, M. R.

    1987-01-01

    Paper briefly summarizes the current status of linear stability theory as applied to laminar flow control for aerodynamics. Results indicate that the conventional 'N factor' method of correlating stability theory and transition has a broad application range, including low- and high-speeds, two- and three-dimensional mean flow and TS, Gortler and crossflow disturbance modes. Linear theory is particularly applicable to the laminar flow control problem as, for system efficiency, control must be exercised and disturbances maintained in the linear regime. Current areas of concern for LFC, which require further stability theory research, include TS-crossflow interaction, combined disturbance fields (roughness, waviness, noise) and suction-induced disturbances. Some results on wave-interactions are presented.

  10. Simulated-airline-service flight tests of laminar-flow control with perforated-surface suction system

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Braslow, Albert L.

    1990-01-01

    The effectiveness and practicality of candidate leading edge systems for suction laminar flow control transport airplanes were investigated in a flight test program utilizing a modified JetStar airplane. The leading edge region imposes the most severe conditions on systems required for any type of laminar flow control. Tests of the leading edge systems, therefore, provided definitive results as to the feasibility of active laminar flow control on airplanes. The test airplane was operated under commercial transport operating procedures from various commercial airports and at various seasons of the year.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, AIRFLOW PRODUCTS AFP30

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AFP30 air filter for dust and bioaerosol filtration manufactured by Airflow Products. The pressure drop across the filter was 62 Pa clean and 247 Pa dust loaded. The filtration effici...

  12. The Langley 8-ft transonic pressure tunnel laminar-flow-control experiment

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Harvey, William D.; Harris, Charles D.; Brooks, Cuyler W., Jr.

    1992-01-01

    An account is given of the considerations involved in selecting the NASA-Langley transonic pressure tunnel's design and test parameters, as well as its liner and a swept wing for laminar flow control (LFC) experimentation. Attention is given to the types and locations of the instrumentation employed. Both slotted and perforated upper surfaces were tested with partial- and full-chord suction; representative results are presented for all.

  13. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. 3; Leading Edge Design, Fabrication, and Installation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the design, fabrication, and installation of the suction panel and the required support structure, ducting, valving, and high-lift system (Krueger flaps) for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane.

  14. Application of Laminar Flow Control Technology to Long-Range Transport Design

    NASA Technical Reports Server (NTRS)

    Gratzer, L. B.; George-Falvy, D.

    1978-01-01

    The impact of laminar flow control (LFC) technology on aircraft structural design concepts and systems was discussed and the corresponding benefits were shown in terms of performance and fuel economy. Specific topics discussed include: (1) recent advances in laminar boundary layer development and stability analysis techniques in terms of suction requirements and wing suction surface design; (2) validation of theory and realistic simulation of disturbances and off-design conditions by wind tunnel testing; (3) compatibility of aerodynamic design of airfoils and wings with LFC requirements; (4) structural alternatives involving advanced alloys or composites in combinations made possible by advanced materials processing and manufacturing techniques; (5) addition of suction compressor and drive units and their location on the aircraft; and (6) problems associated with operation of LFC aircraft, including accumulation of insects at low altitudes and environmental considerations.

  15. Design and experimental evaluation of a swept supercritical Laminar Flow Control (LFC) airfoil

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Harris, C. D.; Brooks, C. W.; Clukey, P. G.; Stack, J. P.

    1986-01-01

    A large chord swept supercritical laminar flow control (LFC) airfoil was designed, constructed, and tested in the NASA Langley 8-ft Transonic Pressure Tunnel (TPT). The LFC airfoil experiment was established to provide basic information concerning the design and compatibility of high-performance supercritical airfoils with suction boundary layer control achieved through discrete fine slots or porous surface concepts. It was aimed at validating prediction techniques and establishing a technology base for future transport designs and drag reduction. Good agreement was obtained between measured and theoretically designed shockless pressure distributions. Suction laminarization was maintained over an extensive supercritical zone up to high Reynolds numbers before transition gradually moved forward. Full-chord laminar flow was maintained on the upper and lower surfaces at M sub infinity = 0.82 up to R sub c is less than or equal to 12 x 10 to the 6th power. When accounting for both the suction and wake drag, the total drag could be reducted by at least one-half of that for an equivalent turbulent airfoil. Specific objectives for the LFC experiment are given.

  16. Active Control of Instabilities in Laminar Boundary Layers-Overview and Concept Validation

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Erlebacher, Gordon; Hussaini, M. Yoursuff

    1997-01-01

    This paper (the first in a series) focuses on using active-control methods to maintain laminar flow in a region of the flow in which the natural instabilities, if left unattended, lead to turbulent flow. The authors review previous studies that examine wave cancellation (currently the most prominent method) and solve the unsteady, nonlinear Navier-Stokes equations to evaluate this method of controlling instabilities. It is definitively shown that instabilities are controlled by the linear summation of waves (i.e., wave cancellation). Although a mathematically complete method for controlling arbitrary instabilities has been developed, the review, duplication, and physical explanation of previous studies are important steps for providing an independent verification of those studies, for establishing a framework for the work which will involve automated transition control, and for detailing the phenomena by-which the automated studies can be used to expand knowledge of flow control.

  17. Active control of instabilities in laminar boundary-layer flow. Part 1: An overview

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Erlebacher, Gordon; Hussaini, M. Yousuff

    1994-01-01

    This paper (the first in a series) focuses on using active-control methods to maintain laminar flow in a region of the flow in which the natural instabilities, if left unattended, lead to turbulent flow. The authors review previous studies that examine wave cancellation (currently the most prominent method) and solve the unsteady, nonlinear Navier-Stokes equations to evaluate this method of controlling instabilities. It is definitely shown that instabilities are controlled by the linear summation of waves (i.e., wave cancellation). Although a mathematically complete method for controlling arbitrary instabilities has been developed (but not yet tested), the review, duplication, and physical explanation of previous studies are important steps for providing an independent verification of those studies, for establishing a framework for subsequent work which will involve automated transition control, and for detailing the phenomena by which the automated studies can be used to expand knowledge of flow control.

  18. Laminar and turbulent boundary layer separation control of Mako shark skin

    NASA Astrophysics Data System (ADS)

    Afroz, Farhana

    The Shortfin Mako shark (Isurus oxyrinchus) is one of the fastest swimmers in nature. They have an incredible turning agility and are estimated to achieve speeds as high as ten body lengths per second. Shark skin is known to contain flexible denticles or scales, capable of being actuated by the flow whereby a unique boundary layer control (BLC) method could reduce drag. It is hypothesized that shark scales bristle when the flow is reversed, and this bristling may serve to control flow separation by (1) inhibiting the localized flow reversal near the wall and (2) inducing mixing within the boundary layer by cavities formed between the scales that increases the momentum of the flow near the wall. To test this hypothesis, samples of Mako shark skin have been studied under various amounts of adverse pressure gradient (APG). These samples were collected from the flank region of a Shortfin Mako shark where the scales have the greatest potential for separation control due to the highest bristling angles. An easy technique for inducing boundary layer separation has been developed where an APG can be generated and varied using a rotating cylinder. Both the experimental and numerical studies showed that the amount of APG can be varied as a function of cylinder rotation speed or cylinder gap height for a wide range of Reynolds numbers. This method of generating an APG is used effectively for inducing both laminar and turbulent boundary layer separation over a flat plate. Laminar and turbulent boundary layer separation studies conducted over a smooth plate have been compared with the same setup repeated over shark skin. The time-averaged DPIV results showed that shark scale bristling controlled both laminar and turbulent boundary layer separation to a measurable extent. It shows that the shark scales cause an early transition to turbulence and reduce the degree of laminar separation. For turbulent separation, reverse flow near the wall and inside the boundary layer is

  19. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  20. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  1. Preliminary design characteristics of a subsonic business jet concept employing laminar flow control

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.; Lovell, W. A.; Price, J. E.; Quartero, C. B.; Washburn, G. F.

    1978-01-01

    Aircraft configurations were developed with laminar flow control (LFC) and without LFC. The LFC configuration had approximately eleven percent less parasite drag and a seven percent increase in the maximum lift-to drag ratio. Although these aerodynamic advantages were partially offset by the additional weight of the LFC system, the LFC aircraft burned from six to eight percent less fuel for comparable missions. For the trans-atlantic design mission with the gross weight fixed, the LFC configuration would carry a greater payload for ten percent fuel per passenger mile.

  2. Experimental transition and boundary-layer stability analysis for a slotted swept laminar flow control airfoil

    NASA Technical Reports Server (NTRS)

    Harvey, William D.; Harris, Charles D.; Brooks, Cuyler W., Jr.

    1989-01-01

    A swept, supercritical laminar flow control (LFC) airfoil designated NASA SCLFC(1)-0513F was tested at subsonic and transonic speeds in the NASA Langley eight-foot Transonic Pressure Tunnel. This paper examines Tollmien-Schlichting and crossflow disturbance amplification for this airfoil using the linear stability method. The design methodology using linear stability analysis is evaluated and the results of the incompressible and compressible methods are compared. Experimental data on the swept, supercritical LFC airfoil and reference wind tunnel and flight results are used to correlate and evaluate the N-factor method for transition prediction over a speed range M(infinity) from zero to one.

  3. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil - Drag equations

    NASA Technical Reports Server (NTRS)

    Brooks, Cuyler W., Jr.; Harris, Charles D.; Harvey, William D.

    1989-01-01

    The Langley Research Center has designed a swept, supercritical airfoil incorporating Laminar Flow Control for testing at transonic speeds. Analytical expressions have been developed and an evaluation made of the experimental section drag, composed of suction drag and wake drag, using theoretical design information and experimental data. The analysis shows that, although the sweep-induced boundary-layer crossflow influence on the wake drag is too large to be ignored and there is not a practical method for evaluating these crossflow effects on the experimental wake data, the conventional unswept 2-D wake-drag computation used in the reduction of the experimental data is at worst 10 percent too high.

  4. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis

    NASA Technical Reports Server (NTRS)

    Brooks, Cuyler W., Jr.; Harris, Charles D.; Harvey, William D.

    1991-01-01

    A swept supercritical wing incorporating laminar flow control at transonic flow conditions was designed and tested. The definition of an experimental suction coefficient and a derivation of the compressible and incompressible formulas for the computation of the coefficient from measurable quantities is presented. The suction flow coefficient in the highest velocity nozzles is shown to be overpredicted by as much as 12 percent through the use of an incompressible formula. However, the overprediction on the computed value of suction drag when some of the suction nozzles were operating in the compressible flow regime is evaluated and found to be at most 6 percent at design conditions.

  5. Development of technology for the fabrication of reliable laminar flow control panels on subsonic transports

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of using porous composite materials (Kevlar, Doweave, and Leno Weave) as lightweight, efficient laminar flow control (LFC) surface materials is compared to the metallic 319L stainless Dynapore surfaces and electron beam drilled composite surfaces. Areas investigated include: (1) selection of the LFC-suitable surface materials, structural materials, and fabrication techniques for the LFC aircraft skins; (2) aerodynamic static air flow test results in terms of pressure drop through the LFC panel and the corresponding effective porosity; (3) structural design definition and analyses of the panels, and (4) contamination effects on static drop and effective porosity. Conclusions are presented and discussed.

  6. Development of high-lift laminar wing using steady active flow control

    NASA Astrophysics Data System (ADS)

    Clayton, Patrick J.

    Fuel costs represent a large fraction of aircraft operating costs. Increased aircraft fuel efficiency is thus desirable. Laminar airfoils have the advantage of reduced cruise drag and increased fuel efficiency. Unfortunately, they cannot perform adequately during high-lift situations (i.e. takeoff and landing) due to low stall angles and low maximum lift caused by flow separation. Active flow control has shown the ability to prevent or mitigate separation effects, and increase maximum lift. This fact makes AFC technology a fitting solution for improving high-lift systems and reducing the need for slats and flap elements. This study focused on experimentally investigating the effects of steady active flow control from three slots, located at 1%, 10%, and 80% chord, respectively, over a laminar airfoil with 45 degree deflected flap. A 30-inch-span airfoil model was designed, fabricated, and then tested in the Bill James 2.5'x3' Wind Tunnel at Iowa State University. Pressure data were collected along the mid-span of the airfoil, and lift and drag were calculated. Five test cases with varying injection locations and varying Cμ were chosen: baseline, blown flap, leading edge blowing, equal blowing, and unequal blowing. Of these cases, unequal blowing achieved the greatest lift enhancement over the baseline. All cases were able to increase lift; however, gains were less than anticipated.

  7. Turbojet-exhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet. [Lewis 10- by 10-ft. supersonic wind tunnel test

    NASA Technical Reports Server (NTRS)

    Sanders, B. W.

    1980-01-01

    The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with large, porous bleed areas to provide a stability bypass system that would allow a large, stable airflow range. Exhaust-nozzle, secondary-airflow pumping was used as the exit control for the stability bypass airflow. Propulsion system response and stability bypass performance were obtained for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area, as well as compressor stall. Nozzle secondary pumping as a stability bypass exit control can provide the inlet with a large stability margin with no adverse effects on propulsion system performance.

  8. F-16XL Supersonic Laminar Flow Test Flight

    NASA Video Gallery

    An F-16XL aircraft was used by the Dryden Flight Research Center, Edwards, California, in a NASA-wide program to improve laminar airflow on aircraft flying at sustained supersonic speeds. It was th...

  9. Data Analysis for the NASA/Boeing Hybrid Laminar Flow Control Crossflow Experiment

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Wlezien, Richard

    2011-01-01

    The Hybrid-Laminar Flow Control (HLFC) Crossflow Experiment, completed in 1995. generated a large database of boundary layer stability and transition data that was only partially analyzed before data analysis was abruptly ended in the late 1990's. Renewed interest in laminar flow technologies prompted additional data analysis, to integrate all data, including some post-test roughness and porosity measurements. The objective is to gain new insights into the effects of suction on boundary layer stability. A number of challenges were encountered during the data analysis, and their solutions are discussed in detail. They include the effect of the probe vibration, the effect of the time-varying surface temperature on traveling crossflow instabilities, and the effect of the stationary crossflow modes on the approximation of wall location. Despite the low turbulence intensity of the wind tunnel (0.01 to 0.02%), traveling crosflow disturbances were present in the data, in some cases at amplitudes up to 1% of the freestream velocity. However, the data suggests that transition was dominated by stationary crossflow. Traveling crossflow results and stationary data in the presence of suction are compared with linear parabolized stability equations results as a way of testing the quality of the results.

  10. Poppet valve control of throat stability bypass to increase stable airflow range of a Mach 2.5. inlet with 60 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1975-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. System variations included several stability bypass entrance configurations. Poppet valves controlled the bypass airflow. The inlet stable airflow range achieved with each configuration was determined for both steady state conditions and internal pulse transients. Results are compared with those obtained without a stability bypass system. Transient results were also obtained for the inlet with a choke point at the diffuser exit and for the inlet with large and small stability bypass plenum volumes. Poppet valves at the stability bypass exit provided the inlet with a stable airflow range of 20 percent or greater at all static and transient conditions.

  11. Design and fabrication of large suction panels with perforated surfaces for laminar flow control testing in a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Poppen, W. A., Jr.

    1986-01-01

    Considerable progress has been made in the development of perforated suction surface material for laminar flow control applications. Electron-beam perforated titaniuum skin was used as the suction surface. Critical issues related to suction panel manufacturing were identified and largely resolved. The final product included fabrication of a 7-foot chord by 7-foot span perforated laminar flow control wind tunnel model. Techniques used can be adapted to modern aircraft production lines. The report includes details on panel instrumentation and other features required for testing in a transonic pressure tunnel.

  12. Towards transition modelling for supersonic laminar flow control based on spanwise periodic roughness elements.

    PubMed

    Choudhari, Meelan; Chang, Chau-Lyan; Jiang, Li

    2005-05-15

    Laminar flow control (LFC) is one of the key enabling technologies for quiet and efficient supersonic aircraft. Recent work at Arizona State University (ASU) has led to a novel concept for passive LFC, which employs distributed leading edge roughness to limit the growth of naturally dominant crossflow instabilities in a swept-wing boundary layer. Predicated on nonlinear modification of the mean boundary-layer flow via controlled receptivity, the ASU concept requires a holistic prediction approach that accounts for all major stages within transition in an integrated manner. As a first step in developing an engineering methodology for the design and optimization of roughness-based supersonic LFC, this paper reports on canonical findings related to receptivity plus linear and nonlinear development of stationary crossflow instabilities on a Mach 2.4, 73 degrees swept airfoil with a chord Reynolds number of 16.3 million. PMID:16105770

  13. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  14. Airflow resistance in soybean

    NASA Astrophysics Data System (ADS)

    Kenghe, R. N.; Nimkar, P. M.; Shirkole, S. S.; Shinde, K. J.

    2012-04-01

    Resistance of material to airflow is an important factor to consider in the design of a dryer or an aeration system. The airflow resistance of soybean was determined with the modified airflow resistance apparatus. It was found that pressure drop increased with increase in airflow rate, bulk density, bed depth and decreased with moisture content. Modified Shedd equation, Hukill and Ives equation and modified Ergun equation were examined for pressure drop prediction. Airflow resistance was accurately described by modified Shedd equation followed by Hukill and Ives equation and modified Ergun equation. The developed statistical model comprised of airflow rate, moisture content and bulk density could fit pressure drop data reasonably well.

  15. Active control of laminar-turbulent transition using instantaneous vorticity signals at the wall

    NASA Astrophysics Data System (ADS)

    Gmelin, Christoph; Rist, Ulrich

    2001-02-01

    Many approaches with the objective to actively delay the laminar-turbulent transition in boundary layers are currently under investigation. These approaches, which are mostly based on the superposition of anti-phase disturbances, fail in cases where high (nonlinear) disturbance amplitudes occur. One possible solution to overcome this problem is the direct feedback of instantaneous flow signals from the wall. In our case the spanwise vorticity (ωz) on the wall is sensed, multiplied by a certain factor A and prescribed as a new boundary condition at the wall with some time delay Δt. This procedure (called ωz-control ) yields a robust algorithm which is less influenced by nonlinearities than other processes based on the linear superposition of disturbances (waves). The method was developed and evaluated using both linear stability theory and a three-dimensional spatial DNS code solving the complete Navier-Stokes equations.

  16. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  17. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  18. Application of Hybrid Laminar Flow Control to Global Range Military Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1988-01-01

    A study was conducted to evaluate the application of hybrid laminar flow control (HLFC) to global range military transport aircraft. The global mission included the capability to transport 132,500 pounds of payload 6500 nautical miles, land and deliver the payload and without refueling return 6500 nautical miles to a friendly airbase. The preliminary design studies show significant performance benefits obtained for the HLFC aircraft as compared to counterpart turbulent flow aircraft. The study results at M=0.77 show that the largest benefits of HLFC are obtained with a high wing with engines on the wing configuration. As compared with the turbulent flow baseline aircraft, the high wing HLFC aircraft shows 17 percent reduction in fuel burned, 19.2 percent increase in lift-to-drag ratio, an insignificant increase in operating weight, and a 7.4 percent reduction in gross weight.

  19. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  20. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A two-year study conducted to establish a basis for industry decisions on the application of laminar flow control (LFC) to future commercial transports was presented. Areas of investigation included: (1) mission definition and baseline selection; (2) concepts evaluations; and (3) LFC transport configuration selection and component design. The development and evaluation of competing design concepts was conducted in the areas of aerodynamics, structures and materials, and systems. The results of supporting wind tunnel and laboratory testing on a full-scale LFC wing panel, suction surface opening concepts and structural samples were included. A final LFC transport was configured in incorporating the results of concept evaluation studies and potential performance improvements were assessed. Remaining problems together with recommendations for future research are discussed.

  1. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of a 2-year study are reported which were carried out to extend the development of laminar flow control (LFC) technology and evaluate LFC systems concepts. The overall objective of the LFC program is to provide a sound basis for industry decisions on the application of LFC to future commercial transports. The study was organized into major tasks to support the stated objectives through application of LFC systems concepts to a baseline LFC transport initially generated for the study. Based on competitive evaluation of these concepts, a final selection was made for incorporation into the final design of an LFC transport which also included other advanced technology elements appropriate to the 1990 time period.

  2. Analysis for the application of hybrid laminar flow control to a long-range subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Arcara, P. C., Jr.; Bartlett, D. W.; Mccullers, L. A.

    1991-01-01

    The FLOPS aircraft conceptual design/analysis code has been used to evaluate the effects of incorporating hybrid laminar flow control (HLFC) in a 300-passenger, 6500 n. mi. range, twin-engine subsonic transport aircraft. The baseline configuration was sized to account for 50 percent chord laminar flow on the wing upper surface as well as both surfaces of the empennage airfoils. Attention is given to the additional benefits of achieving various degrees of laminar flow on the engine nacelles, and the horsepower extraction and initial weight and cost increments entailed by the HLFC system. The sensitivity of the results obtained to fuel-price and off-design range are also noted.

  3. Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation

    NASA Astrophysics Data System (ADS)

    Estruch-Samper, D.; Vanstone, L.; Hillier, R.; Ganapathisubramani, B.

    2015-09-01

    Interest in the development of micro vortex generators (MVGs) to control high-speed flow separation has grown in the last decade. In contrast to conventional vortex generators, MVGs are fully submerged in the boundary layer and have the potential of inducing surface flow mixing with marginal drag penalty when suitably designed. Also, they do not result in undesired reduced mass flow such as with suction methods. The flow mechanisms at the location of MVGs are not yet fully understood, and optimal designs are difficult to establish given that both numerical predictions and experiments are particularly challenged for short element heights, yet optimal MVGs are generally expected to be at least shorter than half the local boundary layer thickness. The present work aims at investigating experimentally the fundamental flow physics concerning an individual MVG element (of `canonical' or simplified geometry) at a range of near-wall heights. A fully laminar base flow is considered so as to isolate the effect of incoming turbulence as well as the more complex physics that may occur when specific and/or multiple elements are used. Tests were performed in a gun tunnel at a freestream Mach number of 8.9 and Reynolds number of /m, and the basic test model consisted of a blunt-nosed cylinder which produced an axisymmetric laminar boundary layer with an edge Mach number of 3.4 and Reynolds number of /m at the MVG location. A laminar shock-wave/boundary layer interaction with separation was induced by a flare located further downstream on the model. Measurements consisted of time-resolved surface heat transfer obtained in the axial direction immediately downstream of the MVG and along the interaction, together with simultaneous high-speed schlieren imaging. The height () of the MVG element used in a `diamond' configuration (square planform with one vertex facing the flow) was adjusted between tests ranging from = 0.03 to 0.58, where the local undisturbed boundary layer thickness

  4. Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2015-02-01

    The effect of a DC bias on the electrohydrodynamics (EHD) force induced by a surface dielectric barrier AC discharge actuator for airflow control at the atmospheric pressure is investigated. The measurement of the surface potential due to charge deposition at different DC biases is carried out by using a special designed corona like discharge potential probe. From the surface potential data, the plasma electromotive force is shown not affected much by the DC biases except for some reduction of the DC bias near the exposed electrode edge for the sheath-like configuration. The total thrust is measured by an analytical balance, and an almost linear relationship to the potential voltage at the exposed electrode edge is found for the direct thrust force. The temporally averaged ionic wind characteristics are investigated by Pitot tube sensor and schlieren visualization system. It is found that the ionic wind velocity profiles with different DC biases are almost the same in the AC discharge plasma area but gradually diversified in the further downstream area as well as the upper space away from the discharge plasma area. Also, the DC bias can significantly modify the topology of the ionic wind produced by the AC discharge actuator. These results can provide an insight into how the DC biases to affect the force generation.

  5. Structural development of laminar flow control aircraft chordwise wing joint designs

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  6. Fatigue response of perforated titanium for application in laminar flow control

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Miller, Jennifer L.; Newman, Jr., James

    1996-01-01

    The room temperature tensile and fatigue response of non-perforated and perforated titanium for laminar flow control application was investigated both experimentally and analytically. Results showed that multiple perforations did not affect the tensile response, but did reduce the fatigue life. A two dimensional finite element stress analysis was used to determine that the stress fields from adjacent perforations did not influence one another. The stress fields around the holes did not overlap one another, allowing the materials to be modeled as a plate with a center hole. Fatigue life was predicted using an equivalent MW flow size approach to relate the experimental results to microstructural features of the titanium. Predictions using flaw sizes ranging from 1 to 15 microns correlated within a factor of 2 with the experimental results by using a flow stress of 260 MPa. By using two different flow stresses in the crack closure model and correcting for plasticity, the experimental results were bounded by the predictions for high applied stresses. Further analysis of the complex geometry of the perforations and the local material chemistry is needed to further understand the fatigue behavior of the perforated titanium.

  7. Fatigue response of perforate titanium for application in laminar flow control

    SciTech Connect

    Miller, J.L.; Newman, J.C. Jr.; Johnson, W.S.

    1997-12-01

    The room temperature tensile and fatigue response of non-perforated and perforated titanium for laminar flow control application was investigated both experimentally and analytically. Results showed that multiple perforations did not affect the tensile response, but did reduce the fatigue life. A two-dimensional finite element stress analysis was used to determine that the stress fields from adjacent perforations did not influence one another. The stress fields around the holes did not overlap one another, allowing the material to be modeled as a plate with a center hole. Fatigue life was predicted using an equivalent initial flaw size approach to relate the experimental results to microstructural features of the titanium. Predictions using flaw sizes ranging from 1 to 15 {micro}m correlated within a factor of 2 with the experimental results by using a flow stress of 260 MPa. By using two different flow stresses in the crack closure model and correcting the plasticity, the experimental results were bounded by the predictions for high gross section stresses. Further analysis of the complex perforation geometry and the local material chemistry is needed to further understand the fatigue behavior of the perforated titanium.

  8. Stability of the laminar wake behind spinning axisymmetric bluff bodies: sensitivity and control

    NASA Astrophysics Data System (ADS)

    Jimenez-Gonzalez, Jose Ignacio; Martinez-Bazan, Carlos; Coenen, Wilfried; Manglano, Carlos; Sevilla, Alejandro

    2014-11-01

    We carry out direct and adjoint global stability analyses of the laminar wake behind several spinning axisymmetric bluff bodies, i.e. sphere, hemisphere, bullet-shaped bodies of ellipsoidal nose and spherical nose respectively; for moderate Reynolds numbers (Re <= 450) and values of the spin parameter (Ω <= 1), defined as the ratio between the azimuthal velocity at the outer body surface and the free-stream velocity. Both the axisymmetric base flow computations and the assembling of the eigenvalue problems are tackled by means of the finite element solver FreeFEM + + , computing finally the eigenmodes with an Arnoldi algorithm in Matlab. We show that spin acts as a stabilization mechanism for the wake behind bodies with a cylindrical trailing part, while it destabilizes the wake of the other geometries. The computation of the adjoint modes and the identification of the wavemaker allow us to discuss the nature of the different unstable modes found and understand the differences in the stabilizing or destabilizing effect of rotation due to the base flow modifications. The controllability of the unstable regimes by means of base bleed is also addressed. Supported by the Spanish MINECO, Junta de Andalucía and EU Funds under Projects DPI2011-28356-C03-03 and P11-TEP7495.

  9. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  10. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  11. Hybrid laminar flow control experiments in the NASA - Ames, 11-foot tunnel

    NASA Technical Reports Server (NTRS)

    Saric, William S.

    1995-01-01

    It was proposed to design and conduct experiments in the NASA-Ames Research Center, 11-foot wind tunnel, that would assess the role of freestream turbulence and surface roughness on swept-wing transition to turbulence. The work was to be a cooperative effort that had direct application to hybrid laminar flow control (HLFC) airfoils. The first part of the proposed work, initiated in FY92 and continued into FY93, concentrated on the design of such an experiment whose results may be compared with results obtained in other wind-tunnel facilities. At the same time, concurrent work in the Arizona State University (ASU) Unsteady Wind Tunnel would be conducted on the effects of surface roughness. The second part of the work, which was to be initiated in FY94, would have consisted of experiments conducted in both the 11-foot tunnel at NASA-Ames and the ASU Unsteady Wind Tunnel. However, this work was not continued. This report summarizes the experimental design considerations and some preliminary experiments that made up the first part of the work.

  12. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1992-01-01

    The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution.

  13. Summary of Transition Results From the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    2000-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport. Boundary-layer transition data on the titanium glove primarily have been obtained at speeds of Mach 2.0 and altitudes of 15,240-16,764 m (50,000-55,000 ft). The objectives of this flight experiment have been to achieve 0.50-0.60 chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point, a speed of Mach 1.9 at an altitude of 15,240 m (50,000 ft); but rather at a speed of Mach 2.0 and an altitude of 16,154 m (53,000 ft). Laminar flow has been obtained to more than 0.46 wing chord at a Reynolds number of 22.7 x 10(exp 6). A turbulence diverter has been used to initially obtain a laminar boundary layer at the attachment line. A lower-surface shock fence was required to block an inlet shock from the wing leading edge. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  14. Pressure activated stability-bypass-control valves to increase the stable airflow range of a Mach 2.5 inlet with 40 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. The inlet stable airflow range provided by various stability-bypass entrance configurations in alternate combination with several stability-bypass exit controls was determined for both steady-state conditions and internal transient pulses. Transient results were also obtained for the inlet with a choke point at the diffuser exit. Instart angles of attack were determined for the various stability-bypass entrance configurations. The response of the inlet-coldpipe system to internal and external oscillating disturbances was determined. Poppet valves at the stability-bypass exit provided an inlet stable airflow range of 28 percent or greater at all static and transient conditions.

  15. Efficacy of confrontational counselling for smoking cessation in smokers with previously undiagnosed mild to moderate airflow limitation: study protocol of a randomized controlled trial

    PubMed Central

    Kotz, Daniel; Wesseling, Geertjan; Huibers, Marcus JH; van Schayck, Onno CP

    2007-01-01

    Background The use of spirometry for early detection of chronic obstructive pulmonary disease (COPD) is still an issue of debate, particularly because of a lack of convincing evidence that spirometry has an added positive effect on smoking cessation. We hypothesise that early detection of COPD and confrontation with spirometry for smoking cessation may be effective when applying an approach we have termed "confrontational counselling"; a patient-centred approach which involves specific communication skills and elements of cognitive therapy. An important aspect is to confront the smoker with his/her airflow limitation during the counselling sessions. The primary objective of this study is to test the efficacy of confrontational counselling in comparison to regular health education and promotion for smoking cessation delivered by specialized respiratory nurses in current smokers with previously undiagnosed mild to moderate airflow limitation. Methods/Design The study design is a randomized controlled trial comparing confrontational counselling delivered by a respiratory nurse combined with nortriptyline for smoking cessation (experimental group), health education and promotion delivered by a respiratory nurse combined with nortriptyline for smoking cessation (control group 1), and "care as usual" delivered by the GP (control group 2). Early detection of smokers with mild to moderate airflow limitation is achieved by means of a telephone interview in combination with spirometry. Due to a comparable baseline risk of airflow limitation and motivation to quit smoking, and because of the standardization of number, duration, and scheduling of counselling sessions between the experimental group and control group 1, the study enables to assess the "net" effect of confrontational counselling. The study has been ethically approved and registered. Discussion Ethical as well as methodological considerations of the study are discussed in this protocol. A significant and relevant

  16. The Numerical Study with Dynamic Mesh on the Pollution Control Effect of Operating Table Protected by Laminar Flow Screen

    NASA Astrophysics Data System (ADS)

    Fan, Juli; Tian, Lu; Jia, Xudong

    2016-06-01

    Transmission of airborne bacteria is the main factor causing surgical site infection (SSI). Horizontal laminar flow screen is a kind of new clean equipment, which can prevent SSI effectively. Numerical simulation is conducted on the pollution control effect of operating table protected by horizontal laminar flow screen. A three-dimensional model is established, discrete phase model (DPM) is used for calculation. Numerical simulation is carried out to evaluate the particle trajectories with the Lagrange approach, and the dynamic mesh is used. Air movement in the case with and without people’s walking is analyzed. As a result, people’s walking would not affect the distribution of pollutants at the key area of the operating table, the vertex caused by the walking person does little influence on flow field of the whole operating room and the influence area is about 0.24m to 0.75m around the walking person. The protective effect of pollutants with horizontal laminar flow screen for the key areas of operating table is excellent. This work provides references for the study on the depuration of operating room or other occasion.

  17. Dynamic response of a Mach 2.5 axisymmetric inlet and turbojet engine with a poppet-value controlled inlet stability bypass system when subjected to internal and external airflow transients

    NASA Technical Reports Server (NTRS)

    Sanders, B. W.

    1980-01-01

    The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with a poppet-valve-controlled stability bypass system that was designed to provide a large, stable airflow range. Propulsion system response and stability bypass performance were determined for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area as well as compressor stall. For reference, data are also included for a conventional, fixed-exit bleed system. The poppet valves greatly increased inlet stability and had no adverse effects on propulsion system performance. Limited unstarted-inlet bleed performance data are presented.

  18. Assessing multizone airflow software

    SciTech Connect

    Lorenzetti, D.M.

    2001-12-01

    Multizone models form the basis of most computer simulations of airflow and pollutant transport in buildings. In order to promote computational efficiency, some multizone simulation programs, such as COMIS and CONTAM, restrict the form that their flow models may take. While these tools allow scientists and engineers to explore a wide range of building airflow problems, increasingly their use has led to new questions not answerable by the current generation of programs. This paper, directed at software developers working on the next generation of building airflow models, identifies structural aspects of COMIS and related programs that prevent them from easily incorporating desirable new airflow models. The paper also suggests criteria for evaluating alternate simulation environments for future modeling efforts.

  19. The NASA Langley Laminar-Flow-Control Experiment on a Swept Supercritical Airfoil: Basic Results for Slotted Configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1989-01-01

    The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number.

  20. Defining Airflow Obstruction

    PubMed Central

    Eschenbacher, William L.

    2016-01-01

    Airflow obstruction has been defined using spirometric test results when the forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) ratio is below a fixed cutoff (<70%) or lower limits of normal (LLN) from reference equations that are based on values from a normal population. However, similar to other positive or abnormal diagnostic test results that are used to identify the presence of disease, perhaps airflow obstruction should be defined based on the values of FEV1/FVC for a population of individuals with known disease such as chronic obstructive pulmonary disease (COPD). Unfortunately, we do not know such a distribution of values of FEV1/FVC for patients with COPD since there is no gold standard for this syndrome or condition. Yet, we have used this physiologic definition of airflow obstruction based on a normal population to identify patients with COPD. In addition, we have defined airflow obstruction as either being present or absent. Instead, we should use a different approach to define airflow obstruction based on the probability or likelihood that the airflow obstruction is present which in turn would give us the probability or likelihood of a disease state such as COPD. PMID:27239557

  1. Simulated airline service experience with laminar-flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Fisher, David F.; Jennett, Lisa A.; Fischer, Michael C.

    1987-01-01

    The first JetStar leading edge flight test was made November 30, 1983. The JetStar was flown for more than 3 years. The titanium leading edge test articles today remain in virtually the same condition as they were in on that first flight. No degradation of laminar flow performance has occurred as a result of service. The JetStar simulated airline service flights have demonstrated that effective, practical leading edge systems are available for future commercial transports. Specific conclusions based on the results of the simulated airline service test program are summarized.

  2. Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.; Etchberger, F. R.; Ferrill, R. S.; Meade, L. E.

    1976-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified.

  3. Instabilities orginating from suction holes used for Laminar Flow Control (LFC)

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1994-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer studies has been modified for experiments in laminar flow control. The facility incorporates suction through interchangeable porous test surfaces which are used to stabilize the boundary layer and delay transition to turbulent flow. The thin porous test surfaces are supported by a baffled plenum chamber box which also acts to gather the flow through the surface into tubes which are routed to a high pressure fan. An elliptic leading edge is attached to the assembly to establish a new layer on the test plate. A slot is used to remove the test section flow below the leading edge. The test section was lengthened and fitted with a new ceiling. Substantial modifications were also made to the 3D probe traverse. Detailed studies have been made using isolated holes to explore the underlying instability mechanisms. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance. Conditions corresponding to strong suction and without suction have been studied. In both cases, 3D contour surfaces in the vicinity of the hole show highly three-dimensional T-S waves that fan out away from the hole with streamwise distance. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the far field is similar to the case without suction. Downstream the contour surfaces of the bow-shaped TS waves develop spanwise irregularities which eventually form into clumps. The contours remain smooth when suction is not applied. Even without suction, the harmonic point source is challenging for CFD; e.g. DNS has been used for streamwise growth. With suction, grid resources are consumed by the hole and this makes DNS even more expensive. Limited DNS results so far indicate that the vortices which emanate from suction holes appear to be stable. The spanwise clumping observed in the experiment is evidence of a secondary instability that could be

  4. Flight experiences with laminar flow

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    1986-01-01

    A review of natural laminar flow (NLF) flight experiences over the period from the 1930's to the present has been given to provide information on the achievability and maintainability of NLF in typical airplane operating environments. Significant effects of loss of laminar flow on airplane performance have been observed for several airplanes, indicating the importance of providing information on these changes to laminar flow airplane operators. Significant changes in airplane stability and control and maximum lift were observed in flight experiments with the loss of laminar flow. However, these effects can be avoided by proper selection of airfoils. Conservative laminar flow airfoil designs should be employed which do not experience significant loss of lift (caused by flow separation) upon the loss of laminar flow. Mechanisms have been observed for the effects of insect accumulation, flight through clouds and precipitation, and propeller slipstreams on laminar flow behavior. Fixed transition testing, in addition to free transition testing, is recommended as a new standard procedure for airplanes with surfaces designed to support laminar flow.

  5. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices.

    PubMed

    Lai, James J; Nelson, Kjell E; Nash, Michael A; Hoffman, Allan S; Yager, Paul; Stayton, Patrick S

    2009-07-21

    In the absence of applied forces, the transport of molecules and particulate reagents across laminar flowstreams in microfluidic devices is dominated by the diffusivities of the transported species. While the differential diffusional properties between smaller and larger diagnostic targets and reagents have been exploited for bioseparation and assay applications, there are limitations to methods that depend on these intrinsic size differences. Here a new strategy is described for exploiting the sharply reversible change in size and magnetophoretic mobility of "smart" magnetic nanoparticles (mNPs) to perform bioseparation and target isolation under continuous flow processing conditions. The isolated 5 nm mNPs do not exhibit significant magnetophoretic velocities, but do exhibit high magnetophoretic velocities when aggregated by the action of a pH-responsive polymer coating. A simple external magnet is used to magnetophorese the aggregated mNPs that have captured a diagnostic target from a lower pH laminar flowstream (pH 7.3) to a second higher pH flowstream (pH 8.4) that induces rapid mNP disaggregation. In this second dis-aggregated state and flowstream, the mNPs continue to flow past the magnet rather than being immobilized at the channel surface near the magnet. This stimuli-responsive reagent system has been shown to transfer 81% of a model protein target from an input flowstream to a second flowstream in a continuous flow H-filter device. PMID:19568666

  6. Operational considerations for laminar flow aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Wagner, Richard D.

    1986-01-01

    Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.

  7. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. Report 4; Suction System Design and Manufacture

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the design of the leading edge suction system for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane. The exterior pressures on the wing surface and the required suction quantity and distribution were determined in previous work. A system consisting of porous skin, sub-surface spanwise passages ("flutes"), pressure regulating screens and valves, collection fittings, ducts and a turbocompressor was defined to provide the required suction flow. Provisions were also made for flexible control of suction distribution and quantity for HLFC research purposes. Analysis methods for determining pressure drops and flow for transpiration heating for thermal anti-icing are defined. The control scheme used to observe and modulate suction distribution in flight is described.

  8. Inviscid analysis of two supercritical laminar-flow-control airfoils at design and off-design conditions

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1983-01-01

    Inviscid transonic flow results are provided at design and off design conditions for two supercritical laminar flow control airfoils. The newer airfoil, with its lower suction requirements for full chord laminar flow, has a higher design Mach number, steeper pressure gradients, a more positive pressure level in the forward region of the lower surface, and a recovery to a less positive pressure at the trailing edge. The two dimensional design Mach numbers for the two airfoils are 0.755 and 0.730 at a common design lift coefficient of 0.60, and their thickness to chord ratios are 0.131 and 0.135, respectively. Off design shock formation characteristics are similar for the two airfoils over a range of Mach numbers between 0.6 and 0.8 and lift coefficients from 0.4 to 0.7. The newer airfoil is similar to the one used in a large chord swept model experiment designed for the Langley 8 Foot Transonic Pressure Tunnel.

  9. F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dryden research pilot Dana Purifoy bends NASA F-16 XL #848 away from the tanker on the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds. The flight tests at Dryden involved use of a suction system which drew boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' that was fitted to the upper surface of the F-16XL's left wing.

  10. F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The perforated titanium overlay mounted on the upper surface of the left wing is clearly evident on this view of NASA 848, a highly modified F-16XL aircraft flown by NASA's Dryden Flight Research Center in the Supersonic Laminar Flow Control (SLFC) research program. The two-seat, single-engine craft, one of only two 'XL' F-16s built, recently concluded the SLFC project with its 45th data collection mission. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew a small part of the boundary-layer air through millions of tiny laser-drilled holes in the 'glove' fitted to the upper left wing.

  11. Qualitative Real-Time Schlieren and Shadowgraph Imaging of Human Exhaled Airflows: An Aid to Aerosol Infection Control

    PubMed Central

    Tang, Julian W.; Nicolle, Andre D. G.; Pantelic, Jovan; Jiang, Mingxiu; Sekhr, Chandra; Cheong, David K. W.; Tham, Kwok Wai

    2011-01-01

    Using a newly constructed airflow imaging system, airflow patterns were visualized that were associated with common, everyday respiratory activities (e.g. breathing, talking, laughing, whistling). The effectiveness of various interventions (e.g. putting hands and tissues across the mouth and nose) to reduce the potential transmission of airborne infection, whilst coughing and sneezing, were also investigated. From the digital video footage recorded, it was seen that both coughing and sneezing are relatively poorly contained by commonly used configurations of single-handed shielding maneuvers. Only some but not all of the forward momentum of the cough and sneeze puffs are curtailed with various hand techniques, and the remaining momentum is disseminated in a large puff in the immediate vicinity of the cougher, which may still act as a nearby source of infection. The use of a tissue (in this case, 4-ply, opened and ready in the hand) proved to be surprisingly effective, though the effectiveness of this depends on the tissue remaining intact and not ripping apart. Interestingly, the use of a novel ‘coughcatcher’ device appears to be relatively effective in containing coughs and sneezes. One aspect that became evident during the experimental procedures was that the effectiveness of all of these barrier interventions is very much dependent on the speed with which the user can put them into position to cover the mouth and nose effectively. From these qualitative schlieren and shadowgraph imaging experiments, it is clear that making some effort to contain one's cough or sneeze puffs is worthwhile. Obviously, there will be a large amount of variation between individuals in the exact hand or tissue (the most common methods) configuration used for this and other practical factors may hinder such maneuvers in daily life, for example, when carrying shopping bags or managing young children. PMID:21731730

  12. A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Swinford, G. R.

    1976-01-01

    The results of an aircraft wing design study are reported. The selected study airplane configuration is defined. The suction surface, ducting, and compressor systems are described. Techniques of manufacturing suction surfaces are identified and discussed. A wing box of graphite/epoxy composite is defined. Leading and trailing edge structures of composite construction are described. Control surfaces, engine installation, and landing gear are illustrated and discussed. The preliminary wing design is appraised from the standpoint of manufacturing, weight, operations, and durability. It is concluded that a practical laminar flow control (LFC) wing of composite material can be built, and that such a wing will be lighter than an equivalent metal wing. As a result, a program of suction surface evaluation and other studies of configuration, aerodynamics, structural design and manufacturing, and suction systems are recommended.

  13. Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. [laminar flow control

    NASA Technical Reports Server (NTRS)

    Pfenninger, Werner; Vemuru, Chandra S.

    1988-01-01

    The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.

  14. Wind tunnel evaluation of YF-12 inlet response to internal airflow disturbances with and without control. [Lewis 10 by 10 ft supersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Neiner, G. H.; Dustin, M. O.

    1978-01-01

    The response of terminal-shock position and static pressures in the subsonic duct of a YF-12 aircraft flight-hardware inlet to perturbations in simulated engine corrected airflow were obtained with and without inlet control. Frequency response data, obtained with inlet controls inactive, indicated the general nature of the inherent inlet dynamics, assisted in the design of controls, and provided a baseline reference for responses with active controls. All the control laws were implemented by means of a digital computer that could be programmed to behave like the flight inlet's existing analog control. The experimental controls were designed using an analytical optimization technique. The capabilities of the controls were limited primarily by the actuation hardware. The experimental controls provided somewhat better attenuation of terminal shock excursions than did the YF-13 inlet control. Controls using both the forward and aft bypass systems also provided somewhat better attenuation than those using just the forward bypass. The main advantage of using both bypasses is in the greater control flexibility that is achieved.

  15. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    NASA Technical Reports Server (NTRS)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  16. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  17. Pressure distributions from subsonic tests of an advanced laminar-flow-control wing with leading- and trailing-edge flaps

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.

    1988-01-01

    An unswept, semispan wing model equipped with full-span leading- and trailing-edge flaps was tested in the Langley 14- by 22-Foot Subsonic Tunnel to determine the effect of high-lift components on the aerodynamics of an advanced laminar-flow-control (LFC) airfoil section. Chordwise pressure distributions near the midsemispan were measured for four configurations: cruise, trailing-edge flap only, and trailing-edge flap with a leading-edge Krueger flap of either 0.10 or 0.12 chord. Part 1 of this report (under separate cover) presents a representative sample of the plotted pressure distribution data for each configuration tested. Part 2 presents the entire set of plotted and tabulated pressure distribution data. The data are presented without analysis.

  18. Regulation of glottal closure and airflow in a three-dimensional phonation model: Implications for vocal intensity control

    PubMed Central

    Zhang, Zhaoyan

    2015-01-01

    Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency. PMID:25698022

  19. DNS on control of laminar-turbulent transition in channel flow with suction and blowing

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kiyoshi; Murase, Takeo; Floryan, J. M.

    1992-11-01

    Numerical simulation of laminar-turbulent transition in channel flow with spatially periodic suction/blowing from its channel walls is conducted with a spectral method based on the Fourier spectral method. Reynolds number is fixed on a subcritical value, 5,000, and the influence of both amplitude and wave number of the suction/blowing on the transition is investigated. When the amplitude is small, the transition does not occur because the suction/blowing gives only a slight effect to the basic flow and the resulted flow remains stable to all three-dimensional small disturbances. On the other hand, when the amplitude is a large value, the transition occurs in a finite time, and finally it is obtained instantaneously with a huge value of the amplitude. It is found that the suction/blowing makes the separation ridges on the wall, which may simulate a wall roughness. The transition times are obtained for the moderately large amplitudes and wave numbers, obey nearly a minus two power law dependence on the ratio of amplitude to wave number.

  20. SALLY LEVEL II- COMPUTE AND INTEGRATE DISTURBANCE AMPLIFICATION RATES ON SWEPT AND TAPERED LAMINAR FLOW CONTROL WINGS WITH SUCTION

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1994-01-01

    The computer program SALLY was developed to compute the incompressible linear stability characteristics and integrate the amplification rates of boundary layer disturbances on swept and tapered wings. For some wing designs, boundary layer disturbance can significantly alter the wing performance characteristics. This is particularly true for swept and tapered laminar flow control wings which incorporate suction to prevent boundary layer separation. SALLY should prove to be a useful tool in the analysis of these wing performance characteristics. The first step in calculating the disturbance amplification rates is to numerically solve the compressible laminar boundary-layer equation with suction for the swept and tapered wing. A two-point finite-difference method is used to solve the governing continuity, momentum, and energy equations. A similarity transformation is used to remove the wall normal velocity as a boundary condition and place it into the governing equations as a parameter. Thus the awkward nonlinear boundary condition is avoided. The resulting compressible boundary layer data is used by SALLY to compute the incompressible linear stability characteristics. The local disturbance growth is obtained from temporal stability theory and converted into a local growth rate for integration. The direction of the local group velocity is taken as the direction of integration. The amplification rate, or logarithmic disturbance amplitude ratio, is obtained by integration of the local disturbance growth over distance. The amplification rate serves as a measure of the growth of linear disturbances within the boundary layer and can serve as a guide in transition prediction. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on a CDC CYBER 70 series computer with a central memory requirement of approximately 67K (octal) of 60 bit words. SALLY was developed in 1979.

  1. Mechanisms for laminar separated-flow control using dielectric-barrier-discharge plasma actuator at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Sato, Makoto; Nonomura, Taku; Okada, Koichi; Asada, Kengo; Aono, Hikaru; Yakeno, Aiko; Abe, Yoshiaki; Fujii, Kozo

    2015-11-01

    Large-eddy simulations have been conducted to investigate the mechanisms of separated-flow control using a dielectric barrier discharge plasma actuator at a low Reynolds number. In the present study, the mechanisms are classified according to the means of momentum injection to the boundary layer. The separated flow around the NACA 0015 airfoil at a Reynolds number of 63 000 is used as the base flow for separation control. Both normal and burst mode actuations are adopted in separation control. The burst frequency non-dimensionalized by the freestream velocity and the chord length (F+) is varied from 0.25 to 25, and we discuss the control mechanism through the comparison of the aerodynamic performance and controlled flow-fields in each normal and burst case. Lift and drag coefficients are significantly improved for the cases of F+ = 1, 5, and 15 due to flow reattachment associated with a laminar-separation bubble. Frequency and linear stability analyses indicate that the F+ = 5 and 15 cases effectively excite the natural unstable frequency at the separated shear layer, which is caused by the Kelvin-Helmholtz instability. This excitation results in earlier flow reattachment due to earlier turbulent transition. Furthermore, the Reynolds stress decomposition is conducted in order to identify the means of momentum entrainment resulted from large-scale spanwise vortical structure or small-scale turbulent vortices. For the cases with flow reattachment, the large-scale spanwise vortices, which shed from the separated shear layer through plasma actuation, significantly increase the periodic component of the Reynolds stress near the leading edge. These large-scale vortices collapse to small-scale turbulent vortices, and the turbulent component of the Reynolds stress increases around the large-scale vortices. In these cases, although the combination of momentum entrainment by both Reynolds stress components results in flow reattachment, the dominant component is identified as

  2. F-16XL Ship #2 during last flight viewed from tanker showing titanium laminar flow glove on left win

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dryden research pilot Dana Purifoy drops NASA F-16XL #848 away from the tanker in the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew turbulent boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' fitted to the upper left wing. About 90 hours of flight time were logged by the unique aircraft during the 13-month flight research program, much of it at speeds of Mach 2. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  3. TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract

    PubMed Central

    Han, Wenqi; Kwan, Kenneth Y.; Shim, Sungbo; Lam, Mandy M. S.; Shin, Yurae; Xu, Xuming; Zhu, Ying; Li, Mingfeng; Šestan, Nenad

    2011-01-01

    The corticospinal (CS) tract is involved in controlling discrete voluntary skilled movements in mammals. The CS tract arises exclusively from layer (L) 5 projection neurons of the cerebral cortex, and its formation requires L5 activity of Fezf2 (Fezl, Zfp312). How this L5-specific pattern of Fezf2 expression and CS axonal connectivity is established with such remarkable fidelity had remained elusive. Here we show that the transcription factor TBR1 directly binds the Fezf2 locus and represses its activity in L6 corticothalamic projection neurons to restrict the origin of the CS tract to L5. In Tbr1 null mutants, CS axons ectopically originate from L6 neurons in a Fezf2-dependent manner. Consistently, misexpression of Tbr1 in L5 CS neurons suppresses Fezf2 expression and effectively abolishes the CS tract. Taken together, our findings show that TBR1 is a direct transcriptional repressor of Fezf2 and a negative regulator of CS tract formation that restricts the laminar origin of CS axons specifically to L5. PMID:21285371

  4. Evaluation of a long-endurance-surveillance remotely-piloted vehicle with and without laminar flow control

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.; Lovell, W. A.; Price, J. E.; Quartero, C. B.; Washburn, S. F.

    1979-01-01

    Two aircraft were evaluated, using a derated TF34-GE-100 turbofan engine one with laminar flow control (LFC) and one without. The mission of the remotely piloted vehicles (RPV) is one of high-altitude loiter at maximum endurance. With the LFC system maximum mission time increased by 6.7 percent, L/D in the loiter phase improved 14.2 percent, and the minimum parasite drag of the wing was reduced by 65 percent resulting in a 37 percent reduction for the total airplane. Except for the minimum parasite drag of the wing, the preceding benefits include the offsetting effects of weight increase, suction power requirements, and drag of the wing-mounted suction pods. In a supplementary study using a scaled-down, rather than derated, version of the engine, on the LFC configuration, a 17.6 percent increase in mission time over the airplane without LFC and an incremental time increase of 10.2 percent over the LFC airplane with derated engine were attained. This improvement was due principally to reductions in both weight and drag of the scaled engine.

  5. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  6. Control of laminar wake flows using the Sum-of-Squares approach

    NASA Astrophysics Data System (ADS)

    Lasagna, Davide; Tutty, Owen; Huang, Deqing; Chernyshenko, Sergei

    2015-11-01

    A novel feedback control design methodology for finite-dimensional, reduced-order models of incompressible turbulent fluid flows, aiming at reduction of long-time averages of key quantities, is presented. The key enabler is a recent advance in control design for systems with polynomial dynamics, i.e. the discovery that the Sum-of-Squares decomposition of a non-negative polynomial, or the construction of one of such functions, can be computed via semidefinite programming techniques. Firstly, the theoretical difficulties of treating long-time averages are relaxed by abstracting the analysis to upper bounds of such averages. Then, the problems of estimation and optimisation via control design of these bounds are conveniently reformulated into constructing suitable non-negative polynomial functions, using Sum-of-Squares programming techniques. To showcase the methodology, linear and nonlinear polynomial-type state-feedback controllers are designed to reduce the fluctuations kinetic energy in the wake of a circular cylinder at Re = 100 , using rotary oscillations. A compact, reduced-order Galerkin model of the actuated wake is first derived using Proper Orthogonal Decomposition. Controllers are then designed and implemented in direct numerical simulations of the flow.

  7. Computational Study of Laminar Flow Control on a Subsonic Swept Wing Using Discrete Roughness Elements

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.

    2011-01-01

    A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.

  8. Laminar-flow wind tunnel experiments

    NASA Technical Reports Server (NTRS)

    Harvey, William D.; Harris, Charles D.; Sewall, William G.; Stack, John P.

    1989-01-01

    Although most of the laminar flow airfoils recently developed at the NASA Langley Research Center were intended for general aviation applications, low-drag airfoils were designed for transonic speeds and wind tunnel performance tested. The objective was to extend the technology of laminar flow to higher Mach and Reynolds numbers and to swept leading edge wings representative of transport aircraft to achieve lower drag and significantly improved operation costs. This research involves stabilizing the laminar boundary layer through geometric shaping (Natural Laminar Flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (Laminar-Flow Control, LFC), either through discrete slots or perforated surface. Results show that extensive regions of laminar flow with large reductions in skin friction drag can be maintained through the application of passive NLF boundary-layer control technologies to unswept transonic wings. At even greater extent of laminar flow and reduction in the total drag level can be obtained on a swept supercritical airfoil with active boundary layer-control.

  9. Effects of Pranayam Breathing on Respiratory Pressures and Sympathovagal Balance of Patients with Chronic Airflow Limitation and in Control Subjects

    PubMed Central

    Jaju, Deepali S; Dikshit, Mohan B; Balaji, Jothi; George, Jyoji; Rizvi, Syed; Al-Rawas, Omar

    2011-01-01

    Objectives: The objective of this study was to compare the effects of Pranayam breathing on respiratory muscle strength measured as maximum expiratory and inspiratory pressures (MEP and MIP) and relevant spirometry parameters in patients with chronic obstructive pulmonary disease (COPD) and in control subjects, and on the sympatho-vagal balance in both the groups. Methods: The research was performed in the Clinical Physiology Department, Sultan Qaboos University Hospital, Oman. Eleven patients (mean age 43.91 ± 20.56 yr; mean BMI 21.9 ± 5.5 kg/m2) and 6 controls (43.5 ± 14.6yr; 25.4 ± 3.2 kg/m2) learnt and practised Pranayam. Their respiratory and cardiovascular parameters were recorded. Their respiratory “well being” was noted as a visual analogue score (VAS). The respiratory parameters were expressed as a percentage change of predicted values. Results: Patients’ respiratory parameters were significantly lower than those of controls. Patients’ maximum respiratory pressures did not improve after Pranayam; however, they showed significant improvement in VAS 5.4 ± 2.4 to 7.2 ± 1.2 (P < 0.03). Controls showed significant increase in MIP after Pranayam exercises. There were no changes in other spirometry indices. Controls showed significant increase in their systolic blood pressure and stroke index after exercise. The vago-sympathetic balance shifted towards sympathetic in both patients and controls after exercise. Conclusion: The improvement in MIP in controls indicated the positive effect of Pranayam exercise; however, it may not be an adequately stressful exercise to produce changes in the respiratory parameters of COPD patients. The increase in VAS in patients suggested improvement in respiratory distress and quality of life. PMID:21969894

  10. Development of the technology for the fabrication of reliable laminar from control panels

    NASA Technical Reports Server (NTRS)

    Meade, L. E.; Kays, A. O.; Ferrill, R. S.; Young, H. R.

    1977-01-01

    Materials were assessed and fabrication techniques were developed for use in the manufacture of wing surface materials compatible with the application of both aluminum alloys and nonmetallic composites. The concepts investigated included perforations and slots in the metallic test panels and microporosity and perforations in the composite test panels. Perforations were produced in the metallic test panels by the electron beam process and slots were developed by controlled gaps between the metal sheets. Microporosity was produced in the composite test panels by the resin bleed process, and perforations were produced by the fugitive fiber technique. Each of these concepts was fabricated into test panels, and air flow tests were conducted on the panels.

  11. Modifications to the Langley 8-foot transonic pressure tunnel for the laminar flow control experiment

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.

    1988-01-01

    Modifications to the NASA Langley 8 Foot Transonic Pressure Tunnel in support of the Lamina Flow Control (LFC) Experiment included the installation of a honeymoon and five screens in the settling chamber upstream of the test section 41-long test section liner that extended from the upstream end of the test section contraction region, through the best section, and into the diffuser. The honeycomb and screens were installed as permanent additions to the facility, and the liner was a temporary addition to be removed at the conclusion of the LFC Experiment. These modifications are briefly described.

  12. Survey and bibliography on attainment of laminar flow control in air using pressure gradient and suction, volume 1

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Tuttle, M. H.

    1979-01-01

    A survey was conducted and a bibliography compiled on attainment of laminar flow in air through the use of favorable pressure gradient and suction. This report contains the survey, summaries of data for both ground and flight experiments, and abstracts of referenced reports. Much early information is also included which may be of some immediate use as background material for LFC applications.

  13. Quasi-laminar stability and sensitivity analyses for turbulent flows: Prediction of low-frequency unsteadiness and passive control

    NASA Astrophysics Data System (ADS)

    Mettot, Clément; Sipp, Denis; Bézard, Hervé

    2014-04-01

    This article presents a quasi-laminar stability approach to identify in high-Reynolds number flows the dominant low-frequencies and to design passive control means to shift these frequencies. The approach is based on a global linear stability analysis of mean-flows, which correspond to the time-average of the unsteady flows. Contrary to the previous work by Meliga et al. ["Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability," Phys. Fluids 24, 061701 (2012)], we use the linearized Navier-Stokes equations based solely on the molecular viscosity (leaving aside any turbulence model and any eddy viscosity) to extract the least stable direct and adjoint global modes of the flow. Then, we compute the frequency sensitivity maps of these modes, so as to predict before hand where a small control cylinder optimally shifts the frequency of the flow. In the case of the D-shaped cylinder studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that the present approach well captures the frequency of the flow and recovers accurately the frequency control maps obtained experimentally. The results are close to those already obtained by Meliga et al., who used a more complex approach in which turbulence models played a central role. The present approach is simpler and may be applied to a broader range of flows since it is tractable as soon as mean-flows — which can be obtained either numerically from simulations (Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle Image Velocimetry - PIV) — are available. We also discuss how the influence of the control cylinder on the mean-flow may be more accurately predicted by determining an eddy-viscosity from numerical simulations or experimental measurements. From a technical point of view, we finally show how an existing compressible numerical simulation code may be used in

  14. Laminar-flow flight experiments

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D.; Maddalon, Dal V.; Bartlett, D. W.; Collier, F. S., Jr.; Braslow, A. L.

    1989-01-01

    The flight testing conducted over the past 10 years in the NASA laminar-flow control (LFC) will be reviewed. The LFC program was directed towards the most challenging technology application, the high supersonic speed transport. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.

  15. Operating Room Environment Control. Part A: a Valve Cannister System for Anesthetic Gas Adsorption. Part B: a State-of-the-art Survey of Laminar Flow Operating Rooms. Part C: Three Laminar Flow Experiments

    NASA Technical Reports Server (NTRS)

    Meyer, J. S.; Kosovich, J.

    1973-01-01

    An anesthetic gas flow pop-off valve canister is described that is airtight and permits the patient to breath freely. Once its release mechanism is activated, the exhaust gases are collected at a hose adapter and passed through activated coal for adsorption. A survey of laminar air flow clean rooms is presented and the installation of laminar cross flow air systems in operating rooms is recommended. Laminar flow ventilation experiments determine drying period evaporation rates for chicken intestines, sponges, and sections of pig stomach.

  16. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications

    NASA Astrophysics Data System (ADS)

    Benard, Nicolas; Zouzou, Nourredine; Claverie, Alain; Sotton, Julien; Moreau, Eric

    2012-02-01

    Flow control consists of manipulating flows in an effective and robust manner to improve the global performances of transport systems or industrial processes. Plasma technologies, and particularly surface dielectric barrier discharge (DBD), can be a good candidate for such purpose. The present experimental study focuses on optical and electrical characterization of plasma sheet formed by applying a pulse of voltage with rising and falling periods of 50 ns for a typical surface DBD geometry. Positive and negative polarities are compared in terms of current behavior, deposited energy, fast-imaging of the plasma propagation, and resulting modifications of the surrounding medium by using shadowgraphy acquisitions. Positive and negative pulses of voltage produce streamers and corona type plasma, respectively. Both of them result in the production of a localized pressure wave propagating in the air with a speed maintained at 343 m/s (measurements at room temperature of 20 °C). This suggests that the produced pressure wave can be considered as a propagating sound wave. The intensity of the pressure wave is directly connected to the dissipated energy at the dielectric wall with a linear increase with the applied voltage amplitude and a strong dependence toward the rising time. At constant voltage amplitude, the pressure wave is reinforced by using a positive pulse. The present investigation also reveals that rising and decaying periods of a single pulse of voltage result in two distinct pressure waves. As a result, superposition or successive pressure wave can be produced by adjusting the width of the pulse.

  17. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  18. Airflow models gaining clout

    SciTech Connect

    Post, N.M.

    1994-10-10

    Move over, mock-ups. So long, smoke bombs. Take a walk, wind tunnels. Computational fluid dynamics, a spaceage simulation technique, is gaining velocity in the building community. And the design of inner spaces may never be the same. CFD is an equation-intensive computer modeling method that can simulate transient and steady-state airflow patterns and temperature gradients, indoors or out. CFD is used to downsize heating, ventilating and air conditioning systems, locate air outlets, and in general, create spaces that offer creature comfort, provide quality air and use less energy. The method is good for new construction, retrofits and forensic work, for example to investigate a building fire or a contaminant. In a room, CFD helps engineers consider, over a period of time, the combined impacts of ventilation, size, shape, contents, weather, even fenestration. For its first decade or two, CFD stayed the near-exclusive domain of aerospace, defense and electronics. With few exceptions, the building community could not afford the supercomputers that were needed to run the tens of thousands of equations involved. However, in the past few years, thanks to the increasing power and decreasing cost of computers, CFD simulation became practical. Curtain wall designers are even using it, though not without some controversy. Indoor air quality specialists, smoke and fire-spread researchers, laboratory designers, energy engineers, code writers, architects, and plant and building engineers are uncharacteristically upbeat about the tool. {open_quotes}CFD modeling is so many light years ahead of design tools that exist,{close_quotes} says Mariano Rodriguez, director of research and development for architect The Hillier Group, Princeton, N.J. {open_quotes}It`s the next step up from a wind tunnel test, and you don`t need a $300,000 wind tunnel.{close_quotes}

  19. CNSFV code development, virtual zone Navier-Stokes computations of oscillating control surfaces and computational support of the laminar flow supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Klopfer, Goetz H.

    1993-01-01

    The work performed during the past year on this cooperative agreement covered two major areas and two lesser ones. The two major items included further development and validation of the Compressible Navier-Stokes Finite Volume (CNSFV) code and providing computational support for the Laminar Flow Supersonic Wind Tunnel (LFSWT). The two lesser items involve a Navier-Stokes simulation of an oscillating control surface at transonic speeds and improving the basic algorithm used in the CNSFV code for faster convergence rates and more robustness. The work done in all four areas is in support of the High Speed Research Program at NASA Ames Research Center.

  20. Effect of nacelles on aerodynamic characteristics of an executive-jet model with simulated, partial-chord, laminar-flow-control wing glove

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1982-01-01

    Tests were conducted in the Langley High-Speed 7- by 10-Foot Tunnel using a 1/10-scale model of an executive jet to examine the effects of the nacelles on the wing pressures and model longitudinal aerodynamic characteristics. For the present investigation, each wing panel was modified with a simulated, partial-chord, laminar-flow-control glove. Horizontal-tail effects were also briefly examined. The tests covered a range of Mach numbers from 0.40 to 0.82 and lift coefficients from 0.20 to 0.55. Oil-flow photographs of the wing at selected conditions are included.

  1. Continuous laminar smoke generator

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M. (Inventor)

    1985-01-01

    A smoke generator capable of emitting a very thin, laminar stream of smoke for use in high detail flow visualization was invented. The generator is capable of emitting a larger but less stable rope of smoke. The invention consists of a pressure supply and fluid supply which supply smoke generating fluid to feed. The feed tube is directly heated by electrical resistance from current supplied by power supply and regulated by a constant temperature controller. A smoke exit hole is drilled in the wall of feed tube. Because feed tube is heated both before and past exit hole, no condensation of smoke generating occurs at the smoke exit hole, enabling the production of a very stable smoke filament. The generator is small in size which avoids wind turbulence in front of the test model.

  2. Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.

    NASA Astrophysics Data System (ADS)

    Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David

    1996-11-01

    A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.

  3. Minimum airflow reset of single-duct VAV terminal boxes

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  4. Results for the hybrid laminar flow control experiment conducted in the NASA Langley 8-foot transonic pressure tunnel on a 7-foot chord model

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Ferris, James C.; Harvey, William D.; Goradia, Suresh H.

    1992-01-01

    A description is given of the development of, and results from, the hybrid laminar flow control (HLFC) experiment conducted in the NASA LaRC 8 ft Transonic Pressure Tunnel on a 7 ft chord, 23 deg swept model. The methods/codes used to obtain the contours of the HLFC model surface and to define the suction requirements are outlined followed by a discussion of the model construction, suction system, instrumentation, and some example results from the wind tunnel tests. Included in the latter are the effects of Mach number, suction level, and the extent of suction. An assessment is also given of the effect of the wind tunnel environment on the suction requirements. The data show that, at or near the design Mach number, large extents of laminar flow can be achieved with suction mass flows over the first 25 percent, or less, of the chord. Top surface drag coefficients with suction extending from the near leading edge to 20 percent of the chord were approximately 40 percent lower than those obtained with no suction. The results indicate that HLFC can be designed for transonic speeds with lift and drag coefficients approaching those of LFC designs but with much smaller extents and levels of suction.

  5. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  6. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    Lin, K. -C.; Dai, Z.; Faeth, G. M.

    1999-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide associated with soot emissions is responsible for most fire deaths, and limited understanding of soot processes is a major impediment to the development of computational combustion. Thus, soot processes within laminar nonpremixed (diffusion) flames are being studied, emphasizing space-based experiments at microgravity. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. The microgravity environment is emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. Results discussed here were obtained from experiments carried out on two flights of the Space Shuttle Columbia. After a brief discussion of experimental methods, results found thus far are described, including soot concentration measurements, laminar flame shapes, laminar smoke points and flame structure. The present discussion is brief.

  7. Considerations for efficient airflow design in cleanrooms

    SciTech Connect

    Xu, Tengfang

    2004-07-29

    A high-performance cleanroom should provide efficient energy performance in addition to effective contamination control. Energy-efficient designs can yield capital and operational cost savings, and can be part of a strategy to improve productivity in the cleanroom industry. Based upon in-situ measurement data from ISO Class 5 clean rooms, this article discusses key factors affecting cleanroom air system performance and benefits of efficient airflow design in clean rooms. Cleanroom HVAC systems used in the semiconductor, pharmaceutical, and healthcare industries are very energy intensive, requiring large volumes of cleaned air to remove or dilute contaminants for satisfactory operations. There is a tendency, however, to design excessive airflow rates into cleanroom HVAC systems, due to factors such as design conservatism, lack of thorough understanding of airflow requirements, concerns about cleanliness reliability, and potential design and operational liabilities. Energy use of cleanroom environmental systems varies with system type and design, cleanroom functions, and the control of critical parameters such as temperature and humidity. In particular, cleanroom cleanliness requirements specified by cleanliness class have an impact on overall energy use. A previous study covering Europe and the US reveals annual cleanroom electricity usage for cooling and fan energy varies significantly depending on cleanliness class, and may account for up to three-quarters of total annual operating costs. A study on a semiconductor cleanroom in Japan found air delivery systems account for more than 30% of total power consumption. It is evident that the main factors dictating cleanroom operation energy include airflow rates and HVAC system efficiency. Improving energy efficiency in clean rooms may potentially contribute to significant savings in the initial costs of the facilities as well as operation and maintenance costs. For example, energy consumption by a typical chip

  8. Importance of Airflow for Physiologic and Ergogenic Effects of Precooling

    PubMed Central

    Morrison, Shawnda A.; Cheung, Stephen; Cotter, James D.

    2014-01-01

    Context: Cooling the body before exercise (precooling) has been studied as an ergogenic aid for many thermal conditions; however, airflow accompanying exercise is seldom reported. Objective: To determine whether the physiologic and ergogenic benefits of precooling before endurance exercise may be negated with semirealistic airflow in hot conditions. Design: Crossover study. Setting: Climate-controlled chamber in a research laboratory. Patients or Other Participants: Ten fit, healthy cyclists. Intervention(s): After a familiarization trial, participants completed 4 randomized, counterbalanced sessions consisting of no precooling versus precooling and no fan airflow versus airflow (~4.8 m/s) during exercise. Precooling was via chest-deep immersion (~24°C) for 1 hour or until core temperature dropped 0.5°C. Participants then cycled at 95% ventilatory threshold in a hot environment (temperature = 30°C, relative humidity = 50%) until volitional exhaustion, core temperature reached >39.5°C, or heart rate reached >95% of maximum. Main Outcome Measure(s): Thermal strain was assessed via core temperature (esophageal and rectal thermistors) and mean skin temperature (thermistors at 10 sites) and cardiovascular strain via heart rate and ratings of perceived exertion. Results: Endurance time (28 ± 12 minutes without precooling or airflow) increased by 30 ± 23 minutes with airflow (~109%; 95% confidence interval = 12, 45 minutes; P < .001) and by 16 ± 15 minutes with precooling (~61%; 95% confidence interval = 4, 25 minutes; P = .013), but it was not further extended when the strategies were combined (29 ± 21 minutes longer than control). During cycling without precooling or airflow, mean core and skin temperatures were higher than in all other trials. Precooling reduced heart rate by 7–11 beats/min during the first 5 minutes of exercise, but this attenuation ended by 15 minutes. Conclusions: Most laboratory-based precooling studies have (inadvertently) overestimated

  9. Real-time visualization and analysis of airflow field by use of digital holography

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin

    2013-04-01

    The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.

  10. Airflow limitation is accompanied by diaphragm dysfunction.

    PubMed

    Hellebrandová, L; Chlumský, J; Vostatek, P; Novák, D; Rýznarová, Z; Bunc, V

    2016-07-18

    Chronic airflow limitation, caused by chronic obstructive pulmonary disease (COPD) or by asthma, is believed to change the shape and the position of the diaphragm due to an increase in lung volume. We have made a comparison of magnetic resonance imaging (MRI) of diaphragm in supine position with pulmonary functions, respiratory muscle function and exercise tolerance. We have studied the differences between patients with COPD, patients with asthma, and healthy subjects. Most interestingly we found the lung hyperinflation leads to the changes in diaphragmatic excursions during the breathing cycle, seen in the differences between the maximal expiratory diaphragm position (DPex) in patients with COPD and control group (p=0.0016). The magnitude of the diaphragmatic dysfunction was significantly related to the airflow limitation expressed by the ratio of forced expiratory volume in 1 s to slow vital capacity (FEV(1)/SVC), (%, p=0.0007); to the lung hyperinflation expressed as the ratio of the residual volume to total lung capacity (RV/TLC), (%, p=0.0018) and the extent of tidal volume constrain expressed as maximal tidal volume (V(Tmax)), ([l], p=0.0002); and the ratio of tidal volume to slow vital capacity (V(T)/SVC), (p=0.0038) during submaximal exercise. These results suggest that diaphragmatic movement fails to contribute sufficiently to the change in lung volume in emphysema. Tests of respiratory muscle function were related to the position of the diaphragm in deep expiration, e.g. neuromuscular coupling (P(0.1)/V(T)) (p=0.0232). The results have shown that the lung volumes determine the position of the diaphragm and function of the respiratory muscles. Chronic airflow limitation seems to change the position of the diaphragm, which thereafter influences inspiratory muscle function and exercise tolerance. There is an apparent relationship between the position of the diaphragm and the pulmonary functions and exercise tolerance. PMID:27070746

  11. Controllable preparation of microscale tubes with multiphase co-laminar flow in a double co-axial microdevice.

    PubMed

    Lan, Wenjie; Li, Shaowei; Lu, Yangcheng; Xu, Jianhong; Luo, Guangsheng

    2009-11-21

    This article describes a simple method for the fabrication of microscale polymer tubes. A double co-axial microchannel device was designed and fabricated. Liquid/liquid/liquid multiphase co-laminar flows were realized in a microchannel by choosing working systems. Three kinds of polymeric solutions were selected as the middle phase while a polyethyleneglycol aqueous solution was used as the inner and outer phases in the microfluidic process. The outer and inner phases acted as extractants of the polymer solvent. A stable double core-annular flow was formed by optimizing the composition of the outer and inner phases, and highly uniform tubes were successfully fabricated by the solvent extraction method. Both the outer diameter of the tubes and the wall thickness could be adjusted from 300 microm to 900 microm and from 40 microm to 150 microm by varying the flux of the fluids and the rolling velocity of the collection roller. In addition, titanium dioxide (TiO2) nanoparticles were successfully encapsulated into the polymer tubes with this technique. This technology has the potential to generate hollow fiber membranes for applications in separation and reaction processes. PMID:19865737

  12. DNS on control of laminar-turbulent transition in a channel flow with a periodic suction and blowing

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kiyoshi; Murase, Takeo; Floryan, J. M.

    Numerical simulation of laminar-turbulent transition in a channel flow with a spatially periodic suction/blowing on the channel walls is conducted with a spectral method based on the Fourier spectral method. The Reynolds number is fixed on a subcritical value of 5000 and the influence of both amplitude and wave number of the suction/blowing on the transition is investigated. When the amplitude is small, the transition does not occur because the suction/blowing has only a slight effect to the basic flow and the resulting flow remains stable to all 3D small disturbances. On the other hand, when the amplitude has a large value the transition occurs in a finite time and is obtained instantaneously with a huge value of the amplitude. It is found that the suction/blowing makes the separation ridges on the wall, perhaps simulating the wall roughness. The transition times are obtained for moderately large amplitudes and wave numbers and they show nearly a -2 power law dependence of the ratio of amplitude to wave number.

  13. Visual exploration of nasal airflow.

    PubMed

    Zachow, Stefan; Muigg, Philipp; Hildebrandt, Thomas; Doleisch, Helmut; Hege, Hans-Christian

    2009-01-01

    Rhinologists are often faced with the challenge of assessing nasal breathing from a functional point of view to derive effective therapeutic interventions. While the complex nasal anatomy can be revealed by visual inspection and medical imaging, only vague information is available regarding the nasal airflow itself: Rhinomanometry delivers rather unspecific integral information on the pressure gradient as well as on total flow and nasal flow resistance. In this article we demonstrate how the understanding of physiological nasal breathing can be improved by simulating and visually analyzing nasal airflow, based on an anatomically correct model of the upper human respiratory tract. In particular we demonstrate how various Information Visualization (InfoVis) techniques, such as a highly scalable implementation of parallel coordinates, time series visualizations, as well as unstructured grid multi-volume rendering, all integrated within a multiple linked views framework, can be utilized to gain a deeper understanding of nasal breathing. Evaluation is accomplished by visual exploration of spatio-temporal airflow characteristics that include not only information on flow features but also on accompanying quantities such as temperature and humidity. To our knowledge, this is the first in-depth visual exploration of the physiological function of the nose over several simulated breathing cycles under consideration of a complete model of the nasal airways, realistic boundary conditions, and all physically relevant time-varying quantities. PMID:19834215

  14. Using aeroelastic structures with nonlinear switching electronics to increase potential energy yield in airflow: investigating analog control circuitry for automated peak detection

    NASA Astrophysics Data System (ADS)

    Mihalca, Alexander G.; Drosinos, Jonathan G.; Grayson, Malika; Garcia, Ephrahim

    2015-03-01

    Bending piezoelectric transducers have the ability to harvest energy from aeroelastic vibrations induced by the ambient airflow. Such harvesters can have useful applications in the operation of low power devices, and their relatively small size makes them ideal for use in urban environments over civil infrastructure. One of the areas of focus regarding piezoelectric energy harvesting is the circuit topology used to store the harvested power. This study aims to further investigate the increase in potential energy yield from the piezoelectric harvester by optimizing the circuitry connecting the piezoelectric transducer and the power storage interface. When compared to an optimal resistive load case, it has been shown that certain circuit topologies, specifically synchronized switching and discharging to a storage capacitor through an inductor (SSDCI), can increase the charging power by as much as 400% if the circuit is completely lossless. This paper proposes a strategy for making a self-sufficient SSDCI circuit capable of peak detection for the synchronized switching using analog components. Using circuit simulation software, the performance of this proposed self-sufficient circuit is compared to an ideal case, and the effectiveness of the self-sufficient circuit strategy is discussed based on these simulation results. Further investigation of a physical working model of the new circuit proposal will be developed and experimental results of the circuit's performance obtained and compared to the estimated performance from the model.

  15. Laminar Multicell Lithium Batteries

    SciTech Connect

    Bruder, A. H.

    1984-01-31

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  16. Laminar cells and batteries

    SciTech Connect

    Plasse, P.A.

    1983-06-21

    A laminar battery comprising an end terminal formed with a pocket to accept internal components without requiring additional edge thickness in the seal area, incorporating as the separator in at least the cell immediately adjacent the pocketed end terminal a layer of cellophane together with a layer of paper on the side of the cellophane confronting the cathode.

  17. Mechanical responses of rat vibrissae to airflow.

    PubMed

    Yu, Yan S W; Graff, Matthew M; Hartmann, Mitra J Z

    2016-04-01

    The survival of many animals depends in part on their ability to sense the flow of the surrounding fluid medium. To date, however, little is known about how terrestrial mammals sense airflow direction or speed. The present work analyzes the mechanical response of isolated rat macrovibrissae (whiskers) to airflow to assess their viability as flow sensors. Results show that the whisker bends primarily in the direction of airflow and vibrates around a new average position at frequencies related to its resonant modes. The bending direction is not affected by airflow speed or by geometric properties of the whisker. In contrast, the bending magnitude increases strongly with airflow speed and with the ratio of the whisker's arc length to base diameter. To a much smaller degree, the bending magnitude also varies with the orientation of the whisker's intrinsic curvature relative to the direction of airflow. These results are used to predict the mechanical responses of vibrissae to airflow across the entire array, and to show that the rat could actively adjust the airflow data that the vibrissae acquire by changing the orientation of its whiskers. We suggest that, like the whiskers of pinnipeds, the macrovibrissae of terrestrial mammals are multimodal sensors - able to sense both airflow and touch - and that they may play a particularly important role in anemotaxis. PMID:27030774

  18. Airflow measurement inaccuracies in aerosol imaging

    SciTech Connect

    Sirr, S.A.; Miltz-Miller, S.; Notman, D.N.; Boyle, M.J.; Boudreau, R.J.; Loken, M.K.

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors.

  19. Airflow measurement inaccuracies in aerosol imaging.

    PubMed

    Sirr, S A; Miltz-Miller, S; Notman, D N; Boyle, M J; Boudreau, R J; Loken, M K

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors. PMID:3952316

  20. Passive control of laminar separation bubble with spanwise groove on a low-speed highly loaded low-pressure turbine blade

    NASA Astrophysics Data System (ADS)

    Luo, Hualing; Qiao, Weiyang; Xu, Kaifu

    2009-09-01

    LES (Large-Eddy Simulation) computations were preformed to investigate the mechanisms of a kind of spanwise groove for the passive control of laminar separation bubble on the suction surface of a low-speed highly loaded low-pressure turbine blade at Re = 50,000 (Reynolds number, based on inlet velocity and axial chord length). Compared with the smooth suction surface, the numerical results indicate that: (1) the groove is effective to shorten and thin the separation bubble, which contributes the flow loss reduction on the groove surface, by thinning the boundary layer behind the groove and promoting earlier transition inception in the separation bubble; (2) upstream movement of the transition inception location on the grooved surface is suggested being the result of the lower frequency at which the highest amplification rate of instability waves occurs, and the larger initial amplitude of the disturbance at the most unstable frequency before transition; and (3) the viscous instability mode is promoted on the grooved surface, due to the thinning of the boundary layer behind the groove.

  1. Effect of rod gap spacing on a suction panel for laminar flow and noise control in supersonic wind tunnels. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.

    1975-01-01

    Results are presented of a coordinated experimental and theoretical study of a sound shield concept which aims to provide a means of noise reduction in the test section of supersonic wind tunnels at high Reynolds numbers. The model used consists of a planar array of circular rods aligned with the flow, with adjustable gaps between them for boundary layer removal by suction, i.e., laminar flow control. One of the basic requirements of the present sound shield concept is to achieve sonic cross flow through the gaps in order to prevent lee-side flow disturbances from penetrating back into the shielded region. Tests were conducted at Mach 6 over a local unit Reynolds number range from about 1.2 x 10 to the 6th power to 13.5 x 10 to the 6th power per foot. Measurements of heat transfer, static pressure, and sound levels were made to establish the transition characteristics of the boundary layer on the rod array and the sound shielding effectiveness.

  2. Chevrons formation in laminar erosion

    NASA Astrophysics Data System (ADS)

    Devauchelle, Olivier; Josserand, Christophe; Lagree, Pierre-Yves; Zaleski, Stephane; Nguyen, Khanh-Dang; Malverti, Luce; Lajeunesse, Eric

    2007-11-01

    When eroded by laminar free-surface flows, granular substrates may generate a rich variety of natural patterns. Among them are dunes, similar to the ones observed by Charru and Hinch in a Couette cell (Charru F, Hinch EJ ; Ripple formation on a particle bed sheared by a viscous liquid. Part 1. Steady flow ; JOURNAL OF FLUID MECHANICS 550: 111-121 MAR 10 2006). Chevron-shaped instabilities as those found on the sea-shore, can also be observed, sometimes in competition against dunes formation. These were first pointed out by Daerr et al. when pulling a plate covered with granular material out of a bath of water (Daerr A, Lee P, Lanuza J, et al. ; Erosion patterns in a sediment layer ; PHYSICAL REVIEW E 67 (6): Art. No. 065201 Part 2 JUN 2003). Both instabilities can grow in laminar open-channel flows, an experimental set-up which is more easily controlled. The mechanisms leading to the formation of these patterns are investigated and compared. Whereas dunes formation requires vertical inertia effects, we show that chevrons may result from the non-linear evolution of bars instability, which may grow even in purely viscous flows.

  3. Laminar Soot Processes (LSP)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Kim, C. H.; Krishnan, S. S.; Lin, K.-C.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering the structure and the soot surface reaction properties of laminar nonpremixed (diffusion) flames. The study was limited to ground-based measurements of buoyant laminar jet diffusion flames at pressures of 0.1-1.0 atm. The motivation for the research is that soot formation in flames is a major unresolved problem of combustion science that influences the pollutant emissions, durability and performance of power and propulsion systems, as well as the potential for developing computational combustion. The investigation was divided into two phases considering the structure of laminar soot-containing diffusion flames and the soot surface reaction properties (soot surface growth and oxidation) of these flames, in turn. The first phase of the research addressed flame and soot structure properties of buoyant laminar jet diffusion flames at various pressures. The measurements showed that H, OH and O radical concentrations were generally in superequilibrium concentrations at atmospheric pressure but tended toward subequilibrium concentrations as pressures decreased. The measurements indicated that the original fuel decomposed into more robust compounds at elevated temperatures, such as acetylene (unless the original fuel was acetylene) and H, which are the major reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. The second phase of the research addressed soot surface reaction properties, e.g., soot surface growth and surface oxidation. It was found that soot surface growth rates in both laminar premixed and diffusion flames were in good agreement, that these rates were relatively independent of fuel type, and that these rates could be correlated by the Hydrogen-Abstraction/Carbon-Addition (HACA) mechanisms of Colket and Hall (1994), Frenklach et al. (1990,1994), and Kazakov et al. (1995). It was also

  4. Systemic leukopenia, evaluation of laminar leukocyte infiltration and laminar lesions in horses with naturally occurring colic syndrome.

    PubMed

    Laskoski, Luciane Maria; Locatelli-Dittrich, Rosangela; Valadão, Carlos Augusto Araújo; Deconto, Ivan; Gonçalves, Kamila Alcala; Montiani-Ferreira, Fabiano; Brum, Juliana Sperotto; de Brito, Harald Fernando Vicente; de Sousa, Renato Silva

    2015-08-01

    The present study was aimed at identifying laminar lesions and leukocyte infiltration in hoof laminar tissue of horses with colic syndrome and its correlation with the total leukocyte count before death. Six healthy horses were used as control group (CG), and eighteen horses with lethal gastrointestinal disease were divided into two groups: leukopenic group (LG) with seven leukopenic horses, and non-leukopenic group (NLG) with 11 horses with total leukocyte count within reference range for the species. Leukocyte infiltration was examined by immunohistochemistry. Laminar lesions were observed in both LG and NLG, with no differences in severity between them. LG showed increase of the leukocyte infiltration in the hoof laminar tissue, when compared to CG and NLG. Horses with severe colic syndrome (LG and NLG) developed intense laminar lesions without clinical signs of laminitis, with increased leukocyte infiltration. However, the LG demonstrated an even higher increase of leukocyte infiltration compared to both CG and NLG. PMID:26267083

  5. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Image of soot (smoke) plume made for the Laminar Soot Processes (LSP) experiment during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2002. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  6. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Interior of the Equipment Module for the Laminar Soot Processes (LSP-2) experiment that fly in the STS-107 Research 1 mission in 2002 (LSP-1 flew on Microgravity Sciences Lab-1 mission in 1997). The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner (yellow ellipse), similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a radiometer or heat sensor (blue circle), and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  7. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Laminar Soot Processes (LSP) experiment under way during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2001. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  8. Efficient airflow design for cleanrooms improves business bottom lines

    SciTech Connect

    Xu, Tengfang

    2003-01-05

    Based on a review of airflow design factors and in-situ energy measurements in ISO Cleanliness Class-5 cleanrooms, this paper addresses the importance of energy efficiency in airflow design and opportunities of cost savings in cleanroom practices. The paper discusses design factors that can long lastingly affect cleanroom system performance, and demonstrates benefits of energy efficient cleanroom design from viewpoints of environmental control and business operations. The paper suggests that a high performance cleanroom should not only be effective in contamination control, but also be efficient in energy and environmental performance. The paper also suggests that energy efficient design practice stands to bring in immediate capital cost savings and operation cost savings, and should be regarded by management as a strategy to improve business bottom lines.

  9. F-111 TACT natural laminar flow glove flight results

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Steers, L. L.; Trujillo, B.

    1981-01-01

    Improvements in cruise efficiency on the order of 15 to 40% are obtained by increasing the extent of laminar flow over lifting surfaces. Two methods of achieving laminar flow are being considered, natural laminar flow and laminar flow control. Natural laminar flow (NLF) relies primarily on airfoil shape while laminar flow control involves boundary layer suction or blowing with mechanical devices. The extent of natural laminar flow that could be achieved with consistency in a real flight environment at chord Reynolds numbers in the range of 30 x 10(6) power was evaluated. Nineteen flights were conducted on the F-111 TACT airplane having a NLF airfoil glove section. The section consists of a supercritical airfoil providing favorable pressure gradients over extensive portions of the upper and lower surfaces of the wing. Boundary layer measurements were obtained over a range of wing leading edge sweep angles at Mach numbers from 0.80 to 0.85. Data were obtained for natural transition and for a range of forced transition locations over the test airfoil.

  10. Airflow resistance of selected biomass materials

    SciTech Connect

    Cooper, S.C.; Sumner, H.R.

    1985-01-01

    Pressure drop created when air was forced through beds of selected biomass materials was determined. Materials tested included peanut hulls, peanut hull pellets, maize cobs, and wood shavings, chips and bark. The data were presented as logarithmic plots and equations of pressure drop versus airflow. The airflow resistances of the biomass materials increased with an increase in bulk density and were found to be in the range between values for ear and shelled maize. 12 references.

  11. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  12. Airflow regulation in variable-speed systems for residential HVAC applications

    SciTech Connect

    Becerra, R.C.; Beifus, B.L.

    1996-11-01

    In the majority of heating, ventilating, and air-conditioning (HVAC) systems, air is the final medium for adding or extracting heat from or to the space to be air conditioned. Air is heated by passing it over a heat transfer device called a coil, which is a heat exchanger with air on the outside and the primary heating/cooling medium (water, steam, electricity, refrigerant, etc.) on the inside. One of the major factors determining heat transfer is the airflow rate, which can be controlled by mechanical means or by controlling the speed of the fan. Centrifugal fans driven by single-speed induction motors traditionally have been used in the JVAC industry but have an airflow characteristic that depends on the static pressure seen by the system. Variable-speed systems are starting to emerge as a strong alternative to traditional systems because of their ability to match the demand of the air-conditioned space, resulting in higher efficiencies and higher comfort. System efficiency can be improved by constraining the range of airflows provided by the fan or blower system in response to system pressure, that is, by controlling the airflow over the heat exchanger. This paper presents a method to regulate airflow independent of the static pressure and without the need for airflow sensors.

  13. Selected experiments in laminar flow: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Kennelly, Robert A., Jr.

    1992-01-01

    Since the 1930s, there have been attempts to reduce drag on airplanes by delaying laminar to turbulent boundary layer transition. Experiments conducted during the 1940's, while successful in delaying transition, were discouraging because of the careful surface preparation necessary to meet roughness and waviness requirements. The resulting lull in research lasted nearly 30 years. By the late 1970s, airframe construction techniques had advanced sufficiently that the high surface quality required for natural laminar flow (NLF) and laminar flow control (LFC) appeared possible on production aircraft. As a result, NLF and LFC research became widespread. This report is an overview of that research. The experiments summarized herein were selected for their applicability to small transonic aircraft. Both flight and wind tunnel tests are included. The description of each experiment is followed by corresponding references. Part One summarizes NLF experiments; Part Two deals with LFC and hybrid laminar flow control (HLFC) experiments.

  14. Airflow resistance of airflow-regulating devices described by independent coefficients.

    PubMed

    Verkerke, G J; Geertsema, A A; Schutte, H K

    2001-07-01

    Rehabilitation after laryngectomy includes more and more the use of airflow-regulating devices such as shunt valves (SVs), tracheostoma valves (TSVs), and heat and moisture exchange (HME) filters. In determining the quality of those devices, airflow resistance is a very important factor. It is currently defined as pressure drop divided by airflow. However, for most applications, this definition does not result in a pressure- and airflow-independent parameter. Therefore, a new set of parameters is defined and applied to pressure-airflow curves of airflow-regulating devices. Pressure drop over TSVs and HME filters appears to have a squared relationship with flow. In SVs, it has a linear relationship. The new set of parameters describes the pressure-airflow relationship properly for all considered devices. In conclusion, theoretical predictions of flow mechanics appear to be valid for SVs, TSVs, and HME filters. Only 2 coefficients are necessary to describe the pressure-flow characteristics of these airflow-regulating devices, independent of pressure drop over and flow through the device. PMID:11465823

  15. RANS and LES simulations of the airflow through nasal cavities

    NASA Astrophysics Data System (ADS)

    Lamberti, Giacomo

    2015-11-01

    The prediction of detailed flow patterns in nasal cavities using computational fluid dynamics (CFD) can provide essential information on the potential relationship between patient-specific geometrical characteristics and health problems. The long-term goal of the OpenNOSE project is to develop a reliable open-source computational tool based on the OpenFOAM CFD toolbox that can assist surgeons in their daily practice. The objective of this study was to investigate the effect of the turbulence model and boundary conditions on simulations of the airflow in nasal cavities. The geometry, including paranasal sinuses, was reconstructed from a carefully selected CT scan, and RANS and LES simulations were carried out for steady inspiration and expiration. At a flow rate near 20 l/min, the flow is laminar in most of the domain. During the inspiration phase, turbulence develops in nasopharynx and oropharynx regions; during the expiration phase, another vortical region is observed down the nostrils. A comparison between different boundary conditions suggests the use of a total pressure condition, or alternatively a uniform velocity, at the inlet and outlet. In future work the same geometry will be used for setting up a laboratory experiment, intended to cross-validate the numerical results.

  16. Airflow Simulations around OA Intake Louver with Electronic Velocity Sensors

    SciTech Connect

    Han, Hwataik; Sullivan, Douglas P.; Fisk, William J.

    2009-04-01

    It is important to control outdoor airflow rates into HVAC systems in terms of energy conservation and healthy indoor environment. Technologies are being developed to measure outdoor air (OA) flow rates through OA intake louvers on a real time basis. The purpose of this paper is to investigate the airflow characteristics through an OA intake louver numerically in order to provide suggestions for sensor installations. Airflow patterns are simulated with and without electronic air velocity sensors within cylindrical probes installed between louver blades or at the downstream face of the louver. Numerical results show quite good agreements with experimental data, and provide insights regarding measurement system design. The simulations indicate that velocity profiles are more spatially uniform at the louver outlet relative to between louver blades, that pressure drops imposed by the sensor bars are smaller with sensor bars at the louver outlet, and that placement of the sensor bars between louver blades substantially increases air velocities inside the louver. These findings suggest there is an advantage to placing the sensor bars at the louver outlet face.

  17. Airflow pattern complexity and airway obstruction in asthma.

    PubMed

    Veiga, Juliana; Lopes, Agnaldo J; Jansen, José M; Melo, Pedro L

    2011-08-01

    The scientific and clinical value of a measure of complexity is potentially enormous because complexity appears to be lost in the presence of illness. The authors examined the effect of elevated airway obstruction on the complexity of the airflow (Q) pattern of asthmatic patients analyzing the airflow approximate entropy (ApEnQ). This study involved 11 healthy controls, 11 asthmatics with normal spirometric exams, and 40 asthmatics with mild (14), moderate (14), and severe (12) airway obstructions. A significant (P < 0.02) reduction in the ApEnQ was observed in the asthmatic patients. This reduction was significantly correlated with spirometric indexes of airway obstruction [FEV(1) (%): R = 0.31, P = 0.013] and the total respiratory impedance (R = -0.39; P < 0.002). These results are in close agreement with pathophysiological fundamentals and suggest that the airflow pattern becomes less complex in asthmatic patients, which may reduce the adaptability of the respiratory system to perform the exercise that is associated with daily life activities. This analysis was able to identify respiratory changes in patients with mild obstruction with an adequate accuracy (83%). Higher accuracies were obtained in patients with moderate and severe obstructions. The analysis of airflow pattern complexity by the ApEnQ was able to provide new information concerning the changes associated with asthma. In addition, this analysis was also able to contribute to the detection of the adverse effects of asthma. Because these measurements are easy to perform, such a technique may represent an alternative and/or a complement to other conventional exams to help the clinical evaluations of asthmatic patients. PMID:21565988

  18. Measurement of airflow in residential furnaces

    SciTech Connect

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  19. An electromagnetic energy scavenger from direct airflow

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Hyok; Ji, Chang-Hyeon; Galle, Preston; Herrault, Florian; Wu, Xiaosong; Lee, Jin-Ho; Choi, Chang-Auk; Allen, Mark G.

    2009-09-01

    This paper presents two types of electromagnetic power generators exploiting direct conversion of airflow into mechanical vibration: (1) a windbelt-based vibratory linear energy scavenger targeting strong airflows and (2) a Helmholtz-resonator-based generator capable of scavenging energy from weaker airflows, i.e. environmental airflows. Both devices consist of two tightly coupled parts: a mechanical resonator, which produces high-frequency mechanical oscillation from quasi-constant airflow, and a permanent magnet/coil system, which generates electrical power from the resonator's motion. The proposed energy scavengers obviate the typically required matching of the resonant frequencies of the scavenger and the ambient energy sources it taps. This enables a device that is simpler, smaller and higher-frequency than the previously reported resonant power generator. The windbelt-based energy scavenger demonstrated a peak-to-peak output voltage of 81 mV at 0.53 kHz, from an input pressure of 50 kPa. The Helmholtz-resonator-based energy scavenger achieved a peak-to-peak output voltage of 4 mV at 1.4 kHz, from an input pressure of 0.2 kPa, which is equivalent to 5 m s-1 (10 mph) of wind velocity.

  20. Unidirectional pulmonary airflow in vertebrates: a review of structure, function, and evolution.

    PubMed

    Cieri, Robert L; Farmer, C G

    2016-07-01

    Mechanisms explaining unidirectional pulmonary airflow in birds, a condition where lung gases flow in a consistent direction during both inspiration and expiration in some parts of the lung, were suggested as early as the first part of the twentieth century and unidirectional pulmonary airflow has been discovered recently in crocodilians and squamates. Our knowledge of the functional anatomy, fluid dynamics, and significance of this trait is reviewed. The preponderance of the data indicates that unidirectional airflow is maintained by means of convective inertia in inspiratory and expiratory aerodynamic valves in birds. The study of flow patterns in non-avian reptiles is just beginning, but inspiratory aerodynamic valving likely also plays an important role in controlling flow direction in these lungs. Although highly efficient counter and cross-current blood-gas exchange arrangements are possible in lungs with unidirectional airflow, very few experiments have investigated blood-gas exchange mechanisms in the bird lung and blood-gas arrangements in the lungs of non-avian reptiles are completely unknown. The presence of unidirectional airflow in non-volant ectotherms voids the traditional hypothesis that this trait evolved to supply the high aerobic demands of flight and endothermy, and there is a need for new scenarios in our understanding of lung evolution. The potential value of unidirectional pulmonary airflow for allowing economic lung gas mixing, facilitating lung gas washout, and providing for adequate gas exchange during hypoxic conditions is discussed. PMID:27062030

  1. Application of natural laminar flow to a supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.

    1993-01-01

    Results are presented of a preliminary investigation into an application of supersonic natural laminar flow (NLF) technology for a high speed civil transport (HSCT) configuration. This study focuses on natural laminar flow without regard to suction devices which are required for laminar flow control (LFC) or hybrid laminar flow control (HLFC). An HSCT design is presented with a 70 deg inboard leading-edge sweep and a 20 deg leading-edge outboard crank to obtain NLF over the outboard crank section. This configuration takes advantage of improved subsonic performance and NLF on the low-sweep portion of the wing while minimizing the wave drag and induced drag penalties associated with low-sweep supersonic cruise aircraft. In order to assess the benefits of increasing natural laminar flow wetted area, the outboard low-sweep wing area is parametrically increased. Using a range of supersonic natural laminar flow transition Reynolds numbers, these aircraft are then optimized and sized for minimum take-off gross weight (TOGW) subject to mission constraints. Results from this study indicate reductions in TOGW for the NLF concepts, due mainly to reductions in wing area and total wing weight. Furthermore, significant reductions in block fuel are calculated throughout the range of transition Reynolds numbers considered. Observations are made on the benefits of unsweeping the wingtips with all turbulent flow.

  2. Laminar Flow Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, David F.

    1992-10-01

    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  3. Convection warmers--a possible source of contamination in laminar airflow operating theatres?

    PubMed

    Tumia, N; Ashcroft, G P

    2002-11-01

    This work results from concerns that forced-air convection heaters applied to patients in the operating theatre might interfere with ultra-clean ventilation system and thus be a potential source of wound contamination. Air samples were taken in the operative field and the bacterial load calculated by estimating the number of colony forming units per cubic metre of air (cfu/m(3)). Six tests were carried out, two in empty theatres and four during standard orthopaedic operating lists. Differences were seen between empty theatres and those standing empty for short periods during busy operating lists. Increases were seen on entry to theatre of staff and patients with the convection heaters off. A further small rise was seen after the convection heaters were turned on when applied to patients. This study showed that use of warm air convection heaters on patients produced a small increase in the number of colony forming units in ultra-clean air theatres but the levels were unlikely to have clinical significance. By far the greatest effect on numbers was movement and presence of the patient and theatre staff in the theatre. PMID:12419268

  4. Three-Dimensional Boundary-Layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1993-01-01

    The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.

  5. AIRFLOW CHARACTERISTICS IN A BABOON NASAL PASSAGE CAST

    EPA Science Inventory

    Airflow patterns in the nasal Passages influence the distribution of air-pollutant-induced lesions in the airway mucosa. ittle is known about airflow characteristics or the complex nasopharyngeal airway of man and experimental animals. irflow characteristics in the nasopharyngeal...

  6. Instrument Measures Airflow Friction Without Contact

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    Dual beam laser interferometer determines airflow friction against body by measuring time-varying thickness of wind sheared oil film. Measurements yield skin friction between film and airstream. Errors from prerun oil flow, tunnel starting transients, and initial surface waves therefore eliminated.

  7. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    NASA Astrophysics Data System (ADS)

    Fojtlín, Miloš; Planka, Michal; Fišer, Jan; Pokorný, Jan; Jícha, Miroslav

    2016-03-01

    Thermal environment in a vehicular cabin significantly influence drivers' fatigue and passengers' thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction) and outlet (each vent), and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  8. Evaluation of different airflow sensors at the WIPP facility

    SciTech Connect

    McDaniel, K.; Duckworth, I.J.; Prosser, B.S.

    1999-07-01

    The Waste Isolation Pilot Plant (WIPP) is an US Department of Energy underground disposal facility designed to permanently and safely isolate US defense-generated transuranic radioactive waste. The underground ventilation system is engineered to minimize the release of radioactive contamination to the environment in the event of an accident. During 1994 an extensive ventilation remote monitoring and control system was installed. It consists of fifteen air velocity sensors, eight differential pressure stations, automated control features on key underground air regulators, and eight psychrometric stations. The airflow monitoring component of the system has been a problem since the original installation. Due to the WIPP's variable airflow capabilities, the air velocity sensors required extensive and time-consuming re-calibration to make the sensors read out volumetric flow, rather than the point or line values, which they were factory calibrated for. Problems with the hardware made the process difficult. Furthermore, once re-calibrated the durability and reliability of the units were inconsistent, and often unacceptable. Two new types of airflow sensors were tested; one or both of which will ultimately replace the old units. The tested sensors were an ultrasonic-type device (FloSonic), and a warm body, mass flow unit (Airboss*200W) (a re-engineered version of the previous units). Recommendations were made regarding which type of sensor to install at specific locations. These decisions were based on the conditions at each sensor location and the relative strengths of the two sensor types. Installation, field calibration methodology, test procedures, main results and recommendations are discussed.

  9. Computational Analysis of the G-III Laminar Flow Glove

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  10. Competition between pressure effects and airflow influence for the performance of plasma actuators

    SciTech Connect

    Kriegseis, J.; Barckmann, K.; Grundmann, S.; Frey, J.; Tropea, C.

    2014-05-15

    The present work addresses the combined influence of pressure variations and different airflow velocities on the discharge intensity of plasma actuators. Power consumption, plasma length, and discharge capacitance were investigated systematically for varying pressure levels (p = 0.1–1 bar) and airflow velocities (U{sub ∞}=0−100 m/s) to characterize and quantify the favorable and adverse effects on the discharge intensity. In accordance with previous reports, an increasing plasma actuator discharge intensity is observed for decreasing pressure levels. At constant pressure levels, an adverse airflow influence on the electric actuator performance is demonstrated. Despite the improved discharge intensity at lower pressure levels, the seemingly improved performance of the plasma actuators is accompanied with a more pronounced drop of the relative performance. These findings demonstrate the dependency of the (kinematic and thermodynamic) environmental conditions on the electric performance of plasma actuators, which in turn affects the control authority of plasma actuators for flow control applications.

  11. Mild Airflow Limitation during N2 Sleep Increases K-complex Frequency and Slows Electroencephalographic Activity

    PubMed Central

    Nguyen, Chinh D.; Wellman, Andrew; Jordan, Amy S.; Eckert, Danny J.

    2016-01-01

    Study Objectives: To determine the effects of mild airflow limitation on K-complex frequency and morphology and electroencephalogram (EEG) spectral power. Methods: Transient reductions in continuous positive airway pressure (CPAP) during stable N2 sleep were performed to induce mild airflow limitation in 20 patients with obstructive sleep apnea (OSA) and 10 healthy controls aged 44 ± 13 y. EEG at C3 and airflow were measured in 1-min windows to quantify K-complex properties and EEG spectral power immediately before and during transient reductions in CPAP. The frequency and morphology (amplitude and latency of P200, N550 and N900 components) of K-complexes and EEG spectral power were compared between conditions. Results: During mild airflow limitation (18% reduction in peak inspiratory airflow from baseline, 0.38 ± 0.11 versus 0.31 ± 0.1 L/sec) insufficient to cause American Academy of Sleep Medicine-defined cortical arousal, K-complex frequency (9.5 ± 4.5 versus 13.7 ± 6.4 per min, P < 0.01), N550 amplitude (25 ± 3 versus 27 ± 3 μV, P < 0.01) and EEG spectral power (delta: 147 ± 48 versus 230 ± 99 μV2, P < 0.01 and theta bands: 31 ± 14 versus 34 ± 13 μV2, P < 0.01) significantly increased whereas beta band power decreased (14 ± 5 versus 11 ± 4 μV2, P < 0.01) compared to the preceding non flow-limited period on CPAP. K-complex frequency, morphology, and timing did not differ between patients and controls. Conclusion: Mild airflow limitation increases K-complex frequency, N550 amplitude, and spectral power of delta and theta bands. In addition to providing mechanistic insight into the role of mild airflow limitation on K-complex characteristics and EEG activity, these findings may have important implications for respiratory conditions in which airflow limitation during sleep is common (e.g., snoring and OSA). Citation: Nguyen CD, Wellman A, Jordan AS, Eckert DJ. Mild airflow limitation during N2 sleep increases k-complex frequency and slows

  12. Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2001-01-01

    An investigation of the control of turbulent boundary layer flow over flexible and rigid surfaces downstream of a concave-convex geometry has been made. The concave-convex curvature induces centrifugal forces and a pressure gradient on the growth of the turbulent boundary layer. The favorable gradient is not sufficient to overcome the unfavorable; thus, the net effect is a destabilizing, of the flow into Gortler instabilities. This study shows that control of the turbulent boundary layer and structural loading can be successfully achieved by using localized surface heating because the subsequent cooling and geometrical shaping downstream over a favorable pressure gradient is effective in laminarization of the turbulence. Wires embedded in a thermally insulated substrate provide surface heating. The laminarized velocity profile adjusts to a lower Reynolds number, and the structure responds to a lower loading. In the laminarization, the turbulent energy is dissipated by molecular transport by both viscous and conductivity mechanisms. Laminarization reduces spanwise vorticity because of the longitudinal cooling gradient of the sublayer profile. The results demonstrate that the curvature-induced mean pressure gradient enhances the receptivity of the flow to localized surface heating, a potentially viable mechanism to laminarize turbulent boundary layer flow; thus, the flow reduces the response of the flexible structure and the resultant sound radiation.

  13. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10. PMID:23450029

  14. Laminar flow: Challenge and potential

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.

    1987-01-01

    Commercial air transportation has experienced revolutionary technology advances since WWII. These technology advances have resulted in an explosive growth in passenger traffic. Today, however, many technologies have matured, and maintaining a similar growth rate will be a challenge. A brief history of laminar flow technology and its application to subsonic and supersonic air transportation is presented.

  15. The Laminar Soot Processes (LSP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Laminar Soot Processes (LSP) Experiment Mounting Structure (EMS) was used to conduct the LSP experiment on Combustion Module-1. The EMS was inserted into the nozzle on the EMS and ignited by a hot wire igniter. The flame and its soot emitting properties were studied.

  16. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    facilities, cannot involve soot emitting flames in order to ensure that test chamber windows used for experimental observations are not blocked by soot deposits, thereby compromising unusually valuable experimental results. Another important motivation to define conditions where soot is present in diffusion flames is that flame chemistry, transport and radiation properties are vastly simplified when soot is absent, making such flames far more tractable for detailed numerical simulations than corresponding soot-containing flames. Motivated by these observations, the objectives of this phase of the investigation were as follows: (1) Observe flame-sheet shapes (the location of the reaction zone near phi=1) of nonluminous (soot free) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of flame-sheet shapes for these conditions; (2) Observe luminous flame boundaries of luminous (soot-containing) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of luminous flame boundaries for these conditions. In order to fix ideas here, maximum luminous flame boundaries at the laminar smoke point conditions were sought, i.e., luminous flame boundaries at the laminar smoke point; (3) Observe effects of coflow on laminar soot- and smoke-point conditions because coflow has been proposed as a means to control soot emissions and minimize the presence of soot in diffusion flames.

  17. Hybrid mesh for nasal airflow studies.

    PubMed

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  18. Hybrid Mesh for Nasal Airflow Studies

    PubMed Central

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  19. Airflow acceleration performance of asymmetric surface dielectric barrier discharge actuators at different exposed needle electrode heights

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-12-01

    The use of plasma, created by asymmetric surface dielectric barrier discharge (ASDBD), as aerodynamic actuators to control airflows, has been of widespread concern over the past decades. For the single ASDBD, the actuator performance is dependent on the geometry of actuator and the produced plasma. In this work, a new electrode configuration, i.e., a row of needle, is taken as an exposed electrode for the ASDBD plasma actuator, and the electrode height is adjustable. The effects of different electrode heights on the airflow acceleration behavior are experimentally investigated by measuring surface potential distribution, ionic wind velocity, and mean thrust force production. It is demonstrated that the airflow velocity and thrust force increase with the exposed electrode height and the best actuator performance can be obtained when the exposed electrode is adjusted to an appropriate height. The difference, as analyzed, is mainly due to the distinct plasma spatial distributions at different exposed electrode heights.

  20. [A nonlinear multi-compartment lung model for optimization of breathing airflow pattern].

    PubMed

    Cai, Yongming; Gu, Lingyan; Chen, Fuhua

    2015-02-01

    It is difficult to select the appropriate ventilation mode in clinical mechanical ventilation. This paper presents a nonlinear multi-compartment lung model to solve the difficulty. The purpose is to optimize respiratory airflow patterns and get the minimum of the work of inspiratory phrase and lung volume acceleration, minimum of the elastic potential energy and rapidity of airflow rate changes of expiratory phrase. Sigmoidal function is used to smooth the respiratory function of nonlinear equations. The equations are established to solve nonlinear boundary conditions BVP, and finally the problem was solved with gradient descent method. Experimental results showed that lung volume and the rate of airflow after optimization had good sensitivity and convergence speed. The results provide a theoretical basis for the development of multivariable controller monitoring critically ill mechanically ventilated patients. PMID:25997262

  1. Assessing multizone airflow simulation software

    SciTech Connect

    Lorenzetti, D.M.

    2002-01-01

    Several standard multizone modeling programs, in order to improve their computational efficiency, make a number of simplifying assumptions. This paper examines how those assumptions reduce the solution times and memory use of the programs, but at the cost of restricting the models they can express. Applications where these restrictions may adversely affect the program's usefulness include: (1) natural ventilation, when buoyancy effects dominate mechanically-driven flow; (2) duct system design, when losses in T-junctions affect the system performance; and (3) control system design, when the dynamic transport of pollutants plays a significant role in the simulated system.

  2. Mechanism of bronchodilator effect in chronic airflow limitation.

    PubMed Central

    Jaeschke, R; Guyatt, G H; Singer, J; Keller, J; Newhouse, M T

    1991-01-01

    OBJECTIVE: To examine the mechanisms through which two bronchodilators (theophylline and salbutamol) influence dyspnea during daily activities. METHODS: Twenty-four patients with chronic airflow limitation participated in a multiple crossover, randomized, placebo-controlled trial. The effect of theophylline and salbutamol, alone or combined, on pulmonary function and dyspnea during daily activities was examined. Correlations of changes in forced expiratory volume in 1 second (FEV1) and maximum expiratory pressures (MIPs) (independent variables) and changes in dyspnea score during daily activities (dependent variable) were also examined. RESULTS: The two drugs proved to be beneficial the effects in general were additive rather than synergistic. The drugs improved the FEV1; theophylline significantly improved the MIPs. The correlation between the changes in FEV1 and those in dyspnea score, after adjustment for the changes in MIPs, was 0.55 (p less than 0.001). The correlation between the changes in MIPs and those in dyspnea score, after adjustment for the changes in FEV1, was 0.39 (p less than 0.001). CONCLUSIONS: Changes in airway calibre and in respiratory muscle strength play an independent and important role in dyspnea during daily activities in patients with chronic airflow limitation. Changes in airway calibre may be of greater importance. PMID:1984814

  3. Laminar and Turbulent Gaseous Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent measurements and predictions of the properties of homogeneous (gaseous) laminar and turbulent non-premixed (diffusion) flames are discussed, emphasizing results from both ground- and space-based studies at microgravity conditions. Initial considerations show that effects of buoyancy not only complicate the interpretation of observations of diffusion flames but at times mislead when such results are applied to the non-buoyant diffusion flame conditions of greatest practical interest. This behavior motivates consideration of experiments where effects of buoyancy are minimized; therefore, methods of controlling the intrusion of buoyancy during observations of non-premixed flames are described, considering approaches suitable for both normal laboratory conditions as well as classical microgravity techniques. Studies of laminar flames at low-gravity and microgravity conditions are emphasized in view of the computational tractability of such flames for developing methods of predicting flame structure as well as the relevance of such flames to more practical turbulent flames by exploiting laminar flamelet concepts.

  4. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers-due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation. PMID:26541595

  5. Effects of the ambient temperature on the airflow across a Caucasian nasal cavity.

    PubMed

    Burgos, M A; Sanmiguel-Rojas, E; Martín-Alcántara, A; Hidalgo-Martínez, M

    2014-03-01

    We analyse the effects of the air ambient temperature on the airflow across a Caucasian nasal cavity under different ambient temperatures using CFD simulations. A three-dimensional nasal model was constructed from high-resolution computed tomography images for a nasal cavity from a Caucasian male adult. An exhaustive parametric study was performed to analyse the laminar-compressible flow driven by two different pressure drops between the nostrils and the nasopharynx, which induced calm breathing flow rates ࣈ 5.7 L/min and ࣈ 11.3 L/min. The inlet air temperature covered the range - 10(o) C ⩽ To ⩽50(o) C. We observed that, keeping constant the wall temperature of the nasal cavity at 37(o) C, the ambient temperature affects mainly the airflow velocity into the valve region. Surprisingly, we found an excellent linear relationship between the ambient temperature and the air average temperature reached at different cross sections, independently of the pressure drop applied. Finally, we have also observed that the spatial evolution of the mean temperature data along the nasal cavity can be collapsed for all ambient temperatures analysed with the introduction of suitable dimensionless variables, and this evolution can be modelled with the help of hyperbolic functions, which are based on the heat exchanger theory. PMID:24574201

  6. Natural Laminar Flow Flight Experiment

    NASA Technical Reports Server (NTRS)

    Steers, L. L.

    1981-01-01

    A supercritical airfoil section was designed with favorable pressure gradients on both the upper and lower surfaces. Wind tunnel tests were conducted in the Langley 8 Foot Transonic Pressure Tunnel. The outer wing panels of the F-111 TACT airplane were modified to incorporate partial span test gloves having the natural laminar, flow profile. Instrumentation was installed to provide surface pressure data as well as to determine transition location and boundary layer characteristics. The flight experiment encompassed 19 flights conducted with and without transition fixed at several locations for wing leading edge sweep angles which varied from 10 to 26 at Mach numbers from 0.80 to 0.85 and altitudes of 7620 meters and 9144 meters. Preliminary results indicate that a large portion of the test chord experienced laminar flow.

  7. Theory of laminar viscous jets

    NASA Astrophysics Data System (ADS)

    Martynenko, O. G.; Korovkin, V. N.; Sokovishin, Iu. A.

    Results of recent theoretical studies of laminar jet flows of a viscous incompressible fluid are reviewed. In particular, attention is given to plane, fan-shaped, axisymmetric, and swirling jet flows; jet flows behind bodies; and slipstream jet flows. The discussion also covers dissipation of mechanical energy in jet flows, jet flows with a zero excess momentum, and asymptotic series expansions in the theory of jet flows.

  8. Laminar electrical cells and batteries

    SciTech Connect

    Bruder, A.H.

    1983-08-23

    Laminar electrical cells and batteries of the Leclanche type are disclosed, in which the electrolyte comprises an aqueous solution containing from about 18 to about 22 percent of NH/sub 4/Cl and from about 25 to about 40 percent of ZnCl/sub 2/ by weight, based on the weight of solution. The electrolyte may contain a gelling agent, and may initially contain a minor amount of mercuric chloride.

  9. Laminar electrical cells and batteries

    SciTech Connect

    Nel, P.E.; Pleskowicz, J.C.

    1982-11-30

    Laminar electrical cells and batteries of the Leclanche type are disclosed that are especially adapted for service at high drain rates with variable duty cycles by the inclusion of cathodes formed as slurries of MnO/sub 2/ and carbon particles in an electrolyte comprising, by weight, about 2% of NH/sub 4/Cl, about 25% ZnCl/sub 2/, and the balance water with a minor amount of mercuric chloride.

  10. Incidence of airflow limitation among employees in Norwegian smelters.

    PubMed

    Søyseth, Vidar; Johnsen, Helle Laier; Bugge, Merete Drevvatne; Hetland, Siri Merete; Kongerud, Johny

    2011-09-01

    We have investigated the association between the incidence of airflow limitation and occupational exposure. The employees (n = 3,924) were investigated annually during five years (n = 16,570) using spirometry. Exposure was classified using job category and a job exposure matrix. Airflow limitation was expressed using two indices: (i) as forced expiratory volume in one second/force vital capacity (FEV(1) /FVC) <0.7 and (ii) lower limit of normal (LLN). The incidence of airflow limitation was 21.2/1000 years(-1) and 15.1/1000 years(-1) using the fixed limit (0.7) and the LLN criterion, respectively. We found a dose-response relationship between the incidence of airflow limitation and tobacco consumption and with job-category in non-smokers. The associations between airflow limitation and covariates were independent of how airflow limitation was defined. The incidence of airflow limitation defined as FEV(l) /FVC <0.7 yielded higher incidence rates of airflow limitation than LLN. We found a significant association between the incidence of airflow limitation and occupational exposure in non-smokers. PMID:21360726

  11. The effect of debris accumulation on and filter resistance to airflow for four commercially available vacuum cleaners.

    PubMed

    Heitbrink, William A; Santalla-Elias, Javier

    2009-06-01

    Mortar removal with right-angle grinders can cause excessive exposure to respirable crystalline silica. To control this dust exposure, vacuum cleaners need to exhaust 2.3 m(3)/min (80 cubic feet per minute) from the grinder's exhaust hood. Maintaining this airflow while collecting as much as 15.9 kg (35 lb) of debris in the vacuum cleaner has been problematic. A laboratory study was conducted to evaluate how mortar debris affects vacuum cleaner airflow and filter pressure loss. Four vacuum cleaners were tested. Two of the vacuum cleaners used vacuum cleaner bags as a prefilter; the other two vacuum cleaners used cyclones to reduce the amount of debris that reaches the filter. Test debris was collected by a masonry restoration contractor during actual mortar removal using a grinder fitted with a hood. The hood is attached to a vacuum cleaner with cyclonic pre-separation. The vacuum cleaner fan curves were obtained experimentally to learn how pressure loss affects vacuum cleaner airflows. Then, 15.9 kg (35 lb) of mortar removal debris was sucked into the vacuum cleaner in 2.27-kg (5-lb) increments. Before and after adding each 2.27-kg (5-lb) increment of debris, vacuum cleaner airflows were measured with a venturi meter, and vacuum cleaner static pressures were measured at the inlet to the vacuum cleaner motor, and before and after each filter. The vacuum cleaners equipped with cyclonic pre-separation were unaffected by the mass of debris collected in the vacuum cleaner and were able to maintain airflows in excess of 1.98 m(3)/min (70 cfm) throughout the testing program. As debris accumulated in the vacuum cleaners that used bags, airflow decreased from 2.3 m(3)/min (80 cfm) to as little as 0.85 m(3)/min (30 cfm). This airflow loss is caused by the increased airflow resistance of the bags that increased from less 0.03 kPa/m(3)/min (0.1 inches of water per cfm) to 16.7 kPa/m(3)/min (1.9 inches of water/cfm). Apparently, vacuum cleaners using bags should be used in

  12. Oxidative stress in hoof laminar tissue of horses with lethal gastrointestinal diseases.

    PubMed

    Laskoski, Luciane Maria; Dittrich, Rosangela Locatelli; Valadão, Carlos Augusto Araújo; Brum, Juliana Sperotto; Brandão, Yara; Brito, Harald Fernando Vicente; de Sousa, Renato Silva

    2016-03-01

    Tissue damage caused by oxidative stress is involved in the pathogenesis of several diseases in animals and man, and is believed to play a role in the development of laminitis in horses. The aim of this study was to investigate the oxidative stress associated with laminar lesions in horses with lethal gastrointestinal disorders. Laminar tissue samples of the hoof of 30 horses were used. Tissue samples were divided as follows: six healthy horses (control group-CG), and 24 horses that died after complications of gastrointestinal diseases (group suffering from gastrointestinal disorders-GDG). Superoxide dismutase (SOD2) and nitrotyrosine immunostaining and the severity of laminar lesions were evaluated. Presence of laminar lesions and immunostaining for nitrotyrosine and SOD2 were only evident in horses from the GDG group. Thus, oxidative stress may play a role in the pathogenesis of laminar lesions secondary to gastrointestinal disorders. PMID:26964719

  13. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly

    PubMed Central

    Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.

    2012-01-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I–III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s−1) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s−1 s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s−1 with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s−1). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16–79 s−1) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  14. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly.

    PubMed

    Klopsch, Christian; Kuhlmann, Hendrik C; Barth, Friedrich G

    2012-10-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I-III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s(-1)) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s(-1) s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s(-1) with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s(-1)). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16-79 s(-1)) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  15. Analysis of the laminar flamelet concept for nonpremixed laminar flames

    SciTech Connect

    Claramunt, K.; Consul, R.; Carbonell, D.; Perez-Segarra, C.D.

    2006-06-15

    The goal of this paper is to investigate the application of the laminar flamelet concept to the multidimensional numerical simulation of nonpremixed laminar flames. The performance of steady and unsteady flamelets is analyzed. The deduction of the mathematical formulation of flamelet modeling is exposed and some commonly used simplifications are examined. Different models for the scalar dissipation rate dependence on the mixture fraction variable are analyzed. Moreover, different criteria to evaluate the Lagrangian-type flamelet lifetime for unsteady flamelets are investigated. Inclusion of phenomena such as differential diffusion with constant Lewis number for each species and radiation heat transfer are also studied. A confined co-flow axisymmetric nonpremixed methane/air laminar flame experimentally investigated by McEnally and Pfefferle (Combust. Sci. Technol. 116-117 (1996) 183-209) and numerically investigated by Bennett, McEnally, Pfefferle, and Smooke (Combust. Flame 123 (2000) 522-546), Consul, Perez-Segarra, Claramunt, Cadafalch, and Oliva (Combust. Theory Modelling 7 (3) (2003) 525-544), and Claramunt, Consul, Perez-Segarra, and Oliva (Combust. Flame 137 (2004) 444-457) has been used as a test case. Results obtained using the flamelet concept have been compared to data obtained from the full resolution of the complete transport equations using primitive variables. Finite-volume techniques over staggered grids are used to discretize the governing equations. A parallel multiblock algorithm based on domain decomposition techniques running with loosely coupled computers has been used. To assess the quality of the numerical solutions presented in this paper, a verification process based on the generalized Richardson extrapolation technique and on the grid convergence index (GCI) has been applied. (author)

  16. Effect of airflow on biodrying of gardening wastes in reactors.

    PubMed

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B

    2013-05-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss. PMID:24218815

  17. Mushrooms use convectively created airflows to disperse their spores.

    PubMed

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-03-15

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal--that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  18. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines

    PubMed Central

    Zhou, L.; Goodman, G.; Martikainen, A.

    2015-01-01

    Continuous airflow monitoring can improve the safety of the underground work force by ensuring the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity measurements vary significantly and can change rapidly depending on the exact measurement location and, in particular, due to the presence of obstructions in the air stream. Air velocity must be measured at locations away from obstructions to avoid the vortices and eddies that can produce inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an obstacle, such that an air velocity measurement can be made but not affected by the presence of that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream airflow using a numerical CFD model calibrated with experimental test results from underground testing. Factors including entry size, obstruction size and the inlet or incident velocity are examined for their effects on the distributions of airflow around an obstruction. A relationship is developed between the minimum measurement distance and the hydraulic diameters of the entry and the obstruction. A final analysis considers the impacts of continuous monitor location on the accuracy of velocity measurements and on the application of minimum measurement distance guidelines. PMID:26388684

  19. On laminar and turbulent friction

    NASA Technical Reports Server (NTRS)

    Von Karman, TH

    1946-01-01

    Report deals, first with the theory of the laminar friction flow, where the basic concepts of Prandtl's boundary layer theory are represented from mathematical and physical points of view, and a method is indicated by means of which even more complicated cases can be treated with simple mathematical means, at least approximately. An attempt is also made to secure a basis for the computation of the turbulent friction by means of formulas through which the empirical laws of the turbulent pipe resistance can be applied to other problems on friction drag. (author)

  20. Lithium batteries with laminar anodes

    SciTech Connect

    Bruder, A.H.

    1986-11-04

    This patent describes a laminar electrical cell, comprising an anode, a cathode, and an electrolyte permeable separator between the anode and the cathode. The anode consists essentially of a layer of lithium having at least one surface of unreacted lithium metal in direct contact with and adhered to a layer of conductive plastic with no intermediate adhesive promoting adjuncts. The cathode comprises a slurry of MnO/sub 2/ and carbon particles in a solution of a lithium salt in an organic solvent, the solution permeating the separator and being in contact with the lithium.

  1. Burning Laminar Jet Diffusion Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (518KB, 20-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300182.html.

  2. Laminar Jet Diffusion Flame Burning

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (983KB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300184.html.

  3. NASA Flight Tests Explore Supersonic Laminar Flow

    NASA Video Gallery

    In partnership with Aerion Corporation of Reno, Nevada, NASA's Dryden Flight Research Center’s tested supersonic airflow over a small experimental airfoil design on its F-15B Test Bed aircraft du...

  4. Effect of engine noise on aircraft wing laminar boundary-layer stability

    NASA Astrophysics Data System (ADS)

    Mangiarotty, R. A.

    1981-07-01

    It is noted that high-intensity acoustical disturbances can cause transition of controlled laminar flow. An investigation is carried out to determine whether the installation of main propulsion engines on an aircraft wing could cause excessive transition of laminar to turbulent flow. A method is developed for analyzing the influence of noise on the stability of a controlled laminar boundary layer; the method is based on the Tollmien-Schlichting traveling wave solution, on the Orr-Sommerfeld equation and some wind tunnel experimental data. It is found that wing-mounted, high-bypass-ratio engines with sufficient acoustic treatment for controlling turbomachinery noise would not cause excessive loss of wing laminar flow.

  5. Laminar and Turbulent Flow in Water

    ERIC Educational Resources Information Center

    Riveros, H. G.; Riveros-Rosas, D.

    2010-01-01

    There are many ways to visualize flow, either for laminar or turbulent flows. A very convincing way to show laminar and turbulent flows is by the perturbations on the surface of a beam of water coming out of a cylindrical tube. Photographs, taken with a flash, show the nature of the flow of water in pipes. They clearly show the difference between…

  6. Improving aviation safety with information visualization: Airflow hazard display for helicopter pilots

    NASA Astrophysics Data System (ADS)

    Aragon, Cecilia Rodriguez

    Many aircraft accidents each year are caused by encounters with airflow hazards near the ground, such as vortices or other turbulence. While such hazards frequently pose problems to fixed-wing aircraft, they are especially dangerous to helicopters, whose pilots often have to operate into confined areas or under operationally stressful conditions. Pilots are often unaware of these invisible hazards while simultaneously attending to other aspects of aircraft operation close to the ground. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real time. This development is likely to lead to the production of onboard detection systems that can convey detailed, specific information about imminent airflow hazards to pilots. A user interface is required that can present extensive amounts of data to the pilot in a useful manner in real time, yet not distract from the pilot's primary task of flying the aircraft. In this dissertation, we address the question of how best to present safety-critical visual information to a cognitively overloaded user in real time. We designed an airflow hazard visualization system according to user-centered design principles, implemented the system in a high fidelity, aerodynamically realistic rotorcraft flight simulator, and evaluated it via usability studies with experienced military and civilian helicopter pilots. We gathered both subjective data from the pilots' evaluations of the visualizations, and objective data from the pilots' performance during the landing simulations. Our study demonstrated that information visualization of airflow hazards, when presented to helicopter pilots in the simulator, dramatically improved their ability to land safely under turbulent conditions. Although we focused on one particular aviation application, the results may be relevant to user interfaces and information visualization in other safety

  7. Pulmonary Artery Abnormalities in Ex-smokers with and without Airflow Obstruction.

    PubMed

    Lindenmaier, Tamas J; Kirby, Miranda; Paulin, Gregory; Mielniczuk, Lisa; Cunningham, Ian A; Mura, Marco; Licskai, Christopher; Parraga, Grace

    2016-04-01

    Pulmonary vascular disease is a common complication of chronic obstructive pulmonary disease (COPD), and an important risk factor for COPD exacerbations and death. We explored the relationship between pulmonary artery volumes measured using thoracic computed tomography (CT) and lung structure-function measured using spirometry, CT and magnetic resonance imaging (MRI) in 124 ex-smokers with (n = 68) and without (n = 56) airflow obstruction, and a control group of 35 never-smokers. We observed significantly greater main (p = .01), right (p = .001) and total (p = .003) pulmonary artery volumes in ex-smokers with airflow obstruction as compared to ex-smokers without airflow obstruction. There were also significantly greater pulmonary artery volumes in both ex-smoker subgroups, compared to the never-smoker subgroup (p = .008). For all participants, there were significant correlations for pulmonary artery volumes with the ratio of the forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC), the diffusing capacity of the lung for carbon monoxide (DLCO%pred), airway count, MRI ventilation defect percent and MRI apparent diffusion coefficients. In ex-smokers, ventilation defect percent was significantly correlated with right (r = 0.27, p = .02) and total (r = 0.25, p = .03) pulmonary artery volumes. Multivariate zero-inflated Poisson regression analysis showed that FEV1%pred (p = .004), DLCO%pred (p = .03), the six minute walk distance (p = .04) and total pulmonary artery volume (p = .03) were significant predictors of acute exacerbations of COPD, while the number of previous exacerbations was not. In conclusion, pulmonary artery enlargement measured using thoracic CT was observed even in ex-smokers without airflow obstruction and was predictive of COPD exacerbations in ex-smokers with airflow obstruction. PMID:26606693

  8. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    PubMed

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528784

  9. Exact averaging of laminar dispersion

    NASA Astrophysics Data System (ADS)

    Ratnakar, Ram R.; Balakotaiah, Vemuri

    2011-02-01

    We use the Liapunov-Schmidt (LS) technique of bifurcation theory to derive a low-dimensional model for laminar dispersion of a nonreactive solute in a tube. The LS formalism leads to an exact averaged model, consisting of the governing equation for the cross-section averaged concentration, along with the initial and inlet conditions, to all orders in the transverse diffusion time. We use the averaged model to analyze the temporal evolution of the spatial moments of the solute and show that they do not have the centroid displacement or variance deficit predicted by the coarse-grained models derived by other methods. We also present a detailed analysis of the first three spatial moments for short and long times as a function of the radial Peclet number and identify three clearly defined time intervals for the evolution of the solute concentration profile. By examining the skewness in some detail, we show that the skewness increases initially, attains a maximum for time scales of the order of transverse diffusion time, and the solute concentration profile never attains the Gaussian shape at any finite time. Finally, we reason that there is a fundamental physical inconsistency in representing laminar (Taylor) dispersion phenomena using truncated averaged models in terms of a single cross-section averaged concentration and its large scale gradient. Our approach evaluates the dispersion flux using a local gradient between the dominant diffusive and convective modes. We present and analyze a truncated regularized hyperbolic model in terms of the cup-mixing concentration for the classical Taylor-Aris dispersion that has a larger domain of validity compared to the traditional parabolic model. By analyzing the temporal moments, we show that the hyperbolic model has no physical inconsistencies that are associated with the parabolic model and can describe the dispersion process to first order accuracy in the transverse diffusion time.

  10. Laminar flow test installation in the Boeing Research Wind Tunnel

    NASA Technical Reports Server (NTRS)

    George-Falvy, Dezso

    1990-01-01

    This paper describes the initial wind tunnels tests in the 5- by 8-ft Boeing Research Wind Tunnel of a near full-scale (20-foot chord) swept wing section having laminar flow control (LFC) by slot suction over its first 30 percent chord. The model and associated test apparatus were developed for use as a testbed for LFC-related experimentation in support of preliminary design studies done under contract with the National Aeronautics and Space Administration. This paper contains the description of the model and associated test apparatus as well as the results of the initial test series in which the proper functioning of the test installation was demonstrated and new data were obtained on the sensitivity of suction-controlled laminar flow to surface protuberances in the presence of crossflow due to sweep.

  11. The Evolution of Unidirectional Pulmonary Airflow.

    PubMed

    Farmer, C G

    2015-07-01

    Conventional wisdom holds that the avian respiratory system is unique because air flows in the same direction through most of the gas-exchange tubules during both phases of ventilation. However, recent studies showing that unidirectional airflow also exists in crocodilians and lizards raise questions about the true phylogenetic distribution of unidirectional airflow, the selective drivers of the trait, the date of origin, and the functional consequences of this phenomenon. These discoveries suggest unidirectional flow was present in the common diapsid ancestor and are inconsistent with the traditional paradigm that unidirectional flow is an adaptation for supporting high rates of gas exchange. Instead, these discoveries suggest it may serve functions such as decreasing the work of breathing, decreasing evaporative respiratory water loss, reducing rates of heat loss, and facilitating crypsis. The divergence in the design of the respiratory system between unidirectionally ventilated lungs and tidally ventilated lungs, such as those found in mammals, is very old, with a minimum date for the divergence in the Permian Period. From this foundation, the avian and mammalian lineages evolved very different respiratory systems. I suggest the difference in design is due to the same selective pressure, expanded aerobic capacity, acting under different environmental conditions. High levels of atmospheric oxygen of the Permian Period relaxed selection for a thin blood-gas barrier and may have resulted in the homogeneous, broncho-alveolar design, whereas the reduced oxygen of the Mesozoic selected for a heterogeneous lung with an extremely thin blood-gas barrier. These differences in lung design may explain the puzzling pattern of ecomorphological diversification of Mesozoic mammals: all were small animals that did not occupy niches requiring a great aerobic capacity. The broncho-alveolar lung and the hypoxia of the Mesozoic may have restricted these mammals from exploiting

  12. Experimental evidence of condensation-driven airflow

    NASA Astrophysics Data System (ADS)

    Bunyard, P.; Hodnett, M.; Poveda, G.; Burgos Salcedo, J. D.; Peña, C.

    2015-10-01

    The dominant "convection" model of atmospheric circulation is based on the premise that hot air expands and rises, to be replaced by colder air, thereby creating horizontal surface winds. A recent theory put forward by Makarieva and Gorshkov (2007, 2013) maintains that the primary motive force of atmospheric circulation derives from the intense condensation and sharp pressure reduction that is associated with regions where a high rate of evapotranspiration from natural closed-canopy forests provides the "fuel" for cloud formation. The net result of the "biotic pump" theory is that moist air flows from ocean to land, drawn in by the pressure changes associated with a high rate of condensation. To test the physics underpinning the biotic pump theory, namely that condensation of water vapour, at a sufficiently high rate, results in an uni-directional airflow, a 5 m tall experimental apparatus was designed and built, in which a 20 m3 body of atmospheric air is enclosed inside an annular 14 m long space (a "square donut") around which it can circulate freely, allowing for rotary air flows. One vertical side of the apparatus contains some 17 m of copper refrigeration coils, which cause condensation. The apparatus contains a series of sensors measuring temperature, humidity and barometric pressure every five seconds, and air flow every second. The laws of Newtonian physics are used in calculating the rate of condensation inside the apparatus. The results of more than one hundred experiments show a highly significant correlation, with r2 > 0.9, of airflow and the rate of condensation. The rotary air flows created appear to be consistent both in direction and velocity with the biotic pump hypothesis, the critical factor being the rate change in the partial pressure of water vapour in the enclosed body of atmospheric air. Air density changes, in terms of kinetic energy, are found to be orders of magnitude smaller than the kinetic energy of partial pressure change. The

  13. Numerical simulation of laboratory fume hood airflow performance

    SciTech Connect

    Kirkpatrick, A.T.; Reither, R.

    1998-12-31

    A three-dimensional computational fluid dynamics (CFD) analysis has been used to predict airflow patterns in laboratory fume hoods. The simulation includes bypass fume hood primary operational features including the top and bottom bypasses, front airfoils, and rear-slotted baffles. All results were validated experimentally, and the simulation was found to adequately predict fume hood airflow patterns. The results indicate that fume hood flow patterns are highly dependent on inlet flow boundary conditions so that the computation must include the near field room airflow. Additionally, the study included the effects on the fume hood airflow of sash height changes, an operator positioned outside the fume hood, and equipment within the main fume hood chamber. It was shown that for conditions of a fully open sash height, a person in front of the fume hood, and an object inside the fume hood, the fume hood experiences a loss of containment of the flow.

  14. Airflows generated by an impacting drop.

    PubMed

    Bischofberger, Irmgard; Ray, Bahni; Morris, Jeffrey F; Lee, Taehun; Nagel, Sidney R

    2016-03-28

    A drop impacting a solid surface with sufficient velocity will splash and emit many small droplets. However, lowering the ambient air pressure suppresses splashing completely. This effect, robustly found for different liquid and substrate properties, raises the fundamental question of how air affects a spreading drop. In a combined experimental and numerical study we characterize the flow of air induced by the drop after it hits the substrate, using a modified Schlieren optics technique combined with high-speed video imaging and Lattice-Boltzmann simulations. Our experiments reveal the emergence of air structures on different length scales. On large scales, the airflow induced in the drop's wake leads to vortex structures due to interaction with the substrate. On smaller scales, we visualize a ring structure above the outer edge of the spreading liquid generated by the spreading of the drop. Our simulations reveal the interaction between the wake vorticity and the flows originating from the rapidly escaping air from below the impacting drop. We show that the vorticity is governed by a balance between inertial and viscous forces in the air, and is unrelated to the splashing threshold. PMID:26809314

  15. Dynamics of airflow in a short inhalation

    PubMed Central

    Bates, A. J.; Doorly, D. J.; Cetto, R.; Calmet, H.; Gambaruto, A. M.; Tolley, N. S.; Houzeaux, G.; Schroter, R. C.

    2015-01-01

    During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s−1 peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions. PMID:25551147

  16. Conditions for laminar flow in geophysical vortices

    NASA Astrophysics Data System (ADS)

    Fiedler, Brian H.

    1989-01-01

    The sufficient condition for inviscid, helical instability at large wavenumbers is applied to solutions for columnar vortices arising from the vortical flow of an end-wall boundary layer. The end-wall vortex arising from the laminar boundary layer under a potential vortex will be unstable at sufficiently high Reynolds number. Hoewever, if the end-wall boundary layer is turbulent, the end-wall vortex can be stable and laminar even at very high Reynolds number; therefore, stable, laminar tornadoes and waterspouts are suggested as theoretical possibilities.

  17. Measuring rates of outdoor airflow into HVAC systems

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.; Delp, Woody

    2002-10-01

    During the last few years, new technologies have been introduced for measuring the flow rates of outside air into HVAC systems. This document describes one particular technology for measuring these airflows, a system and a related protocol developed to evaluate this and similar measurement technologies under conditions without wind, and the results of our evaluations. We conclude that the measurement technology evaluated can provide a reasonably accurate measurement of OA flow rate over a broad range of flow, without significantly increasing airflow resistance.

  18. Development of an ultrasonic airflow measurement device for ducted air.

    PubMed

    Raine, Andrew B; Aslam, Nauman; Underwood, Christopher P; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  19. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  20. Cloud particle effects on laminar flow and instrumentation for their measurement aboard a NASA LFC aircraft

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Fischer, M. C.

    1983-01-01

    Fuel costs account now for approximately 60 percent of the direct operating costs of airlines and future commercial transport will utilize advanced technologies for saving fuel on the basis of drag reduction. Laminar flow control (LFC) represents such an advanced technology. A new laminar flow wing on a reconfigured WB-66 aircraft was tested in the X-21 flight program. The tests confirmed that extensive laminar flow could be achieved at subsonic transport cruise conditions. Factors affecting adversely the maintenance of laminar flow were found to be related to ice particles encountered during the penetration of cirrus clouds or haze. The present investigation is concerned with the effect of ice particles on LFC, taking into account the results obtained in the Leading Edge Flight Test (LEFT) being conducted by NASA. Attention is given to ice particle measurements in the LEFT program.

  1. Current Evidence for the Use of Laminar Flow in Reducing Infection Rates in Total Joint Arthroplasty

    PubMed Central

    James, M; Khan, W.S; Nannaparaju, M.R; Bhamra, J.S; Morgan-Jones, R

    2015-01-01

    Since the introduction of laminar air flow in orthopaedic theatres by Sir John Charnley, it has widely become accepted as the standard during orthopaedic procedures such as joint arthroplasty. We present a review of available current literature for the use of laminar flow operating theatre ventilation during total joint arthroplasty and examines the effectiveness of laminar flow ventilated operating theatres in preventing post-operative wound infection. Results of our findings suggest that while bacterial and air particulate is reduced by laminar air flow systems, there is no conclusive effect on the reduction of post-operative wound infections following total joint arthroplasty. We conclude that a combination of strict aseptic technique, prophylactic antibiotics and good anaesthetic control during surgery remains crucial to reduce post-operative surgical infections. PMID:26587068

  2. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  3. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  4. Conceptual design for a laminar-flying-wing aircraft

    NASA Astrophysics Data System (ADS)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  5. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  6. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  7. Process for making laminar batteries

    SciTech Connect

    Plasse, P.A.

    1986-09-30

    This patent describes the process of making laminar cells, which consists of perforating a first elongated web of liquid impervious, electrically nonconducting thermoplastic material with a spaced rectangular array of apertures arranged in rows across the direction of elongation of the web and in columns parallel to the direction of elongation of the web adding patches of electrically conductive material. Each patch comprises a sheet of conductive plastic adhered to a coterminous layer of electrode particles in a binder to a first side of the first web with the conductive plastic side of each patch in contact with the borders of a different one of the apertures to form a spaced rectangular array of the patches on the firs web. A piece of separator material is adhered to the first web over each of the patches on the first side of the first web, placing spaced elongated strips of metal on the first web on a second side of the first web opposite the first side, the metal strips being aligned with and each overlying a different one of the columns.

  8. Oscillating and star-shaped drops levitated by an airflow.

    PubMed

    Bouwhuis, Wilco; Winkels, Koen G; Peters, Ivo R; Brunet, Philippe; van der Meer, Devaraj; Snoeijer, Jacco H

    2013-08-01

    We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a breaking of axisymmetry and the appearance of "star drops". This is strongly reminiscent of the Leidenfrost stars that are observed for drops floating above a hot substrate. The key advantage of this work is that we inject the airflow at a constant rate below the drop, thus eliminating thermal effects and allowing for a better control of the flow rate. We perform experiments with drops of different viscosities and observe stable states, oscillations, and chimney instabilities. We find that for a given drop size the instability appears above a critical flow rate, where the latter is largest for small drops. All these observations are reproduced by numerical simulations, where we treat the drop using potential flow and the gas as a viscous lubrication layer. Qualitatively, the onset of instability agrees with the experimental results, although the typical flow rates are too large by a factor 10. Our results demonstrate that thermal effects are not important for the formation of star drops and strongly suggest a purely hydrodynamic mechanism for the formation of Leidenfrost stars. PMID:24032934

  9. Ignition in laminar and turbulent nonpremixed counterflow

    NASA Astrophysics Data System (ADS)

    Blouch, John Dewey

    2002-01-01

    Investigations into nonpremixed ignition were conducted to examine the influence of complex chemistry and flow turbulence as found in practical combustion systems. The counterflow configuration, where a hot air jet ignited a cold (298K) fuel jet, was adopted in experiments and calculations. The study of the ignition of large alkane hydrocarbons focused on the effects of fuel structure by investigating the reference fuels n-heptane and iso-octane. The ignition response of these fuels was similar to smaller fuels with similar molecular structures. This conclusion was reinforced by showing that the ignition temperature became nearly insensitive to fuel molecule size above C4, but continued to depend on whether the structure was linear or branched. The effects of turbulence were studied by adding perforated plates to the burner to generate controlled levels of turbulence. This configuration was examined in detail experimentally and computationally without reaction, and subsequently the effects of turbulence on ignition were studied with hydrogen as the fuel. The results indicated that at low turbulence intensities, ignition is enhanced relative to laminar ignition, but as the turbulence intensity increases the ignition temperature also increases, demonstrating that optimal conditions for ignition exist at low turbulence intensities. At high pressures, where HO2 chemistry is important, all turbulent ignition temperatures were higher than laminar ones, and the increasing temperature trend with turbulence intensity was still observed. At low fuel concentrations, a different ignition mode was observed where the transition from a weakly reacting state to a flame occurred over a range of temperatures where the flame was repeatedly ignited and extinguished. Turbulent ignition was modeled by solving a joint scalar PDF equation using a Monte Carlo technique. The absence of significant heat release prior to ignition enabled the use of a frozen flow solution, solved separately

  10. Numerical Simulation of an Enclosed Laminar Jet Diffusion Flame in Microgravity Environment: Comparison with ELF Data

    NASA Technical Reports Server (NTRS)

    Jia, Kezhong; Venuturumilli, Rajasekhar; Ryan, Brandon J.; Chen, Lea-Der

    2001-01-01

    been some research on the stability of laminar flames, but most studies have focused on turbulent flames. It is also well known that the airflow around the fuel jet can significantly alter the lift off, reattachment and blow out of the jet diffusion flame. Buoyant convection is sufficiently strong in 1-g flames that it can dominate the flow-field, even at the burner rim. In normal-gravity testing, it is very difficult to delineate the effects of the forced airflow from those of the buoyancy-induced flow. Comparison of normal-gravity and microgravity flames provides clear indication of the influence of forced and buoyant flows on the flame stability. The overall goal of the Enclosed Laminar Flames (ELF) investigation (STS-87/USMP-4 Space Shuttle mission, November to December 1997) is to improve our understanding of the effects of buoyant convection on the structure and stability of co-flow diffusion flame, e.g., see http://zeta.lerc.nasa.gov/expr/elf.htm. The ELF hardware meets the experiment hardware limit of the 35-liter interior volume of the glovebox working area, and the 180x220-mm dimensions of the main door. The ELF experiment module is a miniature, fan-driven wind tunnel, equipped with a gas supply system. A 1.5-mm diameter nozzle is located on the duct's flow axis. The cross section of the duct is nominally a 76-mm square with rounded corners. The forced air velocity can be varied from about 0.2 to 0.9 m/s. The fuel flow can be set as high as 3 std. cubic centimeter (cc) per second, which corresponds to a nozzle exit velocity of up to 1.70 m/s. The ELF hardware and experimental procedure are discussed in detail in Brooker et al. The 1-g test results are repeated in several experiments following the STS-87 Mission. The ELF study is also relevant to practical systems because the momentum-dominated behavior of turbulent flames can be achieved in laminar flames in microgravity. The specific objectives of this paper are to evaluate the use reduced model for

  11. Natural laminar flow experiments on modern airplane surfaces

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Yip, L. P.

    1984-01-01

    Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes.

  12. The Effects of Gravity on Wrinkled Laminar Flames

    NASA Technical Reports Server (NTRS)

    Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.

    1993-01-01

    The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.

  13. Rupatadine improves nasal symptoms, airflow and inflammation in patients with persistent allergic rhinitis: a pilot study.

    PubMed

    Ciprandi, Giorgio; Cirillo, I

    2010-01-01

    Nasal obstruction is the main symptom in patients with allergic rhinitis and may be measured by rhinomanometry. Rupatadine is a new antihistamine with potential antiallergic activities. The aim of this pilot study is to evaluate nasal symptoms, nasal airflow and nasal mediators in patients with persistent allergic rhinitis, before and after treatment with rupatadine. Twenty patients with persistent allergic rhinitis were evaluated, 15 males and 5 females (mean age 35 +/- 9.1 years), all of whom received rupatadine (10 mg/daily) for 3 weeks. Nasal and ocular symptoms (measured by VAS), rhinomanometry, and nasal mediators (ECP and tryptase) were assessed in all subjects before and after treatment. Rupatadine treatment induced significant symptom relief (both nasal and ocular, respectively p=0.005 and p=0.0004), including obstruction (p=0.0015) and significant increase of nasal airflow (p=0.0025). Moreover, there was a significant difference of nasal mediators. In conclusion, this pilot study demonstrates the effectiveness of rupatadine treatment in: i) improving nasal and ocular symptoms, ii) increasing nasal airflow, iii) exerting antiallergic activity in patients with persistent allergic rhinitis. These positive results could explain the effectiveness of rupatadine in the treatment of persistent allergic rhinitis, as reported in a previous study Further controlled studies need to be conducted to confirm these preliminary findings. PMID:20487631

  14. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators

    SciTech Connect

    Kriegseis, J.; Tropea, C.; Grundmann, S.

    2012-07-15

    In the present work, the effect of the airflow on the performance of dielectric barrier discharge plasma-actuators is investigated experimentally. In order to analyze the actuator's performance, luminosity measurements have been carried out simultaneously with the recording of the relevant electrical parameters. A performance drop of about 10% is observed for the entire measured parameter range at a flow speed of M = 0.145 (U{sub {infinity}}=50 m/s). This insight is of particular importance, since the plasma-actuator control authority is already significantly reduced at this modest speed level. The results at higher Mach numbers (0.4airflow velocities. Two non-dimensional scaling numbers are proposed to characterize and quantify the airflow influence. It is demonstrated that these numbers span a universal performance drop diagram for the entire range of investigated operating parameters.

  15. Approximate entropy as a measure of the airflow pattern complexity in asthma.

    PubMed

    Veiga, Juliana; Faria, Renan C P; Esteves, Guilherme P; Lopes, Agnaldo J; Jansen, Jose M; Melo, Pedro L

    2010-01-01

    The scientific and clinical value of a measure of complexity is potentially enormous because complexity appears to be lost in the presence of illness. The changes introduced by asthma in respiratory mechanics and control of breathing may result in modifications in the airflow pattern. These changes may be interesting clinically, since they can reduce the ability of the patient to perform daily life activities. In this paper, we examine the effect of elevated airway obstruction on the complexity of the airflow pattern of asthmatic patients using the approximate entropy method (ApEnQ). This study involved 5 healthy and asthmatics with normal spirometric exam (5), mild (5), moderate (6) and severe (5) airway obstruction. A significant (p〈0.002) reduction in ApEnQ was observed in asthmatic patients. This reduction was significantly correlated with spirometric indices of airway obstruction (R=0.60; p〈0.001). These results are in close agreement with pathophysiological fundamentals, and suggest that in asthmatic patients the airflow pattern becomes less complex, which may reduce the adaptability of the respiratory system to perform exercise associated with daily life activities. Furthermore, our findings also suggest that ApEnQ may help the clinical evaluation of asthmatic patients. PMID:21096161

  16. Airflow analysis in mechanically ventilated obstructed rooms

    NASA Astrophysics Data System (ADS)

    Priest, John Brian

    1999-11-01

    Local and mean air velocities and standard deviations were measured in realistic rooms. Obstructions represented occupants and equipment in the rooms, internal heat loads varied and supply air temperature differed from room averages. Experimental setups differed for the isothermal and nonisothermal tests. Room dimensions for isothermal tests were 2.44 m high by 4.88 x 4.88 m. Ten different obstruction ratios using three different inlet types were analyzed. Obstructions covered 0 to 30% floor area and from 0 to 75% of room height. Air was supplied at ventilation rates ranging between 0.8 and 1.1 m 3/s. Room dimensions for the nonisothermal tests were 2.44 m high by 3.66 x 7.32 m. Obstruction differences between solid versus open partitions for farrowing crates were investigated for three commercially available inlets using two ventilation loads. Ventilation rates were 0.11 to 1.18 m 3/s, simulating cold and warm weather ventilation conditions, respectively. Based on these data and theoretical calculations, a kinetic energy model that predicts average room air velocity and energy level was developed as a practical room air flow design and analysis tool. It was recommended that designers interested in using CFD as a tool should use a three dimensional laminar model for acceptable qualitative flow results. It was concluded that for typical room flowrates and inlet types the room air distribution system is obstruction ratio independent. Local velocities and standard deviations varied with each obstruction setup and inlet combination. However, average air velocities and turbulence intensities were not influenced by obstruction setups or inlet configurations. The decay rate of mean velocity kinetic energy in the bulk flow region was independent of obstructions and inlets. Room average kinetic energy was a function of the supplied kinetic energy within the supply jet plus internal kinetic energy resulting from internal heat load (convective energy).

  17. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  18. Evaluation of airflow patterns following procedures established by NUREG-1400.

    PubMed

    Fritz, Brad G; Khan, Fenton; Mendoza, Donaldo P

    2006-08-01

    The U.S. Nuclear Regulatory Commission's guide, NUREG-1400, addresses many aspects of air sampling in the work place. Here, we present detailed examples of the methodology used to conduct two qualitative airflow studies at different sites. In one test, smoke was used to evaluate the airflow patterns within a high-bay building for the purpose of determining appropriate locations for air monitoring equipment. The study revealed a stagnant layer of the air within the transfer area that made predicting movement of contamination within the transfer area difficult. Without conducting an airflow study, the stagnant layer may not have been identified and could have resulted in placement of samplers at inappropriate locations. In a second test, smoke was used to verify the effectiveness of an air space barrier curtain. The results showed that the curtain adequately separated the two air spaces. The methodology employed in each test provided sound, easy to interpret information that satisfied the requirements of each test. The methods described in this article can be applied at most facilities where determination of airflow patterns or the verification of suspected airflow patterns is required. PMID:16823267

  19. Effect of Airflows on Repetitive Nanosecond Volume Discharges

    NASA Astrophysics Data System (ADS)

    Tang, Jingfeng; Wei, Liqiu; Huo, Yuxin; Song, Jian; Yu, Daren; Zhang, Chaohai

    2016-03-01

    Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images. supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)

  20. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. PMID:25536861

  1. Low Serum Levels of Alpha1 Anti-trypsin (α1-AT) and Risk of Airflow Obstruction in Non-Primary α1-AT-Deficient Patients with Compensated Chronic Liver Disease

    PubMed Central

    Rodríguez-Romero, Elizabeth; Suárez-Cuenca, Juan Antonio; Elizalde-Barrera, César Iván; Mondragón-Terán, Paul; Martínez-Hernández, José Enrique; Gómez-Cortés, Eduardo; de Vaca, Rebeca Pérez-Cabeza; Hernández-Muñoz, Rolando E.; Melchor-López, Alberto; Jiménez-Saab, Nayeli Gabriela

    2015-01-01

    Background Alpha1 anti-trypsin (α1-AT), a serine protease inhibitor synthesized in the liver, is a major circulating antiprotease that provides defense against proteolytic damage in several tissues. Its deficiency is associated with airflow obstruction. The present study aimed to explore the role of α1-AT as a biomarker of airflow performance in chronic liver disease (CLD). Material/Methods Serum α1-AT levels and lung function (spirometry) were evaluated in non-primary α1-AT-deficient, alcoholic CLD patients without evident respiratory limitations. Results Thirty-four patients with airflow obstruction (n=11), airflow restriction (n=12), and normal airflow (n=11, age-matched controls) were eligible. α1-AT was decreased in the airflow obstruction group. ROC-cutoff α1-AT=24 mg/dL effectively discriminated airflow obstruction (AUC=0.687) and was associated with a 10-fold higher risk (p=0.0007). Conclusions Lower α1-AT increased the risk of airflow obstruction in CLD patients without primary α1-AT deficiency. PMID:25913248

  2. Parallel Computation of Airflow in the Human Lung Model

    NASA Astrophysics Data System (ADS)

    Lee, Taehun; Tawhai, Merryn; Hoffman, Eric. A.

    2005-11-01

    Parallel computations of airflow in the human lung based on domain decomposition are performed. The realistic lung model is segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-04368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. Because of the large number of the airway generation and the sheer complexity of the geometry, massively parallel computation of pulmonary airflow is carried out. We present the parallel algorithm implemented in the custom-developed characteristic-Galerkin finite element method, evaluate the speed-up and scalability of the scheme, and estimate the computing resources needed to simulate the airflow in the conducting airways of the human lungs. It is found that the special tree-like geometry enables the inter-processor communications to occur among only three or four processors for optimal parallelization irrespective of the number of processors involved in the computation.

  3. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  4. Airflow studies in a forced ventilated chamber with low partitions

    SciTech Connect

    Chow, W.K.; Tsui, K.F.

    1995-12-31

    A climate chamber was used to study experimentally the airflow characteristics in a ventilated space with low partitions. Two types of commonly used air distribution devices were selected for the study--a ceiling diffuser and side grille systems. A total of 16 tests were performed using the two diffusers with partition heights varying up to 1.8 m (5.91 ft) above floor level. From the measured results, the thermal comfort indices were assessed. A stabilization effect of airflow was found when the partition height reached 1.8 m (5.91 ft). Local draft risk was located in the occupied zone. Also, the modified Archimedes number proposed by Jackman (1990) was used to describe the indoor airflow in the absence of a workable design guide for partitioned spaces.

  5. Unidirectional pulmonary airflow patterns in the savannah monitor lizard.

    PubMed

    Schachner, Emma R; Cieri, Robert L; Butler, James P; Farmer, C G

    2014-02-20

    The unidirectional airflow patterns in the lungs of birds have long been considered a unique and specialized trait associated with the oxygen demands of flying, their endothermic metabolism and unusual pulmonary architecture. However, the discovery of similar flow patterns in the lungs of crocodilians indicates that this character is probably ancestral for all archosaurs--the group that includes extant birds and crocodilians as well as their extinct relatives, such as pterosaurs and dinosaurs. Unidirectional flow in birds results from aerodynamic valves, rather than from sphincters or other physical mechanisms, and similar aerodynamic valves seem to be present in crocodilians. The anatomical and developmental similarities in the primary and secondary bronchi of birds and crocodilians suggest that these structures and airflow patterns may be homologous. The origin of this pattern is at least as old as the split between crocodilians and birds, which occurred in the Triassic period. Alternatively, this pattern of flow may be even older; this hypothesis can be tested by investigating patterns of airflow in members of the outgroup to birds and crocodilians, the Lepidosauromorpha (tuatara, lizards and snakes). Here we demonstrate region-specific unidirectional airflow in the lungs of the savannah monitor lizard (Varanus exanthematicus). The presence of unidirectional flow in the lungs of V. exanthematicus thus gives rise to two possible evolutionary scenarios: either unidirectional airflow evolved independently in archosaurs and monitor lizards, or these flow patterns are homologous in archosaurs and V. exanthematicus, having evolved only once in ancestral diapsids (the clade encompassing snakes, lizards, crocodilians and birds). If unidirectional airflow is plesiomorphic for Diapsida, this respiratory character can be reconstructed for extinct diapsids, and evolved in a small ectothermic tetrapod during the Palaeozoic era at least a hundred million years before the

  6. Intratracheal Bleomycin Causes Airway Remodeling and Airflow Obstruction in Mice

    PubMed Central

    Polosukhin, Vasiliy V.; Degryse, Amber L.; Newcomb, Dawn C.; Jones, Brittany R.; Ware, Lorraine B.; Lee, Jae Woo; Loyd, James E.; Blackwell, Timothy S.; Lawson, William E.

    2014-01-01

    Introduction In addition to parenchymal fibrosis, fibrotic remodeling of the distal airways has been reported in interstitial lung diseases. Mechanisms of airway wall remodeling, which occurs in a variety of chronic lung diseases, are not well defined and current animal models are limited. Methods We quantified airway remodeling in lung sections from subjects with idiopathic pulmonary fibrosis (IPF) and controls. To investigate intratracheal bleomycin as a potential animal model for fibrotic airway remodeling, we evaluated lungs from C57BL/6 mice after bleomycin treatment by histologic scoring for fibrosis and peribronchial inflammation, morphometric evaluation of subepithelial connective tissue volume density, TUNEL assay, and immunohistochemistry for transforming growth factor β1 (TGFβ1), TGFβ2, and the fibroblast marker S100A4. Lung mechanics were determined at 3 weeks post-bleomycin. Results IPF lungs had small airway remodeling with increased bronchial wall thickness compared to controls. Similarly, bleomycin treated mice developed dose-dependent airway wall inflammation and fibrosis and greater airflow resistance after high dose bleomycin. Increased TUNEL+ bronchial epithelial cells and peribronchial inflammation were noted by 1 week, and expression of TGFβ1 and TGFβ2 and accumulation of S100A4+ fibroblasts correlated with airway remodeling in a bleomycin dose-dependent fashion. Conclusions IPF is characterized by small airway remodeling in addition to parenchymal fibrosis, a pattern also seen with intratracheal bleomycin. Bronchial remodeling from intratracheal bleomycin follows a cascade of events including epithelial cell injury, airway inflammation, pro-fibrotic cytokine expression, fibroblast accumulation, and peribronchial fibrosis. Thus, this model can be utilized to investigate mechanisms of airway remodeling. PMID:22394287

  7. Laminar Heating Validation of the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.; Dries, Kevin M.

    2005-01-01

    OVERFLOW, a structured finite difference code, was applied to the solution of hypersonic laminar flow over several configurations assuming perfect gas chemistry. By testing OVERFLOW's capabilities over several configurations encompassing a variety of flow physics a validated laminar heating was produced. Configurations tested were a flat plate at 0 degrees incidence, a sphere, a compression ramp, and the X-38 re-entry vehicle. This variety of test cases shows the ability of the code to predict boundary layer flow, stagnation heating, laminar separation with re-attachment heating, and complex flow over a three-dimensional body. In addition, grid resolutions studies were done to give recommendations for the correct number of off-body points to be applied to generic problems and for wall-spacing values to capture heat transfer and skin friction. Numerical results show good comparison to the test data for all the configurations.

  8. Laminar and turbulent flow in water

    NASA Astrophysics Data System (ADS)

    Riveros, H. G.; Riveros-Rosas, D.

    2010-05-01

    There are many ways to visualize flow, either for laminar or turbulent flows. A very convincing way to show laminar and turbulent flows is by the perturbations on the surface of a beam of water coming out of a cylindrical tube. Photographs, taken with a flash, show the nature of the flow of water in pipes. They clearly show the difference between turbulent and laminar flow, and let, in an accessible way, data be taken to analyse the conditions under which both flows are present. We found research articles about turbulence measurements, using sophisticated equipment, but they do not use the perturbation of the free surface of the flowing liquid to show or measure the turbulence.

  9. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  10. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  11. A flight test investigation of certification requirements for laminar-flow general aviation airplanes

    NASA Technical Reports Server (NTRS)

    Manuel, Gregory S.; Doty, Wayne A.

    1990-01-01

    A modified T210R general aviation aircraft incorporating natural laminar flow (NLF) technology has been subjected to flight tests in order to evaluate its stability and control characteristics. Attention is given to this aircraft's ability to meet certification requirements with significant NLF, as well as with the boundary-layer transition fixed near the leading edge. It is established that the large regions of NLF achieved yielded a significant cruise performance enhancement; loss of laminar flow did not result in significant changes in the stability and control characteristics of the aircraft. FAR Part 23 certification requirements were met.

  12. Study of Airflow Out of the Mouth During Speech.

    ERIC Educational Resources Information Center

    Catford, J.C.; And Others

    Airflow outside the mouth is diagnostic of articulatory activities in the vocal tract, both total volume-velocity and the distribution of particle velocities over the flow-front being useful for this purpose. A system for recording and displaying both these types of information is described. This consists of a matrix of l6 hot-wire anemometer flow…

  13. Acoustics of laminar boundary layers breakdown

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1994-01-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  14. Smoothed Two-Dimensional Edges for Laminar Flow

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.

  15. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  16. Laminar circuit organization and response modulation in mouse visual cortex

    PubMed Central

    Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin

    2012-01-01

    The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751

  17. Volume average technique for turbulent flow simulation and its application to room airflow prediction

    NASA Astrophysics Data System (ADS)

    Huang, Xianmin

    Fluid motion turbulence is one of the most important transport phenomena occurring in engineering applications. Although turbulent flow is governed by a set of conservation equations for momentum, mass, and energy, a Direct Numerical Simulation (DNS) of the flow by solving these equations to include the finest scale motions is impossible due to the extremely large computer resources required. On the other hand, the Reynolds Averaged Modelling (RAM) method has many limitations which hinder its applications to turbulent flows of practical significance. Room airflow featuring co- existence of laminar and turbulence regimes is a typical example of a flow which is difficult to handle with the RAM method. A promising way to avoid the difficulty of the DNS method and the limitation of the RAM method is to use the Large Eddy Simulation (LES) method. In the present thesis, the drawbacks of previously developed techniques for the LES method, particularly those associated with the SGS modelling, are identified. Then a new so called Volume Average Technique (VAT) for turbulent flow simulation is proposed. The main features of the VAT are as follows: (1) The volume averaging approach instead of the more common filtering approach is employed to define solvable scale fields, so that coarse- graining in the LES and space discretization of the numerical scheme are achieved in a single procedure. (2) All components of the SGS Reynolds stress and SGS turbulent heat flux are modelled dynamically using the newly proposed Functional Scale Similarity (FSS) SGS model. The model is superior to many previously developed SGS models in that it can be applied to highly inhomogeneous and/or anisotropic, weak or multi-regime turbulent flows using a relatively coarse grid. (3) The so called SGS turbulent diffusion is identified and modelled as a separate mechanism to that of the SGS turbulent flux represented by the SGS Reynolds stress and SGS turbulent heat flux. The SGS turbulent diffusion is

  18. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway

    PubMed Central

    Edwards, Bradley A.; Sands, Scott A.; Butler, James P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Wellman, Andrew

    2014-01-01

    The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an “iron lung” and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2–4 s) or abruptly (<0.5 s) to lower downstream pressure and create inspiratory airflow. Pressure-flow curves were constructed for flow-limited breaths, and slow vs. fast reductions in downstream pressure were compared. All subjects exhibited an initial peak and then a decrease in flow with more negative pressures, demonstrating negative effort dependence (NED). The rate of change in downstream pressure did not affect the peak to plateau airflow ratio: %NED 22 ± 13% (slow) vs. 20 ± 5% (fast), P = not significant. We conclude that the initial peak in inspiratory airflow is not a transient but rather a distinct mechanical property of the upper airway. In contrast to the classical Starling resistor model, the upper airway exhibits marked NED in some subjects. PMID:24458746

  19. Parametric study on laminar flow for finite wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph Avila

    1994-01-01

    Laminar flow control has been identified as a key element in the development of the next generation of High Speed Transports. Extending the amount of laminar flow over an aircraft will increase range, payload, and altitude capabilities as well as lower fuel requirements, skin temperature, and therefore the overall cost. A parametric study to predict the extent of laminar flow for finite wings at supersonic speeds was conducted using a computational fluid dynamics (CFD) code coupled with a boundary layer stability code. The parameters investigated in this study were Reynolds number, angle of attack, and sweep. The results showed that an increase in angle of attack for specific Reynolds numbers can actually delay transition. Therefore, higher lift capability, caused by the increased angle of attack, as well as a reduction in viscous drag, due to the delay in transition, can be expected simultaneously. This results in larger payload and range.

  20. A numerical study of laminar flames propagating in stratified mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng

    Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate

  1. Computational Investigation of Dynamic Glottal Aperture Effects on Respiratory Airflow

    NASA Astrophysics Data System (ADS)

    Xi, Jinxiang; Yan, Hong; Dong, Haibo

    2008-11-01

    The periodic movement of the glottal aperture (vocal folds) during tidal breathing has been long recognized as a factor in altering the airflow dynamics in the tracheobrnchial region. The potential influence from these altered flow structures on the transport and deposition of inhaled particles is not known. However, studies devoted to this dynamic physiological feature are scarce due to the complex anatomy in of the larynx and numerical challenges in simulating dynamic geometries. In this study, a high-fidelity immersed boundary solver is used to investigate this problem. A 3D human oral-larynx-lung model is firstly reconstructed from MRI data. The role of the vocal fold movement and associated airflow characteristics such as vortex shedding, Coanda effect etc. during inhalation and exhalation are then numerically studied.

  2. Airflow and Particle Transport in the Human Respiratory System

    NASA Astrophysics Data System (ADS)

    Kleinstreuer, C.; Zhang, Z.

    2010-01-01

    Airflows in the nasal cavities and oral airways are rather complex, possibly featuring a transition to turbulent jet-like flow, recirculating flow, Dean's flow, vortical flows, large pressure drops, prevailing secondary flows, and merging streams in the case of exhalation. Such complex flows propagate subsequently into the tracheobronchial airways. The underlying assumptions for particle transport and deposition are that the aerosols are spherical, noninteracting, and monodisperse and deposit upon contact with the airway surface. Such dilute particle suspensions are typically modeled with the Euler-Lagrange approach for micron particles and in the Euler-Euler framework for nanoparticles. Micron particles deposit nonuniformly with very high concentrations at some local sites (e.g., carinal ridges of large bronchial airways). In contrast, nanomaterial almost coats the airway surfaces, which has implications of detrimental health effects in the case of inhaled toxic nanoparticles. Geometric airway features, as well as histories of airflow fields and particle distributions, may significantly affect particle deposition.

  3. Numerical calculations of strained premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Darabiha, N.; Candel, S.; Marble, F. E.

    The structure of a strained laminar flame in the vicinity of a stagnation point is examined numerically. The stagnation point is established by the counterflow of fresh mixture and hot products. This situation is described by standard reactive boundary layer equations. The numerical scheme used to solve the similar boundary layer equations put in F-V form (block-implicit) is an adaptation of the schemes proposed by Blottner (1979). The calculations are performed first on an uniform grid and then confirmed with an adaptive grid method due to Smooke (1982). Numerical calculations allow an exact description of the flame structure in physical and also reduced coordinates. Predictions of Libby and Williams (1982) for high and intermediate values of the strain rate based on activation energy asymptotics are confirmed. For low strain rates (ordinary unstrained laminar flame) the mass rate of reaction per unit flame area differs from that obtained by activation energy asymptotics.

  4. Laminar flow instability in nuclear rockets

    SciTech Connect

    Black, D.L. )

    1993-01-20

    Laminar flow instability (LFI) is a rarely encountered phenomenon, occurring in gaseous heated channels with high exit-to-inlet temperature ratios and a laminar Reynolds Number at the channel exit, as may be experienced in a nuclear rocket. Analytical techniques were developed and programmed for parametric evaluation that had been previously validated by comparison with available experimental data. The four types of transients associated with LFI are described in terms of the governing equations. Parametric evaluations of solid core prismatic and particle bed fuel configurations were made to determine their sensitivities to LFI from temperature ratio, flow rate, orificing, transition Reynolds Number, pressure level, presence of an exit sonic nozzle, power density and heat flux shape. The flow rate at the point of neutral stability and the growth rate of the excursive transient are calculated. The full power design point and the cooldown phases of operation were both evaluated.

  5. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  6. The Structure and Stability of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, John

    1993-01-01

    This review paper on the structure and stability of laminar flames considers such phenomena as heterogeneous mixtures, acoustic instabilities, flame balls and related phenomena, radiation effects, the iodate oxidation of arsenous acid and 'liquid flame fronts', approximate kinetic mechanisms and asymptotic approximations, and tribrachial or triple flames. The topics examined here indicate three themes that may play an important role in laminar flame theory in the coming years: microgravity experiments, kinetic modeling, and turbulence modeling. In the discussion of microgravity experiments it is pointed out that access to drop towers, the Space Shuttle and, in due course, the Space Station Freedom will encourage the development of experiments well designed to isolate the fundamental physics of combustion.

  7. Coupling of wrinkled laminar flames with gravity

    NASA Technical Reports Server (NTRS)

    Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.

    1995-01-01

    The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.

  8. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  9. Morphodynamic modeling of erodible laminar channels

    NASA Astrophysics Data System (ADS)

    Devauchelle, Olivier; Josserand, Christophe; Lagrée, Pierre-Yves; Zaleski, Stéphane

    2007-11-01

    A two-dimensional model for the erosion generated by viscous free-surface flows, based on the shallow-water equations and the lubrication approximation, is presented. It has a family of self-similar solutions for straight erodible channels, with an aspect ratio that increases in time. It is also shown, through a simplified stability analysis, that a laminar river can generate various bar instabilities very similar to those observed in natural rivers. This theoretical similarity reflects the meandering and braiding tendencies of laminar rivers indicated by F. Métivier and P. Meunier [J. Hydrol. 27, 22 (2003)]. Finally, we propose a simple scenario for the transition between patterns observed in experimental erodible channels.

  10. Air Trapping and Airflow Obstruction in Newborn Cystic Fibrosis Piglets

    PubMed Central

    Adam, Ryan J.; Michalski, Andrew S.; Bauer, Christian; Abou Alaiwa, Mahmoud H.; Gross, Thomas J.; Awadalla, Maged S.; Bouzek, Drake C.; Gansemer, Nicholas D.; Taft, Peter J.; Hoegger, Mark J.; Diwakar, Amit; Ochs, Matthias; Reinhardt, Joseph M.; Hoffman, Eric A.; Beichel, Reinhard R.; Meyerholz, David K.

    2013-01-01

    Rationale: Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. Objectives: To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. Methods: On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro–computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. Measurements and Main Results: On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. Conclusions: The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities. PMID:24168209

  11. A model for simulating airflow and pollutant dispersion around buildings

    SciTech Connect

    Chan, S T; Lee, R L

    1999-02-24

    A three-dimensional, numerical mode1 for simulating airflow and pollutant dispersion around buildings is described. The model is based on an innovative finite element approach and fully implicit time integration techniques. Linear and nonlinear eddy viscosity/diffusivity submodels are provided for turbulence parameterization. Mode1 predictions for the flow-field and dispersion patterns around a surface-mounted cube are compared with measured data from laboratory experiments.

  12. Trans-Laminar-Reinforced (TLR) Composites

    NASA Technical Reports Server (NTRS)

    Hinders, Mark; Dickinson, Larry

    1997-01-01

    A Trans-Laminar-Reinforced (TLR) composite is defined as composite laminate with up to five percent volume of fibrous reinforcement oriented in a 'trans-laminar' fashion in the through-thickness direction. The TLR can be continuous threads as in 'stitched laminates', or it can be discontinuous rods or pins as in 'Z-Fiber(TM) materials. It has been repeatedly documented in the literature that adding TLR to an otherwise two dimensional laminate results in the following advantages: substantially improved compression-after-impact response; considerably increased fracture toughness in mode 1 (double cantilever beam) and mode 2 (end notch flexure); and severely restricted size and growth of impact damage and edge delamination. TLR has also been used to eliminate catastrophic stiffener disbonding in stiffened structures. TLR directly supports the 'Achilles heel' of laminated composites, that is delamination. As little as one percent volume of TLR significantly alters the mechanical response of laminates. The objective of this work was to characterize the effects of TLR on the in-plane and inter-laminar mechanical response of undamaged composite laminates. Detailed finite element models of 'unit cells', or representative volumes, were used to study the effects of adding TLR on the elastic constants; the in-plane strength; and the initiation of delamination. Parameters investigated included TLR material, TLR volume fraction, TLR diameter, TLR through-thickness angle, ply stacking sequence, and the microstructural features of pure resin regions and curved in-plane fibers. The work was limited to the linear response of undamaged material with at least one ply interface. An inter-laminar dominated problem of practical interest, a flanged skin in bending, was also modeled.

  13. Laminar Flow in the Ocean Ekman Layer

    NASA Astrophysics Data System (ADS)

    Woods, J. T. H.

    INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES

  14. Realistic glottal motion and airflow rate during human breathing.

    PubMed

    Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Lagier, Aude; Legou, Thierry; Pichelin, Marine; Caillibotte, Georges; Giovanni, Antoine

    2015-09-01

    The glottal geometry is a key factor in the aerosol delivery efficiency for treatment of lung diseases. However, while glottal vibrations were extensively studied during human phonation, the realistic glottal motion during breathing is poorly understood. Therefore, most current studies assume an idealized steady glottis in the context of respiratory dynamics, and thus neglect the flow unsteadiness related to this motion. This is particularly important to assess the aerosol transport mechanisms in upper airways. This article presents a clinical study conducted on 20 volunteers, to examine the realistic glottal motion during several breathing tasks. Nasofibroscopy was used to investigate the glottal geometrical variations simultaneously with accurate airflow rate measurements. In total, 144 breathing sequences of 30s were recorded. Regarding the whole database, two cases of glottal time-variations were found: "static" or "dynamic" ones. Typically, the peak value of glottal area during slow breathing narrowed from 217 ± 54 mm(2) (mean ± STD) during inspiration, to 178 ± 35 mm(2) during expiration. Considering flow unsteadiness, it is shown that the harmonic approximation of the airflow rate underevaluates the inertial effects as compared to realistic patterns, especially at the onset of the breathing cycle. These measurements provide input data to conduct realistic numerical simulations of laryngeal airflow and particle deposition. PMID:26159687

  15. Field measurement of uncontrolled airflow and depressurization in restaurants

    SciTech Connect

    Cummings, J.B.; Fairey, P.W.; Withers, C.R. Jr.; McKendry, B.B.; Moyer, N.A.

    1996-11-01

    Field investigations were done in seven restaurants (subsample of a study of 63 commercial buildings) to identify uncontrolled airflows and pressure imbalances. Testing included building airtightness tests, identification of building air barrier locations, duct system airtightness, characterization of pressure differentials, building airflow balance, and infiltration/ventilation rates. All restaurants were found to operate at negative pressures that ranged from {minus}0.003 in. w.c. ({minus}0.8 Pa) to {minus}0.173 in. w.c. ({minus}43 Pa) and averaged {minus}0.051 in. w.c. ({minus}12.7 Pa) under normal operation. The variables that affect depressurization are large exhaust fans, missing or undersized make up air, intermittent outdoor air caused by the cycling of air handlers, dirty outdoor air and make up air filters, and building airtightness. These uncontrolled airflows and pressure imbalances impact energy use, ventilation rates, sizing of heating and air-conditioning systems, indoor comfort, relative humidity, moisture damage to building materials, mold and mildew growth, operation of combustion equipment, and indoor air quality.

  16. Energy Harvesting from Human Motion Using Footstep-Induced Airflow

    NASA Astrophysics Data System (ADS)

    Fu, H.; Xu, R.; Seto, K.; Yeatman, E. M.; Kim, S. G.

    2015-12-01

    This paper presents an unobtrusive in-shoe energy harvester converting foot-strike energy into electricity to power wearable or portable devices. An air-pumped turbine system is developed to address the issues of the limited vertical deformation of shoes and the low frequency of human motion that impede harvesting energy from this source. The air pump is employed to convert the vertical foot-strike motion into airflow. The generated airflow passes through the miniaturized wind turbine whose transduction is realized by an electromagnetic generator. Energy is extracted from the generator with a higher frequency than that of footsteps, boosting the output power of the device. The turbine casing is specifically designed to enable the device to operate continuously with airflow in both directions. A prototype was fabricated and then tested under different situations. A 6 mW peak power output was obtained with a 4.9 Ω load. The achievable power from this design was estimated theoretically for understanding and further improvement.

  17. Characteristics of laminar MHD fluid hammer in pipe

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier-Stocks equations, coupling with Lorentz force is numerically solved in a reservoir-pipe-valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems.

  18. Laminar flow of two miscible fluids in a simple network

    NASA Astrophysics Data System (ADS)

    Karst, Casey M.; Storey, Brian D.; Geddes, John B.

    2013-03-01

    When a fluid comprised of multiple phases or constituents flows through a network, nonlinear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network nonlinearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criterion for existence is developed. The network results are generic and could be applied to or found in different physical systems.

  19. Airflow calibration of a bellmouth inlet for measurement of compressor airflow in turbine-powered propulsion simulators

    NASA Technical Reports Server (NTRS)

    Smith, S. C.

    1985-01-01

    The development of turbine-powered propulsion simulators for high-speed wind tunnel models requires a bellmouth inlet which can accurately measure compressor-inlet airflow. A bellmouth inlet was instrumented with total pressure probes, static pressure probes, and thermocouples for airflow measurement. The bellmouth flowmeter against a critical venturi flowmeter was calibrated. The calibration was done at four inlet pressures ranging from 58 to 114 kPa. The bellmouth discharge coefficient varied as a function of bellmouth-throat Mach number. Over the range of Reynolds number and Mach number tested the Reynolds number was not a significant influence on the discharge coefficient. The overall accuracy of the bellmouth inlet as a flowmeter was estimated to be + or - 0.5% of the flowmeter reading.

  20. Interaction of Suction and Pulsed Blowing with a Laminar Boundary Layer

    NASA Astrophysics Data System (ADS)

    Seifert, Avraham; Marom, Liad

    2015-11-01

    The presentation will describe a fundamental study of active flow control (AFC) using the steady suction and oscillatory blowing actuator (SaOB), identifying its effects on a laminar boundary layer. Recent experiments showed this effective and efficient actuator as a drag reduction device .......[e.g., Wilson et al., AIAA J, 2013]. However, improved fundamental understanding of the boundary layer (BL) interaction with suction and oscillatory blowing and the combination of these two effects in close proximity is desired. The current experiment, performed in a laminar flow, will result in improved efficiency of the actuator and will enable development of a reliable predictive capability of this flow control method. The interaction with a laminar BL is crucial for the project due to the lack of interaction with the random turbulence, the thicker BL and lower skin-friction that enables greater effect of the controlled BL. Furthermore, fundamental interaction principles could be easier to identify and understand in laminar flows, where critical trends will not be masked by turbulence, and the averaging process will better represent the time dependent flow. The results demonstrate that while the oscillatory blowing is robust and has a strong effect on the flow evolution, the steady suction introduced upstream has a crucial role in the efficient operation of the AFC system.

  1. Boundary-layer control for drag reduction

    NASA Technical Reports Server (NTRS)

    Harvey, William D.

    1988-01-01

    Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.

  2. Improved cooling of electromagnetics by directed airflow

    NASA Astrophysics Data System (ADS)

    Fain, Adam Matthew

    The transformers in aircraft power conversion are often very heavy and represent a significant fuel or range penalty. Being thermally sized, improved cooling methods would allow downsizing and thereby reduced weight. Since the conductive paths in these metal "dense" devices are good, the controlling thermal resistance is typically the convective coefficient. The goal of this study was to optimize the convective air cooling across transformers by parametrically testing candidate shroud geometries to minimize average and hot spot surface temperatures with minimal fan power. A test set up was constructed that included a low velocity wind tunnel, fan, temperature and pressure sensors, DAQ system, and film heaters as well as the actual transformers. Experimental results from a low velocity wind tunnel were well predicted by CFD modeling, providing confidence in continued shroud development with only CFD or experimentally. Curved or bent types of shapes proved to be the most efficient shroud configurations in terms of maximizing heat transfer while reducing the energy requirement to achieve the desired level of cooling.

  3. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  4. An experimental study of a plasma actuator in absence of free airflow: Ionic wind velocity profile

    SciTech Connect

    Mestiri, R.; Hadaji, R.; Ben Nasrallah, S.

    2010-08-15

    In this study, we are interested in the direct current electrical corona discharge created between two wire electrodes. The experimental results are related to some electroaerodynamic actuators based on the direct current corona discharge at the surface of a dielectric material. Several geometrical forms are selected for the dielectric surface, such as a plate, a cylinder, and a NACA 0015 aircraft wing. The current density-electric field characteristics are presented for different cases in order to determine the discharge regimes. The corona discharge produces nonthermal plasma, so it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. The ionic wind induced by the corona discharge is measured in absence of free external airflow. The ionic wind velocity profiles and the maximum induced tangential force are given for different surface forms, so it is possible to compare the actuators effect based on the span of the ionic wind velocity and thrust values. The higher ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  5. Evaluation of an experimental short-length annular combustor: One-side-entry dilution airflow concept

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.; Biaglow, J. A.

    1973-01-01

    A test program was conducted to evaluate an experimental short-length annular combustor that uses a one-side-entry dilution airflow concept. The combustor design features scoops on the outer liner for controlling the primary- and secondary-zone airflow distribution. Combustor inlet total pressures were limited to 62 N/sq cm (90 psia) with inlet-air temperatures from 590 K (600 F) to 890 K (1150 F). At a diffuser inlet Mach number of 0.25, the exit temperature pattern factor was 0.44 with an average exit temperature of 1436 K (2124 F) and a total pressure loss of 4.3 percent. At a diffuser inlet Mach number of 0.31, the exit temperature pattern factor was reduced to 0.29 with an average exit temperature of 1450 K (2151 F) and a total pressure loss of 6.1 percent. Nominal combustion efficiencies of 100 percent were obtained with the ASTM A-1 fuel. Exhaust gas emissions, smoke, and altitude relight data are included with exit-temperature profiles and distribution patterns.

  6. Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction

    PubMed Central

    Shrine, Nick R. G.; Loehr, Laura R.; Zhao, Jing Hua; Manichaikul, Ani; Lopez, Lorna M.; Smith, Albert Vernon; Heckbert, Susan R.; Smolonska, Joanna; Tang, Wenbo; Loth, Daan W.; Curjuric, Ivan; Hui, Jennie; Latourelle, Jeanne C.; Henry, Amanda P.; Aldrich, Melinda; Bakke, Per; Beaty, Terri H.; Bentley, Amy R.; Borecki, Ingrid B.; Brusselle, Guy G.; Burkart, Kristin M.; Chen, Ting-hsu; Couper, David; Crapo, James D.; Davies, Gail; Dupuis, Josée; Franceschini, Nora; Gulsvik, Amund; Hancock, Dana B.; Harris, Tamara B.; Hofman, Albert; Imboden, Medea; James, Alan L.; Khaw, Kay-Tee; Lahousse, Lies; Launer, Lenore J.; Litonjua, Augusto; Liu, Yongmei; Lohman, Kurt K.; Lomas, David A.; Lumley, Thomas; Marciante, Kristin D.; McArdle, Wendy L.; Meibohm, Bernd; Morrison, Alanna C.; Musk, Arthur W.; Myers, Richard H.; North, Kari E.; Postma, Dirkje S.; Psaty, Bruce M.; Rich, Stephen S.; Rivadeneira, Fernando; Rochat, Thierry; Rotter, Jerome I.; Artigas, María Soler; Starr, John M.; Uitterlinden, André G.; Wareham, Nicholas J.; Wijmenga, Cisca; Zanen, Pieter; Province, Michael A.; Silverman, Edwin K.; Deary, Ian J.; Palmer, Lyle J.; Cassano, Patricia A.; Gudnason, Vilmundur; Barr, R. Graham; Loos, Ruth J. F.; Strachan, David P.; London, Stephanie J.; Boezen, H. Marike; Probst-Hensch, Nicole; Gharib, Sina A.; Hall, Ian P.; O’Connor, George T.; Tobin, Martin D.; Stricker, Bruno H.

    2012-01-01

    Rationale: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. Objectives: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. Methods: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than their respective lower limits of normal as determined by published reference equations. Measurements and Main Results: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV1/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. Conclusions: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction. PMID:22837378

  7. Closing the loop in primate prefrontal cortex: inter-laminar processing

    PubMed Central

    Opris, Ioan; Fuqua, Joshua L.; Huettl, Peter F.; Gerhardt, Greg A.; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2012-01-01

    Prefrontal cortical (PFC) activity in the primate brain emerging from minicolumnar microcircuits plays a critical role in cognitive processes dealing with executive control of behavior. However, the specific operations of columnar laminar processing in prefrontal cortex (PFC) are not completely understood. Here we show via implementation of unique microanatomical recording and stimulating arrays, that minicolumns in PFC are involved in the executive control of behavior in rhesus macaque nonhuman primates (NHPs) performing a delayed-match-to-sample (DMS) task. PFC neurons demonstrate functional interactions between pairs of putative pyramidal cells within specified cortical layers via anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing between inter-laminar (layer 2/3 and layer 5) pairs of neurons participating in the gating of information during the decision making phase of the task with differential correlations between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific information for correct task performance. Such inter-laminar processing was exploited by the interfacing of an online model which delivered stimulation to layer 5 locations in a pattern associated with successful performance thereby closing the columnar loop externally in a manner that mimicked normal processing in the same task. These unique technologies demonstrate that PFC neurons encode and process information via minicolumns which provides a closed loop form of “executive function,” hence disruption of such inter-laminar processing could form the bases for cognitive dysfunction in primate brain. PMID:23189041

  8. Flame Structure and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, D. A.; Lim, J.; Sivathanu, Y.

    2006-01-01

    Recent results from microgravity combustion experiments conducted in the Zero Gravity Facility (ZGF) 5.18 second drop tower are reported. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in a microgravity laminar ethylene/air flame. The ethylene/air laminar flame conditions are similar to previously reported experiments including the Flight Project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long duration microgravity laminar diffusion flames as demonstrated in this paper.

  9. Laminar natural convection under nonuniform gravity.

    NASA Technical Reports Server (NTRS)

    Lienhard, J.; Eichhorn, R.; Dhir, V.

    1972-01-01

    Laminar natural convection is analyzed for cases in which gravity varies with the distance from the leading edge of an isothermal plate. The study includes situations in which gravity varies by virtue of the varying slope of a surface. A general integral solution method which includes certain known integral solutions as special cases is developed to account for arbitrary position-dependence of gravity. A series method of solution is also developed for the full equations. Although it is more cumbersome it provides verification of the integral method.

  10. Large eddy simulations of laminar separation bubble

    NASA Astrophysics Data System (ADS)

    Cadieux, Francois

    The flow over blades and airfoils at moderate angles of attack and Reynolds numbers ranging from ten thousand to a few hundred thousands undergoes separation due to the adverse pressure gradient generated by surface curvature. In many cases, the separated shear layer then transitions to turbulence and reattaches, closing off a recirculation region -- the laminar separation bubble. To avoid body-fitted mesh generation problems and numerical issues, an equivalent problem for flow over a flat plate is formulated by imposing boundary conditions that lead to a pressure distribution and Reynolds number that are similar to those on airfoils. Spalart & Strelet (2000) tested a number of Reynolds-averaged Navier-Stokes (RANS) turbulence models for a laminar separation bubble flow over a flat plate. Although results with the Spalart-Allmaras turbulence model were encouraging, none of the turbulence models tested reliably recovered time-averaged direct numerical simulation (DNS) results. The purpose of this work is to assess whether large eddy simulation (LES) can more accurately and reliably recover DNS results using drastically reduced resolution -- on the order of 1% of DNS resolution which is commonly achievable for LES of turbulent channel flows. LES of a laminar separation bubble flow over a flat plate are performed using a compressible sixth-order finite-difference code and two incompressible pseudo-spectral Navier-Stokes solvers at resolutions corresponding to approximately 3% and 1% of the chosen DNS benchmark by Spalart & Strelet (2000). The finite-difference solver is found to be dissipative due to the use of a stability-enhancing filter. Its numerical dissipation is quantified and found to be comparable to the average eddy viscosity of the dynamic Smagorinsky model, making it difficult to separate the effects of filtering versus those of explicit subgrid-scale modeling. The negligible numerical dissipation of the pseudo-spectral solvers allows an unambiguous

  11. Subsonic natural-laminar-flow airfoils

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    1992-01-01

    An account is given of the development history of natural laminar-flow (NLF) airfoil profiles under guidance of an experimentally well-verified theoretical method for the design of airfoils suited to virtually all subcritical applications. This method, the Eppler Airfoil Design and Analysis Program, contains a conformal-mapping method for airfoils having prescribed velocity-distribution characteristics, as well as a panel method for the analysis of potential flow about given airfoils and a boundary-layer method. Several of the NLF airfoils thus obtained are discussed.

  12. Thermal laminarization of a stratified pipe flow

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    The present work constitutes a new program that grew out of a scoping assessment by ANL to determine the propensity for pipe stratification to occur in the reactor outlet nozzles and hot-leg piping of a generic LMFBR during events producing reverse pipe flow. This paper focuses on the role that thermal buoyancy plays relative to being able to laminarize a turbulent stratified shear zone in a horizontal pipe. The preceeding can influence the behavior of a pipe stratified-backflow-recirculation zone (cold plenum water down into the hot pipe flow) which developes as the result of a temperature difference between the pipe flow and the plenum.

  13. Velocity profiles in laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Margle, Janice M.

    1986-01-01

    Velocity profiles in vertical laminar diffusion flames were measured by using laser Doppler velocimetry (LDV). Four fuels were used: n-heptane, iso-octane, cyclohexane, and ethyl alcohol. The velocity profiles were similar for all the fuels, although there were some differences in the peak velocities. The data compared favorably with the theoretical velocity predictions. The differences could be attributed to errors in experimental positioning and in the prediction of temperature profiles. Error in the predicted temperature profiles are probably due to the difficulty in predicting the radiative heat losses from the flame.

  14. Integrative pathway genomics of lung function and airflow obstruction.

    PubMed

    Gharib, Sina A; Loth, Daan W; Soler Artigas, María; Birkland, Timothy P; Wilk, Jemma B; Wain, Louise V; Brody, Jennifer A; Obeidat, Ma'en; Hancock, Dana B; Tang, Wenbo; Rawal, Rajesh; Boezen, H Marike; Imboden, Medea; Huffman, Jennifer E; Lahousse, Lies; Alves, Alexessander C; Manichaikul, Ani; Hui, Jennie; Morrison, Alanna C; Ramasamy, Adaikalavan; Smith, Albert Vernon; Gudnason, Vilmundur; Surakka, Ida; Vitart, Veronique; Evans, David M; Strachan, David P; Deary, Ian J; Hofman, Albert; Gläser, Sven; Wilson, James F; North, Kari E; Zhao, Jing Hua; Heckbert, Susan R; Jarvis, Deborah L; Probst-Hensch, Nicole; Schulz, Holger; Barr, R Graham; Jarvelin, Marjo-Riitta; O'Connor, George T; Kähönen, Mika; Cassano, Patricia A; Hysi, Pirro G; Dupuis, Josée; Hayward, Caroline; Psaty, Bruce M; Hall, Ian P; Parks, William C; Tobin, Martin D; London, Stephanie J

    2015-12-01

    Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10's role in influencing lung's susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease. PMID:26395457

  15. Airflow, gas deposition, and lesion distribution in the nasal passages

    SciTech Connect

    Morgan, K.T.; Monticello, T.M. )

    1990-04-01

    The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are influenced by numerous factors including the physical and chemical properties of the inhaled material, such as water solubility and reactivity; airborne concentration and length of exposure; the presence of other air contaminants such as particulate matter; nasal metabolism, and blood and mucus flow. For certain highly water-soluble or reactive gases, nasal airflow patterns play a major role in determining lesion distribution. Studies of nasal airflow in rats and monkeys, using casting and molding techniques combined with a water-dye model, indicate that nasal airflow patterns are responsible for characteristic differences in the distribution of nasal lesions induced by formaldehyde in these species. Local tissue susceptibility is also a complex issue that may be a consequence of many factors, including physiologic and metabolic characteristics of the diverse cell populations that comprise each of the major epithelial types lining the airways. Identification of the principal factors that influence the distribution and nature of nasal lesions is important when attempting the difficult process of determining potential human risks using data derived from laboratory animals. Toxicologic pathologists can contribute to this process by carefully identifying the site and nature of nasal lesions induced by inhaled materials. 61 references.

  16. Evaluation of airflow patterns in 2706-T and 2706-TA

    SciTech Connect

    DEROSA, D.C.

    1999-08-26

    The purpose of this study was to evaluate the adequacy of the current placement of fixed head air samplers and continuous air monitors (CAMs) in the 2706-T and 2706-TA Complex. The airflow study consisted of 6 configurations of facility HVAC and HEPA filtration equipment to determine impacts on CAM location. The results of this study provide recommendations based on guidance in DOE G 411.1-8 and NUREG-1400 for placement of fixed head air samplers or CAMS within 2706-T and 2706-TA.

  17. CFD modeling of pharmaceutical isolators with experimental verification of airflow.

    PubMed

    Nayan, N; Akay, H U; Walsh, M R; Bell, W V; Troyer, G L; Dukes, R E; Mohan, P

    2007-01-01

    Computational fluid dynamics (CFD) models have been developed to predict the airflow in a transfer isolator using a commercial CFD code. In order to assess the ability of the CFD approach in predicting the flow inside an isolator, hot wire anemometry measurements and a novel experimental flow visualization technique consisting of helium-filled glycerin bubbles were used. The results obtained have been shown to agree well with the experiments and show that CFD can be used to model barrier systems and isolators with practical fidelity. This indicates that CFD can and should be used to support the design, testing, and operation of barrier systems and isolators. PMID:17933207

  18. EFFECT OF AIRFLOW AND HEAT INPUT RATES ON DUCT EFFICIENCY.

    SciTech Connect

    ANDREWS,J.W.

    2003-05-28

    Reducing the airflow and heat input rates of a furnace that is connected to a duct system in thermal contact with unconditioned spaces can significantly reduce thermal distribution efficiency. This is a straightforward theoretical calculation based on the increased residence time of the air in the duct at the lower flow rate, which results in greater conduction losses. Experimental tests in an instrumented residential-size duct system have confirmed this prediction. Results are compared with the heat-loss algorithm in ASHRAE Standid 152P. The paper concludes with a discussion of possible remedies for this loss of efficiency in existing systems and optional design strategies in new construction.

  19. Vapor-Generator Wand Helps To Reveal Airflow Patterns

    NASA Technical Reports Server (NTRS)

    Robelen, David B.

    1993-01-01

    In vapor-generator wand, liquid propylene glycol flows into electrically heated stainless-steel tube. Liquid boils in heated tube, and emerging vapor forms dense, smoke-like fog used to make airflow patterns visible. Built in variety of sizes, suitable for uses ranging from tabletop demonstrations to research in wind tunnels. For best viewing, plume illuminated by bright, focused incandescent spotlight at right angle to viewing direction. Viewing further enhanced by coating walls of test chamber with flat, dark color to minimize reflections and increase contrast.

  20. A Series of Laminar Jet Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (249KB JPEG, 1350 x 1524 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300185.html.

  1. Series of Laminar Soot Processes Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (189KB JPEG, 1350 x 1517 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300183.html.

  2. Gliding swifts attain laminar flow over rough wings.

    PubMed

    Lentink, David; de Kat, Roeland

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089

  3. Gliding Swifts Attain Laminar Flow over Rough Wings

    PubMed Central

    Lentink, David; de Kat, Roeland

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13%) of their total area during glides that maximize flight distance and duration—similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation) before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance. PMID:24964089

  4. Inspirational airflow patterns in deviated noses: a numerical study.

    PubMed

    Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Lee, Shu Jin; San, Lynette Teo Li; Wang, De Yun

    2013-01-01

    This study attempts to evaluate the effects of deviation of external nose to nasal airflow patterns. Four typical subjects were chosen for model reconstruction based on computed tomography images of undeviated, S-shaped deviated, C-shaped deviated and slanted deviated noses. To study the hypothetical influence of deviation of external nasal wall on nasal airflow (without internal blockage), the collapsed region along the turbinate was artificially reopened in all the three cases with deviated noses. Computational fluid dynamics simulations were carried out in models of undeviated, original deviated and reopened nasal cavities at both flow rates of 167 and 500 ml/s. The shape of the anterior nasal roof was found to be collapsed on one side of the nasal airways in all the deviated noses. High wall shear stress region was found around the collapsed anterior nasal roof. The nasal resistances in cavities with deviated noses were considerably larger than healthy nasal cavity. Patterns of path-line distribution and wall shear stress distribution were similar between original deviated and reopened models. In conclusion, the deviation of an external nose is associated with the collapse of one anterior nasal roof. The crooked external nose induced a larger nasal resistance compared to the undeviated case, while the internal blockage of the airway along the turbinates further increased it. PMID:22515677

  5. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  6. Airflow-aligned helical nanofilament (B4) phase in topographic confinement

    PubMed Central

    Gim, Min-Jun; Kim, Hanim; Chen, Dong; Shen, Yongqiang; Yi, Youngwoo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Yoon, Dong Ki

    2016-01-01

    We investigated a controlled helical nanofilament (HNF: B4) phase under topographic confinement with airflow that can induce a shear force and temperature gradient on the sample. The resulting orientation and ordering of the B4 phase in this combinational effort was directly investigated using microscopy. The structural freedom of the complex B7 phase, which is a higher temperature phase than the B4 phase, can result in relatively complex microscopic arrangements of HNFs compared with the B4 phase generated from the simple layer structure of the B2 phase. This interesting chiral/polar nanofilament behaviour offers new opportunities for further exploration of the exotic physical properties of the B4 phase. PMID:27384747

  7. Wireless communication in the airflow verification system of biological safety cabinet

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-de; Hou, De-xin; Qiu, Jian; Ye, Shu-liang

    2013-01-01

    In recent years, biological safety cabinet has been applied widely and urgently to the biochemistry laboratory. An increasing research need has been asked about the processing safety of the workers. In this safety cabinet system, among series of related factors, the main parameter is airflow velocity. At percent, this measuring work is usually done by processional workers, thus leading to the low efficiency and disadvantages. In this paper, a new method was approved to deal with the current problem, where wireless communication controller and detector. According to the experimental data and the comparison between the two methods, the wireless way is more convenient and more efficient than previous one, and the working distance can be about 730 meters. Meanwhile, the communication system has already been used in Guangzhou Institute of Metrology Laboratory.

  8. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  9. Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition.

    PubMed

    Grossberg, Stephen

    2007-01-01

    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of preattentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how

  10. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance tests; all dust, fume, and mist... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and...

  11. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  12. IEA BESTEST Multi-Zone Non-Airflow In-Depth Diagnostic Cases: Preprint

    SciTech Connect

    Neymark, J.; Judkoff, R.; Alexander, D.; Felsmann, C.; Strachan, P.; Wijsman, A.

    2011-11-01

    This paper documents a set of in-depth diagnostic test cases for multi-zone heat transfer models that do not include the heat and mass transfer effects of airflow between zones. The multi-zone non-airflow test cases represent an extension to IEA BESTEST (Judkoff and Neymark 1995a).

  13. A Theoretical Study on Airflow Motive Force and Heat Transfer by the Water Spray

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuyuki

    On assuming the abscissa moving uniformly with the horizontal airflow in disregard of gravity, airflow motive force and heat transfer by the water spray have been easily analyzed theoretically. Here main results are as follows. The theoretical maximum airflow motive pressure is proportional to both the initial relative velocity of waterdrop and the relative water flow per unit cross-sectional area of the apparatus to the airflow or the moving abscissa but unrelated to the size of waterdrop. The airflow motive pressure approaches to the above maximum with an increase in the length of the apparatus. Making the waterdrop size smaller has an effect on the aparatus to get longer virtually. The initial velocity of waterdrop or the spraying nozzle pressure has little effect on the heat transfer between the air and the water.

  14. Differently patterned airflows induced by 1-kHz femtosecond laser filaments in a cloud chamber

    NASA Astrophysics Data System (ADS)

    Sun, Haiyi; Liang, Hong; Liu, Yonghong; Ju, Jingjing; Wei, Yingxia; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-11-01

    Airflow induced by femtosecond laser (800 nm/1 kHz/25 fs) filamentation with different lengths was investigated in a laboratory cloud chamber. Various filament lengths were generated by adjusting laser energy and lens focal length. It was found that airflow patterns are closely related to filament intensity and length. Intense and long filaments are beneficial in updraft generation with large vortices above the filament, while intense and short filaments tend to promote the formation of well-contacted vortices below the filament. Differently patterned airflows induced elliptical snow piles with different masses. We simulated airflow in a cloud chamber numerically taking laser filaments as heat sources. The mechanisms of differently patterned airflow and snow formation induced by filaments were discussed.

  15. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  16. Energy savings from repair of uncontrolled airflow in 18 small commercial buildings

    SciTech Connect

    Withers, C.R. Jr.; Cummings, J.B.; Fairey, P.W.; McKendry, B.B.; Moyer, N.A.

    1996-12-31

    Uncontrolled airflow, including duct leakage, pressure imbalances caused by closed interior doors, and exhaust/intake airflow imbalance, was characterized in 70 commercial buildings. In 18 of these buildings, uncontrolled airflows were repaired and energy savings from these repairs were monitored. In most buildings, the retrofit was duct repair. In other cases, outdoor airflow was reduced and return air transfers were provided. Cooling energy use was reduced by an average 15.1% in these 18 buildings. With an average repair cost of $455 and average cooling energy savings of $195 per year, uncontrolled airflow retrofits proved to be very cost-effective. Various factors indicate that greater energy savings could be achieved in the future.

  17. Possible coseismic laminar and non-laminar flow along subduction megathrusts

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Noguchi, K.; Saito, T.; Tsutsumi, A.

    2014-12-01

    Coseismic deformation mechanisms during subduction earthquakes remained unclear other than frictional melting recorded in pseudotachylytes. However, the recent mineralogical studies in the shallow plate-boundary thrust in the Nankai subduction zone and the underplating-related duplex-fault zone in the Shimanto accretionary complex exhumed from 4-6 km depth have identified increased heating along the 2 mm-thick, clay-rich fault gouge and the few-centimeters-thick, basalt-derived ultracataclasite, respectively. The microstructures of the fault gouge are characterized by strong preferred orientation of clay particles along the gouge, while those of the ultracataclasite show the random fabric. High-velocity friction experiments were conducted on the disaggregated fault rocks under wet (water-saturated) conditions at different normal stresses, using the rotary shear frictional testing apparatus. The results show the rapid slip weakening with low peak and steady-state shear stress, and a very small slip weakening distance and fracture energy, suggesting the ease of earthquake rupture propagation through the fault materials. The steady-state shear stress is almost independent of normal stress, indicating that the gouge behaved like a fluid during high-velocity shearing. The microstructures after the experiments are marked by the development of foliated zone in the gouge layer, but the random fabric develops in the outermost region of the circular gouge layer. Given the nearly independence of steady-state shear stress on normal stress and the increase in the rotation velocity from the center of the rotation axis during the rotary shear, the change from foliated zone to non-foliated, random fabric in the circular gouge layer could represent the change from laminar to non-laminar (or turbulent) flow associated with the increase in the Reynolds number. The implications for the fault rocks are that the development of foliated and non-foliated zones may represent coseismic

  18. Cortical laminar necrosis following myocardial infarction.

    PubMed

    Lattanzi, Simona; Silvestrini, Mauro; Provinciali, Leandro

    2016-01-01

    The cortical laminar necrosis (CLN) is a permanent injury characterized by the selective delayed necrosis of the cerebral cortex, mainly of the third layer, and usually greater in the depths and sides of the sulci than over the crest of the gyri. The damage involves all cellular components - either neurons, glia cells and blood vessels - and results in a focal cortical band of pan-necrosis detectable in late sub-acute or chronic stages of reduced energy supply to the brain. The CLN has been described in different conditions as hypoxia, hypoglycemia and status epilepticus. At brain CT or MR scans it appears with pathognomonic highly hyperdense or T1-hyperintense lesions following the gyral anatomy of the cerebral cortex. We reported a case of CLN associated to myocardial infarct and discussed the underlying mechanisms. PMID:27375142

  19. A laminar solid core photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Willig, R. L.

    2005-11-01

    A one-dimensional model is presented to explain the physics of solid core photonic crystal fibers. The model provides a clear way to demonstrate many of the interesting characteristics of these fibers: variation of cladding index with wavelength, endlessly single-mode operation, short wavelength index limit, long wavelength index limit, and variation of these properties with the air/silica fraction. The effective index is calculated for a laminar cladding consisting of periodic layers of alternating high and low index dielectrics. The waveguide model consists of the same periodic layers surrounding a high-index core through which most of the light propagates. The light is confined by total internal reflection. The model is shown to be an accurate analogue for a more complicated two-dimensional finned dielectric waveguide.

  20. Laminar superlayer at the turbulence boundary.

    PubMed

    Holzner, M; Lüthi, B

    2011-04-01

    In this Letter we present results from particle tracking velocimetry and direct numerical simulation that are congruent with the existence of a laminar superlayer, as proposed in the pioneering work of Corrsin and Kistler (NACA, Technical Report No. 1244, 1955). We find that the local superlayer velocity is dominated by a viscous component and its magnitude is comparable to the characteristic velocity of the smallest scales of motion. This slow viscous process involves a large surface area so that the global rate of turbulence spreading is set by the largest scales of motion. These findings are important for a better understanding of mixing of mass and momentum in a variety of flows where thin layers of shear exist. Examples are boundary layers, clouds, planetary atmospheres, and oceans. PMID:21517388

  1. Flight research on natural laminar flow applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1992-01-01

    Natural laminar flow (NLF) is clearly one of the most potentially attractive drag reduction technologies by virtue of its relative simplicity. NLF is achieved passively, that is, by design of surface shapes to produce favorable pressure gradients. However, it is not without its challenges and limitations. This chapter describes the significant challenges to achieving and maintaining NLF and documents certain of the limitations for practical applications. A brief review of the history and of more recent NLF flight experiments is given, followed by a summary of lessons learned which are pertinent to future applications. The chapter also summarizes important progress in test techniques, particularly in flow visualization and hot-film techniques for boundary-layer measurements in flight.

  2. Base pressure in laminar supersonic flow.

    NASA Technical Reports Server (NTRS)

    Messiter, A. F.; Hough, G. R.; Feo, A.

    1973-01-01

    An asymptotic description is proposed for supersonic laminar flow over a wedge or a backward-facing step, for large Reynolds number and for a base or step height which is small compared with the boundary-layer length. The analysis is carried out for adiabatic wall conditions and a viscosity coefficient proportional to temperature. In a particular limit corresponding to a very thick boundary layer, a similarity law is obtained for the base pressure. For a thinner boundary layer an asymptotic form for the base pressure is obtained which shows the dependence on the parameters explicitly and which permits good agreement with experiment. This latter result is based on an inviscid-flow approximation for the corner expansion and for reattachment with viscous forces important primarily in a thin sublayer about the dividing streamline. A prediction of the pressure distribution at reattachment is given and the result is compared with experimental pressure distributions.

  3. On the combustion of a laminar spray

    NASA Technical Reports Server (NTRS)

    Levy, Yeshayahou; Bulzan, Daniel L.

    1993-01-01

    A spray combustor, with flow velocities in the laminar range, exhibits a unique operating mode where large amplitude, self-induced oscillations of the flame shape occur. The phenomenon, not previously encountered, only occurs when fuel is supplied in the form of fine liquid droplets and does not occur when fuel is supplied in gaseous form. Several flow mechanisms are coupled in such a fashion as to trigger and maintain the oscillatory motion of the flame. These mechanisms include heat transfer and evaporation processes, dynamics of two-phase flows, and effects of gravity (buoyancy forces). An interface volume, lying above the fuel nozzle and below the flame was found to be the most susceptible to gravity effects and postulated to be responsible for inducing the oscillatory motion. Heptane fuel was used in the majority of the tests. Tests performed with iso-octane also showed similar results.

  4. Thermohydrodynamic analysis for laminar lubricating films

    NASA Technical Reports Server (NTRS)

    Elrod, H. G.; Brewe, D. E.

    1986-01-01

    A Galerkin-type analysis to include thermal effects in laminar lubricating films was performed. The lubricant properties were assumed constant except for a temperature-dependent Newtonian viscosity. The cross-film temperature profile is established by collocation at the film boundaries and two interior Lobatto points. The interior temperatures are determined by requiring that the zeroth and first moment of the energy equation be satisfied across the film. The fluidity is forced to conform to a third--degree polynomial appropriate to the Lobatto-point temperatures. Preliminary indications are that the use of just two such sampling points enables satisfactory prediction of bearing performance even in the presence of substantial viscosity variation.

  5. Compressible laminar streaks with wall suction

    NASA Astrophysics Data System (ADS)

    Ricco, Pierre; Shah, Daniel; Hicks, Peter D.

    2013-05-01

    The response of a compressible laminar boundary layer subject to free-stream vortical disturbances and steady mean-flow wall suction is studied. The theoretical frameworks of Leib et al. [J. Fluid Mech. 380, 169-203 (1999), 10.1017/S0022112098003504] and Ricco and Wu [J. Fluid Mech. 587, 97-138 (2007), 10.1017/S0022112007007070], based on the linearized unsteady boundary-region equations, are adopted to study the influence of suction on the kinematic and thermal streaks arising through the interaction between the free-stream vortical perturbations and the boundary layer. In the asymptotic limit of small spanwise wavelength compared with the boundary layer thickness, i.e., when the disturbance flow is conveniently described by the steady compressible boundary region equations, the effect of suction is mild on the velocity fluctuations and negligible on the temperature fluctuations. When the spanwise wavelength is comparable with the boundary layer thickness, small suction values intensify the supersonic streaks, while higher transpiration levels always stabilize the disturbances at all Mach numbers. At larger spanwise wavelengths, very small amplitudes of wall transpiration have a dramatic stabilizing effect on all boundary layer fluctuations, which can take the form of transiently growing thermal streaks, large amplitude streamwise oscillations, or oblique exponentially growing Tollmien-Schlichting waves, depending on the Mach number and the wavelengths. The range of wavenumbers for which the exponential growth occurs becomes narrower and the location of instability is significantly shifted downstream by mild suction, indicating that wall transpiration can be a suitable vehicle for delaying transition when the laminar breakdown is promoted by these unstable disturbances. The typical streamwise wavelength of these disturbances is instead not influenced by suction, and asymptotic triple deck theory predicts the strong changes in growth rate and the very mild

  6. Airflow and optic flow mediate antennal positioning in flying honeybees.

    PubMed

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. PMID:27097104

  7. Airflow and optic flow mediate antennal positioning in flying honeybees

    PubMed Central

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  8. Indirect evaporative cooler with condensation of primary airflow

    SciTech Connect

    Vollebregt, H.J.M.; Jong, T. de

    1994-12-31

    In this paper a new application for indirect evaporative cooling is introduced. This cooling principle may be used to cool and dehumidify closed greenhouses. A prototype indirect evaporative cooler with a crossflow configuration was built and its performance was determined in an experimental facility. During tests under Dutch design conditions of the greenhouse and outside air, the plate temperature was less than the dew point of the greenhouse air, so condensation occurred. The rates of sensible and latent heat transferred from the greenhouse air by the prototype cooler were determined. Also, the influence of greenhouse and outside air conditions and airflow rates in the cooler on the enthalpy efficiency was studied. Although the amount of condensation in the prototype indirect evaporative cooler was large, the resulting climate in a closed greenhouse may be more humid than that in a conventional one.

  9. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    SciTech Connect

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  10. The role of the olfactory recess in olfactory airflow.

    PubMed

    Eiting, Thomas P; Smith, Timothy D; Perot, J Blair; Dumont, Elizabeth R

    2014-05-15

    The olfactory recess - a blind pocket at the back of the nasal airway - is thought to play an important role in mammalian olfaction by sequestering air outside of the main airstream, thus giving odorants time to re-circulate. Several studies have shown that species with large olfactory recesses tend to have a well-developed sense of smell. However, no study has investigated how the size of the olfactory recess relates to air circulation near the olfactory epithelium. Here we used a computer model of the nasal cavity from a bat (Carollia perspicillata) to test the hypothesis that a larger olfactory recess improves olfactory airflow. We predicted that during inhalation, models with an enlarged olfactory recess would have slower rates of flow through the olfactory region (i.e. the olfactory recess plus airspace around the olfactory epithelium), while during exhalation these models would have little to no flow through the olfactory recess. To test these predictions, we experimentally modified the size of the olfactory recess while holding the rest of the morphology constant. During inhalation, we found that an enlarged olfactory recess resulted in lower rates of flow in the olfactory region. Upon exhalation, air flowed through the olfactory recess at a lower rate in the model with an enlarged olfactory recess. Taken together, these results indicate that an enlarged olfactory recess improves olfactory airflow during both inhalation and exhalation. These findings add to our growing understanding of how the morphology of the nasal cavity may relate to function in this understudied region of the skull. PMID:24577441

  11. Asthma, airflow limitation, and mortality risk in the general population

    PubMed Central

    Huang, Shuang; Vasquez, Monica M; Halonen, Marilyn; Martinez, Fernando D; Guerra, Stefano

    2015-01-01

    Asthma and chronic obstructive pulmonary disease co-exist in a significant proportion of patients. Whether asthma increases mortality risk among subjects with airflow limitation remains controversial. We used data from 2121 adult participants in the population-based TESAOD cohort. At enrollment (1972–73), participants completed questionnaires and lung function tests. Participants were categorized into four groups based on the combination of airflow limitation (AL: FEV1/FVC<70%) and physician-confirmed asthma at baseline. Vital status as of January 2011 was assessed through the National Death Index. Cox proportional hazards models were used to test differences in mortality risk across the four AL/Asthma groups. In multivariate Cox models, the AL+/Asthma+ group had a 114% increased mortality risk over the follow-up as compared with the AL-/Asthma- group (adjHR: 2.14, 1.64–2.79). The corresponding Hazard Ratios were 1.09 (0.89–1.34) and 1.34 (1.14–1.57) for the AL-/Asthma+ and AL+/Asthma- groups, respectively. Among subjects with AL, asthma was associated with increased mortality risk (1.58, 1.17–2.12). However, this increased risk was substantially reduced and no longer significant after further adjustment for baseline FEV1 levels. Similar results were obtained when AL was defined as FEV1/FVC

  12. Numerical simulation of airflow in the human nose.

    PubMed

    Weinhold, Ivo; Mlynski, Gunter

    2004-09-01

    Unobstructed air passageways as well as sufficient contact of the air stream with the mucous membrane are essential for the correct function of the nose. For that, local flow phenomena, which often cannot be captured by standard diagnostic methods, are important. We developed and validated a method for the numerical simulation of the nasal airflow. Two anatomically correct, transparent resin models of human nasal cavities, manufactured by a special casting technology, and the nasal cavities of two patients were reconstructed as Computer Aided Design models based on computed tomography (CT) scans. One of the nasal models and one clinical case represented a normal nasal anatomy, while the others were examples of pathological alterations. The velocity and pressure fields in these reconstructed cavities were calculated for the entire range of physiological nasal inspiration using commercially available computational fluid dynamics software. To validate the results rhinoresistometric data were measured and characteristic streamlines were videotaped for the resin models. The numerical results were in good agreement with the experimental data for the investigated cases. An example of a complex clinical case demonstrates the potential benefit of the developed simulation method for rhinosurgical planning. The results support the assumption that even under the specific conditions of the clinical practice the application of numerical simulation of nasal airflow phenomena may become realistic in the near future. However, important technical issues such as a completely automated reconstruction of the nasal cavity still need to be resolved before such simulations are efficient and cost effective enough to become a standard tool for the rhinologist. PMID:14652769

  13. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  14. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  15. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  16. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  17. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  18. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  19. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  20. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  1. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  2. A numerical and experimental study of the effects of dynamic roughness on laminar leading edge separation

    NASA Astrophysics Data System (ADS)

    Gall, Peter D.

    The aircraft industry, as a whole, has been deeply concerned with improving the aerodynamic efficiency of current and future flight vehicles, particularly in the commercial and military markets. However, of particular interest to the field of aerodynamics is the elusive concept of a workable flow control mechanism. Effective flow control is a concept which if properly applied can increase aerodynamic efficiency. Various concepts and ideas to obtain successful flow control have been studied in an attempt to reap these rewards. Some examples include boundary layer blowing (steady and periodic), suction, and compliant walls for laminar flow control. The overall goal of flow control is to increase performance by increasing lift, reducing drag, and delaying or eliminating leading edge separation. The specific objectives of flow control are to (1) delay or eliminate flow separation, (2) delay boundary layer transition, and (3) and reduce skin friction drag. The purpose of this research is to investigate dynamic roughness as a novel method of flow control technology for external boundary layer flows. As opposed to standard surface roughness, dynamic roughness incorporates small time dependent perturbations to the surface of the airfoil. These surface perturbations are actual humps and/or ridges on the surface of the airfoil that are on the scale of the laminar boundary, and oscillate with an unsteady motion. Research has shown that this can provide a means to modify the instantaneous and mean velocity profile near the wall and favorably control the existing state of the boundary layer. Several flow control parameters were studied including dynamic roughness frequency, amplitude, and geometry. The results of this study have shown, both numerically and experimentally, that dynamic roughness can provide an effective means for eliminating both a short and long laminar separation bubble and possibly prove a viable alternative in effective flow control, hence reaping some of

  3. The Impact of Smoking on Airflow Limitation in Subjects with History of Asthma and Inactive Tuberculosis

    PubMed Central

    Kim, Hyun Jung; Baek, Seunghee; Kim, Hee Jin; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2015-01-01

    Background Although smoking is the most important and modifiable cause of chronic obstructive pulmonary disease (COPD), other risk factors including asthma and tuberculosis (TB) are also associated. It is common for COPD patients to have more than one of these risk factors. The aims of this study were to determine the prevalence of airflow limitation (FEV1/FVC<0.7) according to the risk factors and to investigate their impact and interaction in airflow limitation. Methods From the Korean National Health and Nutrition Examination Survey between 2008 and 2012, we analyzed participants over 40 years of age by spirometry, chest radiograph and questionnaire about asthma and smoking history. Results Of 12,631 participants, 1,548 (12.3%) had airflow limitation. The prevalence of airflow limitation in smokers (≥10 pack-year), asthmatics, and those with inactive TB was 23.9%, 32.1%, and 33.6%. The prevalence increased with the number of risk factors: 86.1% had airflow limitation if they had all three risk factors. Impacts of inactive TB and asthma on airflow limitation were equivalent to 47 and 69 pack-years of smoking, respectively. Airflow limitation resulted from lower levels of smoking in those with inactive TB and asthma. A potential interaction between smoking and inactive tuberculosis in the development of airflow limitation was identified (p = 0.054). Conclusions Asthma and inactive TB lesions increase susceptibility to smoking in the development of airflow limitation. People with these risk factors should be seen as a major target population for anti-smoking campaigns to prevent COPD. PMID:25915938

  4. Forward scattering of a pulsed continuous wave signal through laminar and turbulent thermal plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Stephen G.

    1993-09-01

    The results of an experiment examining the forward propagation of an acoustic signal through a buoyant plume are discussed. Two distinct testing sights were used. One made use of a small fresh water tank in NUWC to provide a controlled plume. The other used a larger salt water tank at Woods Hole Oceanographic Institute (WHOI) to create a more realistic oceanic model. Using the Born and Rytov approximations, an estimation of the effects of the laminar plume on the propagated signal are shown. As the plume moves from laminar to turbulent, the scintillation index and the Fourier transform of the magnitude square response provide insight into the nature of the transition. Finally, from the turbulent response a model for the scattering function is developed.

  5. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Skramstad, H K

    1948-01-01

    This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.

  6. Investigation on the properties of a laminar grating as a soft x-ray beam splitter

    SciTech Connect

    Liu Ying; Fuchs, Hans-Joerg; Liu Zhengkun; Chen Huoyao; He Shengnan; Fu Shaojun; Kley, Ernst-Bernhard; Tuennermann, Andreas

    2010-08-10

    Laminar-type gratings as soft x-ray beam splitters for interferometry are presented. Gold-coated grating beam splitters with 1000 lines/mm are designed for grazing incidence operation at 13.9nm. They are routinely fabricated using electron beam lithography and ion etching techniques. The laminar grating is measured to have almost equal absolute efficiencies of about 20% in the zeroth and -1st orders, which enables a fringe visibility up to 0.99 in the interferometer. The discrepancy of the grating profiles between the optimized theoretical and the experimental results is analyzed according to the comparison of the optimized simulation results and the measurement realization of the grating efficiencies. By a precise control of the grating profile, the grating efficiency in the -1st order and the fringe visibility could be improved to 25% and 1, respectively.

  7. Assessment of the National Transonic Facility for Laminar Flow Testing

    NASA Technical Reports Server (NTRS)

    Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.

    2010-01-01

    A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.

  8. Design of fuselage shapes for natural laminar flow

    NASA Technical Reports Server (NTRS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-01-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  9. Design of fuselage shapes for natural laminar flow

    NASA Astrophysics Data System (ADS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-03-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  10. Studies of premixed laminar and turbulent flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    A two and one-half year experimental and theoretical research program on the properties of laminar and turbulent premixed gas flames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  11. Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves

    PubMed Central

    Velescu, Cornel; Popa, Nicolae Calin

    2014-01-01

    We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime. PMID:24526896

  12. Care For Patients With Severe Chronic Airflow Obstruction And Respiratory Failure

    PubMed Central

    Pugsley, S. O.; Robinson, L. A.

    1979-01-01

    The successful care of patients with disorders causing chronic airflow obstruction (CAO) and potential chronic respiratory failure and pulmonary heart disease (cor pulmonale) requires the following: 1. Recognize CAO as the cause of a patient's problem. 2. Describe and measure airflow obstruction and the individual's response to it. 3. Undertake therapeutic trials to maximize airflow. 4. Teach patients monitoring skills and interventions in order to prevent acute respiratory failure and hospital admission. 5. Maintain optimism and interest in the patient's chronic illness, appreciating its impact on the total person and his daily life. PMID:21297794

  13. Data Visualization of Invisible Airflow Hazards During Helicopter Takeoff and Landing Operations

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground such as vortices, downdrafts, wind shear, microbursts, or other turbulence. While such hazards frequently pose problems to fixed-wing airplanes, they are especially dangerous to helicopters, which often have to operate in confined spaces and under operationally stressful conditions. We are developing flight-deck visualizations of airflow hazards during helicopter takeoff and landing operations, and are evaluating their effectiveness with usability studies. Our hope is.that this work will lead to the production of an airflow hazard detection system for pilots that will save lives.

  14. Natural laminar flow airfoil analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.

  15. Stability of Enclosed Laminar Flames Studied in Microgravity

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.

    1999-01-01

    In practical combustion systems, the flame is often anchored at the inlet where the fuel is injected into an air duct. This type of system is found in powerplant combustors, gas turbine combustors, and the jet engine afterburner. Despite its successful use, this configuration is vulnerable to adverse flow conditions that can cause the flame to literally lift off from the inlet or even blowout. Poor flame stability is, of course, unwanted, especially where safety has a high priority. Our understanding of the mechanisms that control flame stability is incomplete in part because the interaction of buoyant (i.e., gravity-induced) convection makes it difficult to interpret normal-gravity results. However, a comparison of normal-gravity and microgravity results can provide a clear indication of the influence of forced and buoyant flows on flame stability. Therefore, a joint microgravity study on the stability of Enclosed Laminar Flames (ELF) was carried out by researchers at The University of Iowa and the NASA Lewis Research Center. The microgravity tests were conducted in the Microgravity Glovebox (MGBX), during the STS-87 space shuttle mission in late 1997, using hardware designed and produced at Lewis. The primary objective of the ELF investigation was to determine the mechanisms controlling the stability of round, laminar, gas-jet diffusion flames in a coflow air duct. The study specifically focused on the effect of buoyancy on the flame characteristics and velocities at the lift-off, reattachment, and blowout of the flame. When the fuel or air velocity is increased to a critical value, the flame base abruptly jumps downstream, and the flame is said to have reached its lift-off condition. Flow conditions are such that the flame cannot be maintained at the burner rim despite the presence of both fuel and oxygen. When the velocity is further increased, the flame eventually extinguishes at its blowout condition. In contrast, if the velocity is reduced, the flame base

  16. The effect of mako sharkskin on laminar flow separation

    NASA Astrophysics Data System (ADS)

    Bradshaw, Michael; Lang, Amy; Motta, Philip; Habegger, Maria; Hueter, Robert

    2013-11-01

    Many animals possess effective performance enhancing mechanisms, such as the denticles found on the skin of the shortfin mako shark (Isurus oxyrinchus). The shortfin mako, one of the fastest sharks on the planet, is covered by small, tooth-like scales that vary in flexibility over the body. Previous biological findings have shown that the scales increase in flexibility from the leading to trailing edge over the pectoral fin as well as on various sections of the body. It is believed that the scale bristling may provide a mechanism for flow separation control that leads to decreased drag and increased maneuverability. This study involved testing a left pectoral fin of a shortfin mako shark as well as a cylinder with a sharkskin specimen applied circumferentially in a water tunnel facility under static, laminar conditions. Digital Particle Image Velocimetry (DPIV) was used to characterize the flow over the surfaces. Various Reynolds numbers were tested for both configurations, as well as several AOAs for the pectoral fin. The flow over the fin and cylinder were compared to a painted fin and a smooth PVC cylinder, respectively. The study found that the shark scales do, in fact, help to control flow separation. However, in order for the scales to bristle and trap the reversing flow, a certain magnitude of reversed flow and shear is required. This phenomenon seems to be most effective at near stall conditions and at higher Reynolds numbers. Support from REU grant 1062611 is greatfully acknowledged.

  17. COPD assessment test and severity of airflow limitation in patients with asthma, COPD, and asthma–COPD overlap syndrome

    PubMed Central

    Kurashima, Kazuyoshi; Takaku, Yotaro; Ohta, Chie; Takayanagi, Noboru; Yanagisawa, Tsutomu; Sugita, Yutaka

    2016-01-01

    Objective The COPD assessment test (CAT) consists of eight nonspecific scores of quality of life. The aim of this study was to compare the health-related quality of life and severity of airflow limitation in patients with asthma, COPD, and asthma–COPD overlap syndrome (ACOS) using the CAT. Methods We examined CAT and lung functions in 138 patients with asthma, 99 patients with COPD, 51 patients with ACOS, and 44 patients with chronic cough as a control. The CAT score was recorded in all subjects, and the asthma control test was also administered to patients with asthma and ACOS. The CAT scores were compared, and the relationships between the scores and lung function parameters were analyzed. Results The total CAT scores and scores for cough, phlegm, and dyspnea were higher in patients with ACOS than in patients with asthma and COPD. The total CAT scores were correlated with the percent predicted forced expiratory volume in 1 second only in patients with COPD. The total CAT scores and dyspnea scores adjusted by the percent predicted forced expiratory volume in 1 second were higher in patients with ACOS than in patients with COPD and asthma. The CAT scores and asthma control test scores were more closely correlated in patients with ACOS than in patients with asthma. Conclusion Patients with ACOS have higher disease impacts and dyspnea sensation unproportional to the severity of airflow limitation. PMID:27019598

  18. Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2002-01-01

    The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.

  19. Particle-Image Velocimetry in Microgravity Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Greenberg, P. S.; Urban, D. L.; Wernet, M. P.; Yanis, W.

    1999-01-01

    This paper discusses planned velocity measurements in microgravity laminar jet diffusion flames. These measurements will be conducted using Particle-Image Velocimetry (PIV) in the NASA Glenn 2.2-second drop tower. The observations are of fundamental interest and may ultimately lead to improved efficiency and decreased emissions from practical combustors. The velocity measurements will support the evaluation of analytical and numerical combustion models. There is strong motivation for the proposed microgravity flame configuration. Laminar jet flames are fundamental to combustion and their study has contributed to myriad advances in combustion science, including the development of theoretical, computational and diagnostic combustion tools. Nonbuoyant laminar jet flames are pertinent to the turbulent flames of more practical interest via the laminar flamelet concept. The influence of gravity on these flames is deleterious: it complicates theoretical and numerical modeling, introduces hydrodynamic instabilities, decreases length scales and spatial resolution, and limits the variability of residence time. Whereas many normal-gravity laminar jet diffusion flames have been thoroughly examined (including measurements of velocities, temperatures, compositions, sooting behavior and emissive and absorptive properties), measurements in microgravity gas-jet flames have been less complete and, notably, have included only cursory velocity measurements. It is envisioned that our velocity measurements will fill an important gap in the understanding of nonbuoyant laminar jet flames.

  20. Laminar Tendon Composites with Enhanced Mechanical Properties

    PubMed Central

    Alberti, Kyle A.; Sun, Jeong-Yun; Illeperuma, Widusha R.; Suo, Zhigang; Xu, Qiaobing

    2015-01-01

    Purpose A strong isotropic material that is both biocompatible and biodegradable is desired for many biomedical applications, including rotator cuff repair, tendon and ligament repair, vascular grafting, among others. Recently, we developed a technique, called “bioskiving” to create novel 2D and 3D constructs from decellularized tendon, using a combination of mechanical sectioning, and layered stacking and rolling. The unidirectionally aligned collagen nanofibers (derived from sections of decellularized tendon) offer good mechanical properties to the constructs compared with those fabricated from reconstituted collagen. Methods In this paper, we studied the effect that several variables have on the mechanical properties of structures fabricated from tendon slices, including crosslinking density and the orientation in which the fibers are stacked. Results We observed that following stacking and crosslinking, the strength of the constructs is significantly improved, with crosslinked sections having an ultimate tens ile strength over 20 times greater than non-crosslinked samples, and a modulus nearly 50 times higher. The mechanism of the mechanical failure mode of the tendon constructs with or without crosslinking was also investigated. Conclusions The strength and fiber organization, combined with the ability to introduce transversely isotropic mechanical properties makes the laminar tendon composites a biocompatiable material that may find future use in a number of biomedical and tissue engineering applications. PMID:25691802

  1. Radiative interactions in laminar duct flows

    NASA Technical Reports Server (NTRS)

    Trivedi, P. A.; Tiwari, S. N.

    1990-01-01

    Analyses and numerical procedures are presented for infrared radiative energy transfer in gases when other modes of energy transfer occur simultaneously. Two types of geometries are considered, a parallel plate duct and a circular duct. Fully developed laminar incompressible flows of absorbing-emitting species in black surfaced ducts are considered under the conditions of uniform wall heat flux. The participating species considered are OH, CO, CO2, and H2O. Nongray as well as gray formulations are developed for both geometries. Appropriate limiting solutions of the governing equations are obtained and conduction-radiation interaction parameters are evaluated. Tien and Lowder's wide band model correlation was used in nongray formulation. Numerical procedures are presented to solve the integro-differential equations for both geometries. The range of physical variables considered are 300 to 2000 K for temperature, 0.1 to 100.0 atm for pressure, and 0.1 to 100 cm spacings between plates/radius of the tube. An extensive parametric study based on nongray formulation is presented. Results obtained for different flow conditions indicate that the radiative interactions can be quite significant in fully developed incompressible flows.

  2. A New Approach to Laminar Flowmeters

    PubMed Central

    Pena, Fernando Lopez; Diaz, Alvaro Deibe; Lema, Marcos Rodriguez; Rodriguez, Santiago Vazquez

    2010-01-01

    After studying the performance and characteristics of actual laminar flowmeters a new disposition for this type of sensors is proposed in such a way that the measurement errors introduced by the intrinsic nature of the device can be minimized. The preliminary study shows that the developing entry region introduces non-linearity effects in all these devices. These effects bring about not only errors, but also a change in the slope of the linear calibration respect of the Poiseuille relation. After a subsequent analysis on how these non-linearity errors can be reduced, a new disposition of this type of flowmeters is introduced. This device makes used of flow elements having pressure taps at three locations along its length and connected to three isolated chambers. In this way, the static pressure can be measured at three locations and contributed to by the pressure taps at the level of each chamber. Thus the linearization error is reduced with an additional advantage of producing a reduced pressure drop. PMID:22163486

  3. Tackling a Hot Paradox: Laminar Soot Processes-2 (LSP-2)

    NASA Technical Reports Server (NTRS)

    Faeth, Gerard M.; Urban, David L.; Over, Ann (Technical Monitor)

    2002-01-01

    The last place you want to be in traffic is behind the bus or truck that is belching large clouds of soot onto your freshly washed car. Besides looking and smelling bad, soot is a health hazard. Particles range from big enough to see to microscopic and can accumulate in the lungs, potentially leading to debilitating or fatal lung diseases. Soot is wasted energy, and therein lies an interesting paradox: Soot forms in a flame's hottest regions where you would expect complete combustion and no waste. Soot enhances the emissions of other pollutants (carbon monoxide and polyaromatic hydrocarbons, etc.) from flames and radiates unwanted heat to combustion chambers (a candle's yellowish glow is soot radiating heat), among other effects. The mechanisms of soot formation are among the most important unresolved problems of combustion science because soot affects contemporary life in so many ways. Although we have used fire for centuries, many fundamental aspects of combustion remain elusive, in part because of limits imposed by the effects of gravity on Earth. Hot or warm air rises quickly and draws in fresh cold air behind it, thus giving flames the classical teardrop shape. Reactions occur in a very small zone, too fast for scientists to observe, in detail, what is happening inside the flame. The Laminar Soot Processes (LSP-2) experiments aboard STS-107 will use the microgravity environment of space to eliminate buoyancy effects and thus slow the reactions inside a flame so they can be more readily studied. 'Laminar' means a simple, smooth fuel jet burning in air, somewhat like a butane lighter. This classical flame approximates combustion in diesel engines, aircraft jet propulsion engines, and furnaces and other devices. LSP-2 will expand on surprising results developed from its first two flights in 1997. The data suggest the existence of a universal relationship, the soot paradigm, that, if proven, will be used to model and control combustion systems on Earth. STS-107

  4. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model

    EPA Science Inventory

    In order to achieve both manageable simulation and local accuracy of airflow and nanoparticle deposition in a representative human tracheobronchial (TB) region, the complex airway network was decomposed into adjustable triple-bifurcation units, spreading axially and laterally. Gi...

  5. Modeling Airflow Using Subject-Specific 4DCT-Based Deformable Volumetric Lung Models.

    PubMed

    Ilegbusi, Olusegun J; Li, Zhiliang; Seyfi, Behnaz; Min, Yugang; Meeks, Sanford; Kupelian, Patrick; Santhanam, Anand P

    2012-01-01

    Lung radiotherapy is greatly benefitted when the tumor motion caused by breathing can be modeled. The aim of this paper is to present the importance of using anisotropic and subject-specific tissue elasticity for simulating the airflow inside the lungs. A computational-fluid-dynamics (CFD) based approach is presented to simulate airflow inside a subject-specific deformable lung for modeling lung tumor motion and the motion of the surrounding tissues during radiotherapy. A flow-structure interaction technique is employed that simultaneously models airflow and lung deformation. The lung is modeled as a poroelastic medium with subject-specific anisotropic poroelastic properties on a geometry, which was reconstructed from four-dimensional computed tomography (4DCT) scan datasets of humans with lung cancer. The results include the 3D anisotropic lung deformation for known airflow pattern inside the lungs. The effects of anisotropy are also presented on both the spatiotemporal volumetric lung displacement and the regional lung hysteresis. PMID:23365554

  6. Modeling Airflow Using Subject-Specific 4DCT-Based Deformable Volumetric Lung Models

    PubMed Central

    Ilegbusi, Olusegun J.; Li, Zhiliang; Seyfi, Behnaz; Min, Yugang; Meeks, Sanford; Kupelian, Patrick; Santhanam, Anand P.

    2012-01-01

    Lung radiotherapy is greatly benefitted when the tumor motion caused by breathing can be modeled. The aim of this paper is to present the importance of using anisotropic and subject-specific tissue elasticity for simulating the airflow inside the lungs. A computational-fluid-dynamics (CFD) based approach is presented to simulate airflow inside a subject-specific deformable lung for modeling lung tumor motion and the motion of the surrounding tissues during radiotherapy. A flow-structure interaction technique is employed that simultaneously models airflow and lung deformation. The lung is modeled as a poroelastic medium with subject-specific anisotropic poroelastic properties on a geometry, which was reconstructed from four-dimensional computed tomography (4DCT) scan datasets of humans with lung cancer. The results include the 3D anisotropic lung deformation for known airflow pattern inside the lungs. The effects of anisotropy are also presented on both the spatiotemporal volumetric lung displacement and the regional lung hysteresis. PMID:23365554

  7. Evaluation of circumferential airflow uniformity entering combustors from compressors. Volume 1: Discussion of data and results

    NASA Technical Reports Server (NTRS)

    Shadowen, J. H.; Egan, W. J., Jr.

    1972-01-01

    The compressor discharge airflow uniformity of two compressors from advanced engines, the J58 and F100/F401, was studied. Compressor discharge pressures and temperatures at up to 33 circumferential rake locations allowed the airflow distribution to be ascertained and computer plotted. Several flight conditions and compressor variables, i.e., inlet distortion, modified seals, etc., were analyzed. An unexpectedly high nonuniform airflow was found for both compressors. Circumferential airflow deviation differences of up to 52% from maximum to minimum were found for the J58, and up to 40% for the F100/F401. The effects of aerodynamic and thermal distortion were found to be additive. The data were analyzed for influence of exit guide vane wakes and found free of any effect. Data system errors were small in relation to the measured pressure and temperature variations.

  8. Chronic air-flow limitation does not increase respiratory epithelial permeability assessed by aerosolized solute, but smoking does

    SciTech Connect

    Huchon, G.J.; Russell, J.A.; Barritault, L.G.; Lipavsky, A.; Murray, J.F.

    1984-09-01

    To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the control group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation.

  9. Cigarette smoke potentiates asbestos-induced airflow abnormalities

    SciTech Connect

    Wright, J.L.; Tron, V.; Wiggs, B.; Churg, A.

    1988-01-01

    It has been suggested that exposure to both asbestos and cigarette smoke can produce worse parenchymal lung disease than exposure to asbestos alone. Using a guinea pig model of asbestos administration that produces primarily airway disease and associated airflow abnormalities, we showed previously that the combination of asbestos and smoke acts synergistically to produce more marked increases in tissue collagen, fibrosis of airway walls, and early interstitial fibrosis than are seen with asbestos alone. To investigate the functional effects of these morphological and biochemical abnormalities, pulmonary function tests for volumes and flows, including lung volumes, pressure-volume curves, and flow-volume curves, were performed. By themselves, both smoke and asbestos produced increases in total lung capacity (TLC), residual volume (RV), and functional residual capacity (FRC); the two agents together made all these changes worse than either one alone. Both smoking and asbestos moved the pressure-volume curve upward, and the effects of the two agents together were again greater than either alone. Similarly, both smoke and asbestos decreased flows, and the two agents produced more severe impairment than either one by itself. The changes in volumes, pressure-volume curve, and flows correlated with both increased thickness of small airway walls and increases in airspace size. These observations indicate that, at least in this guinea pig model, cigarette smoke can potentiate the functional consequences of asbestos exposure.

  10. Behavior of submicrometer particles in periodic alveolar airflows.

    PubMed

    Balik, G; Reis, A H; Aydin, M; Miguel, A F

    2008-04-01

    Here, we report a numerical experiment in which submicrometer particle entrainment in a periodic flow that matches those existing in the alveolus in the human lung was simulated for both sedentary and light activity. A spherical cavity with a prescribed velocity profile at the inlet was used to simulate the time-dependent periodical flow of air in the alveolus. Expansion and contraction of the alveolus were simulated by setting a conceptual permeable wall as the outer surface of the model and adjusting the boundary conditions in order to match the continuity of the flow. The simulations were conducted for breathing periods of 5 and 3 s, which match sedentary and light activity conditions, respectively, and the results were extrapolated to the real lung. It was found that, most of the particles mainly followed a straightforward path and reached the opposite side of the alveolar wall in both breathing conditions. The concentration patterns obtained are consistent with the fact that the flow within the alveolus is mainly diffusive and does not greatly depend on the flow velocity. It was found that the particles which are heavier than air move out of phase with the periodic airflow that crosses the alveolus entrance, and that these particles are significantly caught within the alveolus. Particle entrapment increases with breathing rate in accordance with experimental values and indicates that increase in breathing frequency in environments with high concentration of submicrometer particles has the consequence of increasing particle entrapment by several times with respect to normal breathing rate. PMID:18075755

  11. Air-flow separation over unsteady breaking wind waves

    NASA Astrophysics Data System (ADS)

    Saxena, Gaurav

    2005-11-01

    In air-sea interaction processes, when considering wind stress over small-scale breaking waves, there are few direct quantitative experimental investigations into the role of air-flow separation on the interfacial momentum flux. Reul et. al, (1999), found multiple coherent patches of vorticity downwind of the crest that were strongly influenced by the geometric characteristics of the breaker. However, their breakers were generated by dispersive focusing techniques and, therefore, independent of the wind stress. We present experimental results obtained with particle image velocimetry (PIV) where moderate to strong winds directly generate unsteady small-scale breaking waves, a scenario commonly found in the open ocean. Particular attention has been devoted to capturing the spatio-temporal evolution of the air-water interface. Specifically, texture segmentation algorithms typically used for face recognition (Grey Level Co-occurrence Matrix (GLCM) and the Cross-Diagonal Texture Matrix (CDTM)) have been combined to yield robust and accurate estimates of the instantaneous breaker geometry.

  12. Evaluation of airflow patterns following procedures established by NUREG-1400

    SciTech Connect

    Fritz, Brad G.; Khan, Fenton; Mendoza, Donaldo P.

    2006-07-26

    The U.S. Nuclear Regulatory Commission's NUREG-1400 addresses many aspects of air sampling in the work place. Here, we present two detailed examples of the implementation of qualitative air flow studies at different scales using guidelines established by NUREG-1400. In one test, smoke was used to evaluate the airflow patterns within the transfer area of the 105 KE Basin, located on the Hanford Site, Richland, Washington. The purpose of the study was to determine appropriate locations for air monitoring equipment in support of sludge water pumping activities. The study revealed a stagnant layer of the air within the transfer area that made predicting movement of contamination within the transfer area difficult. Without conducting an air flow study, the stagnant layer would not have been identified, and could have resulted in locating samplers at inappropriate locations. In a second test, smoke was used to verify the effectiveness of an air space barrier curtain. The results showed that the curtain adequately separated the two air spaces. The methodology employed in each test provided sound, easy to interpret information that satisfied the requirements of each test.

  13. A miniature airflow energy harvester from piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Sun, H.; Zhu, D.; White, N. M.; Beeby, S. P.

    2013-12-01

    This paper describes design, simulation, fabrication, and testing of a miniature wind energy harvester based on a flapping cantilevered piezoelectric beam. The wind generator is based on oscillations of a cantilever that faces the direction of the airflow. The oscillation is amplified by interactions between an aerofoil attached on the cantilever and a bluff body placed in front of the aerofoil. A piezoelectric transducer with screen printed PZT materials is used to extract electrical energy. To achieve the optimum design of the harvester, both computational simulations and experiments have been carried out to investigate the structure. A prototype of the wind harvester, with the volume of 37.5 cm3 in total, was fabricated by thick-film screen printing technique. Wind tunnel test results are presented to determine the optimum structure and to characterize the performance of the harvester. The optimized device finally achieved a working wind speed range from 1.5 m/s to 8 m/s. The power output was ranging from 0.1 to 0.86 μW and the open-circuit output voltage was from 0.5 V to 1.32 V.

  14. Evaluation of circumferential airflow uniformity entering combustors from compressors. Volume 2: Data supplement

    NASA Technical Reports Server (NTRS)

    Shadowen, J. H.; Egan, W. J., Jr.

    1972-01-01

    A study of the airflow uniformity leaving compressors and entering combustors was made using compressors from two advanced engines, the J58 and F100/F401. The data used in the analysis of each case is presented in tabular form and computer-generated profile plots. A plot of the square root of the dynamic pressure ratio, which is similar to airflow deviation, is also presented.

  15. Endoscopic inter laminar management of lumbar disease

    PubMed Central

    Yadav, Yad Ram; Parihar, Vijay; Kher, Yatin; Bhatele, Pushp Raj

    2016-01-01

    Discectomy for lumbar disc provides faster relief in acute attack than does conservative management. Long-term results of open, microscopy-, and endoscopy-assisted discectomy are same. Early results of endoscopy-assisted surgery are better as compared to that of open surgery in terms of better visualization, smaller incision, reduced hospital stay, better education, lower cost, less pain, early return to work, and rehabilitation. Although microscopic discectomy also has comparable advantages, endoscopic-assisted technique better addresses opposite side pathology. Inter laminar technique (ILT) and trans foraminal technique (TFT) are two main endoscopic approaches for lumbar pathologies. Endoscopy-assisted ILT can be performed in recurrent, migrated, and calcified discs. All lumbar levels including L5-S1 level, intracanalicular, foraminal disc, lumbar canal and lateral recess stenosis, multiple levels, and bilateral lesions can be managed by ILT. Migrated, calcified discs, L5-S1 pathology, lumbar canal, and lateral recess stenosis can be better approached by ILT than by TFT. Most spinal surgeons are familiar with anatomy of ILT. It can be safely performed in foramen stenosis and in uncooperative and anxious patients. There is less risk of exiting nerve root damage, especially in short pedicles and in presence of facet osteophytes as compared to TFT. On the other hand, ILT is more invasive than TFT with more chances of perforations of the dura matter, pseudomeningocele formation, and cerebrospinal fluid fistula in early learning curve. Obtaining microsurgical experience, attending workshops, and suitable patient selection can help shorten the learning curve. Once adequate skill is acquired, this procedure is safe and effective. The surgeon must be prepared to convert to an open procedure, especially in early learning curve. Spinal endoscopy is likely to achieve more roles in future. Endoscopy-assisted ILT is a safer alternative to the microscopic technique. PMID

  16. Airflow resistance of heat and moisture exchange filters with and without a tracheostoma valve.

    PubMed

    Verkerke, Gijsbertus Jacob; Geertsema, Albert Anne; Schutte, Harm K

    2002-04-01

    Rehabilitation of laryngectomees has been furthered by the introduction of heat and moisture exchange (HME) filters, placed over a tracheostoma or on a tracheostoma valve (TSV). The airflow resistance of HME filters is an important factor with regard to the comfort of the patient. The goal of this study was to determine the airflow resistance (defined as the pressure drop over the device divided by the squared airflow through the device) of 4 commercially available HME filters with and without a TSV. The pressure drop over and the airflow through the devices were measured in vitro. Distinct differences among the devices were found. The mean airflow resistance of the HME filters ranged from 135 to 346 Pa x s2/L2, that of TSVs was between 66 and 297 Pa x s2/L2, and that of the combination was between 263 and 454 Pa x s2/L2. The Stom-Vent 2 HME filter and the Adeva Window TSV with an Adeva filter had the lowest airflow resistance of the devices measured in this study. PMID:11991585

  17. Airflow in the Human Nasal Passage and Sinuses of Chronic Rhinosinusitis Subjects

    PubMed Central

    Kumar, Haribalan; Jain, Ravi; Douglas, Richard G.; Tawhai, Merryn H.

    2016-01-01

    Endoscopic surgery is performed on patients with chronic inflammatory disease of the paranasal sinuses to improve sinus ventilation. Little is known about how sinus surgery affects sinonasal airflow. In this study nasal passage geometry was reconstructed from computed tomographic imaging from healthy normal, pre-operative, and post-operative subjects. Transient air flow through the nasal passage during calm breathing was simulated. Subject-specific differences in ventilation of the nasal passage were observed. Velocity magnitude at ostium was different between left and right airway. In FESS, airflow in post-surgical subjects, airflow at the maxillary sinus ostium was upto ten times higher during inspiration. In a Lothrop procedure, airflow at the frontal sinus ostium can be upto four times higher during inspiration. In both post-operative subjects, airflow at ostium was not quasi-steady. The subject-specific effect (of surgery) on sinonasal interaction evaluated through airflow simulations may have important consequences for pre- and post-surgical assessment and surgical planning, and design for improvement of the delivery efficiency of nasal therapeutics. PMID:27249219

  18. Investigation on side-spray fluidized bed granulation with swirling airflow.

    PubMed

    Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia

    2013-03-01

    Top-spray fluidized bed granulation with axial fluidization airflow from the bottom of the granulator is well-established in the pharmaceutical industry. The application of swirling airflow for fluidized bed granulation was more recently introduced. This study examined the effects of various process parameters on the granules produced by side-spray fluidized bed with swirling airflow using the central composite and Box-Behnken design of experiment. Influence of the amount of binder solution, spray rate, and distance between spray nozzle and powder bed were initially studied to establish operationally viable values for these parameters. This was followed by an in-depth investigation on the effects of inlet airflow rate, atomizing air pressure and distance between spray nozzle and powder bed on granule properties. It was found that the amount of binder solution had a positive correlation with granule size and percentage of lumps but a negative correlation with size distribution and Hausner ratio of the granules. Binder solution spray rate was also found to affect the granules size. High drug content uniformity was observed in all the batches of granules produced. Both inlet airflow rate and atomizing air pressure were found to correlate negatively with granule size and percentage of lumps but correlate positively with the size distribution of the granule produced. Percentage of fines was found to be significantly affected by inlet airflow rate. Distance between spray nozzle and powder bed generally affected the percentage of lumps. PMID:23263750

  19. The influence of nasal airflow on respiratory and olfactory epithelial distribution in felids.

    PubMed

    Pang, Benison; Yee, Karen K; Lischka, Fritz W; Rawson, Nancy E; Haskins, Mark E; Wysocki, Charles J; Craven, Brent A; Van Valkenburgh, Blaire

    2016-06-15

    The surface area of the maxilloturbinals and fronto-ethmoturbinals is commonly used as an osteological proxy for the respiratory and the olfactory epithelium, respectively. However, this assumption does not fully account for animals with short snouts in which these two turbinal structures significantly overlap, potentially placing fronto-ethmoturbinals in the path of respiratory airflow. In these species, it is possible that anterior fronto-ethmoturbinals are covered with non-sensory (respiratory) epithelium instead of olfactory epithelium. In this study, we analyzed the distribution of olfactory and non-sensory, respiratory epithelia on the turbinals of two domestic cats (Felis catus) and a bobcat (Lynx rufus). We also conducted a computational fluid dynamics simulation of nasal airflow in the bobcat to explore the relationship between epithelial distribution and airflow patterns. The results showed that a substantial amount of respiratory airflow passes over the anterior fronto-ethmoturbinals, and that contrary to what has been observed in caniform carnivorans, much of the anterior ethmoturbinals are covered by non-sensory epithelium. This confirms that in short-snouted felids, portions of the fronto-ethmoturbinals have been recruited for respiration, and that estimates of olfactory epithelial coverage based purely on fronto-ethmoturbinal surface area will be exaggerated. The correlation between the shape of the anterior fronto-ethmoturbinals and the direction of respiratory airflow suggests that in short-snouted species, CT data alone are useful in assessing airflow patterns and epithelium distribution on the turbinals. PMID:27045093

  20. An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Chung, S. K.

    2004-06-01

    Knowledge of airflow characteristics in nasal cavities is essential to understand the physiology and pathology aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. Since the final goal of these works is their contribution to the diagnosis and treatment of nasal diseases, therefore, the next step in this topic must be followed by the studies for disordered nasal cavities. In this paper, airflows in normal and abnormal nasal cavities and surgically created models, which simulate surgical treatment, are investigated experimentally by PIV. High-resolution computerized tomogram data and careful manipulation of the model surface by the ear, nose and throat doctor provide more sophisticated nasal cavity models. The correlation based correction PIV algorithm with window offset is used for PIV flow analysis. Average and RMS distributions in sagittal and coronal sections are obtained for inspiratory and expiratory nasal airflows. Comparisons in nasal airflows for both normal and abnormal cases are also examined. Airflow characteristics that are related to the abnormalities in the nasal cavity are proposed. In the case of simulations of surgical operations, velocity and RMS distributions in coronal section change locally, this may cause some difficulties in physiologic functions of noses and may hurt mucosal surface.

  1. The laminar structure of the common opossum masseter (Didelphis marsupialis).

    PubMed

    Deguchi, T; Takemura, A; Suwa, F

    2001-03-01

    Using three heads of the common opossum (Didelphis marsupialis), which may be considered to have a primitive mammalian form and therefore be appropriate for this study, the laminar structure of the masseter was investigated. We also attempted a comparative anatomical study of the relationships of food habits to the laminar structures of the masseter, zygomatic arch and mandibular ramus. In the common opossum masseter, a total of six layers, the primary and secondary sublayers of the superficial layer, the intermediate layer, and the primary, secondary and third sublayers of the deep layer as a proper masseter, were observed. These layers showed a typical reverse laminar structure, with the layers of tendons and muscles alternating. The maxillomandibularis and zygomaticomandibularis muscles were observed in one layer each, as an improper masseter. The laminar structure of the common opossum masseter was shown to be more similar to that of carnivorous placental animals than that of the herbivorous red kangaroo, a similar marsupial. In regard to the number of layers in the laminar structure of the masseter, the results of both this study and those of our predecessors' showed that differences in food habits affect the deep layer in the proper masseter of marsupials and placental mammals, and that of the maxillomandibularis muscle of placental mammals in the improper masseter. PMID:11392012

  2. Assessment of LAURA for Laminar Supersonic Shallow Cavities

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Pulsonetti, Maria V.; Everhart, Joel L.; Bey, Kim S.

    2004-01-01

    The ability of the Laura flow solver to predict local heating augmentation factors for shallow cavities is assessed. This assessment is part of a larger e ort within the Space Shuttle return-to-flight program to develop technologies to support on-orbit tile repair decisions. The comparison is made against global phosphor thermography images taken in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel. The cavities are rectangular in shape, with lengths L/H of 14 20 and depths H/ of 1.1 5.2. The fully laminar results, for Re = 300, show good agreement between the data sets. For Re = 503, the wind tunnel data indicates boundary layer transition with turbulent flow both within and downstream of the cavity. The turbulent flow structures are significantly di erent from the laminar predictions, with order of magnitude increases in the heating augmentations. Because of the di erent flow structures, no simple bump factor can be used to correct the laminar calculations to account for the turbulent heating levels. A fine gradation in wind tunnel cases will be required to clearly delineate the laminar-to-turbulent transition point, and hence the limits of applicability of the laminar numerical approach.

  3. Soot Formation in Freely-Propagating Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  4. Laminar Soot Processes (LSP) Experiment: Findings From Space Flight Measurements

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Yuan, Z. G.; Aalburg, C.; Diez, F. J.; Faeth, G. M.

    2003-01-01

    The present experimental study of soot processes in hydrocarbon-fueled laminar nonbuoyant and nonpremixed (diffusion) flames at microgravity within a spacecraft was motivated by the relevance of soot to the performance of power and propulsion systems, to the hazards of unwanted fires, and to the emission of combustion-generated pollutants. Soot processes in turbulent flames are of greatest practical interest, however, direct study of turbulent flames is not tractable because the unsteadiness and distortion of turbulent flames limit available residence times and spatial resolution within regions where soot processes are important. Thus, laminar diffusion flames are generally used to provide more tractable model flame systems to study processes relevant to turbulent diffusion flames, justified by the known similarities of gas-phase processes in laminar and turbulent diffusion flames, based on the widely-accepted laminar flamelet concept of turbulent flames. Unfortunately, laminar diffusion flames at normal gravity are affected by buoyancy due to their relatively small flow velocities and, as discussed next, they do not have the same utility for simulating the soot processes as they do for simulating the gas phase processes of turbulent flames.

  5. Brief history of laminar flow clean room systems

    SciTech Connect

    Whitfield, W J

    1981-01-01

    This paper reviews the development and evolution of laminar flow clean rooms and hoods and describes the underlying principles and rationales associated with development of this type of clean room system and Federal Standard No. 209. By the mid 1970's, over a thousand hospitals in the US had installed laminar flow equipment in operating rooms. During the past several years a great deal of attention has been focused on conserving energy in clean rooms. Some gains in energy conservation have been achieved by improved design, off hours shutdown, and closer evaluation of requirements for clean rooms. By the early 1970's, the laminar flow principle had been carried from the Laboratory and applied to production hardware to create a mature industry producing and marketing a variety of laminar flow equipment in less than 10 years time. This achievement was made possible by literally dozens of persons in industry, government, military, and private individuals who developed hardware, added numerous innovations, and had the foresight to apply the technology to many fields other than industrial clean rooms. Now, with laminar flow devices available, class 100 levels are readily achievable and maintained, and at the same time require fewer operating restrictions than previously possible.

  6. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  7. Rain-induced subsurface airflow and Lisse effect

    USGS Publications Warehouse

    Guo, H.; Jiao, J.J.; Weeks, E.P.

    2008-01-01

    Water-level increase after rainfall is usually indicative of rainfall recharge to groundwater. This, however, may not be true if the Lisse effect occurs. This effect represents the water-level increase in a well driven by airflow induced by an advancing wetting front during highly intensive rains. The rainwater, which may behave like a low-permeability lid, seals the ground surface so that the air pressure beneath the wetting front is increased because of air compression due to downward movement of the wetting front. A rapid and substantial rise of the water level in the well screened below water table, which bears no relationship to groundwater recharge, can be induced when various factors such as soil properties and the rain-runoff condition combine favorably. A transient, three-dimensional and variably saturated flow model was employed to study the air and groundwater flows in the soil under rain conditions. The objectives of this paper are two-fold: to evaluate the reliability of the theory of the Lisse effect presented by Weeks to predict its magnitude in modeled situations that mimic the physical complexity of real aquifers, and to conduct parametric studies on the sensitivity of the water-level rise in the well to soil properties and the rain event. The simulation results reveal that the magnitude of the Lisse effect increases with the ponding depth. Soil permeability plays a key role in generating the Lisse effect. The water-level rise in the well is delayed relative to the air-pressure rise in the unsaturated zone when the soil permeability is low, and the maximum water-level rise is less than the maximum air pressure induced by rain infiltration. The simulation also explores the sensitivity of the Lisse effect to the van Genuchten parameters and the water table depth. Copyright 2008 by the American Geophysical Union.

  8. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    SciTech Connect

    Brauner, N.; Rovinsky, J.; Maron, D.M.

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  9. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the

  10. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure

    PubMed Central

    Opris, Ioan; Gerhardt, Greg A.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    Prefrontal cortical activity in primate brain plays a critical role in cognitive processes involving working memory and the executive control of behavior. Groups of prefrontal cortical neurons within specified cortical layers along cortical minicolumns differentially generate inter- and intra-laminar firing to process relevant information for goal oriented behavior. However, it is not yet understood how cocaine modulates such differential firing in prefrontal cortical layers. Rhesus macaque nonhuman primates (NHPs) were trained in a visual delayed match-to-sample (DMS) task while the activity of prefrontal cortical neurons (areas 46, 8 and 6) was recorded simultaneously with a custom multielectrode array in cell layers 2/3 and 5. Animals were reinforced with juice for correct responses. The first half of the recording session (control) was conducted following saline injection and in the second half of the same session cocaine was administered. Prefrontal neuron activity with respect to inter- and intra-laminar firing in layers 2/3 and 5 was assessed in the DMS task before and after the injection of cocaine. Results showed that firing rates of both pyramidal cells and interneurons increased on Match phase presentation and the Match Response (MR) in both control and cocaine halves of the session. Differential firing under cocaine vs. control in the Match phase was increased for interneurons but decreased for pyramidal cells. In addition, functional’ interactions between prefrontal pyramidal cells in layer 2/3 and 5 decreased while intra-laminar cross-correlations in both layers increased. These neural recordings demonstrate that prefrontal neurons differentially encode and process information within and between cortical cell layers via cortical columns which is disrupted in a differential manner by cocaine: administration. PMID:26074787

  11. Radiotracers application to determine laminar flow at a pipe

    SciTech Connect

    Ramirez-Garcia, F.P.; Cortes-Islas, E. )

    1988-06-01

    To measure gas flow in a gas venting line in an Oil Refinery the method of two points and iodine-131 labelled methyl iodide molecule was used. Forty-four complete sets of data were obtained corresponding to measurements performed in the gas venting line. Conditions of laminar and semi-turbulent flow were found. In the case of laminar flow measurement it was necessary to construct an injection equipment, consisting of a tubing with five slits to simultaneously inject the tracer into the gas stream at different points. For the laminar flow is obtained the transversal distribution of fluid velocities. The mean flow of the gas transported by the line under study was determined, and its standard deviation was calculated.

  12. Natural Laminar Flow Design for Wings with Moderate Sweep

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Lynde, Michelle N.

    2016-01-01

    A new method for the aerodynamic design of wings with natural laminar flow is under development at the NASA Langley Research Center. The approach involves the addition of new flow constraints to an existing knowledge-based design module for use with advanced flow solvers. The uniqueness of the new approach lies in the tailoring of target pressure distributions to achieve laminar flow on transonic wings with leading-edge sweeps and Reynolds numbers typical of current transports. The method is demonstrated on the Common Research Model configuration at critical N-factor levels representative of both flight and high-Reynolds number wind tunnel turbulence levels. The design results for the flight conditions matched the target extent of laminar flow very well. The design at wind tunnel conditions raised some design issues that prompted further improvements in the method, but overall has given promising results.

  13. An Experimental Study of Laminarization Induced by Acceleration and Curvature

    NASA Astrophysics Data System (ADS)

    Jackson, R. Brian

    The Generation IV Very High Temperature Reactor (VHTR) design is being actively studied in various countries for application due to its inherent passive safe design, higher thermal efficiencies, and proposed capability of providing high temperature process heat. The pebble bed core is one of two core designs used in gas reactors. In the pebble bed core there are mechanisms present which can cause the flow to laminarize, thus reducing its heat transfer effectiveness. Wind tunnel experiments were conducted using Particle Image Velocimetry (PIV) to investigate boundary layer laminarization due to flow acceleration and convex curvature effects. The flow was subject to acceleration and curvature both separately and together and the flow behavior characterized with velocity flow profiles, mean boundary layer parameters, and turbulence quantities. Laminarization was identified and the influence of acceleration and curvature was characterized.

  14. IR thermography for dynamic detection of laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Simon, Bernhard; Filius, Adrian; Tropea, Cameron; Grundmann, Sven

    2016-05-01

    This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8-14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.

  15. Method and apparatus for detecting laminar flow separation and reattachment

    NASA Technical Reports Server (NTRS)

    Stack, John P. (Inventor); Mangalam, Sivaramakrishnan M. (Inventor)

    1989-01-01

    The invention is a method and apparatus for detecting laminar flow separation and flow reattachment of a fluid stream by simultaneously sensing and comparing a plurality of output signals, each representing the dynamic shear stress at one of an equal number of sensors spaced along a straight line on the surface of an airfoil or the like that extends parallel to the fluid stream. The output signals are concurrently compared to detect the sensors across which a reversal in phase of said output signal occurs, said detected sensors being in the region of laminar separation or reattachment. The novelty in this invention is the discovery and use of the phase reversal phenomena to detect laminar separation and attachment of a fluid stream from any surface such as an airfoil supported therein.

  16. Design and development of desiccant seed dryer with airflow inversion and recirculation.

    PubMed

    Gill, R S; Singh, Sukhmeet; Singh, Parm Pal

    2014-11-01

    A desiccant seed dryer has been developed to dry seed in deep bed at safe temperatures for good shelf life and germination. The dryer consists of two chambers viz., air conditioning control unit and seed drying chamber. It operates in seed drying mode and desiccant regeneration mode. It has provision for recirculation of the drying air to minimise the moisture removal from drying air. Also, it has provision of airflow inversion through deep seed bed for uniform drying. Moisture removal from drying air has been done using silica gel desiccant. Chilly 'Punjab Surakh', Chilly 'Punjab Guchhedaar', Paddy, Coriander, Fenugreek and Radish seeds was dried with hot air at 38 °C from initial moisture content of 26.9 to 5 % (wb) in 2 h, 46.52 to 4.19 % (wb) in 4.25 h, 13.3 to 2.61 % (wb) in 4 h, 13.4 to 10.08 % (wb) in 3 h, 12.4 to 8.22 % (wb) in 4¼ h and 10.6 to 6.08 % (wb) in 4 h respectively. The statistical analysis based on paired t-test showed that seed drying in this dryer has no adverse effect on seed germination. PMID:26396340

  17. [Degradation of purine nucleotides in patients with chronic obstruction to airflow].

    PubMed

    Mateos Antón, F; García Puig, J; Gómez Fernández, P; Ramos Hernández, T; López Jiménez, M

    1989-03-11

    The increase in hypoxanthine (Hx), xanthine (X), uric acid (VA) and total purines (TP) that may be found in several clinical conditions associated with tissue hypoxia has been attributed to an increase in adenine nucleotides degradation by a reduced ATP synthesis caused by oxygen deprivation. To test this hypothesis we have investigated the urinary excretion of Hx, X, VA, TP and radioactivity elimination after labeling the adenine nucleotides with adenine (8-14C) in 5 patients with chronic airflow obstruction (CAFO), in the basal state and after oxygen therapy (FiO2, 24%). The results were compared with those from 4 normal individuals. Patients with COFA showed an increase of the renal elimination of Hx, X, VA, TP and radioactivity, which was significantly different from the control group (p less than 0.05). Oxygen administration was associated with a significant reduction in the excretion of purines and radioactivity (p less than 0.01), which decreased to values similar to those found in normal individuals. These findings suggest that in patients with COFA and severe hypoxemia there is a marked increase in the degradation of adenine nucleotides. The normalization of the purine and radioactivity excretion after oxygen therapy points to a basic role of oxygen in the catabolism of adenine nucleotides. PMID:2716427

  18. 4DCT-based assessment of regional airflow distribution in healthy human lungs during tidal breathing

    NASA Astrophysics Data System (ADS)

    Choi, Jiwoong; Jahani, Nariman; Choi, Sanghun; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    Nonlinear dynamics of regional airflow distribution in healthy human lungs are studied with four-dimensional computed tomography (4DCT) quantitative imaging of four subjects. During the scanning session, subjects continuously breathed with tidal volumes controlled by the dual piston system. For each subject, 10 instantaneous volumetric image data sets (5 inspiratory and 5 expiratory phases) were reconstructed. A mass-preserving image registration was then applied to pairs of these image data to construct a breathing lung model. Regional distributions of local flow rate fractions are computed from time-varying local air volumes. The 4DCT registration-based method provides the link between local and global air volumes of the lung, allowing derivation of time-varying regional flow rates during the tidal breathing for computational fluid dynamics analysis. The local flow rate fraction remains greater in the lower lobes than in the upper lobes, being qualitatively consistent with those derived from three static CT (3SCT) images (Yin et al. JCP 2013). However, unlike 3SCT, the 4DCT data exhibit lung hysteresis between inspiration and expiration, providing more sensitive measures of regional ventilation and lung mechanics. NIH Grants U01-HL114494, R01-HL094315 and S10-RR022421.

  19. Numerical investigation of wind-induced airflow and interunit dispersion characteristics in multistory residential buildings.

    PubMed

    Ai, Z T; Mak, C M; Niu, J L

    2013-10-01

    Compared with the buoyancy-dominated upward spread, the interunit dispersion of pollutants in wind-dominated conditions is expected to be more complex and multiple. The aim of this study is to investigate the wind-induced airflow and interunit pollutant dispersion in typical multistory residential buildings using computational fluid dynamics. The mathematical model used is the nonstandard k-ε model incorporated with a two-layer near-wall modification, which is validated against experiments of previous investigators. Using tracer gas technique, the reentry of exhaust air from each distinct unit to other units on the same building, under different practical conditions, is quantified, and then, the possible dispersion routes are revealed. The units on the floor immediately below the source on the windward side, and vertically above it on the leeward side, where the reentry ratios are up to 4.8% and 14.9%, respectively, should be included on the high-infection list. It is also found that the presence of balconies results in a more turbulent near-wall flow field, which in turn significantly changes the reentry characteristics. Comparison of the dispersion characteristics of the slab-like building and the more complicated building in cross (#) floorplan concludes that distinctive infectious control measures should be implemented in these two types of buildings. PMID:23495766

  20. Do forced air patient-warming devices disrupt unidirectional downward airflow?

    PubMed

    Legg, A J; Cannon, T; Hamer, A J

    2012-02-01

    Patient warming significantly decreases the risk of surgical site infection. Recently there have been concerns that forced air warming may interfere with unidirectional airflow, potentially posing an increased risk of infection. Our null hypothesis was that forced air and radiant warming devices do not increase the temperature and the number of particles over the surgical site when compared with no warming device. A forced air warming device was compared with a radiant warming device and no warming device as a control. The temperature and number of particles were measured over the surgical site. The theatre was prepared as for a routine lower-limb arthroplasty operation, and the same volunteer was used throughout the study. Forced air warming resulted in a significant mean increase in the temperature (1.1°C vs 0.4°C, p < 0.0001) and number of particles (1038.2 vs 274.8, p = 0.0087) over the surgical site when compared with radiant warming, which raises concern as bacteria are known to require particles for transport. PMID:22323696

  1. Ventilation Rates and Airflow Pathways in Patient Rooms: A Case Study of Bioaerosol Containment and Removal.

    PubMed

    Mousavi, Ehsan S; Grosskopf, Kevin R

    2015-11-01

    Most studies on the transmission of infectious airborne disease have focused on patient room air changes per hour (ACH) and how ACH provides pathogen dilution and removal. The logical but mostly unproven premise is that greater air change rates reduce the concentration of infectious particles and thus, the probability of airborne disease transmission. Recently, a growing body of research suggests pathways between pathogenic source (patient) and control (exhaust) may be the dominant environmental factor. While increases in airborne disease transmission have been associated with ventilation rates below 2 ACH, comparatively less data are available to quantify the benefits of higher air change rates in clinical spaces. As a result, a series of tests were conducted in an actual hospital to observe the containment and removal of respirable aerosols (0.5-10 µm) with respect to ventilation rate and directional airflow in a general patient room, and, an airborne infectious isolation room. Higher ventilation rates were not found to be proportionately effective in reducing aerosol concentrations. Specifically, increasing mechanical ventilation from 2.5 to 5.5 ACH reduced aerosol concentrations only 30% on average. However, particle concentrations were more than 40% higher in pathways between the source and exhaust as was the suspension and migration of larger particles (3-10 µm) throughout the patient room(s). Computational analyses were used to validate the experimental results, and, to further quantify the effect of ventilation rate on exhaust and deposition removal in patient rooms as well as other particle transport phenomena. PMID:26187326

  2. Laminar flow in a recess of a hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    San Andres, Luis A.; Velthuis, Johannes F. M.

    1992-01-01

    The flow in a recess of a hydrostatic journal bearing is studied in detail. The Navier-Stokes equations for the laminar flow of an incompressible liquid are solved numerically in a two-dimensional plane of a typical bearing recess. Pressure- and shear-induced flows, as well as a combination of these two flow conditions, are analyzed. Recess friction, pressure-ram effects at discontinuities in the flow region, and film entrance pressure loss effects are calculated. Entrance pressure loss coefficients over a forward-facing step are presented as functions of the mean flow Reynolds number for pure-pressure and shear-induced laminar flows.

  3. Roughness and waviness requirements for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.; Holmes, Bruce J.

    1986-01-01

    Many modern metal and composite airframe manufacturing techniques can provide surface smoothness which is compatible with natural laminar flow (NLF) requirements. An important consideration is manufacturing roughness of the surface in the form of steps and gaps perpendicular to the freestream. The principal challenge to the design and manufacture of laminar flow surfaces today appears to be in the installation of leading-edge panels on wing, nacelle, and empennage surfaces. A similar challenge is in the installation of access panels, doors, windows, fuselage noses, and engine nacelles. Past work on roughness and waviness manufacturing tolerances and comparisons with more recent experiments are reviewed.

  4. Method and apparatus for detecting laminar flow separation and reattachment

    NASA Technical Reports Server (NTRS)

    Stack, John P. (Inventor); Mangalam, Sivaramakrishnan M. (Inventor)

    1990-01-01

    The invention is a method and apparatus for simultaneously detecting laminar separation and reattachment of a fluid stream such as an airstream from and to the upper surface of an airfoil by simultaneously sensing and comparing a plurality of output signals. Each signal represents the dynamic shear stress at one of an equal number of sensors spaced along a straight line on the surface of the airfoil that extends parallel to the airstream. The output signals are simultaneously compared to detect the sensors across which a reversal in phase of said output signal occurs, said detected sensors being in the region of laminar separation or reattachment.

  5. Effect of increasing doses of beta agonists on spirometric parameters, exercise capacity, and quality of life in patients with chronic airflow limitation.

    PubMed Central

    Jaeschke, R.; Guyatt, G. H.; Willan, A.; Cook, D.; Harper, S.; Morris, J.; Ramsdale, H.; Haddon, R.; Newhouse, M.

    1994-01-01

    BACKGROUND--A study was undertaken to determine the impact of different doses of inhaled terbutaline on peak flow rates, spirometric parameters, functional exercise capacity, and quality of life in patients with chronic airflow limitation. METHODS--A double blind, randomised, placebo controlled, multiple crossover trial was conducted with treatment periods of one week. Patients with a clinical diagnosis of chronic airflow limitation and FEV1 below 70% predicted after administration of bronchodilator were recruited from secondary care respiratory practices, and the effect of 500, 1000, and 1500 micrograms inhaled terbutaline four times daily on spirometric parameters (FEV1, FVC), maximum inspiratory pressures, six minute walking distance, and health-related quality of life (Chronic Respiratory Disease Questionnaire, Quality of Well Being, Standard Gamble) was measured. RESULTS--Twenty five patients completed the trial. Peak flow rates and FEV1 showed statistically significant but clinically trivial improvement on the higher drug doses. Results of maximum inspiratory pressure measurements, walk test distance, and quality of life measures showed minimal differences on the different dosages, and none of the differences approached conventional statistical significance. CONCLUSIONS--Regular use of beta agonists in doses higher than two puffs four times a day is very unlikely to provide additional functional or symptomatic benefit to patients with chronic airflow limitation. PMID:8016770

  6. PHENOTYPIC AND GENETIC HETEROGENEITY AMONG SUBJECTS WITH MILD AIRFLOW OBSTRUCTION IN COPDGENE

    PubMed Central

    Lee, Jin Hwa; Cho, Michael H.; McDonald, Merry-Lynn N.; Hersh, Craig P.; Castaldi, Peter J.; Crapo, James D.; Wan, Emily S.; Dy, Jennifer G.; Chang, Yale; Regan, Elizabeth A.; Hardin, Megan; DeMeo, Dawn L.; Silverman, Edwin K.

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) is characterized by marked phenotypic heterogeneity. Most previous studies have focused on COPD subjects with FEV1 < 80% predicted. We investigated the clinical and genetic heterogeneity in subjects with mild airflow limitation in spirometry grade 1 defined by the Global Initiative for chronic Obstructive Lung Disease (GOLD 1). Methods Data from current and former smokers participating in the COPDGene Study (NCT00608764) were analyzed. K-means clustering was performed to explore subtypes within 794 GOLD 1 subjects. For all subjects with GOLD 1 and with each cluster, a genome-wide association study and candidate gene testing were performed using smokers with normal lung function as a control group. Combinations of COPD genome-wide significant single nucleotide polymorphisms (SNPs) were tested for association with FEV1 (% predicted) in GOLD 1 and in a combined group of GOLD1 and smoking control subjects. Results K-means clustering of GOLD 1 subjects identified putative “near-normal”, “airway-predominant”, “emphysema-predominant” and “lowest FEV1 % predicted” subtypes. In non-Hispanic whites, the only SNP nominally associated with GOLD 1 status relative to smoking controls was rs7671167 (FAM13A) in logistic regression models with adjustment for age, sex, pack-years of smoking, and genetic ancestry. The emphysema-predominant GOLD 1 cluster was nominally associated with rs7671167 (FAM13A) and rs161976 (BICD1). The lowest FEV1 % predicted cluster was nominally associated with rs1980057 (HHIP) and rs1051730 (CHRNA3). Combinations of COPD genome-wide significant SNPs were associated with FEV1 (% predicted) in a combined group of GOLD 1 and smoking control subjects. Conclusions Our results indicate that GOLD 1 subjects show substantial clinical heterogeneity, which is at least partially related to genetic heterogeneity. PMID:25154699

  7. Computer simulation of airflow through a multi-generation tracheobronchial conducting airway

    SciTech Connect

    Fan, B.; Cheng, Yung-Sung; Yeh, Hsu-Chi

    1995-12-01

    Knowledge of airflow patterns in the human lung is important for an analysis of lung diseases and drug delivery of aerosolized medicine for medical treatment. However, very little systematic information is available on the pattern of airflow in the lung and on how this pattern affects the deposition of toxicants in the lung, and the efficacy of aerosol drug therapy. Most previous studies have only considered the airflow through a single bifurcating airway. However, the flow in a network of more than one bifurcation is more complicated due to the effect of interrelated lung generations. Because of the variation of airway geometry and flow condition from generation to generation, a single bifurcating airway cannot be taken as a representative for the others in different generations. The flow in the network varies significantly with airway generations because of a redistribution of axial momentum by the secondary flow motions. The influence of the redistribution of flow is expected in every generation. Therefore, a systematic information of the airflow through a multi-generation tracheobronchial conducting airway is needed, and it becomes the purpose of this study. This study has provided information on airflow in a lung model which is necessary to the study of the deposition of toxicants and therapeutic aerosols.

  8. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results

    PubMed Central

    Amaral, André F. S.; Coton, Sonia; Kato, Bernet; Tan, Wan C.; Studnicka, Michael; Janson, Christer; Gislason, Thorarinn; Mannino, David; Bateman, Eric D.; Buist, Sonia; Burney, Peter G. J.

    2015-01-01

    Background In small studies and cases series, a history of tuberculosis has been associated with both airflow obstruction, which is characteristic of chronic obstructive pulmonary disease, and restrictive patterns on spirometry. Objective To assess the association between a history of tuberculosis and airflow obstruction and spirometric abnormalities in adults. Methods The study was performed in adults, aged 40 and above, who took part in the multicentre cross-sectional, general population-based, Burden of Obstructive Lung Disease study, had provided acceptable post-bronchodilator spirometry measurements and information on a history of tuberculosis. The associations between a history of tuberculosis and airflow obstruction and spirometric restriction were assessed within each participating centre, and estimates combined using meta-analysis. These estimates were stratified by high and low/middle income countries, according to gross national income. Results A self-reported history of tuberculosis was associated with airflow obstruction (adjusted odds ratio = 2.51, 95% confidence interval 1.83-3.42) and spirometric restriction (adjusted odds ratio = 2.13, 95% confidence interval 1.42-3.19). Conclusion A history of tuberculosis was associated with both airflow obstruction and spirometric restriction, and should be considered as a potentially important cause of obstructive disease and low lung function, particularly where tuberculosis is common. PMID:26113680

  9. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction

    PubMed Central

    Kimbell, J.S.; Frank, D.O.; Laud, Purushottam; Garcia, G.J.M.; Rhee, J.S.

    2014-01-01

    Surgeries to correct nasal airway obstruction (NAO) often have less than desirable outcomes, partly due to the absence of an objective tool to select the most appropriate surgical approach for each patient. Computational fluid dynamics (CFD) models can be used to investigate nasal airflow, but variables need to be identified that can detect surgical changes and correlate with patient symptoms. CFD models were constructed from pre- and post-surgery computed tomography scans for 10 NAO patients showing no evidence of nasal cycling. Steady-state inspiratory airflow, nasal resistance, wall shear stress, and heat flux were computed for the main nasal cavity from nostrils to posterior nasal septum both bilaterally and unilaterally. Paired t-tests indicated that all CFD variables were significantly changed by surgery when calculated on the most obstructed side, and that airflow, nasal resistance, and heat flux were significantly changed bilaterally as well. Moderate linear correlations with patient-reported symptoms were found for airflow, heat flux, unilateral allocation of airflow, and unilateral nasal resistance as a fraction of bilateral nasal resistance when calculated on the most obstructed nasal side, suggesting that these variables may be useful for evaluating the efficacy of nasal surgery objectively. Similarity in the strengths of these correlations suggests that patient-reported symptoms may represent a constellation of effects and that these variables should be tracked concurrently during future virtual surgery planning. PMID:24063885

  10. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis

    PubMed Central

    Wang, T.; Chen, D.; Wang, P.H.; Chen, J.; Deng, J.

    2016-01-01

    We used a computational fluid dynamics (CFD) model to study the inspiratory airflow profiles of patients with anterior nasal cavity stenosis who underwent curative surgery, by comparing pre- and postoperative airflow characteristics. Twenty patients with severe anterior nasal cavity stenosis, including one case of bilateral stenosis, underwent computed tomography (CT) scans for CFD modelling. The pre- and postoperative airflow characteristics of the nasal cavity were simulated and analyzed. The narrowest area of the nasal cavity in all 20 patients was located within the nasal valve area, and the mean cross-sectional area increased from 0.39 cm2 preoperative to 0.78 cm2 postoperative (P<0.01). Meanwhile, the mean airflow velocity in the nasal valve area decreased from 6.19 m/s to 2.88 m/s (P<0.01). Surgical restoration of the nasal symmetry in the bilateral nasal cavity reduced nasal resistance in the narrow sides from 0.24 Pa.s/mL to 0.11 Pa.s/mL (P<0.01). Numerical simulation of the nasal cavity in patients with anterior nasal cavity stenosis revealed structural changes and the resultant patterns of nasal airflow. Surgery achieved balanced bilateral nasal ventilation and decreased nasal resistance in the narrow region of the nasal cavity. The correction of nasal valve stenosis is not only indispensable for reducing nasal resistance, but also the key to obtain satisfactory curative effect. PMID:27533764

  11. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis.

    PubMed

    Wang, T; Chen, D; Wang, P H; Chen, J; Deng, J

    2016-01-01

    We used a computational fluid dynamics (CFD) model to study the inspiratory airflow profiles of patients with anterior nasal cavity stenosis who underwent curative surgery, by comparing pre- and postoperative airflow characteristics. Twenty patients with severe anterior nasal cavity stenosis, including one case of bilateral stenosis, underwent computed tomography (CT) scans for CFD modelling. The pre- and postoperative airflow characteristics of the nasal cavity were simulated and analyzed. The narrowest area of the nasal cavity in all 20 patients was located within the nasal valve area, and the mean cross-sectional area increased from 0.39 cm2 preoperative to 0.78 cm2 postoperative (P<0.01). Meanwhile, the mean airflow velocity in the nasal valve area decreased from 6.19 m/s to 2.88 m/s (P<0.01). Surgical restoration of the nasal symmetry in the bilateral nasal cavity reduced nasal resistance in the narrow sides from 0.24 Pa.s/mL to 0.11 Pa.s/mL (P<0.01). Numerical simulation of the nasal cavity in patients with anterior nasal cavity stenosis revealed structural changes and the resultant patterns of nasal airflow. Surgery achieved balanced bilateral nasal ventilation and decreased nasal resistance in the narrow region of the nasal cavity. The correction of nasal valve stenosis is not only indispensable for reducing nasal resistance, but also the key to obtain satisfactory curative effect. PMID:27533764

  12. Incidence of airflow limitation in subjects 65-100 years of age.

    PubMed

    Luoto, Johannes A; Elmståhl, Sölve; Wollmer, Per; Pihlsgård, Mats

    2016-02-01

    The true incidence of chronic obstructive pulmonary disease is largely unknown, because the few longitudinal studies performed have used diagnostic criteria no longer recommended by either the European Respiratory Society or the American Thoracic Society (ATS).We studied the incidence and significance of airflow limitation in a population-based geriatric sample using both an age-dependent predicted lower limit of normal (LLN) value and a fixed-ratio spirometric criterion.Out of 2025 subjects with acceptable spirometry at baseline, 984 subjects aged 65-100 years completed a 6-year follow-up visit. Smoking habits were registered at baseline. Exclusion criteria were non-acceptable spirometry performance according to ATS criteria and inability to communicate. Airflow limitation was defined both according to forced expiratory volume in 1 s (FEV1)/forced vital capacity ratio <0.7 and airflow limitation per 1000 person-years was 28.2 using a fixed ratio and 11.7 with LLN, corresponding to a 1.41-fold higher incidence rate using a fixed ratio. The incidence increased dramatically with age when using a fixed ratio, but less so when using LLN. In addition, a sex effect was observed with the LLN criterion. LLN airflow limitation was associated with increased 5-year mortality. Presence of fixed-ratio airflow limitation in individuals classified by LLN as non-obstructive was not associated with increased mortality. PMID:26677939

  13. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    NASA Astrophysics Data System (ADS)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  14. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions.

    PubMed

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-20

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources. PMID:20701994

  15. Natural laminar flow airfoil design considerations for winglets on low-speed airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1984-01-01

    Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.

  16. Experimental design studies and flow visualization of proportional laminar-flow fluidic amplifiers

    NASA Technical Reports Server (NTRS)

    Hellbaum, R. F.; Mcdermon, J. N.

    1977-01-01

    The effects of certain parameter variations on the performance characteristics of laminar, proportional, jet-deflection fluidic amplifiers were studied. The matching and staging of amplifiers to obtain high pressure gain was included, but dynamic effects were not. The parameter variations considered were aspect ratio, setback, control length, splitter distance, receiver-duct width, width of center-vent duct, and bias pressure. Usable pressure gains of 19 per stage were achieved, and 5 amplifier stages were integrated to yield an overall pressure gain of 2,000,000.

  17. An experimental investigation of an acoustically excited laminar premixed flame

    SciTech Connect

    Kartheekeyan, S.; Chakravarthy, S.R.

    2006-08-15

    A two-dimensional laminar premixed flame is stabilized over a burner in a confined duct and is subjected to external acoustic forcing from the downstream end. The equivalence ratio of the flame is 0.7. The flame is stabilized in the central slot of a three-slotted burner. The strength of the shear layer of the cold reactive mixture through the central slot is controlled by the flow rate of cold nitrogen gas through the side slots. The frequency range of acoustic excitation is 400-1200 Hz, and the amplitude levels are such that the acoustic velocity is less than the mean flow velocity of the reactants. Time-averaged chemiluminescence images of the perturbed flame front display time-mean changes as compared to the unperturbed flame shape at certain excitation frequencies. Prominent changes to the flame front are in the form of stretching or shrinkage, asymmetric development of its shape, increased/preferential lift-off of one or both of the stabilization points of the flame, and nearly random three-dimensional fluctuations over large time scales under some conditions. The oscillations of the shear layer and the response of the confined jet of the hot products to the acoustic forcing, such as asymmetric flow development and jet spreading, are found to be responsible for the observed mean changes in the flame shape. A distinct low-frequency component ({approx}60-90 Hz) relative to the excitation frequency is observed in the fluctuations of the chemiluminescent intensity in the flame under most conditions. It is observed that fluctuations in the flame area predominantly contribute to the origin of the low-frequency component. This is primarily due to the rollup of vortices and the generation of enthalpy waves at the burner lip. Both of these processes are excited at the externally imposed acoustic time scale, but convect/propagate downstream at the flow time scale, which is much larger. (author)

  18. Lateral Diffusion of Bedload Transport under Laminar Flow

    NASA Astrophysics Data System (ADS)

    Ortiz, C. P.; Houssais, M.; Purohit, P. K.; Durian, D. J.; Jerolmack, D. J.

    2014-12-01

    Lateral sediment transport is a key momentum-exchange mechanism to model equilibrium channel geometry and channel bar evolution. We study sediment transport from a statistical mechanical point of view akin to Furbish et al. 2012. This approach holds promise for linking grain-scale motion to macroscopic transport, but there are few data to definitively develop and test such models. We study an experimental model river, composed of monodisperse acrylic spheres dispersed in silicon oil, driven by a layer of fluid under steady shear. We choose to drive fluid flow in the laminar regime (Re < 1) to suppress fluid turbulence and isolate granular and bed structure controls. We use a refractive-index-matched laser scanning technique to observe the motion of particles at the surface of the bed as well as the particle dynamics below the surface. We study how the probability distribution of displacements varies as a function of distance from the bed surface and as a function of distance to the channel center. In the streamwise direction, in agreement with Furbish et al. 2012, we find that the dynamics can be decomposed into an advection and a diffusion term. In the lateral direction, we find a competition between diffusion and an elastic-like interaction with the bed. We study this lateral stochastic process and find a need to introduce two parameters to quantify this competition. The first parameter describes the tendency for particles to reside near the center of the channel and the second parameter describes the kinetic energy distribution of the particles. We study how the requisite averaging scales and ensemble sizes to achieve statistically convergent parameters, and we explore how these parameters depend on the driving rate.

  19. Flight tests of a supersonic natural laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  20. The Prospects for Laminar Flow on Hypersonic Airplanes

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1958-01-01

    The factors which affect the extent of laminar flow on airplanes for hypersonic flight are discussed on the basis of the available data. Factors considered include flight Reynolds number, surface roughness, angle of attack, angle of leading-edge sweepback, and aerodynamic interference. Test data are presented for one complete configuration.

  1. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  2. Multiple paths to subharmonic laminar breakdown in a boundary layer

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Hussaini, M. Yousuff

    1989-01-01

    Numerical simulations demonstrate that laminar breakdown in a boundary layer induced by the secondary instability of two-dimensional Tollmien-Schlichting waves to three-dimensional subharmonic disturbances need not take the conventional lambda vortex/high-shear layer path.

  3. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  4. Estimation of Laminar Burning Velocities by Direct Digital Photography

    ERIC Educational Resources Information Center

    Uske, J.; Barat, R.

    2004-01-01

    The Bunsen burner flame, which is the most common flame in the laboratory, can be easily studied for its dynamics because of modern, economical digital technology available to student laboratories. Direct digital photography of Bunsen flames is used to obtain laminar burning velocities of selected gaseous hydrocarbon/air flames.

  5. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  6. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  7. Numerical studies of laminar and turbulent drag reduction, part 2

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Orszag, S. A.

    1983-01-01

    The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed.

  8. Flame Radiation, Structure, and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas; Lim, Jongmook; Sivathanu, Yudaya

    2007-01-01

    Results from microgravity combustion experiments conducted in the Zero Gravity Research Facility (ZGF) 5.18 second drop facility are reported. The results quantify flame radiation, structure, and scalar properties during the early phase of a microgravity fire. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in microgravity laminar methane/air, ethylene/nitrogen/air and ethylene/air jet flames. The measured peak mole fractions for water vapor and carbon dioxide are found to be in agreement with state relationship predictions for hydrocarbon/air combustion. The ethylene/air laminar flame conditions are similar to previously reported results including those from the flight project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long-duration microgravity laminar diffusion flames as demonstrated in this report.

  9. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  10. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  11. On the growth of turbulent regions in laminar boundary layers

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, M.; Riley, J. J.; Blackwelder, R. F.

    1981-01-01

    Turbulent spots evolving in a laminar boundary layer on a nominally zero pressure gradient flat plate are investigated. The plate is towed through an 18 m water channel, using a carriage that rides on a continuously replenished oil film giving a vibrationless tow. Turbulent spots are initiated using a solenoid valve that ejects a small amount of fluid through a minute hole on the working surface. A novel visualization technique that utilizes fluorescent dye excited by a sheet of laser light is employed. Some new aspects of the growth and entrainment of turbulent spots, especially with regard to lateral growth, are inferred from the present experiments. To supplement the information on lateral spreading, a turbulent wedge created by placing a roughness element in the laminar boundary layer is also studied both visually and with probe measurements. The present results show that, in addition to entrainment, another mechanism is needed to explain the lateral growth characteristics of a turbulent region in a laminar boundary layer. This mechanism, termed growth by destabilization, appears to be a result of the turbulence destabilizing the unstable laminar boundary layer in its vicinity. To further understand the growth mechanisms, the turbulence in the spot is modulated using drag-reducing additives and salinity stratification.

  12. Combustion Module-1 with Laminar Soot Process (LSP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Technicians install the Laminar Soot Processes (LSP) experiment into the combustion chamber of Combustion Module-1. CM-1 was one of the most complex and technologically sophisticated pieces of hardware ever to be included as a part of a Spacelab mission.

  13. Atomization of water jets and sheets in axial and swirling airflows

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    Axial and swirling airflows were used to break up water jets and sheets into sprays of droplets to determine the overall effects of orifice diameter, weight flow of air, and the use of an air swirler on fineness of atomization as characterized by mean drop size. A scanning radiometer was used to determine the mean drop diameter of each spray. Swirling airflows were produced with an axial combustor, 70 deg blake angle, air swirling. Water jets were injected axially upstream, axially downstream and cross stream into the airflow. In addition, pressure atomizing fuel nozzles which produced a sheet and ligament type of breakup were investigated. Increasing the weight flow rate of air or the use of an air swirling markedly reduced the spray mean drop size.

  14. Dynamic Changes in Heart Rate Variability and Nasal Airflow Resistance during Nasal Allergen Provocation Test.

    PubMed

    Seppänen, Tiina M; Alho, Olli-Pekka; Seppänen, Tapio

    2016-01-01

    Allergic rhinitis is a major chronic respiratory disease and an immunoneuronal disorder. We aimed at providing further knowledge on the function of the neural system in nasal allergic reaction. Here, a method to assess simultaneously the nasal airflow resistance and the underlying function of autonomic nervous system (ANS) is presented and used during the nasal provocation of allergic and nonallergic subjects. Continuous nasal airflow resistance and spectral heart rate variability parameters show in detail the timing and intensity differences in subjects' reactions. After the provocation, the nasal airflow resistance of allergic subjects showed a positive trend, whereas LF/HF (Low Frequency/High Frequency) ratio and LF power showed a negative trend. This could imply a gradual sympathetic withdrawal in allergic subjects after the allergen provocation. The groups differed significantly by these physiological descriptors. The proposed method opens entirely new opportunities to research accurately concomitant changes in nasal breathing function and ANS. PMID:27196870

  15. Experimental investigation of effects of airflows on plasma-assisted combustion actuator characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Xing-Jian; He, Li-Ming; Yu, Jin-Lu; Zhang, Hua-Lei

    2015-04-01

    The effects of the airflow on plasma-assisted combustion actuator (PACA) characteristics are studied in detail. The plasma is characterized electrically, as well as optically with a spectrometer. Our results show that the airflow has an obvious influence on the PACA characteristics. The breakdown voltage and vibrational temperature decrease, while the discharge power increases compared with the stationary airflow. The memory effect of metastable state species and the transportation characteristics of charged particles in microdischarge channel are the dominant causes for the variations of the breakdown voltage and discharge power, respectively, and the vibrational temperature calculated in this work can describe the electron energy of the dielectric barrier discharge plasma in PACA. These results offer new perspectives for the use of PACA in plasma-assisted combustion. Project supported by the National Natural Science Foundation of China (Grant Nos. 51436008, 50776100, and 51106179).

  16. A laminar flow unit for the care of critically ill newborn infants

    PubMed Central

    Perez, Jose MR; Golombek, Sergio G; Fajardo, Carlos; Sola, Augusto

    2013-01-01

    Introduction Medical and nursing care of newborns is predicated on the delicate control and balance of several vital parameters. Closed incubators and open radiant warmers are the most widely used devices for the care of neonates in intensive care; however, several well-known limitations of these devises have not been resolved. The use of laminar flow is widely used in many fields of medicine, and may have applications in neonatal care. Objective To describe the neonatal laminar flow unit, a new equipment we designed for care of ill newborns. Methods The idea, design, and development of this device was completed in Sao Paulo, Brazil. The unit is an open mobile bed designed with the objective of maintaining the advantages of the incubator and radiant warmer, while overcoming some of their inherent shortcomings; these shortcomings include noise, magnetic fields and acrylic barriers in incubators, and lack of isolation and water loss through skin in radiant warmers. The unit has a pump that aspirates environmental air which is warmed by electrical resistance and decontaminated with High Efficiency Particulate Air Filter (HEPA) filters (laminar flow). The flow is directed by an air flow directioner. The unit has an embedded humidifier to increase humidity in the infant’s microenvironment and a servo control mechanism for regulation of skin temperature. Results The laminar flow unit is open and facilitates access of care providers and family, which is not the case in incubators. It provides warming by convection at an air velocity of 0.45 m/s, much faster than an incubator (0.1 m/s). The system provides isolation 1000 class (less than 1,000 particles higher than 0.3 micron per cubic feet at all times). This is much more protection than an incubator provides and more than radiant warmers, which have no isolation whatsoever. Additionally, it provides humidification of the newborn’s microenvironment (about 60% relative humidity), which is impossible with a radiant

  17. Analyzing airflow in static ice caves by using the calcFLOW method

    NASA Astrophysics Data System (ADS)

    Meyer, Christiane; Meyer, Ulrich; Pflitsch, Andreas; Maggi, Valter

    2016-04-01

    In this paper we present a method to detect airflow through ice caves and to quantify the corresponding airflow speeds by the use of temperature loggers. The time series of temperature observations at different loggers are cross-correlated. The time shift of best correlation corresponds to the travel time of the air and is used to derive the airflow speed between the loggers. We apply the method to test data observed inside Schellenberger Eishöhle (ice cave). The successful determination of airflow speeds depends on the existence of distinct temperature variations during the time span of interest. Moreover the airflow speed is assumed to be constant during the period used for the correlation analysis. Both requirements limit the applicability of the correlation analysis to determine instantaneous airflow speeds. Nevertheless the method is very helpful to characterize the general patterns of air movement and their slow temporal variations. The correlation analysis assumes a linear dependency between the correlated data. The good correlation we found for our test data confirms this assumption. We therefore in a second step estimate temperature biases and scale factors for the observed temperature variations by a least-squares adjustment. The observed phenomena, a warming and an attenuation of temperature variations, depending on the distance the air traveled inside the cave, are explained by a mixing of the inflowing air with the air inside the cave. Furthermore we test the significance of the determined parameters by a standard F test and study the sensitivity of the procedure to common manipulations of the original observations like smoothing. In the end we will give an outlook on possible applications and further development of this method.

  18. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover

    SciTech Connect

    Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

    2014-04-01

    Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

  19. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats

    PubMed Central

    Eiting, Thomas P.; Perot, J. Blair; Dumont, Elizabeth R.

    2015-01-01

    The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity. PMID:25520358

  20. The Granite Mountain Atmospheric Sciences Testbed (GMAST): A Facility for Long Term Complex Terrain Airflow Studies

    NASA Astrophysics Data System (ADS)

    Zajic, D.; Pace, J. C.; Whiteman, C. D.; Hoch, S.

    2011-12-01

    This presentation describes a new facility at Dugway Proving Ground (DPG), Utah that can be used to study airflow over complex terrain, and to evaluate how airflow over a mountain barrier affects wind patterns over adjacent flatter terrain. DPG's primary mission is to conduct testing, training, and operational assessments of chemical and biological weapon systems. These operations require very precise weather forecasts. Most test operations at DPG are conducted on fairly flat test ranges having uniform surface cover, where airflow patterns are generally well-understood. However, the DPG test ranges are located alongside large, isolated mountains, most notably Granite Mountain, Camelback Mountain, and the Cedar Mountains. Airflows generated over, or influenced by, these mountains can affect wind patterns on the test ranges. The new facility, the Granite Mountain Atmospheric Sciences Testbed, or GMAST, is designed to facilitate studies of airflow interactions with topography. This facility will benefit DPG by improving understanding of how mountain airflows interact with the test range conditions. A core infrastructure of weather sensors around and on Granite Mountain has been developed including instrumented towers and remote sensors, along with automated data collection and archival systems. GMAST is expected to be in operation for a number of years and will provide a reference domain for mountain meteorology studies, with data useful for analysts, modelers and theoreticians. Visiting scientists are encouraged to collaborate with DPG personnel to utilize this valuable scientific resource and to add further equipment and scientific designs for both short-term and long-term atmospheric studies. Several of the upcoming MATERHORN (MountAin TERrain atmospHeric mOdeling and obseRvatioNs) project field tests will be conducted at DPG, giving an example of GMAST utilization and collaboration between DPG and visiting scientists.

  1. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats.

    PubMed

    Eiting, Thomas P; Perot, J Blair; Dumont, Elizabeth R

    2015-02-01

    The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity. PMID:25520358

  2. What is normal nasal airflow? A computational study of 22 healthy adults

    PubMed Central

    Zhao, Kai; Jiang, Jianbo

    2014-01-01

    Objective Nasal airflow is essential for functioning of the human nose. Given individual variation in nasal anatomy, there is yet no consensus what constitutes normal nasal airflow patterns. We attempt to obtain such information that is essential to differentiate disease-related variations. Methods Computational fluid dynamics (CFD) simulated nasal airflow in 22 healthy subjects during resting breathing. Streamline patterns, airflow distributions, velocity profiles, pressure, wall stress, turbulence, and vortical flow characteristics under quasi-steady state were analyzed. Patency ratings, acoustically measured minimum cross-sectional area (MCA), and rhinomanometric nasal resistance (NR) were examined for potential correlations with morphological and airflow-related variables. Results Common features across subjects included: >50% total pressure-drop reached near the inferior turbinate head; wall shear stress, NR, turbulence energy, and vorticity were lower in the turbinate than in the nasal valve region. However, location of the major flow path and coronal velocity distributions varied greatly across individuals. Surprisingly, on average, more flow passed through the middle than the inferior meatus and correlated with better patency ratings (r=-0.65, p<0.01). This middle flow percentage combined with peak post-vestibule nasal heat loss and MCA accounted for >70% of the variance in subjective patency ratings and predicted patency categories with 86% success. Nasal index correlated with forming of the anterior dorsal vortex. Expected for resting breathing, the functional impact for local and total turbulence, vorticity, and helicity was limited. As validation, rhinomanometric NR significantly correlated with CFD simulations (r=0.53, p<0.01). Conclusion Significant variations of nasal airflow found among healthy subjects; Key features may have clinically relevant applications. PMID:24664528

  3. Asbestos exposure, cigarette smoking, and airflow limitation in long-term Canadian chrysotile miners and millers

    SciTech Connect

    Begin, R.; Boileau, R.; Peloquin, S.

    1987-01-01

    To investigate further the relationships of asbestos exposure, cigarette smoking, and airflow limitation, we have obtained detailed pulmonary function tests (PFT) in 331 long-term Canadian chrysotile workers, 34 of whom were lifetime nonsmokers. Three disease categories were defined on the bases of standard diagnostic criteria, gallium-67 lung uptake, and the lung pressure-volume curve. Category A was composed of workers without changes suggestive of alveolitis or asbestosis. There were eight nonsmokers (ns), among whom we found a statistically significant 30% reduction in airflow conductance (Gus) at low lung volume, which is consistent with the concept of an asbestos airway lesion. The 85 smokers (sm) of category A had reduction of Gus at both high and low lung volumes. Category B was composed of workers without asbestosis but with evidence of asbestos alveolitis. In the six ns, Gus was significantly reduced to 50% normal at low lung volume. The 59 sm had reduction of Gus at both high and low lung volumes but less severely than sm in category A. Category C was composed of workers with asbestosis. The 20 ns had restrictive pattern of lung function, and Gus was decreased to 39% normal at 50% TLC. The 153 sm in C had airflow reduction comparable to sm in B. We concluded that asbestos exposure, which leads to asbestos airway disease, asbestos peribronchiolar alveolitis, and asbestosis, causes airflow limitation at low lung volume but does not reduce the expiratory flow rates on the flow-volume curve in lifetime nonsmokers. In the smoking asbestos workers with alveolitis or asbestosis, the major component of airflow limitation is a smoking effect. In these smoking workers, rigidity of the lung lessens airflow obstruction associated with smoking at the expense of increased work of breathing.

  4. Analyzing airflow in static ice caves by using the calcFLOW method

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Meyer, U.; Pflitsch, A.; Maggi, V.

    2015-09-01

    In this paper we present a method to detect airflow through ice caves and to quantify the corresponding airflow speeds by the use of temperature loggers. The time series of temperature observations at different loggers are cross-correlated. The time shift of best correlation corresponds to the travel time of the air and is used to derive the airflow speed between the loggers. We apply the method to test data observed inside Schellenberger Eishöhle (ice cave). The successful determination of airflow speeds depends on the existence of distinct temperature variations during the time span of interest. Moreover the airflow speed is assumed to be constant during the period used for the correlation analysis. Both requirements limit the applicability of the correlation analysis to determine instantaneous airflow speeds. Nevertheless the method is very helpful to characterize the general patterns of air movement and their slow temporal variations. The correlation analysis assumes a linear dependency between the correlated data. The good correlation we found for our test data confirms this assumption. We therefore in a second step estimate temperature biases and scale factors for the observed temperature variations by a least squares adjustment. The observed phenomena, a warming and a damping of temperature variations depending on the distance the air traveled inside the cave, are explained by a mixing of the inflowing air with the air inside the cave. Furthermore we test the significance of the determined parameters by a standard F test and study the sensitivity of the procedure to common manipulations of the original observations like smoothing. In the end we will give an outlook on possible applications and further development of this method.

  5. Stability analysis for laminar flow control, part 1

    NASA Technical Reports Server (NTRS)

    Benney, D. J.; Orszag, S. A.

    1977-01-01

    The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed.

  6. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    NASA Astrophysics Data System (ADS)

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-11-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected.

  7. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    PubMed Central

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  8. Research of Structure and Technology for the Micro-Machined Airflow Inclinometer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Yu; Zhang, Fuxue

    This paper reported a sensing mechanism of carrier attitude angle with the micro-machined airflow inclinometer, it utilized fluid mechanics and related theories to design the sensitive structure, analyze and certify gas pendulum in a micro-structure hermetic chamber, We used computer aided design and simulation software MEMSPro to design sensing structure layout,and produced in MEMS processing methods. The Micro-machined airflow inclinometer installed on optical dividing head to test. Through the compensation, ± 45° can be realized Nonlinear 1% or less. The sensor has a strong anti-vibration and impact ability, a simple structure and low cost.

  9. Aerodynamic-wave break-up of liquid sheets in swirling airflows and combustor modules

    NASA Technical Reports Server (NTRS)

    Ingebo, R.

    1983-01-01

    Experimental mean drop diameter data were obtained for the atomization of liquid sheets injected axially downstream in high velocity swirling and nonswirling airflow. Conventional simplex pressure atomizing fuel nozzles and splash type fuel injectors were studied under simulated combustor inlet airflow conditions. A general empirical expression relating recirprocal mean drop diameter to airstream mass velocity was obtained and is presented. The finest degree of atomization, i.e., the highest value of the coefficient C, was obtained with swirl can combustor modules (C = 15) as compared with pressure atomizing nozzles (C = 12).

  10. Two-dimensional airflow modeling underpredicts the wind velocity over dunes.

    PubMed

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J R; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune's symmetry axis - that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  11. A Comparative Study of Airflow and Odorant Deposition in the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Richter, Joseph; Rumple, Christopher; Ranslow, Allison; Quigley, Andrew; Pang, Benison; Neuberger, Thomas; Krane, Michael; van Valkenburgh, Blaire; Craven, Brent

    2013-11-01

    The complex structure of the mammalian nasal cavity provides a tortuous airflow path and a large surface area for respiratory air conditioning, filtering of inspired contaminants, and olfaction. Due to the small and contorted structure of the nasal turbinals, nasal anatomy and function remains poorly understood in most mammals. Here, we utilize high-resolution MRI scans to reconstruct anatomically-accurate models of the mammalian nasal cavity. These data are used to compare the form and function of the mammalian nose. High-fidelity computational fluid dynamics (CFD) simulations of nasal airflow and odorant deposition are presented and used to compare olfactory function across species (primate, rodent, canine, feline, ungulate).

  12. [Mensurement of airflow resistance in neonatal prongs of nasal CPAP

    PubMed

    Sampietro, V I; Azevedo, M P; Resende, J G

    2000-01-01

    OBJECTIVE: To measure airflow resistance in prongs of nasal CPAP, making use of different gas admission flow (GAF) in the ventilation circuit, in different internal diameters of the nasal prongs, besides verifying whether a GAF responding only to the demand of three times the minute-volume(MV) is enough to the circuit not to be cause of CO(2) retention. METHODOLOGY: Nasal prongs, assembled in the original circuits, were used, having their prongs kept open to the atmosphere. Pressure was read at a pressure monitor, in water centimeters, connected to the appropriate entrance of the circuit. A flowmeter balanced to the pressure was used, gauged at 50 psi, installed to the oxygen net of the Hospital, connected to the assessing set of the CPAP circuit. Initially, making use of the 8 l/min flow and keeping the exhaling set of the circuit closed, it was possible to eliminate the nasal prongs larger than two once the measured resistance was equal to zero. Having nasal parts number zero, 1 and 2 selected for this study, the system was then assembled as for the neonate: the inhaling set to the gas source and the exhaling set sunk into different depths in the water seal (2, 4, 6 and 8 centimeters). At the level of patient analysis, in order to assess the CO(2) retention, a mechanical pulmonary ventilation device was used as gas source and a nasal CPAP circuit was assembled to the device in adequate places. GAF values and FiO(2) were determined in the commands of the mechanical ventilation device. The assessment of gas concentration in the ventilation circuit was made while assisting two newborns. Gas samples were obtained within the ventilation circuit in the system assessing set (samples A), and right after the distal prong to the gas entrance (samples B). To determine MV the Tidal Volume (considered 10ml/kg) was multiplied by the respiratory frequency of the patient; GAF was three times MV. RESULTS: To a maximum GAF of 8 litres/min, only prongs sized zero, 1 and 2 showed

  13. Wing laminar boundary layer in the presence of a propeller slipstream

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Howard, R. M.; Holmes, B. J.

    1986-01-01

    The effects of a propeller slipstream on the wing laminar boundary layer are being investigated. Hot-wire velocity sensor measurements have been performed in flight and in a wind tunnel. It is shown that the boundary layer cycles between a laminar state and a turbulent state at the propeller blade passage rate. The cyclic length of the turbulent state increases with decreasing laminar stability. Analyses of the time varying velocity profiles show the turbulent state to lie in a transition region between fully laminar and fully turbulent. The observed cyclic boundary layer has characteristics similar to relaminarizing flow and laminar flow with external turbulence.

  14. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type B and Type BE..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test;...

  15. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and...

  16. Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald

    1989-01-01

    Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

  17. Optimization of dynamic roughness elements for reducing drag in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Sayadi, Taraneh; Sayadi, Peter

    2015-11-01

    Roughness elements can serve as controllers in both laminar and turbulent regimes to, for example, reduce the skin friction or drag. In this study, adjoint-based optimization is employed to extract the optimal shape of roughness elements for reducing drag, in a laminar setting, given an initial condition. The roughness elements considered here are of the ``dynamic'' type, varying both in space and time, which allows control over the spatial distribution of the roughness but also the inherent timescales of the flow. Dynamic roughness is modeled here using the linearized boundary conditions previously introduced by McKeon (2008), where the no-slip and impermeability boundary conditions are replaced by stream-wise and wall-normal distributions at the wall. The adjoint equation is then implemented using the discretized approach by Fosas et al. (2012). This approach is particularly efficient, since the linearized operators are computed simply by using the local differentiation technique, without explicitly forming the resulting matrices for both forward and adjoint operators. Using the described framework we investigate the effect of the initial condition on the spatial distribution of the roughness elements and their variation in time as the drag coefficient is minimized.

  18. Continental Lower-crustal Flow: Channel Flow and Laminar Flow

    NASA Astrophysics Data System (ADS)

    LI, Dewei

    Numerous geological, geophysical and geochemical investigations and finite element modeling indicate that crustal flow layers exist in the continental crust. Both channel flow model and laminar flow model have been created to explain the flow laws and flow mechanisms. As revealed by the channel flow model, a low-viscosity channel in middle to lower crust in orogen or plateau with thick crust and high elevation would flow outward from mountain root in response to lateral pressure gradient resulted from topographic loading or to denudation. However, according to the laminar flow model proposed based on investigation of the Qinghai-Tibet plateau, circulative movement of crustal lithologies with different rheological properties between basin and orogen would occur, under the driving forces resulted from dehydration and melting of subduction plate on active continental margin and from thermal energy related to upwelling and diapiring of intercontinental mantle plume or its gravitational interactions. Similarly, when driven by gravity, the softened or melted substances of the lower crust in a basin would flow laterally toward adjacent mountain root, which would result in a thinned basin crust and a thickened orogenic crust. Partially melted magma within the thickened orogenic lower crust would cause vertical movement of metamorphic rocks of lower to middle crust due to density inversion, and the vertical main stress induced by thermal underplating of lower crust would in turn lead to formation of metamorphic core complexes and low-angle detachment fault systems. Lateral spreading of uplifting mountain due to gravitation potential would result in thrust fault systems on the border between mountain and basin. Meanwhile, detritus produced synchronously by intense erosion of uplifting mountain would be transported and deposited along the marginal deep depression in the foreland basin dragged by lower crust flow. Channel flow is similar to laminar flow in a variety of aspects

  19. Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.

    1997-01-01

    Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient

  20. Airflow and sediment movement within an inland blowout in Hulun Buir sandy grassland, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hasi, Eerdun; Liu, Meiping; Du, Huishi; Guan, Chao; Tao, Binbin

    2016-09-01

    We measured wind flows and sediment transport rates through a blowout in Hulun Buir grassland, Inner Mongolia. Topography and the angle of incidence between the approaching wind and the blowout long-axis significantly affected the air flow. Flow separated and decelerated at the western wall and accelerated towards the east, until maximum wind speed occurred at the top of the depositional lobe, and then decelerated on the lee side. When airflow emerged on the eastern wall, resultant directions were always NW. When winds approached from directions within 17.5° of the blowout axis, both the northwestern and southwestern walls developed turbulent flow, and significant topographic steering occurred. The deceleration zone expanded eastwards from 10.3 to 12.8 m from the western rim. When the wind direction was more oblique than 17.5°, turbulent flow at the southwestern wall disappeared. 'S-shaped' flow intensified, causing more pronounced steering at the bottom, but topographic steering elsewhere was reduced, and the boundary of the deceleration moved to 10 m from the western rim. Minor sediment deposition occurred on the western wall, while other parts were eroded; maximum sediment transport occurred at the top of the depositional lobe. The approaching wind speed affected the sediment transport rate more than the direction; and spatial variability in sediment transport reflected differences in compaction, vegetation coverage, slope, aspect, and upwind sediment availability, resulting in asymmetrical development. Overall, flow-form interactions governed the flow structures and controlled the evolution of the blowout via sediment transport.