Science.gov

Sample records for controlled particle removal

  1. Particle Removal by Electrostatic and Dielectrophoretic Forces for Dust Control During Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; McFall, J. L.; Snyder, S. J.

    2009-01-01

    Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.

  2. Biological control of the removal of abiogenic particles from the surface ocean

    USGS Publications Warehouse

    Deuser, W.G.; Brewer, P.G.; Jickells, T.D.; Commeau, R.F.

    1983-01-01

    Concurrent measurements of particle concentrations in the near-surface water and of particle fluxes in the deep water of the Sargasso Sea show a close coupling between the two for biogenic components. The concentrations of suspended matter appear to follow an annual cycle similar to that of primary production and deepwater particle flux. Although the concentration of particulate aluminum in the surface water appears to vary randomly with respect to that cycle, the removal of aluminum to deep water is intimately linked to the rapid downward transport of organic matter.

  3. Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities - Hourglass control for SPH

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, G. C.; Sauer, M.; May, M.; Hiermaier, S.

    2016-03-01

    We present a stabilization scheme for elastoplastic Smooth-Particle Hydrodynamics (SPH) which overcomes two major challenges: (i) the tensile instability inherent to the updated Lagrangian approach is suppressed and (ii) the rank-deficiency instability inherent to the nodal integration approach is cured. To achieve these goals, lessons learned from the Finite-Element Method are transferred to SPH. In particular, an analogue of hourglass control is derived for SPH, which locally linearizes the deformation field to obtain stable and accurate solutions, without the need to resort to stabilization via excessive artificial viscosity. The resulting SPH scheme combines the ability of updated Lagrangian SPH to model truly large deformations with the accuracy and stability needed to faithfully perform simulations. This claim is supported by the analysis of problematic cases and the simulation of an impact scenario.

  4. Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities. Hourglass control for SPH

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, G. C.; Sauer, M.; May, M.; Hiermaier, S.

    2016-04-01

    We present a stabilization scheme for elastoplastic Smooth-Particle Hydrodynamics (SPH) which overcomes two major challenges: (i) the tensile instability inherent to the updated Lagrangian approach is suppressed and (ii) the rank-deficiency instability inherent to the nodal integration approach is cured. To achieve these goals, lessons learned from the Finite-Element Method are transferred to SPH. In particular, an analogue of hourglass control is derived for SPH, which locally linearizes the deformation field to obtain stable and accurate solutions, without the need to resort to stabilization via excessive artificial viscosity. The resulting SPH scheme combines the ability of updated Lagrangian SPH to model truly large deformations with the accuracy and stability needed to faithfully perform simulations. This claim is supported by the analysis of problematic cases and the simulation of an impact scenario.

  5. Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities. Hourglass control for SPH

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, G. C.; Sauer, M.; May, M.; Hiermaier, S.

    2016-05-01

    We present a stabilization scheme for elastoplastic Smooth-Particle Hydrodynamics (SPH) which overcomes two major challenges: (i) the tensile instability inherent to the updated Lagrangian approach is suppressed and (ii) the rank-deficiency instability inherent to the nodal integration approach is cured. To achieve these goals, lessons learned from the Finite-Element Method are transferred to SPH. In particular, an analogue of hourglass control is derived for SPH, which locally linearizes the deformation field to obtain stable and accurate solutions, without the need to resort to stabilization via excessive artificial viscosity. The resulting SPH scheme combines the ability of updated Lagrangian SPH to model truly large deformations with the accuracy and stability needed to faithfully perform simulations. This claim is supported by the analysis of problematic cases and the simulation of an impact scenario.

  6. Nano-particle laser removal from silicon wafers

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Cho, S. H.; Kim, T. H.; Park, Jin-Goo; Busnaina, Ahmed A.

    2003-11-01

    A laser shock cleaning (LSC) technique as a new dry cleaning methodology has been applied to remove micro and nano-scale inorganic particulate contaminants. Shock wave is generated in the air just above the wafer surface by focusing intensive laser beam. The velocity of shock wave can be controlled to 10,000 m/sec. The sub-micron sized silica and alumina particles are attempted to remove from bare silicon wafer surfaces. More than 95% of removal efficiency of the both particles are carried out by the laser-induced airborne shock waves. In the final, a removal of nano-scale slurry particles from real patterned wafers are successfully demonstrated by LSC after chemical-mechanical polishing (CMP) process.

  7. Mechanisms for nano particle removal in brush scrubber cleaning

    NASA Astrophysics Data System (ADS)

    Huang, Yating; Guo, Dan; Lu, Xinchun; Luo, Jianbin

    2011-01-01

    A model describing the nano particle (<100 nm) removal behavior in brush scrubber cleaning is presented based on experiment results and theoretical analysis. The forces on the particles in different situations are analyzed and discussed. The adhesion forces of the van der Waals force, the electrostatic force, the brush load and the static friction between the particle and the wafer are calculated. The contact elastic force, hydrodynamic drag force and friction between the brush and the particle are considered as removal forces and are evaluated. The porous structure and roughness surface of brush material are considered in the hydrodynamic model to describe the brush deformation and the flow field in the cleaning process. The porous structure will result in decrease of hydrodynamic drag force. There are four situations of the particles relative to the brush roughness asperities for which the forces on the particle are different. When the particle is in contact with a brush asperity or on the wafer surface and in a semi-infinite fluid flow field, the particle may be removed by hydrodynamic force and elastic force in the presence of surfactant. When the particle is embedded in the brush asperity, the remove will realized when the friction caused by adhesion between the brush and the particle overcome the adhesion force between particle and wafer surface. The removed particles will be in the flow field or adhered on the brush surface and may redeposit on the wafer surface.

  8. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1998-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  9. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals. PMID:25603034

  10. Selective removal of persistent particles with no photomask damage

    NASA Astrophysics Data System (ADS)

    Robinson, Tod; Bozak, Ron; White, Roy; Archuletta, Mike; Lee, David

    2009-04-01

    Makers and users of advanced technology photomasks have seen increased difficulties with the removal of persistent, or stubborn, nano-particle contamination. Shrinking pattern geometries, and new mask clean technologies to minimize haze, have both increased the number of problems and loss of mask yield due to these non-removable nano-particles. A novel technique (BitCleanTM) has been developed using a scanning probe microscope system originally designed for nanomachining photomask defect repair. Progress in the technical development of this approach into a manufacture-able solution is reviewed and its effectiveness is shown in selectively removing adherent particles without touching surrounding sensitive structures. Methods for generating targeted edge test particles along with considerations for removal of particles in various pattern geometries and materials are also discussed.

  11. Exhaust particle removing system for an engine

    SciTech Connect

    Shinzawa, M.

    1986-12-23

    A method is described comprising the steps of: (a) measuring degree of clogging of a filter which traps particles suspended in exhaust gas emitted from an engine; (b) indicating when the measured degree of clogging of the filter is equal to or greater than a first reference level; (c) burning off the particles deposited on the filter when the measured degree of clogging of the filter is equal to or greater than the first reference level and when a manual switch is in a preset position; and (d) burning off the particles deposited on the filter independent of whether or not the manual switch is in the preset position when the measured degree of clogging of the filter is equal to or greater than a second reference level greater than the first reference level.

  12. Removal of endocrine disrupting compounds from wastewater using polymer particles.

    PubMed

    Murray, Audrey; Örmeci, Banu; Lai, Edward P C

    2016-01-01

    This study evaluated the use of particles of molecularly imprinted and non-imprinted polymers (MIP and NIP) as a wastewater treatment method for endocrine disrupting compounds (EDCs). MIP and NIP remove EDCs through adsorption and therefore do not result in the formation of partially degraded products. The results show that both MIP and NIP particles are effective for removal of EDCs, and NIP have the advantage of not being as compound-specific as the MIP and hence can remove a diverse range of compounds including 17-β-estradiol (E2), atrazine, bisphenol A, and diethylstilbestrol. Removal of E2 from wastewater was also tested to determine the effectiveness of NIP in the presence of interfering substances and natural organic matter. Removal of E2 from wastewater samples was high and increased with increasing NIP. NIP represent an effective way of removing a wide variety of EDCs from wastewater. PMID:26744949

  13. Exhaust particle removing system for an internal combustion engine

    SciTech Connect

    Shinzawa, M.

    1986-08-05

    An exhaust particle removing system is described for an internal combustion engine, comprising: (a) a filter disposed in an engine exhaust passage for trapping particles suspended in exhaust gas; (b) a burner for burning off the particles deposited on the filter; (c) means for sensing the pressure in the exhaust passage at a point upstream of the filter; (d) means for sensing the pressure in the exhaust passage at a point downstream of the filter; (e) means for determining whether or not the sensed upstream pressure is lower than a preset level; (f) means for, when the sensed upstream pressure is not lower than the preset level, deducing the degree of clogging of the filter on the basis of the sensed upstream and downstream pressures; (g) means for, when the sensed upstream pressure is lower than the preset level, measuring a time elapsed since the moment at which the sensed upstream pressure dropped below the preset level; (h) means for, when the sensed upstream pressure is lower than the preset level, deducing the degree of clogging of the filter on the basis of the time elapsed and the sensed upstream and downstream pressures obtained immediately prior to the moment at which the sensed upstream pressure dropped below the preset level; and (i) means for controlling the burner on the basis of the deduced degree of clogging of the filter.

  14. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  15. STS-31: APU Controller Removal

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The launch April 10 of the STS-31 was scrubbed at T-4 minutes due to a faulty valve in auxiliary power unit (APU) number one. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. This video shows the removal of the STS-31's auxiliary power unit (APU).

  16. Enhanced removal of radioactive particles by fluorocarbon surfactant solutions

    SciTech Connect

    Kaiser, R.; Harling, O.K.

    1993-08-01

    The proposed research addressed the application of ESI`s particle removal process to the non-destructive decontamination of nuclear equipment. The cleaning medium used in this process is a solution of a high molecular weight fluorocarbon surfactant in an inert perfluorinated liquid which results in enhanced particle removal. The perfluorinated liquids of interest, which are recycled in the process, are nontoxic, nonflammable, and environmentally compatible, and do not present a hazard to the ozone layer. The information obtained in the Phase 1 program indicated that the proposed ESI process is technically effective and economically attractive. The fluorocarbon surfactant solutions used as working media in the ESI process survived exposure of up to 10 Mrad doses of gamma rays, and are considered sufficiently radiation resistant for the proposed process. Ultrasonic cleaning in perfluorinated surfactant solutions was found to be an effective method of removing radioactive iron (Fe 59) oxide particles from contaminated test pieces. Radioactive particles suspended in the process liquids could be quantitatively removed by filtration through a 0.1 um membrane filter. Projected economics indicate a pre-tax pay back time of 1 month for a commercial scale system.

  17. Dustbathing in food particles does not remove feather lipids.

    PubMed

    Scholz, B; Kjaer, J B; Petow, S; Schrader, L

    2014-08-01

    Within the European Union, dustbathing material in cage-housing systems for laying hens became compulsory in 2012. In practice, most producers use food particles as litter substrate. The feed is dropped in small amounts on scratching mats by an automatic transporting system. However, because dustbathing behavior is meant to remove stale lipids from hens' plumage, food particles may not be a suitable substrate due to their fat content. This study analyzes feather lipid concentration (FLC) of laying hens with access to food particles (F) or lignocellulose (L) as litter substrates. In each of 2 identical trials, 84 laying hens of 2 genotypes (Lohmann Selected Leghorn, Lohmann Brown) were kept in 12 compartments (7 hens each). Compartments were equipped with a grid floor and additionally contained a closed dustbathing tray holding F or L. Feather samples (150 feathers) were taken 2 times throughout the experiment. At 23 wk of age, 4 hens per compartment were sampled after they were allowed pair-wise access to a dustbath for 2.5 h and 3 hens were sampled without access to a dustbathing tray (control). After 10 wk of free access to the dustbathing trays, all hens were sampled again. In trial 2, an additional third sampling was made after dustbaths had been closed again for 6 wk. Here, 6 hens per compartment were sampled immediately before and after a dustbath. Dustbathing in F resulted in higher FLC compared with L and control (P < 0.001), whereas no significant difference was found between L and control (P = 0.103). When open access to litter was provided, hens had higher FLC in F compared with L (P < 0.001). The FLC immediately after dustbathing in F was higher compared with the level before dustbathing (P < 0.001), whereas it was lower after dustbathing in L (P = 0.006). These results show that F are not suitable litter material for laying hens because they lead to lipid accumulation on the plumage. PMID:24894524

  18. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  19. Ultrafine particle removal and generation by portable air cleaners

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Siegel, Jeffrey A.; Corsi, Richard L.

    Portable air cleaners can both remove and generate pollutants indoors. To investigate these phenomena, we conducted a two-phase investigation in a 14.75 m 3 stainless steel chamber. In the first phase, particle size-resolved (12.6-514 nm diameter) clean air delivery rates (CADR) and efficiencies were determined, as were ozone emission rates, for two high-efficiency particle arresting (HEPA) filters, one electrostatic precipitator with a fan, and two ion generators without fans. The two HEPA air cleaners had count average CADR (standard deviation) of 188 (30) and 324 (44) m 3 h -1; the electrostatic precipitator 284 (62) m 3 h -1; and the two ion generators 41 (11) and 35 (13) m 3 h -1. The electrostatic precipitator emitted ozone at a rate of 3.8±0.2 mg h -1, and the two ion generators 3.3±0.2 and 4.3±0.2 mg h -1. Ozone initiates reactions with certain unsaturated organic compounds that produce ultrafine and fine particles, carbonyls, other oxidized products, and free radicals. During the second phase, five different ion generators were operated separately in the presence of a plug-in liquid or solid air freshener, representing a strong terpene source. For air exchange rates of between 0.49 and 0.96 h -1, three ion generators acted as steady-state net particle generators in the entire measured range of 4.61-157 nm, and two generated particles in the range of approximately 10 to 39-55 nm. Terpene and aldehyde concentrations were also sampled for one ion generator, and concentrations of terpenes decreased and formaldehyde increased. Given these results, the pollutant removal benefits of ozone-generating air cleaners may be outweighed by the generation of indoor pollution.

  20. The removal of deformed submicron particles from silicon wafers by spin rinse and megasonics

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Busnaina, Ahmed A.; Fury, Michael A.; Wang, Shi-Qing

    2000-02-01

    In order to successfully clean particulate contamination from wafer surfaces, it is necessary to understand the adhesion and deformation between the particles and the substrate in contact. The adhesion and removal mechanisms of deformed submicron particles have not been addressed in many previous studies. Submicron polystyrene latex particles (0.1-0.5 µm) were deposited on silicon wafers and removed by spin rinse and megasonic cleanings. Particle rolling is identified as the major removal mechanism for the deformed submicron particles from silicon wafers. Megasonics provides larger streaming velocity because of the extremely thin boundary layer resulting in a larger removal force that is capable of achieving complete removal of contamination particles.

  1. Flow-controlled magnetic particle manipulation

    DOEpatents

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  2. Exhaust particle removing system for an internal combustion engine

    SciTech Connect

    Shinzawa, M.

    1988-07-12

    An exhaust particle removing system is described for an engine, comprising: (a) a filter for trapping particles in exhaust from the engine; (b) means for determining whether or not the degree of clogging of the filter is unacceptable; (c) means for detecting an operating condition of the engine; (d) means for when the degree of clogging of the filter is unacceptable, throttling the flow of intake air into the engine and thus varying the pressure of the intake air in accordance with the detected engine operating condition in cases where the detected engine operating condition resides in a first predetermined range within which the temperature of the engine exhaust would be inadequate to burn off the trapped particles if the intake air flow were not throttled, the throttling means comprising a movable throttle valve disposed in an air intake passage, a bypass passage connected to the air intake passage and bypassing the throttle valve, and a movable bypass valve disposed in the bypass passage; and (e) means for, when the degree of clogging of the filter is unacceptable, allowing free flow of the intake air in cases where the detected engine operating condition resides in a second predetermined range within which the temperature of the engine exhaust would be adequate to burn off the trapped particles even if the intake air flow were not throttled.

  3. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  4. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission

    NASA Astrophysics Data System (ADS)

    Uk Lee, Byung; Yermakov, Mikhail; Grinshpun, Sergey A.

    2004-09-01

    The continuous emission of unipolar ions was evaluated in order to determine its ability to remove fine and ultrafine particles from indoor air environments. The evolution of the indoor aerosol concentration and particle size distribution was measured in real time with the ELPI in a room-size (24.3 m3) test chamber where the ion emitter was operating. After the results were compared with the natural decay, the air cleaning factor was determined. The particle aerodynamic size range of ∼0.04-2 μm was targeted because it represents many bioaerosol agents that cause emerging diseases, as well as those that can be used for biological warfare or in the event of bioterrorism. The particle electric charge distribution (also measured in the test chamber with the ELPI) was rapidly affected by the ion emission. It was concluded that the corona discharge ion emitters (either positive or negative), which are capable of creating an ion density of 105-106 e± cm-3, can be efficient in controlling fine and ultrafine aerosol pollutants in indoor air environments, such as a typical office or residential room. At a high ion emission rate, the particle mobility becomes sufficient so that the particle migration results in their deposition on the walls and other indoor surfaces. Within the tested ranges of the particle size and ion density, the particles were charged primarily due to the diffusion charging mechanism. The particle removal efficiency was not significantly affected by the particle size, while it increased with increasing ion emission rate and the time of emission. The performance characteristics of three commercially available ionic air purifiers, which produce unipolar ions by corona discharge at relatively high emission rates, were evaluated. A 30-minute operation of the most powerful device among those tested resulted in the removal of about 97% of 0.1 μm particles and about 95% of 1 μm particles from the air in addition to the natural decay effect.

  5. Particle control studies on Tore Supra

    SciTech Connect

    Mioduszewski, P.

    1987-01-01

    The report consists of viewgraphs. The goal of the particle control program at Tore Supra is to study plasma performance with strong pellet fueling and corresponding particle exhaust in a limiter tokamak. (WRF)

  6. Submicron particle removal in post-oxide chemical-mechanical planarization (CMP) cleaning

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Busnaina, A.

    Particle removal models for soft-pad buffing (the second-step polishing with DI water) and mechanical brush-cleaning processes are proposed and the removal forces are evaluated and compared with the average particle adhesion force to the oxide wafer surface resulting from the primary polishing (the first-step polishing with slurry). The hydrodynamic force due to the fluid flow is too small to remove slurry particles by itself and particles are most likely removed from the surfaces by the pad or brush asperity contact forces and the hydrodynamic drag force together. This conclusion is consistent with the experimental observations.

  7. Nanoscale Fe(0) particles for pentachlorophenol removal from aqueous solution: temperature effect and particles transformation.

    PubMed

    Cheng, Rong; Zheng, Xiang; Liu, Peng; Wang, Jian-Long

    2014-09-01

    Pentachlorophenol (PCP), as an important contaminant which was toxic and intractable, has received extensive attention. In this paper, the temperature effect during the transformation of PCP using nanoscale Fe(0) particles was studied, and the transformation processes of PCP and iron particles was explained. The results revealed that the removal processes of PCP followed pseudo first-order kinetics. The scale of dechlorination to the transformation of PCP increased with the increase of temperature, though the transformation rate decreased after reacting for 2 h under the experimental condition. However, the initial apparent transformation rate constants were calculated to be 0.312-0.536 h(-1) at the temperature of 20-50 degrees C, which showed an increase of transformation rate along with the increase of temperature. And the surface-area-normalized rate constants were calculated to be 9.50 x 10-3-1.63 x 10-2 L . h-1 . m-2. The experimental activation energy was calculated to be 15.0 kJ x mol(-1) from these rate constants using Arrhenius equation. A phenomenon observed at 50 degrees C indicated that more than one chlorine atom was removed from PCP and suggested β-elimination might be the major pathway for transformation. Sorption experiments showed that the sorption process on the surface of particles could be ignored in the kinetics and thermodynamics models. The changes of morphologies of nanoparticles before and after reaction indicated the transformation process of iron particles, and could be used to explain the changes of activity of nanoparticles. Magnetite (Fe3O4) and/or maghemite (Fe2O3) and lepidocrocite (γ-FeOOH) were corrosion products of iron. And along with the increase of temperature, the increased intensity of XRD peaks revealed the related a better crystallizing. PMID:25924353

  8. An ultrasonic scrubber: enhanced removal of particles by water sprays via ultrasonic excitation

    NASA Astrophysics Data System (ADS)

    Saylor, J. R.; Ran, Weiyu; Holt, R. Glynn

    2013-11-01

    Sprays are commonly used to remove pollutant particles in smokestacks, to reduce coal dust levels in mines, and in dust abatement applications. For typical conditions, sprays work poorly on particles having a diameter on the order of a micron, which is also the particle size most deleterious to the human lung. The acoustic radiation force can be used to move particles and drops, and we hypothesized that by forcing a particle laden flow and a spray into an ultrasonic standing wave field, particles and drops would be concentrated, thereby increasing the effectiveness of particle removal by sprays. Experimental data is presented in the form of scavenging coefficients for micron scale particles that supports this hypothesis. Also discussed is whether increased scavenging by ultrasonics is due to particle/drop interactions particle/particle interactions, or both.

  9. Removal of thiol ligands from surface-confined nanoparticles without particle growth or desorption.

    PubMed

    Elliott, Edward W; Glover, Richard D; Hutchison, James E

    2015-03-24

    Size-dependent properties of surface-confined inorganic nanostructures are of interest for applications ranging from sensing to catalysis and energy production. Ligand-stabilized nanoparticles are attractive precursors for producing such nanostructures because the stabilizing ligands may be used to direct assembly of thoroughly characterized nanoparticles on the surface. Upon assembly; however, the ligands block the active surface of the nanoparticle. Methods used to remove these ligands typically result in release of nanoparticles from the surface or cause undesired growth of the nanoparticle core. Here, we demonstrate that mild chemical oxidation (50 ppm of ozone in nitrogen) oxidizes the thiolate headgroups, lowering the ligand's affinity for the gold nanoparticle surface and permitting the removal of the ligands at room temperature by rinsing with water. XPS and TEM measurements, performed using a custom planar analysis platform that permits detailed imaging and chemical analysis, provide insight into the mechanism of ligand removal and show that the particles retain their core size and remain tethered on the surface core during treatment. By varying the ozone exposure time, it is possible to control the amount of ligand removed. Catalytic carbon monoxide oxidation was used as a functional assay to demonstrate ligand removal from the gold surface for nanoparticles assembled on a high surface area support (fumed silica). PMID:25727562

  10. Process and apparatus for adding and removing particles from pressurized reactors

    DOEpatents

    Milligan, John D.

    1983-01-01

    A method for adding and removing fine particles from a pressurized reactor is provided, which comprises connecting the reactor to a container, sealing the container from the reactor, filling the container with particles and a liquid material compatible with the reactants, pressurizing the container to substantially the reactor pressure, removing the seal between the reactor and the container, permitting particles to fall into or out of the reactor, and resealing the container from the reactor. An apparatus for adding and removing particles is also disclosed.

  11. Ultrafine particle removal and ozone generation by in-duct electrostatic precipitators.

    PubMed

    Poppendieck, Dustin G; Rim, Donghyun; Persily, Andrew K

    2014-01-01

    Human exposure to airborne ultrafine particles (UFP, < 100 nm) has been shown to have adverse health effects and can be elevated in buildings. In-duct electrostatic precipitator filters (ESP) have been shown to be an effective particulate control device for reducing UFP concentrations (20-100 nm) in buildings, although they have the potential to increase indoor ozone concentrations. This study investigated residential ESP filters to reduce ultrafine particles between 4 to 15 nm and quantified the resulting ozone generation. In-duct ESPs were operated in the central air handling unit of a test house. Results for the two tested ESP brands indicate that removal efficiency of 8 to 14 nm particles was near zero and always less than 10% (± 15%), possibly due to particle generation or low charging efficiency. Adding a media filter downstream of the ESP increased the decay rate for particles in the same size range. Continuous operation of one brand of ESP raised indoor ozone concentrations to 77 ppbv and 20 ppbv for a second brand. Using commercial filters containing activated carbon downstream of the installed ESP reduced the indoor steady-state ozone concentrations between 6% and 39%. PMID:24387032

  12. Hydraulic gradient control for groundwater contaminant removal

    USGS Publications Warehouse

    Fisher, Atwood D.; Gorelick, S.M.

    1985-01-01

    The Rocky Mountain Arsenal near Denver, Colarado, U.S.A., is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. The simulation-management model eliminates wells far from the plume perimeter and activates wells near the perimeter as the plume decreases in size. This successfully stablizes the hydraulic gradient during aquifer cleanup.The Rocky Mountain Arsenal near Denver, Colorado, USA, is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. Refs.

  13. 40 CFR 52.1890 - Removed control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Removed control measures. 52.1890 Section 52.1890 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... measures. On the dates listed below, Ohio requested that the indicated control measures be removed from...

  14. 40 CFR 52.1890 - Removed control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Removed control measures. 52.1890 Section 52.1890 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... measures. On the dates listed below, Ohio requested that the indicated control measures be removed from...

  15. 40 CFR 52.1890 - Removed control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Removed control measures. 52.1890 Section 52.1890 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... measures. On the dates listed below, Ohio requested that the indicated control measures be removed from...

  16. 40 CFR 52.1890 - Removed control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Removed control measures. 52.1890 Section 52.1890 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... measures. On the dates listed below, Ohio requested that the indicated control measures be removed from...

  17. 40 CFR 52.1890 - Removed control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Removed control measures. 52.1890 Section 52.1890 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... measures. On the dates listed below, Ohio requested that the indicated control measures be removed from...

  18. Optimization of removal function in computer controlled optical surfacing

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Guo, Peiji; Ren, Jianfeng

    2010-10-01

    The technical principle of computer controlled optical surfacing (CCOS) and the common method of optimizing removal function that is used in CCOS are introduced in this paper. A new optimizing method time-sharing synthesis of removal function is proposed to solve problems of the removal function being far away from Gaussian type and slow approaching of the removal function error that encountered in the mode of planet motion or translation-rotation. Detailed time-sharing synthesis of using six removal functions is discussed. For a given region on the workpiece, six positions are selected as the centers of the removal function; polishing tool controlled by the executive system of CCOS revolves around each centre to complete a cycle in proper order. The overall removal function obtained by the time-sharing process is the ratio of total material removal in six cycles to time duration of the six cycles, which depends on the arrangement and distribution of the six removal functions. Simulations on the synthesized overall removal functions under two different modes of motion, i.e., planet motion and translation-rotation are performed from which the optimized combination of tool parameters and distribution of time-sharing synthesis removal functions are obtained. The evaluation function when optimizing is determined by an approaching factor which is defined as the ratio of the material removal within the area of half of the polishing tool coverage from the polishing center to the total material removal within the full polishing tool coverage area. After optimization, it is found that the optimized removal function obtained by time-sharing synthesis is closer to the ideal Gaussian type removal function than those by the traditional methods. The time-sharing synthesis method of the removal function provides an efficient way to increase the convergence speed of the surface error in CCOS for the fabrication of aspheric optical surfaces, and to reduce the intermediate- and high

  19. Measurement of the Hygroscopicity and Wet Removal of Black-Carbon-Containing Particles in the Urban Atmosphere of Tokyo

    NASA Astrophysics Data System (ADS)

    Ohata, Sho; Moteki, Nobuhiro; Mori, Tatsuhiro; Koike, Makoto; Schwarz, Joshua; Takami, Akinori; Kondo, Yutaka

    2015-04-01

    Megacities are very large, concentrated anthropogenic sources of black carbon (BC) aerosols. Freshly emitted BC particles inside megacities affect local air quality and regional and global climate. The microphysical properties (e.g., number size distribution, coating thickness, and hygroscopicity) of atmospheric BC-containing particles are important because their efficiency of wet removal from the atmosphere can be highly dependent on these properties. In this study, we developed a method for independent measurement of the hygroscopicity of BC-free and BC-containing particles, and then applied it to the ambient observation in the urban atmosphere of Tokyo. A single particle soot photometer (SP2) was modified as a humidified-SP2, which quantifies the BC-core mass (BC content within a BC-containing particle) and optical diameter of individual aerosol particles, under controlled relative humidity (RH), by detecting both the laser-induced incandescence emitted and laser light scattered from each particle (Schwarz et al., 2014, Journal of Aerosol Science). Measurements of growth factor (GF) and hygroscopicity parameter κ for BC-free and BC-containing particles can be achieved by combining an aerosol particle mass analyzer with the newly developed humidified-SP2. This method was tested in the laboratory and then employed in ambient observations in summer 2014. The ambient measurements were made while also measuring number size distribution of BC cores in rainwater with a nebulizer-SP2 system. Throughout the observation period, for BC-containing particles with a dry diameter of about 200 nm, the particles with smaller BC fractions tended to represent greater water uptake, and the number fraction of the less hygroscopic (GF < 1.2 at 85% RH) BC-containing particles was more than 70% of the total BC-containing particles. The measured average number size distribution of BC cores in rainwater was larger than that in the surface air before precipitation began, and the

  20. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOEpatents

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  1. Toner display based on particle control technologies

    NASA Astrophysics Data System (ADS)

    Kitamura, Takashi

    2011-03-01

    Toner Display is based on an electrical movement of charged particles. Two types of black toner and white particles charged in the different electric polarity are enclosed between two electrodes. The particle movement is controlled by the external electric field applied between two transparent electrodes. The toner is collected to the electrode by an electrostatic force across the insulating layer to display a black image. The toners can be put back to the counter electrode by applying a reverse electric field, and white solid image is displayed. We have studied on the movement of three color particles independently to display color image in Toner Display. Two positively charged color particles with different amount of charge to mass ratio and negatively charged white particles were enclosed in the toner display cell. Yellow, cyan and white images were displayed by an application of voltage.

  2. Design of Free-Standing Microstructured Conducting Polymer Films for Enhanced Particle Removal from Non-uniform Surfaces

    NASA Astrophysics Data System (ADS)

    Laster, Jennifer; Deom, Nicholas; Boudouris, Bryan; Beaudoin, Stephen

    Particle removal from surfaces is important for a wide range of industrial applications (e.g., microelectronics fabrication). One of the main forces of particle adhesion to a surface is the van der Waals attraction force, which will be the focus of this effort. The surface features of interacting bodies can play a controlling role in the adhesion of particles by increasing or decreasing the amount of mass within the range of strong van der Waals forces. In order to control these interactions, specific geometries can be designed in order to manipulate the micro- and nanostructure of a material, which can conform to the features of a corresponding substrate increasing the overall contact area between the two surfaces. In this work, microstructured films of the conducting polymer polypyrrole (PPy) were synthesized through template-assisted electropolymerization techniques. The removal of fluorescently-labeled polystyrene beads from aluminum surfaces of varying roughness was measured and compared for microstructured and flat PPy films. The microstructured films were found to have an overall increase in the amount of particles removed from the aluminum surfaces; this demonstrates the ability to manipulate particle adhesion through advanced nanostructured polymer templating.

  3. Chromatographic removal of endotoxin from protein solutions by polymer particles.

    PubMed

    Hirayama, Chuichi; Sakata, Masayo

    2002-12-01

    Endotoxins, constituents of cell walls of gram-negative bacteria, are potential contaminants of the protein solutions originating from biological products. Such contaminants have to be removed from solutions used for intravenous administration, because of their potent biological activities causing pyrogenic reactions. Separation methods used for decontamination of water, such as ultrafiltration, have little effect on endotoxin levels in protein solutions. To remove endotoxin from a solution of high-molecular-mass compounds, such as proteins, the adsorption method has proven to be most effective. In this review, we first introduce endotoxin-specific properties in an aqueous solution, and then provide various methods of chromatographic separation of endotoxins from cellular products using polymer adsorbents. We also provide the design of novel endotoxin-specific polymer adsorbents. PMID:12450672

  4. Removal of Waterborne Particles by Electrofiltration: Pilot-Scale Testing

    EPA Science Inventory

    Theoretical analysis using a trajectory approach indicated that in the presence of an external electric field, charged waterborne particles are subject to an additional migration velocity which increases their deposition on the surface of collectors (e.g. sand filter). In this st...

  5. Controlled manipulation of engineered colloidal particles

    NASA Astrophysics Data System (ADS)

    Nunes, Janine

    This research utilized the Particle Replication in Non-wetting Templates (PRINTRTM) technology to fabricate highly tailored colloidal particles. The behavior of these engineered particles were studied as they were subjected to different precisely controlled external influences, including electric fields, magnetic fields and a templating approach based on the PRINT process. Given the tunability in particle properties afforded by the PRINT process, exceptional control of the resulting particle assemblies and particle mobility were observed, suggesting potential applications in numerous materials and life science applications that require control on the nanoscale. As the PRINT process was integral to all aspects of this research, it was important to gain a clear understanding of mechanism by which perfluoropolyether (PFPE) elastomeric molds can generate monodisperse arrays of discrete, uniform particles with tailored size, shape and composition. Thus, fundamental studies were conducted on the PFPE elastomers, focusing on contact mechanics measurements and capillary flow experiments. The results confirmed the low surface energy of PFPE, an important property that renders the PFPE molds ideal for the PRINT process. Capillary flow experiments were conducted to study the method by which PFPE molds can be filled during the PRINT process. The flow in closed PFPE microchannels was compared to that in PDMS and glass. Suspensions of PRINT particles were studied in the presence of electric and magnetic fields. Electric field experiments were conducted using non-uniform alternating current electric fields and uniform direct current electric fields. Magnetic field experiments were conducted using both stationary and rotating magnetic fields. Particle assemblies were observed to form and could be tuned by particle shape and composition. Particle motion, both translational and rotational, was also controlled. Properties were found to be both shape and composition dependent. These

  6. Controlling chaos in wave-particle interactions.

    PubMed

    de Sousa, M C; Caldas, I L; Rizzato, F B; Pakter, R; Steffens, F M

    2012-07-01

    We analyze the behavior of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave. We work with a set of pulsed waves that allows us to obtain an exact map for the system. We also use a method of control for near-integrable Hamiltonians that consists of the addition of a small and simple control term to the system. This control term creates invariant tori in phase space that prevent chaos from spreading to large regions, making the controlled dynamics more regular. We show numerically that the control term just slightly modifies the system but is able to drastically reduce chaos with a low additional cost of energy. Moreover, we discuss how the control of chaos and the consequent recovery of regular trajectories in phase space are useful to improve regular particle acceleration. PMID:23005517

  7. Apparatus and method for destructive removal of particles contained in flowing fluid

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Editor)

    1980-01-01

    An apparatus and method for destructively removing particles from a flowing gas containing the particles is described. In the specific embodiments disclosed the apparatus is adapted to remove carbon particles from diesel engine exhaust products. The exhaust products are directed to a predetermined location where they are rapidly vaporized and combine with oxygen in the exhaust products to form carbon dioxide. Vaporization in one embodiment is effected by a discharge grid located within an exhaust conduit, the grid being chosen so that alternate conductors defining the grid are spaced apart a distance approximately 125 times the mean diameter of the particles to be removed. A voltage differential of approximately 690 volts is applied across adjacent conductors.

  8. Apparatus and method for destructive removal of particles contained in flowing fluid

    NASA Astrophysics Data System (ADS)

    Yang, L. C.

    1980-10-01

    An apparatus and method for destructively removing particles from a flowing gas containing the particles is described. In the specific embodiments disclosed the apparatus is adapted to remove carbon particles from diesel engine exhaust products. The exhaust products are directed to a predetermined location where they are rapidly vaporized and combine with oxygen in the exhaust products to form carbon dioxide. Vaporization in one embodiment is effected by a discharge grid located within an exhaust conduit, the grid being chosen so that alternate conductors defining the grid are spaced apart a distance approximately 125 times the mean diameter of the particles to be removed. A voltage differential of approximately 690 volts is applied across adjacent conductors.

  9. Ice nucleation active particles are efficiently removed by precipitating clouds

    PubMed Central

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ18O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ −10 °C (INPs−10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space. PMID:26553559

  10. A method of removing oxides from the surface of Fe-Ni-Co alloy particles by chemical etching

    SciTech Connect

    Yelton, W.G.

    1989-04-01

    The addition of metal particles to bulk glass has been shown to increase fracture strength and toughness. Composites containing well-bonded particles exhibit the largest increases in these properties. This report discusses a study in which a method was developed to alter the surfaces of Fe--Ni--Co particles so that improved particle/glass matrix bonding resulted. In this method, as received Fe--Ni--Co particles were intentionally oxidized to create surface and grain boundary oxides. The surface and grain boundary oxides were then preferentially removed from the surfaces of iron-nickel-cobalt alloy particles by chemical etching. After removal of the surface oxides, coral-like structures remained on the surfaces of the metal particles and furnished good mechanical bonding sites to the glass matrix. The progression of this study involved completion of three designed experiments. In the first experiment, an etching process was identified by controlling etching solution temperature and hold time. Data from the first study were then incorporated into the design of a second experiment which examined solution temperature heating rate and hold time at 60/degree/C. Finally, the best conditions of the previous studies were selected to investigate the effects of the agitation rate of the etching solution on the particle yield. Combining the best conditions from each study yielded the most efficient method of removing oxides, in which a solution of 120 ml/l H/sub 3/PO/sub 4/ and 50 ml/l HCl was heated at 1/degree/C/min to 60/degree/C, held at 60/degree/C, and then moderately agitated for 30 min. 6 refs., 18 figs., 2 tabs.

  11. Evaluation of the particle measurement programme (PMP) protocol to remove the vehicles' exhaust aerosol volatile phase.

    PubMed

    Giechaskiel, B; Chirico, R; Decarlo, P F; Clairotte, M; Adam, T; Martini, G; Heringa, M F; Richter, R; Prevot, A S H; Baltensperger, U; Astorga, C

    2010-10-01

    European regulation for Euro 5/6 light duty emissions introduced the measurement of non-volatile particles with diameter >23 nm. The volatile phase is removed by using a heated dilution stage (150 degrees C) and a heated tube (at 300-400 degrees C). We investigated experimentally the removal efficiency for volatile species of the specific protocol by conducting measurements with two Euro 3 diesel light duty vehicles, a Euro 2 moped, and a Euro III heavy duty vehicle with the system's heaters on and off. The particle number distributions were measured with a Scanning Mobility Particle Sizer (SMPS) and a Fast Mobility Particle Sizer (FMPS). An Aerosol Mass Spectrometer (AMS) was used to identify the non-refractory chemical composition of the particles. A Multi-Angle Absorption Photometer (MAAP) was used to measure the black carbon concentration. The results showed that the condensed material in the accumulation mode (defined here as particles in the diameter range of approximately 50-500 nm) was removed with an efficiency of 50-90%. The (volatile) nucleation mode was also completely evaporated or was decreased to sizes <23 nm; thus these particles wouldn't be counted from the particle counter, indicating the robustness of the protocol. PMID:20692024

  12. Ghost hunting—an assessment of ghost particle detection and removal methods for tomographic-PIV

    NASA Astrophysics Data System (ADS)

    Elsinga, G. E.; Tokgoz, S.

    2014-08-01

    This paper discusses and compares several methods, which aim to remove spurious peaks, i.e. ghost particles, from the volume intensity reconstruction in tomographic-PIV. The assessment is based on numerical simulations of time-resolved tomographic-PIV experiments in linear shear flows. Within the reconstructed volumes, intensity peaks are detected and tracked over time. These peaks are associated with particles (either ghosts or actual particles) and are characterized by their peak intensity, size and track length. Peak intensity and track length are found to be effective in discriminating between most ghosts and the actual particles, although not all ghosts can be detected using only a single threshold. The size of the reconstructed particles does not reveal an important difference between ghosts and actual particles. The joint distribution of peak intensity and track length however does, under certain conditions, allow a complete separation of ghosts and actual particles. The ghosts can have either a high intensity or a long track length, but not both combined, like all the actual particles. Removing the detected ghosts from the reconstructed volume and performing additional MART iterations can decrease the particle position error at low to moderate seeding densities, but increases the position error, velocity error and tracking errors at higher densities. The observed trends in the joint distribution of peak intensity and track length are confirmed by results from a real experiment in laminar Taylor-Couette flow. This diagnostic plot allows an estimate of the number of ghosts that are indistinguishable from the actual particles.

  13. Assessment of Biofilter Media Particle Sizes for Removing Ammonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increased concerns over odor and gas emissions from livestock production facilities more efficient technologies of air pollution control are needed to mitigate the deleterious effects of air contaminants. Gas-phase biofilters for treating contaminant gases from poultry and livestock operations ...

  14. ASSESSMENT OF BIOFILTER MEDIA PARTICLE SIZES FOR REMOVING AMMONIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increased concerns over odor and gas emissions from livestock production facilities more efficient technologies of air pollution control are needed to mitigate the deleterious effects of air contaminants. Gas-phase biofilters for treating contaminant gases from poultry and livestock operations ...

  15. Optimization of Microdermabrasion for Controlled Removal of Stratum Corneum

    PubMed Central

    Andrews, Samantha N.; Zarnitsyn, Vladimir; Brian, Bondy; Prausnitz, Mark R.

    2011-01-01

    Microdermabrasion has been shown to increase skin permeability for transdermal drug delivery by damaging or removing skin’s outer layer, stratum corneum. However, relationships between microdermabrasion parameters and effects on the stratum corneum barrier have not been developed. In this study, we determined the effect of microdermabrasion crystal flow rate, time, and suction pressure applied in both static and dynamic modes on the extent of stratum corneum removal from excised porcine skin. In addition to controlling the depth of tissue removal by microdermabrasion parameters, we also controlled the area of tissue removal by applying a metal mask patterned with 125- or 250-μm holes to selectively expose small spots of tissue to microdermabrasion. We found that the extent of stratum corneum removal depended strongly on the crystal flow rate and exposure time and only weakly on pressure or static/dynamic mode operation. Masking the skin was effective to localize stratum corneum removal to exposed sites. Overall, this study demonstrates that optimized microdermabrasion in combination with a mask can be used to selectively remove stratum corneum with three-dimensional control, which is important to translating this technique into a novel method of transdermal drug delivery. PMID:21272628

  16. The removal of nitrate by nanoscale iron particles produced using the sodium borohydride method.

    PubMed

    Cho, Hyoung-Chan; Park, Sung Hoon; Ahn, Ho-Geun; Chung, Minchul; Kim, Byungwhan; Kim, Sun-Jae; Seo, Seong-Gyu; Jung, Sang-Chul

    2011-02-01

    This study was conducted to investigate removal of nitrate by nanoscale zero-valent iron (ZVI) particles in aqueous solution. ZVI particles was produced from wasted acid that is by-products of a pickling line at a steel work. The reaction activity of ZVI particles was evaluated through decomposition experiments of NO3-N aqueous solution. Addition of a larger amount of ZVI particles resulted in a higher decomposition rate. ZVI particles showed higher decomposition efficiencies than commercially purchased ZVI particles at all pH values. Both ZVIs showed a higher decomposition rate at a lower pH. Virtually no decomposition reaction was observed at pH of 4 or higher for purchased ZVI. The ZVI particles produced directly from wasted acid by the sodium borohydride method were not easy to handle because they were very small (10-200 nm) and were oxidized easily in the air. PMID:21456267

  17. Independent regulation of chylomicron lipolysis and particle removal rates: effects of insulin and thyroid hormones on the metabolism of artificial chylomicrons.

    PubMed

    Zerbinatti, C V; Oliveira, H C; Wechesler, S; Quintao, E C

    1991-11-01

    The processes of chylomicron lipolysis and removal from plasma were investigated by the intra-arterial infusion of doubly labeled artificial chylomicrons in rats. The rate of lipolysis was measured as a delipidation index (DI), which is the glyceryl-tri-9,10(N)-3H oleate (3H-TO) fraction removed from the particle as fatty acids, whereas the cholesteryl(1-14C) oleate (14C-CO) plasma disappearance rate measures the splanchnic organ particle uptake. In the alloxan-diabetic rats, despite a normal DI, the 14C-CO plasma residence time (RT) was longer than in control animals and remained longer after stimulation of the lipoprotein lipase by heparin. DI and 14C-CO removal rate were not significantly altered by insulin administration to glucose-supplemented control rats. Lipolysis was remarkable in propylthiouracil (PTU)-induced hypothyroidism, and yet the 14C-CO removal rate was retarded. In hypothyroidism, heparin enhanced the 14C-CO removal more than in the control group; however, after heparin, the 14C-CO RT still remained higher in the hypothyroid animals as compared with the control group. Hyperthyroidism lowered the DI; nevertheless, the 14C-CO disappearance rate was faster than in controls. In summary, lack or excess of thyroid hormone influences both the chylomicron lipolysis and removal systems, whereas lack of insulin impairs mostly the particle removal from plasma, and excess of insulin has no effect on the chylomicron metabolism. PMID:1943739

  18. Mechanistic studies of SC-1 particle removal and post piranha rinsing

    SciTech Connect

    Resnick, P.; Adkins, C.; Clews, P.; Matlock, C.; Kittelson, D.; Kuehn, T.; Gouk, R.; Wu, Y.

    1996-10-01

    SC-1 (NH{sub 4}OH/H{sub 2}O{sub 2}/H{sub 2}O) and piranha (H{sub 2}SO{sub 4}/H{sub 2}O{sub 2}) cleans have been used for many years to remove particulate and organic contamination. Although the SC-1 clean, often used with applied megasonic power, is known to be highly effective for particle removal, the removal mechanism remains unclear. For the removal of heavy organic contamination, the piranha cleaning chemistry is an effective process; however, post-piranha residue adheres tenaciously to the wafer surface, causing a particle growth phenomenon. A series of experiments have been performed to help understand the interaction of these processes with silicon surfaces.

  19. Adhesion and removal of glass, silica and PSL particles from silicon dioxide substrates

    NASA Astrophysics Data System (ADS)

    Feng, Jiangwei

    As circuit minimum feature size continues to shrink, surface cleanliness requirements become more stringent, making surface cleaning more challenging. To develop effective cleaning techniques, it is important to understand particle adhesion and removal mechanisms. Although many studies have been conducted in particle adhesion, the effects of humidity and aging, hydrogen and covalent bonds, and particle's submicron size on adhesion are not well understood. It is necessary to study and understand how the adhesion force changes with time under different conditions in order to develop effective cleaning techniques. The humidity and aging effects on the adhesion and removal of glass particles on flat panel display glass surface, silica particles on thermal oxide silicon wafers and PSL (Polystyrene Latex) particles on silicon wafers are investigated. The results show that silica particles' contact area increases dramatically in high humidity environment over time. This is due to the water reacting with the silica and forming a covalent bond. The results show that silica particles' adhesion force is found to depend on the aging time. After six weeks 95%RH aging, the adhesion force is larger than MP model (for plastic deformation) predicted adhesion force. This is due to the formation of hydrogen bonds and covalent bonds. Removal of glass particles on Flat Panel Display aged in a humid environment using megasonic cleaning is also investigated. The effect of temperature, cleaning time and megasonic power on particle removal is shown. The time and humidity effect on submicron PSL particles' adhesion is also investigated. The combined effect of time and humidity results in increased particle deformation and consequently the increased adhesion force. An empirical model is proposed to describe the relationship between the contact diameter, particle diameter and aging time. The proposed model is in good agreement with the experimental data. The results suggest that a greater

  20. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    SciTech Connect

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. )

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  1. An investigation into the removal of oil from rock utilising magnetic particle technology.

    PubMed

    Orbell, John D; Dao, Hien V; Kapadia, Jignesh; Ngeh, Lawrence N; Bigger, Stephen W; Healy, Margaret; Jessop, Rosalind; Dann, Peter

    2007-12-01

    The application of magnetic particle technology to environmental remediation has tended to focus, up to now, upon the removal of oil contamination from plumage and fur. The present research demonstrates the potential of this technology to remove oil contamination from the surface of rock. Specifically, a single treatment has been demonstrated to remove more than 80% by weight of heavy bunker oil from the surface of a common foreshore rock type. A further three treatments have been shown to result in an optimum removal of up to 94% by weight. The results are highly reproducible and offer the possibility of achieving up to 100% removal with the appropriate use of pre-conditioners. PMID:17967468

  2. Polymer hollow particles with controllable holes in their surfaces

    NASA Astrophysics Data System (ADS)

    Hyuk Im, Sang; Jeong, Unyong; Xia, Younan

    2005-09-01

    Colloidal particles with hollow interiors play important roles in microencapsulation-a process that has found widespread use in applications such as controlled release of drugs, cosmetics, inks, pigments or chemical reagents; protection of biologically active species; and removal of pollutants. The hollow particles are most commonly prepared by coating the surfaces of colloidal templates with thin layers of the desired material (or its precursor), followed by selective removal of the templates by means of calcination or chemical etching. This simple and straightforward approach works for a variety of materials that include polymers, ceramics, composites and metals. For polymers, methods such as emulsion polymerization, phase separation, crosslinking of micelles and self-assembly have also been demonstrated for generating hollow structures. However, diffusion through these closed shells with pores <10 nm is often a slow process. To solve this problem, macroporous capsules have been fabricated by organizing colloids around liquid droplets to form colloidosomes or by controlling the mixing of liquid droplets. Here we report the preparation of another class of macroporous capsules-polymer shells with controllable holes in their surfaces. After loading of functional materials, the holes can be closed by means of thermal annealing or solvent treatment.

  3. Improvements in laser flare removal for particle image velocimetry using fluorescent dye-doped particles

    NASA Astrophysics Data System (ADS)

    Petrosky, B. J.; Lowe, K. T.; Danehy, P. M.; Wohl, C. J.; Tiemsin, P. I.

    2015-11-01

    Laser flare, or scattering of laser light from a surface, can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in the flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following work presents fluorescent Kiton Red 620 (KR620)-doped polystyrene latex microspheres as a solution to this issue. The particles are small and narrowly distributed, with a mean diameter of 0.87 μ \\text{m} and diameter distribution standard deviation of 0.30 μ \\text{m} . Furthermore, the KR620 dye exhibits much lower toxicity than other common fluorescent dyes, and would be safe to use in large flow facilities. The fluorescent signal from the particles is measured on average to be 320  ±  10 times weaker than the Mie scattering signal from the particles. This reduction in signal is counterbalanced by greatly enhanced contrast via optical rejection of the incident laser wavelength. Fluorescent PIV with these particles is shown to eliminate laser flare near surfaces, allowing for velocity measurements as close as 100 μ \\text{m} to the surface. In one case, fluorescent PIV led to velocity vector validation rates more than 20 times that of the Mie scattering results in the boundary layer region of an angled surface.

  4. Eutrophication control and the fallacy of nitrogen removal

    SciTech Connect

    Sincero, A.P.

    1984-11-01

    There has been a great deal of controversy over the issue of nitrogen control from sewage treatment plants discharges to alleviate excessive algae growths in receiving bodies of water. Some of the controversy seems to have risen from a thorough misunderstanding of the microbiology involved in the utilization of nitrogen by microbes. In a haste to control eutrophication, some regulators have required the removal of nitrogen from the effluent of sewage treatment plants; e.g., the Patuxent Nitrogen Removal Policy of the State of Maryland.

  5. Particle removal challenges with EUV patterned mask for the sub-22nm HP node

    SciTech Connect

    Rastegar, A.; Eichenlaub, S.; Kadaksham, A. J.; Lee, B.; House, M.; Huh, S.; Cha, B.; Yun, H.; Mochi, I.; Goldberg, K. A.

    2010-03-12

    The particle removal efficiency (PRE) of cleaning processes diminishes whenever the minimum defect size for a specific technology node becomes smaller. For the sub-22 nm half-pitch (HP) node, it was demonstrated that exposure to high power megasonic up to 200 W/cm{sup 2} did not damage 60 nm wide TaBN absorber lines corresponding to the 16 nm HP node on wafer. An ammonium hydroxide mixture and megasonics removes {ge}50 nm SiO{sub 2} particles with a very high PRE, A sulfuric acid hydrogen peroxide mixture (SPM) in addition to ammonium hydroxide mixture (APM) and megasonic is required to remove {ge}28 nm SiO{sub 2} particles with a high PRE. Time-of-flight secondary ion mass spectroscopy (TOFSIMS) studies show that the presence of O{sub 2} during a vacuum ultraviolet (VUV) ({lambda} = 172 nm) surface conditioning step will result in both surface oxidation and Ru removal, which drastically reduce extreme ultraviolet (EUV) mask life time under multiple cleanings. New EUV mask cleaning processes show negligible or no EUV reflectivity loss and no increase in surface roughness after up to 15 cleaning cycles. Reviewing of defect with a high current density scanning electron microscope (SEM) drastically reduces PRE and deforms SiO{sub 2} particles. 28 nm SiO{sub 2} particles on EUV masks age very fast and will deform over time, Care must be taken when reviewing EUV mask defects by SEM. Potentially new particles should be identified to calibrate short wavelength inspection tools, Based on actinic image review, 50 nm SiO{sub 2} particles on top of the EUV mask will be printed on the wafer.

  6. Effect of Process Parameters on Particle Removal Efficiency in Poly(vinyl alcohol) Brush Scrubber Cleaning

    NASA Astrophysics Data System (ADS)

    An, Joonho; Lee, Hyunseop; Kim, Hyoungjae; Jeong, Haedo

    2012-02-01

    Wafer cleaning is one of the most critical processes in the semiconductor device manufacturing. Poly(vinyl alcohol) (PVA) brush scrubber cleaning is much attractive when compared with traditional wet-batch cleaning which causes the cross-contamination among the wafers in a bath and environmental issues with huge amount of chemical and deionized water (DIW) usages. The mechanical forces generated from PVA brush contact can remove the particles on a wafer surface under low concentration of chemical solution without cross-contamination. In this research, we monitored the change of the dynamic forces including normal and friction force generated by PVA brush contacts during cleaning process, and also investigated the effects of scrubbing conditions of PVA brush overlap and velocity, and the surface tension (low- or high-hydrophilic) of the wafer on the particle removal efficiency. The results show that the driving mechanism to remove the particle on a wafer surface can be changed by the PVA brush overlap and velocity condition such as the hydrodynamic drag force in the brush soft contact condition and friction force in the brush hard contact condition. The particle removal efficiency is higher under the low-hydrophilic surface having a low surface tension compared to high-hydrophilic surface.

  7. Assessment of Different Biofilter Media Particle Sizes for Ammonia Removal Optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main objective of this study is to determine a range of particle sizes that provides low resistance to the air flow but also sufficient surface area for microbial attachment, which is needed for higher biofiltration efficiency. This will be done by assessing ammonia removal and pressure drop in ...

  8. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    NASA Astrophysics Data System (ADS)

    Bastian, S.; Löschau, G.; Wiedensohler, A.

    2014-04-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The function control allows unattended quality assurance experiments at remote air quality monitoring or research stations under field conditions. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter while removing diffusive particles smaller than 20 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. Another feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. The performance of the function control is illustrated with the aid of a 1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air quality monitoring network. During the period of concern, the total particle number concentration derived from the mobility particle size spectrometer slightly overestimated the particle number concentration recorded by the condensation particle counter by 2 % (grand average). Based on our first year of experience with the function control, we developed tolerance criteria that allow a performance evaluation of a tested mobility particle size spectrometer with respect to the total particle number concentration. We conclude that the automated function control enhances the quality and reliability of unattended long-term particle number size distribution measurements. This will have beneficial effects for intercomparison studies involving different measurement sites, and help provide a higher

  9. Effect of weathering on mobilization of biochar particles and bacterial removal in a stormwater biofilter.

    PubMed

    Mohanty, Sanjay K; Boehm, Alexandria B

    2015-11-15

    To improve bacterial removal, a traditional stormwater biofilter can be augmented with biochar, but it is unknown whether bacterial removal remains consistent as the biochar weathers during intermittent exposure to stormwater under dry-wet and freeze-thaw cycles. To examine the effect of weathering on bacterial removal capacity of biochar, we subjected biochar-augmented sand filters (or simplified biofilters) to multiple freeze-thaw or dry-wet cycles for a month and then compared their bacterial removal capacity with the removal capacity of unweathered biofilters. To isolate the effect of physical and chemical weathering processes from that of biological processes, the biofilters were operated without any developed biofilm. Biochar particles were mobilized during intermittent infiltration of stormwater, but the mobilization depended on temperature and antecedent conditions. During stormwater infiltration without intermediate drying, exposure to natural organic matter (NOM) in the stormwater decreased the bacterial removal capacity of biochar, partly due to exhaustion of attachment sites by NOM adsorption. In contrast, exposure to the same amount of NOM during stormwater infiltration with intermediate drying resulted in higher bacterial removal. This result suggests that dry-wet cycles may enhance recovery of the previously exhausted attachment sites, possibly due to diffusion of NOM from biochar surfaces into intraparticle pores during intermediate drying periods. Overall, these results indicate that physical weathering has net positive effect on bacterial removal by biochar-augmented biofilters. PMID:26320722

  10. Effects of the particle residence time and the spray droplet size on the particle removal efficiencies in a wet scrubber

    NASA Astrophysics Data System (ADS)

    Koo, J.; Hong, J.; Lee, H.; Shin, S.

    2010-06-01

    A new type of scrubbing system equipped with air-atomized spray nozzles, full cone type spray nozzles and the maze shape channels has been developed and the mass transfer mechanism to remove sub-micron particles is analyzed. There is a minimal time duration for the mixture of air and sprayed water droplets should remain in the scrubbing zone for the sub-micron particles and hydrogen fluoride (HF) gas to diffuse and be captured by water droplets. The grown water droplets enter the maze shape channels which have sharp corners and bends to eliminate the water droplets by collision with the walls. As a result of applying the developed design methodology, the sub-micron particle removal efficiencies of the scrubber are found to be above 99% for the particles of 0.5-1 μm, 96% for those of 0.3-0.5 μm, and 86% for those smaller than 0.3 μm in diameter under the optimum operating condition.

  11. Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany.

    PubMed

    Li, Lingxiangyu; Hartmann, Georg; Döblinger, Markus; Schuster, Michael

    2013-07-01

    The majority of pure silver nanoparticles in consumer products are likely released into sewer systems and usually end up in wastewater treatment plants (WWTPs). Research investigating the reduction in nanoscale silver particles (n-Ag-Ps) has focused on the biological treatment process, generally in controlled laboratory experiments. This study, analyzing the field-collected samples from nine municipal WWTPs in Germany, is the first to evaluate the reduction in n-Ag-Ps by mechanical and biological treatments in sequence in WWTPs. Additionally, the concentration of n-Ag-Ps in effluent was determined through two different methods that are presented here: novel ionic exchange resin (IER) and cloud point extraction (CPE) methods. The n-Ag-Ps concentrations in influent were all low (<1.5 μg/L) and decreased (average removal efficiency of ∼35%) significantly after mechanical treatment, indicating that the mechanical treatment contributes to the n-Ag-Ps removal. Afterward, more than 72% of the remaining n-Ag-Ps in the semi-treated wastewater (i.e., wastewater after mechanical treatment) were reduced by biological treatment. Together, these processes reduced 95% of the n-Ag-Ps that entered WWTPs, which resulted in low concentration of n-Ag-Ps in the effluents (<12 ng/L). For a WWTP with 520,000 t/d treatment capacity, we estimated that the daily n-Ag-Ps load in effluent discharge equated to about 4.4 g/d. Obviously, WWTPs are not potential point sources for n-Ag-Ps in the aquatic environment. PMID:23750458

  12. Improved sulfur removal from coals by redox potential control of surfaces during grinding

    SciTech Connect

    Tampy, G.K.; Birlingmair, D.H.; Burkhart, L.E.

    1988-01-01

    Control of the redox potential of an Upper Freeport run-of-mine coal slurry during wet grinding and subsequent beneficiation gave better sulfur removal, with no decrease in coal recovery, than either potential control during grinding or beneficiation alone. Sodium dithionite, a reducing agent used to depress the sulfur, also gave substantially better results than pH control alone, irrespective of whether the physical beneficiation was by oil agglomeration, foam flotation, or microbubble batch flotation. Three-phase contact angle measurements and pulp potential measurements suggest that slow electrochemical reactions at the particle surfaces may be responsible for the improved results obtained when the reductant is added at the grinding stage.

  13. Preparation of polyethersulfone-organophilic montmorillonite hybrid particles for the removal of bisphenol A.

    PubMed

    Cao, Fuming; Bai, Pengli; Li, Haocheng; Ma, Yunli; Deng, Xiaopei; Zhao, Changsheng

    2009-03-15

    Polyethersulfone (PES)-organophilic montmorillonite (OMMT) hybrid particles, with various proportions of OMMT, were prepared by using a liquid-liquid phase separation technique, and then were used for the removal of bisphenol A (BPA) from aqueous solution. The adsorbed BPA amounts increased significantly when the OMMT were embedded into the particles. The structure of the particle was characterized by using scanning electron microscopy (SEM); and these particles hardly release small molecules below 250 degrees C which was testified by using thermogravimetric analysis (TGA). The experimental data of BPA adsorption were adequately fitted with Langmuir equations. Three simplified kinetics model including the pseudo-first-order (Lagergren equation), the pseudo-second-order, and the intraparticle diffusion model were used to describe the adsorption process. Kinetic studies showed that the adsorbed BPA amount reached an equilibrium value after 300 min, and the experimental data could be expressed by the intraparticular mass transfer diffusion model. Furthermore, the adsorbed BPA could be effectively removed by ethanol, which indicated that the hybrid particles could be reused. These results showed that the PES-OMMT hybrid particles have the potential to be used in the environmental application. PMID:18597933

  14. Nano-particle removal from surface of materials used in EUV mask fabrication

    NASA Astrophysics Data System (ADS)

    Pandit, Viraj Sadanand

    With device scaling, the current optical lithography technique is reaching its technological limit to print small features. Extreme Ultra-Violet (EUV) lithography has shown promise to print extremely thin lines reliably and cost-effectively. Many challenges remain before introducing EUV to large scale manufacturing. The main challenge addressed in this study is particle removal from EUV mask surfaces (CrON1, CrON2, and fused silica) and thermal oxide (SiO2). Effective pre-clean procedures were developed for each surface. As chemical cleaning methods fail to meet SEMATECH criteria, addition of megasonic energy to EUV mask cleaning baths is seen as a promising cleaning methodology. As the requirement to print fine lines needs to be met, all materials used in EUV mask fabrication either absorb the incident EUV wavelength light or reflect it. Therefore, the masks used in the industry will be reflective instead of the conventional transmissive masks. Also, for the same reason, no protective pellicle can be used leading to all the surfaces unprotected from particle contamination. To avoid the detrimental effect of the particle contamination, a cleaning study for nano-particle removal was performed. A dark field microscope was utilized to study the removal of gold nano-particles from surfaces. The cleaning procedures utilized H2SO4 and NH4OH chemistries with and without megasonic irradiation. The cleaning variables were bath concentration, temperature, and megasonic power. The contamination variables were the gold nanoparticles charge and size, from 40nm to 100nm. For 100 nm negatively charged gold nano-particles deposited on a CrON1 surface, a 1:10 H2SO4:DI bath at boiling temperature (101°C) without megasonics gave high particle removal efficiency (PRE) values as did a 1:10 H2SO4:DI bath at 35°C with 100W megasonics. Comparison of removal of poly diallyl-dimethyl ammonium chloride (PDAC) coated and uncoated gold nano-particles deposited on a CrON1 surface using dilute

  15. Impurity and particle control for INTOR

    SciTech Connect

    Post, D.

    1985-02-01

    The INTOR impurity control system studies have been focused on the development of an impurity control system which would be able to provide the necessary heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (approx. 1 year), and (3) minimum size and cost. The major systems examined were poloidal divertors and pumped limiters. The poloidal divertor was chosen as the reference option since it offered the possibility of low sputtering rates due to the formation of a cool, dense plasma near the collector plates. Estimates of the sputtering rates associated with pumped limiters indicated that they would be too high for a reasonable system. Development of an engineering design concept was done for both the poloidal divertor and the pumped limiter.

  16. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    NASA Astrophysics Data System (ADS)

    Schladitz, A.; Merkel, M.; Bastian, S.; Birmili, W.; Weinhold, K.; Löschau, G.; Wiedensohler, A.

    2013-12-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The aim of the new feature is to conduct unattended quality control experiments under field conditions at remote air quality monitoring or research stations. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter removing the diffusive particles approximately smaller than 25 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. The other feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. An exemplary one-year data set is presented for the measurement site Annaberg-Buchholz as part of the Saxon air quality monitoring network. The total particle number concentration derived from the mobility particle size spectrometer overestimates the particle number concentration by only 2% (grand average offset). Furthermore, tolerance criteria are presented to judge the performance of the mobility particle size spectrometer with respect to the particle number concentration. An upgrade of a mobility particle size spectrometer with an automated function control enhances the quality of long-term particle number size distribution measurements. Quality assured measurements are a precondition for intercomparison studies of different sites. Comparable measurements will improve cohort health and also climate-relevant research studies.

  17. Optimization of circular plate separators with cross flow for removal of oil droplets and solid particles.

    PubMed

    Ngu, Hei; Wong, Kien Kuok; Law, Puong Ling

    2012-04-01

    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm. PMID:22834217

  18. Evaluation of the SC-1/megasonic clean for sub-0.15 micron particle removal

    SciTech Connect

    Adkins, C.L.J.; Resnick, P.J.; Clews, P.J.; Thomas, E.V.; Korbe, N.C.; Cannaday, S.T.

    1994-07-01

    A statistical design of experiments approach has been employed to evaluate the particle removal efficacy of the SC-1/megasonic clean for sub-0.15 {mu}m inorganic particles. The effects of megasonic input power, solution chemistry, bath temperature, and immersion time have been investigated. Immersion time was not observed to be a statistically significant factor. The NH{sub 4}OH/H{sub 2}O{sub 2} ratio was significant, but varying the molar H{sub 2}O{sub 2} concentration had no effect on inorganic particle removal. Substantially diluted chemistries, performed with high megasonic input power and moderate-to-elevated temperatures, was shown to be very effective for small particle removal. Bath composition data show extended lifetimes can be obtained when high purity chemicals are used at moderate (eg., 45{degrees}C) temperature. Transition metal surface concentrations and surface roughness have been measured after dilute SC-1 processing and compared to metallic contamination following traditional SC-1.

  19. Deciphering the science behind electrocoagulation to remove suspended clay particles from water.

    PubMed

    Holt, P K; Barton, G W; Mitchell, C A

    2004-01-01

    Electrocoagulation removes pollutant material from water by a combination of coagulant delivered from a sacrificial aluminium anode and hydrogen bubbles evolved at an inert cathode. Rates of clay particle flotation and settling were experimentally determined in a 7 L batch reactor over a range of currents (0.25-2.0 A) and pollutant loadings (0.1-1.7 g/L). Sedimentation and flotation are the dominant removal mechanism at low and high currents, respectively. This shift in separation mode can be explained by analysing the reactor in terms of a published dissolved air flotation model. PMID:15686019

  20. Toward automatic control of particle accelerator beams

    SciTech Connect

    Schultz, D.E.; Silbar, R.R.

    1988-01-01

    We describe a program aiming toward automatic control of particle accelerator beams. A hybrid approach is used, combining knowledge- based system programming techniques and traditional numerical simulations. We use an expert system shell for the symbolic processing and have incorporated the FORTRAN beam optics code TRANSPORT for numerical simulation. The paper discusses the symbolic model we built, the reasoning components, how the knowledge base accesses information from an operating beamline, and the experience gained in merging the two worlds of numeric and symbolic processing. We also discuss plans for a future real-time system. 6 refs., 6 figs.

  1. Controlled rotation of optically trapped microscopic particles.

    PubMed

    Paterson, L; MacDonald, M P; Arlt, J; Sibbett, W; Bryant, P E; Dholakia, K

    2001-05-01

    We demonstrate controlled rotation of optically trapped objects in a spiral interference pattern. This pattern is generated by interfering an annular shaped laser beam with a reference beam. Objects are trapped in the spiral arms of the pattern. Changing the optical path length causes this pattern, and thus the trapped objects, to rotate. Structures of silica microspheres, microscopic glass rods, and chromosomes are set into rotation at rates in excess of 5 hertz. This technique does not depend on intrinsic properties of the trapped particle and thus offers important applications in optical and biological micromachines. PMID:11340200

  2. FINE PARTICLE CONTROL TECHNOLOGY: CONVENTIONAL AND NOVEL DEVICES

    EPA Science Inventory

    This paper reviews the development of technology in fine particle control. Electrostatic precipitators (ESPs), scrubbers, fabric filters, and novel devices were assessed to determine their efficiency. ESPs were found to be excellent in controlling fine particles: with an efficien...

  3. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves

    NASA Astrophysics Data System (ADS)

    Hwang, Hee-Jae; Yook, Se-Jin; Ahn, Kang-Ho

    2011-12-01

    Soot particles emitted from vehicles are one of the major sources of air pollution in urban areas. In this study, five kinds of trees were selected as Pinus densiflora, Taxus cuspidata, Platanus occidentalis, Zelkova serrata, and Ginkgo biloba, and the removal of submicron (<1 μm) and ultrafine (<0.1 μm) soot particles by tree leaves was quantitatively compared in terms of deposition velocity. Soot particles were produced by a diffusion flame burner using acetylene as the fuel. The sizes of monodisperse soot particles classified with the Differential Mobility Analyzers (DMA) were 30, 55, 90, 150, 250, 400, and 600 nm. A deposition chamber was designed to simulate the omni-directional flow condition around the tree leaves. Deposition velocities onto the needle-leaf trees were higher than those onto the broadleaf trees. P. densiflora showed the greatest deposition velocity, followed by T. cuspidata, Platanus occidentalis, Zelkova serrata, and Ginkgo biloba. In addition, from the comparison of deposition velocity between two groups of Platanus occidentalis leaves, i.e. one group of leaves with front sides only and the other with back sides only, it was supposed in case of the broadleaf trees that the removal of airborne soot particles of submicron and ultrafine sizes could be affected by the surface roughness of tree leaves, i.e. the veins and other structures on the leaves.

  4. Performance of Sorbent Particles for Removal of Cadmium in Hot Gas

    NASA Astrophysics Data System (ADS)

    Yoshiie, Ryo; Goto, Shinya; Nishimura, Makoto; Moritomi, Hiroshi

    The use of particulate kaolinite as a sorbent for capturing cadmium compounds in hot flue gas was studied in the influence of temperature and residence time on removal efficiency. More than a half of the cadmium fed into the reactor was captured by kaolinite samples. It was also found that the amount of cadmium captured increased with time and that the removal efficiency at a temperature of 1073K was slightly higher than at 873K. To clarify the mechanism of cadmium adsorption, the solubility of cadmium captured by particulate kaolinite was examined in both water and nitric acid. Acid-soluble cadmium constituted more than 80% of the total captured cadmium, while water-soluble cadmium constituted between 40-80%. This suggests that cadmium does not penetrate into the kaolinite particles, but it remains on the surface and that physical condensation accounts for approximately half of the cadmium aerosol captured by kaolinite particles.

  5. Development of NSTX Particle Control Techniques

    SciTech Connect

    H.W. Kugel; R. Maingi; M. Bell; D. Gates; K. Hill; B. LeBlanc; D. Mueller; R. Kaita; S. Paul; S. Sabbagh; C.H. Skinner; V. Soukhanovskii; B. Stratton; R. Raman

    2004-07-30

    The National Spherical Torus Experiment (NSTX) High Harmonic Fast Wave (HHFW) current-drive discharges will require density control for acceptable efficiency. In NSTX, this involves primarily controlling impurity influxes and recycling. We have compared boronization on hot and cold surfaces, varying helium glow discharge conditioning (HeGDC) durations, helium discharge cleaning, brief daily boronization, and between discharge boronization to reduce and control spontaneous density rises. Access to Ohmic H-modes was enabled by boronization on hot surfaces, however, the duration of the effectiveness of hot and cold boronization was comparable. A 15 minute HeGDC between discharges was needed for reproducible L-H transitions. Helium discharge conditioning yielded slower density rises than 15 minutes of HeGDC. Brief daily boronization followed by a comparable duration of applied HeGDC restored and enhanced good conditions. Additional brief boronizations between discharges did not improve plasma performance (reduced recycling, reduced impurity luminosities, earlier L-H transitions, longer plasma current flattops, higher stored energies) if conditions were already good. Between discharge boronization required increases in the NSTX duty cycle due to the need for additional HeGDC to remove codeposited D.

  6. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. PMID:23590456

  7. Control of respirable particles and radon progeny with portable air cleaners

    SciTech Connect

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr/sup -1/. Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr/sup -1/. The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables.

  8. Removal of particles from holes in submerged plates with oscillating bubbles

    NASA Astrophysics Data System (ADS)

    Pavard, Delphine; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2009-08-01

    This study is motivated by a common problem in submerged tubes and structures, which is the blockage of the tubes by pollutant particles or debris from the surrounding fluid. To clear the obstruction from the tube, an expanding bubble is used to propel the obstruction away from the tube (the tube is represented as a submerged transparent plate with a hole in our experiments). In some cases the obstruction removal effect is reinforced by the impacting jet of such a collapsing bubble. The bubble is generated via a simple low voltage electric spark discharge circuit. The pressure generated by the oscillating bubble effectively pushes the particle away from the tube, thereby successfully clearing the obstruction. High-speed photography is used to record and analyze the phenomenon. The speed of the particle is found to be around 1 m/s shortly after the collapse of the bubble. Interestingly, there is a clear difference between air-backed plates and water-backed plates in terms of bubble and particle dynamics. The bubbles in the current study are typically of millimeter size. Since the physics are similar for smaller bubbles, the process can possibly be downsized for other microapplications such as the removal of blood clots in vessels [S. R. Visuri et al., U.S. Patent No. 6428531 (August 6, 2002)].

  9. Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure

    NASA Astrophysics Data System (ADS)

    Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team

    Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.

  10. Absorption removal of sulfur dioxide by falling water droplets in the presence of inert solid particles

    NASA Astrophysics Data System (ADS)

    Liu, I.-Hung; Chang, Ching-Yuan; Liu, Su-Chin; Chang, I.-Cheng; Shih, Shin-Min

    An experimental analysis of the absorption removal of sulfur dioxide by the free falling water droplets containing the inert solid particles is presented. The wheat flour powder is introduced as the inert solid particles. Tests with and without the flour powder in the water droplets are examined. The mass fluxes and mass transfer coefficients of SO 2 for the cases with and without the flour powder are compared to elucidate the effects of the inert solid particles contained in the water droplets on the gas absorption. The results indicate aignificant difference between the two cases for the concentrations of the flour powder in the absorbent droplets ( Cs) within the ranges of the experimental conditions, namely 0.1 to 10 wt% flour powder in the absorbent droplets. In general, the inert solid particles of the flour powder as the impurities in the water droplets tend to decrease the SO 2 absorption rate for the experimental absorption system under investigation. Various values of Cs cause various levels of the interfacial resistance and affect the gas absorption rate. The interfacial resistance is recognized by introducing an interfacial mass transfer coefficient ks with its reciprocal being proportional to the magnitude of the interfacial resistance. The values of 1/ ks may be computed by the use of the equation 1/ ks=(1/ KOLs-1/ KOL), where KOLs and KOL are the overall liquid-phase mass transfer coefficients with and without the inert solid particles, respectively. The values of ks with Cs of 0.1 to 10 wt% are about 0.295-0.032 cms -1 for absorbing 1000-3000 ppmv SO 2 with the water droplets. This kind of information is useful for the SO 2 removal and the information of acid rain that the impurities of the inert solid particles contaminate the water droplets.

  11. Planck 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miniussi, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The transientresponses to detector glitch shapes are not simple single-pole exponential decays and fall into three families. The glitch shape for each family has been characterized empirically in flight data and these shapes have been used to remove glitches from the detector time streams. The spectrum of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro-machined bolometric detectors. In the Planck orbit at L2, the particle flux is around 5 cm-2 s-1 and is dominated by protons incident on the spacecraft with energy >39 MeV, at a rate of typically one event per second per detector. Different categories of glitches have different signatures in the time stream. Two of the glitch types have a low amplitude component that decays over nearly 1 s. This component produces excess noise if not properly removed from the time-ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from the time streams. Using realistic simulations, we find that this method does not introduce signal bias into the Planck data.

  12. Removal of Microcystis aeruginosa using nano-Fe3O4 particles as a coagulant aid.

    PubMed

    Zhang, Bo; Jiang, Dan; Guo, Xiaochen; He, Yiliang; Ong, Choon Nam; Xu, Yongpeng; Pal, Amrita

    2015-12-01

    Blue-green algae bloom is of great concern globally since they adversely affect the water ecosystem and also drinking water treatment processes. This work investigated the removal of Microcystis aeruginosa (M. aeruginosa) by combining the conventional coagulant polyaluminum chloride (PACl) with nano-Fe3O4 particles as a coagulant aid. The results showed that the addition of nano-Fe3O4 significantly improved the removal efficiency of M. aeruginosa by reducing the amount of PACl dosage and simultaneously hastening the sedimentation. At the M. aeruginosa density of an order of magnitude of 10(7), 10(6), and 10(5) pcs/mL, respectively, the corresponding PACl dose of 200, 20, and 2 mg/L and the mass ratio of PACl to nano-Fe3O4 of 4:1, the removal efficiency of M. aeruginosa could be increased by 33.0, 44.7, and 173.1%, respectively. Compared to PACl, PACl combined with the nano-Fe3O4 as a coagulant aid had higher removal efficiency at a wider pH range. SEM images showed that nano-Fe3O4 first combined with PACl to form clusters and further generated the flocs with algae. Results from the laser particle analyzer further suggested that the floc size increased with the addition of nano-Fe3O4. It was noted that the addition of nano-Fe3O4 led to aluminum species change after PACl hydrolyzed in the algae solution, from Ala to Alb and Alc subsequently. As a coagulant aid, the nano-Fe3O4, in conjunction with PACl, apparently provided nucleation sites for larger flocs to integrate with M. aeruginosa. In addition, increased floc density improved the removal of M. aeruginosa. PMID:26194241

  13. Particle count monitoring of reverse osmosis water treatment for removal of low-level radionuclides

    SciTech Connect

    Moritz, E.J.; Hoffman, C.R.; Hergert, T.R.

    1995-03-01

    Laser diode particle counting technology and analytical measurements were used to evaluate a pilot-scale reverse osmosis (RO) water treatment system for removal of particulate matter and sub-picocurie low-level radionuclides. Stormwater mixed with Waste Water Treatment Plant (WWTP) effluent from the Rocky Flats Environmental Technology Site (RFETS), formerly a Department of Energy (DOE) nuclear weapons production facility, were treated. No chemical pretreatment of the water was utilized during this study. The treatment system was staged as follows: multimedia filtration, granular activated carbon adsorption, hollow tube ultrafiltration, and reverse osmosis membrane filtration. Various recovery rates and two RO membrane models were tested. Analytical measurements included total suspended solids (TSS), total dissolved solids (TDS), gross alpha ({alpha}) and gross beta ({beta}) activity, uranium isotopes {sup 233/234}U and {sup 238}U, plutonium {sup 239/240}Pu, and americium {sup 241}Am. Particle measurement between 1--150 microns ({mu}) included differential particle counts (DPC), and total particle counts (TPC) before and after treatment at various sampling points throughout the test. Performance testing showed this treatment system produced a high quality effluent in clarity and purity. Compared to raw water levels, TSS was reduced to below detection of 5 milligrams per liter (mg/L) and TDS reduced by 98%. Gross {alpha} was essentially removed 100%, and gross {beta} was reduced an average of 94%. Uranium activity was reduced by 99%. TPC between 1-150{mu} were reduced by an average 99.8% to less than 1,000 counts per milliliter (mL), similar in purity to a good drinking water treatment plant. Raw water levels of {sup 239/240}Pu and {sup 241}Am were below reliable quantitation limits and thus no removal efficiencies could be determined for these species.

  14. Methodologies for Removing/Desorbing and Transporting Particles from Surfaces to Instrumentation

    NASA Astrophysics Data System (ADS)

    Miller, Carla J.; Cespedes, Ernesto R.

    2012-12-01

    Explosive trace detection (ETD) continues to be a key technology supporting the fight against terrorist bombing threats. Very selective and sensitive ETD instruments have been developed to detect explosive threats concealed on personnel, in vehicles, in luggage, and in cargo containers, as well as for forensic analysis (e.g. post blast inspection, bomb-maker identification, etc.) in a broad range of homeland security, law enforcement, and military applications. A number of recent studies have highlighted the fact that significant improvements in ETD systems' capabilities will be achieved, not by increasing the selectivity/sensitivity of the sensors, but by improved techniques for particle/vapor sampling, pre-concentration, and transport to the sensors. This review article represents a compilation of studies focused on characterizing the adhesive properties of explosive particles, the methodologies for removing/desorbing these particles from a range of surfaces, and approaches for transporting them to the instrument. The objectives of this review are to summarize fundamental work in explosive particle characterization, to describe experimental work performed in harvesting and transport of these particles, and to highlight those approaches that indicate high potential for improving ETD capabilities.

  15. Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals.

    PubMed

    Ardao, Inés; Magnin, Delphine; Agathos, Spiros N

    2015-10-01

    Microbial laccases are powerful enzymes capable of degrading lignin and other recalcitrant compounds including endocrine disrupting chemicals (EDCs). Efficient EDC removal on an industrial scale requires robust, stable, easy to handle and cost-effective immobilized biocatalysts. In this direction, magnetic biocatalysts are attractive due to their easy separation through an external magnetic field. Recently, a bioinspired immobilization technique that mimics the natural biomineralization reactions in diatoms has emerged as a fast and versatile tool for generating robust, cheap, and highly stable (nano) biocatalysts. In this work, bioinspired formation of a biotitania matrix is triggered on the surface of magnetic particles in the presence of laccase in order to produce laccase-biotitania (lac-bioTiO2 ) biocatalysts suitable for environmental applications using a novel, fast and versatile enzyme entrapment technique. Highly active lac-bioTiO2 particles have been produced and the effect of different parameters (enzyme loading, titania precursor concentration, pH, duration of the biotitania formation, and laccase adsorption steps) on the apparent activity yield of these biocatalysts were evaluated, the concentration of the titania precursor being the most influential. The lac-bioTiO2 particles were able to catalyze the removal of bisphenol A, 17α-ethinylestradiol and diclofenac in a mixture of six model EDCs and retained 90% of activity after five reaction cycles and 60% after 10 cycles. PMID:26058804

  16. A Particle Population Control Method for Dynamic Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sweezy, Jeremy; Nolen, Steve; Adams, Terry; Zukaitis, Anthony

    2014-06-01

    A general particle population control method has been derived from splitting and Russian Roulette for dynamic Monte Carlo particle transport. A well-known particle population control method, known as the particle population comb, has been shown to be a special case of this general method. This general method has been incorporated in Los Alamos National Laboratory's Monte Carlo Application Toolkit (MCATK) and examples of it's use are shown for both super-critical and sub-critical systems.

  17. Removal of two waterborne pathogenic bacterial strains by activated carbon particles prior to and after charge modification.

    PubMed

    Busscher, Henk J; Dijkstra, Rene J B; Engels, Eefje; Langworthy, Don E; Collias, Dimitris I; Bjorkquist, David W; Mitchell, Michael D; Van der Mei, Henny C

    2006-11-01

    Waterborne diseases constitute a threat to public health despite costly treatment measures aimed at removing pathogenic microorganisms from potable water supplies. This paper compared the removal of Raoultella terrigena ATCC 33257 and Escherichia coli ATCC 25922 by negatively and positively charged types of activated carbon particles. Both strains display bimodal negative zeta-potential distributions in stabilized water. Carbon particles were suspended to an equivalent external geometric surface area of 700 cm2 in 250 mL of a bacterial suspension, with shaking. Samples were taken after different durations for plate counting. Initial removal rates were less elevated for the positively charged carbon particle than expected, yielding the conclusion that bacterial adhesion under shaking is mass-transport limited. After 360 min, however, the log-reduction of the more negatively charged R. terrigena in suspension was largest for the positively charged carbon particles as compared with the negatively charged ones, although conditioning in ultrapure or tap water of positively charged carbon particles for 21 days eliminated the favorable effect of the positive charge due to counterion adsorption from the water. Removal of the less negatively charged E. coli was less affected by aging of the (positively charged) carbon particles, confirming the role of electrostatic interactions in bacterial removal by activated carbon particles. The microporous, negatively charged coconut carbon performed less than the mesoporous, positively charged carbon particle prior to conditioning but did not suffer from loss of effect after conditioning in ultrapure or tap water. PMID:17144313

  18. Simultaneous removal of mercury, PCDD/F, and fine particles from flue gas.

    PubMed

    Korell, Jens; Paur, Hanns-R; Seifert, Helmut; Andersson, Sven

    2009-11-01

    A multifunctional scrubber (MFS) has been developed to reduce the complexity of flue gas cleaning plants. The MFS integrates an oxidizing scrubber equipped with a dioxin-absorbing tower packing material and a space charge electrostatic precipitator. All these processes have been previously developed at Forschungszentrum Karlsruhe. In the described multifunctional scrubber, mercury, sulfur dioxide, hydrogen chloride, polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and submicrometer particles are removed simultaneously. A MFS pilot plant with a flue gas volume flow of 250 m(3)/h has been installed in a slipstream of a waste incineration pilot plant. Pilot scale testing was performed to measure mercury, particles, and PCDD/F in the raw and clean gas. After optimization of the process these three flue gas components were separated from the flue gas in the range 87-97%. PMID:19924961

  19. Particle fueling and impurity control in PDX

    SciTech Connect

    Fonck, R.J.; Bell, M.; Bol, K.; Budny, R.; Couture, P.; Darrow, D.; Dylla, H.; Goldston, R.; Grek, B.; Hawryluk, R.

    1984-12-01

    Fueling requirements and impurity levels in neutral-beam-heated discharges in the PDX tokamak have been compared for plasmas formed with conventional graphite rail limiters, a particle scoop limiter, and an open or closed poloidal divertor. Gas flows necessary to obtain a given density are highest for diverted discharges and lowest for the scoop limiter. Hydrogen pellet injection provides an efficient alternate fueling technique, and a multiple pellet injector has produced high density discharges for an absorbed neutral beam power of up to 600 kW, above which higher speeds or more massive pellets are required for penetration to the plasma core. Power balance studies indicate that 30 to 40% of the total input power is radiated while approx. 15% is absorbed by the limiting surface, except in the open divertor case, where 60% flows to the neutralizer plate. In all operating configurations, Z/sub eff/ usually rises at the onset of neutral beam injection. Both open divertor plasmas and those formed on a well conditioned water-cooled limiter have Z/sub eff/ less than or equal to 2 at the end of neutral injection. A definitive comparison of divertors and limiters for impurity control purposes requires longer beam pulses or higher power levels than available on present machines.

  20. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling.

    PubMed

    Li, Sheng; Lee, Shang-Tse; Sinha, Shahnawaz; Leiknes, TorOve; Amy, Gary L; Ghaffour, Noreddine

    2016-10-01

    This study investigated the impact of coagulation on the transformation between colloidal and particulate transparent exopolymer particles (TEP) in seawater; and the effectiveness of a combined pretreatment consisting of coagulation and UF on minimizing TEP fouling of seawater reverse osmosis (SWRO) membranes. Coagulation with ferric chloride at pH 5 substantially transformed colloidal TEP (0.1-0.4) into particulate TEP (>0.4) leading to a better membrane fouling control. Both 50 and 100 kDa molecular weight cut-off (MWCO) UF membranes removed most of particulate and colloidal TEP without the assistance of coagulation, but coagulation is still necessary for better UF fouling control. The improvement of combined SWRO pretreatment with coagulation and 50 kDa UF membranes was not that much significant compared to UF pretreatment with 50 KDa alone. Therefore, the minimal coagulant dosage for seawater containing TEP should be based on the UF fouling control requirements rather than removal efficiency. PMID:27403871

  1. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal

    PubMed Central

    Fatoyinbo, Henry O.; McDonnell, Martin C.; Hughes, Michael P.

    2014-01-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system. PMID:25379100

  2. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and burrows pond rearing system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal eff...

  3. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal eff...

  4. Removal of dust particles from metal-mirror surfaces by excimer-laser radiation

    NASA Astrophysics Data System (ADS)

    Mann, Klaus R.; Wolff-Rottke, B.; Mueller, F.

    1995-07-01

    The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.

  5. Preparation, characterization, and phosphate removal and recovery of magnetic MnFe2O4 nano-particles as adsorbents.

    PubMed

    Xia, Shumei; Xu, Xiaoming; Xu, Changsong; Wang, Hongshuai; Zhang, Xiaowei; Liu, Guangmin

    2016-01-01

    Phosphate removal is an important method for controlling eutrophication in bodies of water. Adsorption is an effective phosphate removal approach. In this research, the adsorbent, namely, MnFe2O4, was prepared through the improved co-precipitation method and investigated in terms of phosphate removal. MnFe2O4 was characterized by scanning electron microscopy, vibrating sample magnetometry, X-ray diffraction, and Fourier transform infrared spectroscopy. Phosphate adsorption by MnFe2O4, desorption of adsorbed MnFe2O4 with the regeneration of desorbed MnFe2O4, and phosphate recovery were researched. Experimental results showed that adding the appropriate amount of polyethylene glycol to MnFe2O4 precursors during preparation inhibited the agglomeration of MnFe2O4 between particles because of the magnetic property of MnFe2O4 etc. High crystallinity and strong magnetism were achieved by MnFe2O4 at low temperatures. Average particle size was 5.1 nm. The hysteresis loops confirmed the ferrimagnetic behaviour of MnFe2O4 with a high saturation magnetization (i.e. 26.27 emu/g). The adsorption mechanism of phosphate was mainly physical. The prepared MnFe2O4 had a spinel structure. The proposed technique achieved a phosphate removal rate of 96.06%. A considerable amount of phosphate was desorbed from the adsorbed MnFe2O4 in 15 w/v% NaOH solution. The adsorption capacity of the desorbed MnFe2O4 could be restored to 96.73% in 10 w/v% NaNO3 solution through ion exchange. A sustainable phosphate source was recovered via hydroxyapatite crystallization in the desorption solution, which contained an abundant amount of phosphate as seed for suitable recovery condition. This finding suggested that MnFe2O4 could be a promising adsorbent for efficient phosphate removal. PMID:26292922

  6. Controlling seepage in discrete particle simulations of biological systems.

    PubMed

    Gardiner, Bruce S; Joldes, Grand R; Wong, Kelvin K L; Tan, Chin Wee; Smith, David W

    2016-08-01

    It is now commonplace to represent materials in a simulation using assemblies of discrete particles. Sometimes, one wishes to maintain the integrity of boundaries between particle types, for example, when modelling multiple tissue layers. However, as the particle assembly evolves during a simulation, particles may pass across interfaces. This behaviour is referred to as 'seepage'. The aims of this study were (i) to examine the conditions for seepage through a confining particle membrane and (ii) to define some simple rules that can be employed to control seepage. Based on the force-deformation response of spheres with various sizes and stiffness, we develop analytic expressions for the force required to move a 'probe particle' between confining 'membrane particles'. We analyse the influence that particle's size and stiffness have on the maximum force that can act on the probe particle before the onset of seepage. The theoretical results are applied in the simulation of a biological cell under unconfined compression. PMID:26629728

  7. Application of traditional cyclone with spray scrubber to remove airborne silica particles emitted from stone-crushing factories.

    PubMed

    Bahrami, Abdulrahman; Ghorbani, Farshid; Mahjub, Hossien; Golbabei, Farideh; Aliabadi, Mohsan

    2009-08-01

    The traditional cyclone with spray scrubber was developed for the removal of airborne silica particles from local exhaust ventilation (LEV). The objective of this research is to evaluate the efficiency of this process for removing silica particles in LEV. After designing and installing a traditional cyclone and spray scrubber, air samples were obtained at the inlet and outlet of the apparatus. The mass of each collected sample was determined gravimetrically using EPA method. The efficiency of the cyclone with spray scrubber for the removal of dust particles from the LEV system was determined to be in the range of 92-99%. There was a high correlation between the inlet concentration of dust particles and the efficiency of the apparatus. The total pressure across the system was 772.17-1120.90 Pa. It was concluded that a traditional cyclone with a spray scrubber can effectively remove a very high percentage of the incoming silica particles from an LEV. The total pressure drop across the current process is less than the pressure drop across other treatment equipment, which means that our process can effectively remove silica particles while using less electricity than other processes. PMID:19672019

  8. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  9. Removable inner turbine shell with bucket tip clearance control

    DOEpatents

    Sexton, Brendan F.; Knuijt, Hans M.; Eldrid, Sacheverel Q.; Myers, Albert; Coneybeer, Kyle E.; Johnson, David Martin; Kellock, Iain R.

    2000-01-01

    A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.

  10. Controlling particle trajectories using oscillating microbubbles

    NASA Astrophysics Data System (ADS)

    Jalikop, Shreyas; Wang, Cheng; Hilgenfeldt, Sascha

    2010-11-01

    In many applications of microfluidics and biotechnology, such as cytometry and drug delivery, it is vital to manipulate the trajectories of microparticles such as vesicles or cells. On this small scale, inertial or gravitational effects are often too weak to exploit. We propose a mechanism to selectively trap and direct particles based on their size in creeping transport flows (Re1). We employ Rayleigh-Nyborg-Westervelt (RNW) streaming generated by an oscillating microbubble, which in turn generates a streaming flow component around the mobile particles. The result is an attractive interaction that draws the particle closer to the bubble. The impenetrability of the bubble interface destroys time-reversal symmetry and forces the particles onto either narrow trajectory bundles or well-defined closed trajectories, where they are trapped. The effect is dependent on particle size and thus allows for the passive focusing and sorting of selected sizes, on scales much smaller than the geometry of the microfluidic device. The device could eliminate the need for complicated microchannel designs with external magnetic or electric fields in applications such as particle focusing and size-based sorting.

  11. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    PubMed

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices. PMID:27144475

  12. Investigation of high velocity separator for particle removal in coal gasification plants. Phase II report

    SciTech Connect

    Linhardt, H.D.

    1980-01-15

    This report summarizes the results of Phase II of the High Velocity Particle Separator Program performed under Contract EF-77-C-01-2709. This high velocity wedge separator has the potential to reduce equipment size and cost of high temperature and pressurized particulate removal equipment for coal derived gases. Phase II has been directed toward testing and detailed conceptual design of an element suitable for a commercial scale high temperature, high pressure particle separator (HTPS). Concurrently, Phase IA has been conducted, which utilized the ambient analog method (AAM) for aerodynamic and collection performance investigation of each HTPS configuration prior and during hot testing. This report summarizes the results of Phase IA and II. The AAM effort established correlation of theoretical analysis and experiment for HTPS pressure drop, purge flow ratio and collection efficiency potential. Task I defined the initial test conditions to be the contract design point of 1800/sup 0/F and 350 psia. The 1800/sup 0/F, 350 psia testing represents the main high temperature testing with coal-derived particulates in the 2 to 10 micron range. Phase IA and Phase II have demonstrated efficient particle collection with acceptable pressure drop. In view of these encouraging results, it is reasonable to apply the developed technology toward future hot gas particulate cleanup requirements.

  13. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  14. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.

    2016-07-05

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  15. Schedules of controlled substances: removal of naloxegol from control. Final rule.

    PubMed

    2015-01-23

    With the issuance of this final rule, the Administrator of the Drug Enforcement Administration removes naloxegol ((5[alpha],6[alpha])-17-allyl-6-((20-hydroxy-3,6,9,12,15,18-hexaoxaicos-1-yl)oxy)-4,5-epoxymorphinon-3,14-diol) and its salts from the schedules of the Controlled Substances Act (CSA). This scheduling action is pursuant to the CSA which requires that such actions be made on the record after opportunity for a hearing through formal rulemaking. Prior to the effective date of this rule, naloxegol was a schedule II controlled substance because it can be derived from opium alkaloids. This action removes the regulatory controls and administrative, civil, and criminal sanctions applicable to controlled substances, including those specific to schedule II controlled substances, on persons who handle (manufacture, distribute, reverse distribute, dispense, conduct research, import, export, or conduct chemical analysis) or propose to handle naloxegol. PMID:25730920

  16. Method and apparatus for removing coarse unentrained char particles from the second stage of a two-stage coal gasifier

    DOEpatents

    Donath, Ernest E.

    1976-01-01

    A method and apparatus for removing oversized, unentrained char particles from a two-stage coal gasification process so as to prevent clogging or plugging of the communicating passage between the two gasification stages. In the first stage of the process, recycled process char passes upwardly while reacting with steam and oxygen to yield a first stage synthesis gas containing hydrogen and oxides of carbon. In the second stage, the synthesis gas passes upwardly with coal and steam which react to yield partially gasified char entrained in a second stage product gas containing methane, hydrogen, and oxides of carbon. Agglomerated char particles, which result from caking coal particles in the second stage and are too heavy to be entrained in the second stage product gas, are removed through an outlet in the bottom of the second stage, the particles being separated from smaller char particles by a counter-current of steam injected into the outlet.

  17. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  18. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  19. PARTICULATE CONTROL HIGHLIGHTS: FINE PARTICLE SCRUBBER RESEARCH

    EPA Science Inventory

    The report gives highlights of fine particle scrubber research performed by, or under the direction of, EPA's Industrial Environmental Research Laboratory (IERL-RTP) at Research Triangle Park, North Carolina. The U.S. EPA has been actively involved in research and development in ...

  20. Feedback control of an ensemble of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Wu, Jian-chun; Chen, Qun; Wang, Rang; Ai, Bao-quan

    2015-06-01

    Rectified transport of self-propelled particles in an asymmetric period potential is numerically investigated by employing a feedback control protocol. The feedback control is switched on and off depending on the direction of the self-propelled speed. It is found that the direction of the transport is determined by the asymmetry of the potential and the feedback control strength. In the presence of feedback control, the directed transport can be improved significantly by increasing the feedback control strength under appropriate conditions. For large ensembles of particles, however, the feedback control will not obviously affect the transport of self-propelled particles. The present studies may be relevant to some applications in biology and nanotechnology, and provide the predicting results in experiments of active particles.

  1. Removal of bisphenol A and some heavy metal ions by polydivinylbenzene magnetic latex particles.

    PubMed

    Marzougui, Zied; Chaabouni, Amel; Elleuch, Boubaker; Elaissari, Abdelhamid

    2016-08-01

    In this study, magnetic polydivinylbenzene latex particles MPDVB with a core-shell structure were tested for the removal of bisphenol A (BPA), copper Cu(II), lead Pb(II), and zinc Zn(II) from aqueous solutions by a batch-adsorption technique. The effect of different parameters, such as initial concentration of pollutant, contact time, adsorbent dose, and initial pH solution on the adsorption of the different adsorbates considered was investigated. The adsorption of BPA, Cu(II), Pb(II), and Zn(II) was found to be fast, and the equilibrium was achieved within 30 min. The pH 5-5.5 was found to be the most suitable pH for metal removal. The presence of electrolytes and their increasing concentration reduced the metal adsorption capacity of the adsorbent. Whereas, the optimal pH for BPA adsorption was found 7, both hydrogen bonds and π-π interaction were thought responsible for the adsorption of BPA on MPDVB. The adsorption kinetics of BPA, Cu(II), Pb(II), and Zn(II) were found to follow a pseudo-second-order kinetic model. Equilibrium data for BPA, Cu(II), Pb(II), and Zn(II) adsorption were fitted well by the Langmuir isotherm model. Furthermore, the desorption and regeneration studies have proven that MPDVB can be employed repeatedly without impacting its adsorption capacity. PMID:26396007

  2. Heat removal from a stratified UO/sub 2/ - sodium-particle bed

    SciTech Connect

    Mitchell, G.W.; Lipinski, R.J.; Schwarz, M.L.

    1982-02-01

    The D6 Debris Bed Experiment is one in a series of Post Accident Heat Removal (PAHR) Experiments being conducted to investigate the coolability of debris beds which might exist as a result of a severe nuclear reactor accident. The D6 experiment is the first in the series to investigate the effects of particle size stratification, which would likely exist for many accident scenarios, on debris bed coolability. The D6 debris bed contained 4.87 kg of UO/sub 2/ particulate, which formed a bed 114 mm high and 102 mm in diameter. At low power, heat removal could be described by the conduction equation, with effective bed conductivity in agreement with the Kampf-Karsten relation to within ten percent. Single phase convection was not observed in the bed. The power required to achieve dryout ranged from 0.28 to 0.45 W/g for overlying bulk sodium temperatures which were from 315/sup 0/ to 485/sup 0/K below the saturation temperature. These powers are significantly below that which would be predicted by current models. Based on evaluation of the data, it appears that stratification suppresses convection, reduces the power required to achieve dryout, and suppresses the formation of vapor channels which would result in increased coolability.

  3. Facile synthesis of copper(II)-decorated magnetic particles for selective removal of hemoglobin from blood samples.

    PubMed

    Ding, Chun; Ma, Xiangdong; Yao, Xin; Jia, Li

    2015-12-11

    In this report, the Cu(2+)-immobilized magnetic particles were prepared by a facile route and they were used as adsorbents for removal of high abundance of hemoglobin in blood based on immobilized metal affinity chromatography. Ethylenediaminetetraacetic acid modified magnetic particles (EDTA-Fe3O4) were first synthesized through a one-pot solvothermal method and then charged with copper ions. The as-prepared Cu(2+)-EDTA-Fe3O4 particles were characterized by Fourier transform infrared spectrometry, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometry and zeta potential. Factors affecting the adsorption of bovine hemoglobin on Cu(2+)-EDTA-Fe3O4 particles (including contact time, solution pH, ionic strength and initial concentration of protein) were investigated. The adsorption process followed a pseudo-second-order kinetic model and the adsorption equilibrium could be achieved in 60min. The adsorption isotherm data could be well described by a Langmuir model and the maximum adsorption capacity was 1250mgg(-1). The as-prepared particles showed high efficiency and excellent selectivity for removal of hemoglobin from bovine and human blood. The removal process integrated the selectivity of immobilized metal affinity chromatography and the convenience of magnetic separation. The results demonstrated that Cu(2+)-EDTA-Fe3O4 particles had potential application in removal of abundant histidine-rich proteins in biomedical diagnosis analysis. PMID:26596870

  4. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  5. Ammonium-Functionalized Hollow Polymer Particles As a pH-Responsive Adsorbent for Selective Removal of Acid Dye.

    PubMed

    Qin, Yan; Wang, Li; Zhao, Changwen; Chen, Dong; Ma, Yuhong; Yang, Wantai

    2016-07-01

    In this work, a novel type of ammonium-functionalized hollow polymer particles (HPP-NH3(+)) with a high density of ammonium groups in the shell has been specially designed and synthesized. Benefiting from both the high surface area and from the high density of positively charged ammonium groups, the as-prepared HPP-NH3(+) can serve as a selective adsorbent for the removal of negatively charged acid dye (e.g., methyl blue a-MB). The equilibrium adsorption data of a-MB on the HPP-NH3(+) were evaluated using Freundlich and Langmuir isotherm models, and Langmuir isotherm exhibited a better fit with a maximum adsorption capacity of 406 mg/g. Most importantly, because of the presence of dual functional groups (ammonium and carboxyl groups), the HPP-NH3(+) showed a significant pH-dependent equilibrium adsorption capacity, which increased dramatically from 59 mg/g to 449 mg/g as the solution pH decreased from 9 to 2. This uniqueness makes the dye-adsorbed HPP-NH3(+) can be facilely regenerated under mild condition (in weak alkaline solution, pH 10) to recover both a-MB and the HPP-NH3(+), whereas the recovery of conventional adsorbents is commonly performed under particularly severe conditions. The regenerated HPP-NH3(+) can be reused for dye removal and the dye removal efficiency remained above 98% even after five adsorption-desorption cycles. Because of its high adsorption capacity, pH-sensitivity, easy regeneration, and good reusability, the HPP-NH3(+) has great potential for the application in the field of water treatment, controlled drug release, and pH-responsive delivery. PMID:27302068

  6. Flexible particle array structures by controlling polymer graft architecture.

    PubMed

    Choi, Jihoon; Dong, Hongchen; Matyjaszewski, Krzysztof; Bockstaller, Michael R

    2010-09-15

    Surface-initiated atom-transfer radical polymerization is used to synthesize particle brushes with controlled fraction of extended and relaxed conformations of surface-grafted chains. In the semidilute brush limit, the grafting of polymeric ligands is shown to facilitate the formation of ordered yet plastic-compliant particle array structures in which chain entanglements give rise to fracture through a polymer-like crazing process that dramatically increases the toughness and flexibility of the particle assembly. PMID:20726581

  7. Controlled epitaxial graphene growth within removable amorphous carbon corrals

    SciTech Connect

    Palmer, James; Hu, Yike; Hankinson, John; Guo, Zelei; Heer, Walt A. de; Kunc, Jan; Berger, Claire

    2014-07-14

    We address the question of control of the silicon carbide (SiC) steps and terraces under epitaxial graphene on SiC and demonstrate amorphous carbon (aC) corrals as an ideal method to pin SiC surface steps. aC is compatible with graphene growth, structurally stable at high temperatures, and can be removed after graphene growth. For this, aC is first evaporated and patterned on SiC, then annealed in the graphene growth furnace. There at temperatures above 1200 °C, mobile SiC steps accumulate at the aC corral that provide effective step flow barriers. Aligned step free regions are thereby formed for subsequent graphene growth at temperatures above 1330 °C. Atomic force microscopy imaging supports the formation of step-free terraces on SiC with the step morphology aligned to the aC corrals. Raman spectroscopy indicates the presence of good graphene sheets on the step-free terraces.

  8. Controlled epitaxial graphene growth within removable amorphous carbon corrals

    NASA Astrophysics Data System (ADS)

    Palmer, James; Kunc, Jan; Hu, Yike; Hankinson, John; Guo, Zelei; Berger, Claire; de Heer, Walt A.

    2014-07-01

    We address the question of control of the silicon carbide (SiC) steps and terraces under epitaxial graphene on SiC and demonstrate amorphous carbon (aC) corrals as an ideal method to pin SiC surface steps. aC is compatible with graphene growth, structurally stable at high temperatures, and can be removed after graphene growth. For this, aC is first evaporated and patterned on SiC, then annealed in the graphene growth furnace. There at temperatures above 1200 °C, mobile SiC steps accumulate at the aC corral that provide effective step flow barriers. Aligned step free regions are thereby formed for subsequent graphene growth at temperatures above 1330 °C. Atomic force microscopy imaging supports the formation of step-free terraces on SiC with the step morphology aligned to the aC corrals. Raman spectroscopy indicates the presence of good graphene sheets on the step-free terraces.

  9. Effects of surface charge, micro-bubble size and particle size on removal efficiency of electro-flotation.

    PubMed

    Han, M Y; Kim, M K; Ahn, H J

    2006-01-01

    Flotation is a water treatment alternative to sedimentation, and uses small bubbles to remove low-density particles from potable water and wastewater. The effect of zeta potential, bubble size and particle size on removal efficiency of the electro-flotation process was investigated because previous model-simulations indicated that these attributes are critical for high collision efficiency between micro-bubbles and particles. Solutions containing Al3+ as the metal ion were subjected to various conditions. The zeta potentials of bubbles and particles were similar under identical conditions, and their charges were influenced by metal ion concentration and pH. Maximum removal efficiency was 98 and 12% in the presence and absence of flocculation, respectively. Removal efficiency was higher when particle size was similar to bubble size. These results agree with modelling simulations and indicate that collision efficiency is greater when the zeta potential of one is negative and that of the other is positive and when their sizes are similar. PMID:16752773

  10. Microfluidic Controlled Conformal Coating of Particles

    NASA Astrophysics Data System (ADS)

    Tsai, Scott; Wexler, Jason; Wan, Jiandi; Stone, Howard

    2011-11-01

    Coating flows are an important class of fluid mechanics problems. Typically a substrate is coated with a moving continuous film, but it is also possible to consider coating of discrete objects. In particular, in applications involving coating of particles that are useful in drug delivery, the coatings act as drug-carrying vehicles, while in cell therapy a thin polymeric coating is required to protect the cells from the host's immune system. Although many functional capabilities have been developed for lab-on-a-chip devices, a technique for coating has not been demonstrated. We present a microfluidic platform developed to coat micron-size spheres with a thin aqueous layer by magnetically pulling the particles from the aqueous phase to the non-aqueous phase in a co-flow. Coating thickness can be adjusted by the average fluid speed and the number of beads encapsulated inside a single coat is tuned by the ratio of magnetic to interfacial forces acting on the beads.

  11. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    PubMed

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size. PMID:20058949

  12. Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles

    PubMed Central

    2013-01-01

    Background The problems related to conventional Fenton oxidation, including low pH required and production of considerable amounts of sludge have led researchers to investigate chelating agents which might improve the operating range of pH and the use of nano iron particle to reduce the excess sludge. The pyrene removal from contaminated soils by modified Fenton oxidation at neutral pH was defined as the main objective of the current study. Methods Varying concentrations of H2O2 (0-500 mM) and iron nano oxide (0-60 mM), reaction times of 0.5-24 hours and variety of chelating agents including sodium pyrophosphate, sodium citrate, ethylene diamine tetraacetic, fulvic and humic acid were all investigated at pyrene concentration levels of 100 – 500 mg/kg. Results By applying the following conditions (H2O2 concentration of 300 mM, iron nano oxide of 30 mM, sodium pyrophosphate as chelating agent, pH 3 and reaction time of 6 hours) the pyrene removal efficiency at an initial concentration of 100 mg/kg was found to be 99%. As a result, the pyrene concentration was reduced from 100 to 93 mg/kg once the above optimum conditions are met. Conclusions In this research, the modified Fenton oxidation using iron nano oxide at optimum conditions is introduced as an efficient alternative method in lab scale for chemical remediation or pre-treatment of soils contaminated by pyrene at neutral pH. PMID:24499620

  13. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE PAGESBeta

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; Dubey, Manvendra K.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (dme), enabling application for microphysical studies. However, the removal of particles ≤100 nm dme is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  14. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGESBeta

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  15. Control of Lateral Inertial Migration Rate of Particles in Microchannels

    NASA Astrophysics Data System (ADS)

    Karimi, Armin; Roy, Rishav; Bray, Sam; di Carlo, Dino

    2015-11-01

    The net inertial lift force acting on particles results in lateral inertial migration across streams. The migration direction and magnitude is strongly dependent on channel geometry, size of the particle, Reynolds number and location of the particle within the channel cross-section. In many chemical and biological applications in which precise temporal control and solution exchange around particles is required, the initial variation in distribution of focusing positions of particles within the channel cross-section becomes a determining factor. This variation is shown to be a limiting factor in achieving precise control over the migration time in previous studies. In order to improve uniformity of the average migration rate, a microfluidic device is designed to aid particles in achieving a single stable equilibrium position by inducing a net helical flow. Using this inertial focusing platform, a comprehensive numerical and experimental study is performed to characterize the range of lateral migration rates for rigid spherical particles as a function of particle size, initial particle position, flow rates of each stream and Reynolds number for a given channel geometry. The tool developed in this study can be used to achieve precise migration characteristics for the microparticles crossing fluid streams in microchannels over millisecond time scales. Visiting student from IIT.

  16. Sonochemical synthesis of silica particles and their size control

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan

    2016-09-01

    Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  17. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  18. Enhanced Removal of Hydrophobic Gas by Aerial Ultrasonic Waves and Two Kinds of Water Mists of Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Matsumoto, Keisuke; Miura, Hikaru

    2012-07-01

    Air pollutants can cause health problems, such as bronchitis and cancer, and are now recognized as a social problem. Hence, a method is proposed for the collection and removal of gaseous air pollutants by aerial ultrasonic waves and water mist. Typically, gas removal effects are studied using lemon oil vapor (“lemon gas”), which is a hydrophobic gas. Previous experiments using lemon gas have shown that a removal rate of up to 40% can be achieved in an intense standing wave at 20 kHz, for an amount of water mist of 1.39 cm3/s and an electrical input power of 50 W. Increasing the surface area of the water mist leads to greater removal of hydrophobic gas. In this study, the effects of gas removal are examined by conducting experiments using intense aerial ultrasonic waves to disperse two kinds of water mists, each composed of particles of different sizes: small particles (diameter: ≈3 µm) and conventional large particles (diameter: ≈60 µm).

  19. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes.

    PubMed

    Yurekli, Yilmaz

    2016-05-15

    In this study, the adsorption and the filtration processes were coupled by a zeolite nanoparticle impregnated polysulfone (PSf) membrane which was used to remove the lead and the nickel cations from synthetically prepared solutions. The results obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis indicated that the synthesized zeolite nanoparticles, using conventional hydrothermal method, produced a pure NaX with ultrafine and uniform particles. The performance of the hybrid membrane was determined under dynamic conditions. The results also revealed that the sorption capacity as well as the water hydraulic permeability of the membranes could both be improved by simply tuning the membrane fabricating conditions such as evaporation period of the casting film and NaX loading. The maximum sorption capacity of the hybrid membrane for the lead and nickel ions was measured as 682 and 122 mg/g respectively at the end of 60 min of filtration, under 1 bar of transmembrane pressure. The coupling process suggested that the membrane architecture could be efficiently used for treating metal solutions with low concentrations and transmembrane pressures. PMID:26874311

  20. Procedure to Evaluate the Efficiency of Flocculants for the Removal of Dispersed Particles from Plant Extracts.

    PubMed

    Buyel, Johannes F

    2016-01-01

    Plants are important to humans not only because they provide commodities such as food, feed and raw materials, but increasingly because they can be used as manufacturing platforms for added-value products such as biopharmaceuticals. In both cases, liquid plant extracts may need to be clarified to remove particulates. Optimal clarification reduces the costs of filtration and centrifugation by increasing capacity and longevity. This can be achieved by introducing charged polymers known as flocculants, which cross-link dispersed particles to facilitate solid-liquid separation. There are no mechanistic flocculation models for complex mixtures such as plant extracts so empirical models are used instead. Here a design-of-experiments procedure is described that allows the rapid screening of different flocculants, optimizing the clarification of plant extracts and significantly reducing turbidity. The resulting predictive models allow the identification of robust process conditions and sets of polymers with complementary properties, e.g. effective flocculation in extracts with specific conductivities. The results presented for tobacco leaf extracts can easily be adapted to other plant species or tissues and will thus facilitate the development of more cost-effective downstream processes for commodities and plant-derived pharmaceuticals. PMID:27166577

  1. Applications of Nuclear Track Membranes to Filtration of Medical Injections and Various Transfusions to Remove Solid Particles

    NASA Astrophysics Data System (ADS)

    He, Zhi-Bo; Guo, S.-L.

    Nuclear track membranes produced by China Institute of Atomic Energy (CIAE) in Beijing, China, and the Joint Institute for Nuclear Research (JINR) in Dubna, Russia have been used in the studies of filtration of medical injections and various transfusion liquid medicine to remove solid particles from the medicine. It shows that the filtration devices made of nuclear track membranes are superior to that made of any other types of membranes. Experiments have demonstrated that the removal efficiencies for solid particles with diameters 5 μm can reach over 95% and the flow rate is high enough for use in medical injection and transfusion. The reproducibility of removal efficiencies and flow rate of the new devices are satisfactory to the use in hospitals. Chinese authority in medicine has approved the new devices for use in Chinese hospitals.

  2. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    NASA Astrophysics Data System (ADS)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various

  3. Calcium-phosphate-osteopontin particles for caries control.

    PubMed

    Schlafer, Sebastian; Birkedal, Henrik; Olsen, Jakob; Skovgaard, Jonas; Sutherland, Duncan S; Wejse, Peter L; Nyvad, Bente; Meyer, Rikke L

    2016-01-01

    Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment with particles or pure osteopontin led to less biofilm formation compared to untreated controls or biofilms treated with osteopontin-free particles. The anti-biofilm effect can thus be ascribed to osteopontin. The particles also led to a slower acidification of the biofilm after exposure to glucose, and the pH always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control. PMID:26923119

  4. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  5. Morphological Control and Characterization of Monodispersed Ceria Particles

    SciTech Connect

    Minamidate, Y.; Yin, S.; Devaraju, M. K.; Sato, T.

    2010-11-24

    The morphological control of cerium oxide particles was carried out by a homogeneous precipitation followed by calcination in air at 400 deg. C. The effects of pre-aging temperature, aging time and precipitation reagents on the morphologies of final products were investigated. When urea was used as a precipitation reagent, monodispersed spherical and flake-like cerium carbonate hydroxide precursor was precipitated in the solution at 90 deg. C for 2 h after pre-aging at 25 deg. C - 50 deg. C for 24-72 h. On the other hand, monodispersed nanosize rod-like cerium hydroxide particles were obtained using triethanolamine as precipitation reagent. Ceria particles with the same morphologies and slightly smaller particle size than those of as-prepared cerium precursor could be obtained after calcination in air at 400 deg. C. Physical-chemical characteristics of the monodispersed cerium oxide particles were evaluated.

  6. Control over Colloidal Particle Morphology by Dispersion Polymerization

    NASA Astrophysics Data System (ADS)

    Peng, B.

    2013-03-01

    The main subject of this thesis is the structure and morphology control of colloidal polymer particles, in particular, poly(methyl methacrylate) (PMMA) particles, by dispersion polymerization in polar solvents. The structure control, ranging from surface morphology and internal structure to shape manipulation of polymer particles, was attempted through copolymerization of monomers with various types of materials, such as cross-linkers, dyes, and colloidal silica spheres or rods. The obtained spherical or non-spherical particles are interesting as model systems as they mimic molecules at colloidal scales. Their phase behavior can be studied in the presence or absence of external fields (like electric and gravity fields). Additionally, they can be used for various applications, such as photonic crystals

  7. Silylated Precision Particles for Controlled Release of Proteins

    PubMed Central

    Khodabandehlou, Khosrow; Kumbhar, Amar S.; Habibi, Sohrab; Pandya, Ashish A.; Luft, J. Christopher; Khan, Saad A.; DeSimone, Joseph M.

    2015-01-01

    With the recent advances in the development of novel protein based therapeutics, controlled delivery of these biologics is an important area of research. Herein, we report the synthesis of microparticles from bovine serum albumin (BSA) as a model protein using Particle Replication in Non-wetting Templates (PRINT) with specific size and shape. These particles were functionalized at room temperature using multifunctional chlorosilane that cross-link the particles to render them to slowly-dissolving in aqueous media. Mass spectrometric study of the reaction products of diisopropyldichlorosilane with individual components of the particles revealed that they are capable of reacting and forming cross-links. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were also used to confirm the functionalization of the particles. Cross sectional analysis using focused ion beam (FIB) and EDS proved that the functionalization occurs throughout the bulk of the particles and is not just limited to the surface. Circular dichroism data confirmed that the fraction of BSA molecules released from the particles retains its secondary structure thereby indicating that the system can be used for delivering protein based formulations while controlling the dissolution kinetics. PMID:25742193

  8. Investigation of the Profile Control Mechanisms of Dispersed Particle Gel

    PubMed Central

    Zhao, Guang; Dai, Caili; Zhao, Mingwei

    2014-01-01

    Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that DPG particles can easily be injected into deep formations and can effectively plug the high permeability zones. The high profile improvement rate improves reservoir heterogeneity and diverts fluid into the low permeability zone. Both water and oil permeability were reduced when DPG particles were injected, but the disproportionate permeability reduction effect was significant. Water permeability decreases more than the oil permeability to ensure that oil flows in its own pathways and can easily be driven out. Visual simulation experiments demonstrate that DPG particles can pass directly or by deformation through porous media and enter deep formations. By retention, adsorption, trapping and bridging, DPG particles can effectively reduce the permeability of porous media in high permeability zones and divert fluid into a low permeability zone, thus improving formation profiles and enhancing oil recovery. PMID:24950174

  9. Control of Respirable Particles in Indoor Air with Portable AirCleaners

    SciTech Connect

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Grimsrud, D.T.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-10-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles using in situ chamber decay tests. Following injection of cigarette smoke in a room-size chamber, decay rates for particle concentrations were obtained for total number concentration and for number concentration by particle size with and without air cleaner operation. The size distribution of the tobacco smoke particles was log normal with a count median diameter of 0.15 {micro}m and a geometric standard deviation of 2.0. Without air cleaner operation, the natural mass-averaged surface deposition rate of particles was observed to be 0.1 h{sup -1}. Air cleaning rates for particles were found to be negligible for several small panel-filter devices, a residential-sized ion-generator, and a pair of mixing fans. Electrostatic precipitators and extended surface filters removed particles at substantial rates, and a HEPA-type filter was the most efficient air cleaner studied.

  10. Controlled particle transport in a plasma chamber with striped electrode

    SciTech Connect

    Jiang Ke; Li Yangfang; Shimizu, T.; Konopka, U.; Thomas, H. M.; Morfill, G. E.

    2009-12-15

    The controlled transport of micrometer size dust particles in a parallel-plate radio frequency discharge has been investigated. The lower stainless steel electrode consisted of 100 independently controllable electrical metal stripes. The voltage signals on these stripes were modulated, causing traveling plasma sheath distortions. Because the particles trapped in local potential wells moved according to the direction of the distortion, the transport velocity could be actively controlled by adjusting frequencies and phase shifts of the applied periodic voltage signals. To investigate the detailed principle of this transport, molecular dynamic simulations was performed to reproduce the observations with the plasma background conditions calculated by separated particle-in-cell simulations for the experimental parameters. The findings will help develop novel technologies for investigating large-scale complex plasma systems and techniques for achieving clean environments in plasma processing reactors.

  11. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates. PMID:19044163

  12. A comparison of biologically active filters for the removal of ozone by-products, turbidity, and particles

    SciTech Connect

    Coffey, B.M.; Krasner, S.W.; Sclimenti, M.J.; Hacker, P.A.; Gramith, J.T.

    1996-11-01

    Biofiltration tests were performed at the Metropolitan Water District of Southern California`s 5.5-mgd (21,000 m{sup 3}d) demonstration plant using two 400 ft{sup 2} (37 m{sup 2}) anthracite/sand filters and a 6 ft{sup 2} (0.56 m{sup 2}) granular activated carbon (GAC)/sand filter operated in parallel. The empty-bed contact time (EBCT) within the GAC and anthracite ranged from 2.1-3.1 min. The filters were evaluated based on (1) conventional filtration performance (turbidity, particle removal, and headloss); (2) removal of biodegradable ozone by-products (assimilable organic carbon [AOC], aldehydes, and aldoketoacids) after startup; (3) removal of biodegradable ozone by-products at steady state; and (4) resistance to short-term process upsets such as intermittent chlorination or filter out-of-service time. Approximately 80 percent formaldehyde removal was achieved by the anthracite/sand filter operated at a 2.1-min EBCT (6 gpm/ft{sup 2} [15 m/h]) within 8 days of ozone operation. The GAC/sand filter operated at the same rate achieved 80 percent removal within 1 day, possibly as an additive effect of adsorption and biological removal. In-depth aldehyde monitoring at four depths (0.5-min EBCT intervals) provided additional insight into the removal kinetics. During periods of warmer water temperature, from 20 to 48 percent of the AOC was removed in the flocculation/sedimentation basins by 40-75 percent. This percentage removal typically resulted in AOC concentrations within 40 {mu}g C/L of the raw, unozonated water levels.

  13. An Optically Controlled Microscale Elevator Using Plasmonic Janus Particles

    PubMed Central

    2015-01-01

    In this article, we report how Janus particles, composed of a silica sphere with a gold half-shell, can be not only stably trapped by optical tweezers but also displaced controllably along the axis of the laser beam through a complex interplay between optical and thermal forces. Scattering forces orient the asymmetric particle, while strong absorption on the metal side induces a thermal gradient, resulting in particle motion. An increase in the laser power leads to an upward motion of the particle, while a decrease leads to a downward motion. We study this reversible axial displacement, including a hysteretic jump in the particle position that is a result of the complex pattern of a tightly focused laser beam structure above the focal plane. As a first application we simultaneously trap a spherical gold nanoparticle and show that we can control the distance between the two particles inside the trap. This photonic micron-scale “elevator” is a promising tool for thermal force studies, remote sensing, and optical and thermal micromanipulation experiments. PMID:25950013

  14. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  15. Controlling Lateral Inertial Migration Rate of Particles in Microchannels

    NASA Astrophysics Data System (ADS)

    Karimi, Armin; Bray, Samuel; di Carlo, Dino

    2014-11-01

    It was previously demonstrated that particles in confined channels can migrate across streams due to the net inertial lift force acting on them. The initial location of particles within the channel cross-section is shown to effect the migration time as particles starting at different locations experience a different history of lift forces. This initial variation in distribution of focusing positions of particles upstream was a limiting factor in achieving precise control over the migration time in previous studies. In order to improve uniformity of the focusing position, a set of sequential cylindrical pillars is integrated to one side of the channel which is shown to aid particles in achieving a single stable equilibrium position, by inducing a net helical flow. The modified focusing positions are characterized as a function of pillar diameter and spacing for various channel Reynolds numbers. Using this initial focusing channel, a comprehensive numerical and experimental study is performed to characterize the range of lateral migration rate for particles as a function of particle position, and flow rates of each stream for a given finite Reynolds number and channel geometry. The tool developed in this study can be used to achieve precise migration characteristics for the microparticles crossing fluid streams in microchannels.

  16. Nanosize cobalt boride particles: Control of the size and properties

    NASA Astrophysics Data System (ADS)

    Petit, C.; Pileni, M. P.

    1997-02-01

    Cobalt boride is obtained by the reduction of cobalt (2-ethyl hexyl) sulfosuccinate, Co(AOT) 2, by sodium borohydride either in reverse micelles or in a diphasic system. In Co(AOT) 2/Na(AOT)/H 2O reverse micellar solution, the size and polydispersity of the Co 2B particles is controlled by the size of the water droplets, which increases from 4 to 7.5 nm by increasing the water content. In a diphasic system of Co(AOT) 2/isooctane and sodium borohydride in aqueous solution, large and polydisperse particles of cobalt boride are formed (˜ 10 nm), and their magnetization properties are presented. The smallest particles are in a superparamagnetic regime at room temperature, whereas the largest particles show ferromagnetic behavior.

  17. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    NASA Astrophysics Data System (ADS)

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  18. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  19. Entropic control of particle sizes during viral self-assembly

    NASA Astrophysics Data System (ADS)

    Castelnovo, M.; Muriaux, D.; Faivre-Moskalenko, C.

    2013-03-01

    Morphologic diversity is observed across all families of viruses. However, these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of physical virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses such as HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle and of the particle's size distribution. Evidence of this peculiar behavior has recently been reported experimentally.

  20. Chemistry with spatial control using particles and streams†

    PubMed Central

    Kalinin, Yevgeniy V.; Murali, Adithya

    2012-01-01

    Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348

  1. FUGITIVE AND FINE PARTICLE CONTROL USING ELECTROSTATICALLY CHARGED FOG

    EPA Science Inventory

    The report gives results of a study of fugitive and fine particle control using electrostatically charged fog. Most industrial pollutants acquire an electrostatic charge as they are dispersed into the air. Exposing this charged airborne material to an oppositely charged water fog...

  2. NEW CHARGED FOG GENERATOR FOR INHALABLE PARTICLE CONTROL

    EPA Science Inventory

    The report discusses the development of a new charged fog generator (CFG) by modifying a commercial rotary atomizer. Extensive field tests of the CFG (at a bentonite ore unloading operation) were performed to determine the dependence of its inhalable particle control efficiency (...

  3. SPRAY CHARGING AND TRAPPING SCRUBBER FOR FUGITIVE PARTICLE EMISSION CONTROL

    EPA Science Inventory

    The report gives results of a theoretical and experimental evaluation of the control of fugitive particle emissions (FPE) with a Spray Charging and Trapping (SCAT) Scrubber that uses an air curtain and/or jets to contain, convey, and divert the FPE into a charged spray scrubber. ...

  4. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    USGS Publications Warehouse

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  5. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOEpatents

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2013-09-10

    One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.

  6. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  7. Boosting target tracking using particle filter with flow control

    NASA Astrophysics Data System (ADS)

    Moshtagh, Nima; Chan, Moses W.

    2013-05-01

    Target detection and tracking with passive infrared (IR) sensors can be challenging due to significant degradation and corruption of target signature by atmospheric transmission and clutter effects. This paper summarizes our efforts in phenomenology modeling of boosting targets with IR sensors, and developing algorithms for tracking targets in the presence of background clutter. On the phenomenology modeling side, the clutter images are generated using a high fidelity end-to-end simulation testbed. It models atmospheric transmission, structured clutter and solar reflections to create realistic background images. The dynamics and intensity of a boosting target are modeled and injected onto the background scene. Pixel level images are then generated with respect to the sensor characteristics. On the tracking analysis side, a particle filter for tracking targets in a sequence of clutter images is developed. The particle filter is augmented with a mechanism to control particle flow. Specifically, velocity feedback is used to constrain and control the particles. The performance of the developed "adaptive" particle filter is verified with tracking of a boosting target in the presence of clutter and occlusion.

  8. Changes in Fish Habitat And Demography Following Dam Removal in a Headwater Catchment: Linking Geomorphic, Hydrologic, and Ecological Controls

    NASA Astrophysics Data System (ADS)

    Magilligan, F. J.; Nislow, K. H.; Kynard, B.; Hackman, A. M.

    2013-12-01

    Dam removal is a major component of river restoration efforts in New England. More than 115 dams have been removed in the past few decades with the goal to restore historical runs of diadromous fish. Taking advantage of the Fall 2012 removal of the 5 m high Pelham Dam in central Massachusetts, we sampled pre- and post-removal geomorphic parameters (18 cross-sections along a 800 m reach, Wolman pebble counts, embeddedness surveys, and detailed long profiles) in Amethyst Brook (23 km2) an upstream tributary of the Fort River drainage. These geomorphic assessments were combined with detailed quantitative electrofishing surveys of stream fish richness and abundance above and below the dam site and throughout the watershed; genetic assignments and stable isotope analysis to determine population connectivity; and visual surveys of native anadromous Sea lamprey (Petromyzon marinus) nest sites. Post-removal assessments were complicated by two events: (1) upstream knickpoint migration exhumed an older (ca. early 19th century) intact wooden crib dam ~ 120 m upstream of the former stone dam, and (2) the occurrence of a 10-20 yr RI flood 6 months after removal which caused further upstream incision and downstream aggradation. Geomorphic results document that all 11 cross-sections downstream of the former dam fined significantly with typical reductions of 30-60% in mean particle size. This has major implications for Sea lamprey that require gravel for spawning which was largely absent downstream of the former sediment-trapping dam. This fining was associated with downstream bed aggradation, reflecting the new, post-removal flux of material. Similarly, post-removal, but pre-flood, bed surveys indicate ~ 2 m of incision had migrated 25 m upstream of the former reservoir before encountering the exhumed dam, which now acts as the new grade control, limiting progressive headcutting. The combination of changes in channel bed sedimentology, the occurrence of a large magnitude flood

  9. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(III) by mesoporous Fe/Al bimetallic particles.

    PubMed

    Cheng, Zihang; Fu, Fenglian; Dionysiou, Dionysios D; Tang, Bing

    2016-06-01

    In this study, mesoporous iron/aluminum (Fe/Al) bimetallic particles were synthesized and employed for the removal of aqueous As(III). Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) analysis method, Vibrating-sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the Fe/Al bimetals before and after reaction with As(III). The physical properties, compositions, and structures of Fe/Al bimetallic particles as well as the As(III) removal mechanism were investigated. The characterization of the bimetallic particles after the reaction has revealed the removal of As(III) is a complex process including surface adsorption and oxidation, and intraparticle reduction. The good As(III) removal capability and stability of the Fe/Al bimetallic particles exhibited its great potential as an effective and environmental friendly agent for As(III) removal from water. PMID:27016635

  10. Control of particle precipitation by energy transfer from solar wind

    NASA Astrophysics Data System (ADS)

    Bremer, J.; Gernandt, H.

    1985-12-01

    The energy transfer function (epsilon), introduced by Perreault and Akasofu (1978), appears to be well suited for the description of the long-term control of the particle precipitation by interplanetary parameters. An investigation was conducted with the objective to test this control in more detail. This investigation included the calculation of hourly epsilon values on the basis of satellite-measured solar wind and IMF (interplanetary magnetic field) data. The results were compared with corresponding geomagnetic and ionospheric data. The ionospheric data had been obtained by three GDR (German Democratic Republic) teams during the 21st, 22nd, and 23rd Soviet Antarctic Expeditions in the time period from 1976 to 1979. It was found that, in high latitudes, the properties of the solar wind exercise a pronounced degree of control on the precipitation of energetic particles into the atmosphere, taking into account a time delay of about one hour due to the occurrence of magnetospheric storage processes.

  11. 15 CFR 768.10 - Removal of controls on less sophisticated items.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION... sophisticated items. Where the Secretary has removed national security controls on an item for foreign... security reasons and whose functions, technological approach, performance thresholds, and other...

  12. 15 CFR 768.10 - Removal of controls on less sophisticated items.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION... sophisticated items. Where the Secretary has removed national security controls on an item for foreign... security reasons and whose functions, technological approach, performance thresholds, and other...

  13. 15 CFR 768.10 - Removal of controls on less sophisticated items.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION... sophisticated items. Where the Secretary has removed national security controls on an item for foreign... security reasons and whose functions, technological approach, performance thresholds, and other...

  14. 15 CFR 768.10 - Removal of controls on less sophisticated items.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION... sophisticated items. Where the Secretary has removed national security controls on an item for foreign... security reasons and whose functions, technological approach, performance thresholds, and other...

  15. 15 CFR 768.10 - Removal of controls on less sophisticated items.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION... sophisticated items. Where the Secretary has removed national security controls on an item for foreign... security reasons and whose functions, technological approach, performance thresholds, and other...

  16. Nitrogen removal over nitrite by aeration control in aerobic granular sludge sequencing batch reactors.

    PubMed

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-07-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m-3·d-1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  17. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    PubMed Central

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-01-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  18. Influence of surface tension on cavitation noise spectra and particle removal efficiency in high frequency ultrasound fields

    NASA Astrophysics Data System (ADS)

    Camerotto, Elisabeth; Brems, Steven; Hauptmann, Marc; Pacco, Antoine; Struyf, Herbert; Mertens, Paul W.; De Gendt, Stefan

    2012-12-01

    Physical cleaning methods are applied in the semiconductor industry and have become increasingly challenging due to the continued scaling of semiconductors device elements. Cavitation and acoustic phenomena are known to play a fundamental role in megasonic cleaning. Hence, a better understanding of cavitation phenomena in multi-bubble systems is crucial. Here, a study on the effects of lower bulk surface tension and different O2 concentrations on the bubble activity in the megahertz range is presented. A lower bulk surface tension (45 mN/m) with respect to ultra pure water (72 mN/m) is obtained by adding a non-ionic surface-active agent (Triton X-100). After a thorough surfactant characterization, a Triton X-100-containing cleaning solution is investigated under pulsed and continuous acoustic fields, for different acoustic amplitudes and gas concentrations. It is demonstrated that cavitation activity, measured by means of ultraharmonic cavitation noise, is enhanced in presence of a lower surface tension, under continuous acoustic fields. In addition, cavitation measurements performed under pulsed fields reveal the existence of optimal pulse-off times, for which a maximum of activity is observed. These optimal pulse-off time values are linked to the bubble dissolution theoretical times and experimentally verified. To end, cavitation noise measurements are correlated to cleaning performance in megasonic fields by means of particle removal and damage tests on patterned wafers. A clear increase in particle removal efficiency of 78 nm SiO2 particles is obtained when Triton X-100 is employed, at the optimized process conditions. In addition, the number of defects due to cavitation bubbles is significantly reduced for lower surface tension, at particle removal efficiencies <60%. The results here reported constitute a different approach towards more efficient megasonic cleaning processes.

  19. Particle reduction and control in EUV etching process

    NASA Astrophysics Data System (ADS)

    Jun, JeaYoung; Ha, TaeJoong; Kim, SangPyo; Yim, DongGyu

    2014-10-01

    As the device design rule shrinks, photomask manufacturers need to have advanced defect controllability during the ARC (Anti-Reflection Coating) and ABS (Absorber) etch in an EUV (extreme ultraviolet) mask. Therefore we studied etching techniques of EUV absorber film to find out the evasion method of particle generation. Usually, Particles are generated by plasma ignition step in etching process. When we use the standard etching process, ARC and ABS films are etched step by step. To reduce the particle generation, the number of ignition steps need to decrease. In this paper, we present the experimental results of in-situ EUV dry etching process technique for ARC and ABS, which reduces the defect level significantly. Analysis tools used for this study are as follows; TEM (for cross-sectional inspection) , SEM (for in-line monitoring ) and OES (for checking optical emission spectrum)

  20. Phase Control of BR/SBR Blends by Silica Particles

    NASA Astrophysics Data System (ADS)

    Inai, Motoyuki; Aizawa, Seiji; Ito, Masayoshi

    A phase control of butadiene rubber (BR)/styrene-butadiene rubber (SBR) blends was examined by using silica particles. The phase structure of the blends was qualitatively evaluated from transmission electron microscope (TEM) observation and temperature dependence of mechanical tanδ. It was found that the temperature dependence of tanδ was dependent on the size of agglomerate formed by silica particles in the blend. The vulcanized blends with small agglomerates showed a single tanδ peak suggesting a pseudo-miscible state. The vulcanized blends with large agglomerates showed two tanδ peaks corresponding to the Tgs of BR and SBR. The mutual dissolution of BR and SBR phases above the UCST line where the vulcanization was carried out might be disturbed by large agglomerates formed by silica particles in the blends.

  1. Dynamic self-assembly and control of microfluidic particle crystals

    PubMed Central

    Lee, Wonhee; Amini, Hamed; Stone, Howard A.; Di Carlo, Dino

    2010-01-01

    Engineered two-phase microfluidic systems have recently shown promise for computation, encryption, and biological processing. For many of these systems, complex control of dispersed-phase frequency and switching is enabled by nonlinearities associated with interfacial stresses. Introducing nonlinearity associated with fluid inertia has recently been identified as an easy to implement strategy to control two-phase (solid-liquid) microscale flows. By taking advantage of inertial effects we demonstrate controllable self-assembling particle systems, uncover dynamics suggesting a unique mechanism of dynamic self-assembly, and establish a framework for engineering microfluidic structures with the possibility of spatial frequency filtering. Focusing on the dynamics of the particle–particle interactions reveals a mechanism for the dynamic self-assembly process; inertial lift forces and a parabolic flow field act together to stabilize interparticle spacings that otherwise would diverge to infinity due to viscous disturbance flows. The interplay of the repulsive viscous interaction and inertial lift also allow us to design and implement microfluidic structures that irreversibly change interparticle spacing, similar to a low-pass filter. Although often not considered at the microscale, nonlinearity due to inertia can provide a platform for high-throughput passive control of particle positions in all directions, which will be useful for applications in flow cytometry, tissue engineering, and metamaterial synthesis. PMID:21149674

  2. Magnetic microswimmers: Controlling particle approach through magnetic and hydrodynamic interaction

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad; Cheang, U. Kei; Kim, Minjun; Fu, Henry

    2015-11-01

    We investigate magnetic microswimmers actuated by a rotating magnetic field that may be useful for drug delivery, micro-surgery, or diagnostics in human body. For modular swimmers, assembly and disassembly requires understanding the interactions between the swimmer and other modules in the fluid. Here, we discuss possible mechanisms for a frequency-dependent attraction/repulsion between a three-bead, achiral swimmer and other magnetic particles, which represent modular assembly elements. We first investigate the hydrodynamic interaction between a swimmer and nearby particle by studying the Lagrangian trajectories in the vicinity of the swimmer. Then we show that the magnetic forces can be attractive or repulsive depending on the spatial arrangement of the swimmer and particle, with a magnitude that decreases with increasing frequency. Combining magnetic and hydrodynamic effects allows us to understand the overall behavior of magnetic particles near the swimmer. Interestingly, we find that the frequency of rotation can be used to control when the particle can closely approach the swimmer, with potential application to assembly.

  3. The effectiveness of faecal removal methods of pasture management to control the cyathostomin burden of donkeys

    PubMed Central

    2014-01-01

    Background The level of anthelmintic resistance within some cyathostomin parasite populations has increased to the level where sole reliance on anthelmintic-based control protocols is not possible. Management-based nematode control methods, including removal of faeces from pasture, are widely recommended for use in association with a reduction in anthelmintic use to reduce selection pressure for drug resistance; however, very little work has been performed to quantitatively assess the effectiveness of such methods. Methods We analysed data obtained from 345 donkeys at The Donkey Sanctuary (Devon, UK), managed under three different pasture management techniques, to investigate the effectiveness of faeces removal in strongyle control in equids. The management groups were as follows: no removal of faeces from pasture, manual, twice-weekly removal of faeces from pasture and automatic, twice-weekly removal of faeces from pasture (using a mechanical pasture sweeper). From turn-out onto pasture in May, monthly faecal egg counts were obtained for each donkey and the dataset subjected to an auto regressive moving average model. Results There was little to no difference in faecal egg counts between the two methods of faecal removal; both resulted in significantly improved cyathostomin control compared to the results obtained from the donkeys that grazed pasture from which there was no faecal removal. Conclusions This study represents a valuable and unique assessment of the effectiveness of the removal of equine faeces from pasture, and provides an evidence base from which to advocate twice-weekly removal of faeces from pasture as an adjunct for equid nematode control. Widespread adoption of this practice could substantially reduce anthelmintic usage, and hence reduce selection pressure for nematode resistance to the currently effective anthelmintic products. PMID:24460700

  4. Mitigation of soiling losses in solar collectors: Removal of surface-adhered dust particles using an electrodynamic screen

    NASA Astrophysics Data System (ADS)

    Sayyah, Arash

    Particulate contamination of the optical surfaces of solar collectors, often called "soiling", can have a significant deteriorating impact on energy yield due to the absorption and scattering of incident light. Soiling has more destructive effect on concentrated solar systems than on flat-plate photovoltaic panels, as the former are incapable of converting scattered sunlight. The first part of this thesis deals with the soiling losses of flat-plate photovoltaic (PV), concentrated solar power (CSP), and concentrated photovoltaic (CPV) systems in operation in several regions of the world. Influential parameters in dust accumulation losses, as well as different cleaning mechanisms in pursuit of restoring the efficiency of soiled systems, have been thoroughly investigated. In lieu of the most commonly-practiced manual cleaning method of using high-pressure water jets, the concept of automatic dust removal using the electrostatic forces of electrodynamic screen (EDS) technology is in a developmental stage and on its way toward commercialization. This thesis provides comprehensive analytical solutions for the electric potential and electric field distribution in EDS devices having different configurations. Numerical simulations developed using finite element analysis (FEA) software have corroborated the analytical solutions which can easily be embedded into software programs for particle trajectory simulations while also providing flexibility and generality in the study on the effect of different parameters of the EDS on the electric field and ensuing dust-removal performance. Evaluation and comparison of different repelling and attracting forces exerted on dust particles is of utmost importance to a detailed analysis of EDS performance in dust removal. Hence, the balance of electrostatic and adhesion forces, including van der Waals and capillary forces, have received significant attention in this dissertation. Furthermore, different numerical analyses have been

  5. Decay heat removal from a Particle Bed Reactor Nuclear Thermal Rocket engine

    SciTech Connect

    Gustafson, E.

    1993-06-01

    Nuclear Thermal Rockets used in propulsion systems for planetary exploration will generate significant amounts of heat following normal engine shutdown due to the buildup of and decay of radioactive fission products. The amount of energy that is generated as decay heat is approximately 2-5 percent of the energy released during nominal operation. Various schemes are possible for removing this heat, including using primary coolant (hydrogen) to cool the reactor. Depending on the amount of coolant required, this may result in a large weight penalty for the mission. This paper quantifies the amount of decay heat that must be removed from the engine, shows the resulting impact on the vehicle design for particular missions, and examines possible approaches for reducing the amount of coolant required for decay heat removal. The costs and benefits of these schemes will be shown for several different missions. The missions that will be considered include both manned Mars missions and unmanned planetary exploration missions. 6 refs.

  6. Tracking low SNR targets using particle filter with flow control

    NASA Astrophysics Data System (ADS)

    Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.

    2014-06-01

    In this work we study the problem of detecting and tracking challenging targets that exhibit low signal-to-noise ratios (SNR). We have developed a particle filter-based track-before-detect (TBD) algorithm for tracking such dim targets. The approach incorporates the most recent state estimates to control the particle flow accounting for target dynamics. The flow control enables accumulation of signal information over time to compensate for target motion. The performance of this approach is evaluated using a sensitivity analysis based on varying target speed and SNR values. This analysis was conducted using high-fidelity sensor and target modeling in realistic scenarios. Our results show that the proposed TBD algorithm is capable of tracking targets in cluttered images with SNR values much less than one.

  7. Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal

    PubMed Central

    Zhang, Xiangling; Chen, Qiaozhen; Guo, Lu; Huang, Hualing; Ruan, Chongying

    2015-01-01

    A comparative study was carried out for the removal of phosphorus in simulated unplanted vertical-flow constructed wetlands with different layered double hydroxide (LDHs) coated anthracite substrates. Three particle sizes of anthracites were selected and modified separately with nine kinds of LDH coating. The simulated substrates test columns loaded with the original and modified anthracites were constructed to treat the contaminated water. For the medium and large particle size modified anthracite substrates, the purification effects of total phosphorus, total dissolved phosphorus and phosphate were improved by various degrees, and the purification effect of the medium particle size anthracite is better than that of the large size one. The medium size anthracite modified by ZnCo-LDHs had optimal performance with average removal efficiencies of total phosphorus, total dissolved phosphorus and phosphate reaching 95%, 95% and 98%, respectively. The maximum adsorption capacity on ZnCo-LDHs and ZnAl-LDHs modified medium sizes anthracites were 65.79 (mg/kg) and 48.78 (mg/kg), respectively. In comparison, the small size anthracite is not suitable for LDHs modification. PMID:26086702

  8. Development of an ash particle deposition model considering build-up and removal mechanisms

    SciTech Connect

    Kjell Strandstroem; Christian Muellera; Mikko Hupa

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.

  9. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room.

    PubMed

    Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke

    2016-01-01

    Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3-3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 10⁴ m³/m². The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4-0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school

  10. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room

    PubMed Central

    Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke

    2016-01-01

    Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school

  11. Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Gobara, Mohamed

    2016-08-01

    HCl-doped polyaniline (HCl-PANI) and titanium dioxide decorated with polyaniline (TiO2-decorated PANI) with different TiO2:PANI ratios were chemically prepared and utilized for the removal of tartrazine (TZ) dye from a synthetic aqueous solution. The mechanism of preparation of the sample suggested that aniline was adsorbed on the TiO2 surface before the polymerization process took place. Samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. The results showed that HCl-PANI and TiO2-decorated PANI have an amorphous structure. The thermal stability of the prepared samples was characterized using thermo-gravimetric (TG) analysis. HCl-PANI is stable up to 200 °C and the relative weight per cent of PANI in the TiO2-decorated PANI was 20, 25, 40 and 45%. The removal activity of TiO2-decorated PANI via TZ azo dye was investigated under UV light irradiations and compared with HCl-PANI and TiO2 particles. The results indicated the superiority of the TiO2-decorated PANI over pure HCl-PANI and TiO2. However, the excessive PANI percentage tends to form a relatively thick layer, and even aggregates on the surface of TiO2. This hinders the migration of excited electrons from the outer PANI layer to the inner TiO2 particles, which consequently leads to a decrease in the removal efficiency. A possible mechanism for the removal oxidative degradation is also mentioned.

  12. Transit Scratchitti Removal and Glass Resurfacing by Controlled Fire Polishing

    NASA Astrophysics Data System (ADS)

    Jun, Seongchan; Hong, Shane Y.

    Scratchitti vandalism, a new type of graffiti vandalism, in public transits systems and city neighborhood is a serious problem. To solve this problem, an innovative approach was developed-controlled fire polishing, which incorporates a technique of localized softening and surface tension. Intensive heat is positioned near to the scratch marks on the glass panel. The heat melts a thin layer of glass into liquid, changing the glass’s viscosity to a formable state. The glass is melted to a level close to the depth of the scratch, and allowed to cool down naturally. During the cooling process, the surface tension of the melted glass will even out the scratching indent. After cooling, the glass will be as even and smooth as it was originally. The process will enable the reuse of the damaged window/door and eliminate the otherwise waste by replacement new glass.

  13. Thermal control system. [removing waste heat from industrial process spacecraft

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  14. A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters.

    PubMed

    Guerrero, Javier; Guisasola, Albert; Baeza, Juan A

    2014-01-01

    This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A(2)/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation. PMID:25116500

  15. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. PMID:20713298

  16. Transient colloidal stability controls the particle formation of SBA-15.

    PubMed

    Ruan, Juanfang; Kjellman, Tomas; Sakamoto, Yasuhiro; Alfredsson, Viveka

    2012-08-01

    A hypothesis about (transient) colloidal stability as a controlling mechanism for particle formation in SBA-15 is presented. The hypothesis is based on results from both in situ and ex situ investigations, including cryogenic transmission electron microscopy (cryo-TEM), UV-vis spectroscopy, and dynamic light scattering (DLS). Cryo-TEM images show that particles grow via the formation of silica-Pluronic-water "flocs", which coalesce in a seemingly arbitrary manner. Despite this, the final material consists of well-defined particles with a small size distribution. We argue that the interface between the flocs and surrounding media is covered by Pluronic molecules, which provide steric stabilization. As the flocs grow, the coverage of polymers at the interface is increased until a stable size is reached, and that regulates the particle size. By targeting the characteristics of the Pluronic molecules, during the on-going synthesis, the hypothesis is tested. The results are consistent with the concept of (transient) colloidal stability. PMID:22758927

  17. Transient Colloidal Stability Controls the Particle Formation of SBA-15

    PubMed Central

    2012-01-01

    A hypothesis about (transient) colloidal stability as a controlling mechanism for particle formation in SBA-15 is presented. The hypothesis is based on results from both in situ and ex situ investigations, including cryogenic transmission electron microscopy (cryo-TEM), UV–vis spectroscopy, and dynamic light scattering (DLS). Cryo-TEM images show that particles grow via the formation of silica–Pluronic–water “flocs”, which coalesce in a seemingly arbitrary manner. Despite this, the final material consists of well-defined particles with a small size distribution. We argue that the interface between the flocs and surrounding media is covered by Pluronic molecules, which provide steric stabilization. As the flocs grow, the coverage of polymers at the interface is increased until a stable size is reached, and that regulates the particle size. By targeting the characteristics of the Pluronic molecules, during the on-going synthesis, the hypothesis is tested. The results are consistent with the concept of (transient) colloidal stability. PMID:22758927

  18. TiW particle control for VLSI manufacturing

    NASA Astrophysics Data System (ADS)

    Gn, Fang H.; Yeap, Chuin B.; Li, He M.; Liu, E. Z.; Chew, Heng L.

    1995-09-01

    TiW has been used extensively as the barrier metal in submicron metallization. However, TiW has also drawn much attention as the source of defect generation contributing to functional yield loss. Usually, the defects are in the form of flakes which can be detected by either using light scattering metrology tools or naked eye in severe situations. In this paper various manufacturing techniques will be presented which reduce defect during the TiW sputtering process. Both arc-sprayed process kit (chamber shield and clamping ring) and TiW paste at fixed intervals have been proven to be effective in reducing TiW particles. Implementation of these two techniques is relatively simple and has been used very successfully in Chartered's 6 inch wafer fab. Another study shows that by reducing the process kit thermal cycling through continuously having the bake-out lamp turned on is effective for particle control. Effect of the grain size of TiW sputter target and the application of Particle Gettering (PG) foil will also be discussed in detail as other means of particle reduction.

  19. Particle Size Control of Polyethylene Glycol Coated Fe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivasan, B.; Bonder, M. J.; Zhang, Y.; Gallo, D.; Hadjipanayis, G. C.

    2006-03-01

    Recent interest in Fe nanoparticles with high magnetization is driven by their potential use in biomedical applications such as targeted drug delivery, MRI contrast enhancement and hyperthermia treatment of cancer. This study looks at the use of a polyethylene glycol (PEG) solution to mediate the particle size and therefore control the coercivity of the resulting nanoparticles. Iron nanoparticles were synthesized using an aqueous sodium borohydride reduction of ferrous chloride by a simultaneous introduction of reagents in a Y- junction. The resulting product was collected in a vessel containing a 15 mg/ml carboxyl terminated polyethylene glycol (cPEG) in ethyl alcohol solution located under the Y junction. By varying the length of tubing below the Y junction, the particle size was varied from 5-25 nm. X-ray diffraction data indicates the presence of either amorphous Fe-B or crystalline alpha Fe, depending on the molar ratio of reagents. Magnetic measurements indicate the particles are ferromagnetic with values of coercivity ranging from 200-500 Oe and a saturation magnetization in range of 70-110 emu/g. The XRD shows that the particles are not affected by the polymer coating.

  20. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants.

    PubMed

    Benhima, H; Chiban, M; Sinan, F; Seta, P; Persin, M

    2008-01-15

    In the present work, Pb(II) and Cd(II) ion adsorption onto inert organic matter (IOM) obtained from ground dried plants: Euphorbia echinus, Launea arborescens, Senecio anthophorbium growing in semi-arid zones of Morocco and Carpobrotus edulis as the Mediterranean plant has been studied. A suspension of plant deroed micro-particles adsorbs lead and cadmium present as ionic species, with a higher affinity for Pb(II). The kinetics and the maximum capacity adsorption depend on the type of plant as well as on the metal ions (atomic weight, ionic radius and electronegativity). The adsorption process is affected by various parameters such as contact time, solution volume to mass of plant particles ratio (m/V), particle size, solution pH and metal concentration. A dose of 25 g/l of adsorbent was optimal to obtain maximum adsorption of both metal ions. The maximum metal uptake was obtained with particles of organic matter of <50 microm. As to classical ionic adsorption phenomena, the adsorption of both metal ions increases with the increase of the initial concentration in the solution. For the two metal cations, the uptake efficiency of the studied plants ranged from: C. edulis>E. echinus>S. anthophorbium>L. arborescens, however, the differences are rather small. Two different waste water types (domestic and industrial) were tested and good results were obtained for removal of Pb(II) and Cd(II) at more than 90%. The removal of the metal and mineral ions waste water was observed for PO(4)(3-) at 88%, for NO(3)(-) at 96.5% and for metal ions (Pb(II), Cd(II), Cu(II) and Zn(II)) at about 100%, using IOM as absorbent. PMID:17869071

  1. Particle removal in a novel sequential mechanical filter system loaded with blackwater.

    PubMed

    Todt, Daniel; Jenssen, Petter D

    2015-01-01

    A novel sequential mechanical filter system was developed as an alternative primary treatment method for onsite wastewater treatment. The filter combines traditional screening with a novel type of counter-flow filter using wood-shavings as a biodegradable filter matrix. This study tested the system in a batch loading regime simulating high frequency toilet flushing using blackwater from a student dormitory. The filter removed 78-85% of suspended solids, 60-80% of chemical oxygen demand, and 42-57% of total-P in blackwater, giving a retentate with a dry matter content of 13-20%. Data analysis clearly indicated a tendency towards higher removal performance with high inlet concentrations, hence, the system seems to be most applicable to blackwater or other types of wastewater with a high content of suspended solids. PMID:25945859

  2. Schedules of Controlled Substances: Removal of [123I]Ioflupane From Schedule II of the Controlled Substances Act. Final rule.

    PubMed

    2015-09-11

    With the issuance of this final rule, the Administrator of the Drug Enforcement Administration removes [123I]ioflupane from the schedules of the Controlled Substances Act. This action is pursuant to the Controlled Substances Act which requires that such actions be made on the record after an opportunity for a hearing through formal rulemaking. Prior to the effective date of this rule, [123I]ioflupane was, by definition, a schedule II controlled substance because it is derived from cocaine via ecgonine, both of which are schedule II controlled substances. This action removes the regulatory controls and administrative, civil, and criminal sanctions applicable to controlled substances, including those specific to schedule II controlled substances, on persons who handle (manufacture, distribute, reverse distribute, dispense, conduct research, import, export, or conduct chemical analysis) or propose to handle [123I]ioflupane. PMID:26364325

  3. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  4. Crystalline structure of ceria particles controlled by the oxygen partial pressure and STI CMP performances.

    PubMed

    Kim, Ye-Hwan; Kim, Sang-Kyun; Kim, Namsoo; Park, Jea-Gun; Paik, Ungyu

    2008-09-01

    The effect of the crystalline structures of nano-sized ceria particles on shallow trench isolation (STI) chemical mechanical planarization (CMP) performance was investigated. The ceria particles were synthesized via a solid-state displacement reaction method, and their crystalline structure was controlled by regulating the oxygen partial pressure at the reaction site on the precursor. The crystalline structures of ceria particles were analyzed by the high-resolution TEM nano-beam diffraction pattern. In a calcination process with a high oxygen concentration, the synthesized ceria particles had a cubic fluorite structure (CeO(2)), because of the decarbonation of the cerium precursor. However, a low oxygen concentration results in a hexagonal phase cerium oxide (Ce(2)O(3)) rather than the cubic phase due to the insufficient oxidation of Ce(3+) to Ce(4+). In the STI CMP evaluation, the ceria slurry prepared with the cubic CeO(2) shows enhanced performances of the oxide-to-nitride removal selectivity. PMID:18562111

  5. Removal of Cu(II) from aqueous solution using synthetic poly(catechol-diethylenetriamine-p-phenylenediamine) particles.

    PubMed

    Liu, Qiang; Liu, Qinze; Ruan, Zining; Chang, Xiaoqing; Yao, Jinshui

    2016-07-01

    A novel poly(catechol-diethylenetriamine-pphenylenediamine)(PCEA) adsorbent was synthesized in methanol, with chelating groups supplied by catechol and diethylenetriamine, which showed a strong removal performance and efficient adsorption toward Cu(II) ions in aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Besides, factors such as adsorbent dosage, pH, initial ionic and metal concentrations, contact time, and temperature on the adsorption of Cu(II) were studied. The data revealed that the adsorption followed a pseudo-second order kinetic model and the adsorption rate was influenced by the intra-particle diffusion. Furthermore, the adsorption process followed the Langmuir isotherm model, and the maximum adsorption capacity (Qm) was 44.2mg/g at 298K in simulated wastewater. The value of ΔG (kJ/mol) and ΔH (kJ/mol) also demonstrated that the adsorption process was spontaneous and endothermic. Studies revealed that PCEA particles were powerful and stable for the removal of Cu(II) in water, and it could be directly applied to the Cu(II)-contaminated water. PMID:27057995

  6. Novel electrostatic precipitator using unipolar soft X-ray charger for removing fine particles: Application to a dry de-NOX process.

    PubMed

    Choi, Jeongan; Kim, Hak Joon; Kim, Yong Jin; Kim, Sang Soo; Jung, Jae Hee

    2016-02-13

    The novel electrostatic precipitator (ESP), consisting of a soft X-ray charger and a collection part, was demonstrated and applied to a dry de-NOX process to evaluate its performance in by-product particle removal. NOX gas was oxidized by ozone (O3) and neutralized by ammonia (NH3) sequentially, and finally converted to an ammonium nitrate (NH4NO3) aerosol with ∼ 100-nm peak particle diameter. The unipolar soft X-ray charger was introduced for charging the by-product particles in this dry de-NOX process. For the highest particle collection efficiency, the optimal operating conditions of the soft X-ray charger and collection part were investigated by adjusting the applied voltage of each device. The results showed that ∼ 99% of NOX was removed when the O3/NOX ratio was increased to 2 (i.e., the maximum production conditions of the NH4NO3 by-product particles by the gas-to-particle conversion process). The highest removal efficiency of particle (∼ 90%) was observed with operating conditions of positive polarity and an applied voltage of ∼ 2-3 kV in the charger chamber. The unipolar soft X-ray charger has potential for particle removal systems in industrial settings because of its compact size, ease of operation, and non-interruptive charging mechanism. PMID:26513563

  7. Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime.

    PubMed

    Nezamzadeh-Ejhieh, Alireza; Kabiri-Samani, Mehdi

    2013-09-15

    In this work an Iranian natural clinoptilolite tuff was pre-treated and changed to the micro (MCP) and nano (NCP) particles by mechanical method. Modification of micro and nano particles and also their Ni-exchanged forms were done by dimethylglyoxime (DMG). The raw and modified samples were characterized by XRD, FT-IR, SEM, BET, TG-DTG and energy dispersive analysis X-ray spectroscopy (EDAX). Removal of Ni(II) by modified and unmodified samples was investigated in batch procedure. It was found that NCP-DMG has higher capacity for removal of Ni(II). The effects of analytical parameters such as pH, dose of DMG, concentration of nickel solution, contact time and selectivity were studied and the optimal operation parameters were found as follows: pHPZC: 7.6, CNi(II): 0.01 M, contact time: 360 min and DMG dosage: 5mM. The results of selectivity experiments showed that the modified zeolite has a good selectivity for nickel in the presence of different multivalent cations. Langmuir and Freundlich isotherm models were adopted to describe the adsorption isotherms. Adsorption isotherms of Ni(II) ions could be best modelled by Langmuir equation, that indicate the monolayer sorption of Ni(II). Comparison of two kinetic models indicates that the adsorption kinetic can be well described by the pseudo-second-order rate equation that indicates that the rate limiting step for the process involves chemical reaction. The negative ΔH and ΔG indicate an exothermic and spontaneously process. The negative ΔS indicates that the adsorption of nickel cations from solution occurs with lower amount ion replacement, thus chemisorptions due to complex formation are dominant process in nickel removal. PMID:23792926

  8. Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions.

    PubMed

    Pavlovic, Jelica; Holder, Amara L; Yelverton, Tiffany L B

    2015-09-01

    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) and varying power output (230 kW, 400 kW, and 600 kW) at 50% and 90% load to determine concentrations of gaseous (GROS) and PM reactive oxygen species (PMROS). In addition, the influence of three modern emission control technologies on ROS emissions was evaluated: active and passive diesel particulate filters (A-DPF and P-DPF) and a diesel oxidation catalyst (DOC). PMROS made up 30-50% of the total ROS measured without aftermarket controls. All applied controls removed PMROS by more than 75% on average. However, the oxidative potential of PM downstream of these devices was not diminished at the same rate and particles surviving the A-PDF had an even higher oxidative potential on a per PM mass basis compared to the particles emitted by uncontrolled gensets. Further, the GROS as compared to PMROS emissions were not reduced with the same efficiency (<36%). GROS concentrations were highest with the DOC in use, indicating continued formation of GROS with this control. Correlation analyses showed that PMROS and to a lesser extent GROS have a good correlation with semivolatile organic carbon (OC1) subfraction. In addition, results suggest that chemical composition, rather than PM size, is responsible for differences in the PM oxidative potential. PMID:26252945

  9. Induction plasma calcining of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.

    1971-01-01

    Induction plasma heating techniques were studied for calcining zinc orthotitanate particles for use in thermal control coatings. Previous studies indicated that the optimum calcining temperature is between 1400 and 1750 C. An intermediate temperature (1670 C) was chosen as a reference point for running a temperature series at the reference point and 220 C on both sides. The effect of varying chamber temperature on the reflectance spectra, before and after vacuum UV irradiation, is presented. The correlation between Zn2Ti04 paramagnetic resonance activity and its susceptibility to vacuum UV damage is discussed.

  10. Synthesis, modification and graft polymerization of magnetic nano particles for PAH removal in contaminated water

    PubMed Central

    2014-01-01

    Magnetic nanoparticles (MNPs) were modified with 3-Mercaptopropytrimethoxysiline (MPTMS) and grafted with allyl glycidyl ether for coupling with beta naphtol as a method to form a novel nano-adsorbent to remove two poly aromatic hydrocarbons (PAHs) from contaminated water. The modified MNPs were characterized by transmission electron microscopy, infrared spectroscopy and thermogravimetric analysis. Results showed that the modified MNPs enhanced the process of adsorption. Tests were done on the adsorption capacity of the two PAHs on grafted MNPs; factors applied to the tests were temperature, contact time, pH, salinity and initial concentration of PAHs. Results revealed that adsorption equilibrium was achieved in 10 min, and the maximum adsorption capacity was determined as 4.15 mg/g at pH = 7.0 and 20°C. The equilibrium adsorption data of the two PAHs by the modified MNPs were analyzed by Langmuir, Freundlich and Temkin models. Equilibrium adsorption data was determined from the Langmuir, Freundlich and Temkin constants from tests under conditions of pH = 7 and temperature 20°C. Analysis of the adsorption-desorption process indicated that the modified MNPs had a high level of stability and good reusability. Magnetic separation in these tests was fast and this shows that the modified MNPs have great potential to be used as a new adsorbent for the two PAHs removal from contaminated water in water treatment. PMID:25101170

  11. Evaluation of riverbank infiltration as a process for removing particles and DBP precursors

    SciTech Connect

    Wang, J.; Smith, J.; Dooley, L.

    1996-11-01

    Recent outbreaks of waterborne disease attributed to Cryptosporidium in drinking water have raised serious concerns over the effectiveness of conventional water treatment processes to produce safe drinking water supplies. Past studies have shown Cryptosporidium and Giardia to be prevalent in surface water supplies, particularly in urban-impacted surface waters such as the Ohio River which Louisville Water Company (LWC) treatment facilities utilize as their source water. Such indications of the widespread occurrence of these pathogens in source waters underscore the need for the water supply industry to evaluate alternative technologies to conventional water treatment to reduce the risk of waterborne disease occurrence. Public health concerns, shared by the water utility industry, drinking water regulators, and public water supply consumers alike, prompted the US Environmental Protection Agency (USEPA) to propose regulatory action aimed at balancing the risks of microbial disease occurrence and the health risks associated with exposure to potentially harmful compounds formed during drinking water disinfection. In pursuit of this objective, USEPA proposed the Enhanced Surface Water Treatment Rule (ESWTR) to improve public water supply treatment performance for microbial removal and proposed the Disinfectant/Disinfection Byproduct (D/DBP) Rule to reduce DBP exposure levels. As a consequence of these rules, many water utilities will be tasked with the challenge of developing treatment capabilities which improve microbial removal performance while minimizing the production of DBPs.

  12. Removal of Laryngeal Mask Airway in Adults Under Target-Controlled, Propofol–Fentanyl Infusion Anesthesia

    PubMed Central

    Huang, Ren-Chih; Hung, Nan-Kai; Lu, Chueng-He; Wu, Zhi-Fu

    2016-01-01

    Abstract After emergence from anesthesia, the incidence and severity of adverse airway effects caused by the laryngeal mask airway (LMA) can vary, depending on when the device was removed; nonetheless, reports differ regarding the exact optimal timing of LMA removal. The purpose of this study was to compare the rate of adverse events between 2 groups: those whose LMA was removed under general anesthesia (“deep” group) or under target-controlled infusion (TCI) of propofol (“awake” group). Institutional Review Board approval and written informed consent were obtained; 124 patients were then randomly allocated into either the “awake” group or the “deep” group. Anesthesia was induced and maintained using TCI of propofol, as well as intravenous fentanyl. In the “deep” group, the LMA was removed after surgery while the patients were deeply anesthetized using a target effect-site propofol concentration of 2 μg/mL, whereas in the “awake” group, the device was removed while the patients followed verbal instructions. The incidence of the following adverse events was recorded: coughing, straining, bronchospasm, laryngospasm, clenching, breath holding, gross purposeful movement, airway obstruction, retching, vomiting, and oxygen desaturation. If any such event occurred, the LMA removal was considered a failure. Airway hyperreactivity was recorded and graded – based on the severity of cough, breath holding, and oxygen desaturation. The failure rate was higher in the “awake” group (15/61; 24.6%) than in the “deep” group (5/60; 8.3%). Airway hyperreactivity was mild (score, <3) in both groups. Removal of the LMA under deep anesthesia using a target-controlled, effect-site propofol concentration of 2 μg/mL may be safer and more successful than removal when patients are fully awake after surgery. PMID:27124034

  13. An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, Georg C.

    2015-04-01

    This paper presents a stabilization scheme which addresses the rank-deficiency problem in meshless collocation methods for solid mechanics. Specifically, Smooth-Particle Hydrodynamics (SPH) in the Total Lagrangian formalism is considered. This method is rank-deficient in the sense that the SPH approximation of the deformation gradient is not unique with respect to the positions of the integration points. The non-uniqueness can result in the formation of zero-energy modes. If undetected, these modes can grow and completely dominate the solution. Here, an algorithm is introduced, which effectively suppresses these modes in a fashion similar to hour-glass control mechanisms in Finite-Element methods. Simulations utilizing this control algorithm result exhibit much improved stability, accuracy, and error convergence properties. In contrast to an alternative method which eliminates zero-energy modes, namely the use of additional integration points, the here presented algorithm is easy to implement and computationally very efficient.

  14. Controlled human exposures to ambient pollutant particles in susceptible populations

    EPA Science Inventory

    Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in suscep...

  15. New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure

    NASA Astrophysics Data System (ADS)

    Hariyama, Tatsuo; Takaya, Yasuhiro; Miyoshi, Takashi

    2005-11-01

    Aerosol particles with sub-micro meter size inhaled into respiratory systems cause serious damage to human body. In order to evaluate the health effects of the particles, classification methods of the particles with size and mass are needed. Several measurement methods of the particle size are established. However, conventional mass measurement methods are not enough to measure the particles with sub- pico gram. We propose a new mass measurement method of the aerosol particles based on laser trapping. In this method, an optically trapped silica particle is used as a measuring probe particle. The probe particle is trapped at a beam waist of the focused laser light and is forced to vibrate by deflecting the beam waist using AOD. The vibrating probe particle has a resonance frequency because it is governed by the spring-mass-damper system. When an aerosol particle is attached to the probe particle, the resonance frequency shifts according to the increase of the total mass. The mass of the aerosol particle can be measured from the shift of the resonance frequency. Experimentally, it is confirmed that the probe particle is governed by the spring-mass-damper system and has a resonance frequency. When a silica fine particle of 3pg in mass used as an aerosol particle is attached to the probe particle, the resonance frequency shift occurs as expected in the dynamic system and the fine particle mass can be measured based on the proposed method.

  16. Controllable surface haptics via particle jamming and pneumatics.

    PubMed

    Stanley, Andrew A; Okamura, Allison M

    2015-01-01

    The combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height. Various sequences of cell vacuuming, node pinning, and chamber pressurization allow the surface to balloon into a variety of shapes. Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users. Force-displacement data show that a jammed cell in compression fits a Maxwell model and a cell deflected in the center while supported only at the edges fits a Zener model, each with stiffness and damping parameters that increase at higher levels of applied vacuum. This provides framework to tune and control the mechanical properties of a jamming haptic interface. PMID:25594980

  17. An experimental study for biological nitrogen removal and control strategies in a sequencing batch reactor (SBR).

    PubMed

    Manga, J; Venegas, C; Palma-Acosta, M J; Abad, D

    2007-07-01

    The aim of this work is to present an overview about an experimental study for biological nitrogen removal implemented in a pilot-scale plant, located in the Universidad Del Norte in Barranquilla, Colombia. This plant was studied in two different periods. The first period, which was carried out in 90 days, was dedicated to study the influence of the daily variations on the influent and effluent wastewater, and prove some control routines for nitrogen removal. In the second period, which was carried out in 120 days, the removal process was optimized with the addition of acetic acid as an external carbon source, and the implementation of the final control strategy was performed based on the results of the previous period. PMID:17674653

  18. Aspects of droplet and particle size control in miniemulsions

    NASA Astrophysics Data System (ADS)

    Saygi-Arslan, Oznur

    Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a

  19. IET control building (TAN620). equipment removed. Lube oil and waste ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). equipment removed. Lube oil and waste piping at upper right. Fire door on right. Rebar exposed in concrete of ceiling. INEEL negative no. HD-21-5-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. Removal of particles in organic filters in experimental treatment systems for domestic wastewater and black water.

    PubMed

    Todt, Daniel; Jenssen, Petter D; Klemenčič, Aleksandra Krivograd; Oarga, Andreea; Bulc, Tjaša Griessler

    2014-01-01

    This study assesses the total suspended solids (TSS) retention capacity of different organic filter media for two potential applications: (i) a polishing unit for package treatment plants and (ii) a pretreatment for blackwater from low-flushing toilets. The results showed that the peat filter media used can be significantly improved in terms of structural stability and TSS removal capacity by mixing it with sawdust. Most of the TSS accumulated in the upper part of the filter material, and filter thickness exceeding 15 cm had no statistically significant effect (P < 0.1) on the TSS treatment performance. The experimental system reached a TSS reduction of 60-70% for blackwater and 80-90% for simulated effluent peaks from a package treatment plant. The main challenge of a full-scale application of an organic filter is the issue of clogging, especially when treating concentrated blackwater. However, this work indicates that a clogged filter media can be regenerated by mixing the uppermost filter layer without significant loss of filter performance regarding TSS. More research is needed to develop an appropriate mechanical unit for automatic filter media regeneration. PMID:24766596

  1. Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions

    PubMed Central

    Zhao, Shichen; Yan, Jingchun; Qian, Linbo; Chen, Mengfang

    2015-01-01

    The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on the biochar and aggregation was dramatically reduced. Methyl orange (MO) served as the representative organic contaminant for verifying the effectiveness of the composite. Using decolorization efficiency as an indicator of treatment effectiveness, increasing doses of nZVI/BC yielded progressively better results with 98.51% of MO decolorized by 0.6 g/L of composite at an nZVI/BC mass ratio of 1:5. The superior decolorization efficiency of the nZVI/BC was attributed to the increase in the dispersion and reactivity of nZVI while biochar increasing the contact area with contaminant and the adsorption of composites. Additionally, the buffering function of acid-washed biochar could be in favor of maintaining the reactivity of nZVI. Furthermore, the aging nZVI/BC for 30 day was able to maintain the removal efficiency indicating that the oxidation of nZVI may be delayed in the presence of biochar. Therefore, the composite of nZVI/BC could represent an effective functional material for treating wastewater containing organic dyes in the future. PMID:26204523

  2. Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions.

    PubMed

    Han, Lu; Xue, Song; Zhao, Shichen; Yan, Jingchun; Qian, Linbo; Chen, Mengfang

    2015-01-01

    The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on the biochar and aggregation was dramatically reduced. Methyl orange (MO) served as the representative organic contaminant for verifying the effectiveness of the composite. Using decolorization efficiency as an indicator of treatment effectiveness, increasing doses of nZVI/BC yielded progressively better results with 98.51% of MO decolorized by 0.6 g/L of composite at an nZVI/BC mass ratio of 1:5. The superior decolorization efficiency of the nZVI/BC was attributed to the increase in the dispersion and reactivity of nZVI while biochar increasing the contact area with contaminant and the adsorption of composites. Additionally, the buffering function of acid-washed biochar could be in favor of maintaining the reactivity of nZVI. Furthermore, the aging nZVI/BC for 30 day was able to maintain the removal efficiency indicating that the oxidation of nZVI may be delayed in the presence of biochar. Therefore, the composite of nZVI/BC could represent an effective functional material for treating wastewater containing organic dyes in the future. PMID:26204523

  3. Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: Performance and mechanism.

    PubMed

    Fu, Fenglian; Cheng, Zihang; Dionysiou, Dionysios D; Tang, Bing

    2015-11-15

    The iron/aluminum (Fe/Al) bimetallic particles with high efficiency for the removal of Cr(VI) were prepared. Fe/Al bimetallic particles were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), SEM mapping, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM mapping showed that the core of bimetal was Al, and the planting Fe was deposited on the surface of Al. In acidic and neutral conditions, Fe/Al bimetal can completely remove Cr(VI) from wastewater in 20 min. Even at pH 11.0, the Cr(VI) removal efficiency achieved was 93.5%. Galvanic cell effect and high specific surface area are the main reasons for the enhanced removal of Cr(VI) by bimetallic particles. There were no iron ions released in solutions at pH values ranging from 3.0 to 11.0. The released Al(3+) ions concentrations in acidic and neutral conditions were all less than 0.2mg/L. The bimetal can be used 4 times without losing activity at initial pH 3.0. XPS indicated that the removed Cr(VI) was immobilized via the formation of Cr(III) hydroxide and Cr(III)-Fe(III) hydroxide/oxyhydroxide on the surface of Fe/Al bimetal. The Fe/Al bimetallic particles are promising for further testing for the rapid and effective removal of contaminants from water. PMID:26073381

  4. Use of hybrid composite particles prepared using alkoxysilane-functionalized amphiphilic polymer precursors for simultaneous removal of various pollutants from water.

    PubMed

    Cho, Seulki; Kim, Nahae; Lee, Soonjae; Lee, Hoseok; Lee, Sang-Hyup; Kim, Juyoung; Choi, Jae-Woo

    2016-08-01

    In this study, we present new inorganic-organic hybrid particles and their possible application as an adsorbent for simultaneous removal of hydrophobic and hydrophilic pollutants from water. These hybrid particles were prepared using tailor-made alkoxysilane-functionalized amphiphilic polymer precursors (M-APAS), which have amphiphilic polymers and reactive alkoxysilane groups attached to the same backbone. Through a single conventional sol-gel process, the polymerization of M-APAS and the chemical conjugation of M-APAS onto silica nanoparticles was simultaneous, resulting in the formation of hybrid particles (M-APAS-SiO2) comprised of hyperbranch-like amphiphilic polymers bonded onto silica nanoparticles with a relatively high grafting efficiency. A test for the adsorption of water-soluble dye (organe-16) and water insoluble dye (solvent blue-35) onto the hybrid particles was performed to evaluate the possibility of adsorbing hydrophilic and hydrophobic compound within the same particle. The hybrid particle was also evaluated as an adsorbent for the removal of contaminated water containing various pollutants by wastewater treatment test. The hybrid particle could remove phenolic compounds from wastewater and the azo dye reactive orange-16 from aqueous solutions, and it was easily separated from the treated wastewater because of the different densities involved. These results demonstrate that the hybrid particles are a promising sorbent for hydrophilic and/or hydrophobic pollutants in water. PMID:27179430

  5. Method for non-contact particle manipulation and control of particle spacing along an axis

    SciTech Connect

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2012-09-11

    Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.

  6. Removal of black carbon particles from experimental flue gas by surfactant solution in a new type of umbrella plate scrubber.

    PubMed

    Lu, Pei; Li, Caiting; Zeng, Guangming; Zhao, Yapei; Zhan, Qi; Song, Jingke; Fan, Xiaopeng

    2013-01-01

    Black carbon (BC) particles were removed from experimental flue gas by the surfactant solutions of sodium dodecylbenzene sulfonate (SDBS), hexadecyl trimethyl ammonium bromide (CTAB), fatty alcohol polyoxyethylene ether-9 (AEO-9) and polyoxy ethrlene nonyl phinyl ether-10 (TX-10), as well as AEO-9-SDBS, AEO-9-CTAB and SDBS-CTAB, in a new type of umbrella plate scrubber. Among the four independent surfactants, AEO-9 has the lowest surface tension, 35.9 mN/m, which resulted in the highest BC removal ratio among the alone surfactants. The experimental conditions were as follows: dust concentration = 3000 mg/m3; gas velocity = 14 m/s; liquid-gas ratio = 0.80 l/m3; and gas flow = 400 m3/h. When the mole ratio of the mixed surfactants was 1:1, the lowest surface tension could be detected among the studied mixed surfactants. According to the molecular interaction parameters (beta) and the mole ratio of surfactant 1 in the mixture (x1), the synergistic effects of AEO-9-SDBS and SDBS-CTAB solutions were obviously higher than those of AEO-9-TX-10 and AEO-9-CTAB. Therefore, AEO-9-SDBS solution had the lowest surface tension among the mixtures due to its beta < 0 and x1 = 0.85. The mixture solution of AEO-9-SDBS (1:1 mole ratio, 0.2 mmol/l) yielded the highest BC removal ratio, about 99.8%, and it was about 12% higher than that of only water, which was about 87.9%. The calculated critical micelle concentration was almost the same as that of the experimental concentration when the related equation was corrected by beta. PMID:23530320

  7. Γ-Al₂O₃-based nanocomposite adsorbents for arsenic(V) removal: assessing performance, toxicity and particle leakage.

    PubMed

    Onnby, Linda; Svensson, Christian; Mbundi, Lubinda; Busquets, Rosa; Cundy, Andrew; Kirsebom, Harald

    2014-03-01

    The generation and development of effective adsorption materials for arsenic removal are urgently needed due to acute arsenic contamination of water sources in many regions around the world. In the search for these new adsorbents, the application of nanomaterials or nanocomposites, and especially the use of nanoparticles (NPs), has proven increasingly attractive. While the adsorptive performance of a range of nanocomposite and nanomaterial-based systems has been extensively reviewed in previously-published literature, the stability of these systems in terms of NP release, i.e. the ability of the nanomaterial or nanocomposite to retain incorporated NPs, is less well understood. Here we examine the performance of nanocomposites comprised of aluminium oxide nanoparticles (AluNPs) incorporated in macroporous polyacrylamide-based cryogels (n-Alu-cryo, where n indicates the percentage of AluNPs in the polymer material (n=0-6%, w/v)) for As(V) adsorption, and evaluate AluNP leakage before and after the use of these materials. A range of techniques is utilised and assessed (SEM, TEM, mass weight change, PIXE and in vitro toxicity studies). The 4-Alu-cryo nanocomposite was shown to be optimal for minimising AluNP losses while maximising As(V) removal. From the same nanocomposite we were further able to show that NP losses were not detectable at the AluNP concentrations used in the study. Toxicity tests revealed that no cytotoxic effects could be observed. The cryogel-AluNPs composites were not only effective in As(V) removal but also in immobilising the AluNPs. More challenging flow-through conditions for the evaluation of NP leakage could be included as a next step in a continued study assessing particle loss and subsequent toxicity. PMID:24370695

  8. Nitrous oxide generation in denitrifying phosphorus removal process: main causes and control measures.

    PubMed

    Li, Cong; Zhang, Jian; Liang, Shuang; Ngo, Huu Hao; Guo, Wenshan; Zhang, Yingying; Zou, Yina

    2013-08-01

    Despite the many benefits of denitrifying phosphorus removal process, the significant generation of nitrous oxide (N2O), a potent greenhouse gas, remains a problem for this innovative and promising process. To better understand and more effectively control N2O generation in denitrifying phosphorus removal process, batch experiments were carried out to investigate the main causes of N2O generation, based on which the control measures were subsequently proposed. The results showed that N2O generation accounted for 0.41 % of the total nitrogen removal in denitrifying phosphorus removal process, whereas, in contrast, almost no N2O was generated in conventional denitrification process. It was further demonstrated that the weak competition of N2O reductase for electrons and the high nitrite accumulation were the two main causes for N2O generation, evidenced by N2O production and reduction rates under different conditions. Accordingly, the reduction of N2O generation was successfully achieved via two control measures: (1) the use of continuous nitrate addition reducing N2O generation by around 91.4 % and (2) the use of propionate as the carbon source reducing N2O generation by around 69.8 %. PMID:23407928

  9. In-situ removal and characterisation of uranium-containing particles from sediments surrounding the Fukushima Daiichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Martin, P. G.; Griffiths, I.; Jones, C. P.; Stitt, C. A.; Davies-Milner, M.; Mosselmans, J. F. W.; Yamashiki, Y.; Richards, D. A.; Scott, T. B.

    2016-03-01

    Traditional methods to locate and subsequently study radioactive fallout particles have focused heavily on autoradiography coupled with in-situ analytical techniques. Presented here is the application of a Variable Pressure Scanning Electron Microscope with both backscattered electron and energy dispersive spectroscopy detectors, along with a micromanipulator setup and electron-hardening adhesive to isolate and remove individual particles before synchrotron radiation analysis. This system allows for a greater range of new and existing analytical techniques, at increased detail and speed, to be applied to the material. Using this method, it was possible to erform detailed energy dispersive spectroscopy and synchrotron radiation characterisation of material likely ejected from the Fukushima Daiichi Nuclear Power Plant found within a sediment sample collected from the edge of the 30 km exclusion zone. Particulate material sub-micron in maximum dimension examined during this work via energy dispersive spectroscopy was observed to contain uranium at levels between 19.68 and 28.35 weight percent, with the application of synchrotron radiation spectroscopy confirming its presence as a major constituent. With great effort and cost being devoted to the remediation of significant areas of eastern Japan affected by the incident, it is crucial to gain the greatest possible understanding of the nature of this contamination in order to inform the most appropriate clean-up response.

  10. Control Experiment of Positively Charged Fine Particles at the Atmospheric Pressure

    SciTech Connect

    Yokota, Toshiaki; Ando, Ayumi; Sato, Noriyoshi

    2005-10-31

    It is already reported that the negatively charged fine particle flow was controlled by application of external electric field. The control of positively charged fine particles was examined in this experiment.The fine particles are able to take charges in the air under the atmospheric pressure by irradiation of UV light. The control of the positively charged fine particles has been attempted by the external electric field applied the negative potential. The fine particles for experiments are volcanic ashes, nylon 16, glass, and ice. Experiment was performed in the T-shaped glass chamber under the atmospheric pressure. The halogen lamp (500 W) was used to exit the electrons from particles by photo-emission. The ring and disk electrodes to control the positively charged particles were set at the bottom of chamber. The parallel electrodes were set at the middle of chamber and horizontal static electric fields (E = 0 {approx} 210 V/cm) were created in order to estimate the charge of fine particles. The charges of particle were estimated by the deflection of particle trajectory in the static electric fields and particle velocity. The estimated charges were 104e {approx} 5x106e and 103e {approx} 105e for volcanic ashes and nylon 16, respectively. When positively charged particles were introduced into collecting electrodes, the fine particles are collected in the electrodes. The result of control of positively charged fine particles is shown in this conference.

  11. Tuning selectivity in catalysis by controlling particle shape

    NASA Astrophysics Data System (ADS)

    Lee, Ilkeun; Delbecq, Françoise; Morales, Ricardo; Albiter, Manuel A.; Zaera, Francisco

    2009-02-01

    A catalytic process for the selective formation of cis olefins would help minimize the production of unhealthy trans fats during the partial hydrogenation of edible oils. Here we report on the design of such a process on the basis of studies with model systems. Temperature programmed desorption data on single crystals showed that the isomerization of trans olefins to their cis counterparts is promoted by (111) facets of platinum, and that such selectivity is reversed on more open surfaces. Quantum mechanics calculations suggested that the extra stability of cis olefins seen on hydrogen-saturated Pt(111) surfaces may be due to a lesser degree of surface reconstruction, a factor found to be significant in the adsorption on close-packed platinum surfaces. Kinetic data using catalysts made out of dispersed tetrahedral Pt nanoparticles corroborated the selective promotion of the trans-to-cis isomerization on the (111) facets of the metal. Our work provides an example for how catalytic selectivity may be controlled by controlling the shape of the catalytic particles.

  12. Ammonia-based intermittent aeration control optimized for efficient nitrogen removal.

    PubMed

    Regmi, Pusker; Bunce, Ryder; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2015-10-01

    This work describes the development of an intermittently aerated pilot-scale process (V = 0.45 m(3) ) operated for optimized efficient nitrogen removal in terms of volume, supplemental carbon and alkalinity requirements. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia concentration set-points. The unique feature of the ammonia-based aeration control was that a fixed dissolved oxygen (DO) set-point was used and the length of the aerobic and anoxic time (anoxic time ≥25% of total cycle time) were changed based on the effluent ammonia concentration. Unlike continuously aerated ammonia-based aeration control strategies, this approach offered control over the aerobic solids retention time (SRT) to deal with fluctuating ammonia loading without solely relying on changes to the total SRT. This approach allowed the system to be operated at a total SRT with a small safety factor. The benefits of operating at an aggressive SRT were reduced hydraulic retention time (HRT) for nitrogen removal. As a result of such an operation, nitrite oxidizing bacteria (NOB) out-selection was also obtained (ammonia oxidizing bacteria [AOB] maximum activity: 400 ± 79 mgN/L/d, NOB maximum activity: 257 ± 133 mgN/L/d, P < 0.001) expanding opportunities for short-cut nitrogen removal. The pilot demonstrated a total inorganic nitrogen (TIN) removal rate of 95 ± 30 mgN/L/d at an influent chemical oxygen demand: ammonia (COD/NH4 (+) -N) ratio of 10.2 ± 2.2 at 25°C within the hydraulic retention time (HRT) of 4 h and within a total SRT of 5-10 days. The TIN removal efficiency up to 91% was observed during the study, while effluent TIN was 9.6 ± 4.4 mgN/L. Therefore, this pilot-scale study demonstrates that application of the proposed on-line aeration control is capable of relatively high nitrogen removal without supplemental carbon and alkalinity addition at a low HRT. PMID:26058705

  13. The effect of particle size distribution on the design of urban stormwater control measures

    USGS Publications Warehouse

    Selbig, William R.; Fienen, Michael N.; Horwatich, Judy A.; Bannerman, Roger T.

    2016-01-01

    An urban pollutant loading model was used to demonstrate how incorrect assumptions on the particle size distribution (PSD) in urban runoff can alter the design characteristics of stormwater control measures (SCMs) used to remove solids in stormwater. Field-measured PSD, although highly variable, is generally coarser than the widely-accepted PSD characterized by the Nationwide Urban Runoff Program (NURP). PSDs can be predicted based on environmental surrogate data. There were no appreciable differences in predicted PSD when grouped by season. Model simulations of a wet detention pond and catch basin showed a much smaller surface area is needed to achieve the same level of solids removal using the median value of field-measured PSD as compared to NURP PSD. Therefore, SCMs that used the NURP PSD in the design process could be unnecessarily oversized. The median of measured PSDs, although more site-specific than NURP PSDs, could still misrepresent the efficiency of an SCM because it may not adequately capture the variability of individual runoff events. Future pollutant loading models may account for this variability through regression with environmental surrogates, but until then, without proper site characterization, the adoption of a single PSD to represent all runoff conditions may result in SCMs that are under- or over-sized, rendering them ineffective or unnecessarily costly.

  14. Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents

    SciTech Connect

    Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

    2002-09-20

    The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from

  15. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    PubMed

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08. PMID:20397418

  16. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    SciTech Connect

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1989-12-19

    This patent describes, in a reconstitutable control assembly for use with a nuclear fuel assembly, the control assembly including a spider structure and at least one control rod, an attachment joint for detachable fastening the control rod to the spider structure. The attachment joint comprising: a hollow connecting finger on the spider structure; and an elongated detachable split upper end plug on the control rod having a pair of separate upper and lower plug portions, the upper plug portion having integrally-connected tandemly- arranged upper, middle and lower sections. The lower plug portion having integrally-connected tandemly-arranged upper, middle and lower segments.

  17. Control of adhesion force between ceria particles and polishing pad in shallow trench isolation chemical mechanical planarization.

    PubMed

    Seo, Jihoon; Moon, Jinok; Bae, Jae-Young; Yoon, Kwang Seob; Sigmund, Wolfgang; Paik, Ungyu

    2014-06-01

    The adhesion force between ceria and polyurethane (PU) pad was controlled to remove the step height from cell region to peripheral region during Shallow Trench Isolation Chemical Mechanical Planarization (STI-CMP) for NAND flash. Picolinic acid was found to be adsorbed on ceria particles at pH 4.5 following a Langmuir isotherm with the maximum adsorbed amount of 0.36 mg/m2. The ceria suspension with full surface coverage of picolinic acid showed a threefold increase in the number of adhered ceria particles on the PU pad over non-coated ceria particles. It was shown that the coverage percent of picolinic acid on ceria corresponds well with the amount percent of adsorbed ceria on PU pad. The change in adsorbed particles was directly reflected in the CMP polishing process where significant improvements were achieved. Particularly, convex areas on the chip experienced higher friction force from the attached abrasives on the PU pad than concave areas. As a result, the convex areas have increased removal rate of step height compared to the ceria suspension without picolinic acid. The changing profiles of convex areas are reported during the step height reduction as a function of polishing time. PMID:24738395

  18. Removal versus retention of asymptomatic third molars in mandibular angle fractures: a randomized controlled trial.

    PubMed

    McNamara, Z; Findlay, G; O'Rourke, P; Batstone, M

    2016-05-01

    The treatment dilemma provided by asymptomatic third molars in mandibular angle fractures remains controversial. This prospective randomized controlled trial was undertaken to determine whether there is an advantage to extraction or retention of the third molar whilst repairing a mandibular angle fracture. Sixty-four patients were allocated randomly to the two treatment groups. All underwent open reduction and internal fixation (ORIF) with standard postoperative care. The primary outcome measure was uncomplicated fracture healing. Secondary measures were surgical duration, malocclusion, wound healing, nerve injury, and return to theatre. All patients had uncomplicated fracture healing. The incidence of nerve injury was 16% for the retention group compared with 39% for the removal group (P=0.038). The average operating time for ORIF and third molar retention cases was 58.5min and for ORIF and third molar removal cases was 66.3min (P=0.26). There was no statistically significant difference between groups for wound healing, occlusion outcomes, or return to theatre. Given the additional risk of nerve injury and the additional operating time required for removal of a third molar, in the absence of an absolute indicator for removal of the third molar, it appears justifiable to advise retaining the tooth in the line of a mandibular angle fracture. PMID:26867667

  19. Improvement of COD removal by controlling the substrate degradability during the anaerobic digestion of recalcitrant wastewater.

    PubMed

    Kawai, Minako; Nagao, Norio; Kawasaki, Nobuyuki; Imai, Akio; Toda, Tatsuki

    2016-10-01

    The recalcitrant landfill leachate was anaerobically digested at various mixing ratios with labile synthetic wastewater to evaluate the degradation properties of recalcitrant wastewater. The proportion of leachate to the digestion system was increased in three equal steps, starting from 0% to 100%, and later decreased back to 0% with the same steps. The chemical oxygen demand (COD) for organic carbon and other components were calculated by analyzing the COD and dissolved organic carbon (DOC), and the removal efficiencies of COD carbon and COD others were evaluated separately. The degradation properties of COD carbon and COD others shifted owing to changing of substrate degradability, and the removal efficiencies of COD carbon and COD others were improved after supplying 100% recalcitrant wastewater. The UV absorptive property and total organic carbon (TOC) of each molecular size using high performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with UVA and TOC detectors were also investigated, and the degradability of different molecular sizes was determined. Although the SEC system detected extracellular polymeric substances (EPS), which are produced by microbes in stressful environments, during early stages of the experiment, EPS were not detected after feeding 100% recalcitrant wastewater. These results suggest that the microbes had acclimatized to the recalcitrant wastewater degradation. The high removal rates of both COD carbon and COD others were sustained when the proportion of labile wastewater in the substrate was 33%, indicating that the effective removal of recalcitrant COD might be controlled by changing the substrate's degradability. PMID:27449962

  20. Optimal planning of LEO active debris removal based on hybrid optimal control theory

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Chen, Xiao-qian; Chen, Li-hu

    2015-06-01

    The mission planning of Low Earth Orbit (LEO) active debris removal problem is studied in this paper. Specifically, the Servicing Spacecraft (SSc) and several debris exist on near-circular near-coplanar LEOs. The SSc should repeatedly rendezvous with the debris, and de-orbit them until all debris are removed. Considering the long-duration effect of J2 perturbation, a linear dynamics model is used for each rendezvous. The purpose of this paper is to find the optimal service sequence and rendezvous path with minimum total rendezvous cost (Δv) for the whole mission, and some complex constraints (communication time window constraint, terminal state constraint, and time distribution constraint) should be satisfied meanwhile. Considering this mission as a hybrid optimal control problem, a mathematical model is proposed, as well as the solution method. The proposed approach is demonstrated by a typical active debris removal problem. Numerical experiments show that (1) the model and solution method proposed in this paper can effectively address the planning problem of LEO debris removal; (2) the communication time window constraint and the J2 perturbation have considerable influences on the optimization results; and (3) under the same configuration, some suboptimal sequences are equivalent to the optimal one since their difference in Δv cost is very small.

  1. Synthesizing aluminum particles towards controlling electrostatic discharge ignition sensitivity

    SciTech Connect

    Eric S. Collins; Jeffery P. Gesner; Michelle L. Pantoya; Michael A. Daniels

    2014-02-01

    Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3 nm and a constant diameter of 95 nm. These fuel particles were combined with molybdenum trioxide particles and the electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay increased as the alumina shell thickness increased. These results correlated with electrical resistivity measurements of the mixture which increased with alumina concentration. A model was developed using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the experimental results suggesting that the primary ESD ignition mechanism is joule heating.

  2. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-10-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.

  3. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment.

    PubMed

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-01-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in M(II)-M(III) cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates. PMID:26456850

  4. Preoperative hair removal and surgical site infections: network meta-analysis of randomized controlled trials.

    PubMed

    Lefebvre, A; Saliou, P; Lucet, J C; Mimoz, O; Keita-Perse, O; Grandbastien, B; Bruyère, F; Boisrenoult, P; Lepelletier, D; Aho-Glélé, L S

    2015-10-01

    Preoperative hair removal has been used to prevent surgical site infections (SSIs) or to prevent hair from interfering with the incision site. We aimed to update the meta-analysis of published randomized controlled trials about hair removal for the prevention of SSIs, and conduct network meta-analyses to combine direct and indirect evidence and to compare chemical depilation with clipping. The PubMed, ScienceDirect and Cochrane databases were searched for randomized controlled trials analysing different hair removal techniques and no hair removal in similar groups. Paired and network meta-analyses were conducted. Two readers independently assessed the study limitations for each selected article according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) method. Nineteen studies met the inclusion criteria. No study compared clipping with chemical depilation. Network meta-analyses with shaving as the reference showed significantly fewer SSIs with clipping, chemical depilation, or no depilation [relative risk 0.55, 95% confidence interval 0.38-0.79; 0.60, 0.36-0.97; and 0.56, 0.34-0.96, respectively]. No significant difference was observed between the absence of depilation and chemical depilation or clipping (1.05, 0.55-2.00; 0.97, 0.51-1.82, respectively] or between chemical depilation and clipping (1.09, 0.59-2.01). This meta-analysis of 19 randomized controlled trials confirmed the absence of any benefit of depilation to prevent surgical site infection, and the higher risk of surgical site infection when shaving is used for depilation. Chemical depilation and clipping were compared for the first time. The risk of SSI seems to be similar with both methods. PMID:26320612

  5. Inspection Report on "Internal Controls over Accountable Classified Removable Electronic Media at Oak Ridge National Laboratory"

    SciTech Connect

    2009-05-01

    The Department of Energy's Oak Ridge National Laboratory (ORNL) conducts cutting edge scientific research. ORNL utilizes removable electronic media, such as computer hard drives, compact disks, data tapes, etc., to store vast amounts of classified information. Incidents involving breakdowns in controls over classified removable electronic media have been a continuous challenge for the Department. The loss of even one piece of such media can have serious national security implications. In 2004, the Department had a complex-wide 'stand-down' of all activities using classified removable electronic media, and such media containing Secret/Restricted Data or higher classified data was designated 'Accountable Classified Removable Electronic Media' (ACREM). As part of the stand-down, sites were required to conduct a 100 percent physical inventory of all ACREM; enter it all into accountability; and conduct security procedure reviews and training. Further, the Department implemented a series of controls, including conducting periodic inventories, utilizing tamper proof devices on ACREM safes, and appointing trained custodians to be responsible for the material. After performance testing and validation that the required accountability systems were in place, ACREM operations at ORNL were approved for restart on August 10, 2004. We conducted a review at ORNL and associated facilities to determine whether ACREM is managed, protected, and controlled consistent with applicable requirements. We found that: (1) Eight pieces of Secret/Restricted Data media had not been identified as ACREM and placed into a system of accountability. Consequently, the items were not subject to all required protections and controls, such as periodic accountability inventories, oversight by a trained custodian, or storage in a designated ACREM safe. (However, the items were secured in safes approved for classified material.) (2) Other required ACREM protections and controls were not implemented as

  6. Method and means for remote removal of guide balls from nuclear reactor control rods

    SciTech Connect

    Krieg, A.H.

    1988-11-29

    This patent describes a method of remotely removing guide balls from nuclear reactor control rods using a punch mechanism, comprising: (a) providing attachment means in the punch mechanism for attaching the punch mechanism to means for reversibly lowering the punch mechanism over the top of one of the control rods; (b) providing a die within the punch mechanism; (c) providing cylinder means within the punch mechanism operatively connected to the die for axially moving the die in a back-and-forth direction; (d) providing a die block within the punch mechanism cooperating with the die; (e) providing guide means within the punch mechanism for self-aligning the punch mechanism so that the die and the die block are automatically aligned with a first one of the guide balls therebetween when the punch mechanism is lowered over the top of the control rod; (f) lowering the punch mechanism over the control rod so that the die, the die block, and the first guide ball are in alignment; and (g) then operating the cylinder means so that the die advances into the die block, thereby removing the first guide ball from the control rod.

  7. Developing real-time control software for Space Station Freedom carbon dioxide removal

    NASA Technical Reports Server (NTRS)

    Rowe, Steven A.; Morando, Alexander R.; Johnson, Jim

    1991-01-01

    This paper presents AiResearch experience to date in using the NASA/Boeing Application Generator (AG) to develop real-time control systems for the Carbon Dioxide Removal Assembly (CDRA) in Work Package 01. The AG provides an integrated design and development tool encompassing: system analysis, modeling, control law design, simulation, code generation, real-time hardware-in-the-loop simulation and operation, and documentation. This allows rapid interactive prototyping of real-time control systems in a single, integrated, environment. Advantages and disadvantages of using the AG for real-time control system development will be addressed, with the CDRA specification to delivery cycle serving as a basis for discussion. Suggestions for improving the AG are offered and observations on its potential as a top-level system specification tool are made.

  8. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  9. Nitrogen Removal in Aerobic Granular Sludge SBR: Real-time Control Strategies

    NASA Astrophysics Data System (ADS)

    Yuan, Xiangjuan; Gao, Dawen

    2010-11-01

    A sequencing batch reactor (SBR) with aerobic granules was operated to determine the effect of different DO concentration on biological nitrogen removal for synthetic sewage treatment, and the spatial profiles of DO, ORP and pH as on-line control parameters in such systems were investigated. The results showed that DO concentrations had significant effect on nitrification efficiencies and the profiles of DO, ORP and pH. High DO concentration improved the nitrification causing volumetric NH4+-N removal increased and shortened the nitrification duration. Also there existed a good correlation between on-line control parameters (ORP, pH) and nutrients (COD, NH4+-N, NO2--N, NO3--N) variations in aerobic granules when DO was 2.5 mg/L, 3.5 mg/L and 4.5 mg/L. However it is difficult to identify the end of nitrification and denitrification when DO was 1.0 mg/L, due to no apparent bending points on ORP and pH curves. In conclusion the optimal DO concentration was suggested at 2.5 mg/L as it not only achieved high nitrogen removal efficiency and decreased the reaction duration, but also saved operation cost by aeration and mixing.

  10. Computational Prediction of Cryogenic Micro-nano Solid Nitrogen Particle Production Using Laval Nozzle for Physical Photo Resist Removal-cleaning Technology

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Abe, Haruto; Ochiai, Naoya

    The fundamental characteristics of the cryogenic single-component micro-nano solid nitrogen (SN2) particle production using super adiabatic Laval nozzle and its application to the physical photo resist removal-cleaning technology are investigated by a new type of integrated measurement coupled computational technique. As a result of present computation, it is found that high-speed ultra-fine SN2 particles are continuously generated due to the freezing of liquid nitrogen (LN2) droplets induced by rapid adiabatic expansion of transonic subcooled two-phase nitrogen flow passing through the Laval nozzle. Furthermore, the effect of SN2 particle diameter, injection velocity, and attack angle to the wafer substrate on resist removal-cleaning performance is investigated in detail by integrated measurement coupled computational technique.

  11. Simple synthesis of smart magnetically driven fibrous films for remote controllable oil removal

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Wang, Nü; Zhao, Yong; Jiang, Lei

    2015-01-01

    Inspired by the marine mussel adhesive protein, smart, magnetically controllable, oil adsorption nanofibrous materials were successfully fabricated in this research. Taking advantage of the properties of dopamine whose molecular structure mimics the single unit of the marine mussel adhesive protein and can be polymerized in alkaline solution forming a ``glue'' layer on many kinds of material surfaces, magnetic iron(ii, iii) oxide (Fe3O4) nanoparticles were easily and robustly anchored on to electrospun poly(vinylidene fluoride) fibrous films. After fluorination, the as-prepared hierarchical structured films exhibited superhydrophobicity, superoleophilicity and an excellent oil adsorption capacity from water. Importantly, because of the magnetically controllable property endowed by the Fe3O4 nanoparticles, such fibrous films act as a ``smart magnetically controlled oil removal carrier'', which effectively overcome the drawbacks of other in situ oil adsorbant materials and can also be easily recovered. This work provides a simple strategy to fabricate magnetic responsive intelligent oil removal materials, which will find broad applications in complex environment oil-water separation.Inspired by the marine mussel adhesive protein, smart, magnetically controllable, oil adsorption nanofibrous materials were successfully fabricated in this research. Taking advantage of the properties of dopamine whose molecular structure mimics the single unit of the marine mussel adhesive protein and can be polymerized in alkaline solution forming a ``glue'' layer on many kinds of material surfaces, magnetic iron(ii, iii) oxide (Fe3O4) nanoparticles were easily and robustly anchored on to electrospun poly(vinylidene fluoride) fibrous films. After fluorination, the as-prepared hierarchical structured films exhibited superhydrophobicity, superoleophilicity and an excellent oil adsorption capacity from water. Importantly, because of the magnetically controllable property endowed by the Fe3

  12. Link removal for the control of stochastically evolving epidemics over networks: a comparison of approaches.

    PubMed

    Enns, Eva A; Brandeau, Margaret L

    2015-04-21

    For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two "preventive" approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two "reactive" approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdös-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdös-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing which

  13. Link removal for the control of stochastically evolving epidemics over networks: A comparison of approaches

    PubMed Central

    Brandeau, Margaret L.

    2015-01-01

    For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two “preventive” approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two “reactive” approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdős-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdős-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing

  14. Geosmin and 2-methylisoborneol removal using superfine powdered activated carbon: shell adsorption and branched-pore kinetic model analysis and optimal particle size.

    PubMed

    Matsui, Yoshihiko; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku

    2013-05-15

    2-Methylisoborneol (MIB) and geosmin are naturally occurring compounds responsible for musty-earthy taste and odor in public drinking-water supplies, a severe problem faced by many utilities throughout the world. In this study, we investigated adsorptive removal of these compounds by superfine powdered activation carbon (SPAC, particle size <1 μm) produced by novel micro-grinding of powdered activated carbon; we also discuss the optimization of carbon particle size to efficiently enhance the adsorptive removal. After grinding, the absorptive capacity remained unchanged for a 2007 carbon sample and was increased for a 2010 carbon sample; the capacity increase was quantitatively described by the shell adsorption model, in which MIB and geosmin adsorbed more in the exterior of a carbon particle than in the center. The extremely high uptake rates of MIB and geosmin by SPAC were simulated well by a combination of the branched-pore kinetic model and the shell adsorption model, in which intraparticle diffusion through macropores was followed by diffusion from macropore to micropore. Simulations suggested that D40 was on the whole the best characteristic diameter to represent a size-disperse group of adsorbent particles; D40 is the diameter through which 40% of the particles by volume pass. Therefore, D40 can be used as an index for evaluating the improvement of adsorptive removal that resulted from pulverization. The dose required for a certain percentage removal of MIB or geosmin decreased linearly with carbon particle size (D40), but the dose reduction became less effective as the activated carbon was ground down to smaller sizes around a critical value of D40. For a 60-min contact time, critical D40 was 2-2.5 μm for MIB and 0.4-0.5 μm for geosmin. The smaller critical D40 was when the shorter the carbon-water contact time was or the slower the intraparticle mass transfer rate of an adsorbate was. PMID:23528781

  15. Particle control near reticle and optics using showerhead

    DOEpatents

    Delgado, Gildardo R.; Chilese, Frank; Garcia, Rudy; Torczynski, John R.; Geller, Anthony S.; Rader, Daniel J.; Klebanoff, Leonard E.; Gallis, Michail A.

    2016-01-26

    A method and an apparatus to protect a reticle against particles and chemicals in an actinic EUV reticle inspection tool are presented. The method and apparatus utilizes a pair of porous metal diffusers in the form of showerheads to provide a continual flow of clean gas. The main showerhead bathes the reticle surface to be inspected in smoothly flowing, low pressure gas, isolating it from particles coming from surrounding volumes. The secondary showerhead faces away from the reticle and toward the EUV illumination and projection optics, supplying them with purge gas while at the same time creating a buffer zone that is kept free of any particle contamination originating from those optics.

  16. Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua

    2014-03-01

    Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical.

  17. Controlling self-sustained spiking activity by adding or removing one network link

    NASA Astrophysics Data System (ADS)

    Xu, Kesheng; Huang, Wenwen; Li, Baowen; Dhamala, Mukesh; Liu, Zonghua

    2013-06-01

    Being able to control the neuronal spiking activity in specific brain regions is central to a treatment scheme in several brain disorders such as epileptic seizures, mental depression, and Parkinson's diseases. Here, we present an approach for controlling self-sustained oscillations by adding or removing one directed network link in coupled neuronal oscillators, in contrast to previous approaches of adding stimuli or noise. We find that such networks can exhibit a variety of activity patterns such as on-off switch, sustained spikes, and short-term spikes. We derive the condition for a specific link to be the controller of the on-off effect. A qualitative analysis is provided to facilitate the understanding of the mechanism for spiking activity by adding one link. Our findings represent the first report on generating spike activity with the addition of only one directed link to a network and provide a deeper understanding of the microscopic roots of self-sustained spiking.

  18. A facile method for the structure control of TiO2 particles at low temperature

    NASA Astrophysics Data System (ADS)

    Li, Zhaoqing; Zhu, Yun; Wang, Lianwen; Wang, Jiatai; Guo, Qian; Li, Jiangong

    2015-11-01

    Crystalline and amorphous TiO2 particles have important potential applications in photocatalysis, structural ceramics, solar batteries and nanoglasses. Hence controlling the structure of TiO2 particles is of practical importance. Crystalline TiO2 particles are usually prepared by calcination of their amorphous precursor. Here a facile method was developed to control the structure of TiO2 particles at a low temperature. TiO2 particles were prepared by sol-gel method; and it was found that during the washing process, the TiO2 particles washed with water are crystalline whereas the TiO2 particles washed with ethanol are amorphous. Further analyses indicate that ethanol washing may introduce an organic cover layer on the TiO2 particles which hinders the crystallization of amorphous TiO2 particles. Therefore, the structure of TiO2 particles, amorphous or crystalline (anatase), can be controlled just by changing the washing medium, water or ethanol. This method seems a common method for controlling the (amorphous or crystalline) structure of metal oxides and hydroxides and was verified in the preparation of ZrO2, FeO(OH), and Al(OH)3 particles.

  19. Simple synthesis of smart magnetically driven fibrous films for remote controllable oil removal.

    PubMed

    Wu, Jing; Wang, Nü; Zhao, Yong; Jiang, Lei

    2015-02-14

    Inspired by the marine mussel adhesive protein, smart, magnetically controllable, oil adsorption nanofibrous materials were successfully fabricated in this research. Taking advantage of the properties of dopamine whose molecular structure mimics the single unit of the marine mussel adhesive protein and can be polymerized in alkaline solution forming a "glue" layer on many kinds of material surfaces, magnetic iron(II, III) oxide (Fe3O4) nanoparticles were easily and robustly anchored on to electrospun poly(vinylidene fluoride) fibrous films. After fluorination, the as-prepared hierarchical structured films exhibited superhydrophobicity, superoleophilicity and an excellent oil adsorption capacity from water. Importantly, because of the magnetically controllable property endowed by the Fe3O4 nanoparticles, such fibrous films act as a "smart magnetically controlled oil removal carrier", which effectively overcome the drawbacks of other in situ oil adsorbant materials and can also be easily recovered. This work provides a simple strategy to fabricate magnetic responsive intelligent oil removal materials, which will find broad applications in complex environment oil-water separation. PMID:25581419

  20. A hybrid mathematical model for controlling particle size, particle size distribution, and color properties of toner particles

    NASA Astrophysics Data System (ADS)

    Ataeefard, Maryam; Shadman, Alireza; Saeb, Mohammad Reza; Mohammadi, Yousef

    2016-08-01

    A mathematical modeling approach was proposed combining the capabilities of response surface methodology (RSM) and desirability function (DF) and implemented successfully in production of printing toner particles. Toner powders were systematically synthesized through suspension copolymerization process. Applying RSM, a series of experiments were designed and toner particles were prepared and the effects of monomer ratio, colorant and surfactant content on the particle size (PS), particle size distribution (PSD), thermal and colorimetric properties (∆ E) of the resulting toner were monitored and discussed. The second-order models corresponding to each target characteristic, i.e., PS, PSD, and ∆ E of different types of toner powders, were obtained by individual optimization to express variation of each property in terms of polymerization parameters. Applying statistical calculations, the best reduced models were identified to be fed in the second step of optimization. Since toners with appropriate PS, PSD, and CP were needed, we applied multi-objective optimization based on DF approach. The results show that exact tuning of toner properties is closely possible with the aid of hybrid mathematical model developed in this work. Noticeably, desirabilities are very close to 100 %.

  1. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    PubMed Central

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.; Gilkerson, Jonathan; Salomé, Patrice A.; Weigel, Detlef; Fitzpatrick, James A.; Chory, Joanne

    2016-01-01

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. Thus, we have identified a signal that leads to the targeted removal of ROS-overproducing chloroplasts. PMID:26494759

  2. Enhanced control of fine particles following Title IV coal switching and NOx control

    SciTech Connect

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.

    1997-12-31

    Electrostatic precipitators (ESPs) serve as the primary particle control devices for a majority of coal-fired power generating units in the United States. ESPs are used to collect particulate matter that range in size from less than one micrometer in diameter to several hundred micrometers. Many of the options that utilities will use to respond to Title IV of the 1990 Clean Air Act Amendments will result in changes to the ash that will be detrimental to the performance of the ESP causing increased emissions of fine particles and higher opacity. For example, a switch to low-sulfur coal significantly increases particle resistivity while low-NO{sub x} burners increase the carbon content of ashes. Both of these changes could result in derating of the boiler to comply with emissions standards. ADA has developed a chemical additive that is designed to improve the operation of ESI`s to bring these systems into compliance operation without the need for expensive capital modifications. The additives provide advantages over competing technologies in terms of low capital cost, easy to handle chemicals, and relatively non-toxic chemicals. In addition, the new additive is insensitive to ash chemistry which will allow the utility complete flexibility to select the most economical coal. Results from full-scale and pilot plant demonstrations are reported.

  3. Size distribution of airborne particles controls outcome of epidemiological studies.

    PubMed

    Harrison, Roy M; Giorio, Chiara; Beddows, David C S; Dall'Osto, Manuel

    2010-12-15

    Epidemiological studies typically using wide size range mass metrics (e.g. PM(10)) have demonstrated associations between airborne particulate matter and several adverse health outcomes. This approach ignores the fact that mass concentration may not correlate with regional lung dose, unlike the case of trace gases. When using measured particle size distributions as the basis for calculating regional lung dose, PM(10) mass concentration is found to be a good predictor of the mass dose in all regions of the lung, but is far less predictive of the surface area and particle number dose. On the other hand, measurements of particle number do not well predict mass dose, indicating that the chosen particle metric is likely to determine the health outcomes detectable by an epidemiological study. Consequently, epidemiological studies using mass metrics (PM(2.5) and PM(10)) may fail to recognise important health consequences of particulate matter exposure, leading to an underestimate of the public health consequences of particle exposure. PMID:21109288

  4. Simulating sterilization, vaccination, and test-and-remove as brucellosis control measures in bison

    USGS Publications Warehouse

    Ebinger, M.; Cross, P.; Wallen, Rick; White, P.J.; Treanor, John

    2011-01-01

    Brucella abortus, the causative agent of bovine brucellosis, infects wildlife, cattle, and humans worldwide, but management of the disease is often hindered by the logistics of controlling its prevalence in wildlife reservoirs. We used an individually based epidemiological model to assess the relative efficacies of three management interventions (sterilization, vaccination, and test-and-remove). The model was parameterized with demographic and epidemiological data from bison in Yellowstone National Park, USA. Sterilization and test-and-remove were most successful at reducing seroprevalence when they were targeted at young seropositive animals, which are the most likely age and sex category to be infectious. However, these approaches also required the most effort to implement. Vaccination was less effective (even with a perfect vaccine) but also required less effort to implement. For the treatment efforts we explored (50–100 individuals per year or 2.5–5% of the female population), sterilization had little impact upon the bison population growth rate when selectively applied. The population growth rate usually increased by year 25 due to the reduced number of Brucella-induced abortions. Initial declines in seroprevalence followed by rapid increases (>15% increase in 5 years) occurred in 3–13% of simulations with sterilization and test-and-remove, but not vaccination. We believe this is due to the interaction of superspreading events and the loss of herd immunity in the later stages of control efforts as disease prevalence declines. Sterilization provided a mechanism for achieving large disease reductions while simultaneously limiting population growth, which may be advantageous in some management scenarios. However, the field effort required to find the small segment of the population that is infectious rather than susceptible or recovered will likely limit the utility of this approach in many free-ranging wildlife populations. Nevertheless, we encourage

  5. EFFECTS OF SURFACE PROPERTIES OF COLLECTORS ON THE REMOVAL OF CHARGED AND UNCHARGED PARTICLES FROM AEROSOL SUSPENSIONS

    EPA Science Inventory

    The literature on the adhesion of particles impacting on solid and liquid collectors was reviewed. Different forces or mechanisms affecting collision and adhesion of particles with collectors were described. Good qualitative agreement existed between experiment and theory in the ...

  6. Modelling and control strategy testing of biological and chemical phosphorus removal at Avedøre WWTP.

    PubMed

    Ingildsen, P; Rosen, C; Gernaey, K V; Nielsen, M K; Guildal, T; Jacobsen, B N

    2006-01-01

    The biological phosphorus removal process is often implemented at plants by the construction of an anaerobic bio-p tank in front of the traditional N removing plant configuration. However, biological phosphorus removal is also observed in plant configurations constructed only for nitrogen removal and simultaneous or post-precipitation. The operational experience with this "accidental" biological phosphorus removal is often mixed with quite a lot of frustration, as the process seems to come and go and hence behaves quite uncontrollably. The aim of this work is to develop ways of intentionally exploiting the biological phosphorus process by the use of instrumentation, control and automation to reduce the consumption of precipitants. Means to this end are first to calibrate a modified ASM2d model to a full-scale wastewater treatment plant (WWTP), including both biological and chemical phosphorus removal and a model of the sedimentation process. Second, based on the calibrated model a benchmark model is developed and various control strategies for biological phosphorus removal are tested. Experiences and knowledge gained from the strategies presented and discussed in this paper are vital inputs for the full-scale implementation of a control strategy for biological phosphorus removal at Avedøre WWTP, which is described in another paper. The two papers hence show a way to bridge the gap from model to full implementation. PMID:16722060

  7. Passivation of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.; Sancier, K. M.; Morrison, S. R.

    1973-01-01

    Five powders were received for plasma calcining during this report period. The particle size using a fluid energy mill, and obtained pigments that could be plasma calcined. Optimum results are obtained in the plasma calcining of zinc orthotitanate when finely dispersed particles are subjected to a calculated plasma temperature of 1670 C. Increasing the plasma calcining time by using multiple passes through the plasma stabilized the pigment to vacuum UV irradiation was evidenced by the resulting ESR spectra but slightly decreased the whiteness of the pigment. The observed darkening is apparently associated with the formation of Ti(+3) color centers.

  8. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control

    PubMed Central

    Lambadi, Paramesh Ramulu; Sharma, Tarun Kumar; Kumar, Piyush; Vasnani, Priyanka; Thalluri, Sitaramanjaneya Mouli; Bisht, Neha; Pathania, Ranjana; Navani, Naveen Kumar

    2015-01-01

    Infectious diseases cause a huge burden on healthcare systems worldwide. Pathogenic bacteria establish infection by developing antibiotic resistance and modulating the host’s immune system, whereas opportunistic pathogens like Pseudomonas aeruginosa adapt to adverse conditions owing to their ability to form biofilms. In the present study, silver nanoparticles were biofunctionalized with polymyxin B, an antibacterial peptide using a facile method. The biofunctionalized nanoparticles (polymyxin B-capped silver nanoparticles, PBSNPs) were assessed for antibacterial activity against multiple drug-resistant clinical strain Vibrio fluvialis and nosocomial pathogen P. aeruginosa. The results of antibacterial assay revealed that PBSNPs had an approximately 3-fold higher effect than the citrate-capped nanoparticles (CSNPs). Morphological damage to the cell membrane was followed by scanning electron microscopy, testifying PBSNPs to be more potent in controlling the bacterial growth as compared with CSNPs. The bactericidal effect of PBSNPs was further confirmed by Live/Dead staining assays. Apart from the antibacterial activity, the biofunctionalized nanoparticles were found to resist biofilm formation. Electroplating of PBSNPs onto stainless steel surgical blades retained the antibacterial activity against P. aeruginosa. Further, the affinity of polymyxin for endotoxin was exploited for its removal using PBSNPs. It was found that the prepared nanoparticles removed 97% of the endotoxin from the solution. Such multifarious uses of metal nanoparticles are an attractive means of enhancing the potency of antimicrobial agents to control infections. PMID:25834431

  9. Removal of trace nonylphenol from water in the coexistence of suspended inorganic particles and NOMs by using a cellulose-based flocculant.

    PubMed

    Yang, Zhen; Ren, Kexin; Guibal, Eric; Jia, Shuying; Shen, Jiachun; Zhang, Xuntong; Yang, Weiben

    2016-10-01

    A flocculation method was used for the removal of trace nonylphenol (NP) from synthetic surface water containing natural organic matters (humic acid, HA) and suspended inorganic particles (kaolin). A polymeric flocculant (CMCND), with enhanced cationic property and unique switchable hydrophobic/hydrophilic characteristic, was specially designed for this application. CMCND showed a high efficiency for trace NP removal, turbidity and UV254 abatements: under optimized conditions (pH: 4; T: 35 °C; dosage: 40 mg/L), the removal of NP reached up to 79%. By using dosage-pH flocculation diagrams and correlation analyses as tools, kaolin and HA were found to exert synergistic effects on NP removal, with the aid of CMCND; the synergistic effect of HA is higher due to π-π stacking. Zeta potential-dosage profiles clearly demonstrated charge neutralization predominated at pH 4, due to the strong cationic groups in the flocculant. Floc size monitoring displayed that the delayed phase transformation process (from hydrophilicity to hydrophobicity) of CMCND at 35 °C enhanced NP removal. In addition, spectral analyses clarified the interactions among CMCND, NP, kaolin and HA: charge attraction and hydrophobic interaction between CMCND and NP played the key roles. The findings are of significance for removing endocrine-disrupting chemicals in environmental remediation. PMID:27459160

  10. Kaolin-based particle films for arthropod control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle film technology was conceived by ARS scientists in the mid-1990's as an alternative to chemical pesticides. This technology was based on coating plant parts with mineral films that were chemically inert, could be formulated to spread and create a uniform film, formed a porous film that doe...

  11. PARTICULATE CONTROL HIGHLIGHTS: ADVANCED CONCEPTS IN ELECTROSTATIC PRECIPITATORS: PARTICLE CHARGING

    EPA Science Inventory

    The report gives highlights of an EPA research program aimed at developing and verifying an accurate theory of particle charging for conditions that are typically found in industrial electrostatic precipitators. A new theory was developed, in which the thermal motion of ions is a...

  12. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.

    PubMed

    Collingwood, Scott; Heitbrink, William A

    2007-11-01

    During mortar removal with a right angle grinder, a building renovation process known as "tuck pointing," worker exposures to respirable crystalline silica can be as high as 5 mg/m(3), 100 times the recommended exposure limit developed by the National Institute for Occupational Safety and Health. To reduce the risk of silicosis among these workers, a vacuum cleaner can be used to exhaust 80 ft(3)/min (2.26 m(3)/min) from a hood mounted on the grinder. Field trials examined the ability of vacuum cleaners to maintain adequate exhaust ventilation rates and measure exposure outcomes when using this engineering control. These field trials involved task-based exposure measurement of respirable dust and crystalline silica exposures during mortar removal. These measurements were compared with published exposure data. Vacuum cleaner airflows were obtained by measuring and digitally logging vacuum cleaner static pressure at the inlet to the vacuum cleaner motor. Static pressures were converted to airflows based on experimentally determined fan curves. In two cases, video exposure monitoring was conducted to study the relationship between worker activities and dust exposure. Worker activities were video taped concurrent with aerosol photometer measurement of dust exposure and vacuum cleaner static pressure as a measure of airflow. During these field trials, respirable crystalline silica exposures for 22 samples had a geometric mean of 0.06 mg/m(3) and a range of less than 0.01 to 0.86 mg/m(3). For three other studies, respirable crystalline silica exposures during mortar removal have a geometric means of 1.1 to 0.35. Although this field study documented noticeably less exposure to crystalline silica, video exposure monitoring found that the local exhaust ventilation provided incomplete dust control due to low exhaust flow rates, certain work practices, and missing mortar. Vacuum cleaner airflow decrease had a range of 3 to 0.4 ft(3)/min (0.08 to 0.01 m(3)/sec(2)) over a range

  13. The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics

    PubMed Central

    Chen, Chun; Zhao, Bin; Cui, Weilin; Dong, Lei; An, Na; Ouyang, Xiangying

    2010-01-01

    Dental healthcare workers (DHCWs) are at high risk of occupational exposure to droplets and aerosol particles emitted from patients' mouths during treatment. We evaluated the effectiveness of an air cleaner in reducing droplet and aerosol contamination by positioning the device in four different locations in an actual dental clinic. We applied computational fluid dynamics (CFD) methods to solve the governing equations of airflow, energy and dispersion of different-sized airborne droplets/aerosol particles. In a dental clinic, we measured the supply air velocity and temperature of the ventilation system, the airflow rate and the particle removal efficiency of the air cleaner to determine the boundary conditions for the CFD simulations. Our results indicate that use of an air cleaner in a dental clinic may be an effective method for reducing DHCWs' exposure to airborne droplets and aerosol particles. Further, we found that the probability of droplet/aerosol particle removal and the direction of airflow from the cleaner are both important control measures for droplet and aerosol contamination in a dental clinic. Thus, the distance between the air cleaner and droplet/aerosol particle source as well as the relative location of the air cleaner to both the source and the DHCW are important considerations for reducing DHCWs' exposure to droplets/aerosol particles emitted from the patient's mouth during treatments. PMID:20031985

  14. THE EFFECT OF WATER CHEMISTRY AND IRON PARTICLE PROPERTIES ON THE REMOVAL OF ARSENIC FOLLOWING THE OXIDATION OF FERROUS IRON

    EPA Science Inventory

    The current MCL for arsenic is being revised to a lower level by the USEPA. Many new utilities, particularly small utilities, will be forced to add an arsenic removal process or fine tune their curent water treatment process to meet the new MCL. Many arsenic removal processes rel...

  15. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Prasad, Kumar Suranjit; Gandhi, Pooja; Selvaraj, Kaliaperumal

    2014-10-01

    The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV-vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core-shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like sbnd NH, sbnd Cdbnd O, sbnd Cdbnd N and sbnd Cdbnd C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  16. Controlling particle deposit morphologies in drying nano-particle laden sessile droplets using substrate oscillations.

    PubMed

    Sanyal, Apratim; Basu, Saptarshi; Chaudhuri, Swetaprovo

    2016-06-01

    Sessile water droplets containing nano-silica particles are allowed to evaporate in the presence of driven substrate oscillations at chosen frequencies. Different mode shapes are observed at different oscillation frequencies. As reference, the evaporation of the same droplets is also observed under stationary conditions i.e. in the absence of any oscillations. For all cases, the deposit structures formed by the agglomeration of the nano-silica particles have been imaged. It has been observed that for the stationary droplets and for droplets whose oscillations are initiated close to the resonance of the lowest allowable oscillation mode, the structures are similar having larger spread over height, while for higher frequencies the structures are dome-like with more uniform outer dimensions. The possible reasons behind these structures are investigated using experimental techniques such as high-speed imaging of droplet oscillations, internal flow visualization and SEM imaging. Understanding of the underlying mechanisms behind the formation of these striking features is required for these methods to be applicable in larger scale drying operations or micro-device applications. Altogether a novel methodology has been presented and investigated for manipulating the morphological features in evaporating nano-particle laden sessile droplets. PMID:27181754

  17. Mercury removals by existing pollutants control devices of four coal-fired power plants in China.

    PubMed

    Wang, Juan; Wang, Wenhua; Xu, Wei; Wang, Xiaohao; Zhao, Song

    2011-01-01

    The mercury removals by existing pollution control devices and the mass balances of mercury in four coal-fired power plants of China were carried out based on a measurement method with the aluminum matrix sorbent. All the plants are equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series. During the course of coal stream, the samples, such as coal, bottom ash, fly ash, gypsum and flue gas, were collected. The Hg concentrations in coals were measured by CVAAS after appropriate preparation and acid digestion. Other solid samples were measured by the RA-915+ Zeeman Mercury Spectrometer. The vapor phase Hg was collected by a sorbent trap from flue gas and then measured using CVAAS followed by acid leaching. The mercury mass balances were estimated in this study were 91.6%, 77.1%, 118% and 85.8% for the four power plants, respectively. The total Hg concentrations in the stack gas were ranged from 1.56-5.95 microg/m3. The relative distribution of Hg in bottom ash, ESP, WFGD and stack discharged were ranged between 0.110%-2.50%, 2.17%-23.4%, 2.21%-87.1%, and 21.8%-72.7%, respectively. The distribution profiles were varied with the coal type and the operation conditions. The Hg in flue gas could be removed by ESP and FGD systems with an average removal efficiency of 51.8%. The calculated average emission factor was 0.066 g/ton and much lower than the results obtained ten years ago. PMID:22432308

  18. Selective cell proliferation can be controlled with CPC particle coatings

    PubMed Central

    Szivek, J.A.; Margolis, D.S.; Schnepp, A.B.; Grana, W.A.; Williams, S.K.

    2008-01-01

    To develop implantable, engineered, cartilage constructs supported by a scaffold, techniques to encourage rapid tissue growth into, and on the scaffold are essential. Preliminary studies indicated that human endothelial cells proliferated at different rates on different calcium phosphate ceramic (CPC) particles. Judicious selection of particles may encourage specific cell proliferation, leading to an ordered growth of tissues for angiogenesis, osteogenesis, and chondrogenesis. The goal of this study was to identify CPC surfaces that encourage bone and vascular cell growth, and other surfaces that support chondrocyte growth while inhibiting proliferation of vascular cells. Differences in bone and vascular cell proliferation were observed when using epoxy without embedded CPCs to encourage bone cells, and when three CPCs were tested, which encouraged vascular cell proliferation. One of these (CPC 7) also substantially depressed cartilage cell proliferation. Only one small-diameter crystalline CPC (CPC 2) supported rapid chondrocyte proliferation, and maintained the cartilage cell phenotype. PMID:17252549

  19. Controlling the scattering properties of thin, particle-doped coatings

    NASA Astrophysics Data System (ADS)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  20. Crystal form control and particle size control of RG3487, a nicotinic α7 receptor partial agonist.

    PubMed

    Kuang, Shanming; Zhang, Pingsheng; Dong, Eric Z; Jennings, Geremia; Zhao, Baoshu; Pierce, Michael

    2016-07-11

    This paper describes solid form control and particle size control of RG3487, a nicotinic receptor partial agonist. Four crystal forms were identified by polymorph screen under ∼100 varying conditions. Form A and Form B are anhydrates, while Forms C and D are solvates. Forms A, which is enantiotropically related to Form B, is the more thermodynamically stable form under ambient conditions and the desired form selected for clinical development. The crystal form control of Form A was achieved by crystallization solvent selection which consistently produced the desired form. Several process parameters impacting particle size of Form A in the final crystallization step were identified and investigated through both online and offline particle size measurement. The investigation results were utilized to control crystallization processes which successfully produced Form A with different particle size in 500g scale. PMID:27167333

  1. Electrooptical behaviour and control of a suspended particle device

    NASA Astrophysics Data System (ADS)

    Vergaz, R.; Pena, J. M. S.; Barrios, D.; Pérez, I.; Torres, J. C.

    2007-09-01

    A suspended particle device is made by electrophoretic rod-shape particles suspended in an organic gel. These particles can twist and order with an applied voltage. The light crossing the material suffers more or less scattering according to that voltage. A commercial device is analyzed in this work. Several electrical models are tested, being the best one a series configuration including a shunt double layer capacitance and a Warburg element. Main parameter errors are below 2%, showing the quality of this new electrical model for this kind of devices. A quick method to improve the manufacturing process on-line is also proposed. Impedance measurements will be fitted to the selected electrical model, in order to check physical aspects such as charge diffusion lengths and response times. An electronic driver to obtain several levels of device transmission has been also developed, being its linearity demonstrated too. Colour changes are negligible for the main part of the bleaching process. All these features allow the use of this set in domotics application.

  2. Size- and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOX and SO₂ removal with hydrogen peroxide.

    PubMed

    Ding, Jie; Zhong, Qin; Zhang, Shule; Cai, Wei

    2015-01-01

    A novel, simple, reproducible and low-cost strategy is introduced for the size- and shape-controlled synthesis of iron-aluminum mixed oxide nanoparticles (NIAO(x/y)). The as-synthesized NIAO(x/y) catalyze decomposition of H2O2 yielding highly reactive hydroxyl radicals (OH) for NOX and SO2 removal. 100% SO2 removal is achieved. NIAO(x/y) with Fe/Al molar ratio of 7/3 (NIAO(7/3)) shows the highest NOX removal of nearly 80% at >170°C, whereas much lower NOX removal (<63%) is obtained for NIAO(3/7). The melting of aluminum oxides in NIAO(7/3) promotes the formation of lamellar products, thus improving the specific surface areas and mesoporous distribution, benefiting the production of OH radicals. Furthermore, the NIAO(7/3) leads to the minor increase of points of zero charges (PZC), apparent enhancement of FeOH content and high oxidizing ability of Fe(III), further improving the production of OH radicals. However, the NIAO(3/7) results in the formation of aluminum surface-enriched spherical particles, thus decreasing the surface atomic ratio of iron oxides, decreasing OH radical production. More importantly, the generation of FeOAl causes the decline of active sites. Finally, the catalytic decomposition of H2O2 on NIAO(x/y) is proposed. And the well catalytic stability of NIAO(7/3) is obtained for evaluation of 30 h. PMID:25464305

  3. Controlled capillary assembly of magnetic Janus particles at fluid-fluid interfaces.

    PubMed

    Xie, Qingguang; Davies, Gary B; Harting, Jens

    2016-08-21

    Capillary interactions can be used to direct assembly of particles adsorbed at fluid-fluid interfaces. Precisely controlling the magnitude and direction of capillary interactions to assemble particles into favoured structures for materials science purposes is desirable but challenging. In this paper, we investigate capillary interactions between magnetic Janus particles adsorbed at fluid-fluid interfaces. We develop a pair-interaction model that predicts that these particles should arrange into a side-side configuration, and carry out simulations that confirm the predictions of our model. Finally, we investigate the monolayer structures that form when many magnetic Janus particles adsorb at the interface. We find that the particles arrange into long, straight chains exhibiting little curvature, in contrast with capillary interactions between ellipsoidal particles. We further find a regime in which highly ordered, lattice-like monolayer structures form, which can be tuned dynamically using an external magnetic field. PMID:27383223

  4. Controlled removal of amorphous Se capping layer from a topological insulator

    SciTech Connect

    Virwani, Kumar; Pushp, Aakash Topuria, Teya; Delenia, Eugene; Rice, Philip; Kellock, Andrew; Parkin, Stuart; Harrison, Sara E.; Collins-McIntyre, Liam; Hesjedal, Thorsten; Harris, James

    2014-12-15

    We report on the controlled removal of an amorphous Se capping layer from Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} topological insulators. We show that the Se coalesces into micron-sized islands before desorbing from the surface at a temperature of ∼150 °C. In situ Auger Electron Spectroscopy reveals that Se replaces a significant fraction of the Te near the top surface of the Bi{sub 2}Te{sub 3}. Rutherford Backscattering Spectrometry and Transmission Electron Microscopy show that after heating, Se has been incorporated in the Bi{sub 2}Te{sub 3} lattice down to ∼7 nm from its top surface while remaining iso-structural.

  5. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study.

    PubMed

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-11-01

    Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water. PMID:27348257

  6. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.

    PubMed

    Sun, Xia; Yan, Yubo; Li, Jiansheng; Han, Weiqing; Wang, Lianjun

    2014-02-15

    Nanoscale zero-valent iron particles (NZVIs) were incorporated inside the channels of SBA-15 rods by a "two solvents" reduction technique and used to remove Cr(VI) from groundwater. The resulting NZVIs/SBA-15 composites before and after reaction were characterized by N2 adsorption/desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Results helped to propose the mechanism of Cr(VI) removal by NZVIs/SBA-15, where Cr(VI) in aqueous was firstly impregnated into the channels of the silica, then adsorbed on the surfaces of the incorporated NZVIs and reduced to Cr(III) directly in the inner pores of the silica. Corrosion products included Fe2O3, FeO(OH), Fe3O4 and Cr2FeO4. Batch experiments revealed that Cr(VI) removal decreased from 99.7% to 92.8% when the initial solution pH increased from 5.5 to 9.0, accompanied by the decrease of the kobs from 0.600 to 0.024 min(-1). Humic acid (HA) had a little effect on the removal efficiency of Cr(VI) by NZVIs/SBA-15 but could decrease the reduction rate. The stable reduction of NZVIs/SBA-15 was observed within six cycles. NZVIs/SBA-15 composites offer a promising alternative material to remove heavy metals from groundwater. PMID:24374562

  7. Including Life Cycle Assessment for decision-making in controlling wastewater nutrient removal systems.

    PubMed

    Corominas, Lluís; Larsen, Henrik F; Flores-Alsina, Xavier; Vanrolleghem, Peter A

    2013-10-15

    This paper focuses on the use of Life Cycle Assessment (LCA) to evaluate the performance of seventeen control strategies in wastewater treatment plants (WWTPs). It tackles the importance of using site-specific factors for nutrient enrichment when decision-makers have to select best operating strategies. Therefore, the LCA evaluation is repeated for three different scenarios depending on the limitation of nitrogen (N), phosphorus (P), or both, when evaluating the nutrient enrichment impact in water bodies. The LCA results indicate that for treated effluent discharged into N-deficient aquatic systems (e.g. open coastal areas) the most eco-friendly strategies differ from the ones dealing with discharging into P-deficient (e.g. lakes and rivers) and N&P-deficient systems (e.g. coastal zones). More particularly, the results suggest that strategies that promote increased nutrient removal and/or energy savings present an environmental benefit for N&P and P-deficient systems. This is not the case when addressing N-deficient systems for which the use of chemicals (even for improving N removal efficiencies) is not always beneficial for the environment. A sensitivity analysis on using weighting of the impact categories is conducted to assess how value choices (policy decisions) may affect the management of WWTPs. For the scenarios with only N-limitation, the LCA-based ranking of the control strategies is sensitive to the choice of weighting factors, whereas this is not the case for N&P or P-deficient aquatic systems. PMID:23856224

  8. Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution.

    PubMed

    Anari-Anaraki, Mostafa; Nezamzadeh-Ejhieh, Alireza

    2015-02-15

    Natural clinoptilolite tuff was mechanically converted to micro (MCP) and nano (NCP) particles. The MCP and NCP powders were respectively modified with hexadecyltrimethyl ammonium bromide (HDTMA) and dithizone (DTZ). The raw and modified samples were characterized by X-ray diffraction (XRD), Fourier transformation infra red (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and thermogravimetry (TG) and used for the removal of Pb(II) from aqueous solution. The results confirm that both ion exchange and complexation processes are responsible for removal of Pb(II) cations in the modified samples, while Pb(II) cations were only removed via an ion exchange process by the raw clinoptilolite. In this sorbent, the anionic removal property of surfactant modified zeolites (SMZs) changed to cationic removal property by an additional modification step. The best removal efficiency was observed by NCP-HDTMA-DTZ at the following experimental conditions: C(Pb(II)): 800 mg L(-1), HDTMA dosage: 0.2 mol L(-1), DTZ dosage: 5 mmol L(-1), contact time of DTZ with NCP-HDTMA: 1800 min and contact time of the sorbent with Pb(II): 360 min. The NCP-HDTMA-DTZ sorbent showed good efficiency for the removal of lead in the presence of different multivalent cations. Adsorption isotherms of Pb(II) ions obey the Langmuir equation that indicate the monolayer sorption of Pb(II). The adsorption kinetics based on the pseudo-second-order rate equation indicates that the rate limiting step involving a chemical reaction. The negative ΔH and ΔG indicate an exothermic and spontaneous process. PMID:25460715

  9. Analytical optimal controls for the state constrained addition and removal of cryoprotective agents

    PubMed Central

    Chicone, Carmen C.; Critser, John K.

    2014-01-01

    Cryobiology is a field with enormous scientific, financial and even cultural impact. Successful cryopreservation of cells and tissues depends on the equilibration of these materials with high concentrations of permeating chemicals (CPAs) such as glycerol or 1,2 propylene glycol. Because cells and tissues are exposed to highly anisosmotic conditions, the resulting gradients cause large volume fluctuations that have been shown to damage cells and tissues. On the other hand, there is evidence that toxicity to these high levels of chemicals is time dependent, and therefore it is ideal to minimize exposure time as well. Because solute and solvent flux is governed by a system of ordinary differential equations, CPA addition and removal from cells is an ideal context for the application of optimal control theory. Recently, we presented a mathematical synthesis of the optimal controls for the ODE system commonly used in cryobiology in the absence of state constraints and showed that controls defined by this synthesis were optimal. Here we define the appropriate model, analytically extend the previous theory to one encompassing state constraints, and as an example apply this to the critical and clinically important cell type of human oocytes, where current methodologies are either difficult to implement or have very limited success rates. We show that an enormous increase in equilibration efficiency can be achieved under the new protocols when compared to classic protocols, potentially allowing a greatly increased survival rate for human oocytes, and pointing to a direction for the cryopreservation of many other cell types. PMID:22527943

  10. Tracking control of colloidal particles through non-homogeneous stationary flows

    NASA Astrophysics Data System (ADS)

    Híjar, Humberto

    2013-12-01

    We consider the problem of controlling the trajectory of a single colloidal particle in a fluid with steady non-homogeneous flow. We use a Langevin equation to describe the dynamics of this particle, where the friction term is assumed to be given by the Faxén's Theorem for the force on a sphere immersed in a stationary flow. We use this description to propose an explicit control force field to be applied on the particle such that it will follow asymptotically any given desired trajectory, starting from an arbitrary initial condition. We show that the dynamics of the controlled particle can be mapped into a set of stochastic harmonic oscillators and that the velocity gradient of the solvent induces an asymmetric coupling between them. We study the particular case of a Brownian particle controlled through a plane Couette flow and show explicitly that the velocity gradient of the solvent renders the dynamics non-stationary and non-reversible in time. We quantify this effect in terms of the correlation functions for the position of the controlled particle, which turn out to exhibit contributions depending exclusively on the non-equilibrium character of the state of the solvent. In order to test the validity of our model, we perform simulations of the controlled particle moving in a simple shear flow, using a hybrid method combining molecular dynamics and multi-particle collision dynamics. We confirm numerically that the proposed guiding force allows for controlling the trajectory of the micro-sized particle by obligating it to follow diverse specific trajectories in fluids with homogeneous shear rates of different strengths. In addition, we find that the non-equilibrium correlation functions in simulations exhibit the same qualitative behavior predicted by the model, thus revealing the presence of the asymmetric non-equilibrium coupling mechanism induced by the velocity gradient.

  11. Tracking control of colloidal particles through non-homogeneous stationary flows

    SciTech Connect

    Híjar, Humberto

    2013-12-21

    We consider the problem of controlling the trajectory of a single colloidal particle in a fluid with steady non-homogeneous flow. We use a Langevin equation to describe the dynamics of this particle, where the friction term is assumed to be given by the Faxén's Theorem for the force on a sphere immersed in a stationary flow. We use this description to propose an explicit control force field to be applied on the particle such that it will follow asymptotically any given desired trajectory, starting from an arbitrary initial condition. We show that the dynamics of the controlled particle can be mapped into a set of stochastic harmonic oscillators and that the velocity gradient of the solvent induces an asymmetric coupling between them. We study the particular case of a Brownian particle controlled through a plane Couette flow and show explicitly that the velocity gradient of the solvent renders the dynamics non-stationary and non-reversible in time. We quantify this effect in terms of the correlation functions for the position of the controlled particle, which turn out to exhibit contributions depending exclusively on the non-equilibrium character of the state of the solvent. In order to test the validity of our model, we perform simulations of the controlled particle moving in a simple shear flow, using a hybrid method combining molecular dynamics and multi-particle collision dynamics. We confirm numerically that the proposed guiding force allows for controlling the trajectory of the micro-sized particle by obligating it to follow diverse specific trajectories in fluids with homogeneous shear rates of different strengths. In addition, we find that the non-equilibrium correlation functions in simulations exhibit the same qualitative behavior predicted by the model, thus revealing the presence of the asymmetric non-equilibrium coupling mechanism induced by the velocity gradient.

  12. Coyote removal, understory cover, and survival of white-tailed deer neonates: Coyote Control and Fawn Survival

    SciTech Connect

    Kilgo, John C.; Vukovich, Mark; Ray, H. Scott; Shaw, Christopher E.; Ruth, Charles

    2014-09-01

    Predation by coyotes (Canis latrans) on white-tailed deer (Odocoileus virginianus) neonates has led to reduced recruitment in many deer populations in southeastern North America. This low recruitment combined with liberal antlerless deer harvest has resulted in declines in some deer populations, and consequently, increased interest in coyote population control. We investigated whether neonate survival increased after coyote removal, whether coyote predation on neonates was additive to other mortality sources, and whether understory vegetation density affected neonate survival. We monitored neonate survival for 4 years prior to (2006–2009) and 3 years during (2010–2012) intensive coyote removal on 3 32-km2 units on the United States Department of Energy’s Savannah River Site, South Carolina. We removed 474 coyotes (1.63 coyotes/km2 per unit per year), reducing coyote abundance by 78% from pre-removal levels. The best model (wi = 0.927) describing survival probability among 216 radio-collared neonates included a within-year quadratic time trend variable, date of birth, removal treatment, and a varying removal year effect. Under this model, survival differed between pre-treatment and removal periods and it differed among years during the removal period, being >100% greater than pre-treatment survival (0.228) during the first removal year (0.513), similar to pre-treatment survival during the second removal year (0.202), and intermediate during the third removal year (0.431). Despite an initial increase, the overall effect of coyote removal on neonate survival was modest. Mortality rate attributable to coyote predation was lowest during the first removal year (0.357) when survival was greatest, but the mortality rate from all other causes did not differ between the pretreatment period and any year during removals, indicating that coyote predation acted as an additive source of mortality. Survival probability was not related to

  13. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology

    NASA Astrophysics Data System (ADS)

    Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2015-11-01

    Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size

  14. CHARGED DROPLET SCRUBBER FOR FINE PARTICLE CONTROL: PILOT DEMONSTRATION

    EPA Science Inventory

    The report gives results of a successful Charged Droplet Scrubber (CDS) pilot demonstration of coke oven emissions control. It also describes the design, installation, and checkout of the demonstration system. The CDS uses electrically sprayed water droplets, accelerated through ...

  15. Control of binder viscosity and hygroscopicity on particle aggregation efficiency

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Delmelle, Pierre; Dingwell, Donald B.

    2016-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  16. Simplifying Physical Realization of Gaussian Particle Filters with Block-Level Pipeline Control

    NASA Astrophysics Data System (ADS)

    Hong, Sangjin; Djurić, Petar M.; Bolić, Miodrag

    2005-12-01

    We present an efficient physical realization method of particle filters for real-time tracking applications. The methodology is based on block-level pipelining where data transfer between processing blocks is effectively controlled by autonomous distributed controllers. Block-level pipelining maintains inherent operational concurrency within the algorithm for high-throughput execution. The proposed use of controllers, via parameters reconfiguration, greatly simplifies the overall controller structure, and alleviates potential speed bottlenecks that may arise due to complexity of the controller. A Gaussian particle filter for bearings-only tracking problem is realized based on the presented methodology. For demonstration, individual coarse grain processing blocks comprising particle filters are synthesized using commercial FPGA. From the execution characteristics obtained from the implementation, the overall controller structure is derived according to the methodology and its temporal correctness verified using Verilog and SystemC.

  17. Removal of uranium (VI) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose

    NASA Astrophysics Data System (ADS)

    Popescu (Hoştuc), Ioana-Carmen; Filip, Petru; Humelnicu, Doina; Humelnicu, Ionel; Scott, Thomas Bligh; Crane, Richard Andrew

    2013-11-01

    Carboxy-methyl-cellulose (CMC), a common "delivery vehicle" for the subsurface deployment of iron nanoparticles (INP) has been tested in the current work for the removal of aqueous uranium from synthetic water samples. A comparison of the removal of aqueous uranium from solutions using carboxy-methyl-cellulose with and without iron nanoparticles (CMC-INP and CMC, respectively) was tested over a 48 h reaction period. Analysis of liquid samples using spectrophotometry determined a maximum sorption capacity of uranium, Qmax, of 185.18 mg/g and 322.58 mg/g for CMC and CMC-INP respectively, providing strong evidence of an independent aqueous uranium removal ability exhibited by CMC. The results point out that CMC provides an additional capacity for aqueous uranium removal. Further tests are required to determine whether similar behaviour will be observed for other aqueous contaminant species and if the presence of CMC within a INP slurry inhibits or aids the reactivity, reductive capacity and affinity of INP for aqueous contaminant removal.

  18. Development of a controllable particle generator for LV seeding in hypersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Feller, W. V.; Meyers, J. F.

    1976-01-01

    The paper describes the considerations that went into the development of a controllable particle generator for laser velocimeter seeding in a hypersonic wind tunnel operating at 3.45 million N/sq m, 533 K, and stream speed of about 1000 m/sec. Operating conditions determined the choice of a silicone oil as the material, and the requirement that the particle follow the flow within a certain accuracy range put constraints on the allowable particle size range. The principle of the particle generating device chosen was that of the LaMer generator, in which a liquid is first vaporized, mixed with the carrier gas, and then condensed under carefully controlled conditions. Preliminary results of studies on the effect of various apparatus parameters on the particle median diameter are given.

  19. Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions.

    PubMed

    Ku, Kang Hee; Shin, Jae Man; Klinger, Daniel; Jang, Se Gyu; Hayward, Ryan C; Hawker, Craig J; Kim, Bumjoon J

    2016-05-24

    A series of porous block copolymer (BCP) particles with controllable morphology and pore sizes was fabricated by tuning the interfacial behavior of BCP droplets in oil-in-water emulsions. A synergistic adsorption of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) BCPs and sodium dodecyl sulfate (SDS) to the surface of the emulsion droplet induced a dramatic decrease in the interfacial tension and generated interfacial instability at the particle surface. In particular, the SDS concentration and the P4VP volume fraction of PS-b-P4VP were key parameters in determining the degree of interfacial instability, leading to different types of particles including micelles, capsules, closed-porosity particles, and open-porosity particles with tunable pore sizes ranging from 10 to 500 nm. The particles with open-porosity could be used as pH-responsive, high capacity delivery systems where the uptake and release of multiple dyes could be achieved. PMID:27138967

  20. Controllable fabrication and magnetic properties of double-shell cobalt oxides hollow particles

    PubMed Central

    Zhang, Dan; Zhu, Jianyu; Zhang, Ning; Liu, Tao; Chen, Limiao; Liu, Xiaohe; Ma, Renzhi; Zhang, Haitao; Qiu, Guanzhou

    2015-01-01

    Double-shell cobalt monoxide (CoO) hollow particles were successfully synthesized by a facile and effective one-pot solution-based synthetic route. The inner architecture and outer structure of the double-shell CoO hollow particles could be readily created through controlling experimental parameters. A possible formation mechanism was proposed based on the experimental results. The current synthetic strategy has good prospects for the future production of other transition-metal oxides particles with hollow interior. Furthermore, double-shell cobalt oxide (Co3O4) hollow particles could also be obtained through calcinating corresponding CoO hollow particles. The magnetic measurements revealed double-shell CoO and Co3O4 hollow particles exhibit ferromagnetic and antiferromagnetic behaviour, respectively. PMID:25736824

  1. Steric stabilization of nonaqueous silicon slips. I - Control of particle agglomeration and packing. II - Pressure casting of powder compacts

    NASA Technical Reports Server (NTRS)

    Kerkar, Awdhoot V.; Henderson, Robert J. M.; Feke, Donald L.

    1990-01-01

    The application of steric stabilization to control particle agglomeration and packing of silicon powder in benzene and trichloroethylene is reported. The results provide useful guidelines for controlling unfavorable particle-particle interactions during nonaqueous processing of silicon-based ceramic materials. The application of steric stabilization to the control and improvement of green processing of nonaqueous silicon slips in pressure consolidation is also demonstrated.

  2. Space Shuttle reaction control system thruster metal nitrate removal and characterization

    NASA Technical Reports Server (NTRS)

    Saulsberry, R. L.; Mccartney, P. A.

    1993-01-01

    The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.

  3. Space Shuttle reaction control system thruster metal nitrate removal and characterization

    NASA Astrophysics Data System (ADS)

    Saulsberry, R. L.; McCartney, P. A.

    1993-11-01

    The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.

  4. NDE of Possible Service-Induced PWSCC in Control Rod Drive Mechanism Housings Removed from Service

    SciTech Connect

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.; Harris, Robert V.; Crawford, Susan L.

    2006-09-22

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are being performed to assess the effectiveness of nondestructive examination (NDE) techniques on removed-from-service control rod drive mechanism (CRDM) nozzles and the associated J-groove attachment welds. This work is being performed to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE techniques such as ultrasonic testing (UT), eddy current testing (ET), and visual testing (VT) as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. The basic NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on the J-groove weld and buttering. This paper describes the NDE measurements that were employed on the two CRDMs to detect and characterize the indications and the analysis of these indications. The two CRDM assemblies were removed from service from the North Anna 2 vessel head, including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material. One nozzle contains suspected PWSCC, based on in-service inspection data; the second contains evidence suggesting through-wall leakage, although this was unconfirmed. A destructive test plan is being developed to directly characterize the indications found using nondestructive testing. The results of this destructive testing will be included when the destructive testing is completed.

  5. Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies

    PubMed Central

    Svensson, Christian R.; Pagels, Joakim; Meuller, Bengt O.; Deppert, Knut; Rissler, Jenny

    2012-01-01

    For nanotoxicology investigations of air-borne particles to provide relevant results it is ever so important that the particle exposure of, for example cells, closely resembles the “real” exposure situation, that the dosimetry is well defined, and that the characteristics of the deposited nanoparticles are known in detail. By synthesizing the particles in the gas-phase and directly depositing them on lung cells the particle deposition conditions in the lung is closely mimicked. In this work we present a setup for generation of gas-borne nanoparticles of a variety of different materials with highly controlled and tunable particle characteristics, and demonstrate the method by generation of gold particles. Particle size, number concentration and mass of individual particles of the population are measured on-line by means of differential mobility analyzers (DMA) and an aerosol particle mass analyzer (APM), whereas primary particle size and internal structure are investigated by transmission electron microscopy. A method for estimating the surface area dose from the DMA-APM measurements is applied and we further demonstrate that for the setup used, a deposition time of around 1 h is needed for deposition onto cells in an air–liquid interface chamber, using electrostatic deposition, to reach a toxicological relevant surface area dose. PMID:22630037

  6. Productivity control of fine particle transport to equatorial Pacific sediment

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Turekian, K. K.; Wei, K.-Y.

    2000-09-01

    Accumulation rates of 3He (from cosmic dust), 230Th (produced in the water column), barite (produced in the water column during decay of organic matter), and Fe and Ti (arriving with wind-borne dust) all are positively correlated in an equatorial Pacific core (TT013-PC72; 01.1°N, 139.4°W; water depth 4298 m). These accumulation rates are also positively correlated with the accumulation rates of noncarbonate material. They are not significantly correlated to the mass accumulation rate of carbonate, which makes up the bulk of the sediment. The fluctuations in accumulation rates of these various components from different sources thus must result from variations in some process within the oceans and not from variations in their original sources. Sediment focusing by oceanic bottom currents has been proposed as this process [Marcantonio et al., 1996]. We argue that the variations in the accumulation rates of all these components are dominantly linked to changes in productivity and particle scavenging (3He, 230Th, Fe, Ti) by fresh phytoplankton detritus (which delivers Ba upon its decay) in the equatorial Pacific upwelling region. We speculate that as equatorial Pacific productivity is a major component of global oceanic productivity, its variations over time might be reflected in variations in atmospheric levels of methanesulfonic acid (an atmospheric reaction product of dimethyl sulfide, which is produced by oceanic phytoplankton) and recorded in Antarctic ice cores.

  7. Monodisperse, Uniformly-Shaped Particles for Controlled Respiratory Vaccine Delivery

    NASA Astrophysics Data System (ADS)

    Fromen, Catherine Ann

    The majority of the world's most infectious diseases occur at the air-tissue interface called the mucosa, including HIV/AIDS, tuberculosis, measles, and bacterial or viral gut and respiratory infections. Despite this, vaccines have generally been developed for the systemic immune system and fail to provide protection at the mucosal site. Vaccine delivery directly to the lung mucosa could provide superior lung protection for many infectious diseases, such as TB or influenza, as well as systemic and therapeutic vaccines for diseases such as Dengue fever, asthma, or cancer. Specifically, precision engineered biomaterials are believed to offer tremendous opportunities for a new generation of vaccines. The goal of this approach is to leverage naturally occurring processes of the immune system to produce memory responses capable of rapidly destroy virulent pathogens without harmful exposure. Considerable knowledge of biomaterial properties and their interaction with the immune system of the lung is required for successful translation. The overall goal of this work was to fabricate and characterize nano- and microparticles using the Particle Replication In Non-wetting Templates (PRINT) fabrication technique and optimize them as pulmonary vaccine carriers. (Abstract shortened by ProQuest.).

  8. Thrust Removal Scheme for the FAST-MAC Circulation Control Model Tested in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.

    2014-01-01

    A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.

  9. Auxiliary particle filter-model predictive control of the vacuum arc remelting process

    NASA Astrophysics Data System (ADS)

    Lopez, F.; Beaman, J.; Williamson, R.

    2016-07-01

    Solidification control is required for the suppression of segregation defects in vacuum arc remelting of superalloys. In recent years, process controllers for the VAR process have been proposed based on linear models, which are known to be inaccurate in highly-dynamic conditions, e.g. start-up, hot-top and melt rate perturbations. A novel controller is proposed using auxiliary particle filter-model predictive control based on a nonlinear stochastic model. The auxiliary particle filter approximates the probability of the state, which is fed to a model predictive controller that returns an optimal control signal. For simplicity, the estimation and control problems are solved using Sequential Monte Carlo (SMC) methods. The validity of this approach is verified for a 430 mm (17 in) diameter Alloy 718 electrode melted into a 510 mm (20 in) diameter ingot. Simulation shows a more accurate and smoother performance than the one obtained with an earlier version of the controller.

  10. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.

    PubMed

    Xin, Jia; Han, Jun; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2015-03-01

    This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period. Because the TCE removal is attributed to both sorption and reduction processes, the contributions from sorption and reduction were separately investigated to determine the mechanism of XG on TCE removal using mZVI. The results showed that the TCE sorption capacity of mZVI was lower in the presence of XG, whereas the TCE reduction capacity was significantly increased. The FTIR spectra confirmed that XG, which is rich in hydrophilic functional groups, was adsorbed onto the iron surface through intermolecular hydrogen bonds, which competitively repelled the sorption and mass transfer of TCE toward reactive sites. The variations in the pH, Eh, and Fe(2+) concentration as functions of the reaction time were recorded and indicated that XG buffered the solution pH, inhibited surface passivation, and promoted TCE reduction by mZVI. Overall, the XG-modified mZVI was considered to be potentially effective for the in-situ remediation of TCE contaminated groundwater due to its high stability and dechlorination reactivity. PMID:25556871

  11. Solar Particle Induced Upsets in the TDRS-1 Attitude Control System RAM During the October 1989 Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard,T. L.

    1995-01-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU's calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU's by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU'S. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU's was 72, yielding a total of 248 predicted SEU'S, very dose to the 243 observed SEU'S. These calculations uniquely demonstrate the roles that solar heavy ions and protons played in the production of SEU

  12. Removal of polynuclear aromatic hydrocarbons from primary aluminum air pollution control scrubber wastewater

    SciTech Connect

    Dempsey, C.R.; Dostal, K.A.; Osantowski, R.A.

    1984-05-01

    A pilot-scale study was conducted at a primary aluminum plant to evaluate the removal of benzo(a)pyrene and other polynuclear aromatic hydrocarbons (PAH's) from potline scrubber wastewater. Specific objectives included determining the need for granular activated carbon to remove the PAH's to 10 micrograms/l and evaluating the use of benzo(a)pyrene as an indicator for the removal of all PAH's.

  13. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal.

    PubMed

    Zhang, Wei; Zhang, Xiaojian; Li, Yonghong; Wang, Jun; Chen, Chao

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the effect of particles, NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF. Particles, NOM and their mixture were spiked in tap water to simulate raw water. Exponential relationship, (J(P)/J(P0) = a x exp{-k[t-(n-1)T]}), was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well. In this equation, coefficient a was determined by the value of J(P)/J(P0) at the beginning of a filtration cycle, reflecting the flux recovery after backwashing, that is, the irreversible fouling. The coefficient k reflected the trend of flux dynamics. Integrated total permeability (SigmaJ(P)) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios. According to the results, there was an additive effect on membrane flux by NOM and particles during solo UF process. This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant, which further delayed the decrease of membrane flux and benefited flux recovery by backwashing. The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing. PMID:22432326

  14. Fine particle removal performance of a two-stage wet electrostatic precipitator using a nonmetallic pre-charger.

    PubMed

    Kim, Hak-Joon; Han, Bangwoo; Kim, Yong-Jin; Hwang, Kyu-Dong; Oh, Won-Seek; Yoo, Seong-Yeon; Oda, Tetsuji

    2011-12-01

    A novel two-stage wet electrostatic precipitator (ESP) has been developed using a carbon brush pre-charger and collection plates with a thin water film. The electrical and particle collection performance was evaluated for submicrometer particles smaller than 0.01- 0.5 micrometer in diameter by varying the voltages applied to the pre-charger and collection plates as well as the polarity of the voltage. The collection efficiency was compared with that calculated by the theoretical models. The long-term performances of the ESP with and without water films were also compared in tests using Japanese Industrial Standards dust. The experimental results show that the carbon brush pre-charger of the two-stage wet ESP had approximately 10% particle capture, while producing ozone concentrations of less than 30 ppb. The produced amounts of ozone are significantly lower than the current limits set by international agencies. The ESP also achieved a high collection rate performance, averaging 90% for ultrafine particles, as based on the particle number concentration at an average velocity of 1 m/sec corresponding to a residence time of 0.17 sec. Higher particle collection efficiency for the ESP can be achieved by increasing the voltages applied to the pre-charger and the collection plates. The decreased collection efficiency that occurred during dust loading without water films was completely avoided by forming a thin water film on the collection plates at a water flow rate of 6.5 L/min/m(2). PMID:22263421

  15. Integration of a nonmetallic electrostatic precipitator and a wet scrubber for improved removal of particles and corrosive gas cleaning in semiconductor manufacturing industries.

    PubMed

    Kim, Hak-Joon; Han, Bangwoo; Kim, Yong-Jin; Yoa, Seok-Jun; Oda, Tetsuji

    2012-08-01

    To remove particles in corrosive gases generated by semiconductor industries, we have developed a novel non-metallic, two-stage electrostatic precipitator (ESP). Carbon brush electrodes and grounded carbon fiber-reinforced polymer (CFRP) form the ionization stage, and polyvinyl chloride collection plates are used in the collection stage of the ESP The collection performance of the ESP downstream of a wet scrubber was evaluated with KC1, silica, and mist particles (0.01-10 pm), changing design and operation parameters such as the ESP length, voltage, and flow rate. A long-term and regeneration performance (12-hr) test was conducted at the maximum operation conditions of the scrubber and ESP and the performance was then demonstrated for 1 month with exhaust gases from wet scrubbers at the rooftop of a semiconductor manufacturing plant in Korea. The results showed that the electrical and collection performance of the ESP (16 channels, 400x400 mm2) was maintained with different grounded plate materials (stainless steel and CFRP) and different lengths of the ionization stage. The collection efficiency of the ESP at high air velocity was enhanced with increases in applied voltages and collection plate lengths. The ESP (16 channels with 100 mm length, 400x400 mm2x540 mm with a 10-mm gap) removed more than 90% of silica and mistparticles with 10 and 12 kV applied to the ESPat the air velocity of 2 m/s and liquid-to-gas ratio of 3.6 L/m3. Decreased performance after 13 hours ofcontinuous operation was recovered to the initial performance level by 5 min of water washing. Moreover during the 1-month operation at the demonstration site, the ESP showed average collection efficiencies of 97% based on particle number and 92% based on total particle mass, which were achieved with a much smaller specific corona power of 0.28 W/m3/hr compared with conventional ESPs. PMID:22916438

  16. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.

    PubMed

    Wang, Shuxiao; Zhang, Lei; Wu, Ye; Ancora, Maria Pia; Zhao, Yu; Hao, Jiming

    2010-06-01

    China's 11th 5-yr plan has regulated total sulfur dioxide (SO2) emissions by installing flue gas desulfurization (FGD) devices and shutting down small thermal power units. These control measures will not only significantly reduce the emission of conventional pollutants but also benefit the reduction of mercury emissions from coal-fired power plants. This paper uses the emission factor method to estimate the efficiencies of these measures on mercury emission abatement. From 2005 to 2010, coal consumption in power plants will increase by 59%; however, the mercury emission will only rise from 141 to 155 t, with an increase of 10%. The average emission rate of mercury from coal burning will decrease from 126 mg Hg/t of coal to 87 mg Hg/t of coal. The effects of the three desulfurization measures were assessed and show that wet FGD will play an important role in mercury removal. Mercury emissions in 2015 and 2020 are also projected under different policy scenarios. Under the most probable scenario, the total mercury emission in coal-fired power plants in China will decrease to 130 t by 2020, which will benefit from the rapid installation of fabric filters and selective catalytic reduction. PMID:20564998

  17. Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Zhang, Hao Chi; Tang, Wenxuan; Guo, Jian; Qian, Cheng; Li, Wenyuan

    2016-05-01

    We propose a method to design a transmission-spectrum-controllable spoof surface plasmon polaritons (SPPs) based on the interaction between spoof SPP waveguide and frequency tunable metamaterial (MTM) particles. To achieve the tunable MTM particles, we introduce varactor-diodes into split-ring resonators (SRRs). Taking the advantage of sub-wavelength scale of SRRs, we design and fabricate a compact transmission-spectrum-controllable spoof SPPs. Both simulated and measured results demonstrate excellent dynamic control of transmission coefficients at microwave frequencies.

  18. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    SciTech Connect

    Deng Fuguo; Zhou Hongyu; Li Chunyan; Wang Yan; Li Yansong

    2005-08-15

    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1 agents, via the control of the others in a network. It will be shown that the outcomes in the cases that n is odd or is even are different in principle as the receiver has to perform a controlled-NOT operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubit approaches the maximal value.

  19. Removal of fusain with a small-diameter H.M. cyclone operating with ultrafine medium particles

    SciTech Connect

    Xu Jianping Cai Changfeng; Zhang Jing

    1997-12-31

    As evidenced by study of physio-chemical property and liberation characteristics of the macerals of Shenfu young coal, the vitrain differs slightly with fusain in density, with the density of the former being about 0.1g/l higher. After being crushed to {minus}0.5mm, the individual maceral can be liberated, and the fusainite content in the {minus}0.043mm size fraction is noticeably higher than that in the 0.5--0.043mm size fraction. Based on the theory and practical cleaning result obtained through using a small-diameter cyclone for efficient cleaning of fine coal according to density, tests on the removal of fusain from 0.5--0.043mm size coal were conducted with a small-size cyclone operating with ultrafine medium. The test proved to be successful, with a fusain removal rate of up to 50%.

  20. Biogeochemical Mechanisms Controlling Reduced Radionuclide Particle Properties and Stability

    SciTech Connect

    Jim K. Fredrickson; John M. Zachara; Matthew J. Marshall; Alex S. Beliaev

    2006-06-01

    Uranium and Technetium are the major risk-driving contaminants at Hanford and other DOE sites. These radionuclides have been shown to be reduced by dissimilatory metal reducing bacteria (DMRB) under anoxic conditions. Laboratory studies have demonstrated that reduction results in the formation of poorly soluble hydrous oxides, UO2(s) and TcO2n?H2O(s), that are believed to limit mobility in the environment. The mechanisms of microbial reduction of U and Tc have been the focus of considerable research in the Environmental Remediation Sciences Program (ERSP). In spite of equal or greater importance in terms of controlling the environmental fate of the contaminants relatively little is known regarding the precipitation mechanism(s), reactivity, persistence, and transport of biogenic UO2(s) and TcO2(s).

  1. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  2. Morphology Control of FeCo Alloy Particles Synthesized by Polyol Process

    SciTech Connect

    Kodama, D.; Sato, Y.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Sato, K.

    2007-03-20

    FeCo alloy is a soft magnetic material that possesses the highest saturation magnetization of 2.4 T and crystallizes in bcc structure as in the case of {alpha}-Fe. However, the particles synthesized were highly agglomerated. Thus, in this paper, an attempt was made to control the morphology of the particles using different types and concentrations of surfactants such as oleic acid, oleyl amine, polyvinylpyrrolidone (PVP), etc., during the synthesis of the particles. Though all the surfactant experimented partially prevented the agglomeration, products had larger size distribution except for PVP, which provided nearly monodispersed particles. Furthermore, the FeCo particles synthesized in the presence of PVP were either cubic or nearly spherical depending on the concentration of Fe.

  3. PARTICLE REMOVAL RATES BY THE MUD SHRIMP UPOGEBIA PUGETTENSIS, ITS BURROW, AND A COMMENSAL CLAM: EFFECTS ON ESTUARINE PHYTOPLANKTON ABUNDANCE

    EPA Science Inventory

    The burrowing shrimp Upogebia pugettensis is an abundant intertidal inhabitant of Pacific Northwest bays and estuaries where it lives commensally with the bivalve Cryptomya californica. Suspension-feeding activities by the shrimp and by its commensal clam, as well as particle se...

  4. Controlling active self-assembly through broken particle-shape symmetry.

    PubMed

    Wensink, H H; Kantsler, V; Goldstein, R E; Dunkel, J

    2014-01-01

    Many structural properties of conventional passive materials are known to arise from the symmetries of their microscopic constituents. By contrast, it is largely unclear how the interplay between particle shape and self-propulsion controls the meso- and macroscale behavior of active matter. Here we use large-scale simulations of homo- and heterogeneous self-propelled particle systems to identify generic effects of broken particle-shape symmetry on collective motion. We find that even small violations of fore-aft symmetry lead to fundamentally different collective behaviors, which may facilitate demixing of differently shaped species as well as the spontaneous formation of stable microrotors. These results suggest that variation of particle shape yields robust physical mechanisms to control self-assembly of active matter, with possibly profound implications for biology and materials design. PMID:24580155

  5. Computer simulation of wolf-removal strategies for animal-damage control

    USGS Publications Warehouse

    Haight, R.G.; Travis, L.E.; Nimerfro, K.; Mech, L.D.

    2002-01-01

    Because of the sustained growth of the gray wolf (Canis lupus) population in the western Great Lakes region of the United States, management agencies are anticipating gray wolf removal from the federal endangered species list and are proposing strategies for wolf management. Strategies are needed that would balance public demand for wolf conservation with demand for protection against wolf depredation on livestock, poultry, and pets. We used a stochastic, spatially structured, individually based simulation model of a hypothetical wolf population, representing a small subset of the western Great Lakes wolves, to predict the relative performance of 3 wolf-removal strategies. Those strategies included reactive management (wolf removal occurred in summer after depredation), preventive management (wolves removed in winter from territories with occasional depredation), and population-size management (wolves removed annually in winter from all territories near farms). Performance measures included number of depredating packs and wolves removed, cost, and population size after 20 years. We evaluated various scenarios about immigration, trapping success, and likelihood of packs engaging in depredation. Four robust results emerged from the simulations: 1) each strategy reduced depredation by at least 40% compared with no action, 2) preventive and population-size management removed fewer wolves than reactive management because wolves were removed in winter before pups were born, 3)population-size management was least expensive because repeated annual removal kept most territories near farms free of wolves, and 4) none of the strategies threatened wolf populations unless they were isolated because wolf removal took place near farms and not in wild areas. For isolated populations, reactive management alone ensured conservation and reduced depredation. Such results can assist decision makers in managing gray wolves in the western Great Lakes states.

  6. Particle Control in the Sustained Spheromak Physics Experiment

    SciTech Connect

    Wood, R.D.; Hill, D.N.; Hooper, E.B.; Buchenauer, D.; McLean, H.; Wang, Z.; Woodruff, S.; Wurden, G.

    2000-05-01

    In this paper we report on density and impurity measurements in the Sustained Spheromak Physics Experiment (SSPX) which has recently started operation. The SSPX spheromak plasma is sustained by coaxial helicity injection for a duration of 2msec with peak toroidal currents of up to 0.5MA. The plasma-facing components consist of tungsten-coated copper to minimize sputtering. The surfaces are conditioned by a combination of baking at 150 C, glow discharge cleaning, Titanium gettering, and pulse-discharge cleaning with helium plasmas. In this way we can achieve density control so that the plasma density ({approx} 1-4 x 10{sup 20}m{sup -3}) matches the gas input. Low-density operation is presently limited by breakdown requirements, but we hope that new gas valves with supersonic nozzles will allow for a further reduction in density. We find that the conditioning reduces the impurity radiation to the point where it is no longer important to the energy balance, and long-lived spheromak plasmas are obtained (decay times of 1.5msec).

  7. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    SciTech Connect

    Christopher R. McLaron

    2004-12-01

    Powerspan has conducted pilot scale testing of a multi-pollutant control technology at FirstEnergy's Burger Power Plant under a cooperative agreement with the U.S. Department of Energy. The technology, Electro-Catalytic Oxidation (ECO), simultaneously removes sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), fine particulate matter (PM{sub 2.5}) and mercury (Hg) from the flue gas of coal-fired power plants. Powerspan's ECO{reg_sign} pilot test program focused on optimization of Hg removal in a 1-MWe slipstream pilot while maintaining greater than 90% removal of NO{sub x} and 98% removal of SO{sub 2}. This Final Technical Report discusses pilot operations, installation and maintenance of the Hg SCEMS instrumentation, and performance results including component and overall removal efficiencies of SO{sub 2}, NO{sub x}, PM and Hg from the flue gas and removal of captured Hg from the co-product fertilizer stream.

  8. Characterization, Exposure Measurement and Control for Nanoscale Particles in Workplaces and on the Road

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Pui, David Y. H.

    2011-07-01

    The amount of engineered nanoparticles is increasing at a rapid rate and more concerns are being raised about the occupational health and safety of nanoparticles in the workplace, and implications of nanotechnology on the environment and living systems. At the same time, diesel engine emissions are one of the serious air pollution sources in urban area. Ultrafine particles on the road can result in harmful effects on the health of drivers and passengers. Research on characterization, exposure measurement and control is needed to address the environmental, health and safety issues of nanoscale particles. We present results of our studies on airborne particles in workplaces and on the road.

  9. Biodistribution of doxorubicin and nanostructured ferrocarbon carrier particles in organism during magnetically controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A.; Budko, Andrei P.; Kovarskii, Alexander L.; Zontov, Sergei V.; Kogan, Boris Ya.; Kuznetsov, Oleg A.

    2009-05-01

    Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.

  10. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, David J.; Mensah-Biney, R.

    1995-01-01

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay.

  11. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1995-05-02

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay. 2 figs.

  12. Solar particle induced upsets in the TDRS-1 attitude control system RAM during the October 1989 solar particle events

    SciTech Connect

    Croley, D.R.; Garrett, H.B.; Murphy, G.B.; Garrard, T.L.

    1995-10-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU`s calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU`s by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU`s. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU`s was 72, yielding a total of 248 predicted SEU`s, very close to the 243 observed SEU`s.

  13. Methotrexate intercalated layered double hydroxides with different particle sizes: structural study and controlled release properties.

    PubMed

    Zhang, Xiao-Qing; Zeng, Mei-Gui; Li, Shu-Ping; Li, Xiao-Dong

    2014-05-01

    To study the influence of particle size on release properties, drug efficacy and other properties, a series of methotrexate intercalated layered double hydroxides (MTX/LDHs) nanohybrids with different particle sizes were synthesized through traditional coprecipitation method, by using the mixture of water and polyethylene glycol (volume ratio is 3:1) as solvent. The relationship between particle size and hydrothermal treatment conditions (i.e., time and temperature) had been systematically investigated, and the results indicate that the particle size can be precisely controlled between 70 and 300 nm. Elemental C/H/N and inductive coupled plasma (ICP) analysis indicated that different hydrothermal treatment almost has no effect on compositions of the nanohybrids. X-ray diffraction (XRD) patterns and fourier transform infrared spectroscopy (FTIR) investigations manifested the successful intercalation of MTX anions. MTX/LDHs particles exhibited hexagonal platelet morphology with round corner, due to the adsorption of MTX anions on positively charged LDHs surface. In addition, the crystallinity of MTX/LDHs increased with the particle diameters and the thermal stability of MTX anions was enhanced by holding together with LDHs layers. The in vitro release showed that bigger particles have much longer release duration, and the bioassay tests indicated that bigger particles are more efficient in the suppression of the tumor cells. PMID:24632036

  14. Shape control of self-organized porous silica submicron particles and their strength evaluation

    NASA Astrophysics Data System (ADS)

    Kiyohara, Keita; Inoue, Keita; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    In this paper, precise control of the shape, size, and porosity of porous silica submicron particles and their strength evaluation are described. Self-organization phenomenon of silica nanopowders and submicron polystyrene latex (PSL) balls in an atomized mist is used for the fabrication of the particles. When temperatures of lower- and upper-zone heaters are 100 and 600 °C, and N2 gas flow rate is 0.4 l/min, spherical particles are produced. When PSL concentration increases, the number of pores increases. Particles with uniformly-arranged pores are produced at the PSL concentration of around 3 wt %. By using the PSL balls of different diameters, porous silica particles including different size pores are made. Also, compressive fracture test is conducted to check the effect of vacuum annealing on the strength of particles. The annealed particle shows higher fracture force than the unannealed particle, which indicates that the annealing would be effective for improving the mechanical reliability.

  15. Noninvasive control of dental calculus removal: qualification of two fluorescence methods

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.

    2013-02-01

    The main condition of periodontitis prevention is the full calculus removal from the teeth surface. This procedure should be fulfilled without harming adjacent unaffected tooth tissues. Nevertheless the problem of sensitive and precise estimating of tooth-calculus interface exists and potential risk of hard tissue damage remains. In this work it was shown that fluorescence diagnostics during calculus removal can be successfully used for precise noninvasive detection of calculus-tooth interface. In so doing the simple implementation of this method free from the necessity of spectrometer using can be employed. Such a simple implementation of calculus detection set-up can be aggregated with the devices of calculus removing.

  16. Lotus-like effect for metal filings recovery and particle removal on heated metal surfaces using Leidenfrost water droplets.

    PubMed

    Tan, Cher Lin Clara; Sapiha, Kostantyn; Leong, Yoke Fun Hannah; Choi, Siwon; Anariba, Franklin; Thio, Beng Joo Reginald

    2015-07-21

    A "lotus-like" effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong rare earth magnet (NdFeB) upon evaporation of the water. We also show that the Leidenfrost effect can be effectively utilized to recover both hydrophobic (dust and activated carbon) and hydrophilic (SiO2 and MgO) particles from heated Al surfaces without any topographical modification or surfactant addition. Our results show that hydrophobic and hydrophilic materials can be collected with >92% and >96% effectiveness on grooved and smooth Al surfaces, respectively. Furthermore, we observed no significant differences in the amount of material collected above the Leidenfrost point within the tested temperature range (240 °C vs. 340 °C) as well as when the Al sheet was replaced with a Cu sheet as the substrate. However, we did observe that the Leidenfrost droplets were able to collect a greater amount of material when the working liquid was water than when it was ethanol. Our findings show promise in the development of an effective precious coinage metal filings recovery technology for application in the mint industry, as well as the self-cleaning of metallic and semiconductor surfaces where manual cleaning is not amenable. PMID:26053932

  17. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A

    2014-10-15

    Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. PMID:24999115

  18. A critical appraisal of the misoprostol removable, controlled-release vaginal delivery system of labor induction

    PubMed Central

    Patte, Charlotte; Deruelle, Philippe

    2015-01-01

    Background Induction of labor is a major issue in pregnancy management. Finding strategies to increase rate and decrease time to vaginal delivery is an important goal, but maternal or neonatal safety must remain the primary objective. Misoprostol is a synthetic analogue of prostaglandin used off label to ripen the cervix and induce labor. The misoprostol vaginal insert (MVI) was designed to allow a controlled-release delivery of misoprostol (from 50 to 200 μg) with a removal tape. The objective of this review was to make a critical appraisal of this device referring to the literature. Methods A literature search was performed in the PubMed and Cochrane databases using the keywords “vaginal misoprostol insert”. Results Several studies compared different doses of MVI (50, 100, 150, and 200 μg) with the 10 mg dinoprostone insert. The 100 μg MVI compared with the dinoprostone vaginal insert (DVI) showed similar efficacy and no significant differences in cesarean delivery rate. MVI 200 μg compared with DVI showed a reduced time to vaginal delivery and oxytocin need but had an increased risk of uterine hyperstimulation. The rate of hyperstimulation syndrome was two to three times more frequent with the 200 μg MVI than the 100 μg. Conclusion Current data suggest that the 100 μg MVI would provide the best balance between efficacy and safety. Further studies should be performed to evaluate this dose, especially in high-risk situations needing induction of labor. PMID:26648758

  19. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  20. Advisory circular. Building for storage and maintenance of airport snow removal and ice control equipment: A guide

    NASA Astrophysics Data System (ADS)

    1983-03-01

    Standards are suggested for an airport maintenance, storage, and snow removal equipment building that can protect the airport's investment in snow and ice control equipment, as well as in stored ice conrol materials, as well as support safe all-weather aircraft operations. It is advantageous to size the building to include storage for field lighting and other airport maintenance equipment, friction measuring equipment, rubber removal devices, and inspection or bird partol vehicles. Such buildings require site specific design, should be planned by an architectural and engineering firm familiar and airport needs and construction constraints.

  1. N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal.

    PubMed

    Li, Yao; Zhu, Shenmin; Liu, Qinglei; Chen, Zhixin; Gu, Jiajun; Zhu, Chengling; Lu, Tao; Zhang, Di; Ma, Jun

    2013-08-01

    A newly designed N-doped porous carbon with magnetic nanoparticles formed in situ (RHC-mag-CN) was fabricated through simple impregnation then polymerization and calcination. The doped nitrogen in RHC-mag-CN was in the form of graphite-type layers with the composition of CN. The resultant nanocomposite maintained a high surface area of 1136 m(2) g(-1) with 18.5 wt% magnetic nanoparticles (Fe3O4 and Fe) inside, which showed a saturation magnetization (Ms) of 22 emu/g. When used as an adsorbent, the RHC-mag-CN demonstrated a very quick adsorption property for the removal of Cr(VI), during which 92% of Cr(VI) could be removed within 10 min for dilute solutions at 2 g L(-1) adsorbent dose. The high adsorption capacity (16 mg g(-1)) is related to the synergetic effects of physical adsorption from the surface area and chemical adsorption from complexation reactions between Cr(VI) and Fe3O4. Importantly, the basic CNs in RHC-mag-CN increase its negative charge density and simultaneously increase the adsorption of metallic cations, such as Cr(3+) formed in the acid solution from the reduction of Cr(VI). The formation of magnetic nanoparticles inside not only supplies complexing sites for the adsorption of Cr(VI), but also shows perfect magnetic separation performance from aqueous solution. PMID:23561506

  2. Simulation and control of morphological changes due to dam removal in the Sandy River, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Altinakar, M. S.

    2015-03-01

    A one-dimensional channel evolution simulation model (CCHE1D) is applied to assess morphological changes in a reach of the Sandy River, Oregon, USA, due to the Marmot Dam removal in 2007. Sediment transport model parameters (e.g. sediment transport capacity, bed roughness coefficient) were calibrated using observed bed changes after the dam removal. The validated model is then applied to assess long-term morphological changes in response to a 10-year hydrograph selected from historical storm water records. The long-term assessment of sedimentation gives a reasonable prediction of morphological changes, expanding erosion in reservoir and growing deposition immediately downstream of the dam site. This prediction result can be used for managing and planning river sedimentation after dam removal. A simulation-based optimization model is also applied to determine the optimal sediment release rates during dam-removal that will minimize the morphological changes in the downstream reaches.

  3. Silica coated magnetic particles using microwave synthesis for removal of dyes from natural water samples: Synthesis, characterization, equilibrium, isotherm and kinetics studies

    NASA Astrophysics Data System (ADS)

    Ahmed, Salwa A.; Soliman, Ezzat M.

    2013-11-01

    Monitoring pollutants in water samples is a challenge to analysts. So, the removal of Napthol blue black (NBB) and Erichrome blue black R (EBBR) from aqueous solutions was investigated using magnetic chelated silica particles. Magnetic solids are widely used in detection and analytical systems because of the performance advantages they offer compared to similar solids that lack magnetic properties. In this context, a fast, simple and clean method for modification of magnetic particles (Fe3O4) with silica gel was developed using microwave technique to introduce silica gel coated magnetic particles (SG-MPs) sorbent. The magnetic sorbent was characterized by the FT-IR, X-ray diffraction (XRD), and scan electron microscope (SEM) analyses. The effects of pH, time, weight of sorbent and initial concentration of dye were evaluated. It was interesting to find from results that SG-MPs exhibits high percentage extraction of the studied dyes (100% for NBB and 98.75% for EBBR) from aqueous solutions. The Freundlich isotherm with r2 = 0.973 and 0.962 and Langmuir isotherms with r2 = 0.993 and 0.988 for NBB and EBBR, respectively were used to describe adsorption equilibrium. Also, adsorption kinetic experiments have been carried out and the data have been well fitted by a pseudo-second-order equation r2 = 1.0 for NBB and 0.999 for EBBR. The prepared sorbent with rapid adsorption rate and separation convenience was applied for removal of NBB and EBBR pollutants from natural water samples with good precision (RSD% = 0.05-0.3%).

  4. Removal of drone brood from Apis mellifera (Hymenoptera: Apidae) colonies to control Varroa destructor (Acari: Varroidae) and retain adult drones.

    PubMed

    Wantuch, Holly A; Tarpy, David R

    2009-12-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) has plagued European honey bees, Apis mellifera L. (Hymenoptera: Apidae), in the Americas since its introduction in the 1980s. For many years, these mites were sufficiently controlled using synthetic acaricides. Recently, however, beekeepers have experienced increased resistance by mites to chemical pesticides, which are also known to leave residues in hive products such as wax and honey. Thus there has been increased emphasis on nonchemical integrated pest management control tactics for Varroa. Because mites preferentially reproduce in drone brood (pupal males), we developed a treatment strategy focusing on salvaging parasitized drones while removing mites from them. We removed drone brood from colonies in which there was no acaricidal application and banked them in separate "drone-brood receiving" colonies treated with pesticides to kill mites emerging with drones. We tested 20 colonies divided into three groups: 1) negative control (no mite treatment), 2) positive control (treatment with acaricides), and 3) drone-brood removal and placement into drone-brood receiving colonies. We found that drone-brood trapping significantly lowered mite numbers during the early months of the season, eliminating the need for additional control measures in the spring. However, mite levels in the drone-brood removal group increased later in the summer, suggesting that this benefit does not persist throughout the entire season. Our results suggest that this method of drone-brood trapping can be used as an element of an integrated control strategy to control varroa mites, eliminating a large portion of the Varroa population with limited chemical treatments while retaining the benefits of maintaining adult drones in the population. PMID:20069828

  5. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (< 10 μm) particles. Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  6. Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2,4-dichlorophenol.

    PubMed

    Chang, Qing; Tang, Heqing

    2014-01-01

    Fe3O4 nanoparticles were prepared by a co-precipitation method with the assistance of ultrasound irradiation, and then coated with silica generated by hydrolysis and condensation of tetraethoxysilane. The silica-coated Fe3O4 nanoparticles were further modified with 3-aminopropyltriethoxysilane, resulting in anchoring of primary amine groups on the surface of the particles. Horseradish peroxidase (HRP) was then immobilized on the magnetic core-shell particles by using glutaraldehyde as a crosslinking agent. Immobilization conditions were optimized to obtain the highest relative activity of the immobilized enzyme. It was found the durability of the immobilized enzyme to heating and pH variation were improved in comparison with free HRP. The apparent Michaelis constants of the immobilized HRP and free HRP with substrate were compared, showing that the enzyme activity of the immobilized HRP was close to that of free HRP. The HRP immobilized particles, as an enzyme catalyst, were used to activate H2O2 for degrading 2,4-dichlorophenol. The rapid degradation of 2,4-dichlorophenol indicated that the immobilized enzyme has potential applications for removing organic pollutants. PMID:25268726

  7. Application of bipolar electrodialysis to E. coli fermentation for simultaneous acetate removal and pH control.

    PubMed

    Wong, Michael; Woodley, John M; Lye, Gary J

    2010-08-01

    The application of bipolar electrodialysis (BPED) for the simultaneous removal of inhibitory acetate and pH control during E. coli fermentation was investigated. A two cell pair electrodialysis module, consisting of cation exchange, anion exchange and bipolar membranes with working area of 100 cm(2) each, was integrated with a standard 7 l stirred tank bioreactor. Results showed that BPED was beneficial in terms of in situ removal of inhibitory acetate and a reduction in the amount NH(4)OH used for pH control. In batch and fed-batch BPED fermentations, base additions were decreased by up to 50% in both cases compared to electrodialysis (ED) fermentations with pH controlled at 6.7 +/- 0.1. Consequently, the final biomass (34.2 g DCW l(-1)) and recombinant protein (5.5 g l(-1)) concentrations obtained were increased by up to 37 and 20%, respectively. PMID:20383737

  8. Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity

    PubMed Central

    Lee, Ilkeun; Morales, Ricardo; Albiter, Manuel A.; Zaera, Francisco

    2008-01-01

    Colloidal and sol-gel procedures have been used to prepare heterogeneous catalysts consisting of platinum metal particles with narrow size distributions and well defined shapes dispersed on high-surface-area silica supports. The overall procedure was developed in three stages. First, tetrahedral and cubic colloidal metal particles were prepared in solution by using a procedure derived from that reported by El-Sayed and coworkers [Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1926]. This method allowed size and shape to be controlled independently. Next, the colloidal particles were dispersed onto high-surface-area solids. Three approaches were attempted: (i) in situ reduction of the colloidal mixture in the presence of the support, (ii) in situ sol-gel synthesis of the support in the presence of the colloidal particles, and (iii) direct impregnation of the particles onto the support. Finally, the resulting catalysts were activated and tested for the promotion of carbon–carbon double-bond cis-trans isomerization reactions in olefins. Our results indicate that the selectivity of the reaction may be controlled by using supported catalysts with appropriate metal particle shapes. PMID:18832170

  9. Controlled endolysosomal release of agents by pH-responsive polymer blend particles

    PubMed Central

    Zhan, Xi; Tran, Kenny K.; Wang, Liguo; Shen, Hong

    2015-01-01

    Purpose A key step of delivering extracellular agents to its intracellular target is to escape from endosomal/lysosomal compartments, while minimizing the release of digestive enzymes that may compromise cellular functions. In this study, we examined the intracellular distribution of both fluorecent cargoes and enzymes by a particle delivery platform made from the controlled blending of poly (lactic-co-glycolic acid) (PLGA) and a random pH-sensitive copolymer. Methods We utilized both microscopic and biochemical methods to semi-quantitatively assess how the composition of blend particles affects the level of endosomal escape of cargos of various sizes and enzymes into the cytosolic space. Results We demonstrated that these polymeric particles enabled the controlled delivery of cargos into the cytosolic space that was more dependent on the cargo size and less on the composition of blend particles. Blend particles did not induce the rupture of endosomal/lysosomal compartments and released less than 20% of endosomal/lysosomal enzymes. Conclusions This study provides insight into understanding the efficacy and safety of a delivery system for intracellular delivery of biologics and drugs. Blend particles offer a potential platform to target intracellular compartments while potentially minimizing cellular toxicity. PMID:25592550

  10. Control of both particle and pore size in nanoporous palladium alloy powders

    DOE PAGESBeta

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; Robinson, David B.

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agentsmore » for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.« less

  11. Control of both particle and pore size in nanoporous palladium alloy powders

    SciTech Connect

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; Robinson, David B.

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agents for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.

  12. Surface morphology control of cross-linked polymer particles via dispersion polymerization.

    PubMed

    Peng, Bo; Imhof, Arnout

    2015-05-14

    Cross-linked polymer colloids (poly(methyl methacrylate) and polystyrene) with diverse shapes were prepared in polar solvents (ethanol, methanol and water) via dispersion polymerization, in which a linear addition of the cross-linker was used during reaction. Apart from spherical particles we found dented spheres or particles covered with nodules, or a combination of both. A comprehensive investigation was carried out, mainly concentrating on the effect of the experimental conditions (e.g., the addition start time and total addition time, cross-linker density and the solvency of the solvents) on particle morphologies. Consequently, we suggest a number of effective ways for the synthesis of regular (spherical) colloidal particles through maintaining a relatively low concentration of the cross-linker during the entire reaction, or forcing the co-polymerization (of monomer and cross-linker) locus to the continuous medium, or using a high quality or quantity of the stabilizer. Moreover, the size of the particles was also precisely manipulated by varying the polarity of the solvents, the concentration of the cross-linker, and the amount and average molecular weight of the stabilizer. In addition, the formation of the heavily dented particles with a very rough surface prepared under a pure or oxygen-'contaminated' nitrogen environment was monitored over time. The results accumulated in this article are of use for a better understanding of the mechanism of the polymerization and control over the structure and property of polymer particles. PMID:25793973

  13. A particle temperature sensor for monitoring and control of the thermal spray process

    SciTech Connect

    Swank, W.D.; Fincke, J.R.; Haggard, D.C.

    1995-12-01

    The temperature and velocity of thermally sprayed particles prior to their impact on the substrate are two of the predominant determinants of coating quality and characteristics. This paper describes an instrument developed for real time monitoring of in-flight particle temperature in an industrial environment. The instrument is designed to operate as a stand alone device for verifying that a desired particle temperature is attained or for developing process settings to yield a particular temperature. The device is also suitable for incorporation into a closed loop process controller. Data showing the relationship between torch parameters and average particle temperature are presented. There is good agreement between previous measurements using laboratory instrumentation and the simpler, industrially hardened technique described here. The assumption of gray body behavior is evaluated and for known emissivities corrections are developed.

  14. Role of Polymer Segment-Particle Surface Interactions in Controlling Nanoparticle Dispersions in Concentrated Polymer Solutions

    SciTech Connect

    Kim, So Youn; Zukoski, Charles F.

    2014-09-24

    The microstructure of particles suspended in concentrated polymer solutions is examined with small-angle X-ray scattering and small-angle neutron scattering. Of interest are changes to long wavelength particle density fluctuations in ternary mixtures of silica nanoparticles suspended in concentrated solutions of poly(ethylene glycol). The results are understood in terms of application of the pseudo-two-component polymer reference interaction site model (PRISM) theory modified to account for solvent addition via effective contact strength of interfacial attraction, εpc, in an implicit manner. The combined experimental-theoretical study emphasizes the complex interactions between solvent, polymer, and particle surface that control particle miscibility but also demonstrate that these factors can all be understood in terms of variations of εpc.

  15. Photocatalytic/Magnetic Composite Particles

    NASA Technical Reports Server (NTRS)

    Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David

    2007-01-01

    Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.

  16. Electrical asymmetry effect for controlling the transport of micrometer-sized particles in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Iwashita, Shinya; Schuengel, Edmund; Schulze, Julian; Uchida, Giichiro; Koga, Kazunori; Hartmann, Peter; Shiratani, Masaharu; Donko, Zoltan; Czarnetzki, Uwe

    2012-10-01

    We have developed a novel method to control the dust particle transport in capacitively coupled plasmas via the electrical asymmetry effect (EAE) [1]. At low pressures the EAE allows controlling the spatial potential profile and the ion density distribution by adjusting the phase angle between a fundamental frequency and its second harmonic, resulting in control of forces exerted on dust particles such as electrostatic and ion drag forces. We report the experimental results of this method using SiO2 particles of 1.5 μm in size, which are inserted into an argon discharge. Initially dust particles tend to be confined at the sheath edge near the bottom electrode, and the change of their equilibrium position with plasma due to the adiabatic phase shift can be well understood by the electric field profile obtained from a simple analytical model. By applying the abrupt change of phase angle from 90 to 0 dust particles are transported between both sheaths through the plasma bulk [1]. Based on the model of this transport [1] the potential profile can be obtained by experimental results.[4pt] [1] Iwashita S et al., Plasma Sources Sci. Technol. 21 (2012) 032001.

  17. Controlling dispersion forces between small particles with artificially created random light fields

    NASA Astrophysics Data System (ADS)

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-06-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems.

  18. Controlling dispersion forces between small particles with artificially created random light fields

    PubMed Central

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622

  19. Digital atom interferometer with single particle control on a discretized space-time geometry

    PubMed Central

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-01-01

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 × 10-4 in units of gravitational acceleration g. PMID:22665771

  20. How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control.

    PubMed

    Ju, Xinxin; Wu, Shubiao; Huang, Xu; Zhang, Yansheng; Dong, Renjie

    2014-10-01

    Intensified nutrient removal and odor control in a novel electrolysis-integrated tidal flow constructed wetland were evaluated. The average removal efficiencies of COD and NH4(+)-N were above 85% and 80% in the two experimental wetlands at influent COD concentration of 300 mg/L and ammonium nitrogen concentration of 60 mg/L regardless of electrolysis integration. Effluent nitrate concentration decreased from 2.5mg/L to 0.5mg/L with the reduction in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2). This result reveals the important role of current intensity in nitrogen transformation. Owing to the ferrous and ferric iron coagulant formed through the electro-dissolution of the iron anode, electrolysis integration not only exerted a positive effect on phosphorus removal but also effectively inhibited sulfide accumulation for odor control. Although electrolysis operation enhanced nutrient removal and promoted the emission of CH4, no significant difference was observed in the microbial communities and abundance of the two experimental wetlands. PMID:25103037

  1. Examination of commercially available copper oxide wire particles for control of Haemonchus contorus in lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternatives to synthetic anthelmintics remain critical due to the prevalence of anthelmintic resistance. The objective of the experiment was to determine the efficacy of copper oxide wire particles (COWP) from three commercial sources to control Haemonchus contortus in lambs. Naturally infected Ka...

  2. PILOT DEMONSTRATION OF THE AIR CURTAIN SYSTEM FOR FUGITIVE PARTICLE CONTROL

    EPA Science Inventory

    The report gives results of the demonstration of the technical and economic feasibility of using an air curtain transport system to control buoyant fugitive particle emissions. (Fugitive emissions are the major source of uncontrolled emissions for many industrial plants. There ar...

  3. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor.

    PubMed

    Mao, Ran; Zhao, Xu; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2015-06-15

    Bromate (BrO3(-)) is a carcinogenic and genotoxic contaminant commonly generated during ozonation of bromide-containing water. In this work, the reductive removal of BrO3(-) in a continuous three-dimensional electrochemical reactor with palladium-reduced graphene oxide modified carbon paper (Pd-rGO/C) cathode and Pd-rGO modified granular activated carbon (Pd-rGO/GAC) particles was investigated. The results indicated that the rGO sheets significantly promoted the electrochemical reduction of BrO3(-). With the enhanced electron transfer by rGO sheets, the electroreduction of H2O to atomic H* on the polarized Pd particles could be significantly accelerated, leading to a faster reaction rate of BrO3(-) with atomic H*. The synergistic effect of the Pd-rGO/C cathode and Pd-rGO/GAC particles were also exhibited. The atomic H* involved in various electroreduction processes was detected by electron spin resonance spectroscopy and its role for BrO3(-) reduction was determined. The performance of the reactor was evaluated in terms of the removal of BrO3(-) and the yield of Br(-) as a function of the GO concentration, Pd loading amount, current density, hydraulic residence time (HRT), and initial BrO3(-) concentration. Under the current density of 0.9 mA/cm(2), BrO3(-) with the initial concentration of 20 μg/L was reduced to be less than 6.6 μg/L at the HRT of 20 min. The BrO3(-) reduction was inhibited in the presence of dissolved organic matter. Although the precipitates generated from Ca(2+) and Mg(2+) in the tap water would cover the Pd catalysts, a long-lasting electrocatalytic activity could be maintained for the 30 d treatment. SEM and XPS analysis demonstrated that the precipitates were predominantly deposited onto the Pd-rGO/C cathode rather than the Pd-rGO/GAC particles. PMID:25834955

  4. Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Huaqing; Jiang, Minlan

    2016-01-01

    PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.

  5. Microfluidic synthesis of monodisperse nanoporous oxide particles and control of hierarchical pore structure.

    PubMed

    Carroll, Nick J; Crowder, Peter F; Pylypenko, Svitlana; Patterson, Wendy; Ratnaweera, Dilru R; Perahia, Dvora; Atanassov, Plamen; Petsev, Dimiter N

    2013-05-01

    Particles with hierarchical porosity can be formed by templating silica microparticles with a specially designed surfactant micelle/oil nanoemulsion mixture. The nanoemulsion oil droplet and micellar dimensions determine the pore size distribution: one set of pores with diameters of tens of nanometers coexisting with a second subset of pores with diameters of single nanometers. Further practical utility of these nanoporous particles requires precise tailoring of the hierarchical pore structure. In this synthesis study, the particle nanostructure is tuned by adjusting the oil, water, and surfactant mixture composition for the controlled design of nanoemulsion-templated features. We also demonstrate control of the size distribution and surface area of the smaller micelle-templated pores as a consequence of altering the hydrophobic chain length of the molecular surfactant template. Moreover, a microfluidic system is designed to process the low interfacial system for fabrication of monodisperse porous particles. The ability to direct the assembly of template nanoemulsion and micelle structures creates new opportunities to engineer hierarchically porous particles for utility as electrocatalysts for fuel cells, chromatography separations, drug delivery vehicles, and other applications. PMID:23387998

  6. A frequency-control particle separation device based on resultant effects of electroosmosis and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Chi; Tung, Yi-Chung; Lin, Chih-Ting

    2016-08-01

    Particle separation plays an important role in microfluidic sample preparation for various biomedical applications. In this paper, we report a particle manipulation and separation scheme using a microfluidic device based on low-volume/low-voltage electrokinetic frequency modulation. Utilizing a circular micro-electrode array, both electroosmosis and dielectrophoresis can be contributed to manipulate particles in the device by controlling the frequency of applied sinusoidal travelling wave signals. Theoretical simulations based on finite-element methods are employed to establish fundamental understanding of the developed scheme. For experimental demonstration, polystyrene beads (6 μm in diameter) and human promyelocytic leukaemia cells (HL-60) are used to validate the frequency-modulation effect. Furthermore, different diameter polystyrene beads (6 μm and 10 μm in diameter) are mixed to show potentials of precise particle separations (˜90% efficiency) by the reported frequency-controlled electrokinetic device. The developed technique can be exploited as an actuation scheme and particle manipulation method for microfluidic sample preparations of low ionic concentration samples.

  7. Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-01-01

    Atmospheric water vapour interacting with hydrophilic mineral surfaces can produce water films of various thicknesses and structures. In this work we show that mineral particle size controls water loadings achieved by water vapour deposition on 21 contrasting mineral samples exposed to atmospheres of up to ~16 Torr water (70% relative humidity at 25 °C). Submicrometer-sized particles hosted up to ~5 monolayers of water, while micrometer-sized particles up to several thousand monolayers. All films exhibited vibrational spectroscopic signals akin to liquid water, yet with a disrupted network of hydrogen bonds. Water adsorption isotherms were predicted using models (1- or 2- term Freundlich and Do-Do models) describing an adsorption and a condensation regime, respectively pertaining to the binding of water onto mineral surfaces and water film growth by water-water interactions. The Hygroscopic Growth Theory could also account for the particle size dependence on condensable water loadings under the premise that larger particles have a greater propensity of exhibiting of surface regions and interparticle spacings facilitating water condensation reactions. Our work should impact our ability to predict water film formation at mineral surfaces of contrasting particle sizes, and should thus contribute to our understanding of water adsorption and condensation reactions occuring in nature. PMID:27561325

  8. Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces

    PubMed Central

    Yeşilbaş, Merve; Boily, Jean-François

    2016-01-01

    Atmospheric water vapour interacting with hydrophilic mineral surfaces can produce water films of various thicknesses and structures. In this work we show that mineral particle size controls water loadings achieved by water vapour deposition on 21 contrasting mineral samples exposed to atmospheres of up to ~16 Torr water (70% relative humidity at 25 °C). Submicrometer-sized particles hosted up to ~5 monolayers of water, while micrometer-sized particles up to several thousand monolayers. All films exhibited vibrational spectroscopic signals akin to liquid water, yet with a disrupted network of hydrogen bonds. Water adsorption isotherms were predicted using models (1- or 2- term Freundlich and Do-Do models) describing an adsorption and a condensation regime, respectively pertaining to the binding of water onto mineral surfaces and water film growth by water-water interactions. The Hygroscopic Growth Theory could also account for the particle size dependence on condensable water loadings under the premise that larger particles have a greater propensity of exhibiting of surface regions and interparticle spacings facilitating water condensation reactions. Our work should impact our ability to predict water film formation at mineral surfaces of contrasting particle sizes, and should thus contribute to our understanding of water adsorption and condensation reactions occuring in nature. PMID:27561325

  9. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  10. Simulation of sediment transport due to dam removal and control of morphological changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents two case studies of post dam removal sedimentation in the United States. Two different one-dimensional channel evolution simulation models were used: CCHE1D and CONCEPTS, respectively. The first case is the application of CCHE1D to assess the long-term (up to 10 years) morphologi...

  11. Observation and Control of Hamiltonian Chaos in Wave-particle Interaction

    SciTech Connect

    Doveil, F.; Ruzzon, A.; Elskens, Y.

    2010-11-23

    Wave-particle interactions are central in plasma physics. The paradigm beam-plasma system can be advantageously replaced by a traveling wave tube (TWT) to allow their study in a much less noisy environment. This led to detailed analysis of the self-consistent interaction between unstable waves and an either cold or warm electron beam. More recently a test cold beam has been used to observe its interaction with externally excited wave(s). This allowed observing the main features of Hamiltonian chaos and testing a new method to efficiently channel chaotic transport in phase space. To simulate accurately and efficiently the particle dynamics in the TWT and other 1D particle-wave systems, a new symplectic, symmetric, second order numerical algorithm is developed, using particle position as the independent variable, with a fixed spatial step.This contribution reviews: presentation of the TWT and its connection to plasma physics, resonant interaction of a charged particle in electrostatic waves, observation of particle trapping and transition to chaos, test of control of chaos, and description of the simulation algorithm.The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the 4m long helix of the TWT. The nonlinear synchronization of particles by a single wave, responsible for Landau damping, is observed. We explore the resonant velocity domain associated with a single wave as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a devil's staircase behavior when increasing the excitation level in agreement with numerical simulation.A new strategy for control of chaos by building barriers of transport in phase space as well as its robustness is successfully tested. The underlying concepts extend far beyond the field of

  12. Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles.

    PubMed

    Zhang, Yulong; Dong, Rui; Park, Yujin; Bohner, Marc; Zhang, Xinli; Ting, Kang; Soo, Chia; Wu, Benjamin M

    2016-09-10

    NEL-like molecule-1 (NELL-1) is a novel osteogenic protein that showing high specificity to osteochondral cells. It was widely used in bone regeneration research by loading onto carriers such as tricalcium phosphate (TCP) particles. However, there has been little research on protein controlled release from this material and its potential application. In this study, TCP was first modified with a hydroxyapatite coating followed by a chitosan coating to prepare chitosan/hydroxyapatite-coated TCP particles (Chi/HA-TCP). The preparation was characterized by SEM, EDX, FTIR, XRD, FM and Zeta potential measurements. The NELL-1 loaded Chi/HA-TCP particles and the release kinetics were investigated in vitro. It was observed that the Chi/HA-TCP particles prepared with the 0.3% (wt/wt) chitosan solution were able to successfully control the release of NELL-1 and maintain a slow, steady release for up to 28 days. Furthermore, more than 78% of the loaded protein's bioactivity was preserved in Chi/HA-TCP particles over the period of the investigation, which was significantly higher than that of the protein released from hydroxyapatite coated TCP (HA-TCP) particles. Collectively, this study suggests that the osteogenic protein NELL-1 showed a sustained release pattern after being encapsulated into the modified Chi/HA-TCP particles, and the NELL-1 integrated composite of Chi/HA-TCP showed a potential to function as a protein delivery carrier and as an improved bone matrix for use in bone regeneration research. PMID:27349789

  13. Particle analyzing method and apparatus

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Griffin, C. E.; Norris, D. D.; Friedlander, S. K. (Inventor)

    1980-01-01

    The rapid chemical analysis of particles in aerosols can be accomplished using an apparatus which produces a controlled stream of individual particles from an environment, and another apparatus which vaporizes and ionizes the particles moving in free flight, for analysis by a mass spectrometer. The device for producing the stream of particles includes a capillary tube through which the air with suspended particles moves, a skimmer with a small opening spaced from an end of the capillary tube to receive particles passing through the tube, and a vacuum pump which removes air from between the tube and skimmer and creates an inflow of air and particles through the tube. The particles passing through the skimmer opening can be simultaneously vaporized and ionized while in free flight, by a laser beam of sufficient intensity that is directed across the path of the free flying particles.

  14. Observational and modeling study of dry deposition on surrogate surfaces in a South China city: implication of removal of atmospheric crustal particles.

    PubMed

    Wai, Ka-Ming; Leung, Ka-Yee; Tanner, Peter A

    2010-05-01

    Dry deposition samples collected during 1999-2001 at a South China site using surrogate surfaces were analyzed by capillary electrophoresis. Collector surface properties played important roles to the dry deposition. The deposition velocities for various species ranged from 0.02 to 1.69 cm s(-1), in general agreement with literature values. More than 90% of Ca(2+) was deposited by sedimentation and its comparable values of dry or wet removal residence times imply that dry deposition is an important atmospheric removal process for the ubiquitous crustal species in South China, compared with precipitation scavenging. Relatively good agreement was found when the species deposition velocities were modeled based on up-to-date knowledge of particle dry deposition. The total depositions for anthropogenic and crustal species in northern China are likely to be much higher than those in the south, including our site where the fluxes of the acidic species SO(4)(2-) and NO(3)(-) were 4.4 and 2.2 g m(-2) year(-1), respectively. The sum of dry deposition for cations Na(+), Ca(2+), Mg(2+), and K(+) contributes 44% of the total flux, which is equivalent to the value estimated in Europe. PMID:19357979

  15. Characterization and Control of Airborne Particles Emitted During Production of Epoxy / Carbon Nanotube Nanocomposites

    PubMed Central

    Cena, Lorenzo G.; Peters, Thomas M.

    2016-01-01

    This work characterized airborne particles that were generated from the weighing of bulk, multi-wall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratiô1). The particles generated during sanding were predominately micron-sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator’s breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m3) compared to those with no LEV (GM = 2.68 μg/m3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m3; p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec). PMID:21253981

  16. Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites.

    PubMed

    Cena, Lorenzo G; Peters, Thomas M

    2011-02-01

    This work characterized airborne particles generated from the weighing of bulk, multiwall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratio ∼1). The particles generated during sanding were predominantly micron sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator's breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m(3) compared with those with no LEV (GM = 2.68 μg/m(3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m(3); p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec). PMID:21253981

  17. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    PubMed

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs). PMID:19923760

  18. Particle control challenges in process chemicals and ultra-pure water for sub-10nm technology nodes

    NASA Astrophysics Data System (ADS)

    Rastegar, Abbas; Samayoa, Martin; House, Matthew; Kurtuldu, Hüseyin; Eah, Sang-Kee; Morse, Lauren; Harris-Jones, Jenah

    2014-04-01

    Particle contamination in ultra-pure water (UPW) and chemicals will eventually end up on the surface of a wafer and may result in killer defects. To improve the semiconductor processing yield in sub-10 nm half pitch nodes, it is necessary to control particle defectivity. In a systematic study of all major techniques for particle detection, counting, and sizing in solutions, we have shown that there is a gap in the required particle metrology which needs to be addressed by the industry. To reduce particles in solutions and improve filter retention for sub-10 nm particles with very low densities (<10 particles/mL), liquid particle counters that are able to detect small particles at low densities are required. Non-volatile residues in chemicals and UPW can result in nanoparticles. Measuring absolute non-volatile residues in UPW with concentrations in the ppb range is a challenge. However, by using energy-dispersive spectroscopy (EDS) analysis through transmission electron microscopy (TEM) of non-volatile residues we found silica both in dissolved and colloidal particle form which is present in one of the cleanest UPW that we tested. A particle capture/release technique was developed at SEMATECH which is able to collect particles from UPW and release them in a controlled manner. Using this system we showed sub-10 nm particles are present in UPW. In addition to colloidal silica, agglomerated carbon containing particles were also found in UPW.

  19. Feedback control for noise-aided parallel micromanipulation of several particles using dielectrophoresis.

    PubMed

    Zemánek, Jiří; Michálek, Tomáš; Hurák, Zdeněk

    2015-07-01

    The paper describes a novel control strategy for simultaneous manipulation of several microscale particles over a planar microelectrode array using dielectrophoresis. The approach is based on a combination of numerical nonlinear optimization, which gives a systematic computational procedure for finding the voltages applied to the individual electrodes, and exploitation of the intrinsic noise, which compensates for the loss of controllability when two identical particles are exposed to identical forces. Although interesting on its own, the proposed functionality can also be seen as a preliminary achievement in a quest for a technique for separation of two particles. The approach is tested experimentally with polystyrene beads (50 microns in diameter) immersed in deionized water on a flat microelectrode array with parallel electrodes. A digital camera and computer vision algorithm are used to measure the positions. Two distinguishing features of the proposed control strategy are that the range of motion is not limited to interelectrode gaps and that independent manipulation of several particles simultaneously is feasible even on a simple microelectrode array. PMID:25875804

  20. Controlled drug delivery attributes of co-polymer micelles and xanthan-O-carboxymethyl hydrogel particles.

    PubMed

    Maiti, Sabyasachi; Mukherjee, Susweta

    2014-09-01

    Herein, C16 alkyl chain-grafted-xanthan copolymer was synthesized and characterized. The copolymer self-assembled into nanometer-size spherical micellar structures in water and incorporated ∼100% glibenclamide into its deeper lipophilic confines. The micellar dispersion exhibited negative zeta potential value (-27.6 mV). The copolymer micelles controlled the drug release rate in phosphate buffer solution (pH 6.8) for an extended period. Further incorporation of drug-loaded copolymer micelles into O-carboxymethyl xanthan hydrogel particles slowed the drug release rate in HCl solution (pH 1.2) as well as in phosphate-buffered solution (pH 6.8) (releasing only ∼8% drug in 2 h). The drug release data correlated well with the degree of swelling of the hydrogel particles in different drug release media. Scanning electron microscopy revealed spherical shape of the hydrogel particles (600 μm). X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy analyses suggested amorphous encapsulation of the drug and its chemical compatibility with the polymers, respectively. Pharmacodynamic evaluation suggested that the formulations had an immense potential in controlling blood glucose level in animal model over a longer duration. In summary, it was pointed out that the copolymer micelles of glibenclamide, a poor water-soluble anti-diabetic, and their subsequent entrapment into hydrogel particles could be a promising approach in the controlled and effective management of diabetes. PMID:24954271

  1. Retainability of canonical distributions for a Brownian particle controlled by a time-dependent harmonic potential

    NASA Astrophysics Data System (ADS)

    Li, Geng; Tu, ZhanChun

    2016-04-01

    The retainability of canonical distributions for a Brownian particle controlled by a time-dependent harmonic potential is investigated in the overdamped and underdamped situations, respectively. Because of different time scales, the overdamped and underdamped Langevin equations (as well as the corresponding Fokker-Planck equations) lead to distinctive restrictions on protocols maintaining canonical distributions. Two special cases are analyzed in details: First, a Brownian particle is controlled by a time-dependent harmonic potential and embedded in medium with constant temperature; Second, a Brownian particle is controlled by a timedependent harmonic potential and embedded in a medium whose temperature is tuned together with the potential stiffness to keep a constant effective temperature of the Brownian particle. We find that the canonical distributions are usually retainable for both the overdamped and underdamped situations in the former case. However, the canonical distributions are retainable merely for the overdamped situation in the latter case. We also investigate general time-dependent potentials beyond the harmonic form and find that the retainability of canonical distributions depends sensitively on the specific form of potentials.

  2. Integration of a particle monitor into the control system for an ion implanter

    NASA Astrophysics Data System (ADS)

    Myers, Steven; McCarron, David; Blake, Julian

    1993-04-01

    The value of in situ particle monitors for both manufacturing process control and process development in the semiconductor industry is receiving considerable recognition. This paper discusses the integration of a high yield technology (HYT) sensor into the control system of an Baton high current ion implanter. The automatic triggering of the particle monitor during the various phases of the implant process and the autoclean cycle provides a definite representation of the machine state and the effect of processing over time. Utilizing existing features of the control system, specific thresholds can be associated with each implant process through its process recipe. By regular monitoring of the particle counter, these thresholds are used to anticipate the need for cleaning the process chamber, or if indicated, gracefully bring the current process to an immediate halt. A dedicated history log preserves detailed data for generating summary statistics and the complete data set of a particular process or overall machine performance. Future uses of this tool with the control system point toward statistical process control applications and intelligent self modifying process cycles. The presentation will include data from a system on which an HYT sensor was employed as a full time process monitor using modified SPC techniques for analysis.

  3. Immobilization of laccase by Cu(2+) chelate affinity interaction on surface-modified magnetic silica particles and its use for the removal of 2,4-dichlorophenol.

    PubMed

    Wang, Ying; Chen, Xiaochun; Liu, Jie; He, Furong; Wang, Ran

    2013-09-01

    Magnetic Cu(2+)-chelated silica particles that employ polyacrylamide as a metal-chelating ligand were developed and used to immobilize laccase by coordination. The particles were characterized by scanning electron microscope and Fourier transform infrared spectroscopy. The preparation, the enzymatic properties of the immobilized laccase, and its catalytic capacity for 2,4-dichlorophenol degradation were systemically evaluated. The results showed that immobilized laccase exhibited maximum enzyme activity when it was immobilized for 1 h at a pH of 4.0 and a temperature of 5 °C. The optimum laccase dose was 20 mg/g of carrier. In comparison to free laccase, the immobilized laccase had better acid adaptability and thermal stability. Higher activity was observed for immobilized laccase at a pH range of 2.0 to 3.5 and temperatures from 25 to 40 °C. The immobilized laccase that was prepared for this work exhibited a good catalytic capacity for removing 2,4-dichlorophnol from aqueous solutions. PMID:23589250

  4. Nondestructive and Destructive Examination Studies on Removed-from-Service Control Rod Drive Mechanism Penetrations

    SciTech Connect

    Cumblidge, Stephen E.; Crawford, Susan L.; Doctor, Steven R.; Seffens, Rob J.; Schuster, George J.; Toloczko, Mychailo B.; Harris, Robert V.; Bruemmer, Stephen M.

    2007-06-07

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objectives of this work are to provide information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. Two CRDM assemblies were removed from service, decontaminated, and then used in a series of NDE and destructive examination (DE) measurements; this report addresses the following questions: 1) What did each NDE technique detect? 2) What did each NDE technique miss? 3) How accurately did each NDE technique characterize the detected flaws? 4) Why did the NDE techniques perform or not perform? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. This report focuses on a CRDM assembly that contained suspected PWSCC, based on in-service inspection data and through-wall leakage. The NDE measurements used to examine the CRDM assembly followed standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. These techniques included eddy current testing (ET), time-of-flight diffraction ultrasound, and penetrant testing. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assembly with particular emphasis on inspecting the J-groove weld and buttering. These techniques included volumetric ultrasonic inspection of the J-groove weld metal and visual testing via replicant material of the J-groove weld. The results from these NDE studies were used to

  5. Particle swarm optimization for discrete-time inverse optimal control of a doubly fed induction generator.

    PubMed

    Ruiz-Cruz, Riemann; Sanchez, Edgar N; Ornelas-Tellez, Fernando; Loukianov, Alexander G; Harley, Ronald G

    2013-12-01

    In this paper, the authors propose a particle swarm optimization (PSO) for a discrete-time inverse optimal control scheme of a doubly fed induction generator (DFIG). For the inverse optimal scheme, a control Lyapunov function (CLF) is proposed to obtain an inverse optimal control law in order to achieve trajectory tracking. A posteriori, it is established that this control law minimizes a meaningful cost function. The CLFs depend on matrix selection in order to achieve the control objectives; this matrix is determined by two mechanisms: initially, fixed parameters are proposed for this matrix by a trial-and-error method and then by using the PSO algorithm. The inverse optimal control scheme is illustrated via simulations for the DFIG, including the comparison between both mechanisms. PMID:24273145

  6. A computer controlled television detector for light, X-rays and particles

    NASA Technical Reports Server (NTRS)

    Kalata, K.

    1981-01-01

    A versatile, high resolution, software configurable, two-dimensional intensified vidicon quantum detector system has been developed for multiple research applications. A thin phosphor convertor allows the detection of X-rays below 20 keV and non-relativistic particles in addition to visible light, and a thicker scintillator can be used to detect X-rays up to 100 keV and relativistic particles. Faceplates may be changed to allow any active area from 1 to 40 mm square, and active areas up to 200 mm square are possible. The image is integrated in a digital memory on any software specified array size up to 4000 x 4000. The array size is selected to match the spatial resolution, which ranges from 10 to 100 microns depending on the operating mode, the active area, and the photon or particle energy. All scan and data acquisition parameters are under software control to allow optimal data collection for each application.

  7. Optical separation and controllable delivery of cells from particle and cell mixture

    NASA Astrophysics Data System (ADS)

    Li, Yuchao; Xin, Hongbao; Cheng, Chang; Zhang, Yao; Li, Baojun

    2015-11-01

    Cell separation and delivery have recently gained significant attention in biological and biochemical studies. In thiswork, an optical method for separation and controllable delivery of cells by using an abruptly tapered fiber probe is reported. By launching a laser beam at the wavelength of 980 nm into the fiber, a mixture of cells with sizes of ~5 and ~3 μm and poly(methyl methacrylate) particles with size of 5 μm are separated into three chains along the direction of propagation of light. The cell and particle chains are delivered in three dimensions over 600 μm distance. Experimental results are interpreted by numerical simulations. Optical forces and forward migration velocities of different particles and cells are calculated and discussed.

  8. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2011-09-01

    The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (-1.61 W m-2 in year 2000) is simulated to be greatly reduced in the future, to -0.23 W m-2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  9. Controllable surface-plasmon resonance in engineered nanometer epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Ksendzov, A.; Iannelli, J. M.; George, T.

    1991-01-01

    Epitaxial CoSi2 particles in a single-crystal silicon matrix are grown by molecular-beam epitaxy using a technique that allows nanometer control over particle size in three dimensions. These composite layers exhibit resonant absorption predicted by effective-medium theory. Selection of the height and diameter of disklike particles through a choice of growth conditions allows tailoring of the depolarization factor and hence of the surface-plasmon resonance energy. Resonant absorption from 0.49 to 1.04 eV (2.5 to 1.2 micron) is demonstrated and shown to agree well with values predicted by the Garnett (1904, 1906) theory using the bulk dielectric constants for CoSi2 and Si.

  10. ALARA Controls and the Radiological Lessons Learned During the Uranium Fuel Removal Projects at the Molten Salt Reactor Experiment

    SciTech Connect

    Gilliam, B. J.; Chapman, J. A.; Jugan, M. R.

    2002-02-26

    The removal of uranium-233 (233 U) from the auxiliary charcoal bed (ACB) of the Molten Salt Reactor Experiment (MSRE), performed from January through May 2001, created both unique radiological challenges and widely-applicable lessons learned. In addition to the criticality concerns and alpha contamination, 233U has an associated intense gamma photon from the cocontaminant uranium-232 (232U) decaying to thallium-208 (208Tl). Therefore, rigorous contamination controls and significant shielding were implemented. Extensive, timed mock-up training was also imperative to minimize individual and collective personnel exposures. Back-up shielding and containment techniques (that had been previously developed for defense in depth) were used successfully to control significant, changed conditions. Additional controls were placed on tests and on recovery designs to assure a higher level of safety throughout the removal operations. This paper delineates the manner in which each difficulty was solved, while relating the relevance of the results and the methodology to other projects with high dose-rate, highly-contaminated ionizing radiation hazards. Because of the distinctive features of and current interest in molten salt technology, a brief overview is provided. Also presented is the detailed, practical application of radiological controls integrated into, rather than added after, each evolution of the project--thus demonstrating the broad-based benefits of radiological engineering and ALARA reviews. The resolution of the serious contamination-control problems caused by unexpected uranium hexafluoride (UF6) gaseous diffusion is also explicated. Several tables and figures document the preparations, equipment and operations. A comparison of the pre-job dose calculations for the various functions of the uranium deposit removal (UDR) and the post-job dose-rate data are included in the conclusion.

  11. Mitigation and control of the particle pinch in the Electric Tokamak

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.

    2006-07-01

    The Electric Tokamak [R. J. Taylor, T. A. Carter, J.-L. Gauvreau et al., Nucl. Fusion 45, 1634 (2005)] operates at high plasma density (one and a half times the Greenwald limit) due to a strong particle pinch. However, particle accumulation causes several problems. The operation of the machine can suffer several violent disruptions that hinder the study of many plasma phenomena. Plasma motion and large density swings are undesirable because they alter continuous processes, leaving only transient regimes to study. Particle source and local temperature control can defeat the fundamental mechanisms of this ``electric'' pinch. If edge fueling feedback is not sufficient to induce quiescent behavior, the fast ion loss caused by second harmonic ion-cyclotron rf injection functions as a particle sink deep within the outer plasma cross section. By linking these strong effects to the fueling feedback, stable medium density (2×1018particles/m3) plasmas can be sustained for several seconds. This new regime yields surprisingly long and calm discharges.

  12. Transport control of dust particles via the electrical asymmetry effect: experiment, simulation and modelling

    NASA Astrophysics Data System (ADS)

    Iwashita, Shinya; Schüngel, Edmund; Schulze, Julian; Hartmann, Peter; Donkó, Zoltán; Uchida, Giichiro; Koga, Kazunori; Shiratani, Masaharu; Czarnetzki, Uwe

    2013-06-01

    The control of the spatial distribution of micrometre-sized dust particles in capacitively coupled radio frequency discharges is relevant for research and applications. Typically, dust particles in plasmas form a layer located at the sheath edge adjacent to the bottom electrode. Here, a method of manipulating this distribution by the application of a specific excitation waveform, i.e. two consecutive harmonics, is discussed. Tuning the phase angle θ between the two harmonics allows one to adjust the discharge symmetry via the electrical asymmetry effect (EAE). An adiabatic (continuous) phase shift leaves the dust particles at an equilibrium position close to the lower sheath edge. Their levitation can be correlated with the electric field profile. By applying an abrupt phase shift the dust particles are transported between both sheaths through the plasma bulk and partially reside at an equilibrium position close to the upper sheath edge. Hence, the potential profile in the bulk region is probed by the dust particles providing indirect information on plasma properties. The respective motion is understood by an analytical model, showing both the limitations and possible ways of optimizing this sheath-to-sheath transport. A classification of the transport depending on the change in the dc self-bias is provided, and the pressure dependence is discussed.

  13. Surface-Engineered Graphene Quantum Dots for Shape Control of Block Copolymer Particles

    NASA Astrophysics Data System (ADS)

    Yang, Hyunseung; Ku, Kang Hee; Shin, Jae Man; Lee, Junhyuk; Park, Chan Ho; Cho, Han-Hee; Jang, Se Gyu; Kim, Bumjoon; KIST Collaboration

    Surface-engineered, 10 nm-sized graphene quantum dots (GQDs) are shown to be efficient surfactants for producing poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) particles that feature tunable shapes and internal morphologies. The surface properties of GQDs were modified by grafting different alkyl ligands, such as hexylamine and oleylamine, to generate the surfactant behavior of the GQDs. In stark contrast to the behavior of the unmodified GQDs, hexylamine-grafted GQDs and oleylamine-grafted GQD surfactants were selectively positioned on the PS and P4VP domains, respectively, at the surface of the particles. This positioning effectively tuned the interfacial interaction between two different PS/P4VP domains of the particles and the surrounding water during emulsification and induced a dramatic morphological transition to an unconventional convex lens-shaped particles. Precise and systematic control of interfacial activity of GQD surfactants was also demonstrated by varying the density of the alkyl ligands on the GQDs. The excellent surface tunability of 10 nm-sized GQDs combined with their significant optical and electrical properties highlight their importance as surfactants for producing colloidal particles with novel functions.

  14. A sandwiched flexible polymer mold for control of particle-induced defects in nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Jizong; Ge, Haixiong

    2013-01-01

    Particle related defects are one of the key concerns for nanoimprint lithography, since the particle can amplify the defect to become much larger than the particle itself. We developed a flexible tri-layer mold for control of particle-induced defects. The mold was composed of a PDMS cushion layer sandwiched between a rigid imprint pattern layer and a plastic polyethylene terephthalate (PET) backplane. The PET foil was used as the backplane of the mold to protect the sticky PDMS surface. The PDMS as a cushion layer could locally deform to conform the shape of substrate due to its high elasticity. The multifunctional epoxysiloxane was used for the formation of an imprint layer because of its insensitivity toward oxygen during curing, high transparency, excellent mechanical strength and high resistance to oxygen plasma after cross-linking. Nanostructures with different geometries and sizes were faithfully duplicated by this mold through a UV-curing imprint process. The particle-induced defectivity was dramatically improved by the deformation of the PDMS cushion layer with a slight external pressure. 500 nm pitch grating structures were successfully imprinted on a microposts array surface, both the top and the intervening bottom portions between the microposts.

  15. On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun; Turco, Richard P.; Kärcher, Bernd; Schröder, Franz P.

    New observations taken in aircraft wakes, including the DLR ATTAS, provide strong constraints on models of aircraft plume aerosols. Using a comprehensive microphysics code, we have performed sensitivity studies to identify the key microphysical mechanisms acting in such plumes. Analysis of these simulations reveals that the largest volatile plume particles—those most likely to contribute to the background abundance of condensation nuclei—are dominated by ion-mode particles when chemiions are included. Moreover, such modeling demonstrates that standard treatments of plume microphysics—in the absence of chemiions—fails to explain field measurements. The principal factor controlling the population of ultrafine plume particles is the number of chemiions emitted by the aircraft engines. Since the ions are a byproduct of the combustion itself, and their abundance in the exhaust stream is controlled by ion-ion recombination, the initial ion concentrations—and so the eventual emission indices for ion-mode particles—are expected to be relatively invariant. Our results indicate that reductions in fuel sulfur content, while not likely to lower the total number of volatile particles emitted, would decrease the size of the ion-mode particles in fresh aircraft wakes, reducing their atmospheric lifetimes and potential environmental effects.

  16. Size Control and Growth Process Study of Au@Cu2O Particles.

    PubMed

    Wang, Yuyuan; Zheng, Min; Liu, Shengnan; Wang, Zuoshan

    2016-12-01

    Au@Cu2O cuboctahedron with gold triangular nanoplate core and Cu2O shell was synthesized by a chemical method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) tests demonstrated that the as-synthesis samples were consisted of gold triangular nanoplate core and Cu2O shell, and both of them were in good crystallization. The effective size control of the particles could be realized by controlling the amount of Au cores added in the synthetic process and Au@Cu2O particles with different shell thickness could be synthesized. The decrease of Cu2O shell thickness had a great difference in the optical performance, including blue shift of the resonant peaks and enhanced absorption intensity. The growth process from rough sheet structure to cuboctahedron was also explored. The results of photocatalytic degradation experiment showed that Au@Cu2O particles showed much better photocatalytic performance than that of pure Cu2O. The improved photocatalytic property of the Au@Cu2O particles was attributed to the comprehensive effect of the enhanced visible-light absorption and high separation rate of electron-hole pairs. PMID:27613067

  17. Remote control radioactive-waste removal system uses modulated laser transmitter

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Kopia, L. P.; Rowland, C. W.; Sinclair, A. R.

    1971-01-01

    Laser remote control system consists of transmitter, auto tracker, and receiver. Transmitter and tracker, packaged together and bore sighted, constitute control station, receiver is slave station. Model has five command channels and optical link operating range of 110 m.

  18. A proportional-plus-integral controller for a particle beam weapon

    NASA Astrophysics Data System (ADS)

    Moose, W. J.

    1984-12-01

    The goal of this thesis is to design a proportional-plus-integral (PI) controller, for use with the Meer filter, to control a particle beam weapon. The device used to measure the beam produces a low signal rate, the Meer filter is used to produce an estimate of the beam position. A type-1, proportional-plus-integral controller is designed using LOG assumptions and dynamic programming to solve the cost function. A sensitivity analysis is performed to determine the system sensitivity to different parameters. A performance analysis is also performed to demonstrate the system robustness to unmodelled errors. The results of these analyses are compared to a type-0, proportional gain controller. In addition the PI controllers ability to regulate to a non-zero setpoint is demonstrated.

  19. Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: characterization, properties and 4-chlorophenol removal application.

    PubMed

    Neppolian, B; Wang, Q; Jung, H; Choi, H

    2008-04-01

    Nano-size TiO2 photocatalysts were prepared by sol-gel and ultrasonic-assisted sol-gel methods using two different sources of ultrasonicator, i.e., a bath type and tip type. The physicochemical characteristics of the catalysts were investigated by BET, XRD and TEM analyses and the photocatalytic properties of the TiO2 catalysts prepared by three different methods were compared. The intrinsic and extrinsic properties of TiO2, such as the particle size, surface area, pore-volume, pore-diameter, crystallinity as well as anatase, rutile and brookite phase ratios, could be controlled by the ultrasonic-assisted sol-gel method. During this preparation method, the effect of such important operating variables as the ultrasonic irradiation time, power density, the ultrasonic sources (bath-type and tip-type), magnetic stirring during synthesis, initial temperatures and size of the reactors are discussed here. It was found that each of the parameters played a significant role in controlling the properties of the TiO2 nano-particles. Among the three different methods, TiO2 photocatalysts prepared by ultrasonic (tip-US) assisted sol-gel possessed the smallest particle size, highest surface area and highest pore-volume than the catalysts prepared by the other two methods. 4-Chlorophenol was used as a pollutant to observe the photocatalytic degradation ability of the prepared photocatalysts and the TiO2 catalysts prepared by the bath-US ultrasonic-assisted sol-gel method were shown to be the most highly active. This is due to their high surface area and high pore-diameter. This study clearly demonstrates the importance and advantages of ultrasonication in the modification and improvement of the photocatalytic properties of mesoporous nano-size TiO2 particles. PMID:18024153

  20. Phase space dynamics and control of the quantum particles associated to hypergraph states

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2015-05-01

    As today's nanotechnology focus becomes primarily oriented toward production and manipulation of materials at the subatomic level, allowing the performance and complexity of interconnects where the device density accepts more than hundreds devices on a single chip, the manipulation of semiconductor nanostructures at the subatomic level sets its prime tasks on preserving and adequate transmission of information encoded in specified (quantum) states. The presented study employs the quantum communication protocol based on the hypergraph network model where the numerical solutions of equations of motion of quantum particles are associated to vertices (assembled with device chip), which follow specific controllable paths in the phase space. We address these findings towards ultimate quest for prediction and selective control of quantum particle trajectories. In addition, presented protocols could represent valuable tool for reducing background noise and uncertainty in low-dimensional and operationally meaningful, scalable complex systems.

  1. Factors controlling aquatic dissolved inorganic nitrogen removal and export in suburban watersheds

    NASA Astrophysics Data System (ADS)

    Mineau, M.; Wollheim, W. M.; Stewart, R.; Daley, M.; McDowell, W. H.

    2013-12-01

    Human activity has accelerated the nitrogen (N) cycle and enriched the landscape with N which can result in eutrophication, especially in coastal zones where N is typically limiting. N exported to coastal zones is a function of both N loading to aquatic systems and N removal in transit through the river network. To determine drivers of dissolved inorganic nitrogen (DIN) removal and export from suburban river networks, we compared 2 well-studied suburban New-England watersheds. The Lamprey River watershed (474 km2) in NH has a mean population density of 53 inhabitants per km2 and feeds into the Great Bay estuary which is designated as N impaired. The Ipswich River (400 km2) in MA has a much higher population density with 302 inhabitants per km2 and feeds into the Plum Island estuary, which is not N impaired. Median (2000 - 2009) watershed DIN export was 171 kg km-2 y-1 for the Ipswich and 77 kg km-2 y-1 for the Lamprey. We used the Framework for Aquatic Modeling in the Earth System (FrAMES) to evaluate the relative importance of anthropogenic N loading and river network DIN processing in determining N export from these watersheds. FrAMES is a spatially distributed and time varying coupled hydrologic and biogeochemical model for river networks. We hypothesized that greater N export relative to population density in the Lamprey watershed was due in part to less aquatic N processing caused by interactions among: 1. The distribution of development/sources in the watershed (i.e. mean flow path length N has to travel), and 2. The area and distribution of intact fluvial wetlands in the watershed. We conducted a sensitivity analysis to determine the relative importance of these factors in limiting aquatic N removal in the Lamprey river watershed. Our results suggest that the distribution of loading within a river system has important influence on nutrient export to coastal zones.

  2. Thermo-Mechanical Analysis of Coated Particle Fuel Experiencing a Fast Control Rod Ejection Transient

    SciTech Connect

    Ortensi, J.; Brian Boer; Abderrafi M. Ougouag

    2010-10-01

    A rapid increase of the temperature and the mechanical stress is expected in TRISO coated particle fuel that experiences a fast Total Control Rod Ejection (CRE) transient event. During this event the reactor power in the pebble bed core increases significantly for a short time interval. The power is deposited instantly and locally in the fuel kernel. This could result in a rapid increase of the pressure in the buffer layer of the coated fuel particle and, consequently, in an increase of the coating stresses. These stresses determine the mechanical failure probability of the coatings, which serve as the containment of radioactive fission products in the Pebble Bed Reactor (PBR). A new calculation procedure has been implemented at the Idaho National Laboratory (INL), which analyzes the transient fuel performance behavior of TRISO fuel particles in PBRs. This early capability can easily be extended to prismatic designs, given the availability of neutronic and thermal-fluid solvers. The full-core coupled neutronic and thermal-fluid analysis has been modeled with CYNOD-THERMIX. The temperature fields for the fuel kernel and the particle coatings, as well as the gas pressures in the buffer layer, are calculated with the THETRIS module explicitly during the transient calculation. Results from this module are part of the feedback loop within the neutronic-thermal fluid iterations performed for each time step. The temperature and internal pressure values for each pebble type in each region of the core are then input to the PArticle STress Analysis (PASTA) code, which determines the particle coating stresses and the fraction of failed particles. This paper presents an investigation of a Total Control Rod Ejection (TCRE) incident in the 400 MWth Pebble Bed Modular reactor design using the above described calculation procedure. The transient corresponds to a reactivity insertion of $3 (~2000 pcm) reaching 35 times the nominal power in 0.5 seconds. For each position in the core

  3. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOEpatents

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  4. [Particle swarm optimization fuzzy modeling and closed-loop anaesthesia control based on cerebral state index].

    PubMed

    Tang, Jingtian; Cao, Yang; Xiao, Jiaying; Guo, Qulian

    2014-06-01

    Due to individual differences of the depth of anaesthesia (DOA) controlled objects, the drawbacks of monitoring index, the traditional PID controller of anesthesia depth could not meet the demands of nonlinear control. However, the adjustments of the rules of DOA fuzzy control often rely on personal experience and, therefore, it could not achieve the satisfactory control effects. The present research established a fuzzy closed-loop control system which takes the cerebral state index (CSI) value as a feedback controlled variable, and it also adopts the particle swarm optimization (PSO) to optimize the fuzzy control rule and membership functions between the change of CSI and propofol infusion rate. The system sets the CSI targets at 40 and 30 through the system simulation, and it also adds some Gaussian noise to imitate clinical disturbance. Experimental results indicated that this system could reach the set CSI point accurately, rapidly and stably, with no obvious perturbation in the presence of noise. The fuzzy controller based on CSI which has been optimized by PSO has better stability and robustness in the DOA closed loop control system. PMID:25219229

  5. Development of uranium reference particles for nuclear safeguards and non-proliferation control

    NASA Astrophysics Data System (ADS)

    Kips, Ruth

    In the oversight of the nuclear Non-Proliferation Treaty and as part of the Additional Protocol of the International Atomic Energy Agency, environmental sampling has become an important tool for the detection of non-declared nuclear activities. One extensively developed technique in environmental sampling (ES) makes use of pieces of cotton cloth called swipes to wipe surfaces in and around a nuclear facility. The dust collected on these swipes typically contains micrometer-sized uranium particles with an isotopic composition characteristic for the processes at the inspected facility. Since its implementation in the 1990s, ES has proven to be a very effective tool in the detection of clandestine activities owing to a number of highly sensitive and selective techniques, including secondary ion mass spectrometry and thermal ionisation mass spectrometry. However, considering the potential consequences of the analyses, these measurements need to be subjected to a rigorous quality management system. In a continuous effort to improve the accuracy and detection efficiency of the uranium isotope ratio measurements, uranium particle reference materials are being developed by different research groups. It was concluded however, that the existing methods for the production of particulate reference materials generally do not reproduce the particles recovered from swipe samples. For this reason, we developed the aerosol deposition chamber at the Institute for Reference Materials and Measurements for the production of reference uranium particles that are representative of the particles collected at enrichment facilities. This method is based on the controlled hydrolysis of milligram amounts of uranium hexafluoride with a certified uranium isotopic composition. After optimization of the experimental set-up, the particles produced by the aerosol deposition chamber were characterized by scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy and

  6. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  7. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  8. Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co-removal.

    PubMed

    Xu, Huan; Zhu, Baisheng; Ren, Xuemei; Shao, Dadong; Tan, Xiaoli; Chen, Changlun

    2016-08-15

    Treatment of wastewater containing several kinds of contaminants poses great challenges, because heavy metal and inorganic anion contaminants possess different fate and transport mechanisms. Individual adsorption of Cd(II)/phosphate on clay or metallic oxides has been extensively investigated, but the mutual effects of these two species in co-existing systems have received little attention. In this study, five natroalunite samples with different morphologies were synthesized by a simple hydrothermal method with appropriate volume ratio of ethylene glycol (EG) to water. The volume ratio of EG to water plays a key role in the formation of natroalunite samples, and dramatically affects their adsorption capacities. The mutual effects of Cd(II) and phosphate on their interaction with natroalunite microtubes (NMs) were investigated by varying experimental conditions, such as pH, temperature and addition sequences. The results demonstrate that highly efficient co-removal of Cd(II) and phosphate can be accomplished using NMs, and the process is strongly dependent on solution pH and temperature via the formation of ternary surface complexes. This study implies that the hydrothermally synthesized NMs can be regarded as a potential promising material for the co-removal of Cd(II) and phosphate from large volumes of aqueous solutions in pollution management. PMID:27136730

  9. NEW ASPECTS OF A LID-REMOVAL MECHANISM IN THE ONSET OF AN ERUPTION SEQUENCE THAT PRODUCED A LARGE SOLAR ENERGETIC PARTICLE (SEP) EVENT

    SciTech Connect

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Knox, Javon M. E-mail: ron.moore@nasa.gov

    2014-06-20

    We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from the Solar Dynamics Observatory's (SDO) Helioseismic and Magnetic Imager (HMI) and Atmospheric and Imaging Assembly (AIA), and EUV images from STEREO/EUVI. This sequence produced two coronal mass ejections (CMEs) and a strong solar energetic particle event (SEP); here we focus on the magnetic onset of this important space weather episode. Cheng et al. showed that the first eruption's ({sup E}ruption 1{sup )} flux rope was apparent only in ''hotter'' AIA channels, and that it removed overlying field that allowed the second eruption ({sup E}ruption 2{sup )} to begin via ideal MHD instability; here we say that Eruption 2 began via a ''lid removal'' mechanism. We show that during Eruption 1's onset, its flux rope underwent a ''tether weakening'' (TW) reconnection with field that arched from the eruption-source active region to an adjacent active region. Standard flare loops from Eruption 1 developed over Eruption 2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption 1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption 2's flare loops (GOES thermal temperatures of ∼7.5 MK and 9 MK, compared to ∼14 MK). The corresponding three sequential GOES flares were, respectively, due to TW reconnection plus earlier phase Eruption 1 tether-cutting reconnection, Eruption 1 later-phase tether-cutting reconnection, and Eruption 2 tether-cutting reconnection.

  10. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity

    SciTech Connect

    Grass, Michael E.; Yue, Yao; Habas, Susan E.; Rioux, Robert M.; Teall, Chelsea I.; Somorjai, G.A.

    2008-01-09

    A procedure has been developed for the selective etching of Ag from Pt nanoparticles of well-defined shape, resulting in the formation of elementally-pure Pt cubes, cuboctahedra, or octahedra, with a largest vertex-to-vertex distance of {approx}9.5 nm from Ag-modified Pt nanoparticles. A nitric acid etching process was applied Pt nanoparticles supported on mesoporous silica, as well as nanoparticles dispersed in aqueous solution. The characterization of the silica-supported particles by XRD, TEM, and N{sub 2} adsorption measurements demonstrated that the structure of the nanoparticles and the mesoporous support remained conserved during etching in concentrated nitric acid. Both elemental analysis and ethylene hydrogenation indicated etching of Ag is only effective when [HNO{sub 3}] {ge} 7 M; below this concentration, the removal of Ag is only {approx}10%. Ethylene hydrogenation activity increased by four orders of magnitude after the etching of Pt octahedra that contained the highest fraction of silver. High-resolution transmission electron microscopy of the unsupported particles after etching demonstrated that etching does not alter the surface structure of the Pt nanoparticles. High [HNO{sub 3}] led to the decomposition of the capping agent, polyvinylpyrollidone (PVP); infrared spectroscopy confirmed that many decomposition products were present on the surface during etching, including carbon monoxide.

  11. Dissipative dynamics of a particle in a vibrating periodic potential: Chaos and control

    NASA Astrophysics Data System (ADS)

    Chacón, R.; Martínez, P. J.; Martínez, J. A.

    2015-12-01

    The dissipative chaotic dynamics of a particle subjected to a horizontally vibrating periodic potential is characterized theoretically and confirmed numerically in the case of an external chaos-controlling periodic excitation also acting on the particle. Theoretical predictions concerning the chaotic threshold in parameter space are deduced from the application of Melnikov's method that fully determine the chaos-control scenario. Also, the structure of diverse regularization regions in parameter space is explained theoretically with the aid of an energy analysis. It was found that the phase difference between the two periodic excitations involved plays a crucial role in the chaos-control scenario, with the particular feature that its optimal value depends upon the ratio between the damping coefficient and the excitation frequency. This constitutes a genuine feature of the chaos-control scenario associated with nonsteady potentials which is in contrast to the case of steady potentials. Additionally, we demonstrate the robustness of the chaos-control scenario against the presence of low-intensity Gaussian noise and reshaping of chaos-suppressing excitations.

  12. Dissipative dynamics of a particle in a vibrating periodic potential: Chaos and control.

    PubMed

    Chacón, R; Martínez, P J; Martínez, J A

    2015-12-01

    The dissipative chaotic dynamics of a particle subjected to a horizontally vibrating periodic potential is characterized theoretically and confirmed numerically in the case of an external chaos-controlling periodic excitation also acting on the particle. Theoretical predictions concerning the chaotic threshold in parameter space are deduced from the application of Melnikov's method that fully determine the chaos-control scenario. Also, the structure of diverse regularization regions in parameter space is explained theoretically with the aid of an energy analysis. It was found that the phase difference between the two periodic excitations involved plays a crucial role in the chaos-control scenario, with the particular feature that its optimal value depends upon the ratio between the damping coefficient and the excitation frequency. This constitutes a genuine feature of the chaos-control scenario associated with nonsteady potentials which is in contrast to the case of steady potentials. Additionally, we demonstrate the robustness of the chaos-control scenario against the presence of low-intensity Gaussian noise and reshaping of chaos-suppressing excitations. PMID:26764788

  13. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed. PMID:17310729

  14. IMPLICIT DUAL CONTROL BASED ON PARTICLE FILTERING AND FORWARD DYNAMIC PROGRAMMING

    PubMed Central

    Bayard, David S.; Schumitzky, Alan

    2009-01-01

    This paper develops a sampling-based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy-iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling-based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as an H-block. Practical suggestions are given for reducing computational loads within the H-block for real-time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed-loop performance with respect to other more common stochastic control approaches. PMID:21132112

  15. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. PMID:26963606

  16. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules.

    PubMed

    Kim, Shin-Hyun; Park, Jin-Gyu; Choi, Tae Min; Manoharan, Vinothan N; Weitz, David A

    2014-01-01

    Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form 'ink' capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through osmotic pressure. The ordering and separation of the particles within the microfluidically created capsules can be tuned by changing the colloidal concentration through osmotic pressure-induced control of the size of the individual capsules, modulating photonic stop band. The rubber capsules exhibit a reversible change in the diffracted colour, depending on osmotic pressure, a property we call osmochromaticity. The high encapsulation efficiency and capsule uniformity of this microfluidic approach, combined with the highly reconfigurable shapes and the broad control over photonic properties, make this class of structures particularly suitable for photonic applications such as electronic inks and reflective displays. PMID:24394965

  17. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules

    NASA Astrophysics Data System (ADS)

    Kim, Shin-Hyun; Park, Jin-Gyu; Choi, Tae Min; Manoharan, Vinothan N.; Weitz, David A.

    2014-01-01

    Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form ‘ink’ capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through osmotic pressure. The ordering and separation of the particles within the microfluidically created capsules can be tuned by changing the colloidal concentration through osmotic pressure-induced control of the size of the individual capsules, modulating photonic stop band. The rubber capsules exhibit a reversible change in the diffracted colour, depending on osmotic pressure, a property we call osmochromaticity. The high encapsulation efficiency and capsule uniformity of this microfluidic approach, combined with the highly reconfigurable shapes and the broad control over photonic properties, make this class of structures particularly suitable for photonic applications such as electronic inks and reflective displays.

  18. Surfactant modified coir pith, an agricultural solid waste as adsorbent for phosphate removal and fertilizer carrier to control phosphate release.

    PubMed

    Namasivayam, C; Kumar, M V Suresh

    2005-10-01

    The surface of coir pith, an agricultural solid waste was modified using a cationic surfactant, hexadecyltrimethylammonium bromide (HDTMA) and the modified coir pith was investigated to assess the capacity for the removal of phosphate from aqueous solution. Optimum pH for maximum phosphate adsorption was found to be 4.0. Langmuir and Freundlich isotherms were used to model the adsorption equilibrium data. Kinetic studies showed that the adsorption obeyed second order kinetics. Thermodynamic parameters were evaluated and the overall adsorption process was spontaneous and endothermic. Effect of coexisting anions has also been studied. The feasibility of using spent adsorbent as fertilizer carrier to control phosphate release was also investigated. PMID:17051911

  19. Controlling the structure and dynamics of magnetoresponsive particle suspensions for enhanced transport phenomena

    NASA Astrophysics Data System (ADS)

    Solis, Kyle J.

    The work contained herein describes the use of various magnetic fields to control the structure and dynamics of magnetic particle suspensions, with the practical aim of enhancing momentum, heat, and mass transport. The magnetic fields are often multiaxial and can consist of up to three orthogonal components that may be either static (dc), time-dependent (ac), or some combination thereof. The magnetic particles are composed of a ferromagnetic material---such as iron, nickel, cobalt, or Permalloy---and can exist in a variety of shapes, including spheres, platelets, and rods. The shape of the particles is particularly important, as this can determine the type of behavior the suspension exhibits and can strongly affect the efficacy of various transport properties. The continuous phase can be almost any fluid so long as it possesses a viscosity that allows the particles to orient and aggregate in response to the applied field. Additionally, if the liquid is polymerizable (e.g., an epoxy system), then composite materials with particular, field-directed particle assemblies can be created. Given the many combinations of various particles, suspending fluids, and magnetic fields, a vast array of behavior is possible: the formation of anisotropic particle structures for directed heat transport for use as advanced thermal interface materials; the stimulation of emergent dynamics in platelet suspensions, which give rise to field-controllable flow lattices; and the creation of vortex fluids that possess a uniform torque density, enabling such strange behaviors as active wetting, a negative viscosity and striking biomimetic dynamics. Because the applied fields used to produce many of these phenomena are uniform and modest in strength, such adaptive fluids open up the possibility of tuning the degree of mixing or heat/mass transfer for specific operating conditions in a number of processes, ranging from the microscale to the industrial scale. Moreover, the very nature of magnetism

  20. Legal requirements and guidelines for the control of harmful laser generated particles, vapours and gases

    NASA Astrophysics Data System (ADS)

    Horsey, John

    2015-07-01

    This paper is a review of the Health and Safety laws and guidelines relating to laser generated emissions into the workplace and outside environment with emphasis on the differences between legal requirements and guideline advice. The types and nature of contaminants released by various laser processes (i.e. cutting, coding, engraving, marking etc) are discussed, together with the best methods for controlling them to within legal exposure limits. A brief description of the main extract air filtration techniques, including the principles of particulate removal and the action of activated carbon for gas/vapour/odour filtration, is given.

  1. A micromanipulation particle tester for agglomeration contact mechanism studies in a controlled environment

    NASA Astrophysics Data System (ADS)

    Haider, C. I.; Althaus, T.; Niederreiter, G.; Hounslow, M. J.; Palzer, S.; Salman, A. D.

    2012-10-01

    Pressure agglomeration of powders is widely applied in various industries and an increasing interest lies in the identification and description of contact mechanisms between particles, which are responsible for the compaction product properties. In this paper, the design and development of a novel micromanipulation particle tester (MPT) is presented. This device makes it possible to measure the deformation kinetics and resulting adhesion of two individual particles in contact under load, which are strongly influenced by the applied process conditions. The MPT set-up is, therefore, designed to offer a unique control over the process conditions most relevant to the compaction of powders: external stress, dwell or holding time at constant deformation, compression velocity as well as relative humidity and temperature determining the physical state and mechanical characteristics of hygrosensitive amorphous particles. The latter are often part of powder formulations, e.g. in the food industry, and have been used for force and contact-zone development studies with the MPT. The experimental results on the microscale level will deliver valuable quantitative information for an improved tailoring of pressure agglomeration process conditions of bulk solids.

  2. Potential of kaolin-based particle film barriers for Formosan subterranean termite (Isoptera: Rhinotermitidae) control

    USGS Publications Warehouse

    Wiltz, B.A.; Woodson, W.D.; Puterka, G.J.

    2010-01-01

    Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week long no-choice feeding tests, significant mortality occurred only with M96-018-coated wood. When a choice was provided, M96-018 and Surround were consumed at higher rates than untreated wood. Surround WP did not differ from controls in either test. In the tunneling assay termites were given the option of crossing a kaolin-sand mixture to reach an alternate food source. After 3-weeks, rates of 1% and 5% M96-018 provided an effective barrier to Formosan termite tunneling, while termites were not stopped by rates as high as 20% Surround and Surround WP. Dust treatments of all three formulations caused significant increases in mortality within 24 h, with mortality rates ranging from 72.0 - 97.3% within 72 h of treatment. The particle films were most effective when moisture levels were low, suggesting that desiccation was the mechanism for mortality. All particle films showed potential for use in above ground applications while hydrophobic M06-018 has the most potential as a soil barrier to subterranean termites.

  3. Preparation of aqueous colloidal mesostructured and mesoporous silica nanoparticles with controlled particle size in a very wide range from 20 nm to 700 nm

    NASA Astrophysics Data System (ADS)

    Yamada, Hironori; Urata, Chihiro; Ujiie, Hiroto; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2013-06-01

    Particle size control of colloidal mesoporous silica nanoparticles (CMPS) in a very wide range is quite significant for the design of CMPS toward various applications, such as catalysis and drug delivery. Various types of CMPS and their precursors (colloidal mesostructured silica nanoparticles (CMSS)) with different particle sizes (ca. 20-700 nm) were newly prepared from tetraalkoxysilanes with different alkoxy groups (Si(OR)4, R = Me, Et, Pr, and Bu) in the presence of alcohols (R'OH, R' = Me, Et, Pr, and Bu) as additives. CMSS with larger particle size were obtained by using tetrabutoxysilane (TBOS) and by increasing the amount of BuOH, which is explained by both the difference in the hydrolysis rates of tetraalkoxysilanes themselves and the effect of added alcohols on the hydrolysis rates of tetraalkoxysilanes. Larger amounts of alcohols with longer alkyl chains decrease the hydrolysis rates of tetraalkoxysilanes and the subsequent formation rates of silica species. Thus, the preferential particle growth of CMSS to nucleation occurs, and larger CMSS are formed. Highly dispersed CMPS were prepared by the removal of surfactants of CMSS by dialysis which can lead to the preparation of CMPS without aggregation. Therefore, the particle size control through the tuning of the hydrolysis rate of tetraalkoxysilanes can be conducted by a one-pot and easy approach. Even larger CMPS (ca. 700 nm in size) show relatively high dispersibility. This dispersibility will surely contribute to the design of materials both retaining nanoscale characteristics and avoiding various nanorisks.Particle size control of colloidal mesoporous silica nanoparticles (CMPS) in a very wide range is quite significant for the design of CMPS toward various applications, such as catalysis and drug delivery. Various types of CMPS and their precursors (colloidal mesostructured silica nanoparticles (CMSS)) with different particle sizes (ca. 20-700 nm) were newly prepared from tetraalkoxysilanes with

  4. Tunning PID controller using particle swarm optimization algorithm on automatic voltage regulator system

    NASA Astrophysics Data System (ADS)

    Aranza, M. F.; Kustija, J.; Trisno, B.; Hakim, D. L.

    2016-04-01

    PID Controller (Proportional Integral Derivative) was invented since 1910, but till today still is used in industries, even though there are many kind of modern controllers like fuzz controller and neural network controller are being developed. Performance of PID controller is depend on on Proportional Gain (Kp), Integral Gain (Ki) and Derivative Gain (Kd). These gains can be got by using method Ziegler-Nichols (ZN), gain-phase margin, Root Locus, Minimum Variance dan Gain Scheduling however these methods are not optimal to control systems that nonlinear and have high-orde, in addition, some methods relative hard. To solve those obstacles, particle swarm optimization (PSO) algorithm is proposed to get optimal Kp, Ki and Kd. PSO is proposed because PSO has convergent result and not require many iterations. On this research, PID controller is applied on AVR (Automatic Voltage Regulator). Based on result of analyzing transient, stability Root Locus and frequency response, performance of PID controller is better than Ziegler-Nichols.

  5. Evaluation of secondary coolant control design alternatives and their effects on heat removal performance

    SciTech Connect

    Khayat, M.I.; Anderson, J.; Battle, R.; March-Leuba, J.

    1994-03-01

    This report documents a series of calculations that evaluate the performance of the core-inlet temperature controller under different transient conditions and design options. The present analyses show that the core-inlet temperature can be controlled at {approx}45{degrees}C under all transient conditions analyzed using the controller design described in the conceptual design report, which includes variable-speed secondary coolant pumps and variable-speed cooling tower fans. This study also shows that a constant-speed secondary pump would be sufficient to maintain core-inlet temperature <45{degrees}C if this temperature is allowed to drop below the set point during some demanding transients, such as normal startup. The use of secondary loop hot coolant to warm the reactor building was also evaluated; however, optimization of the secondary hot-leg temperature can only be achieved by trading off control of the primary side core-inlet temperature.

  6. Artificial neural network and particle swarm optimization for removal of methyl orange by gold nanoparticles loaded on activated carbon and Tamarisk

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Ghaedi, A. M.; Ansari, A.; Mohammadi, F.; Vafaei, A.

    2014-11-01

    The influence of variables, namely initial dye concentration, adsorbent dosage (g), stirrer speed (rpm) and contact time (min) on the removal of methyl orange (MO) by gold nanoparticles loaded on activated carbon (Au-NP-AC) and Tamarisk were investigated using multiple linear regression (MLR) and artificial neural network (ANN) and the variables were optimized by partial swarm optimization (PSO). Comparison of the results achieved using proposed models, showed the ANN model was better than the MLR model for prediction of methyl orange removal using Au-NP-AC and Tamarisk. Using the optimal ANN model the coefficient of determination (R2) for the test data set were 0.958 and 0.989; mean squared error (MSE) values were 0.00082 and 0.0006 for Au-NP-AC and Tamarisk adsorbent, respectively. In this study a novel and green approach were reported for the synthesis of gold nanoparticle and activated carbon by Tamarisk. This material was characterized using different techniques such as SEM, TEM, XRD and BET. The usability of Au-NP-AC and activated carbon (AC) Tamarisk for the methyl orange from aqueous solutions was investigated. The effect of variables such as pH, initial dye concentration, adsorbent dosage (g) and contact time (min) on methyl orange removal were studied. Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Kinetic models such as pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models indicate that the second-order equation and intraparticle diffusion models control the kinetic of the adsorption process. The small amount of proposed Au-NP-AC and activated carbon (0.015 g and 0.75 g) is applicable for successful removal of methyl orange (>98%) in short time (20 min for Au-NP-AC and 45 min for Tamarisk-AC) with high adsorption capacity 161 mg g-1 for Au-NP-AC and 3.84 mg g-1 for Tamarisk-AC.

  7. Artificial neural network and particle swarm optimization for removal of methyl orange by gold nanoparticles loaded on activated carbon and Tamarisk.

    PubMed

    Ghaedi, M; Ghaedi, A M; Ansari, A; Mohammadi, F; Vafaei, A

    2014-11-11

    The influence of variables, namely initial dye concentration, adsorbent dosage (g), stirrer speed (rpm) and contact time (min) on the removal of methyl orange (MO) by gold nanoparticles loaded on activated carbon (Au-NP-AC) and Tamarisk were investigated using multiple linear regression (MLR) and artificial neural network (ANN) and the variables were optimized by partial swarm optimization (PSO). Comparison of the results achieved using proposed models, showed the ANN model was better than the MLR model for prediction of methyl orange removal using Au-NP-AC and Tamarisk. Using the optimal ANN model the coefficient of determination (R2) for the test data set were 0.958 and 0.989; mean squared error (MSE) values were 0.00082 and 0.0006 for Au-NP-AC and Tamarisk adsorbent, respectively. In this study a novel and green approach were reported for the synthesis of gold nanoparticle and activated carbon by Tamarisk. This material was characterized using different techniques such as SEM, TEM, XRD and BET. The usability of Au-NP-AC and activated carbon (AC) Tamarisk for the methyl orange from aqueous solutions was investigated. The effect of variables such as pH, initial dye concentration, adsorbent dosage (g) and contact time (min) on methyl orange removal were studied. Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Kinetic models such as pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models indicate that the second-order equation and intraparticle diffusion models control the kinetic of the adsorption process. The small amount of proposed Au-NP-AC and activated carbon (0.015 g and 0.75 g) is applicable for successful removal of methyl orange (>98%) in short time (20 min for Au-NP-AC and 45 min for Tamarisk-AC) with high adsorption capacity 161 mg g(-1) for Au-NP-AC and 3.84 mg g(-1) for

  8. Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products.

    PubMed

    Phetrak, Athit; Lohwacharin, Jenyuk; Sakai, Hiroshi; Murakami, Michio; Oguma, Kumiko; Takizawa, Satoshi

    2014-06-01

    Anion exchange resins (AERs) with different properties were evaluated for their ability to remove dissolved organic matter (DOM) and bromide, and to reduce disinfection by-product (DBP) formation potentials of water collected from a eutrophic surface water source in Japan. DOM and bromide were simultaneously removed by all selected AERs in batch adsorption experiments. A polyacrylic magnetic ion exchange resin (MIEX®) showed faster dissolved organic carbon (DOC) removal than other AERs because it had the smallest resin bead size. Aromatic DOM fractions with molecular weight larger than 1600 Da and fluorescent organic fractions of fulvic acid- and humic acid-like compounds were efficiently removed by all AERs. Polystyrene AERs were more effective in bromide removal than polyacrylic AERs. This result implied that the properties of AERs, i.e. material and resin size, influenced not only DOM removal but also bromide removal efficiency. MIEX® showed significant chlorinated DBP removal because it had the highest DOC removal within 30 min, whereas polystyrene AERs efficiently removed brominated DBPs, especially brominated trihalomethane species. The results suggested that, depending on source water DOM and bromide concentration, selecting a suitable AER is a key factor in effective control of chlorinated and brominated DBPs in drinking water. PMID:25079839

  9. Spatial control of chromosomal location in a live cell with functionalized magnetic particles.

    PubMed

    Hong, Juhee; Purwar, Prashant; Cha, Misun; Lee, Junghoon

    2015-12-01

    Long-range chromosomal travel is a phenomenon unique to cell division. Methods for non-invasive, artificial manipulation of chromosomes, such as optical or magnetic tweezers, have difficulty in producing the motion of whole chromosomes in live cells. Here, we report the spatial control of chromosomes over 10 μm in a live mouse oocyte using magnetic particles driven by an external magnetic field. Selective capture of the chromosomes was achieved using antibodies specific for histone H1 in the chromosome that were conjugated to magnetic particles (H1-BMPs). When an external magnetic field was applied, the chromosomes captured by the H1-BMPs traveled through the cytosol and accumulated near the cell membrane though the movement of the chromosomes captured by H1-BMPs was strongly disturbed by the distribution of the cytoskeleton (e.g. actin filaments). Being non-invasive in nature, our approach will enable new opportunities in the remote manipulation of subcellular elements. PMID:26524004

  10. Facile synthesis of methotrexate intercalated layered double hydroxides: particle control, structure and bioassay explore.

    PubMed

    Tian, De-Ying; Liu, Zhen-Lei; Li, Shu-Ping; Li, Xiao-Dong

    2014-12-01

    To study the influence of particle size on drug efficacy and other properties, a series of methotrexate intercalated layered double hydroxides (MTX/LDHs) were synthesized through the traditional coprecipitation method, using a mixture of water and polyethylene glycol (PEG-400) as the solvent. To adjust the particle size of MTX/LDHs, the dropping way, the volume ratio of water to PEG-400 and different hydrothermal treatment time changed accordingly, and the results indicate that the particle size can be controlled between 90 and 140 nm. Elemental C/H/N and inductive coupled plasma (ICP) analysis indicated that different synthesis conditions almost have no effect on the compositions of the nanohybrids. X-ray diffraction (XRD) patterns manifested the successful intercalation of MTX anions into the LDH interlayers, and it's also found out that different volume ratios of water to PEG-400 and variable dropping way can affect the crystallinity of the final samples, i.e., the volume ratio of 3:1 and pH decreasing are proved to be optimum conditions. Furthermore, both antiparallel monolayer and bilayers adopting different orientations are suggested for four samples from XRD results. Fourier transform infrared spectroscopy (FTIR) investigations proved the coexistence of CO3(2-) and MTX anions in the interlayer of the nanohybrids. MTX/LDH particles exhibited hexagonal platelet morphology with round corner and different dropping ways can affect the morphology greatly. Moreover, a DSC study indicated that longer time treatment can weaken the bond between the MTX anions and LDH layers. The kinetic release profiles told us that larger MTX/LDH particles have enhanced the ability of LDH layers to protect interlayer molecules. At last, the bioassay study indicated that the nanohybrids with larger diameters have higher tumor suppression efficiency. PMID:25491832

  11. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Angeloni, Livia; Passeri, Daniele; Reggente, Melania; Mantovani, Diego; Rossi, Marco

    2016-05-01

    Magnetic force microscopy (MFM) has been demonstrated as valuable technique for the characterization of magnetic nanomaterials. To be analyzed by MFM techniques, nanomaterials are generally deposited on flat substrates, resulting in an additional contrast in MFM images due to unavoidable heterogeneous electrostatic tip-sample interactions, which cannot be easily distinguished from the magnetic one. In order to correctly interpret MFM data, a method to remove the electrostatic contributions from MFM images is needed. In this work, we propose a new MFM technique, called controlled magnetization MFM (CM-MFM), based on the in situ control of the probe magnetization state, which allows the evaluation and the elimination of electrostatic contribution in MFM images. The effectiveness of the technique is demonstrated through a challenging case study, i.e., the analysis of superparamagnetic nanoparticles in absence of applied external magnetic field. Our CM-MFM technique allowed us to acquire magnetic images depurated of the electrostatic contributions, which revealed that the magnetic field generated by the tip is sufficient to completely orient the superparamagnetic nanoparticles and that the magnetic tip-sample interaction is describable through simple models once the electrostatic artifacts are removed.

  12. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles

    PubMed Central

    Angeloni, Livia; Passeri, Daniele; Reggente, Melania; Mantovani, Diego; Rossi, Marco

    2016-01-01

    Magnetic force microscopy (MFM) has been demonstrated as valuable technique for the characterization of magnetic nanomaterials. To be analyzed by MFM techniques, nanomaterials are generally deposited on flat substrates, resulting in an additional contrast in MFM images due to unavoidable heterogeneous electrostatic tip-sample interactions, which cannot be easily distinguished from the magnetic one. In order to correctly interpret MFM data, a method to remove the electrostatic contributions from MFM images is needed. In this work, we propose a new MFM technique, called controlled magnetization MFM (CM-MFM), based on the in situ control of the probe magnetization state, which allows the evaluation and the elimination of electrostatic contribution in MFM images. The effectiveness of the technique is demonstrated through a challenging case study, i.e., the analysis of superparamagnetic nanoparticles in absence of applied external magnetic field. Our CM-MFM technique allowed us to acquire magnetic images depurated of the electrostatic contributions, which revealed that the magnetic field generated by the tip is sufficient to completely orient the superparamagnetic nanoparticles and that the magnetic tip-sample interaction is describable through simple models once the electrostatic artifacts are removed. PMID:27194591

  13. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles.

    PubMed

    Angeloni, Livia; Passeri, Daniele; Reggente, Melania; Mantovani, Diego; Rossi, Marco

    2016-01-01

    Magnetic force microscopy (MFM) has been demonstrated as valuable technique for the characterization of magnetic nanomaterials. To be analyzed by MFM techniques, nanomaterials are generally deposited on flat substrates, resulting in an additional contrast in MFM images due to unavoidable heterogeneous electrostatic tip-sample interactions, which cannot be easily distinguished from the magnetic one. In order to correctly interpret MFM data, a method to remove the electrostatic contributions from MFM images is needed. In this work, we propose a new MFM technique, called controlled magnetization MFM (CM-MFM), based on the in situ control of the probe magnetization state, which allows the evaluation and the elimination of electrostatic contribution in MFM images. The effectiveness of the technique is demonstrated through a challenging case study, i.e., the analysis of superparamagnetic nanoparticles in absence of applied external magnetic field. Our CM-MFM technique allowed us to acquire magnetic images depurated of the electrostatic contributions, which revealed that the magnetic field generated by the tip is sufficient to completely orient the superparamagnetic nanoparticles and that the magnetic tip-sample interaction is describable through simple models once the electrostatic artifacts are removed. PMID:27194591

  14. PDE-based random-valued impulse noise removal based on new class of controlling functions.

    PubMed

    Wu, Jian; Tang, Chen

    2011-09-01

    This paper is concerned with partial differential equation (PDE)-based image denoising for random-valued impulse noise. We introduce the notion of ENI (the abbreviation for "edge pixels, noisy pixels, and interior pixels") that denotes the number of homogeneous pixels in a local neighborhood and is significantly different for edge pixels, noisy pixels, and interior pixels. We redefine the controlling speed function and the controlling fidelity function to depend on ENI. According to our two controlling functions, the diffusion and fidelity process at edge pixels, noisy pixels, and interior pixels can be selectively carried out. Furthermore, a class of second-order improved and edge-preserving PDE denoising models is proposed based on the two new controlling functions in order to deal with random-valued impulse noise reliably. We demonstrate the performance of the proposed PDEs via application to five standard test images, corrupted by random-valued impulse noise with various noise levels and comparison with the related second-order PDE models and the other special filtering methods for random-valued impulse noise. Our two controlling functions are extended to automatically other PDE models. PMID:21435980

  15. Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells

    PubMed Central

    Gassmann, Reto; Holland, Andrew J.; Varma, Dileep; Wan, Xiaohu; Çivril, Filiz; Cleveland, Don W.; Oegema, Karen; Salmon, Edward D.; Desai, Arshad

    2010-01-01

    The spindle checkpoint generates a “wait anaphase” signal at unattached kinetochores to prevent premature anaphase onset. Kinetochore-localized dynein is thought to silence the checkpoint by transporting checkpoint proteins from microtubule-attached kinetochores to spindle poles. Throughout metazoans, dynein recruitment to kinetochores requires the protein Spindly. Here, we identify a conserved motif in Spindly that is essential for kinetochore targeting of dynein. Spindly motif mutants, expressed following depletion of endogenous Spindly, target normally to kinetochores but prevent dynein recruitment. Spindly depletion and Spindly motif mutants, despite their similar effects on kinetochore dynein, have opposite consequences on chromosome alignment and checkpoint silencing. Spindly depletion delays chromosome alignment, but Spindly motif mutants ameliorate this defect, indicating that Spindly has a dynein recruitment-independent role in alignment. In Spindly depletions, the checkpoint is silenced following delayed alignment by a kinetochore dynein-independent mechanism. In contrast, Spindly motif mutants are retained on microtubule-attached kinetochores along with checkpoint proteins, resulting in persistent checkpoint signaling. Thus, dynein-mediated removal of Spindly from microtubule-attached kinetochores, rather than poleward transport per se, is the critical reaction in checkpoint silencing. In the absence of Spindly, a second mechanism silences the checkpoint; this mechanism is likely evolutionarily ancient, as fungi and higher plants lack kinetochore dynein. PMID:20439434

  16. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  17. Performance Analysis of a Semiactive Suspension System with Particle Swarm Optimization and Fuzzy Logic Control

    PubMed Central

    Qazi, Abroon Jamal; de Silva, Clarence W.

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868

  18. Performance analysis of a semiactive suspension system with particle swarm optimization and fuzzy logic control.

    PubMed

    Qazi, Abroon Jamal; de Silva, Clarence W; Khan, Afzal; Khan, Muhammad Tahir

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868

  19. Divertor heat and particle control experiments on the DIII-D tokamak

    SciTech Connect

    Mahdavi, M.A; Baker, D.R.; Allen, S.L.

    1994-05-01

    In this paper we present a summary of recent DIII-D divertor physics activity and plans for future divertor upgrades. During the past year, DIII-D experimental effort was focused on areas of active heat and particle control and divertor target erosion studies. Using the DIII-D Advanced Divertor system we have succeeded for the first time to control the plasma density and demonstrate helium exhaust in H-mode plasmas. Divertor heat flux control by means of D{sub 2} gas puffing and impurity injection were studied separately and in, both cases up to a factor of five reduction of the divertor peak heat flux was observed. Using the DiMES sample transfer system we have obtained erosion data on various material samples in well diagnosed plasmas and compared the results with predictions of numerical models.

  20. Particle swarm optimization method for the control of a fleet of Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Belkadi, A.; Ciarletta, L.; Theilliol, D.

    2015-11-01

    This paper concerns a control approach of a fleet of Unmanned Aerial Vehicles (UAV) based on virtual leader. Among others, optimization methods are used to develop the virtual leader control approach, particularly the particle swarm optimization method (PSO). The goal is to find optimal positions at each instant of each UAV to guarantee the best performance of a given task by minimizing a predefined objective function. The UAVs are able to organize themselves on a 2D plane in a predefined architecture, following a mission led by a virtual leader and simultaneously avoiding collisions between various vehicles of the group. The global proposed method is independent from the model or the control of a particular UAV. The method is tested in simulation on a group of UAVs whose model is treated as a double integrator. Test results for the different cases are presented.

  1. Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture

    SciTech Connect

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is

  2. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect

    Allain, Jean-Paul

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  3. Trophic cascades in a cranberry marsh: Can detritus-removal improve biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological pest control is predicated on the concept that plants are protected when carnivores suppress herbivore populations. However, many factors, including detritus-based food-chains, may re-shape the effectiveness of predators in a given agro ecosystem. The addition of detrital subsidies, such ...

  4. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.

    PubMed

    Shih, Shao-Ju; Tzeng, Wei-Lung; Jatnika, Rifqi; Shih, Chi-Jen; Borisenko, Konstantin B

    2015-05-01

    Mesoporous bioactive glasses (MBGs) have become important bone implant materials because of their high specific surface area resulting in high bioactivity. Doping MBGs with Ag removes one of the remaining challenges to their applications, namely their lack of intrinsic antibacterial properties. In present work we demonstrate that Ag-doped MBGs can be prepared in one-step spray pyrolysis (SP) process. The SP preparation method offers the advantages of short processing times and continuous production over the sol-gel method previously used to prepare MBGs. Using scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction we demonstrate that the synthesized MBG particles have amorphous structure with nanocrystalline Ag inclusions. The scanning transmission electron microscopy-X-ray energy dispersive spectrometry of cross-sectional samples shows that the distribution of the Ag dopant nanoparticles within MBGs can be controlled by using the appropriate formulation of the precursors. The distribution of the Ag dopant nanoparticles within the MBG particles was found to affect their surface areas, bioactivities and antibacterial properties. Based on the observations, we propose a mechanism describing MBG particle formation and controlling dopant distribution. PMID:25171327

  5. Time-optimal control of a self-propelled particle in a spatiotemporal flow field

    NASA Astrophysics Data System (ADS)

    Bakolas, Efstathios; Marchidan, Andrei

    2016-03-01

    We address a minimum-time problem that constitutes an extension of the classical Zermelo navigation problem in higher dimensions. In particular, we address the problem of steering a self-propelled particle to a prescribed terminal position with free terminal velocity in the presence of a spatiotemporal flow field. Furthermore, we assume that the norm of the rate of change of the particle's velocity relative to the flow is upper bounded by an explicit upper bound. To address the problem, we first employ Pontryagin's minimum principle to parameterise the set of candidate time-optimal control laws in terms of a parameter vector that belongs to a compact set. Subsequently, we develop a simple numerical algorithm for the computation of the minimum time-to-come function that is tailored to the particular parametrisation of the set of the candidate time-optimal control laws of our problem. The proposed approach bypasses the task of converting the optimal control problem to a parameter optimisation problem, which can be computationally intense, especially when one is interested in characterising the optimal synthesis of the minimum-time problem. Numerical simulations that illustrate the theoretical developments are presented.

  6. Mathematical model for internal pH control in immobilized enzyme particles

    SciTech Connect

    Liou, J.K.; Rousseau, I.

    1986-10-01

    A mathematical model has been developed for the internal pH control in immobilized enzyme particles. This model describes the kinetics of a coupled system of two enzymes, immobilized in particles of either planar, cylindrical, or spherical shape. The enzyme kinetics are assumed to be of a mixed type, including Michaelis-Menten kinetics, uncompetitive substrate inhibition, and competitive and noncompetitive product inhibition. In a case study we have considered the enzyme combination urease and penicillin acylase, whose kinetics are coupled through the pH dependence of the kinetic parameters. The hydrolysis of urea by urease yields ammonia and carbon dioxide, whereas benzylpenicillin (Pen-G) is converted to 6-animo penicillanic acid and phenyl acetic acid by penicillin acylase. The production of acids by the latter enzyme will cause a decrease in pH. Because of the presence of the ammonia-carbon dioxide system, however, the pH may be kept under control. In order to obtain information about the optimum performance of this enzymatic pH controller, we have computed the effectiveness factor and the conversion in a CSTR at different enzyme loadings. The results of the computer simulations indicate that a high conversion of Pen-G may be achieved (80-90%) at bulk pH values of about 7.5 - 8. 27 references.

  7. MIMO regulation control design for magnetic steering of a ferromagnetic particle inside a fluidic environment

    NASA Astrophysics Data System (ADS)

    Afshar, Sepideh; Behrad Khamesee, Mir; Khajepour, Amir

    2015-10-01

    As an important development of medical instrumentation, minimally invasive therapeutic operations have been recently introduced. The foremost element of minimally invasive techniques is navigating a micro-device through human body, especially inside blood vessels. A remote actuation over the micro-device is normally provided by electromagnetic actuators. In most applications, a control scheme is also required to initiate the actuation force, the magnetic propulsion, such that at every time step, the micro-device moves towards or along a given path. This paper contributes in development of the electromagnetic system model mostly used in magnetic navigation systems to be representable in control affine form. Next, a multi-input multi-output (MIMO) trajectory tracking controller is designed to conduct the auto-navigation of the device along a given path. This method is a generalised version of a 'semi-global nonlinear output regulation' introduced for single-input single-output (SISO) systems. Finally, the proposed scheme is examined for an iron particle moving in a fluidic environment. The simulation results show fast decay in deviation of the particle position from the reference path under some assumptions. This shows that the proposed scheme can be offered for medical applications.

  8. Immobilized formaldehyde-metabolizing enzymes from Hansenula polymorpha for removal and control of airborne formaldehyde.

    PubMed

    Sigawi, Sasi; Smutok, Oleh; Demkiv, Olha; Zakalska, Oksana; Gayda, Galina; Nitzan, Yeshayahu; Nisnevitch, Marina; Gonchar, Mykhaylo

    2011-05-20

    Formaldehyde (FA)-containing indoor air has a negative effect on human health and should be removed by intensive ventilation or by catalytic conversion to non-toxic products. FA can be oxidized by alcohol oxidase (AOX) taking part in methanol metabolism of methylotrophic yeasts. In the present work, AOX isolated from a Hansenula polymorpha C-105 mutant (gcr1 catX) overproducing this enzyme in glucose medium, was tested for its ability to oxidize airborne FA. A continuous fluidized bed bioreactor (FBBR) was designed to enable an effective bioconversion of airborne FA by AOX or by permeabilized mutant H. polymorpha C-105 cells immobilized in calcium alginate beads. The immobilized AOX having a specific activity of 6-8 U mg⁻¹ protein was shown to preserve 85-90% of the initial activity. The catalytic parameters of the immobilized enzyme were practically the same as for the free enzyme (k(cat)/K(m) was 2.35×10³ M⁻¹ s⁻¹ vs 2.89×10³ M⁻¹ s⁻¹, respectively). The results showed that upon bubbling of air containing from 0.3 up to 18.5 ppm FA through immobilized AOX in the range of 1.3-26.6 U g⁻¹ of the gel resulted in essential decrease of FA concentration in the outlet gas phase (less than 0.02-0.03 ppm, i.e. 10-fold less than the threshold limit value). It was also demonstrated that a FBBR with immobilized permeabilized C-105 cells provided more than 90% elimination of airborne FA. The process was monitored by a specially constructed enzymatic amperometric biosensor based on FA oxidation by NAD+ and glutathione-dependent formaldehyde dehydrogenase from the recombinant H. polymorpha Tf 11-6 strain. PMID:21504769

  9. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  10. Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng

    2009-10-01

    The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.

  11. Position Control of Particles embedded in Microbeads and Fibers Produced by Electrohydrodynamics.

    NASA Astrophysics Data System (ADS)

    Jeong, Unyong; Jo, Eun Min; Lee, Sungwon; Kim, Kyu Tae

    2009-03-01

    Electrohydrodynamics is a good approach to produce uniform-sized colloids and fibers in a continuous process. The dimension can be controlled from tens of nanometers to a few micrometers. The structure of the colloids and nanofibers from electrohydrodynamics has been diversified according to the uses. Especially, core-shell structure and hybridization with functional nanomaterials are fascinating due to their possible uses in drug-delivery systems, multifunctional scaffolds, organic/inorganic hybrids with new functions, and highly sensitive gas- or bio-sensors. This talk will present the structural variations by tuning the position of small particles in the colloids and fibers produced from electrohydrodynamics and demonstrate their possible applications.

  12. Controlling migration of a pair of correlated particles by doubly modulated fields

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Yang, Shi-Jie

    2016-01-01

    The resonant tunneling of correlated bosons in optical lattices is investigated in the presence of doubly modulated AC-fields. The effective hopping coefficients are density-dependent. We can make use of this property to control the migration of a pair of strongly interacting particles in one- or two-dimensional uniform lattices via properly manipulating the phases, frequencies and amplitudes of the driven fields. We design a bifurcating quantum motion of the pair in contrast to the coherent quantum walk of the correlated pair in the absence of external fields.

  13. Lessons learnt from the application of a multi-variable controller for nitrogen removal in the Mekolalde wastewater treatment plant: good simulation practices in control.

    PubMed

    Irizar, I; Beltrán, S; Urchegui, G; Izko, G; Fernández, O; Maiza, M

    2014-01-01

    Although often perceived as tools for use by scientists, mathematical modelling and simulation become indispensable when control engineers have to design controllers for real-life wastewater treatment plants (WWTPs). Nonetheless, the design of effective controllers in the wastewater domain using simulations requires effects, such as the nonlinearity of actuators, the time response of sensors, plant model uncertainties, etc. to have been reproduced beforehand. Otherwise, control solutions verified by simulation can completely underperform under real conditions. This study demonstrates that, when all the above effects are included at the outset, a systematic use of simulations guarantees high quality controllers in a relatively short period of time. The above is exemplified through the Mekolalde WWTP, where a comprehensive simulation study was conducted in order to develop a control product for nitrogen removal. Since its activation in May 2011, the designed controller has been permanently working in the plant which, from this time onwards, has experienced significant improvements in the quality of water discharges combined with a lower utilization of electricity for wastewater treatment. PMID:24647196

  14. The ``coffee-ring effect'' as a way to remove pollutants and control drying rate in porous media

    NASA Astrophysics Data System (ADS)

    Keita, Emmanuel; Faure, Paméla; Rodts, Stéphane; Weitz, David A.; Coussot, Philippe

    2012-11-01

    Due to the transport of elements they induce imbibition-drying cycles are known to play a major role in the colloid-facilitated transport in soils and building materials. We study the drying of a colloidal suspension in a porous media. The critical physical phenomenon at work here is the displacement and redistribution of colloidal particles or ions induced by evaporation of the liquid phase from the porous medium. This can be clearly seen by filling a bead packing with coffee. Indeed after full drying the sample has shaded tones with darker regions around the sample free surface and white regions almost free of particles around the bottom. The mechanisms are not yet fully understood and there is no straightforward observation and simple quantification of the spreading of the elements. Using a new MRI technique to look at a complex porous media with colloidal particles in suspension in water we show that the drying of a porous medium filled with elements in the advection regime develops a specific coffee-ring effect. We can quantify how the elements migrate towards the free surface of the sample and accumulate in the remaining liquid films. Our complete understanding of the process makes it possible to establish a simple model predicting the drying rate and the concentration distribution. This opens the way to a control of salt or colloid transport and drying rate of soils and building materials.

  15. Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions.

    PubMed

    Mathieu, Yannick; Lebeau, Bénédicte; Valtchev, Valentin

    2007-08-28

    The spontaneous nucleation under hydrothermal conditions often leads to aggregation of crystallizing particles, which is an undesired phenomenon when the goal is the preparation of nanocrystals with narrow particle size distribution. The present paper reports on the synthesis of boehmite nanocrystals under hydrothermal conditions. An aqueous aluminum chloride salt solution was first prepared, and the pH was increased to 11 using a 5 M sodium hydroxide solution. The hydrothermal treatment was performed at 160 degrees C for different periods of time. The system yielded relatively small (15-40 nm) boehmite crystallites aggregated into larger (160 nm) particles. To avoid the aggregation, a biocompatible polymer, sodium polyacrylate (NaPa) 2100, was employed as a size-/morphology-controlling agent. Thus, stable colloidal suspensions of rounded boehmite nanoparticles having a size between 15 and 40 nm were obtained at 160 degrees C for 24 h. Further, the effect of synthesis time on the morphological features of boehmite synthesized in such a NaPa-containing system was investigated. The increase of the synthesis time from 24 to 168 h resulted in the formation of very long boehmite fibers (1000-2000 nm) with an average diameter of about 10 nm. The boehmite samples were characterized by XRD, DLS, TEM, IR, N2 adsorption, and zeta potential measurements. The colloidal stability of the obtained suspension was also studied. PMID:17676774

  16. Acoustical vortices on a Chip for 3D single particle manipulation and vorticity control

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Bou Matar, Olivier; Baudoin, Michael

    Surface acoustic waves offer most of the basic functions required for on-chip actuation of fluids at small scales: efficient flow mixing, integrated pumping, particles separation, droplet displacement, atomization, division and fusion. Nevertheless some more advanced functions such as 3D particles manipulation and vorticity control require the introduction of some specific kind of waves called acoustic vortices. These helical waves propagate spinning around a phase singularity called the dark core. On the one hand, the beam angular momentum can be transferred to the fluid and create point-wise vorticity for confined mixing, and on the other the dark core can trap individual particles in an acoustic well for single object manipulation. In this presentation, I will show how acoustical vortices on-a-chip can be synthesized with a programmable electronics and an array of transducers. I will then highlight how some of their specificities can be used for acoustical tweezing and twisting. This work is supported by ANR Project No. ANR-12-BS09-0021-01 and ANR-12- BS09-0021-02, and Rgion Nord Pas de Calais.

  17. Process of forming a plated wirepack with abrasive particles only in the cutting surface with a controlled kerf

    NASA Technical Reports Server (NTRS)

    Smith, Maynard B. (Inventor); Schmid, Frederick (Inventor); Khattak, Chandra P. (Inventor)

    1983-01-01

    A narrow wire blade with abrasive particles plated within a longitudinally-extending, plated cutting portion that extends from only one side of a wire core and has parallel side walls spaced by a controlled width.

  18. The effect of electrical properties for InGaN and InN by high-energy particle irradiation (notice of removal)

    NASA Astrophysics Data System (ADS)

    Dong, Shao-guang; Fan, Guang-han

    2008-03-01

    This paper (SPIE Paper 68411H) was removed from the SPIE Digital Library on 8 August 2008 upon discovery that the paper has substantially plagiarized the following two papers: R.E. Jones, S.X. Li, L. Hsu, K.M. Yu, W. Walukiewicz, Z. Liliental-Weber, J.W. Ager III, E.E. Haller, H. Lu, and W.J. Schaff, "Native-defect-controlled n-type conductivity in InN," Physica B 376-377 (2006) 436-439 and S.X. Li, K.M. Yu, J. Wu, R.E. Jones, W. Walukiewicz, J.W. Ager III, W. Shan, E.E. Haller, Hai Lu, and William J. Schaff, "Native defects in InxGa1-xN alloys," Physica B 376-377 (2006) 432-435. As stated in the SPIE Publication Ethics Guidelines, "SPIE defines plagiarism as the reuse of someone else's prior ideas, processes, results, or words without explicit attribution of the original author and source, or falsely representing someone else's work as one's own. Unauthorized use of another researcher's unpublished data or findings without permission is considered to be a form of plagiarism even if the source is attributed. SPIE considers plagiarism in any form, at any level, to be unacceptable and a serious breach of professional conduct." It is SPIE policy to remove such papers and to provide citations to original sources so that interested readers can obtain the information directly from those sources. One of the authors, Shao-guang Dong, accepts full responsibility and apologizes for this plagiarism and has absolved the second author, Guang-han Fan, of any prior knowledge of or professional misconduct in this matter. Guang-han Fan also states that he had not previously seen the paper or given permission to include his name as an author.

  19. Reducing prospective memory error and costs in simulated air traffic control: External aids, extending practice, and removing perceived memory requirements.

    PubMed

    Loft, Shayne; Chapman, Melissa; Smith, Rebekah E

    2016-09-01

    In air traffic control (ATC), forgetting to perform deferred actions-prospective memory (PM) errors-can have severe consequences. PM demands can also interfere with ongoing tasks (costs). We examined the extent to which PM errors and costs were reduced in simulated ATC by providing extended practice, or by providing external aids combined with extended practice, or by providing external aids combined with instructions that removed perceived memory requirements. Participants accepted/handed-off aircraft and detected conflicts. For the PM task, participants were required to substitute alternative actions for routine actions when accepting aircraft. In Experiment 1, when no aids were provided, PM errors and costs were not reduced by practice. When aids were provided, costs observed early in practice were eliminated with practice, but residual PM errors remained. Experiment 2 provided more limited practice with aids, but instructions that did not frame the PM task as a "memory" task led to high PM accuracy without costs. Attention-allocation policies that participants set based on expected PM demands were modified as individuals were increasingly exposed to reliable aids, or were given instructions that removed perceived memory requirements. These findings have implications for the design of aids for individuals who monitor multi-item dynamic displays. (PsycINFO Database Record PMID:27608067

  20. [N2O emission and control in shortcut nitrification and denitrification and simultaneous nitrification and denitrification biological nitrogen removal systems].

    PubMed

    Zhang, Jing-rong; Wang, Shu-ying; Shang, Hui-lai; Peng, Yong-zhen

    2009-12-01

    SBR reactors were used to investigate the N2O emission in shortcut nitrification and simultaneous nitrification and denitrification (SND). Shortcut nitrification with nitrosation rate above 90% was realized by real-time control strategy. The N2O emission and variation of nitrosation rate were investigated under 4 DO levels (0.5, 1.0, 1.5, 2.0 mg/L). The results turned out that the optimal DO to maintain high nitrosation rate and minimum N2O emission was 1.5 mg/L and the N4O emission was 0.06 g per ammonium removed. The SBR filled with carbon fiber performed under low DO and pulse feeding. The SND rate was over 79% during the experiment. The N2O emission was studied under DO 0.2, 0.4, 1.0 and 1.5 mg/L. It turned out that the optimal DO was 1.0 mg/L and the N2O emission was 0.021 g per ammonium removed. Compared to the shortcut nitrification, the N2O emission of SND was 1/3 of the short-cut nitrification under optimal DO. PMID:20187398

  1. Control of degreening in postharvest green sour citrus fruit by electrostatic atomized water particles.

    PubMed

    Yamauchi, Naoki; Takamura, Kohtaro; Shigyo, Masayoshi; Migita, Catharina Taiko; Masuda, Yukihiro; Maekawa, Tetsuya

    2014-08-01

    The effect of electrostatic atomized water particles (EAWP) on degreening of green sour citrus fruit during storage was determined. Superoxide anion and hydroxyl radicals included in EAWP were present on the surface of the fruit peel after the treatment. Hydrogen peroxide was formed from EAWP in an aqueous solution, which could indicate that a hydroxyl radical of EAWP turns to hydrogen peroxide in the fruit flavedo as well as in the aqueous solution. EAWP treatment effectively suppressed the degreening of green yuzu and Nagato-yuzukichi fruits during storage at 20°C. The enhancement in K+ ion leakage of both EAWP-treated fruits reduced in comparison with the control. In spite of EAWP treatment, total peroxide level in both fruits showed almost no changes during storage, suggesting that hydrogen peroxide formed by EAWP treatment could stimulate the activation of hydrogen peroxide scavenging system and control degreening of these fruits during storage. PMID:24629952

  2. MTX/LDHs hybrids synthesized from reverse microemulsions: particle control and bioassay study.

    PubMed

    Liu, Zhen-Lei; Tian, De-Ying; Li, Shu-Ping; Li, Xiao-Dong; Lu, Tian-Hong

    2014-10-01

    Reverse microemulsions have been used to control the growth of methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids, and the influence of reaction temperature, water content (noted as ω) and MTX content (noted as R) on the properties of MTX/LDHs was systematically investigated. The synthesized hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and atomic force microscopy (AFM), etc. XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. The process of particle control has been explored emphatically, and it was found that temperature, water content, and addition of solutes can determine the structural evolution as well as the size of the "water pools" in the reverse microemulsions, while ω plays a critical role in the particle growth. Then in vitro release tests of all hybrids in pH 7.4 phosphate buffered saline (PBS) were explored, and the parabolic diffusion model simulate the release progress best, showing that the release process belongs to multi phase diffusion process via ion exchange. At last, the anticancer efficacy of all MTX/LDHs hybrids was also estimated by MTT assay with the human lung cancer (A549). It is found for the first time that the drug efficacy is closely associated with dispersion coefficient (noted as ϵ). PMID:25089502

  3. LETTER: Self-organized pattern formation and noise-induced control based on particle computations

    NASA Astrophysics Data System (ADS)

    Rohlf, Thimo; Bornholdt, Stefan

    2005-12-01

    We propose a new non-equilibrium model for spatial pattern formation based on local information transfer. Unlike most standard models of pattern formation it is not based on the Turing instability or initially laid down morphogen gradients. Information is transmitted through the system via particle-like excitations whose collective dynamics results in pattern formation and control. Here, a simple problem of domain formation is addressed by means of this model in an implementation as stochastic cellular automata, and then generalized to a system of coupled dynamical networks. One observes stable pattern formation, even in the presence of noise and cell flow. Noise contributes through the production of quasi-particles to de novo pattern formation as well as to robust control of the domain boundary position. Pattern proportions are scale independent as regards system size. The dynamics of pattern formation is stable over large parameter ranges, with a discontinuity at vanishing noise and a second-order phase transition at increased cell flow.

  4. Historical Data Analyses and Scientific Knowledge Suggest Complete Removal of the Abnormal Toxicity Test as a Quality Control Test

    PubMed Central

    Garbe, Joerg H O; Ausborn, Susanne; Beggs, Claire; Bopst, Martin; Joos, Angelika; Kitashova, Alexandra A; Kovbasenco, OLga; Schiller, Claus-Dieter; Schwinger, Martina; Semenova, Natalia; Smirnova, Lilia; Stodart, Fraser; Visalli, Thomas; Vromans, Lisette

    2014-01-01

    In the early 1900s, the abnormal toxicity test (ATT) was developed as an auxiliary means to ensure safe and consistent antiserum production. Today, the ATT is utilized as a quality control (QC) release test according to pharmacopoeial or other regulatory requirements. The study design has not been changed since around 1940. The evidence of abnormal toxicity testing as a prediction for harmful batches is highly questionable and lacks a scientific rationale. Numerous reviews of historical ATT results have revealed that no reliable conclusions can be drawn from this QC measure. Modern pharmaceutical manufacturers have thorough control of the manufacturing process and comply with good manufacturing practice rules. Contaminants are appropriately controlled by complying with the validated manufacturing processes and strict QC batch release confirming batch-to-batch consistency. Recognizing that product safety, efficacy, and stability can be ensured with strict QC measures, nowadays most regulatory authorities do not require the ATT for most product classes. In line with the replacement, reduction, and refinement (3Rs) initiative, the test requirement has been deleted from approximately 80 monographs of the European Pharmacopoeia and for the majority of product classes in the United States. For these reasons, it is recommended that the ATT should be consistently omitted world-wide and be removed from pharmacopoeias and other regulatory requirements. PMID:25209378

  5. Historical data analyses and scientific knowledge suggest complete removal of the abnormal toxicity test as a quality control test.

    PubMed

    Garbe, Joerg H O; Ausborn, Susanne; Beggs, Claire; Bopst, Martin; Joos, Angelika; Kitashova, Alexandra A; Kovbasenco, Olga; Schiller, Claus-Dieter; Schwinger, Martina; Semenova, Natalia; Smirnova, Lilia; Stodart, Fraser; Visalli, Thomas; Vromans, Lisette

    2014-11-01

    In the early 1900s, the abnormal toxicity test (ATT) was developed as an auxiliary means to ensure safe and consistent antiserum production. Today, the ATT is utilized as a quality control (QC) release test according to pharmacopoeial or other regulatory requirements. The study design has not been changed since around 1940. The evidence of abnormal toxicity testing as a prediction for harmful batches is highly questionable and lacks a scientific rationale. Numerous reviews of historical ATT results have revealed that no reliable conclusions can be drawn from this QC measure. Modern pharmaceutical manufacturers have thorough control of the manufacturing process and comply with good manufacturing practice rules. Contaminants are appropriately controlled by complying with the validated manufacturing processes and strict QC batch release confirming batch-to-batch consistency. Recognizing that product safety, efficacy, and stability can be ensured with strict QC measures, nowadays most regulatory authorities do not require the ATT for most product classes. In line with the replacement, reduction, and refinement (3Rs) initiative, the test requirement has been deleted from approximately 80 monographs of the European Pharmacopoeia and for the majority of product classes in the United States. For these reasons, it is recommended that the ATT should be consistently omitted world-wide and be removed from pharmacopoeias and other regulatory requirements. PMID:25209378

  6. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  7. Long-Term Assessment of Wild Boar Harvesting and Cattle Removal for Bovine Tuberculosis Control in Free Ranging Populations

    PubMed Central

    Mentaberre, Gregorio; Romero, Beatriz; de Juan, Lucía; Navarro-González, Nora; Velarde, Roser; Mateos, Ana; Marco, Ignasi; Olivé-Boix, Xavier; Domínguez, Lucas; Lavín, Santiago; Serrano, Emmanuel

    2014-01-01

    Wild boar is a recognized reservoir of bovine tuberculosis (TB) in the Mediterranean ecosystems, but information is scarce outside of hotspots in southern Spain. We describe the first high-prevalence focus of TB in a non-managed wild boar population in northern Spain and the result of eight years of TB management. Measures implemented for disease control included the control of the local wild boar population through culling and stamping out of a sympatric infected cattle herd. Post-mortem inspection for detection of tuberculosis-like lesions as well as cultures from selected head and cervical lymph nodes was done in 745 wild boar, 355 Iberian ibexes and five cattle between 2004 and 2012. The seasonal prevalence of TB reached 70% amongst adult wild boar and ten different spoligotypes and 13 MIRU-VNTR profiles were detected, although more than half of the isolates were included in the same clonal complex. Only 11% of infected boars had generalized lesions. None of the ibexes were affected, supporting their irrelevance in the epidemiology of TB. An infected cattle herd grazed the zone where 168 of the 197 infected boars were harvested. Cattle removal and wild boar culling together contributed to a decrease in TB prevalence. The need for holistic, sustained over time, intensive and adapted TB control strategies taking into account the multi-host nature of the disease is highlighted. The potential risk for tuberculosis emergence in wildlife scenarios where the risk is assumed to be low should be addressed. PMID:24558435

  8. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    NASA Astrophysics Data System (ADS)

    Huang, Liangliang; Seredych, Mykola; Bandosz, Teresa J.; van Duin, Adri C. T.; Lu, Xiaohua; Gubbins, Keith E.

    2013-11-01

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials.

  9. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    SciTech Connect

    Huang, Liangliang; Gubbins, Keith E.; Seredych, Mykola; Bandosz, Teresa J.; Duin, Adri C. T. van; Lu, Xiaohua

    2013-11-21

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H{sub 2}S and H{sub 2}O/H{sub 2}S mixtures on GO materials and compare the results with experiment. We find that H{sub 2}S molecules dissociate on the carbonyl functional groups, and H{sub 2}O, CO{sub 2}, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H{sub 2}O/H{sub 2}S mixtures, H{sub 2}O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H{sub 2}S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials.

  10. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  11. Dynamic axial control over optically levitating particles in air with an electrically-tunable variable-focus lens.

    PubMed

    Zhu, Wenguo; Eckerskorn, Niko; Upadhya, Avinash; Li, Li; Rode, Andrei V; Lee, Woei Ming

    2016-07-01

    Efficient delivery of viruses, proteins and biological macromelecules into a micrometer-sized focal spot of an XFEL beam for coherent diffraction imaging inspired new development in touch-free particle injection methods in gaseous and vacuum environments. This paper lays out our ongoing effort in constructing an all-optical particle delivery approach that uses piconewton photophoretic and femtonewton light-pressure forces to control particle delivery into the XFEL beam. We combine a spatial light modulator (SLM) and an electrically tunable lens (ETL) to construct a variable-divergence vortex beam providing dynamic and stable positioning of levitated micrometer-size particles, under normal atmospheric pressure. A sensorless wavefront correction approach is used to reduce optical aberrations to generate a high quality vortex beam for particle manipulation. As a proof of concept, stable manipulation of optically-controlled axial motion of trapped particles is demonstrated with a response time of 100ms. In addition, modulation of trapping intensity provides a measure of the mass of a single, isolated particle. The driving signal of this oscillatory motion can potentially be phase-locked to an external timing signal enabling synchronization of particle delivery into the x-ray focus with XFEL pulse train. PMID:27446715

  12. Dynamic axial control over optically levitating particles in air with an electrically-tunable variable-focus lens

    PubMed Central

    Zhu, Wenguo; Eckerskorn, Niko; Upadhya, Avinash; Li, Li; Rode, Andrei V.; Lee, Woei Ming

    2016-01-01

    Efficient delivery of viruses, proteins and biological macromelecules into a micrometer-sized focal spot of an XFEL beam for coherent diffraction imaging inspired new development in touch-free particle injection methods in gaseous and vacuum environments. This paper lays out our ongoing effort in constructing an all-optical particle delivery approach that uses piconewton photophoretic and femtonewton light-pressure forces to control particle delivery into the XFEL beam. We combine a spatial light modulator (SLM) and an electrically tunable lens (ETL) to construct a variable-divergence vortex beam providing dynamic and stable positioning of levitated micrometer-size particles, under normal atmospheric pressure. A sensorless wavefront correction approach is used to reduce optical aberrations to generate a high quality vortex beam for particle manipulation. As a proof of concept, stable manipulation of optically-controlled axial motion of trapped particles is demonstrated with a response time of 100ms. In addition, modulation of trapping intensity provides a measure of the mass of a single, isolated particle. The driving signal of this oscillatory motion can potentially be phase-locked to an external timing signal enabling synchronization of particle delivery into the x-ray focus with XFEL pulse train. PMID:27446715

  13. Controlling the relative rates of adlayer formation and removal during etching in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Fuller, Nicholas Colvin Masi

    Laser desorption (LD) of the adlayer coupled with laser induced fluorescence (LIF) and plasma induced emission (PIE) of desorbed adsorbates is used to investigate the relative rates of chlorination and sputtering during the etching of Si in inductively coupled Cl2-Ar plasmas. Such an analysis is a two-fold process: surface analysis and plasma characterization. Surface analysis of Si etching using LD-LIF and LD-PIE techniques combined with etch rate measurements have revealed that the coverage of SiCl2 and etch rate increases and coverage of Si decreases abruptly for a chlorine fraction of 75% and ion energy of 80 eV. The precise Cl2 fraction for which these abrupt changes occur increases with an increase in ion energy. These changes may be caused by local chemisorption-induced reconstruction of Si <100>. Furthermore, the chlorination and sputtering rates are increased by ˜ an order of magnitude as the plasma is changed from Ar-dominant to Cl-dominant. Characterization of the plasma included determination of the dominant ion in Cl2 plasmas using LIF and a Langmuir probe and measurement of the absolute densities of Cl2, Cl, Cl+, and At + in Cl2-Ar discharges using optical emission actinometry. These studies reveal that Cl+ is the dominant positive ion in the H-mode and the dissociation of Cl2 to Cl increases with an increase in Ar fraction due to an increase in electron temperature. Furthermore, for powers exceeding 600 W, the neutral to ion flux ratio is strongly dependent on Cl2 fraction and is attributed mostly to the decrease in Cl density. Such dependence of the flux ratio on Cl2 fraction is significant in controlling chlorination and sputtering rates not only for Si etching, but for etching other key technological materials. ICP O2 discharges were also studied for low-kappa polymeric etch applications. These studies reveal that the electron temperature is weakly dependent on rf power and O2 dissociation is low (˜2%) at the maximum rf power density of 5.7 Wcm

  14. Surfactant-Assisted Nanocrystalline Zinc Coordination Polymers: Controlled Particle Sizes and Synergistic Effects in Catalysis.

    PubMed

    Huang, Chao; Wang, Huarui; Wang, Xiaolu; Gao, Kuan; Wu, Jie; Hou, Hongwei; Fan, Yaoting

    2016-04-25

    Different morphologies and particle sizes of two crystalline zinc-based coordination polymers (CPs), [Zn(pytz)H2 O]n (1; H2 pytz=2,6-bis(tetrazole)pyridine) and [Zn2 (pytz)2 4 H2 O] (2), from the bulk scale to the nanoscale, could be obtained under solvothermal conditions with different surfactants (polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG) 2000) as templates. PVP and PEG 2000 could act as capping and structure-directing agents, respectively, to influence the growth of crystalline particles and control their sizes. CP 1 exhibits a two-dimensional framework with window-like units and 2 shows a bimetallic structure. Nanocrystalline 1 and 2 were used as heterogeneous catalysts to study how adjacent catalytic active sites synergistically effected their catalytic reactivities in the direct catalytic conversion of aromatic dinitriles into oxazolines. The results showed that 1 produced bis-oxazolines as the sole products, whereas 2 gave the mono-oxazolines as the major products under the same reaction conditions. PMID:26997347

  15. Control of particle re-entrainment by wetting the exposed surface of dust samples.

    PubMed

    Tsai, Chuen-Jinn; Lee, Chin-I; Lin, Jyh-Shyan; Huang, Cheng-Hsiung

    2003-10-01

    Experiments have been conducted in a wind tunnel to measure the emission factor of re-entrained particles from a dry or wetted dust sample with a smooth or rough surface. Effects of wind velocities and water contents in the sample on the emission factor also were investigated. The results show that re-entrainment of particles can be controlled efficiently in a certain period of time when the surface watering density is between 60 and 80 g/m2 at a wind velocity from 7 to 15 m/sec for both smooth and rough surfaces. After the effective period is elapsed, which depends on wind speeds and environmental conditions, water will eventually evaporate, and re-entrainment starts to occur again. The experimental water evaporation rates at different wind speeds are in good agreement with theoretical values. After watering for 210, 130, and 110 min at average wind velocities of 0, 2, and 4 m/sec, respectively, the dust sample must be replenished with water to avoid dust re-entrainment. PMID:14604328

  16. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2012-02-01

    The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The present-day total aerosol forcing is increased from -1.0 W m-2 to -1.6 W m-2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m-2 to +1.4 W m-2. Two climate feedbacks are studied, resulting in additional negative forcings of -0.1 W m-2 (+10% DMS emissions in year 2100) and -0.5 W m-2 (+50% BVOC emissions in year 2100). With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  17. A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasan; Rahman, Mohammad Mostafizar; Ali, Mohammad Azgar; Minami, Hideto; Tauer, Klaus; Gafur, Mohammad Abdul; Rahman, Mohammad Mahbubor

    2016-08-01

    A combination of maghemite polypyrrole (PPy/γ-Fe2O3) and stimuli-responsive properties in the same hydrogel microspheres is expected to enhance their application potential in various fields such as tissue engineering, regenerative medicine, biosensors, biomedical applications and removal of heavy metals from waste water, catalysis etc. In this investigation a simple two step process is used to prepare conductive stimuli-responsive polypyrrole (PPy) composite hydrogel particles with strong magnetic properties. Poly(styrene-methacrylic acid-N-isopropylacrylamide-polyethelene glycol methacrylate) or P(S-NIPAM-MAA-PEGMA) hydrogel seed particles are first prepared by soap-free precipitation copolymerization. The copolymer hydrogel particles exhibited both temperature- and pH-responsive volume phase transition. Conductive P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe2O3 nanocomposite hydrogel particles are then prepared by seeded chemical oxidative polymerization of pyrrole in the presence of P(S-NIPAM-MAA-PEGMA) hydrogel seed particles using FeCl3 as a oxidant and p-toluene sulfonic acid (p-TSA) as a dopant. In the reaction system FeCl3 functioned as a source of Fe(III) for the formation of γ-Fe2O3. This reaction also requires the initial presence of Fe(II) provided by the addition of FeCl2. The size and size distribution, surface structure, and morphology of the prepared conductive composite hydrogel particles are confirmed by FTIR, electron micrographs, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-visible spectroscopy. The performance of nanocomposite hydrogel particles has been evaluated for the removal of hexavalent chromium (Cr) ions from water.

  18. Localized Hamiltonian control and its application to the reduction of chaotic transport of test particles in a Tokamak's plasma

    SciTech Connect

    Tronko, Natalia; Vittot, Michel

    2008-11-01

    Localized hamiltonian control theory gives the possibility to reduce the radial chaotic transport of plasma test-particles into the Tokamak, by creating the Internal Transport Barrier(ITB). We prove that the control term is of quadratic order in the perturbation of Hamiltonian. We apply this method to a phenomenological model of electric potential in magnetized plasma.

  19. Administration of copper oxide wire particles in a capsule or feed for gastrointestinal nematode control in goats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread anthelmintic resistance in small ruminants has necessitated alternative means of gastrointestinal nematode (GIN) control. The objective was to determine the effectiveness of copper oxide wire particles (COWP) administered as a gelatin capsule or in a feed supplement to control GIN in goa...

  20. Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics.

    PubMed

    Orloff, Nathan D; Dennis, Jaclyn R; Cecchini, Marco; Schonbrun, Ethan; Rocas, Eduard; Wang, Yu; Novotny, David; Simmonds, Raymond W; Moreland, John; Takeuchi, Ichiro; Booth, James C

    2011-12-01

    We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of -0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg. PMID:22662059

  1. Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics

    PubMed Central

    Orloff, Nathan D.; Dennis, Jaclyn R.; Cecchini, Marco; Schonbrun, Ethan; Rocas, Eduard; Wang, Yu; Novotny, David; Simmonds, Raymond W.; Moreland, John; Takeuchi, Ichiro; Booth, James C.

    2011-01-01

    We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of −0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg. PMID:22662059

  2. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE PAGESBeta

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total forcemore » on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  3. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.

  4. Particle-in-cell simulations of electron beam control using an inductive current divider

    NASA Astrophysics Data System (ADS)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-01

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2) with the injected beam current given by Ib = I1 + I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ɛRMS) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ɛRMS at the target. For other applications where the beam is pinched to a current density ˜5 times larger at the target, ɛRMS is 2-3 times larger at the target.

  5. Biomass production and removal of ammonium and phosphate by Chlorella sp. in sludge liquor at natural light and different levels of temperature control.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2016-01-01

    Microalgae cultivation for biomass production and nutrient removal implies the use of natural light and minimal control of the temperature for obtaining a low cost production. The aim of this study was to quantify the effect of temperature control at natural light on biomass productivity and removal of NH4-N and PO4-P of a mesophilic strain of Chlorella. Chlorella sp. was grown in reject water of anaerobically digested municipal sludge, sludge liquor, inside a greenhouse compartment (Ås, Norway, 59°N) using batch cultures (300 mL). Five experiments were conducted from May to September, and effects of different levels of temperature control and diurnal variations were investigated. The highest biomass productivities (0.45 g L(-1) day(-1)) in the linear growth phase were obtained at daily light integrals ≥12 mol day(-1) m(-2). Results showed that the average temperature was of more importance than the night or day temperature range. At average temperatures <22 °C for cultures with no temperature control, the productivity decreased by 23 and 39 % compared to cultures with full temperature control (24-25 °C). In one experiment, the productivity was reduced at no temperature control due to prolonged high daytime temperatures (>32 °C) and were followed by a lower NH4-N removal rate. Otherwise, temperature had little effect on NH4-N removal. The level of temperature control did not affect removal of PO4-P. Cellular starch content varied from ~15-38 % in the evening and was generally lower at no temperature control. In the morning the starch content was reduced to ~4-12 % with no difference between the different levels of temperature control. (~4-12 %). PMID:27350913

  6. Novel Wire-on-Plate Electrostatic Precipitator (WOP-EP) for Controlling Fine Particle and Nanoparticle Pollution.

    PubMed

    Li, Ziyi; Liu, Yingshu; Xing, Yi; Tran, Thi-Minh-Phuong; Le, Thi-Cuc; Tsai, Chuen-Jinn

    2015-07-21

    A new wire-on-plate electrostatic precipitator (WOP-EP), where discharge wires are attached directly on the surface of a dielectric plate, was developed to ease the installation of the wires, minimize particle deposition on the wires, and lower ozone emission while maintaining a high particle collection efficiency. For a lab-scale WOP-EP (width, 50 mm; height, 20 mm; length, 180 mm) tested at the applied voltage of 18 kV, experimental total particle collection efficiencies were found as high as 90.9-99.7 and 98.8-99.9% in the particle size range of 30-1870 nm at the average air velocities of 0.50 m/s (flow rate, 30 L/min; residence time, 0.36 s) and 0.25 m/s (flow rate, 15 L/min; residence time, 0.72 s), respectively. Particle collection efficiencies calculated by numerical models agreed well with the experimental results. The comparison to the traditional wire-in-plate EP showed that, at the same applied voltage, the current WOP-EP emitted 1-2 orders of magnitude lower ozone concentration, had cleaner discharge wires after heavy particle loading in the EP, and recovered high particle collection efficiency after the grounded collection plate was cleaned. It is expected that the current WOP-EP can be scaled up as an efficient air-cleaning device to control fine particle and nanoparticle pollution. PMID:26114902

  7. Adenoid removal

    MedlinePlus

    ... This does not cause problems most of the time. Alternative Names Adenoidectomy; Removal of adenoid glands Images Adenoid removal - series References Wetmore RF. Tonsils and adenoids. In: Kliegman ...

  8. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior

    NASA Astrophysics Data System (ADS)

    Jacoby, Guy; Cohen, Keren; Barkan, Kobi; Talmon, Yeshayahu; Peer, Dan; Beck, Roy

    2015-03-01

    The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition.

  9. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior

    PubMed Central

    Jacoby, Guy; Cohen, Keren; Barkan, Kobi; Talmon, Yeshayahu; Peer, Dan; Beck, Roy

    2015-01-01

    The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition. PMID:25820650

  10. Air quality benefits of universal particle filter and NOx controls on diesel trucks

    NASA Astrophysics Data System (ADS)

    Tao, L.; Mcdonald, B. C.; Harley, R.

    2015-12-01

    Heavy-duty diesel trucks are a major source of black carbon/particulate matter and nitrogen oxide emissions on urban and regional scales. These emissions are relevant to both air quality and climate change. Since 2010 in the US, new engines are required to be equipped with emission control systems that greatly reduce both PM and NOx emissions, by ~98% relative to 1988 levels. To reduce emissions from the legacy fleet of older trucks that still remain on the road, regulations have been adopted in Califonia to accelerate the replacement of older trucks and thereby reduce associated emissions of PM and NOx. Use of diesel particle filters will be widespread by 2016, and universal use of catalytic converters for NOx control is required by 2023. We assess the air quality consequences of this clean-up effort in Southern California, using the Community Multiscale Air Quality model (CMAQ), and comparing three scenarios: historical (2005), present day (2016), and future year (2023). Emissions from the motor vehicle sector are mapped at high spatial resolution based on traffic count and fuel sales data. NOx emissions from diesel engines in 2023 are expected to decrease by ~80% compared to 2005, while the fraction of NOx emitted as NO2 is expected to increase from 5 to 18%. Air quality model simulations will be analyzed to quantify changes in NO2, black carbon, particulate matter, and ozone, both basin-wide and near hot spots such as ports and major highways.

  11. Artificial intelligence research in particle accelerator control systems for beam line tuning

    SciTech Connect

    Pieck, Martin

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  12. Reuse of sewage sludge as a catalyst in ozonation--efficiency for the removal of oxalic acid and the control of bromate formation.

    PubMed

    Wen, Gang; Pan, Zhi-Hui; Ma, Jun; Liu, Zheng-Qian; Zhao, Lei; Li, Jun-Jing

    2012-11-15

    Sewage derived sludge is produced with an annual amount increase of 2% all over the world and it is an urgent issue to be addressed by human being. In the present study, sludge was converted into sludge-based catalyst (SBC) with ZnCl2 as activation agent and characterized by several methods (e.g., scanning electron microscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope). Then it was used as a catalyst to enhance the removal of refractory organic matter, oxalic acid, and to control the formation of bromate (BrO3-) in bench semi-continuous ozonation experiments. The effects of various operating parameters on the control of BrO3- formation were investigated. Furthermore, the mechanism for the enhancement of organic matter removal and the control of BrO3- formation was discussed as well. Results indicate that the combination of SBC with ozone shows a strong synergistic effect, resulting in a notable improvement on oxalic acid removal. A crucial surface reaction mechanism for the enhancement of organic matter removal is proposed on the basis of negative effect of higher pH and no inhibition effect of tert-butanol. The control for BrO3- formation was demonstrated and the reason for its control in the process of O3/SBC is the combined effect of SBC reductive properties, ozone exposure decrease and hydrogen peroxide concentration increase. PMID:23021317

  13. Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence

    NASA Technical Reports Server (NTRS)

    Tham, Philip Kin-Wah

    1994-01-01

    A new non-perturbing technique for feedback control of plasma instabilities has been developed in the Columbia Linear Machine (CLM). The feedback control scheme involves the injection of a feedback modulated ion beam as a remote suppressor. The ion beam was obtained from a compact ion beam source which was developed for this purpose. A Langmuir probe was used as the feedback sensor. The feedback controller consisted of a phase-shifter and amplifiers. This technique was demonstrated by stabilizing various plasma instabilities to the background noise level, like the trapped particle instability, the ExB instability and the ion-temperature-gradient (ITG) driven instability. An important feature of this scheme is that the injected ion beam is non-perturbing to the plasma equilibrium parameters. The robustness of this feedback stabilization scheme was also investigated. The principal result is that the scheme is fairly robust, tolerating about 100% variation about the nominal parameter values. Next, this scheme is extended to the unsolved general problem of controlling multimode plasma instabilities simultaneously with a single sensor-suppressor pair. A single sensor-suppressor pair of feedback probes is desirable to reduce the perturbation caused by the probes. Two plasma instabilities the ExB and the ITG modes, were simultaneously stabilized. A simple 'state' feedback type method was used where more state information was generated from the single sensor Langmuir probe by appropriate signal processing, in this case, by differentiation. This proof-of-principle experiment demonstrated for the first time that by designing a more sophisticated electronic feedback controller, many plasma instabilities may be simultaneously controlled. Simple theoretical models showed generally good agreement with the feedback experimental results. On a parallel research front, a better understanding of the saturated state of a plasma instability was sought partly with the help of feedback

  14. Highly efficient synthesis of endomorphin-2 under thermodynamic control catalyzed by organic solvent stable proteases with in situ product removal.

    PubMed

    Xu, Jiaxing; Sun, Honglin; He, Xuejun; Bai, Zhongzhong; He, Bingfang

    2013-02-01

    An efficient enzymatic synthesis of endomorphin-2 (EM-2) was achieved using organic solvent stable proteases in nonaqeous media, based on thermodynamic control and an in situ product removal methodology. The high stability of biocatalysts in organic solvents enabled the aleatoric modulation of the nonaqueous reaction media to shift thermodynamic equilibrium toward synthesis. Peptide Boc-Phe-Phe-NH2 was synthesized with a high yield of 96% by the solvent stable protease WQ9-2 in monophase medium with an economical molar ratio of the substrate of 1:1. The tetrapeptide Boc-Tyr-Pro-Phe-Phe-NH2 was synthesized with a yield of 88% by another organic solvent tolerant protease PT121 from Boc-Tyr-Pro-OH and Phe-Phe-NH2 in an organic-aqueous biphasic system. The reaction-separation coupling in both enzymatic processes provides "driving forces" for the synthetic reactions and gives a high yield and high productivity without purification of the intermediate, thereby making the synthesis more amenable to scale-up. PMID:23305895

  15. Shape-Controllable Synthesis of Peroxidase-Like Fe3O4 Nanoparticles for Catalytic Removal of Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Wan, Dong; Li, Wenbing; Wang, Guanghua; Wei, Xiaobi

    2016-08-01

    The shape of Fe3O4 nanoparticles is controlled using a simple oxidation-precipitation method without any surfactant. The morphology and structure of the obtained Fe3O4 nanoparticles were characterized by using x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, N2 physisorption and vibrating sample magnetometer. As-prepared Fe3O4 samples showed octahedron, cube, hexagonal plate and sphere morphologies. Peroxidase-like activity of the four nanostructures was evaluated for catalytic removal of organic pollutants in the presence of H2O2, using rhodamine B as a model compound. The results showed that the H2O2-activating ability of the Fe3O4 nanocrystals was structure dependent and followed the order sphere > cube > octahedron > hexagonal plate, which was closely related to their surface FeII/FeIII ratios or crystal planes. The reusability of Fe3O4 spheres was also investigated after five successive runs, which demonstrated the promising application of the catalyst in the degradation of organic pollutants. This investigation is of great significance for the heterogeneous catalysts with enhanced activity and practical application.

  16. Mercury removal sorbents

    DOEpatents

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  17. Classification of Volatile Engine Particles

    SciTech Connect

    Cheng, Mengdawn

    2013-01-01

    Volatile particles cannot be detected at the engine exhaust by an aerosol detector. They are formed when the exhaust is mixed with ambient air downstream. Lack of a precise definition of volatile engine particles has been an impediment to engine manufacturers and regulatory agencies involved in the development of an effective control strategy. It is beyond doubt that volatile particles from combustion sources contribute to the atmospheric particulate burden, and the effect of that contribution is a critical issue in the ongoing research in the areas of air quality and climate change. A new instrument, called volatile particle separator (VPS), has been developed. It utilizes a proprietary microporous metallic membrane to separate particles from vapors. VPS data were used in the development of a two-parameter function to quantitatively classify, for the first time, the volatilization behavior of engine particles. The value of parameter A describes the volatilization potential of an aerosol. A nonvolatile particle has a larger A-value than a volatile one. The value of parameter k, an effective evaporation energy barrier, is found to be much smaller for small engine particles than that for large engine particles. The VPS instrument provides a means beyond just being a volatile particle remover; it enables a numerical definition to characterize volatile engine particles.

  18. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.

  19. Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation

    PubMed Central

    2011-01-01

    Spherical iron oxide nanocomposite particles composed of magnetite and wustite have been successfully synthesized using a novel method of pulsed laser irradiation in ethyl acetate. Both the size and