Science.gov

Sample records for controlling spontaneous emission

  1. Controlling spontaneous emission in bioreplica photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Butler, Elizabeth S.; Bartl, Michael H.

    2012-04-01

    Sophisticated methods have been created by nature to produce structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  2. Active magneto-optical control of spontaneous emission in graphene

    SciTech Connect

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.

  3. Active magneto-optical control of spontaneous emission in graphene

    DOE PAGESBeta

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magneticmore » field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.« less

  4. Controlling the directionality of spontaneous emission by evanescent wave coupling

    SciTech Connect

    Wang, Xue-Lun E-mail: gdhao2@hotmail.com; Hao, Guo-Dong E-mail: gdhao2@hotmail.com; Toda, Naoya

    2015-09-28

    We report an approach toward controlling the directionality of spontaneous emissions by employing the evanescent wave coupling effect in a subwavelength-sized ridge or truncated cone structure. An InGaAs/GaAs light-emitting diode in which a stripe-shaped InGaAs/GaAs quantum well with a stripe width of about 100 nm is embedded at the center of a subwavelength-sized GaAs ridge (of width ∼520 nm) is fabricated by micro processing and epitaxial regrowth techniques. Strong directionalities characterized by a half-intensity angle of 43° are observed in planes perpendicular to the ridge axis. The directionality is found to be almost independent of operating conditions.

  5. Plasmonic phase-gradient metasurface for spontaneous emission control

    NASA Astrophysics Data System (ADS)

    Langguth, L.; Schokker, A. H.; Guo, K.; Koenderink, A. F.

    2015-11-01

    We combine the concept of phase-gradient metasurfaces with fluorescence directionality control of an ensemble of incoherent emitters. We design a periodic metasurface to control the scattering amplitude of the lattice in momentum space. The lattice is embedded in a waveguiding layer doped with organic fluorophores. In contrast to the usual symmetric directionality that plasmonic lattices impart on emission, we find that the phase gradient translates into asymmetric directional emission into the far field, determined by scattering on a subset of the reciprocal lattice vectors. The measured asymmetry is well explained by analytical modeling.

  6. Quantum dot spontaneous emission control in a ridge waveguide

    SciTech Connect

    Stepanov, Petr; Delga, Adrien; Bleuse, Joël; Dupuy, Emmanuel; Peinke, Emanuel; Gérard, Jean-Michel; Claudon, Julien; Zang, Xiaorun; Lalanne, Philippe

    2015-01-26

    We investigate the spontaneous emission (SE) of self-assembled InAs quantum dots (QDs) embedded in GaAs ridge waveguides that lay on a low index substrate. In thin enough waveguides, the coupling to the fundamental guided mode is vanishingly small. A pronounced anisotropy in the coupling to non-guided modes is then directly evidenced by normal-incidence photoluminescence polarization measurements. In this regime, a measurement of the QD decay rate reveals a SE inhibition by a factor up to 4. In larger wires, which ensure an optimal transverse confinement of the fundamental guided mode, the decay rate approaches the bulk value. Building on the good agreement with theoretical predictions, we infer from calculations the fraction β of SE coupled to the fundamental guided mode for some important QD excitonic complexes. For a charged exciton (isotropic in plane optical dipole), β reaches 0.61 at maximum for an on-axis QD. In the case of a purely transverse linear optical dipole, β increases up to 0.91. This optimal configuration is achievable through the selective excitation of one of the bright neutral excitons.

  7. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity

    NASA Astrophysics Data System (ADS)

    Gan, Xuetao; Gao, Yuanda; Fai Mak, Kin; Yao, Xinwen; Shiue, Ren-Jye; van der Zande, Arend; Trusheim, Matthew E.; Hatami, Fariba; Heinz, Tony F.; Hone, James; Englund, Dirk

    2013-10-01

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70.

  8. Controlling spontaneous emission rates of quantum dots with plasmonic nanopatch antennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang; Akselrod, Gleb; Argyropoulos, Christos; Huang, Jiani; Smith, David; Mikkelsen, Maiken

    2015-03-01

    The radiative processes associated with quantum emitters can be strongly enhanced due to intense electromagnetic fields created by plasmonic nanostructures. Here, we experimentally demonstrate large enhancements of the spontaneous emission rate of colloidal quantum dots coupled to single plasmonic nanopatch antennas. The antennas consist of silver nanocubes (75 nm) coupled to a gold film separated by a thin polyelectrolyte spacer layer (~1 nm) and core-shell CdSe/ZnS quantum dots (~6 nm). By optimizing the size of the nanopatch antenna, the plasmonic mode is tuned to be on resonance with the quantum dot emission. We show an increase in the spontaneous emission rate by a factor of 880 (Purcell factor) and a 2300-fold enhancement in the total fluorescence while maintaining a high radiative quantum efficiency of ~50 %. The nanopatch antenna, as demonstrated here, offers highly directional and broadband radiation that can be tailored for emitters from the visible to the near infrared, providing a promising approach for the spontaneous emission control of single quantum emitters.

  9. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity

    PubMed Central

    Gan, Xuetao; Gao, Yuanda; Fai Mak, Kin; Yao, Xinwen; Shiue, Ren-Jye; van der Zande, Arend; Trusheim, Matthew E.; Hatami, Fariba; Heinz, Tony F.; Hone, James; Englund, Dirk

    2013-01-01

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70. PMID:24273329

  10. Control of the entanglement between triple quantum dot molecule and its spontaneous emission fields via quantum entropy

    NASA Astrophysics Data System (ADS)

    Sahrai, M.; Arzhang, B.; Taherkhani, D.; Boroojerdi, V. Tahmoorian Askari

    2015-03-01

    The time evolution of the quantum entropy in a coherently driven triple quantum dot molecule is investigated. The entanglement of the quantum dot molecule and its spontaneous emission field is coherently controlled by the gate voltage and the rate of an incoherent pump field. The degree of entanglement between a triple quantum dot molecule and its spontaneous emission fields is decreased by increasing the tunneling parameter.

  11. Spontaneous emission control of quantum dots embedded in photonic crystals: Effects of external fields and dimension

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Hashemi, H.

    2016-06-01

    In this paper simultaneous effects of external electric and magnetic fields and quantum confinement on the radiation properties of spherical quantum dot embedded in a photonic crystal are investigated. Under the influence of photonic band-gap, effects of external static fields and dot dimension on the amplitude and spectrum of different radiation fields emitted by the quantum dot are studied. Our results show the considerable effects of external fields and quantum confinement on the spontaneous emission of the system.

  12. On coherence in spontaneous emission

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.; Dorri, Ali

    1983-05-01

    The case of a single excited two-level atom emitting spontaneously in the presence of N unexcited atoms is solved exactly for emission into a single electromagnetic mode. The two-level atoms are in inequivalent mode positions.

  13. Optical antenna enhanced spontaneous emission.

    PubMed

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  14. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  15. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers.

    PubMed

    Sobon, Grzegorz; Kaczmarek, Pawel; Antonczak, Arkadiusz; Sotor, Jaroslaw; Abramski, Krzysztof M

    2011-09-26

    In this paper we present our experimental studies on controlling the amplified spontaneous emission (ASE) from Yb(3+) ions in Er/Yb co-doped fiber amplifiers. We propose a new method of controlling the Yb-ASE by stimulating a laser emission at 1064 nm in the amplifier, by providing a positive 1 μm signal feedback loop. The results are discussed and compared to a conventional amplifier setup without 1 μm ASE control and to an amplifier with auxiliary 1064 nm seeding. We have shown, that applying a 1064 nm signal loop in an Er/Yb amplifier can increase the output power at 1550 nm and provide stable operation without parasitic lasing at 1 μm. PMID:21996851

  16. Spontaneous-emission control by local density of states of photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Zhang, Ye-Jin; Zhou, Wen-Jun; Chen, Wei; Liu, An-Jin; Zheng, Wan-Hua

    2011-02-01

    The local density of states (LDOS) of two-dimensional square lattice photonic crystal (PhC) defect cavity is studied. The results show that the LDOS in the centre is greatly reduced, while the LDOS at the point off the centre (for example, at the point (0.3a, 0.4a), where a is the lattice constant) is extremely enhanced. Further, the disordered radii are introduced to imitate the real devices fabricated in our experiment, and then we study the LDOS of PhC cavity with configurations of different disordered radii. The results show that in the disordered cavity, the LDOS in the centre is still greatly reduced, while the LDOS at the point (0.3a, 0.4a) is still extremely enhanced. It shows that the LDOS analysis is useful. When a laser is designed on the basis of the square lattice PhC rod cavity, in order to enhance the spontaneous emission, the active materials should not be inserted in the centre of the cavity, but located at positions off the centre. So LDOS method gives a guide to design the positions of the active materials (quantum dots) in the lasers.

  17. Control of spontaneous emission from a microwave-field-coupled three-level{Lambda}-type atom in photonic crystals

    SciTech Connect

    Jiang, X. Q.; Zhang, B.; Sun, X. D.; Lu, Z. W.

    2011-05-15

    The spontaneous emission spectrum of a three-level {Lambda}-type atom driven by a microwave field was studied. For the two transitions coupled to the same modified reservoir, we discussed the influence of photonic band gap and Rabi frequency of the microwave field on the emission spectrum. The emission spectrum is given for different locations of the upper band-edge frequency. With the transition frequencies moving from outside the band gap to inside, the number of peaks decreases in the emission spectrum and the multipeak structure of spectral line is finally replaced by a strong non-Lorentzian shape. With increase of the Rabi frequency of the microwave field, we find the spectral line changes from a multipeak structure to a two-peak structure, originating from the inhibition of spontaneous emission for the corresponding decay channel.

  18. Mapping quantum state dynamics in spontaneous emission

    PubMed Central

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-01-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893

  19. Mapping quantum state dynamics in spontaneous emission.

    PubMed

    Naghiloo, M; Foroozani, N; Tan, D; Jadbabaie, A; Murch, K W

    2016-01-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893

  20. Mapping quantum state dynamics in spontaneous emission

    NASA Astrophysics Data System (ADS)

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-05-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.

  1. Using Spontaneous Emission of a Qubit as a Resource for Feedback Control

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Jezouin, S.; Cottet, N.; Six, P.; Bretheau, L.; Mallet, F.; Sarlette, A.; Rouchon, P.; Huard, B.

    2016-08-01

    Persistent control of a transmon qubit is performed by a feedback protocol based on continuous heterodyne measurement of its fluorescence. By driving the qubit and cavity with microwave signals whose amplitudes depend linearly on the instantaneous values of the quadratures of the measured fluorescence field, we show that it is possible to stabilize permanently the qubit in any targeted state. Using a Josephson mixer as a phase-preserving amplifier, it was possible to reach a total measurement efficiency η =35 %, leading to a maximum of 59% of excitation and 44% of coherence for the stabilized states. The experiment demonstrates multiple-input multiple-output analog Markovian feedback in the quantum regime.

  2. Plasmon-induced modifications in spontaneous emission of fluorophores in controlled nanoscale geometries

    NASA Astrophysics Data System (ADS)

    Lal, Surbhi; Goodrich, Glenn P.; Brinson, Bruce E.; Halas, N. J.

    2004-03-01

    It is well known that a variety of fundamental photophysical processes, such as absorption, fluorescence, and Raman scattering, are greatly substantially modified in the vicinity of metal surfaces or structures such as gratings, island films or colloids. [1] The collective electromagnetic resonances, or plasmon resonances, supported by metallic structures, as well as modifications in the local electromagnetic mode density near these structures, are responsible for influencing the radiating dipole of vicinal fluorophores. Nanoshells are dielectric core-metal shell nanoparticles whose plasmon resonance can be controllably tuned by varying the relative dimensions of its core and shell layers [2]. Nanoshells provide a practical substrate for the systematic investigation of the role of the plasmon-induced near field in fluorescence enhancement and quenching. We have fabricated two systems for the study of lanthanide ions and molecular fluorophores, respectively, at controlled distances above a nanoshell surface. Initial results examining the fluorophore-metal distance dependence and dependence on plasmon resonance detuning with respect to excitations in the fluorophore will be discussed. [1] Moskovits, M., Rev. Mod. Phys. 57, 783 (1985) [2] S. Oldenburg, R. D. Averitt, S. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998); E. Prodan, C. Radloff, N. J. Halas and P. J. Nordlander, Science 301, 419 (2003).

  3. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  4. Using Spontaneous Emission of a Qubit as a Resource for Feedback Control.

    PubMed

    Campagne-Ibarcq, P; Jezouin, S; Cottet, N; Six, P; Bretheau, L; Mallet, F; Sarlette, A; Rouchon, P; Huard, B

    2016-08-01

    Persistent control of a transmon qubit is performed by a feedback protocol based on continuous heterodyne measurement of its fluorescence. By driving the qubit and cavity with microwave signals whose amplitudes depend linearly on the instantaneous values of the quadratures of the measured fluorescence field, we show that it is possible to stabilize permanently the qubit in any targeted state. Using a Josephson mixer as a phase-preserving amplifier, it was possible to reach a total measurement efficiency η=35%, leading to a maximum of 59% of excitation and 44% of coherence for the stabilized states. The experiment demonstrates multiple-input multiple-output analog Markovian feedback in the quantum regime. PMID:27541448

  5. Dynamics of spontaneous otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Bergevin, Christopher; Salerno, Anthony

    2015-12-01

    Spontaneous otoacoustic emissions (SOAEs) have become a hallmark feature in modern theories of an `active' inner ear, given their numerous correlations to auditory function (e.g., threshold microstructure, neurophysiological tuning curves), near universality across tetrapod classes, and physiological correlates at the single hair cell level. However, while several different classes of nonlinear models exist that describe the mechanisms underlying SOAE generation (e.g., coupled limit-cycle oscillators, global standing waves), there is still disagreement as to precisely which biophysical concepts are at work. Such is further compounded by the idiosyncratic nature of SOAEs: Not all ears emit, and when present, SOAE activity can occur at seemingly arbitrary frequencies (though always within the most sensitive range of the audiogram) and in several forms (e.g., peaks, broad `baseline' plateaus). The goal of the present study was to develop new signal processing and stimulation techniques that would allow for novel features of SOAE activity to be revealed. To this end, we analyzed data from a variety of different species: human, lizard, and owl. First, we explored several strategies for examining SOAE waveforms in the absence of external stimuli to further ascertain what constitutes `self-sustained sinusoids' versus `filtered noise'. We found that seemingly similar peaks in the spectral domain could exhibit key differences in the time domain, which we interpret as providing critical information about the underlying oscillators and their coupling. Second, we introduced dynamic stimuli (swept-tones, tone bursts) at a range of levels, whose interaction with SOAEs could be visualized in the time-frequency domain. Aside from offering a readily accessible way to visualize many previously reported effects (e.g., entrainment, facilitation), we observed several new features such as subharmonic distortion generation and competing pulling/pushing effects when multiple tones were

  6. Control of the spontaneous emission from a single quantum dash using a slow-light mode in a two-dimensional photonic crystal on a Bragg reflector

    SciTech Connect

    Chauvin, N.; Fiore, A.; Nedel, P.; Seassal, C.; Ben Bakir, B.; Letartre, X.; Gendry, M.; Viktorovitch, P.

    2009-07-15

    We demonstrate the coupling of a single InAs/InP quantum, emitting around 1.55 {mu}m, to a slow-light mode in a two-dimensional photonic crystal on Bragg reflector. These surface addressable 2.5D photonic crystal band-edge modes present the advantages of a vertical emission and the mode area and localization may be controlled, leading to a less critical spatial alignment with the emitter. An increase in the spontaneous emission rate by a factor of 1.5-2 is measured at low temperature and is compared to the Purcell factor predicted by three-dimensional time-domain electromagnetic simulations.

  7. Ultrafast spontaneous emission source using plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-07-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ~50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  8. Ultrafast spontaneous emission source using plasmonic nanoantennas

    PubMed Central

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core–shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  9. Spontaneous emission and oscillation in a planar microcavity dye laser

    NASA Astrophysics Data System (ADS)

    Osuge, Michihiro; Ujihara, Kikuo

    1994-09-01

    Characteristics of a planar microcavity laser using rhodamine 6G with pulsed excitation is studied. Theoretical aspects of controlled spontaneous emission and oscillation in a planar microcavity laser are discussed. The measured spectrum and the angular divergence of spontaneous emission below threshold are in good agreement with theory. The angular divergence yields the radius of the cavity quasimode. The spontaneous emission coupling ratio obtained from the measured input-output characteristics is in reasonable agreement with the theoretical value. The expression for the coupling ratio derived for a Fabry-Perot-type microcavity is shown to be essentially equal to that of a closed cavity or guided mode cavity derived by Yamamoto, Machida, and Bjoerk (1991). The observed spectral behavior near the threshold approximately follows the Schawlow-Townes formula, but for a limited range of output power. The observed spectrum and divergence above threshold indicate incoherence much worse than the Schawlow-Townes limit.

  10. Photonic Crystals-Inhibited Spontaneous Emission: Optical Antennas-Enhanced Spontaneous Emission

    NASA Astrophysics Data System (ADS)

    Yablonovitch, Eli

    Photonic crystals are also part of everyday technological life in opto-electronic telecommunication devices that provide us with internet, cloud storage, and email. But photonic crystals have also been identified in nature, in the coloration of peacocks, parrots, chameleons, butterflies and many other species.In spite of its broad applicability, the original motivation of photonic crystals was to create a ``bandgap'' in which the spontaneous emission of light would be inhibited. Conversely, the opposite is now possible. The ``optical antenna'' can accelerate spontaneous emission. Over 100 years after the radio antenna, we finally have tiny ``optical antennas'' which can act on molecules and quantum dots. Employing optical antennas, spontaneous light emission can become faster than stimulated emission.

  11. Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser

    SciTech Connect

    Robb, G. R. M.; Bonifacio, R.

    2013-03-15

    We extend previous analyses of spontaneous emission in a quantum free electron laser (QFEL) and competition between spontaneous and coherent QFEL emission to include a broad distribution of photon frequencies and momenta appropriate for spontaneous undulator radiation. We show that although the predictions of monochromatic and broadband models predict different electron momentum distributions for the quantum regime due to spontaneous emission alone after many photon emissions, the inclusion of broadband spontaneous emission has a negligible effect on the competition between spontaneous and coherent emission in the QFEL. Numerical results from both models are well described by the same condition for the threshold/critical value of spontaneous emission rate.

  12. Transformation quantum optics: designing spontaneous emission using coordinate transformations

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Wubs, Martijn; Ginzburg, Pavel; Wurtz, Gregory; Zayats, Anatoly V.

    2016-04-01

    Spontaneous decay is a fundamental quantum property of emitters that can be controlled in a material environment via modification of the local density of optical states (LDOS). Here we use transformation optics methods in order to design required density of states and thus spontaneous emission (SE) rate. Specifically, we show that the SE rate can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of SE. We also discuss how the practical issues, such as dispersion and losses, affect the LDOS in complex materials. Tailoring SE properties using transformation optics approach provides an innovative way for designing emission properties in a complex material environment needed for the development of active nanophotonic devices.

  13. Spontaneous emission from a fractal vacuum

    NASA Astrophysics Data System (ADS)

    Akkermans, Eric; Gurevich, Evgeni

    2013-08-01

    Spontaneous emission of a quantum emitter coupled to a QED vacuum with a deterministic fractal structure of its spectrum is considered. We show that the decay probability does not follow a Wigner-Weisskopf exponential decrease but rather an overall power law behavior with a rich oscillatory structure, both depending on the local fractal properties of the vacuum spectrum. These results are obtained by giving first a general perturbative derivation for short times. Then we propose a simplified model which retains the main features of a fractal spectrum to establish analytic expressions valid for all time scales. Finally, we discuss the case of a Fibonacci cavity and its experimental relevance to observe these results.

  14. Modified spontaneous emissions of europium complex in weak PMMA opals.

    PubMed

    Wang, Wei; Song, Hongwei; Bai, Xue; Liu, Qiong; Zhu, Yongsheng

    2011-10-28

    Engineering spontaneous emission by means of photonic crystals (PHC) is under extensive study. However PHC modification of line emissions of rare earth (RE) ions has not been thoroughly understood, especially in cases of weak opal PHCs and while emitters are well dispersed into dielectric media. In this study, poly-methyl methacrylate (PMMA) opal PHCs containing uniformly dispersed europium chelate were fabricated with finely controlled photonic stop band (PSB) positions. Measurements of luminescent dynamics and angle resolved/integrated emission spectra as well as numerical calculations of total densities of states (DOS) were performed. We determined that in weak opals, the total spontaneous emission rate (SER) of Σ(5)D(0)-(7)F(J) for Eu(3+) was independent of PSB positions but was higher than that of the disordered powder sample, which was attributed to higher effective refractive indices in the PHC rather than PSB effect. Branch SER of (5)D(0)-(7)F(2) for Eu(3+) in the PHCs, on the other hand, was spatially redistributed, suppressed or enhanced in directions of elevated or reduced optical modes, keeping the angle-integrated total unchanged. All the results are in agreement with total DOS approximation. Our paper addressed two unstudied issues regarding modified narrow line emission in weak opal PHCs: firstly whether PSB could change the SER of emitters and whether there exist, apart from PSB, other reasons to change SERs; secondly, while directional enhancement and suppression by PSB has been confirmed, whether the angle-integrated overall effect is enhancing or suppressing. PMID:21938288

  15. Modification and control of coherence effects in the spontaneous emission spectrum of a three-level atom at weak field regime

    NASA Astrophysics Data System (ADS)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2016-09-01

    It has been shown that coherence effects have a marked influence in the spontaneous emission spectrum of a three-level Λ -type atom driven by weak coherent and incoherent fields. Phase dependent evolution of interference effects leading to spectral narrowing, generation of spectral hole and dark line are exhibited in the present scheme when the atom does not interact with the incoherent fields. The basic mechanism underlying this scheme seems to be appropriate for a phaseonium. Apart from phase-coherence introduced in the system the phenomenon of line narrowing, in the presence of weak incoherent pumping, can be achieved in a different way as a consequence of two competitive resonant effects: sharp non-Lorentzian and symmetric Fano-like-resonance contributions to the line shape. In both the situations, the evolution of narrow structures in the line shape can be achieved even when the emission is influenced by the dephasing of Raman coherence.

  16. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  17. Spontaneous emission enhancement in micropatterned GaN

    NASA Astrophysics Data System (ADS)

    Niehus, M.; Sanguino, P.; Monteiro, T.; Soares, M. J.; Schwarz, R.

    2004-10-01

    With two interfering pulses from the fourth harmonic of a Nd-YAG laser we burnt a periodic lattice structure into the surface of GaN thin films. The lattice period of this permanent grating could be controlled between less than one and several tens of microns. Above the decomposition threshold, nitrogen evades from the sample surface, and the residual metallic gallium accumulates in the form of tiny droplets at the surfaces. The patterned structure shows structural similarities with microcavities. The question arises if the residual metallic gallium may act as a partially reflecting mirror. To test this hypothesis, we studied the steady-state and transient photoluminescence through the modulation of light emerging from the ubiquitous broad "yellow" photoluminescence band. The microlattice is evidenced by energy-equidistant spontaneous emission enhancement peaks in the steady-state photoluminescence spectra. We suggest that the partial reflection due to the residual metallic gallium leads to the observed enhancement effect.

  18. Tunable Casimir-Polder Forces and Spontaneous Emission Rates

    NASA Astrophysics Data System (ADS)

    Rosa, Felipe; Kort-Kamp, Wilton; Pinheiro, Felipe; Cysne, Tarik; Oliver, Diego; Farina, Carlos

    2015-03-01

    We investigate the dispersive Casimir-Polder interaction between a Rubidium atom and a graphene sheet subjected to an external magnetic field B. We demonstrate that this concrete physical system allows for a high degree of control of dispersive interactions at micro and nanoscales. Indeed, we show that the application of an external magnetic field can induce a 80 % reduction of the Casimir-Polder energy relative to its value without the field. We also show that sharp discontinuities emerge in the Casimir-Polder interaction energy for certain values of the applied magnetic field at low temperatures. In addition, we also show that atomic spontaneous emission rates can be greatly modified by the action of the magnetic field, with an order of magnitude enhancement or suppression depending on the dipole's moment orientation.

  19. Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    PubMed Central

    Shiri, Daryoush; Verma, Amit; Selvakumar, C. R.; Anantram, M. P.

    2012-01-01

    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires. PMID:22708056

  20. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Krishna, Koduru Hari; De Luca, Antonio; Strangi, Giuseppe

    2014-01-01

    Hyperbolic metamaterial (HMM), a sub-wavelength periodic artificial structure with hyperbolic dispersion, can enhance the spontaneous emission of quantum emitters. Here, we demonstrate the large spontaneous emission rate enhancement of an organic dye placed in a grating coupled hyperbolic metamaterial (GCHMM). A two-dimensional (2D) silver diffraction grating coupled with an Ag/Al2O3 HMM shows 18-fold spontaneous emission decay rate enhancement of dye molecules with respect to the same HMM without grating. The experimental results are compared with analytical models and numerical simulations, which confirm that the observed enhancement of GCHMM is due to the outcoupling of non-radiative plasmonic modes as well as strong plasmon-exciton coupling in HMM via diffracting grating. PMID:25209102

  1. Photoluminescence and spontaneous emission enhancement in metamaterial nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, M. R.; Cox, J. D.; Brzozowski, M.

    2014-02-01

    We present a theory for the photoluminescence (PL) and spontaneous emission of semiconductor nanoparticles (quantum dots—QDS) doped in a metamaterial heterostructure. The heterostructure is formed by fabricating a split-ring resonator and metallic rod metamaterial on a dielectric substrate. QDs are doped near the interface in the heterostructure. Our results indicate that the PL and spontaneous emission of the QDs are enhanced in the presence of the metamaterial when the exciton and surface plasmon frequencies are resonant. These findings are consistent with recent experimental studies. The present study can be used to make new types of nanoscale optical devices for sensing, switching and imaging applications based on metamaterials.

  2. QED (quantum-electrodynamical) theory of excess spontaneous emission noise

    SciTech Connect

    Milonni, P.W.

    1990-01-01

    The results of a quantum-electrodynamical theory of excess spontaneous emission noise in lossy resonators will be presented. The Petermann K factor'' does not enter into the spontaneous emission rate of a single atom in the cavity. The QED theory allows different interpretations of the K factor, and we use this fact to justify semiclassical analyses and to provide in one example a simple derivation of K in terms of the amplification of the quantum vacuum field entering the resonator through its mirrors. 17 refs.

  3. Picosecond time of spontaneous emission in plasmonic patch nanoantennas

    NASA Astrophysics Data System (ADS)

    Eliseev, S. P.; Vitukhnovsky, A. G.; Chubich, D. A.; Kurochkin, N. S.; Sychev, V. V.; Marchenko, A. A.

    2016-01-01

    A significant (to 12 ps) decrease in the lifetime of excited states of quantum emitters in the form of three-layer colloidal quantum dots (CdSe/CdS/ZnS) placed in an aluminum-triangular silver nanoprism cavity (patch nanoantenna) has been experimentally demonstrated. The decrease in the time of spontaneous emission of quantum dots has been explained by the Purcell effect. The Purcell coefficient for an emitter in the resonator has been found to be 625. Such a significant increase in the rate of spontaneous emission in the patch nanoantenna is due to an increase in the local density of photon states in the plasmonic cavity.

  4. Spontaneous Radio Frequency Emissions from Natural Aurora. Chapter 4

    NASA Technical Reports Server (NTRS)

    LaBelle, J.

    2009-01-01

    At high latitudes, suitably sensitive radio experiments tuned below 5 MHz detect up to three types of spontaneous radio emissions from the Earth s ionosphere. In recent years, ground-based and rocket-borne experiments have provided strong evidence for theoretical explanations of the generation mechanism of some of these emissions, but others remain unexplained. Achieving a thorough understanding of these ionospheric emissions, accessible to ground-based experiments, will not only bring a deeper understanding of Earth s radio environment and the interactions between waves and particles in the ionosphere but also shed light on similar spontaneous emissions occurring elsewhere in Earth s environment as well as other planetary and stellar atmospheres.

  5. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  6. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  7. Spontaneous emission of the non-Wiener type

    SciTech Connect

    Basharov, A. M.

    2011-09-15

    The spontaneous emission of a quantum particle and superradiation of an ensemble of identical quantum particles in a vacuum electromagnetic field with zero photon density are examined under the conditions of significant Stark particle and field interaction. New fundamental effects are established: suppression of spontaneous emission by the Stark interaction, an additional 'decay' shift in energy of the decaying level as a consequence of Stark interaction unrelated to the Lamb and Stark level shifts, excitation conservation phenomena in a sufficiently dense ensemble of identical particles and suppression of superradiaton in the decay of an ensemble of excited quantum particles of a certain density. The main equations describing the emission processes under conditions of significant Stark interaction are obtained in the effective Hamiltonian representation of quantum stochastic differential equations. It is proved that the Stark interaction between a single quantum particle and a broadband electromagnetic field is represented as a quantum Poisson process and the stochastic differential equations are of the non-Wiener (generalized Langevin) type. From the examined case of spontaneous emission of a quantum particle, the main rules are formulated for studying open systems in the effective Hamiltonian representation.

  8. Spontaneous emission of the non-Wiener type

    NASA Astrophysics Data System (ADS)

    Basharov, A. M.

    2011-09-01

    The spontaneous emission of a quantum particle and superradiation of an ensemble of identical quantum particles in a vacuum electromagnetic field with zero photon density are examined under the conditions of significant Stark particle and field interaction. New fundamental effects are established: suppression of spontaneous emission by the Stark interaction, an additional "decay" shift in energy of the decaying level as a consequence of Stark interaction unrelated to the Lamb and Stark level shifts, excitation conservation phenomena in a sufficiently dense ensemble of identical particles and suppression of superradiaton in the decay of an ensemble of excited quantum particles of a certain density. The main equations describing the emission processes under conditions of significant Stark interaction are obtained in the effective Hamiltonian representation of quantum stochastic differential equations. It is proved that the Stark interaction between a single quantum particle and a broadband electromagnetic field is represented as a quantum Poisson process and the stochastic differential equations are of the non-Wiener (generalized Langevin) type. From the examined case of spontaneous emission of a quantum particle, the main rules are formulated for studying open systems in the effective Hamiltonian representation.

  9. A hybrid nanoantenna for highly enhanced directional spontaneous emission

    SciTech Connect

    Chou, R. Yuanying; Lu, Guowei Shen, Hongming; He, Yingbo; Cheng, Yuqing; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gong, Qihuang

    2014-06-28

    Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO{sub 2} thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.

  10. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  11. Demonstration of photon-echo rephasing of spontaneous emission.

    PubMed

    Beavan, Sarah E; Hedges, Morgan P; Sellars, Matthew J

    2012-08-31

    In this paper we report the first demonstration of "rephased amplified spontaneous emission" (RASE) with photon-counting detection. This protocol provides an all-in-one photon-pair source and quantum-memory that has applications as a quantum repeater node. The RASE protocol is temporally multimode, and in this demonstration the photon echo was generated in a way that is spatially multimode and includes intermediate storage between two potentially long-lived spin states. A correlation between spontaneous emission and its photon echo was observed, using an ensemble of Pr(3+) ions doped into a Y2SiO5 crystal. Alterations that would allow for the measurement of nonclassical correlations are identified. These should generally apply for future experiments in rare-earth ion crystals, which are promising systems for implementing highly-multiplexed quantum repeater operations. PMID:23002833

  12. Electrically induced spontaneous emission in open electronic system

    NASA Astrophysics Data System (ADS)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  13. Comprehensive, nonintercepting electron-beam diagnostics using spontaneous emission

    SciTech Connect

    Lumpkin, A.H.

    1989-01-01

    Characterization and optimization of electron-beam parameters are important aspects of optimizing free-electron laser (FEL) performance. The visible spontaneous emission ({lambda}{approximately}650 nm) from the 5-meter long undulator of the Boeing FEL experiment can be characterized in sufficient detail with a streak/spectrometer to deduce time-resolved electron-beam spatial position and profile, micropulse duration, and energy. 7 refs., 13 figs., 2 tabs.

  14. ``Excess'' polarization of the spontaneous emission in laser heterostructures

    NASA Astrophysics Data System (ADS)

    Ptashchenko, A. A.; Ptashchenko, F. A.

    1996-10-01

    "Excess" polarization of the spontaneous emission (EPSE) of diode lasers at low injection levels, being more pronounced in degraded specimens, has been observed. A model of EPSE is proposed, involving tunnel radiative recombination of electrons and light holes at inhomogeneities of the p- n junction. Separating EPSE from the polarization effect caused by elastic deformation enables the strain in the active region of laser heterostructures to be determined.

  15. Engineering Filters for Reducing Spontaneous Emission in cQED

    NASA Astrophysics Data System (ADS)

    Bronn, Nicholas; Masluk, Nicholas; Srinivasan, Srikanth; Chow, Jerry; Abraham, David; Rothwell, Mary; Keefe, George; Gambetta, Jay; Steffen, Matthias; Lirakis, Chris

    2014-03-01

    Inserting a notch filter between a qubit and the external environment at the qubit frequency can significantly suppress spontaneous emission mediated by the cavity (``Purcell effect''). In order to realize this filtering in multi-qubit architectures, where space comes at a premium, we will present a filter with minimal space requirements. We acknowledge support from IARPA under contract W911NF-10-1-0324.

  16. Spontaneous pion emission as a new natural radioactivity

    NASA Astrophysics Data System (ADS)

    Ion, D. B.; Ivascu, M.; Ion-Mihai, R.

    1986-10-01

    In this paper the pionic nuclear radioactivity or spontaneous poin emission by a nucleus from its ground state is investigated. The Qπ-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z > 80. This new type of natural radioactivity is statistically favored especially for Z = 92 - 106 for which F π/F SF = 40 - 200 [ MeV] 2. Experimental detection of the neutral pion and also some possible emission mechanisms are discussed.

  17. 2-.mu.m fiber amplified spontaneous emission (ASE) source

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Wu, Jianfeng (Inventor); Geng, Jihong (Inventor)

    2007-01-01

    A 2-.mu.m fiber Amplified Spontaneous Emission (ASE) source provides a wide emission bandwidth and improved spectral stability/purity for a given output power. The fiber ASE source is formed from a heavy metal oxide multicomponent glass selected from germanate, tellurite and bismuth oxides and doped with high concentrations, 0.5-15 wt. %, thulium oxides (Tm.sub.2O.sub.3) or 0.1-5 wt% holmium oxides (Ho.sub.2O.sub.3) or mixtures thereof. The high concentration of thulium dopants provide highly efficient pump absorption and high quantum efficiency. Co-doping of Tm and Ho can broaden the ASE spectrum.

  18. Highly enhanced spontaneous emission with nanoshell-based metallodielectric hybrid antennas

    NASA Astrophysics Data System (ADS)

    Cheng, Yuqing; Lu, Guowei; shen, Hongming; Wang, Yuwei; He, Yingbo; Chou, R. Yuanying; Gong, Qihuang

    2015-09-01

    The metallodielectric hybrid nanoantenna integrating plasmonic nanostructures with dielectric planar substrate can improve the spontaneous emission greatly. We demonstrated that the performances of the hybrid antenna can be substantially optimized with specific plasmonic nanostructures by employing finite-difference time-domain method. The hybrid antenna with core-shell nanostructure can enhance spontaneous emission greatly rather than the individual spherical nanoparticle. Moreover, the performances of the hybrid antenna can be boosted further through using asymmetrical nanoshell. The mechanism of the high enhancement effect is due to the hybrid structure being able to couple efficiently with the electric field by a larger dipolar moment. And the emission directivity of the hybrid antenna is able to be modified by adjusting the geometry of the plasmonic nanostructures. The results should be beneficial for various fundamental and applied research fields, including single molecule fluorescence and surface enhance Raman spectroscopy, etc. The enhancement of spontaneous emission is in demand in fundamental interests and various applied research fields. However, the electromagnetic enhancement of single plasmonic nanostructure is limited due to intrinsic loss of metal materials and quantum tunneling effect which also limits the ability of enhancement of spontaneous emission. Interestingly, it was found that hybrid structures can provide higher enhancement effect. This study is about a kind new type of optical antenna to control spontaneous emission of single emitter, i.e. a metallodielectric hybrid nanoantenna integrating plasmonic nanostructures with dielectric planar substrate which can improve the spontaneous emission greatly. We demonstrated that the performances of the hybrid antenna can be substantially optimized with specific plasmonic nanostructures by employing finite-difference time-domain method. The hybrid antenna with core-shell nanostructure can enhance

  19. Insect spontaneous ultraweak photon emission as an indicator of insecticidal compounds.

    PubMed

    Tian, Yongqing; Yang, Chuping; Xu, Hanhong

    2014-11-01

    The influence of beta-cypermethrin, a commercial insecticide, and Cicuta virosa L. var. latisecta Celak (Umbelliferae:Cicutal), an insecticidal plant, on the spontaneous ultraweak photon emissions from larvae of Spodoptera litura Fabricius and Zophobas morio Fabricius were studied. The increased percentages of spontaneous photon emission intensities from S. litura treated with 0.1 and 1 μg/ml beta-cypermethrin were both lower than those of the control in the 24 post-treatment hours, remarkable difference could also be observed during the same period from Z. morio treated with beta-cypermethrin at 0.156, 0.313 and 0.625 μg/ml. The increased percentages of spontaneous photon emission intensities from the two mentioned insects treated with 10,100 and 1000 μg/ml petroleum ether fraction of C. virosa L. var. latisecta, which displayed little activity against whole insects, could also be changed noticeably. The present study indicated that change in the intensity of spontaneous ultraweak photon emission from insect could be used as a novel method for screening insecticidal compounds with very low content in plant. PMID:25108203

  20. Plasmonic nanogaps for broadband and large spontaneous emission rate enhancement

    SciTech Connect

    Edwards, Anthony P.; Adawi, Ali M.

    2014-02-07

    We present the optical properties of a plasmonic nanogap formed between a silver metallic nanoparticle and an extended silver film that shows a strong enhancement in the spontaneous emission rate over the whole visible range. In particular, we use three-dimensional finite difference time domain calculations to study the spontaneous emission rate and the quantum efficiency of an emitting material placed within the gap region as a function of the geometrical parameters of the plasmonic nanogap. Our calculations reveal that the enhancements in the total decay rate can be divided into two regions as a function of wavelength; region I spans the wavelength range from 350 nm to 500 nm and peaks at approximately at 400 nm. Region II covers the spectral range between 500 nm and 1000 nm. The enhancements in total decay rate in region I are mainly dominated by Ohmic losses by the metal, while the enhancements in total decay rate in region II are mainly dominated by radiative decay rate enhancements. Furthermore, our calculations show over 100 times enhancement in the spontaneous emission rate in region II. We combine this with quantum efficiency enhancements of almost 30 times from materials with low intrinsic quantum efficiencies and only a small reduction in efficiency from those with high intrinsic quantum efficiencies. All results appear easily achievable using realistic geometrical parameters and simple synthesis techniques. These results are attributed to the strong field confinements in the nanogap region. The structures are of high interest for both the fundamental understanding of light mater interactions under extreme electromagnetic field confinements and also potential applications in quantum optics and Raman spectroscopy.

  1. Amplified spontaneous emission in the spiropyran-biopolymer based system

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Sznitko, Lech; Bartkiewicz, Stanislaw; Miniewicz, Andrzej; Essaidi, Zacaria; Kajzar, Francois; Sahraoui, Bouchta

    2009-06-01

    Amplified spontaneous emission (ASE) phenomenon in the 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indolin] organic dye dispersed in a solid matrix has been observed. The biopolymer system deoxyribonucleic acid blended with cationic surfactant molecule cetyltrimethyl-ammonium chloride served as a matrix. ASE appeared under sample excitation by UV light pulses (λ =355 nm) coming from nanosecond or picosecond neodymium doped yttrium aluminum garnet lasers and has been reinforced with green (λ =532 nm) light excitation followed UV light pulse. The ASE characteristics in function of different excitation pulse energies as well as signal gain were measured.

  2. Spontaneous pion emission as a new natural radioactivity

    SciTech Connect

    Ion, D.B.; Ivascu, M.; Ion-Mihai, R.

    1986-10-15

    In this paper the pionic nuclear radioactivity or spontaneous pion emission by a nucleus from its ground state is investigated. The Q/sub ..pi../-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z>80. This new type of natural radioactivity is statistically favored especially for Z = 92-106 for which F/sub ..pi..//F/sub S//sub F/ = 40-200 (MeV)/sup 2/. Experimental detection of the neutral pion and also some possible emission mechanisms are discussed.

  3. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  4. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  5. TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation

    PubMed Central

    Zachary, Christopher B.; Gustavsson, Morgan

    2012-01-01

    Background and Objective Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable’ device. Study Design/Material and Methods This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion Considering the characteristics and parameters of Traser technology, it is possible that this one device would likely be able to replace the pulsed dye laser and many other light based systems. PMID:22558261

  6. Spontaneous emission enhancement of colloidal CdSe nanoplatelets

    NASA Astrophysics Data System (ADS)

    Yang, Zhili; Pelton, Matthew; Waks, Edo

    Colloidal CdS /CdSe/CdS nanoplatelets synthesized recently are high efficient nano-emitters and gain media for nanoscale lasers and other nonlinear optical devices. They are characterized as quantum well structure due to energy gap difference between core CdSe and shell CdS, of which the luminescent wavelength could be tuned precisely by their thickness of growth. However, the influence of environment on the material's optical properties and further enhancement of the emission to implement nanoscale systems remains to be investigated. Here we demonstrate spontaneous emission rate enhancement of these CdSe nanoplatelets coupled to a photonic crystal cavity. We show clearly the photoluminescent spectrum modification of the nanoplatelets emission and an averaged Purcell enhancement factor of 3.1 is achieved when they are coupled to carefully-designed nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our experiment of lifetime measurement. Also the phenomenon of cavity quality factor increasing is observed when increasing intensity of pumping, which attributes to saturable absorption of the nanoplatelets. Our success in enhancement of emission from these nanoplatelets here paves the road to realize actual nanoscale integrated systems such as ultra-low threshold micro-cavity lasers.

  7. The amplified spontaneous emission in EDF with small pulse pump

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wu, Chongqing; Liu, Lanlan; Wang, Zhi; Sun, Zhenchao; Mao, Yaya

    2012-11-01

    The amplified Spontaneous Emission (ASE) is the important noise source for EDFA, affecting the EDFA based fiber laser seriously. The theory and practice have shown that the ASE is closely related with pump methods, so the study on the ASE of EDF under the condition of the pulse pumping has important academic significations. What's more, the mode-locked laser based on EDFA fiber ring could be pumping by the pulse to realized mode-lock, and the ASE will impact its characteristics. In this paper, the effects of pump pulse with different width and amplitude on the ASE were investigated by the theoretical and experiment methods. Beginning with the carrier density rate equation, we can get each level of the distribution of the number of particles carriers along with the change of time based on the relationship between the average number of photons of the spontaneous radiation and the number of particles carriers distribution. An approximate analytic solution of output ASE noise average is derived when pump signal is small.Building an experimental system, the results show that the output amplitude of ASE is proportional to the input width of pump pulse when the pump pulse is small. It's also shows that the output amplitude of ASE is proportional to the input amplitude of pump pulse. The new phenomena can be used for the all-optical measurement of a pulse width.

  8. Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko.

    PubMed

    Stewart, C E; Hudspeth, A J

    2000-01-01

    The high sensitivity and sharp frequency discrimination of hearing depend on mechanical amplification in the cochlea. To explore the basis of this active process, we examined the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly modulated by drugs that affect mammalian otoacoustic emissions, the salicylates and the aminoglycoside antibiotics. The effect of a single i.p. injection of sodium salicylate depended on the initial power of the emissions: ears with strong control SOAEs displayed suppression at all frequencies, whereas those with weak control emissions showed enhancement. Repeated oral administration of acetylsalicylic acid reduced all emissions. Single i.p. doses of gentamicin or kanamycin suppressed SOAEs below 2.6 kHz, while modulating those above 2.6 kHz in either of two ways. For ears whose emission power at 2.6-5.2 kHz encompassed more than half of the total, individual emissions displayed facilitation as great as 35-fold. For the remaining ears, emissions dropped to as little as one-sixth of their initial values. The similarity of the responses of reptilian and mammalian cochleas to pharmacological intervention provides further evidence for a common mechanism of cochlear amplification. PMID:10618439

  9. Temperature quenching of spontaneous emission in tunnel-injection nanostructures

    SciTech Connect

    Talalaev, V. G. Novikov, B. V.; Cirlin, G. E.; Leipner, H. S.

    2015-11-15

    The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor S{sub T} of the integrated intensity I is S{sub T} = I{sub 5}/I{sub 295} ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.

  10. Long-term stability of spontaneous otoacoustic emissions

    PubMed Central

    Burns, Edward M.

    2009-01-01

    Spontaneous otoacoustic emissions (SOAEs) were measured longitudinally for durations up to 19.5 years. Initial ages of the subjects ranged from 6 to 41 years. The most compelling finding was a decrease in frequency of all emissions in all subjects, which was approximately linear in %∕year and averaged 0.25%∕year. SOAE levels also tended to decrease with age, a trend that was significant, but not consistent across emissions, either within or across subjects. Levels of individual SOAEs might decrease, increase, or remain relatively constant with age. Several types of frequency∕level instabilities were noted in which some SOAEs within an ear interacted such that their levels were negatively correlated. These instabilities often persisted for many years. SOAEs were also measured in two females over the course of their pregnancies. No changes in SOAE levels or frequencies were seen, that were larger than have been reported in females over a menstrual cycle, suggesting that levels of female gonadal hormones do not have a significant direct effect on SOAE frequencies or levels. PMID:19425659

  11. Sex and Ear Differences in Spontaneous and Click-Evoked Otoacoustic Emissions in Young Adults

    ERIC Educational Resources Information Center

    Snihur, Adrian W. K.; Hampson, Elizabeth

    2011-01-01

    Effects of sex and handedness on the production of spontaneous and click-evoked otoacoustic emissions (OAEs) were explored in a non-hearing impaired population (ages 17-25 years). A sex difference in OAEs, either produced spontaneously (spontaneous OAEs or SOAEs) or in response to auditory stimuli (click-evoked OAEs or CEOAEs) has been reported in…

  12. High spectral density transmission emulation using amplified spontaneous emission noise.

    PubMed

    Elson, Daniel J; Galdino, Lidia; Maher, Robert; Killey, Robert I; Thomsen, Benn C; Bayvel, Polina

    2016-01-01

    We demonstrate the use of spectrally shaped amplified spontaneous emission (SS-ASE) noise for wideband channel loading in the investigation of nonlinear transmission limits in wavelength-division multiplexing transmission experiments using Nyquist-spaced channels. The validity of this approach is explored through statistical analysis and experimental transmission of Nyquist-spaced 10 GBaud polarization-division multiplexing (PDM) quadrature phase-shift keying and PDM-16-ary quadrature amplitude modulation (QAM) channels, co-propagated with SS-ASE over single mode fiber. It is shown that this technique, which is simpler to implement than a fully modulated comb of channels, is valid for distances exceeding 240 km for PDM-16QAM with dispersion of 16 ps/nm/km, yields a good agreement with theory, and provides a conservative measure of system performance. PMID:26696160

  13. WDM optical steganography based on amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Tait, Alexander N; Chang, Matthew P; Prucnal, Paul R

    2014-10-15

    We propose and experimentally demonstrate a wavelength-division multiplexed (WDM) optical stealth transmission system carried by amplified spontaneous emission (ASE) noise. The stealth signal is hidden in both time and frequency domains by using ASE noise as the signal carrier. Each WDM channel uses part of the ASE spectrum, which provides more flexibility to apply stealth transmission in a public network and adds another layer of security to the stealth channel. Multi-channel transmission also increases the overall channel capacity, which is the major limitation of the single stealth channel transmission based on ASE noise. The relations between spectral bandwidth and coherence length of ASE carrier have been theoretically analyzed and experimentally investigated. PMID:25361121

  14. Optical steganography based on amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Tian, Yue; Fok, Mable P; Shastri, Bhavin J; Kanoff, Daniel R; Prucnal, Paul R

    2013-01-28

    We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called "stealth" or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver. PMID:23389187

  15. Frequency Clustering in Spontaneous Otoacoustic Emissions from a Lizard's Ear

    PubMed Central

    Vilfan, Andrej; Duke, Thomas

    2008-01-01

    Spontaneous otoacoustic emissions (SOAEs) are indicators of an active process in the inner ear that enhances the sensitivity and frequency selectivity of hearing. They are particularly regular and robust in certain lizards, so these animals are good model organisms for studying how SOAEs are generated. We show that the published properties of SOAEs in the bobtail lizard are wholly consistent with a mathematical model in which active oscillators, with exponentially varying characteristic frequencies, are coupled together in a chain by visco-elastic elements. Physically, each oscillator corresponds to a small group of hair cells, covered by a tectorial sallet, so our theoretical analysis directly links SOAEs to the micromechanics of active hair bundles. PMID:18689448

  16. Two-atom spontaneous emission in a planar microcavity

    SciTech Connect

    Ujihara, Kikuo; Dung, Ho Trung

    2002-11-01

    Spontaneous emission in a planar microcavity by two identical and spatially separated two-level atoms, both of them initially excited, is considered under fourth-order perturbation approximation in atom-field coupling constants. A delay-differential equation with proper retardation times for the probability of both atoms in the upper state is derived and expressions for the emitted-light intensity and spectrum are given. It is numerically shown that, while two-atom cooperation is enhanced for small interatomic distances, the two-atom vacuum Rabi oscillation is somewhat suppressed compared to the single-atom oscillation level when the interatomic separation is close to the cavity transverse coherence length.

  17. Amplified spontaneous emission of pyranyliden derivatives in PVK matrix

    NASA Astrophysics Data System (ADS)

    Vembris, Aivars; Zarinsh, Elmars; Kokars, Valdis

    2016-04-01

    One of the well-known red light emitting laser dyes is 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4Hpyran (DCM). Amplified spontaneous emission (ASE) has been widely investigated of DCM molecules or its derivatives in polymer or low molecular weight matrix. The main issue for these molecules is aggregation which limits doping concentration in matrix. Lowest ASE threshold values within concentration range of 2 and 4 wt% were obtained. In this work ASE properties of two original DCM derivatives in poly(N-vinylcarbazole) (PVK) at various concentrations will be discussed. One of the derivatives is the same DCM dye with replaced butyl groups at electron donor part with bulky trytiloxyethyl groups (DWK-1). These groups do not influence electron transitions in the dye but prevent aggregation of the molecules. Second derivative (DWK-2) consists of two equal donor groups with the attached trytiloxyethyl groups. All results were compared with DCM:PVK system. Photoluminescence quantum yield (PLQY) is almost three times larger for DWK-1 concentration up to 20wt% with respect to DCM systems. PLQY was saturated on 0.06 at higher DWK-1 concentrations. Bulky trytiloxyethyl groups prevent aggregation of the molecules thus decreasing interaction between dyes and numbers of non-radiative decays. Red shift of photoluminescence and amplified spontaneous emission at higher concentrations were observed due to the solid state solvation effect. Increases of dye density in matrix with smaller lose in PLQY resulted in low ASE threshold energy. The lowest threshold value was obtained around 29 μJ/cm2 in DWK-1:PVK films.

  18. Spontaneous emission and the operation of invisibility cloaks

    NASA Astrophysics Data System (ADS)

    Morshed Behbahani, Mina; Amooghorban, Ehsan; Mahdifar, Ali

    2016-07-01

    As a probe to explore the ability of invisibility cloaks to conceal objects in the quantum mechanics domain, we study the spontaneous emission rate of an excited two-level atom in the vicinity of an ideal invisibility cloaking. On this base, first, a canonical quantization scheme is presented for the electromagnetic field interacting with atomic systems in an anisotropic, inhomogeneous, and absorbing magnetodielectric medium which can suitably be used for studying the influence of arbitrary invisibility cloak on the atomic radiative properties. The time dependence of the atomic subsystem is obtained in the Schrodinger picture. By introducing a modified set of the spherical wave-vector functions, the Green tensor of the system is calculated via exact and discrete methods. In this formalism, the decay rate and as well the emission pattern of the aforementioned atom are computed analytically for both weak and strong coupling interaction, and then numerically calculations are done to demonstrate the performances of cloaking in the quantum mechanics domain. Special attention is paid to different possible orientations and locations of the atomic system near the spherical invisibility cloaking. Results in the presence and the absence of the invisibility cloak are compared. We find that the cloak works very well far from its resonance frequency to conceal a macroscopic object, whereas at near the resonance frequency the object is more visible than the situation where the object is not covered by the cloak.

  19. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope

    PubMed Central

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application. PMID:25234712

  20. Dynamics of Relaxation Processes of Spontaneous Otoacoustic Emissions

    NASA Astrophysics Data System (ADS)

    Murphy, William James

    The dynamical response of spontaneous otoacoustic emissions (SOAEs) to suppression by ipsilateral pulsed external tones of different frequencies and levels is investigated in nine female subjects under normal conditions and in four female subjects during periods when aspirin is being administered. A simple Van der Pol limit-cycle oscillator driven by an external tone is used as an interpretive model. Typical results for both the onset of, and recovery from suppression yield 1/r_1 (where -r_1 is the negative linear component of the damping function) in the range of 2-25 msec. In accordance with the predictions of the model: (a) the relaxation time for the onset of suppression increases with the amount of suppression induced by the external tone, (b) the values of r _1 and the amplitudes of the unsuppressed emissions exhibit an inverse correlation, (c) the values inferred for r_1 are not significantly dependent on the frequency of the pulsed suppressor tone and (d) the inferred r_1 values are not significantly dependent upon the amount of suppression. In investigations involving subjects under aspirin administration, the changes in the relaxation time constants indicate that the main effect of aspirin administration is to reduce the negative damping parameter r_1. The salicylate is apparently not metabolized in some subjects whose emissions are negligibly affected by aspirin administration. A modification of the single-oscillator model is used to describe pulsed suppression data obtained from a primary SOAE (2545 Hz) which is suppressed by a neighboring secondary emission (2895 Hz). The response of the SOAE amplitude during pulsed suppression is modeled by a pair of Van der Pol limit-cycle oscillators with the primary oscillator linearly coupled to the displacement of the secondary higher-frequency one. The relaxation time constants for the onset of, and recovery from, suppression are 4.5 and 4.8 msec, respectively, for the primary SOAE and 7.5 and 10.5 msec for the

  1. Amplified spontaneous emission and lasing in colloidal nanoplatelets.

    PubMed

    Guzelturk, Burak; Kelestemur, Yusuf; Olutas, Murat; Delikanli, Savas; Demir, Hilmi Volkan

    2014-07-22

    Colloidal nanoplatelets (NPLs) have recently emerged as favorable light-emitting materials, which also show great potential as optical gain media due to their remarkable optical properties. In this work, we systematically investigate the optical gain performance of CdSe core and CdSe/CdS core/crown NPLs having different CdS crown size with one- and two-photon absorption pumping. The core/crown NPLs exhibit enhanced gain performance as compared to the core-only NPLs due to increased absorption cross section and the efficient interexciton funneling, which is from the CdS crown to the CdSe core. One- and two-photon absorption pumped amplified spontaneous emission thresholds are found as low as 41 μJ/cm(2) and 4.48 mJ/cm(2), respectively. These thresholds surpass the best reported optical gain performance of the state-of-the-art colloidal nanocrystals (i.e., quantum dots, nanorods, etc.) emitting in the same spectral range as the NPLs. Moreover, gain coefficient of the NPLs is measured as high as 650 cm(-1), which is 4-fold larger than the best reported gain coefficient of the colloidal quantum dots. Finally, we demonstrate a two-photon absorption pumped vertical cavity surface emitting laser of the NPLs with a lasing threshold as low as 2.49 mJ/cm(2). These excellent results are attributed to the superior properties of the NPLs as optical gain media. PMID:24882737

  2. Efficient computation of spontaneous emission dynamics in arbitrary photonic structures

    NASA Astrophysics Data System (ADS)

    Teimourpour, M. H.; El-Ganainy, R.

    2015-12-01

    Defining a quantum mechanical wavefunction for photons is one of the remaining open problems in quantum physics. Thus quantum states of light are usually treated within the realm of second quantization. Consequently, spontaneous emission (SE) in arbitrary photonic media is often described by Fock space Hamiltonians. Here, we present a real space formulation of the SE process that can capture the physics of the problem accurately under different coupling conditions. Starting from first principles, we map the unitary evolution of a dressed two-level quantum emitter onto the problem of electromagnetic radiation from a self-interacting complex harmonic oscillator. Our formalism naturally leads to an efficient computational scheme of SE dynamics using finite difference time domain method without the need for calculating the photonic eigenmodes of the surrounding environment. In contrast to earlier investigations, our computational framework provides a unified numerical treatment for both weak and strong coupling regimes alike. We illustrate the versatility of our scheme by considering several different examples.

  3. Prompt Neutron Emission in 252CF Spontaneous Fission

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Oberstedt, S.; Zeynalov, Sh.

    2011-10-01

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics. The goal was to compare the results from digital data acquisition and digital signal processing analysis with results of the pioneering work of Budtz-Jørgensen and Knitter. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 107 fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The results are in very good agreement with literature. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  4. Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    SciTech Connect

    Bradshaw, Douglas H.; Di Rosa, Michael D.

    2011-05-15

    Anomalously dispersive cavities, particularly white-light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, they have been proposed for use in laser interferometer gravitational-wave observatory (LIGO)-like gravity-wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed ({h_bar}/2{pi}){omega}/2. For white-light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.

  5. A coupling model for amplified spontaneous emission in laser resonators

    NASA Astrophysics Data System (ADS)

    Su, Hua; Wang, Xiaojun; Shang, Jianli; Yu, Yi; Tang, Chun

    2015-10-01

    The competition between amplified spontaneous emission (ASE) and main laser in solid-state laser resonators is investigated both theoretically and experimentally. A coupled model using the spatial volume integral instead of the Monte Carlo type raytrace technique is proposed to depict ASE in the laser resonators. This model is able to evaluate all possible reflections at both the polishing surface and the diffusive side, to calculate ASE for an inhomogeneous gain distribution, and to include the spectral correction. An experiment is carefully designed to verify the theoretical model and to investigate the distinct physical properties caused by the coupling between ASE and the laser oscillations. The experimental data exhibit an excellent agreement with the theoretical predictions. According to that model, we confirm that ASE in thin-disk lasers can be characterized approximately by the product of the threshold gain of the resonator and the diameter of the disks, as laser modes are highly overlapped with the pumping beam. Theoretical evaluation shows that the scattering characteristic of the disk side impacts on ASE significantly. Furthermore, we point out that ASE decreases output laser power by affecting threshold pumping power, while slope efficiency is not changed by ASE. This observation provides us with a simple way to estimate the decrease of the optical efficiency by ASE.

  6. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    NASA Astrophysics Data System (ADS)

    Lazzarino, L. L.; Di Palma, E.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Dattoli, G.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Giannessi, L.; Mostacci, A.; Musumeci, P.; Petralia, A.; Petrillo, V.; Pompili, R.; Rau, J. V.; Rossi, A. R.; Sabia, E.; Vaccarezza, C.; Villa, F.

    2014-11-01

    We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL) device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line "simulation" of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  7. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; And Others

    This publication contains instructional materials for both teachers and students for a course in automotive emission control. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes 16 units. Each instructional unit includes some or all of the basic components of a…

  8. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; Ragazzi, Ronald

    This guide designed to assist teachers in improving instruction in the area of automotive emission control curriculum includes four areas. Each area consists of one or more units of instruction, with each instructional unit including some or all of the following basic components: Performance objectives, suggested activities for teacher and…

  9. Extracting photon periodic orbits from spontaneous emission spectra in laterally confined vertically emitted cavities.

    PubMed

    Chen, Yung-Fu; Yu, Yan-Ting; Huang, Yu-Jen; Chiang, Po-Yi; Su, Kuan-Wei; Huang, Kai-Feng

    2010-08-15

    We report our observation of the signature of photon periodic orbits in the spontaneous emission spectra of large-aperture vertical-cavity surface-emitting lasers (VCSELs). The high-resolution measurement clearly demonstrates that over a thousand cavity modes with a narrow linewidth can be perfectly exhibited in the spontaneous emission spectrum just below the lasing threshold. The Fourier-transformed spectrum is analyzed to confirm that the spontaneous emission spectra of large-aperture VCSELs can be exploited to analogously investigate the energy spectra of the 2D quantum billiards. PMID:20717436

  10. Spectral modulation of higher harmonic spontaneous emission from an optical klystron.

    PubMed

    Sei, Norihiro; Ogawa, Hiroshi; Yamada, Kawakatsu; Koike, Masaki; Ohgaki, Hideaki

    2014-07-01

    Higher harmonics of spontaneous emission from an optical klystron have been observed. The modulation factor of the spontaneous emission spectrum for the higher harmonics can be described by considering the observation system. When the dispersive gap of the optical klystron was fixed, the microstructure interval of the spontaneous emission spectrum at a certain resonant wavelength became narrower as the order of the higher harmonic became larger. Some unique characteristics of the higher harmonics have been clarified, and these studies are likely to contribute to the development of free-electron lasers using higher harmonics of an optical klystron in the shorter-wavelengths region. PMID:24971958

  11. A semi-analytical approach for evaluating effects of amplified spontaneous emission on characteristics of Q-switched lasers

    SciTech Connect

    Razzaghi, D; Hajiesmaeilbaigi, F; Ruzbehani, M

    2012-08-31

    Possible effects of amplified spontaneous emission on output pulse characteristics of a Q-switched laser are discussed within the framework of a semi-analytical approach. It is shown that output energy decreases almost exponentially with average path length of the spontaneously emitted photons which in turn depends on geometrical specification and active medium properties as well as on optical finishing of the surfaces (for solid-state lasers). Optimal coupling dependence on the average path length is also investigated and shown to increase with average path length increment. (control of laser radiation parameters)

  12. Visible-infrared self-amplified spontaneous emission amplifier free electron laser undulator

    NASA Astrophysics Data System (ADS)

    Carr, Roger; Cornacchia, Max; Emma, Paul; Nuhn, Heinz-Dieter; Poling, Ben; Ruland, Robert; Johnson, Erik; Rakowsky, George; Skaritka, John; Lidia, Steve; Duffy, Pat; Libkind, Marcus; Frigola, Pedro; Murokh, Alex; Pellegrini, Claudio; Rosenzweig, James; Tremaine, Aaron

    2001-12-01

    The visible-infrared self-amplified spontaneous emission amplifier (VISA) free electron laser (FEL) is an experimental device designed to show self-amplified spontaneous emission (SASE) to saturation in the near infrared to visible light energy range. It generates a resonant wavelength output from 800-600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is designed to show how SASE FEL theory corresponds with experiment in this wavelength range, using an electron beam with emittance close to that planned for the future Linear Coherent Light Source at SLAC. VISA comprises a 4 m pure permanent magnet undulator with four 99 cm segments, each of 55 periods, 18 mm long. The undulator has distributed focusing built into it, to reduce the average beta function of the 70-85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walk-off, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, we were able to control trajectory walk-off to less than +/-50 μm per field gain length.

  13. Controlled positions and kinetic analysis of spontaneous tin whisker growth

    NASA Astrophysics Data System (ADS)

    Su, Chien-Hao; Chen, Hao; Lee, Hsin-Yi; Wu, Albert T.

    2011-09-01

    This study achieved controlling the positions of spontaneous growth of tin whiskers. We surmounted the unpredictable growing nature of such whiskers and performed accurately quantitative analyses of the growth kinetics and yielded precise measurement of the growth rate. Furthermore, using synchrotron radiation x-ray, this study determined the stress variations in conjunction with whisker growth that fitted appropriately to the model. Accordingly, the results could address the debate held for decades and prove that forming a surface oxide layer is one of the required and necessary conditions for controlling the positions of spontaneous growth of tin whiskers.

  14. Controlling boiler emissions

    SciTech Connect

    Katzel, J.

    1992-10-22

    This paper reports that if you are confused about how to interpret the Clean Air Act Amendments of 1990, you are not alone. The massive document runs several hundred pages and consists of 11 titles, each addressing a different aspect of air quality. In some cases, specific emissions levels are established; in others, they are left to the discretion of state and local governments. In many ways, the impact of the CAAA right now is no impact. But now is not the time for plant engineers to play any waiting games. The annual cost of complying with the comprehensive environmental legislation is estimated at $4 to $7 billion. Despite the ambiguity and uncertainty, one conclusion appears clear: control of emissions, especially nitrogen oxides, from all types of boilers and process units can be expected to become more stringent. More and more equipment and industries will fall under the regulations as they are implemented by the Environmental Protection Agency (EPA). An newly available and improved strategies and technologies will make it more and more difficult to circumvent the law. As the general concepts of the legislation are molded into specifics, plant engineers are well advised to take an active role in shaping the attainment and control programs being formed by their state sand in understanding and applying available control technologies.

  15. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect

    Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  16. Spontaneous emission lifetimes in the ground electronic states of HD/+/ and H2/+/a

    NASA Technical Reports Server (NTRS)

    Peek, J. M.; Hashemi-Attar, A.-R.; Beckel, C. L.

    1979-01-01

    Because of their simplicity, H2(+) and its isotopic species are of particular interest to molecular theorists and experimentalists. If these ions are formed in excited vibrational states under conditions of highly improbable electron-ion recombination or other reactions, spontaneous emission will occur. The present note calculates the (vibrational quantum number, J prime = 0) state lifetimes under spontaneous emission for all 22 excited vibrations of HD(+) and all 19 excited vibrations of H2(+) in their ground electron states. The lifetimes presented in Tables I and III justify the assumption that spontaneous radiative processes are unimportant under certain realizable conditions. When spontaneous radiation plays a role, however, minimum lifetime at intermediate vibrational quantum number could lead to unusual vibrational distribution functions.

  17. Progress in emission control technologies

    SciTech Connect

    1994-12-31

    Partial contents of this book include: Ozone precursor emissions from alternatively fueled vehicles; Cycle resolved measurements of diesel particulate by optical techniques; A lubricant formulation for lower unburnt hydrocarbon emissions; Chassis test cycles for assessing emissions from heavy duty trucks; A non-intrusive method of measuring PCV blowby constituents; Some problems in the improvement of measurement of transient emissions; and Oxidation catalyst systems for emission control of LPG-powered forklift trucks.

  18. Protecting remote atomic entanglement against spontaneous emission by separated photonic pulses

    NASA Astrophysics Data System (ADS)

    Zong, Xiao-Lan; Du, Chao-Qun; Yang, Ming; Zhang, Gang; Yang, Qing; Cao, Zhuo-Liang

    2015-07-01

    We study the entanglement dynamics between two spatially separated atoms trapped in two separate optical cavities. Based on cavity-assisted interactions between the atoms and separated photonic pulses, we propose a scheme for the implemention of a controlled-phase-flip gate (CPF gate) between each of the atoms and the photonic pulse to protect the remote atomic quantum entanglement against the decaying caused by spontaneous emission. What we need to do is to shoot the horizontally polarized photons onto the cavity mirror successively, plus a train of Hadamard operations on the atoms, and no measurement is needed here. It is shown that the quantum entanglement of the two remote atoms can be protected effectively in this way. We also extend our scheme to the case of weak coupling and low Q cavity cases. The simplicity of the current scheme may warrant its experimental realization.

  19. Control of Emissions

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, Landy (Inventor)

    2013-01-01

    Methods and apparatus utilizing chlorine dioxide and hydrogen peroxide are useful to reduce NOx emissions, as well as SOx and mercury (or other heavy metal) emissions, from combustion flue gas streams.

  20. Exponential Gain and Saturation of a Self-Amplified Spontaneous Emission Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Milton, S. V.; Gluskin, E.; Arnold, N. D.; Benson, C.; Berg, W.; Biedron, S. G.; Borland, M.; Chae, Y.-C.; Dejus, R. J.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Eidelman, Y. I.; Hahne, M. W.; Huang, Z.; Kim, K.-J.; Lewellen, J. W.; Li, Y.; Lumpkin, A. H.; Makarov, O.; Moog, E. R.; Nassiri, A.; Sajaev, V.; Soliday, R.; Tieman, B. J.; Trakhtenberg, E. M.; Travish, G.; Vasserman, I. B.; Vinokurov, N. A.; Wang, X. J.; Wiemerslage, G.; Yang, B. X.

    2001-06-01

    Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.

  1. Spontaneous emission measurements from a low voltage pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    Recently we have carried out measurements on the spontaneous microwave (8.2 GHz) emission which results when a low-voltage (55kV) pre-punched electron beam is passed through a waveguide in a wiggler magnetic field. The variation of the spontaneous emission output power level with the average electron beam current and energy are reported and compared with the theory presented by Doria et al. The effect of the degree of bunching of the electron beam has also been observed and compared with theory.

  2. Spontaneous synchrotron emission from a plasma with an energetic runaway electron tail

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Dillenburg, D.; Wu, C. S.; Lee, L. C.

    1978-01-01

    The emissivity of spontaneous synchrotron radiation is computed for a plasma consisting of a background thermal plasma in addition to an energetic runaway electron component. The analysis is performed for both the ordinary and extraordinary modes, for frequencies in the vicinity of the electron plasma frequency and the higher harmonics of the electron gyrofrequency, and for the case when the electron plasma frequency is approximately the same as or smaller than the cyclotron frequency. The relativistic gyroresonance with the runaway electrons is found to result in a level of spontaneous emission which, for frequencies in the neighborhood of the electron plasma frequency, is significantly enhanced over the thermal radiation.

  3. Increased Spontaneous Otoacoustic Emissions in Mice with a Detached Tectorial Membrane.

    PubMed

    Cheatham, Mary Ann; Ahmad, Aisha; Zhou, Yingjie; Goodyear, Richard J; Dallos, Peter; Richardson, Guy P

    2016-04-01

    Mutations in genes encoding tectorial membrane (TM) proteins are a significant cause of human hereditary hearing loss (Hildebrand et al. 2011), and several mouse models have been developed to study the functional significance of this accessory structure in the mammalian cochlea. In this study, we use otoacoustic emissions (OAE), signals obtained from the ear canal that provide a measure of cochlear function, to characterize a mouse in which the TM is detached from the spiral limbus due to an absence of otoancorin (Otoa, Lukashkin et al. 2012). Our results demonstrate that spontaneous emissions (SOAE), sounds produced in the cochlea without stimulation, increase dramatically in mice with detached TMs even though their hearing sensitivity is reduced. This behavior is unusual because wild-type (WT) controls are rarely spontaneous emitters. SOAEs in mice lacking Otoa predominate around 7 kHz, which is much lower than in either WT animals when they generate SOAEs or in mutant mice in which the TM protein Ceacam16 is absent (Cheatham et al. 2014). Although both mutants lack Hensen's stripe, loss of this TM feature is only observed in regions coding frequencies greater than ~15 kHz in WT mice so its loss cannot explain the low-frequency, de novo SOAEs observed in mice lacking Otoa. The fact that ~80 % of mice lacking Otoa produce SOAEs even when they generate smaller distortion product OAEs suggests that the active process is still functioning in these mutants but the system(s) involved have become less stable due to alterations in TM structure. PMID:26691158

  4. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics.

    PubMed

    He, Q; Chu, Y-H; Heron, J T; Yang, S Y; Liang, W I; Kuo, C Y; Lin, H J; Yu, P; Liang, C W; Zeches, R J; Kuo, W C; Juang, J Y; Chen, C T; Arenholz, E; Scholl, A; Ramesh, R

    2011-01-01

    Magnetoelectrics and multiferroics present exciting opportunities for electric-field control of magnetism. However, there are few room-temperature ferromagnetic-ferroelectrics. Among the various types of multiferroics the bismuth ferrite system has received much attention primarily because both the ferroelectric and the antiferromagnetic orders are quite robust at room temperature. Here we demonstrate the emergence of an enhanced spontaneous magnetization in a strain-driven rhombohedral and super-tetragonal mixed phase of BiFeO₃. Using X-ray magnetic circular dichroism-based photoemission electron microscopy coupled with macroscopic magnetic measurements, we find that the spontaneous magnetization of the rhombohedral phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent tetragonal-like phase and the epitaxial constraint. Reversible electric-field control and manipulation of this magnetic moment at room temperature is also shown. PMID:21407191

  5. Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Sommar, Jonas; Li, Zhonggen; Feng, Xinbin; Lin, Che-Jen; Li, Guanghui

    2013-11-01

    Refuse disposal (e.g., landfilling and incineration) have been recognized as a significant anthropogenic source of mercury (Hg) emission globally. However, in-situ measurements of Hg emission from landfill or refuse dumping sites where fugitive spontaneous combustion occurs have not been reported. Gaseous elemental mercury (Hg0) concentration and emission flux were observed near spontaneous combustions of refuse at a landfill site in southwestern China. Ambient Hg0 concentrations above the refuse surface ranged from 42.7 ± 20.0 to 396.4 ± 114.2 ng m-3, up to 10 times enhancement due to the spontaneous burning. Using a box model with Hg0 data obtained from 2004 to 2013, we estimated that the Hg0 emission from refuse was amplified by 8-40 times due to spontaneous combustion. A micrometeorological flux measurement system based on relaxed eddy accumulation was configured downwind of the combustion sites to quantify the Hg0 emission. Extremely large turbulent deposition fluxes (up to -128.6 μg m-2 h-1, 20 min average) were detected during periods of high Hg0 concentration events over the measurement footprint. The effect of temperature, moisture and light on the air-surface exchange of Hg0 exchange was found to be masked by the overwhelming deposition of Hg0 from the enriched air from the refuse combustion plumes. This research reveals that mercury emission from the landfill refuse can be boosted by fugitive spontaneous combustion of refuse. The emission represents an anthropogenic source that has been overlooked in Hg inventory estimates.

  6. Subradiant spontaneous undulator emission through collective suppression of shot noise

    NASA Astrophysics Data System (ADS)

    Ratner, D.; Hemsing, E.; Gover, A.; Marinelli, A.; Nause, A.

    2015-05-01

    The phenomenon of Dicke's subradiance, in which the collective properties of a system suppress radiation, has received broad interest in atomic physics. Recent theoretical papers in the field of relativistic electron beams have proposed schemes to achieve subradiance through suppression of shot noise current fluctuations. The resulting "quiet" beam generates less spontaneous radiation than emitted even by a shot noise beam when oscillating in an undulator. Quiet beams could have diverse accelerator applications, including lowering power requirements for seeded free-electron lasers and improving efficiency of hadron cooling. In this paper we present experimental observation of a strong reduction in undulator radiation, demonstrating the feasibility of noise suppression as a practical tool in accelerator physics.

  7. Interactions between Hair Cells Shape Spontaneous Otoacoustic Emissions in a Model of the Tokay Gecko's Cochlea

    PubMed Central

    Gelfand, Michael; Piro, Oreste; Magnasco, Marcelo O.; Hudspeth, A. J.

    2010-01-01

    Background The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions. Methodology and Principal Findings We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators. Conclusions and Significance A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko. PMID:20559557

  8. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  9. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  10. Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries

    SciTech Connect

    Marocico, C. A.; Knoester, J.

    2011-11-15

    We use a Green's tensor method to investigate the spontaneous emission rate of a molecule and the energy-transfer rate between molecules placed in two types of layered geometries: a slab geometry and a planar waveguide. We focus especially on the role played by surface-plasmon polaritons in modifying the spontaneous emission and energy-transfer rates as compared to free space. In the presence of more than one interface, the surface-plasmon polariton modes split into several branches, and each branch can contribute significantly to modifying the electromagnetic properties of atoms and molecules. Enhancements of several orders of magnitude both in the spontaneous emission rate of a molecule and the energy-transfer rate between molecules are obtained and, by tuning the parameters of the geometry, one has the ability to control the range and magnitude of these enhancements. For the energy-transfer rate interference effects between contributions of different plasmon-polariton branches are observed as oscillations in the distance dependence of this rate.

  11. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    PubMed

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations. PMID:25361293

  12. Optical instabilities and spontaneous light emission in moving media

    NASA Astrophysics Data System (ADS)

    Silveirinha, Mario

    2015-03-01

    We show that when an uncharged plasmonic material is set in relative motion with respect to another uncharged polarizable body the system may be electromagnetically unstable. Particularly, when the relative velocity of the two bodies is enforced to remain constant the system may support natural oscillations that grow exponentially with time, even in presence of realistic material loss and dispersion. It is proven that a friction-type force acts on the moving bodies to oppose their relative motion. Hence, the optical instabilities result from the conversion of kinetic energy into electromagnetic energy. This new purely classical phenomenon is analogous to the Cherenkov and Smith-Purcell effects but for uncharged polarizable matter. We link the optical instabilities to a spontaneous parity-time symmetry breaking of the system, and demonstrate the possibility of optical amplification of a light pulse in the broken parity-time symmetry regime. This work is supported in part by Fundação para a Ciência e a Tecnologia Grant Number PTDC/EEI-TEL/2764/2012.

  13. Exact solution for spontaneous emission in the presence of N atoms

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.; Dorri, Ali

    1983-10-01

    N two-level "atoms" are considered in interaction with a single-mode resonant electromagnetic field. The exact solution is given nonrelativistically for all times for the case of spontaneous emission, when only one atom is initially excited. The solution is given for the general case of the N atoms in inequivalent mode positions.

  14. Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives.

    PubMed

    Ribierre, Jean-Charles; Zhao, Li; Inoue, Munetomo; Schwartz, Pierre-Olivier; Kim, Ju-Hyung; Yoshida, Kou; Sandanayaka, Atula S D; Nakanotani, Hajime; Mager, Loic; Méry, Stéphane; Adachi, Chihaya

    2016-02-21

    Highly fluorescent non-volatile fluidic fluorene derivatives functionalized with siloxane chains were synthesized and used in monolithic solvent-free liquid organic semiconductor distributed feedback lasers. The photoluminescence quantum yield values, the amplified spontaneous emission thresholds and the ambipolar charge carrier mobilities demonstrate that this class of materials is extremely promising for organic fluidic light-emitting and lasing devices. PMID:26734693

  15. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  16. Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers.

    PubMed

    Tsakmakidis, Kosmas L; Boyd, Robert W; Yablonovitch, Eli; Zhang, Xiang

    2016-08-01

    Recent progress in the design and realization of optical antennas enclosing fluorescent materials has demonstrated large spontaneous-emission enhancements and, simultaneously, high radiation efficiencies. We discuss here that an important objective of such work is to increase spontaneous-emission rates to such a degree that light-emitting diodes (LEDs) can possess modulation speeds exceeding those of typical semiconductor lasers, which are usually in the range ~20-50 GHz. We outline the underlying physics that enable large spontaneous-emission enhancements in metallic nanostructures, and we then discuss recent theoretical and experimentally promising results, where enhancements larger than a factor of ~300 have been reported, with radiation efficiencies exceeding 50%. We provide key comparative advantages of these structures in comparison to conventional dielectric microcavity designs, namely the fact that the enhancement of spontaneous emission can be relatively nonresonant (i.e., broadband) and that the antenna nanostructures can be spectrally and structurally compatible for integration with a wide class of emitters, including organic dyes, diamond nanocrystals and colloidal quantum dots. Finally, we point out that physical insight into the underlying effects can be gained by analyzing these metallic nanostructures in their equivalent-circuit (or nano-antenna) model, showing that all main effects (including the Purcell factor) can adequately be described in that approach. PMID:27505759

  17. Plasmonic engineering of spontaneous emission from silicon nanocrystals

    PubMed Central

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells. PMID:24037020

  18. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    SciTech Connect

    He, Q.; Chu, Y. H.; Heron, J. T.; Yang, S. Y.; Wang, C. H.; Kuo, C. Y.; Lin, H. J.; Yu, P.; Liang, C. W.; Zeches, R. J.; Chen, C. T.; Arenholz, E.; Scholl, A.; Ramesh, R.

    2010-08-02

    The emergence of enhanced spontaneous magnetic moments in self-assembled, epitaxial nanostructures of tetragonal (T-phase) and rhombohedral phases (R-phase) of the multiferroic BiFeO{sub 3} system is demonstrated. X-ray magnetic circular dichroism based photoemission electron microscopy (PEEM) was applied to investigate the local nature of this magnetism. We find that the spontaneous magnetization of the R-phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent T-phase and the epitaxial constraint. Reversible electric field control and manipulation of this magnetic moment at room temperature is shown using a combination of piezoresponse force microscopy and PEEM studies.

  19. Spontaneous emission intensity and anisotropy of quantum dot films in proximity to nanoscale photonic–plasmonic templates

    NASA Astrophysics Data System (ADS)

    Indukuri, Chaitanya; Basu, J. K.

    2016-07-01

    We discuss results on spontaneous emission intensity and lifetime anisotropy of cadmium selenide quantum dot monolayer films placed in close proximity to a porous block copolymer based photonic–plasmonic two dimensional array. The porous block copolymer cylinders can be filled with metal nanoparticles and the concentration of these nanoparticles is varied to control both the photoluminescence intensity and lifetime of a layer of quantum dots placed above the template. Significant emission enhancement is achieved even for the quantum dot layer whose core lies about 1 nm above the template surface. Interestingly, polarised decay lifetime analysis indicates considerable emission anisotropy, as well for these quantum dots. Our results thus demonstrates how such hybrid optical materials can be created with controlled optical properties and suggests extension of this method to other novel two dimensional materials in combination with the photonic–plasmonic template.

  20. Fast and bright spontaneous emission of Er3+ ions in metallic nanocavity

    PubMed Central

    Song, Jung-Hwan; Kim, Jisu; Jang, Hoon; Yong Kim, In; Karnadi, Indra; Shin, Jonghwa; Shin, Jung H.; Lee, Yong-Hee

    2015-01-01

    By confining light in a small cavity, the spontaneous emission rate of an emitter can be controlled via the Purcell effect. However, while Purcell factors as large as ∼10,000 have been predicted, actual reported values were in the range of about 10–30 only, leaving a huge gap between theory and experiment. Here we report on enhanced 1.54-μm emission from Er3+ ions placed in a very small metallic cavity. Using a cavity designed to enhance the overall Purcell effect instead of a particular component, and by systematically investigating its photonic properties, we demonstrate an unambiguous Purcell factor that is as high as 170 at room temperature. We also observe >90 times increase in the far-field radiant flux, indicating that as much as 55% of electromagnetic energy that was initially supplied to Er3+ ions in the cavity escape safely into the free space in just one to two optical cycles. PMID:25940839

  1. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  2. Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system

    NASA Astrophysics Data System (ADS)

    Rastogi, Anshu; Pospíšil, Pavel

    2011-09-01

    All living organisms emit spontaneous ultraweak photon emission as a result of cellular metabolic processes. In this study, the involvement of reactive oxygen species (ROS) formed as the byproduct of oxidative metabolic processes in spontaneous ultraweak photon emission was studied in human hand skin. The effect of molecular oxygen and ROS scavengers on spontaneous ultraweak photon emission from human skin was monitored using a highly sensitive photomultiplier tube and charged coupled device camera. When spontaneous ultraweak photon emission was measured under anaerobic conditions, the photon emission was decreased, whereas under hyperaerobic condition the enhancement in photon emission was observed. Spontaneous ultraweak photon emission measured after topical application of glutathione, α-tocopherol, ascorbate, and coenzyme Q10 was observed to be decreased. These results reveal that ROS formed during the cellular metabolic processes in the epidermal cells play a significant role in the spontaneous ultraweak photon emission. It is proposed that spontaneous ultraweak photon emission can be used as a noninvasive tool for the temporal and spatial monitoring of the oxidative metabolic processes and intrinsic antioxidant system in human skin.

  3. Spontaneous emission in the presence of a realistically sized cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Dung, Ho Trung

    2016-02-01

    Various quantities characterizing the spontaneous emission process of a dipole emitter including the emission rate and the emission pattern can be expressed in terms of the Green tensor of the surrounding environment. By expanding the Green tensor around some analytically known background one as a Born series, and truncating it under appropriate conditions, complicated boundaries can be tackled with ease. However, when the emitter is embedded in the medium, even the calculation of the first-order term in the Born series is problematic because of the presence of a singularity. We show how to eliminate this singularity for a medium of arbitrary size and shape by expanding around the bulk medium rather than vacuum. In the highly symmetric configuration of an emitter located on the axis of a realistically sized cylinder, it is shown that the singularity can be removed by changing the integral variables and then the order of integration. Using both methods, we investigate the spontaneous emission rate of an initially excited two-level dipole emitter, embedded in a realistically sized cylinder, which can be a common optical fiber in the long-length limit and a disk in the short-length limit. The spatial distribution of the emitted light is calculated using the Born-expansion approach, and local-field corrections to the spontaneous emission rate are briefly discussed.

  4. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials.

    PubMed

    Lu, Dylan; Kan, Jimmy J; Fullerton, Eric E; Liu, Zhaowei

    2014-01-01

    Plasmonic nanostructures have been extensively used to manipulate the spontaneous light emission rate of molecules and their radiative efficiency. Because molecules near a metallic surface experience a different environment than in free space, their spontaneous radiative emission rate is generally enhanced. Such enhancement, measured by means of the Purcell factor, arises as a consequence of the overlap between the surface plasmon mode frequency and the emission spectrum of the molecule. However, such overlap is available only for a few narrow bands of frequency due to the limited plasmonic materials existing in nature. Although this limitation can be overcome by using hyperbolic metamaterials (HMMs)—a type of nanoscale artificial material with hyperbolic dispersion relations—the Purcell factor and the radiative power have remained relatively low. Here, we show that by nanopatterning a hyperbolic metamaterial made of Ag and Si multilayers, the spontaneous emission rate of rhodamine dye molecules is enhanced 76-fold at tunable frequencies and the emission intensity of the dye increases by ~80-fold compared with the same hyperbolic metamaterial without nanostructuring. We explain these results using a dynamic Lorentzian model in the time domain. PMID:24390565

  5. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Lu, Dylan; Kan, Jimmy J.; Fullerton, Eric E.; Liu, Zhaowei

    2014-01-01

    Plasmonic nanostructures have been extensively used to manipulate the spontaneous light emission rate of molecules and their radiative efficiency. Because molecules near a metallic surface experience a different environment than in free space, their spontaneous radiative emission rate is generally enhanced. Such enhancement, measured by means of the Purcell factor, arises as a consequence of the overlap between the surface plasmon mode frequency and the emission spectrum of the molecule. However, such overlap is available only for a few narrow bands of frequency due to the limited plasmonic materials existing in nature. Although this limitation can be overcome by using hyperbolic metamaterials (HMMs)--a type of nanoscale artificial material with hyperbolic dispersion relations--the Purcell factor and the radiative power have remained relatively low. Here, we show that by nanopatterning a hyperbolic metamaterial made of Ag and Si multilayers, the spontaneous emission rate of rhodamine dye molecules is enhanced 76-fold at tunable frequencies and the emission intensity of the dye increases by ~80-fold compared with the same hyperbolic metamaterial without nanostructuring. We explain these results using a dynamic Lorentzian model in the time domain.

  6. The interplay between spontaneous and controlled processing in creative cognition

    PubMed Central

    Mok, Leh Woon

    2014-01-01

    Neural studies of creativity have yielded relatively little consistent results. For example, in functional neuroanatomical studies, the prefrontal cortex (PFC) has often been implicated as a critical neural substrate. However, results in electrophysiological (EEG) studies have been inconsistent as to the role of the PFC. EEG results have more often implicated widespread alpha synchronization, particularly in posterior regions, in creative cognition. Recent fMRI evidence has indicated that the PFC may be activated as a part of and together with other components of a deliberate control brain network. Controlled processing is neurologically dissociated from, but may co-occur with, spontaneous cognition mediated by a subset of the default-mode network (e.g., the angular gyrus [BA 39] in the posterior parietal cortex, which has been increasingly implicated in creative cognition). When the demand for controlled processing is substantially increased, default-mode processing may be suppressed. There is now preliminary evidence to suggest an association between alpha synchronization and default-mode processing. Creative cognition likely emerges from an optimal balance between spontaneous processing and controlled processing. PMID:25221497

  7. Spontaneous emission with a cascaded driving field in the same transition channel

    NASA Astrophysics Data System (ADS)

    Liu, Ronggang; Liu, Tong

    2015-11-01

    We study the spontaneous emission spectrum of a driven four-level atom in both Markovian reservoir and non-Markovian reservoir, in which the two driving fields are applied to the same transition channel. It is very interesting that the increase of the Rabi frequency of the first driving field leads to the emission spectrum enhancement in Markovian reservoir, but the increase of the second one can suppress the emission spectrum significantly. The phenomenon originates from the dressed states variation induced by the first driving field. For non-Markovian reservoir case, the rich spectrum behavior is due to a strong coupling between driving fields and modified reservoir.

  8. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement.

    PubMed

    Hoffmann, Björn; Vassant, Simon; Chen, Xue-Wen; Götzinger, Stephan; Sandoghdar, Vahid; Christiansen, Silke

    2015-10-01

    Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%. PMID:26376922

  9. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement

    NASA Astrophysics Data System (ADS)

    Hoffmann, Björn; Vassant, Simon; Chen, Xue-Wen; Götzinger, Stephan; Sandoghdar, Vahid; Christiansen, Silke

    2015-10-01

    Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%.

  10. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  11. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2008-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce NOx, SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of NOx, SOx and heavy metals, while isolating useful by-products streams of sulfuric acid and nitric acid as well as solids for the recovery of the heavy metals.

  12. Spontaneous otoacoustic emissions in the European edible frog (Rana esculenta): spectral details and temperature dependence.

    PubMed

    van Dijk, P; Wit, H P; Segenhout, J M

    1989-11-01

    Spontaneous otoacoustic emissions were recorded in 41 ears of 29 European edible frogs (Rana esculenta). Emission frequencies ranged from 450 to 1350 Hz. The distribution of frequencies shows two distinct populations: one above and one below 1 kHz. With one exception, a maximum number of two emissions were recorded per ear, each in a different population. An amplitude distribution of a frog emission was sampled, from which it was concluded that the emission is generated by an active oscillator. The spectral width of an emission ranged from 1 to 200 Hz (average 38 Hz). There was negative correlation between sound pressure level of an emission and spectral width. In 4 frogs the dependence of emission power and frequency on temperature was investigated. An emission could be 'switched on and off' within a few degrees centigrade. At temperatures below the switching interval no emission was recorded; for higher temperatures emission power showed no dependence on temperature. Frequency increased with temperature (Q10 = 1.1 to 1.3). This yields a mismatch with temperature dependence of best frequencies of auditory fibers. The consequences of this mismatch are discussed. PMID:2691473

  13. Spontaneous Fluctuations in the Flexible Control of Covert Attention

    PubMed Central

    Courtney, Susan M.; Yantis, Steven

    2016-01-01

    Spontaneous fluctuations in cognitive flexibility are characterized by moment-to-moment changes in the efficacy of control over attentional shifts. We used fMRI to investigate the neural correlates in humans of spontaneous fluctuations in readiness to covertly shift attention between two peripheral rapid serial visual presentation streams. Target detection response time (RT) after a shift or hold of covert spatial attention served as a behavioral index of fluctuations in attentional flexibility. In particular, the cost associated with shifting attention compared with holding attention varied as a function of pretrial brain activity in key regions of the default mode network (DMN), but not the dorsal attention network. High pretrial activity within the DMN was associated with a greater increase in shift trial RT relative to hold trial RT, revealing that these areas are associated with a state of attentional stability. Conversely, high pretrial activity within bilateral anterior insula and the presupplementary motor area/supplementary motor area was associated with a greater decrease in shift trial RT relative to hold trial RT, reflecting increased flexibility. Our results importantly clarify the roles of the precuneus, medial prefrontal cortex, and lateral parietal cortex, indicating that reduced activity may not simply indicate greater task engagement, but also, specifically, a readiness to update the focus of attention. Investigation of the neural correlates of spontaneous changes in attentional flexibility may contribute to our understanding of disorders of cognitive control as well as healthy variability in the control of spatial attention. SIGNIFICANCE STATEMENT Individuals regularly experience fluctuations in preparatory cognitive control that affect performance in everyday life. For example, individuals are able to more quickly initiate a spatial shift of attention at some moments than at others. The current study revealed that pretrial brain activity in

  14. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M. ); Arnold, S. )

    1992-01-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data.

  15. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M.; Arnold, S.

    1992-11-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data.

  16. Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide

    SciTech Connect

    Perera, Chamanei S. Vernon, Kristy C.; Mcleod, Angus

    2014-02-07

    In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm × 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.

  17. Experimental demonstration of enhanced self-amplified spontaneous emission by an optical klystron.

    PubMed

    Penco, G; Allaria, E; De Ninno, G; Ferrari, E; Giannessi, L

    2015-01-01

    We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model. PMID:25615469

  18. Experimental Demonstration of Enhanced Self-Amplified Spontaneous Emission by an Optical Klystron

    NASA Astrophysics Data System (ADS)

    Penco, G.; Allaria, E.; De Ninno, G.; Ferrari, E.; Giannessi, L.

    2015-01-01

    We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model.

  19. Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber

    NASA Astrophysics Data System (ADS)

    Scheel, Stefan; Buhmann, Stefan Yoshi; Clausen, Christoph; Schneeweiss, Philipp

    2015-10-01

    We study the spontaneous emission of an excited atom close to an optical nanofiber and the resulting scattering forces. For a suitably chosen orientation of the atomic dipole, the spontaneous emission pattern becomes asymmetric and a resonant Casimir-Polder force parallel to the fiber axis arises. For a simple model case, we show that such a lateral force is due to the interaction of the circularly oscillating atomic dipole moment with its image inside the material. With the Casimir-Polder energy being constant in the lateral direction, the predicted lateral force does not derive from a potential in the usual way. Our results have implications for optical force measurements on a substrate as well as for laser cooling of atoms in nanophotonic traps.

  20. All-optical cooling of Fermi gases via Pauli inhibition of spontaneous emission

    NASA Astrophysics Data System (ADS)

    Onofrio, Roberto

    2016-03-01

    A technique is proposed to cool Fermi gases to the regime of quantum degeneracy based on the expected inhibition of spontaneous emission due to the Pauli principle. The reduction of the linewidth for spontaneous emission originates a corresponding reduction of the Doppler temperature, which under specific conditions may give rise to a runaway process through which fermions are progressively cooled. The approach requires a combination of a magneto-optical trap as a cooling system and an optical dipole trap to enhance quantum degeneracy. This results in expected Fermi degeneracy factors T /TF comparable to the lowest values recently achieved, with potential for a direct implementation in optical lattices. The experimental demonstration of this technique should also indirectly provide a macroscopic manifestation of the Pauli exclusion principle at the atomic physics level.

  1. Effect of amplified spontaneous emission on selectivity of laser photoionisation of the 177Lu radioisotope

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya; Firsov, V. A.; Tsvetkov, G. O.

    2016-06-01

    A significant deselecting effect of amplified spontaneous emission has been observed in the experiments on selective laser photoionisation of the 177Lu radioisotope according to the scheme 5d6s2 2D3/2 → 5d6s6p 4Fo5/2 (18505 cm-1) → 5d6s7s 4D3/2(37194 cm-1) → autoionisation state (53375 cm-1). The effect is conditioned by involvement of non-target isotopes from the lower metastable level 5d6s2 2D5/2(1994 cm-1) into the ionisation process. Spectral filtering of spontaneous emission has allowed us to significantly increase the selectivity of the photoionisation process of the radioisotope and to attain a selectivity value of 105 when using saturating light intensities.

  2. Optical microcavities based on F2 color centers in lithium fluoride films: modification of spontaneous emission

    NASA Astrophysics Data System (ADS)

    Bonfigli, Francesca; Jacquier, Bernard; Montereali, Rosamaria; Moretti, Paul; Nichelatti, Enrico; Piccinini, M.; Rigneault, Herve; Somma, F.

    2003-04-01

    Lithium fluoride (LiF) films irradiated by low energy electrons were employed as active spacers in all-solid, dielectric optical microcavities emitting in the visible spectral range. We present the results of optical characterization of the spontaneous emission from F2 color centers embedded in a LiF layer confined inside a planar microcavity. These structures seem promising for the realization of novel kinds of solid-state miniaturized emitting devices.

  3. Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser

    NASA Astrophysics Data System (ADS)

    Soln, Josip

    1990-04-01

    The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can easily cover a 10- to 10,000 GHz spectral region.

  4. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity

    PubMed Central

    SUMIKURA, HISASHI; KURAMOCHI, EIICHI; TANIYAMA, HIDEAKI; NOTOMI, MASAYA

    2014-01-01

    Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access. PMID:24853336

  5. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  6. Amplified spontaneous emission in an organic semiconductor multilayer waveguide structure including a highly conductive transparent electrode

    NASA Astrophysics Data System (ADS)

    Reufer, M.; Feldmann, J.; Rudati, P.; Ruhl, A.; Müller, D.; Meerholz, K.; Karnutsch, C.; Gerken, M.; Lemmer, U.

    2005-05-01

    We demonstrate that the amplified spontaneous emission (ASE) threshold in multilayer waveguide structures suitable for the use in future organic injection lasers can be drastically reduced by inserting a crosslinked hole transport layer (HTL) between a highly conductive indium tin oxide (ITO) electrode and the polymer emission layer. While no ASE is observed when the active layer material is directly spincoated onto the ITO electrode, it can be completely restored upon insertion of a 300-nm-thick HTL. This observation is attributed to reduced attenuation of the waveguided mode enabling the ASE process and is theoretically confirmed by calculations of the mode intensity fraction propagating in the absorptive ITO electrode.

  7. Calculation of the spontaneous cyclotron emissivity using the complete relativistic resonance condition

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Wu, C. S.; Gaffey, J. D., Jr.

    1984-01-01

    An expression for the spectral emissivity of spontaneous synchrotron radiation for a plasma which consists of both thermal and suprathermal electron components is derived using the complete relativistic cyclotron resonance condition. The expression is valid over all angles of propagation. The result is applied to the study of the emission of radiation from an energetic population of electrons with a loss-cone distribution in a relatively low-density plasma (i.e., the electron plasma frequency is less than the cyclotron frequency).

  8. Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwei; Lu, Jian; Wang, Liang; Tian, Linfan; Deng, Xingxia; Tian, Lijun; Pan, Dengyu; Wang, Zhongyang

    2016-07-01

    We investigated the strong interaction between graphene quantum dots and silver nanoparticles in solution using time-resolved photoluminescence techniques. In solution, the silver nanoparticles are surrounded by graphene quantum dots and interacted with graphene quantum dots through exciton-plasmon coupling. An ultrafast spontaneous emission process (lifetime 27 ps) was observed in such a mixed solution. This ultrafast lifetime corresponds to the emission rate exceeding 35 GHz, with the purcell enhancement by a factor of ˜12. These experiment results pave the way for the realization of future high speed light sources applications.

  9. Spontaneous otoacoustic emissions in an active nonlinear cochlear model in the time domain

    NASA Astrophysics Data System (ADS)

    Fruth, Florian; Jülicher, Frank; Lindner, Benjamin

    2015-12-01

    A large fraction of human cochleas emits sounds even in the absence of external stimulation. These so-called spontaneous otoacoustic emissions (SOAEs) are a hallmark of the active nonlinear amplification process taking place in the cochlea. Here, we extend a previously proposed frequency domain model and put forward an active nonlinear one-dimensional model of the cochlea in the time domain describing human SOAEs [5]. In our model, oscillatory elements are close to an instability (Hopf bifurcation), they are subject to dynamical noise and coupled by hydrodynamic, elastic and dissipative interactions. Furthermore, oscillators are subject to a weak spatial irregularity in their activity (normally distributed and exponentially correlated in space) that gives rise to the individuality of each simulated cochlea. Our model captures main statistical features of the distribution of emission frequencies, the distribution of the numbers of emissions per cochlea, and the distribution of the distances between neighboring emissions as were previously measured in experiment [14].

  10. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation.

    PubMed

    Day, Stuart J; Carras, John N; Fry, Robyn; Williams, David J

    2010-07-01

    Spontaneous combustion and low-temperature oxidation of waste coal and other carbonaceous material at open-cut coal mines are potentially significant sources of greenhouse gas emissions. However, the magnitude of these emissions is largely unknown. In this study, emissions from spontaneous combustion and low-temperature oxidation were estimated for six Australian open-cut coal mines with annual coal production ranging from 1.7 to more than 16 Mt. Greenhouse emissions from all other sources at these mines were also estimated and compared to those from spontaneous combustion and low-temperature oxidation. In all cases, fugitive emission of methane was the largest source of greenhouse gas; however, in some mines, spontaneous combustion accounted for almost a third of all emissions. For one mine, it was estimated that emissions from spontaneous combustion were around 250,000 t CO(2)-e per annum. The contribution from low-temperature oxidation was generally less than about 1% of the total for all six mines. Estimating areas of spoil affected by spontaneous combustion by ground-based surveys was prone to under-report the area. Airborne infrared imaging appears to be a more reliable method. PMID:19572109

  11. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  12. Advanced Emissions Control Development Program

    SciTech Connect

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  13. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  14. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  15. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues.

    PubMed

    Birtic, Simona; Ksas, Brigitte; Genty, Bernard; Mueller, Martin J; Triantaphylidès, Christian; Havaux, Michel

    2011-09-01

    Plants, like almost all living organisms, spontaneously emit photons of visible light. We used a highly sensitive, low-noise cooled charge coupled device camera to image spontaneous photon emission (autoluminescence) of plants. Oxidative stress and wounding induced a long-lasting enhancement of plant autoluminescence, the origin of which is investigated here. This long-lived phenomenon can be distinguished from the short-lived chlorophyll luminescence resulting from charge recombinations within the photosystems by pre-adapting the plant to darkness for about 2 h. Lipids in solvent were found to emit a persistent luminescence after oxidation in vitro, which exhibited the same time and temperature dependence as plant autoluminescence. Other biological molecules, such as DNA or proteins, either did not produce measurable light upon oxidation or they did produce a chemiluminescence that decayed rapidly, which excludes their significant contribution to the in vivo light emission signal. Selective manipulation of the lipid oxidation levels in Arabidopsis mutants affected in lipid hydroperoxide metabolism revealed a causal link between leaf autoluminescence and lipid oxidation. Addition of chlorophyll to oxidized lipids enhanced light emission. Both oxidized lipids and plants predominantly emit light at wavelengths higher than 600 nm; the emission spectrum of plant autoluminescence was shifted towards even higher wavelengths, a phenomenon ascribable to chlorophyll molecules acting as luminescence enhancers in vivo. Taken together, the presented results show that spontaneous photon emission imaged in plants mainly emanates from oxidized lipids. Imaging of this signal thus provides a simple and sensitive non-invasive method to selectively visualize and map patterns of lipid oxidation in plants. PMID:21595761

  16. Exhaust emission control apparatus

    SciTech Connect

    Eng, J.W.

    1991-09-24

    This patent describes an exhaust control apparatus for muffling noise and treating odors and pollutants, including solid particulate and gases in the exhaust of an internal combustion engine. It comprises an exhaust inlet tube for receiving the exhaust generated by an internal combustion engine; a cyclone barrier concentrically surrounding the exhaust inlet tube, a ring cavity between the cyclone tube and exhaust inlet tube defining a cyclone chamber in which the exhaust is treated; means for directing the exhaust from the exhaust inlet tube into the cyclone chamber; electrode means having small openings through which the exhaust passes to enter the cyclone chamber, the electrode means generating electrostatic forces which charge the solid particulate in the exhaust, ionize air and generate ozone in the cyclone chamber near the electrode; means for injecting air into the cyclone chamber causing centrifugal flow of the air and the exhausted within the cyclone chamber and increasing a dwell time of the exhaust within the cyclone chamber.

  17. Controlled release mechanisms of spontaneously forming unilamellar vesicles.

    PubMed

    Nieh, Mu-Ping; Katsaras, John; Qi, Xiaoyang

    2008-06-01

    Spontaneously forming small unilamellar vesicles (SULVs) are easy to prepare and show great promise for use in delivering therapeutic payloads. We report of SULVs made up of the ternary phospholipid mixture, dimyristoyl-phosphatidylcholine (DMPC), dihexanoyl-phosphatidylcholine (DHPC) and dimyristoyl-phosphatidylglycerol (DMPG), which have been characterized by small angle neutron scattering (SANS). These low-polydispersity (0.14-0.19) SULVs range in size (i.e., radius) from 110 to 215 A and are capable of entrapping, and subsequently releasing, hydrophilic molecules (e.g., fluorescent dyes and quenchers) in a controlled fashion over two different temperature ranges. The low-temperature release mechanism involves the SULVs transforming into discoidal micelles, with an onset temperature (T(o)) of ~32 degrees C, while the high-temperature release mechanism is more gradual, presumably the result of defects formed through the continuous dissolution of DHPC into solution. Both of these mechanisms differ from other, previously reported thermosensitive liposomes. PMID:18394425

  18. Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals.

    PubMed

    Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M

    2016-08-10

    The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors. PMID:27420735

  19. Laser-assisted ultracold lithium-hydride molecule formation: stimulated versus spontaneous emission

    NASA Astrophysics Data System (ADS)

    Juarros, Elizabeth; Kirby, Kate; Côté, Robin

    2006-10-01

    We investigate the feasibility of forming ultracold LiH from a mixture of the ultracold atomic gases, by using B1Π as an intermediate state in the photoassociation process. Using accurate molecular potential energy curves and dipole transition moments, we calculate and compare two possible schemes to populate vibrational levels of the ground electronic state, X1Σ+: (1) two-photon stimulated radiative association and (2) excitation to bound levels of the B1Π state, followed by spontaneous emission to the X1Σ+ state. With laser intensities and atomic densities that are easily attainable experimentally, we find that significant quantities of molecules can be formed in various v, J levels of the electronic ground state. We examine the spontaneous emission cascade which takes place from the upper vibrational levels on a time scale of milliseconds. We discuss the issue of back-stimulation for the two-photon process and ways to mitigate it. Because photon emission in the cascade process does not contribute to trap loss, a sizable population of molecules in v = 0 can be achieved.

  20. Molecular hot electroluminescence due to strongly enhanced spontaneous emission rates in a plasmonic nanocavity.

    PubMed

    Chen, Gong; Li, Xiao-Guang; Zhang, Zhen-Yu; Dong, Zhen-Chao

    2015-02-14

    We have recently demonstrated anomalous relaxationless hot electroluminescence from molecules in the tunnel junction of a scanning tunneling microscope [Dong et al., Nat. Photonics, 2010, 4, 50]. In the present paper, based on physically realistic parameters, we aim to unravel the underlying physical mechanism using a multiscale modeling approach that combines classical generalized Mie theory with the quantum master equation. We find that the nanocavity-plasmon-tuned spontaneous emission rate plays a crucial role in shaping the spectral profile. In particular, on resonance, the radiative decay rate can be enhanced by three-to-five orders of magnitude, which enables the radiative process to occur on the lifetime scale of picoseconds and become competitive to the vibrational relaxation. Such a large Purcell effect opens up new emission channels to generate the hot luminescence that arises directly from higher vibronic levels of the molecular excited state. We also stress that the critical role of resonant plasmonic nanocavities in tunneling electron induced molecular luminescence is to enhance the spontaneous radiative decay through plasmon enhanced vacuum fluctuations rather than to generate an efficient plasmon stimulated emission process. This improved understanding has been partly overlooked in previous studies but is believed to be very important for further developments of molecular plasmonics and optoelectronics. PMID:25565003

  1. An active oscillator model describes the statistics of spontaneous otoacoustic emissions.

    PubMed

    Fruth, Florian; Jülicher, Frank; Lindner, Benjamin

    2014-08-19

    Even in the absence of external stimulation, the cochleas of most humans emit very faint sounds below the threshold of hearing, sounds that are known as spontaneous otoacoustic emissions. They are a signature of the active amplification mechanism in the cochlea. Emissions occur at frequencies that are unique for an individual and change little over time. The statistics of a population of ears exhibit characteristic features such as a preferred relative frequency distance between emissions (interemission intervals). We propose a simplified cochlea model comprising an array of active nonlinear oscillators coupled both hydrodynamically and viscoelastically. The oscillators are subject to a weak spatial disorder that lends individuality to the simulated cochlea. Our model captures basic statistical features of the emissions: distributions of 1), emission frequencies; 2), number of emissions per ear; and 3), interemission intervals. In addition, the model reproduces systematic changes of the interemission intervals with frequency. We show that the mechanism for the preferred interemission interval in our model is the occurrence of synchronized clusters of oscillators. PMID:25140416

  2. An Active Oscillator Model Describes the Statistics of Spontaneous Otoacoustic Emissions

    PubMed Central

    Fruth, Florian; Jülicher, Frank; Lindner, Benjamin

    2014-01-01

    Even in the absence of external stimulation, the cochleas of most humans emit very faint sounds below the threshold of hearing, sounds that are known as spontaneous otoacoustic emissions. They are a signature of the active amplification mechanism in the cochlea. Emissions occur at frequencies that are unique for an individual and change little over time. The statistics of a population of ears exhibit characteristic features such as a preferred relative frequency distance between emissions (interemission intervals). We propose a simplified cochlea model comprising an array of active nonlinear oscillators coupled both hydrodynamically and viscoelastically. The oscillators are subject to a weak spatial disorder that lends individuality to the simulated cochlea. Our model captures basic statistical features of the emissions: distributions of 1), emission frequencies; 2), number of emissions per ear; and 3), interemission intervals. In addition, the model reproduces systematic changes of the interemission intervals with frequency. We show that the mechanism for the preferred interemission interval in our model is the occurrence of synchronized clusters of oscillators. PMID:25140416

  3. Calculated half-lives and kinetic energies for spontaneous emission of heavy ions from nuclei

    SciTech Connect

    Poenaru, D.N.; Greiner, W.; Depta, K.; Ivascu, M.; Mazilu, D.; Sandulescu, A.

    1986-05-01

    The most probable decays by spontaneous emission of heavy ions are listed for nuclides with Z = 47--106 and total half-lives>1 ..mu..sec. Partial half-lives, branching ratios relative to ..cap alpha.. decay, kinetic energies, and Q values are estimated by using the analytical superasymmetric fission model, a semiempirical formula for those ..cap alpha..-decay lifetimes which have not been measured, and the new Wapstra--Audi mass tables. Numerous ''stable'' nuclides with Z>40 are found to be metastable with respect to the new decay modes. The current experimental status is briefly reviewed.

  4. Observation of Self-Amplified Spontaneous Emission and Exponential Growth at 530 nm

    NASA Astrophysics Data System (ADS)

    Milton, S. V.; Gluskin, E.; Biedron, S. G.; Dejus, R. J.; den Hartog, P. K.; Galayda, J. N.; Kim, K.-J.; Lewellen, J. W.; Moog, E. R.; Sajaev, V.; Sereno, N. S.; Travish, G.; Vinokurov, N. A.; Arnold, N. D.; Benson, C.; Berg, W.; Biggs, J. A.; Borland, M.; Carwardine, J. A.; Chae, Y.-C.; Decker, G.; Deriy, B. N.; Erdmann, M. J.; Friedsam, H.; Gold, C.; Grelick, A. E.; Hahne, M. W.; Harkay, K. C.; Huang, Z.; Lessner, E. S.; Lill, R. M.; Lumpkin, A. H.; Makarov, O. A.; Markovich, G. M.; Meyer, D.; Nassiri, A.; Noonan, J. R.; Pasky, S. J.; Pile, G.; Smith, T. L.; Soliday, R.; Tieman, B. J.; Trakhtenberg, E. M.; Trento, G. F.; Vasserman, I. B.; Walters, D. R.; Wang, X. J.; Wiemerslage, G.; Xu, S.; Yang, B.-X.

    2000-07-01

    Experimental evidence for self-amplified spontaneous emission (SASE) at 530 nm is reported. The measurements were made at the low-energy undulator test line facility at the Advanced Photon Source, Argonne National Laboratory. The experimental setup and details of the experimental results are presented, as well as preliminary analysis. This experiment extends to shorter wavelengths the operational knowledge of a linac-based SASE free-electron laser and explicitly shows the predicted exponential growth in intensity of the optical pulse as a function of length along the undulator.

  5. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    SciTech Connect

    Bronn, Nicholas T. Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M.; Liu, Yanbing; Houck, Andrew A.

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  6. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  7. Spontaneous emission from an excited atom in the presence of N atoms and M modes

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.

    1985-05-01

    The spontaneous emission of an excited two-level atom into a system of N nonexcited atoms of the same type (with N much greater than 1) in the presence of M electromagnetic-field modes is investigated analytically, applying the Hamiltonian formulation of Dicke (1954) studied by Jaynes and Cummings (1963), Tavis and Cummings (1968), and Buley and Cummings (1964). It is shown that the trapping of radiation in the system seen when one EM mode is present does not persist as M approaches N. The feasibility of an experimental verification of these phenomena is discussed.

  8. Modified spontaneous emission of organic molecules in-filled in inverse opals.

    PubMed

    Deng, Lier; Wang, Yongsheng; He, Dawei

    2011-11-01

    Inverse opals were prepared by replication of colloidal crystal templates made from silica spheres 298 nm in diameter. The air between the silica spheres was filled with the mixture of the monomer poly(methyl methacrylate) (PMMA) and the organic molecule Alq3 that can be subsequently polymerized. After removing the silica sphere templates, the photonic bandgap effect on the spontaneous emission of Alq3 were investigated. The dip in the fluorescence spectrum was interpreted in terms of redistribution of the photon density of states in the photonic crystal. PMID:22413286

  9. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  10. Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Nees, John; Krushelnick, Karl

    2014-02-01

    For the new generation of the ultra-high power lasers with tens of PW of output power, kJ-level energies have to be reached. Our modeling, applied to Ti:sapphire amplifiers, demonstrates for the first time, according our knowledge, that Transverse Amplified Spontaneous Emission (TASE) places an additional restriction on storing and extracting energy in larger gain apertures, even stronger than transverse parasitic generation (TPG). Nevertheless, we demonstrate that extracting during pumping (EDP) can significantly reduce parasitic losses due to both TASE and TPG.

  11. Spontaneous-emission rates in finite photonic crystals of plane scatterers.

    PubMed

    Wubs, Martijn; Suttorp, L G; Lagendijk, A

    2004-01-01

    The concept of a plane scatterer that was developed earlier for scalar waves is generalized so that polarization of light is included. Starting from a Lippmann-Schwinger formalism for vector waves, we show that the Green function has to be regularized before T matrices can be defined in a consistent way. After the regularization, optical modes and Green functions are determined exactly for finite structures built up of an arbitrary number of parallel planes, at arbitrary positions, and where each plane can have different optical properties. The model is applied to the special case of finite crystals consisting of regularly spaced identical planes, where analytical methods can be taken further and only light numerical tasks remain. The formalism is used to calculate position- and orientation-dependent spontaneous-emission rates inside and near the finite photonic crystals. The results show that emission rates and reflection properties can differ strongly for scalar and for vector waves. The finite size of the crystal influences the emission rates. For parallel dipoles close to a plane, emission into guided modes gives rise to a peak in the frequency-dependent emission rate. PMID:14995745

  12. Plasma effects on the spontaneous emission of synchrotron radiation from weakly relativistic electrons

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Wu, C. S.

    1977-01-01

    A method for computing the spectral emissivity of spontaneous synchrotron radiation is discussed. The Klimontovich (1967) formalism in plasma kinetic theory is adopted in which an ensemble average of the microscopically emitted power is considered. The present method clarifies the meaning of the random phase approximation which is imposed in several existing theories of synchrotron radiation. Both the effects of dielectric polarization and two-particle correlations are included in the present discussion. The theory is applied to the case of a plasma in thermal equilibrium, for which it is shown that the effect of pair correlations on the emissivity vanishes. On the other hand, the effect of dielectric polarization is studied numerically for a wide range of parameters.

  13. On the spontaneous emission of electromagnetic radiation in the CSL model

    NASA Astrophysics Data System (ADS)

    Donadi, Sandro; Deckert, Dirk-André; Bassi, Angelo

    2014-01-01

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle's state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013).

  14. Monte Carlo simulation of the atomic master equation for spontaneous emission

    NASA Astrophysics Data System (ADS)

    Dum, R.; Zoller, P.; Ritsch, H.

    1992-04-01

    A Monte Carlo simulation of the atomic master equation for spontaneous emission in terms of atomic wave functions is developed. Realizations of the time evolution of atomic wave functions are constructed that correspond to an ensemble of atoms driven by laser light undergoing a sequence of spontaneous emissions. The atomic decay times are drawn according to the photon count distribution of the driven atom. Each quantum jump of the atomic electron projects the atomic wave function to the ground state of the atom. Our theory is based on a stochastic interpretation and generalization of Mollow's pure-state analysis of resonant light scattering, and the Srinivas-Davies theory of continuous measurements in photodetection. An extension of the theory to include mechanical light effects and a generalization to atomic systems with Zeeman substructure are given. We illustrate the method by simulating the solutions of the optical Bloch equations for two-level systems, and laser cooling of a two-level atom in an ion trap where the center-of-mass motion of the atom is described quantum mechanically.

  15. The generation of amplified spontaneous emission in high‐power CPA laser systems

    PubMed Central

    Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph

    2015-01-01

    Abstract An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high‐intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high‐intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high‐contrast front‐end design are derived regarding the necessary contrast improvement and the amplified “clean” output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high‐intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model. PMID:27134684

  16. Spontaneous emission of electromagnetic and electrostatic fluctuations in magnetized plasmas: Quasi-parallel modes

    NASA Astrophysics Data System (ADS)

    Kim, Sunjung; Yoon, Peter H.; Choe, G. S.

    2016-02-01

    The present paper is devoted to the theoretical and numerical analysis of the spontaneously emitted electromagnetic fluctuations characterized by quasi-parallel wave vectors relative to the ambient magnetic field. The formulation is based upon the Klimontovich plasma kinetic theory. The comparative study is carried out between the spontaneously emitted field fluctuation spectrum constructed on the basis of a single Maxellian velocity distribution function (VDF) and the spectrum that arises from multi-component electron VDFs similar to those found in the solar wind. Typical solar wind electron VDF is composed of a Gaussian core and kappa distributions of halo and super-halo components. Of these, the halo and super-halo populations represent tenuous but energetic components. It is found that the energetic electrons make important contributions to the total emission spectrum. It is also found that the halo electrons are largely responsible for the emission spectrum in the whistler frequency range, whereas the more energetic super-halo electrons emit quasi-longitudinal fluctuations in the Langmuir frequency range, thus validating the recent quasi-steady state model of the solar wind electrons put forth by the present authors [Kim et al., Astrophys. J. 806, 32 (2015); Yoon et al., Astrophys. J. 812, 169 (2015)].

  17. Epitaxy, phase separation and band-edge emission of spontaneously formed InGaN nanorods

    NASA Astrophysics Data System (ADS)

    De, Arpan; Shivaprasad, S. M.

    2016-09-01

    An In-flux dependent study of the nature of epitaxy, compositional phase separation and band-edge emission of spontaneously formed c-oriented InGaN nanorods on c-sapphire is performed. At higher In flux-rates, m-faceted thick nanorods (≈700 nm) form with two in-plane epitaxial orientations, and display compositional phases with In composition varying from 14 to 63%. In these rods, photo-luminescent (PL) emission is seen to originate only from the localized high-In phase (63%) that is embedded in the low-In (14%) InGaN matrix. As the In flux-rate is reduced, nanorods of smaller diameter (≈60 nm) and a coalesced nanorod network are formed, with In incorporation of 15% and 9%, respectively. These faceted, c-aligned thinner nanorods are of a single compositional phase and epitaxy and display room-temperature PL emission. Optical absorption and emission properties of these nanostructures follow Vegard’s law of band-gaps, and the observed bowing parameter and Stokes shifts correlate to the observed compositional inhomogeneity and carrier localization.

  18. Performance of a quantum teleportation protocol based on collective spontaneous emission

    SciTech Connect

    Wagner, Richard Jr.; Clemens, James P.

    2009-03-15

    Recently a conditional quantum teleportation protocol has been proposed by Chen et al. [New J. Phys. 7, 172 (2005)], which is based on the collective spontaneous emission of a photon from a pair of quantum dots. We formulate a similar protocol for collective emission from a pair of atoms, one of which is entangled with a single mode of an optical cavity. We focus on the performance of the protocol as characterized by the fidelity of the teleported state and the overall success probability. We consider a strategy employing spatially resolved photodetection of the emitted photon in order to distinguish superradiant from subradiant emission on the basis of a single detected photon. We find that fidelity approaches unity as the spacing of the atoms becomes much smaller than the emission wavelength with a success probability of 0.25. The fidelity remains above the classical limit of 2/3 for arbitrary atomic separations with the ultimate limit of performance coming from the spatial resolution of the detectors.

  19. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.

    PubMed

    Manley, Geoffrey A; van Dijk, Pim

    2016-06-01

    Frequency selectivity is a key functional property of the inner ear and since hearing research began, the frequency resolution of the human ear has been a central question. In contrast to animal studies, which permit invasive recording of neural activity, human studies must rely on indirect methods to determine hearing selectivity. Psychophysical studies, which used masking of a tone by other sounds, indicate a modest frequency selectivity in humans. By contrast, estimates using the phase delays of stimulus-frequency otoacoustic emissions (SFOAE) predict a remarkably high selectivity, unique among mammals. An alternative measure of cochlear frequency selectivity are suppression tuning curves of spontaneous otoacoustic emissions (SOAE). Several animal studies show that these measures are in excellent agreement with neural frequency selectivity. Here we contribute a large data set from normal-hearing young humans on suppression tuning curves (STC) of spontaneous otoacoustic emissions (SOAE). The frequency selectivities of human STC measured near threshold levels agree with the earlier, much lower, psychophysical estimates. They differ, however, from the typical patterns seen in animal auditory nerve data in that the selectivity is remarkably independent of frequency. In addition, SOAE are suppressed by higher-level tones in narrow frequency bands clearly above the main suppression frequencies. These narrow suppression bands suggest interactions between the suppressor tone and a cochlear standing wave corresponding to the SOAE frequency being suppressed. The data show that the relationship between pre-neural mechanical processing in the cochlea and neural coding at the hair-cell/auditory nerve synapse needs to be reconsidered. PMID:27139323

  20. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  1. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  2. Observation of novel radioactive decay by spontaneous emission of complex nuclei

    SciTech Connect

    Barwick, S.W.

    1986-01-01

    Two years of experimental investigation on the subject of spontaneous emission of intermediate-mass fragments is described in this manuscript. A short introduction on this subject and a historical review are presented in chapter 1. In chapter 2, the author describe the experimental methods which led to the observation of /sup 14/C emission in polycarbonate etched-track detectors from the isotopes /sup 222/Ra, /sup 223/Ra, /sup 224/Ra and /sup 226/Ra at the branching ratios with respect to ..cap alpha..-decay of (3.7 +/- 0.6) x 10/sup -10/, (6.1 +/- 1.0) x 10/sup -10/, (4.3 +/- 1.2) x 10/sup -10/ and (2.9 +/- 1.0) x 10/sup -11/ respectively. Branching ratio limits for heavy-ion emission from /sup 221/Fr, /sup 221/Ra and /sup 225/Ac were determined to be at < 5.0 x 10/sup -14/, < 1.2 x 10/sup -13/ and < 4.0 x 10/sup -13/ respectively for the 90% C.L. The emission of /sup 24/Ne from /sup 232/U at a branching ratio of (2.0 +/- 0.5) x 10/sup -12/ has been discovered using polyethylene terephthalate etched-track plastics. A confirmation of /sup 24/Ne and/or /sup 25/Ne emission from /sup 233/U at a branching ratio of (5.3 +/- 2.3) x 10/sup -13/ is also reported. In chapter 3, three models of intermediate-mass decay are discussed-the analytic superasymmetric fission model, the model by Shi and Swiatecki, and a model based on a square-well + Coulomb potential.

  3. Enhancing mammalian hearing by a balancing between spontaneous otoacoustic emissions and spatial coupling

    NASA Astrophysics Data System (ADS)

    Liu, Zonghua; Li, Baowen; Lai, Ying-Cheng

    2012-04-01

    Nonlinear dynamics has provided significant insights into the origin of frequency discrimination and signal amplification underlying mammalian hearing. Existing signal amplification models, however, tend to ignore two basic known aspects of the hearing: spontaneous otoacoustic emissions (SOAEs) and intrinsic dynamical coupling in the cochlea. We construct and study a class of coupled-oscillator models to remedy this deficiency. Our analysis and computations reveal that the interplay and balance between the two aspects can naturally explain the phenomena of frequency discrimination and signal amplification and, more strikingly, the origin of hearing loss, all at a quantitative level. In the presence of SOAEs, there exists a critical coupling threshold below which hearing loss can occur, suggesting enhancement of coupling as a potentially effective therapeutic strategy to restore or even significantly enhance hearing.

  4. Spontaneous emission of the Super-ACO fel optical klystron domino

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Bazin, C.; Billardon, M.; Velghe, M.

    1989-12-01

    New free electron laser experiments are planned on the Orsay storage ring Super-ACO, which has been commisioned in 1987 at LURE (Laboratoire d'Utilisation du Rayonnement Electromagnétique). For this purpose, a new insertion device, DOMINO, was set up on Super-ACO in January 1988; it consists of a permanent magnet optical klystron composed of two undulators separated by a dispersive section; the magnetic gaps can be changed independently. Here, the parameters of the optical klystron are specified, and the main steps of the optimization are described. Then, the effect of the insertion device on the stored beam is discussed. The spontaneous emission of the optical klystron has been observed and analysed. Consequently, with the ring parameters measurements, the free electron laser gain versus the current can be evaluated.

  5. Amplified spontaneous emission from a new 4-triarylamine substituted 1,8-naphthalimide semiconductor oligomer

    NASA Astrophysics Data System (ADS)

    Lu, Wu; Tu, Guoli; Zhong, Bo; Ma, Dongge; Wang, Lixiang; Jing, Xiabin; Wang, Fosong

    2005-06-01

    Amplified spontaneous emission has been observed in a new semiconductor oligomer of 2-decyl-6-{[4'-(naphthalene-1-yl-phenyl-amino)-biphenyl-4-yl]-[4-(naphthalene-1-yl-phenyl-amino)-phenyl]-amino}-benzo[ de]isoquinoline-1,3-dione (4-triarylamine substituted 1,8-naphthalimide TAANPI) doped polymer films pumped by the second harmonic of a Nd:YAG laser. The dependence of the threshold and gain on the oligomer concentration in polymer was studied in detail. It was found that the semiconductor oligomer shows low threshold, high gain and low loss even though the doped oligomer concentration is up to 60%, indicating a low concentration quenching effect. This demonstrates that the oligomer could be a promising candidate as gain medium for organic diode lasers.

  6. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R

    2014-01-13

    A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase. PMID:24515055

  7. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    PubMed

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale. PMID:26214575

  8. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm‑2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm‑2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

  9. Nematicon-driven injection of amplified spontaneous emission into an optical fiber.

    PubMed

    Bolis, Serena; Virgili, Tersilla; Rajendran, Sai Kiran; Beeckman, Jeroen; Kockaert, Pascal

    2016-05-15

    We investigate experimentally the interaction between amplified spontaneous emission (ASE) and a soliton, which are both generated in a dye-doped nematic liquid crystal (LC) cell. A light beam is injected through an optical fiber slid into the cell to form a soliton beam. ASE is then automatically collected by this self-induced waveguide and efficiently coupled into the same optical fiber, in the backward direction. We demonstrate that the presence of the soliton improves the ASE collection by one order of magnitude. We also show that the ASE is highly polarized in the plane of the LC cell and that the ASE spectrum depends on the pump stripe orientation with respect to the LC director. The origin of the spectral anisotropy of the gain curves is determined with the help of femtosecond pump-probe spectroscopy. PMID:27176973

  10. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal.

    PubMed

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm(-2), which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm(-2)). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE. PMID:27196786

  11. Enhanced amplified spontaneous emission using layer-by-layer assembled cowpea mosaic virus

    NASA Astrophysics Data System (ADS)

    Li, Na; Deng, Zhaoqi; Lin, Yuan; Zhang, Xiaojie; Geng, Yanhou; Ma, Dongge; Su, Zhaohui

    2009-01-01

    Layer-by-layer assembly technique was used to construct ultrathin film of cowpea mosaic virus (CPMV) by electrostatic interactions, and the film was employed as a precursor on which an OF8T2 film was deposited by spin coating. Amplified spontaneous emission (ASE) was observed and improved for the OF8T2 film. Compared with OF8T2 film on quartz, the introduction of CPMV nanoparticles reduced the threshold and loss, and remarkably increased the net gain. The threshold, loss, and gain reached 0.05 mJ/pulse, 6.9 cm-1, and 82 cm-1, respectively. CPMV nanoparticles may enormously scatter light, resulting in a positive feedback, thus the ASE is easily obtained and improved.

  12. Low threshold amplified spontaneous emission from dye-doped DNA biopolymer

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Chueh; Su, Che-Hsuan; Huang, Hsien-Wen

    2012-06-01

    In this study, we investigate the amplified spontaneous emission (ASE) properties and conduct a comparative study for two kinds of dye-doped deoxyribonucleic acid (DNA) biopolymers. The system consists of optical films made of DNA modified by two types of surfactants and doped with a common laser dye rhodamine 6G (Rh6G). The ASE properties of the optical films were characterized by a pulsed Nd:YAG laser. The results show that low threshold of DNA biopolymer can be achieved by the employment of suitable surfactant in the system, resulting from an efficient energy transfer process. Coupled with the fluorescence enhancement exhibited in DNA, this effect can further advance biopolymers toward highly efficient media for lasing applications and organic solid-state lasers.

  13. Spontaneous emission of radiation by relativistic electrons in a gyro-klystron

    NASA Astrophysics Data System (ADS)

    Mishra, G.; Prakash, Bramha; Sharma, Geetanjali

    2016-03-01

    In this paper, we study spontaneous emission of radiation by relativistic electrons in a gyro-klystron. The scheme consists of two solenoid sections separated by a dispersive section. In the dispersive section the electrons are made non resonant with the radiation. The dispersive section transforms a small change of the velocity into changes of the phases of the electrons.This leads to enhanced radiation as compared to a conventional gyrotron type device driven by cyclotron maser interaction. It is shown that the klystron modulated spectrum depends on the dispersive field strength, finite perpendicular velocity component and length of the solenoids but do not depend on the axial magnetic field strength. The analysis is further extended to include the combined effects of the undulator aided gyrotron klystron radiation.

  14. Gravity Wave Emission by Spontaneous Imbalance of Baroclinic Waves in the Continuously Stratified Rotating Annulus

    NASA Astrophysics Data System (ADS)

    Borchert, Sebastian; Achatz, Ulrich; Rieper, Felix; Fruman, Mark

    2013-04-01

    We use a numerical model of the classic differentially heated rotating annulus experiment to study the spontaneous emission of gravity waves (GWs) from jet stream imbalances, which is a major source of these waves in the atmosphere for which no satisfactory parameterization exists. Atmospheric observations are the main tool for the testing and verification of theoretical concepts but have their limitations. Given their specific potential for yielding reproducible data and for studying process dependence on external system parameters, laboratory experiments are an invaluable complementary tool. Experiments with a rotating annulus exhibiting a jet modulated by large-scale waves due to baroclinic instability have already been used to study GWs: Williams et al (2008) observed spontaneously emitted interfacial GWs in a two-layer flow, and Jacoby et al (2011) detected GWs emitted from boundary-layer instabilities in a differentially heated rotating annulus. Employing a finite-volume code for the numerical simulation of a continuously stratified liquid in a differentially heated rotating annulus, we here investigate the GWs in a wide and shallow annulus with relatively large temperature difference between inner and outer cylinder walls. In this atmosphere-like regime where the Brunt-Vaisala frequency is larger than the inertial frequency, various analyses suggest a distinct gravity wave activity. To identify regions of GW emission we decompose the flow into the geostrophic and ageostrophic part through the inversion of the quasi-geostrophic potential vorticity (e.g. Verkley, 2009). The analysis of the geostrophic sources of the ageostrophic flow indicates that, in addition to boundary layer instabilities, spontaneous imbalance in the jet region acts as an important source mechanism. Jacoby, T. N. L., Read, P. L., Williams, P. D. and Young, R. M. B., 2011: Generation of inertia-gravity waves in the rotating thermal annulus by a localised boundary layer instability. Geophys

  15. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  16. Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors.

    PubMed

    Jakubczyk, Tomasz; Franke, Helena; Smoleński, Tomasz; Sciesiek, Maciej; Pacuski, Wojciech; Golnik, Andrzej; Schmidt-Grund, Rüdiger; Grundmann, Marius; Kruse, Carsten; Hommel, Detlef; Kossacki, Piotr

    2014-10-28

    We present a micropillar cavity where nondesired radial emission is inhibited. The photonic confinement in such a structure is improved by implementation of an additional concentric radial-distributed Bragg reflector. Such a reflector increases the reflectivity in all directions perpendicular to the micropillar axis from a typical value of 15-31% to above 98%. An inhibition of the spontaneous emission of off-resonant excitonic states of quantum dots embedded in the microcavity is revealed by time-resolved experiments. It proves a decreased density of photonic states related to unwanted radial leakage of photons out of the micropillar. For on-resonance conditions, we find that the dot emission rate is increased, evidencing the Purcell enhancement of spontaneous emission. The proposed design can increase the efficiency of single-photon sources and bring to micropillar cavities the functionalities based on lengthened decay times. PMID:25181393

  17. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    NASA Astrophysics Data System (ADS)

    Arnold, N. D.; Attig, J.; Banks, G.; Bechtold, R.; Beczek, K.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Biggs, J. A.; Borland, M.; Boerste, K.; Bosek, M.; Brzowski, W. R.; Budz, J.; Carwardine, J. A.; Castro, P.; Chae, Y.-C.; Christensen, S.; Clark, C.; Conde, M.; Crosbie, E. A.; Decker, G. A.; Dejus, R. J.; DeLeon, H.; Den Hartog, P. K.; Deriy, B. N.; Dohan, D.; Dombrowski, P.; Donkers, D.; Doose, C. L.; Dortwegt, R. J.; Edwards, G. A.; Eidelman, Y.; Erdmann, M. J.; Error, J.; Ferry, R.; Flood, R.; Forrestal, J.; Freund, H.; Friedsam, H.; Gagliano, J.; Gai, W.; Galayda, J. N.; Gerig, R.; Gilmore, R. L.; Gluskin, E.; Goeppner, G. A.; Goetzen, J.; Gold, C.; Gorski, A. J.; Grelick, A. E.; Hahne, M. W.; Hanuska, S.; Harkay, K. C.; Harris, G.; Hillman, A. L.; Hogrefe, R.; Hoyt, J.; Huang, Z.; Jagger, J. M.; Jansma, W. G.; Jaski, M.; Jones, S. J.; Keane, R. T.; Kelly, A. L.; Keyser, C.; Kim, K.-J.; Kim, S. H.; Kirshenbaum, M.; Klick, J. H.; Knoerzer, K.; Koldenhoven, R. J.; Knott, M.; Labuda, S.; Laird, R.; Lang, J.; Lenkszus, F.; Lessner, E. S.; Lewellen, J. W.; Li, Y.; Lill, R. M.; Lumpkin, A. H.; Makarov, O. A.; Markovich, G. M.; McDowell, M.; McDowell, W. P.; McNamara, P. E.; Meier, T.; Meyer, D.; Michalek, W.; Milton, S. V.; Moe, H.; Moog, E. R.; Morrison, L.; Nassiri, A.; Noonan, J. R.; Otto, R.; Pace, J.; Pasky, S. J.; Penicka, J. M.; Pietryla, A. F.; Pile, G.; Pitts, C.; Power, J.; Powers, T.; Putnam, C. C.; Puttkammer, A. J.; Reigle, D.; Reigle, L.; Ronzhin, D.; Rotela, E. R.; Russell, E. F.; Sajaev, V.; Sarkar, S.; Scapino, J. C.; Schroeder, K.; Seglem, R. A.; Sereno, N. S.; Sharma, S. K.; Sidarous, J. F.; Singh, O.; Smith, T. L.; Soliday, R.; Sprau, G. A.; Stein, S. J.; Stejskal, B.; Svirtun, V.; Teng, L. C.; Theres, E.; Thompson, K.; Tieman, B. J.; Torres, J. A.; Trakhtenberg, E. M.; Travish, G.; Trento, G. F.; Vacca, J.; Vasserman, I. B.; Vinokurov, N. A.; Walters, D. R.; Wang, J.; Wang, X. J.; Warren, J.; Wesling, S.; Weyer, D. L.; Wiemerslage, G.; Wilhelmi, K.; Wright, R.; Wyncott, D.; Xu, S.; Yang, B.-X.; Yoder, W.; Zabel, R. B.

    2001-12-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  18. EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER (EPM) ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. L.B. Wichers1, J.P. Nolan2, W.H. Rowan2, M.J. Campen3, T.P. Jenkins4, D.L. Costa2, and W.P. Watkinson2. 1UNC SPH, Chap...

  19. Spectroscopic properties and amplified spontaneous emission of fluorescein laser dye in ionic liquids as green media

    NASA Astrophysics Data System (ADS)

    AL-Aqmar, Dalal M.; Abdelkader, H. I.; Abou Kana, Maram T. H.

    2015-09-01

    The use of ionic liquids (ILs) as milieu materials for laser dyes is a promising field and quite competitive with volatile organic solvents and solid state-dye laser systems. This paper investigates some photo-physical parameters of fluorescein dye incorporated into ionic liquids; 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-Butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl4) and 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4) as promising host matrix in addition to ethanol as reference. These parameters are: absorption and emission cross-sections, fluorescence lifetime and quantum yield, in addition to the transition dipole moment, the attenuation length and oscillator strength were also investigated. Lasing characteristics such as amplified spontaneous emission (ASE), the gain, and the photostability of fluorescein laser dye dissolved in different host materials were assessed. The composition and properties of the matrix of ILs were found that it has great interest in optimizing the laser performance and photostability of the investigated laser dye. Under transverse pumping of fluorescein dye by blue laser diode (450 nm) of (400 mW), the initial ASE for dye dissolved in BMIM AlCl4 and ethanol were decreased to 39% and 36% respectively as time progressed 132 min. Relatively high efficiency and high fluorescence quantum yield (11.8% and 0.82% respectively) were obtained with good photostability in case of fluorescein in BMIM BF4 that was decreased to ∼56% of the initial ASE after continuously pumping with 400 mW for 132 min.

  20. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sarpkaya, Ibrahim; Zhang, Zhengyi; Walden-Newman, William; Wang, Xuesi; Hone, James; Wong, Chee W.; Strauf, Stefan

    2013-07-01

    The bright exciton emission of carbon nanotubes is appealing for optoelectronic devices and fundamental studies of light-matter interaction in one-dimensional nanostructures. However, to date, the photophysics of excitons in carbon nanotubes is largely affected by extrinsic effects. Here we perform time-resolved photoluminescence measurements over 14 orders of magnitude for ultra-clean carbon nanotubes bridging an air gap over pillar posts. Our measurements demonstrate a new regime of intrinsic exciton photophysics with prolonged spontaneous emission times up to T1=18 ns, about two orders of magnitude better than prior measurements and in agreement with values hypothesized by theorists about a decade ago. Furthermore, we establish for the first time exciton decoherence times of individual nanotubes in the time domain and find fourfold prolonged values up to T2=2.1 ps compared with ensemble measurements. These first observations motivate new discussions about the magnitude of the intrinsic dephasing mechanism while the prolonged exciton dynamics is promising for applications.

  1. Impact of photodepletion to amplified spontaneous emission of proton-transfer dyes in polymeric matrices

    NASA Astrophysics Data System (ADS)

    Täuber, U.; Carvalho, C. E. M.; Dos Santos, R. F.; Carvalhaes, C. G.; Fellows, C. E.

    2007-05-01

    A six level rate equation system was used to investigate the impact of photodepletion to amplified spontaneous emission (ASE) of intramolecular proton-transfer (IPT) dyes incorporated into polymeric hosts. The model includes the most important transitions for the normal and tautomer form of the molecule as well as intersystem crossing and triplet-triplet transitions. The experimentally observed pulse shape as well as photodepletion phenomena, i.e. a first order exponential decay of the ASE intensity and a shortening in ASE pulse width, have been simulated successfully. Additionally, the model was used to propose an explanation of the unexpected high photodepletion of proton-transfer dyes in solids. The results show that the emission cross section and reabsorption cross section of the tautomer form of the molecule are the most important parameter not only for efficiency but also for photodepletion. The model was tested by comparison with experimental results of 2-(2’-hydroxyphenyl)benzimidazole in polymethylmethacrylate (PMMA), polystyrene (PS) and a 1:1 alternating copolymer matrix PS-co-PMMA.

  2. Amplified spontaneous emission from a microtube cavity with whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Rakovich, Y. P.; Balakrishnan, S.; Gun'ko, Y.; Perova, T. S.; Moore, A.; Donegan, J. F.

    2007-05-01

    We present a detailed study of the photonic modes in microtube cavity of ~ 7-8 μm outer diameter that can act as micron-scale optical cylindrical resonator. We demonstrate a new route to the fabrication of individual microtubes with the maximum length of 200 μm, using a vacuum assisted wetting and filtration through a microchannel glass matrix. The microtubes were studied using micro-photoluminescence spectroscopy and luminescence lifetime imaging confocal microscopy. In the emission spectra of the microresonators we find periodic very narrow peaks corresponding to the whispering gallery modes of two orthogonal polarizations with quality factors upto 3200 at room temperature. In order to identify the peaks in the observed mode structure, we have adopted the boundary-value solution to the problem of scattering of electromagnetic waves by a dielectric micro-cylinder. A strong enhancement in photoluminescence decay rates at high excitation power suggest the occurrence of amplified spontaneous emission from a single microtube. The evanescent field in these photonic structures extends a couple of micrometers into the surroundings providing the possibility for efficient coupling to an external photonic device.

  3. Gravity Wave Emission by Spontaneous Imbalance of Baroclinic Waves in the Continuously Stratified Rotating Annulus

    NASA Astrophysics Data System (ADS)

    Borchert, S.; Achatz, U.; Rieper, F.; Fruman, M. D.

    2012-04-01

    We use a numerical model of the classic differentially heated rotating annulus experiment to study the spontaneous emission of gravity waves (GWs) from jet stream imbalances, which is a major source of these waves in the atmosphere for which no satisfactory parameterization exists. Atmospheric observations are the main tool for the testing and verification of theoretical concepts but have their limitations. Given their specific potential for yielding reproducible data and for studying process dependence on external system parameters, laboratory experiments are an invaluable complementary tool. Experiments with a rotating annulus exhibiting a jet modulated by large-scale waves due to baroclinic instability have already been used to study GWs: Williams et al (2008) observed spontaneously emitted interfacial GWs in a two-layer flow, and Jacoby et al (2011) detected GWs emitted from boundary-layer instabilities in a differentially heated rotating annulus. Employing a new finite-volume code for the numerical simulation of a continuously stratified liquid in a differentially heated rotating annulus, we here investigate whether such an experiment might be useful for studies of spontaneous imbalance. A major problem was the identification of experimental parameters yielding an atmosphere-like regime where the Brunt-Vaisala frequency is larger than the inertial frequency, so that energy transport by the lowest-frequency waves is predominantly horizontal while high-frequency GWs transport energy vertically. We show that this is indeed the case for a wide and shallow annulus with relatively large temperature difference between the inner and outer cylinder walls. We also show that this set-up yields a conspicuous signal in the horizontal divergence field close to the meandering jet. Various analyses support the notion that this signal is predominantly due to GWs superposed on a geostrophic flow. Jacoby, T. N. L., Read, P. L., Williams, P. D. and Young, R. M. B., 2011

  4. Coke pushing emission control system

    SciTech Connect

    Kwasnoski, D.; Symons, C.

    1980-07-08

    A method is described for controlling coke oven emissions comprising the steps of: (A) aligning a one-spot, open-top coke quenching car with the coke oven, (B) providing a coke guide from the coke oven to the car, (C) positioning a fume hood over the car, with the fume hood having a length about equal to the length of the car, (D) pushing hot coke from the coke oven through the coke guide and into the car, (E) withdrawing gases from the fume hood during step (D) and passing said gases to gas cleaning equipment at a gas flowrate of between about 1000 and about 3500 scfmd per ton of coke pushed under step (D), and (F) substantially upon completion of step (E) moving the car from under the fume hood to a quenching station with the hot coke in the car exposed to the atmosphere and without further withdrawal of gases from the hot coke to the gas cleaning equipment.

  5. Loss of the Tectorial Membrane Protein CEACAM16 Enhances Spontaneous, Stimulus-Frequency, and Transiently Evoked Otoacoustic Emissions

    PubMed Central

    Goodyear, Richard J.; Homma, Kazuaki; Legan, P. Kevin; Korchagina, Julia; Naskar, Souvik; Siegel, Jonathan H.; Dallos, Peter; Zheng, Jing

    2014-01-01

    α-Tectorin (TECTA), β-tectorin (TECTB), and carcinoembryonic antigen-related cell adhesion molecule 16 (CEACAM) are secreted glycoproteins that are present in the tectorial membrane (TM), an extracellular structure overlying the hearing organ of the inner ear, the organ of Corti. Previous studies have shown that TECTA and TECTB are both required for formation of the striated-sheet matrix within which collagen fibrils of the TM are imbedded and that CEACAM16 interacts with TECTA. To learn more about the structural and functional significance of CEACAM16, we created a Ceacam16-null mutant mouse. In the absence of CEACAM16, TECTB levels are reduced, a clearly defined striated-sheet matrix does not develop, and Hensen's stripe, a prominent feature in the basal two-thirds of the TM in WT mice, is absent. CEACAM16 is also shown to interact with TECTB, indicating that it may stabilize interactions between TECTA and TECTB. Although brain-stem evoked responses and distortion product otoacoustic emissions are, for most frequencies, normal in young mice lacking CEACAM16, stimulus-frequency and transiently evoked emissions are larger. We also observed spontaneous otoacoustic emissions (SOAEs) in 70% of the homozygous mice. This incidence is remarkable considering that <3% of WT controls have SOAEs. The predominance of SOAEs >15 kHz correlates with the loss of Hensen's stripe. Results from mice lacking CEACAM16 are consistent with the idea that the organ of Corti evolved to maximize the gain of the cochlear amplifier while preventing large oscillations. Changes in TM structure appear to influence the balance between energy generation and dissipation such that the system becomes unstable. PMID:25080593

  6. Realization of dynamic thermal emission control.

    PubMed

    Inoue, Takuya; De Zoysa, Menaka; Asano, Takashi; Noda, Susumu

    2014-10-01

    Thermal emission in the infrared range is important in various fields of research, including chemistry, medicine and atmospheric science. Recently, the possibility of controlling thermal emission based on wavelength-scale optical structures has been intensively investigated with a view towards a new generation of thermal emission devices. However, all demonstrations so far have involved the 'static' control of thermal emission; high-speed modulation of thermal emission has proved difficult to achieve because the intensity of thermal emission from an object is usually determined by its temperature, and the frequency of temperature modulation is limited to 10-100 Hz even when the thermal mass of the object is small. Here, we experimentally demonstrate the dynamic control of thermal emission via the control of emissivity (absorptivity), at a speed four orders of magnitude faster than is possible using the conventional temperature-modulation method. Our approach is based on the dynamic control of intersubband absorption in n-type quantum wells, which is enhanced by an optical resonant mode in a photonic crystal slab. The extraction of electrical carriers from the quantum wells leads to an immediate change in emissivity from 0.74 to 0.24 at the resonant wavelength while maintaining much lower emissivity at all other wavelengths. PMID:25064232

  7. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source.

    PubMed

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K; Ray, Samit K; Shivakiran, Bhaktha B N

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications. PMID:26670725

  8. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  9. Endogenous spontaneous ultraweak photon emission in the formation of eye-specific retinogeniculate projections before birth.

    PubMed

    Bókkon, István; Scholkmann, Felix; Salari, Vahid; Császár, Noémi; Kapócs, Gábor

    2016-06-01

    In 1963, it was suggested [Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703-710.] that molecular cues can direct the development of orderly connections between the eye and the brain (the "chemoaffinity hypothesis"). In the same year, the amazing degree of functional accuracy of the visual pathway in the absence of any external light/photon perception prior to birth [Wiesel, T.N and Hubel, D.H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003-1017.] was discovered. These recognitions revealed that the wiring of the visual system relies on innate cues. However, how the eye-specific retinogeniculate pathway can be developed before birth without any visual experience is still an unresolved issue. In the present paper, we suggest that Müller cells (functioning as optical fibers), Müller cell cone (i.e. the inner half of the foveola that is created of an inverted cone-shaped zone of Müller cells), discrete retinal noise of rods, and intrinsically photosensitive retinal ganglion cells might have key functions by means of retinal spontaneous ultraweak photon emission in the development of eye-specific retinogeniculate pathways prior to birth. PMID:26656799

  10. Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets.

    PubMed

    She, Chunxing; Fedin, Igor; Dolzhnikov, Dmitriy S; Dahlberg, Peter D; Engel, Gregory S; Schaller, Richard D; Talapin, Dmitri V

    2015-10-27

    There have been multiple demonstrations of amplified spontaneous emission (ASE) and lasing using colloidal semiconductor nanocrystals. However, it has been proven difficult to achieve low thresholds suitable for practical use of nanocrystals as gain media. Low-threshold blue ASE and lasing from nanocrystals is an even more challenging task. Here, we show that colloidal nanoplatelets (NPLs) with electronic structure of quantum wells can produce ASE in the red, yellow, green, and blue regions of the visible spectrum with low thresholds and high gains. In particular, for blue-emitting NPLs, the ASE threshold is 50 μJ/cm(2), lower than any reported value for nanocrystals. We then demonstrate red, yellow, green, and blue lasing using NPLs with different thicknesses. We find that the lateral size of NPLs does not show any strong effect on the Auger recombination rates and, correspondingly, on the ASE threshold or gain saturation. This observation highlights the qualitative difference of multiexciton dynamics in CdSe NPLs and other quantum-confined CdSe materials, such as quantum dots and rods. Our measurements of the gain bandwidth and gain lifetime further support the prospects of colloidal NPLs as solution-processed optical gain materials. PMID:26302368

  11. Measuring the energy of amplified spontaneous emission (ASE) in a short pulse laser amplifier

    NASA Astrophysics Data System (ADS)

    Iliev, Marin; Adams, Daniel; Greco, Michael; Meier, Amanda; Squier, Jeff; Durfee, Charles

    2010-10-01

    In high-gain pulsed laser amplifiers, amplified spontaneous emission (ASE) tends to limit the gain in single stage fiber amplifiers. Even if ASE is not strong enough to deplete the gain of the amplifier, it still contributes strongly to a low-intensity background output in the amplified signal. The intensity contrast between the amplified short pulse and this background ASE pedestal can be measured with third-order autocorrelation, but this method cannot be used to completely specify the ASE's energy, which is distributed over many nanoseconds. We have developed a novel method that allows us to determine the energy and the spectrum of the ASE. We use a cross polarized wave (XPW) generating crystal such as BaF2 to ``clean up'' the ASE from the short pulse(SP). The input pulse (SP and ASE) and the cross-polarized signal are passed through a birefringent crystal such as sapphire. The relative group velocity difference along each crystal axis results in a delay between both channels. After passing through a polarizer, an interferogram is obtained in a spectrometer. This interferogram results from interference of the XPW pulse with the short-pulse content of the amplifier output, with a background of the ASE spectrum. Fourier analysis yields both the ASE energy and its spectrum.

  12. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    PubMed Central

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; De Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-01-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440–700 nm) with low pump thresholds down to 5±1 μJ cm−2 and high values of modal net gain of at least 450±30 cm−1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. PMID:26290056

  13. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; de Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-08-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ~10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700 nm) with low pump thresholds down to 5+/-1 μJ cm-2 and high values of modal net gain of at least 450+/-30 cm-1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals.

  14. Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector.

    PubMed

    Stranks, Samuel D; Wood, Simon M; Wojciechowski, Konrad; Deschler, Felix; Saliba, Michael; Khandelwal, Hitesh; Patel, Jay B; Elston, Steve J; Herz, Laura M; Johnston, Michael B; Schenning, Albertus P H J; Debije, Michael G; Riede, Moritz K; Morris, Stephen M; Snaith, Henry J

    2015-08-12

    Organic-inorganic perovskites are highly promising solar cell materials with laboratory-based power conversion efficiencies already matching those of established thin film technologies. Their exceptional photovoltaic performance is in part attributed to the presence of efficient radiative recombination pathways, thereby opening up the possibility of efficient light-emitting devices. Here, we demonstrate optically pumped amplified spontaneous emission (ASE) at 780 nm from a 50 nm-thick film of CH3NH3PbI3 perovskite that is sandwiched within a cavity composed of a thin-film (∼7 μm) cholesteric liquid crystal (CLC) reflector and a metal back-reflector. The threshold fluence for ASE in the perovskite film is reduced by at least two orders of magnitude in the presence of the CLC reflector, which results in a factor of two reduction in threshold fluence compared to previous reports. We consider this to be due to improved coupling of the oblique and out-of-plane modes that are reflected into the bulk in addition to any contributions from cavity modes. Furthermore, we also demonstrate enhanced ASE on flexible reflectors and discuss how improvements in the quality factor and reflectivity of the CLC layers could lead to single-mode lasing using CLC reflectors. Our work opens up the possibility of fabricating widely wavelength-tunable "mirror-less" single-mode lasers on flexible substrates, which could find use in applications such as flexible displays and friend or foe identification. PMID:25989354

  15. Spontaneous emission dynamics in an omnidirectional waveguide made of photonic crystals

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Hsien; Cheng, Szu-Cheng; Wu, Jing-Nuo; Hsieh, Wen-Feng

    2011-06-01

    The spontaneous emission dynamics of atoms embedded in an omnidirectional waveguide (ODWG), a novel optical waveguide, is studied on the basis of the complete reflection of one-dimensional photonic crystals. With the dispersion curve of the single waveguide mode within the photonic band gap and various extents of background dissipation, we characterize the photon-atom interaction in the ODWG. The photon emitter of the system is a two-level atom embedded in the low-index medium of the multilayer-film ODWG or the atom-ODWG system. Fractional calculus, an innovative mathematical method in optical systems, is applied to solve the equation of motion for this atom-ODWG system. Two kinds of states with different group velocities exhibit totally distinctive dynamical behavior. The high frequency waveguide mode with a fast group velocity shows fast exponential decay in propagation while the band-edge mode with a slow group velocity displays non-Markovian dynamics with non-exponential oscillating time evolution. We therefore suggest different functions of this atom-ODWG system for these two kinds of states. The richness of the physical content of the system is also revealed through investigating the dynamical behavior of the band-edge mode. These results aid in further application and fundamental understanding of the atom-ODWG system.

  16. Spontaneous emission of a photon: Wave-packet structures and atom-photon entanglement

    SciTech Connect

    Fedorov, M.V.; Efremov, M.A.; Kazakov, A.E.; Chan, K.W.; Eberly, J.H.; Law, C.K.

    2005-09-15

    Spontaneous emission of a photon by an atom is described theoretically in three dimensions with the initial wave function of a finite-mass atom taken in the form of a finite-size wave packet. Recoil and wave-packet spreading are taken into account. The total atom-photon wave function is found in the momentum and coordinate representations as the solution of an initial-value problem. The atom-photon entanglement arising in such a process is shown to be closely related to the structure of atom and photon wave packets which can be measured in the coincidence and single-particle schemes of measurements. Two predicted effects, arising under the conditions of high entanglement, are anomalous narrowing of the coincidence wave packets and, under different conditions, anomalous broadening of the single-particle wave packets. Fundamental symmetry relations between the photon and atom single-particle and coincidence wave-packet widths are established. The relationship with the famous scenario of Einstein-Podolsky-Rosen is discussed.

  17. Amplified Spontaneous Emission and Gain from Optically Pumped Films of Dye-Doped Polymers

    NASA Astrophysics Data System (ADS)

    Lu, Wu; Zhong, Bo; Ma, Dongge

    2004-09-01

    The amplified spontaneous emission and gain characteristics of various fluorescent dyes, 2-(1,1-dimethylethyl)-6(2-(2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H-benzo[ij] quinolizin-9-1)ethenyl)-4H-pyran-4-ylidene) propanedinitrile (DCJTB) and 4-dicyanomethylene-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM), doped in polystyrene (PS) matrices were studied and compared. It was found that DCJTB has a larger net gain, 40.72 cm^-1, a lower loss, 2.49 cm^-1, and a lower threshold, 0.16 (mJ/pulse)/cm^2, than DCM, which has a net gain of 11.95 cm^-1, a loss of 9.25 cm^-1, and a threshold of 4(mJ/pulse)/cm^2. The improvement of performance in DCJTB PS films is attributed to the larger free volume of DCJTB caused by the introduction of steric spacer groups into the DCJTB molecule.

  18. Amplified spontaneous emission from DCJTB encapsulated in mesostructured composite silica SBA-15.

    PubMed

    Zhang, Dingke; Duan, Zhuojun; Wang, Yu; Zhang, Peng; Chen, Shijian

    2016-06-10

    Amplified spontaneous emission (ASE) characteristics of a red dye 4-(Dicyanomethylene)-2-t-butyl-6-(1,1,7,7- etramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) encapsulated in a highly ordered mesoporous SBA-15 were studied. The mesoporous composite silica film loaded with organic dye has been successfully synthesized by a solgel reaction process and a simple postgrafting method at room temperature. The spectrum narrowing phenomena has been observed when the composite film is pumped at λp=532  nm by a Nd:YAG ed laser. There is a substantial reduction in the full width at half-maximum of the emitting light, which is one of the signatures of the presence of ASE. The ASE threshold and net gain, respectively, reached 0.03  mJ pulse-1 and 34.7  cm-1 for the DCJTB encapsulated in mesoporous SBA-15 film. The optimized ASE properties owe much to the effects of the better spatial confinement of the molecules in the ordered mesoporous structure of the host SBA-15. PMID:27409033

  19. Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Jaffe, Robert L.; Kardar, Mehran

    2014-07-01

    We study the implications of quantum fluctuations of a dispersive medium, under steady rotation, either in or out of thermal equilibrium with its environment. A rotating object exhibits a quantum instability by dissipating its mechanical motion via spontaneous emission of photons, as well as internal heat generation. Universal relations are derived for the radiated energy and angular momentum as trace formulas involving the object's scattering matrix. We also compute the quantum noise by deriving the full statistics of the radiated photons out of thermal and/or dynamic equilibrium. The (entanglement) entropy generation is quantified and the total entropy is shown to be always increasing. Furthermore, we derive a Fokker-Planck equation governing the stochastic angular motion resulting from the fluctuating backreaction frictional torque. As a result, we find a quantum limit on the uncertainty of the object's angular velocity in steady rotation. Finally, we show in some detail that a rotating object drags nearby objects, making them spin parallel to its axis of rotation. A scalar toy model is introduced to simplify the technicalities and ease the conceptual complexities and then a detailed discussion of quantum electrodynamics is presented.

  20. Statistical quantification of 24-hour and monthly variabilities of spontaneous otoacoustic emission frequency in humans.

    PubMed

    Haggerty, H S; Lusted, H S; Morton, S C

    1993-10-01

    Previous evidence has suggested a relationship between spontaneous otoacoustic emissions (SOAEs) and established, biological cycles, although detailed statistical quantifications of the suggested relationships do not exist in the literature. In an attempt to statistically quantify the purported circadian and monthly influences on this phenomenon, two experiments were undertaken. The first experiment was conducted over eight weeks, investigating 31 SOAEs recorded from eight women and two men. Time series statistical analysis examined whether daily, weekly, and/or monthly cycles characterized SOAE frequency variability. Results yielded a significant monthly cycle for the majority of SOAEs recorded from the women but for none of the SOAEs recorded from the men. These results suggest the possibility that SOAE frequency fluctuation in women may be entrained to the monthly menstrual cycle. In the second experiment, hourly SOAE frequency stability was examined over a 24-h period to ascertain the nature of the daily frequency variation as precisely as possible. Four SOAEs from two subjects were examined, and time series analysis of these data included (1) modelling the autocorrelation structure of the measurements, (2) resolving each 24-h series of measurements into cyclical components of various periodicities, and (3) testing the statistical significance of given cycles within the spectrum of each series. Findings included a significant 24-h variability of frequency for each SOAE, suggesting the possibility of a circadian influence on frequency fluctuation. Results from the two experiments provide quantitative evidence supporting a hypothetical relationship between SOAEs and established, biological cycles. PMID:8276731

  1. Cold test, spontaneous emission and gain in a rectangular Cerenkov amplifier

    SciTech Connect

    Scharer, J.E.; Joe, J.; Booske, J.H.; Basten, M.; Kirolous, H.

    1994-12-31

    The authors present experimental results for the rectangular Cerenkov grating amplifier. This research is being carried out to develop a Ka-band (35 GHz), low voltage (10 kV), moderate power (10 kW) source. They have constructed a Ku-band grating structure to study a scaled version of this source. The tapered grating consists of two tapered Ku-band smooth wave guide sections and two 3.5-inch sections of five-step-tapered gratings. Both tapered and untapered grating structures have been cold tested utilizing the network analyzer measurements. They find that their taper design reduced the reflection coefficient from {minus}5 dB to less than {minus}20 dB over a 12--15 GHz bandwidth. Spontaneous emission results resulting from passing the circular electron beam from a Litton thermionic gun over the grating structure will be presented. They have theoretically investigated the sheet beam interaction with hybrid modes in a deep groove rectangular grating waveguide. A complex dispersion relation, which includes a finite axial energy spread of the beam, describing the interaction has been solved. The authors find that the instability is always convective in the forward wave mode regime.

  2. Bleederless ventilation systems as a spontaneous combustion control measure in US coal mines. Information circular/1994

    SciTech Connect

    Smith, A.C.; Diamond, W.P.; Mucho, T.P.; Organiscak, J.A.

    1994-01-01

    The U.S. Bureau of Mines conducted a worldwide literature review of bleederless ventilation practices to evaluate their use as a spontaneous combustion control measure in U.S. coal mines. Factors that must be taken into account in the design and use of these systems include seal construction, the use of ventilation control devices, the use of methane-drainage systems in gassy mines, and the ground control plan. Monitoring for the detection of spontaneous combustion and the control of methane when methane-drainage techniques are employed is critical to the successful use of a bleederless ventilation system. The report describes the types of ventilation systems used throughout the world and the spontaneous combustion risks associated with these systems.

  3. Ecological controls over monoterpene emissions from confiers

    SciTech Connect

    Lerdau, M.T.

    1994-01-01

    Ecological controls over monoterpene emissions from two species of conifers, Ponderosa pine and Douglas fir are studied. Monoterpenes are hydrocarbons that serve as part of these plant's chemical defense system. They are highly volatile and make up approximately 40% of the reduced carbon budget of the lower atmosphere playing a major role in tropospheric photochemistry. Previous research has emphasized the controls over emissions from any one plant at any one time. This paper considers some of the controls over the baseline emission rates from different plants. In field studies on Ponderosa pine and greenhouse experiments with Douglas fir in which photosynthesis, tissue chemistry, and monoterpene emissions were measured, there is a strong correlation between the concentration of particular monoterpenes within foliage and emissions from that foliage. Changes in pine photosynthesis were not correlated with changes in monoterpene emissions. In Douglas fir a strong relationship existed among nitrogen availability, phenology (seasonal plant growth), and monoterpene concentration and emission. When foliage is not expanding, there is a direct relationship among nitrogen availability and monoterpene concentrations and emissions. However, during that time of the year when needles are expanding, there is a negative relationship among nitrogen availability and monoterpene concentrations and emissions. From these results I have parameterized a model of monoterpene emissions from vegetation that runs as a subroutine of an ecosystem gas exchange model. The model includes the physiochemical controls on instantaneous flux found in previous work and biological controls on baseline emission rates. Results from initial simulations suggest that low temperatures can decouple monoterpene concentrations from monoterpene emissions. These results also indicate that herbivory could be a major factor controlling monoterpene emissions from forests.

  4. Controlling air emissions from incinerators

    SciTech Connect

    Foisy, M.B.; Li, R.; Chattapadhyay, A.

    1994-04-01

    Last year, EPA published final rules establishing technical standards for the use and disposal of wastewater biosolids (40 CFR, Part 503). Subpart E specifically regulates the operations of and emissions from municipal wastewater biosolids incinerators.

  5. Examination of bleederless ventilation practices for spontaneous combustion control in US coal mines

    SciTech Connect

    Organiscak, J.A.; Smith, A.C.; Diamond, W.P.; Mucho, T.P.

    1995-12-31

    The U.S. Bureau of Mines examined bleederless ventilation practices to evaluate their use as a spontaneous combustion control measure in U.S. coal mines. Results indicate that restricting airflow into mined-out areas (bleederless ventilation) is recognized worldwide as a spontaneous combustion control measure. However, ventilation practices commonly used to limit airflow to mined-out areas are not easily applicable to United States mining conditions, systems, experience and regulations. The types of bleederless ventilation systems used throughout the world and the spontaneous combustion risks associated with these systems are discussed. Primary design considerations for bleederless ventilation consist of the interaction of ventilation practices, methane drainage, ground control, seal construction and mine monitoring. Technological improvements needed for U.S. application of bleederless ventilation are also discussed.

  6. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    SciTech Connect

    Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin

    2011-07-15

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.

  7. Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky-junction-based plasmonic amplifiers.

    PubMed

    Livani, Abdolber Mallah; Kaatuzian, Hassan

    2015-07-01

    An amplifier that operates on surface plasmon polaritons has been analyzed and simulated. Nonlinearity behavior and the spontaneous emission effects of the plasmonic amplifier are investigated in this paper. A rate equations approach has been used in which parameters are derived from simulation results of the plasmonic amplifier (Silvaco/ATLAS). Details on the method of this derivation are included, which were not previously reported. Rate equations are solved numerically by MATLAB codes. These codes verify the Silvaco results. The plasmonic amplifier operates on surface plasmons with a free-space wavelength of 1550 nm. Results show that, even without the effect of spontaneous emission, gain of the plasmonic amplifier saturates in high input levels. Saturation power, which can be used for comparing nonlinearity of different amplifiers, is 2.1 dBm for this amplifier. Amplified spontaneous emission reduces the gain of the amplifiers, which is long. There is an optimum value for the length of the amplifier. For the amplifier of this work, the optimum length for the small signal condition is 265 μm. PMID:26193159

  8. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  9. Spontaneous centralization of control in a network of company ownerships.

    PubMed

    Krause, Sebastian M; Peixoto, Tiago P; Bornholdt, Stefan

    2013-01-01

    We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected "core" made of a small number of large companies which control a significant part of the global economy. Here we show how a simple, adaptive "rich get richer" dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy. PMID:24324594

  10. Spontaneous Centralization of Control in a Network of Company Ownerships

    PubMed Central

    Krause, Sebastian M.; Peixoto, Tiago P.; Bornholdt, Stefan

    2013-01-01

    We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected “core” made of a small number of large companies which control a significant part of the global economy. Here we show how a simple, adaptive “rich get richer” dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy. PMID:24324594

  11. Variable emissivity laser thermal control system

    DOEpatents

    Milner, Joseph R.

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  12. Comment on “Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser” [Phys. Plasmas 20, 033106 (2013)

    SciTech Connect

    Petrillo, V.; Rossi, A. R.; Serafini, L.

    2013-12-15

    We point out that in the equation for the electron distribution evolution during Thomson/Compton or undulator radiation used in the paper: “Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser” by G. R. M. Robb and R. Bonifacio [Phys. Plasmas 20, 033106 (2013)], the weight function should be the distribution of the number of emitted photons and not the photon energy distribution. Nevertheless, the considerations expressed in this comment do not alter the conclusions drawn in the paper in object.

  13. Ongoing Spontaneous Activity Controls Access to Consciousness: A Neuronal Model for Inattentional Blindness

    PubMed Central

    2005-01-01

    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden “ignition” of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of “inattentional blindness,” in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness. PMID:15819609

  14. Io control of Jovian radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1980-01-01

    The possibility of Io controlling Jovian decametric radio emission, particularly in the region below 22 MHz, is discussed. Results of a two-year survey at 26.3 at 26.3 MHz are presented which demonstrate the control of Io over a high-intensity storm component of the radio emission and the independence of a weak radio component from the phase of Io, as was observed at lower frequencies. It is thus hypothesized that Io control is a flux-dependent rather than a frequency-dependent phenomenon, and results of analyses at 18 and 10 MHz which support this hypothesis are presented. The apparent correlation between frequency and Io control is thus shown to result from a selection effect due to the increase of non-Io emission with decreasing frequency and relative antenna detection threshold. This result implies a contiguous Io-controlled source region extending out several Jovian radii along the Io flux tube.

  15. Control of Jovian Radio Emission by Callisto

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Christopher, I.

    2001-01-01

    Galileo has been in orbit around Jupiter since December 1995 and a large database has been collected. We present the results of a survey of the plasma wave data for the frequency range 2.0 MHz to 5.6 MHz, the low frequency decametric (DAM) emissions. While the control of a portion of the radio emission by the moon lo is well known, and Ganymede control has been more recently indicated, we report that a small but significant portion of DAM emission is seen to be correlated with the orbital phase of Callisto. While the occurrence rate of emission controlled by Ganymede and Callisto is considerably less than for lo, the power levels can be nearly the same. We estimate the power of the Callisto-dependent emission to be approx. 70% of the Io-dependent radio emission and about the same as the Ganymede-dependent radio emission. This result indicates an Alfven current system associated with Callisto, and thus a significant interaction of the magnetosphere of Callisto with that of Jupiter as is believed to exist for both lo and Ganymede.

  16. Effect of Zn-Cd interdiffusion on the band structure and spontaneous emission of ZnO/Zn1-xCdxO/ZnO quantum wells

    NASA Astrophysics Data System (ADS)

    Shtepliuk, I.; Khranovskyy, V.; Yakimova, R.

    2015-09-01

    Needs in more-efficient visible light sources based on quantum wells (QWs) requires the diversification of traditional optoelectronics' materials as well as development of the cost-effective approaches for reliable quantum confinement engineering. Interdiffusion approach has a great potential to become a simple method for controlling the optical properties of QWs and diminishing the quantum confined Stark effect (QCSE). In this work we theoretically study the effect of Zn-Cd interdiffusion in ZnCdO/ZnO QWs on their band structure, optical matrix elements and spontaneous emission properties. The QW intermixing leads to improving both the transverse electric (TE) and transverse magnetic (TM) optical matrix elements due to enhancement of the overlap integral between electron and hole wave functions and modification of the confinement potential from triangle-shaped to parabolic-like. The optimized diffusion length 4 Å provided by the annealing at 700 K during 60 s was determined for 2 nm-thick Zn0.85Cd0.15O QW, which offers higher spontaneous emission rate in comparison to conventional QW. The reasonable interpretation of the interdiffusion effect on the optical properties of QWs is proposed in terms of low diffusion length and high diffusion length regimes. Thus, suitable combination of annealing duration and annealing temperature with the geometrical/compositional parameters of QWs can be the efficient way for improving the optical performance of ZnO-based QWs.

  17. CONTROL OF AIR EMISSIONS FROM SUPERFUND SITES

    EPA Science Inventory

    This handbook is an easy-to-use tool for decision makers to evaluate emission control devices for use with Superfund remediation actions. t will assist in the selection of cost-effective control options. t is intended for use by engineers and scientists involved in preparing reme...

  18. CO2 emission of coal spontaneous combustion and its relation with coal microstructure, China.

    PubMed

    Wang, Haiyan; Chen Chen; Huang, Tao; Gao, Wei

    2015-07-01

    Coal spontaneous combustion is widely distributed all over the world. CO2 is the main greenhouse gas emitted by coal spontaneous combustion. In the present study characters of CO2 emitted by 10 typical Chinese coal spontaneous combustion and the influence of raw coal functional group on CO2 was studied. CO2 already exists under normal temperature as coal exposed in atmosphere. Under low temperature, the quality of CO2 released by coal spontaneous combustion is relatively small, but tends to increase. And corresponding with it, the oxygen consumption amount is also small. At medium temperature, the oxygen consumption increases rapidly and CO2 mass release rate begins to increase rapidly. Then, CO2 release rate increase rapidly under relatively high temperature (higher than 673 K). Over 873K, concentration of O2 is 6% and release rate of CO2 tends to be steady. It also concluded that mass ratio of CO to CO2 (CO/CO2) during coal spontaneous combustion was lowerthan 0.10 at low temperature. And then, it increased rapidly at medium temperature and reached to top at about 673 K. At 673-873 K, the ratio decreased again, and did not decrease evidently at about 873K. At temperature higher than 873K, the ratio was about 0.13. During the whole testing temperature range, CO/CO2 was not be higher than 0.26, lower than 0.2. This means that release rate of CO2 was much higher than CO during the whole process of coal spontaneous combustion. Moreover, the gas release quantity of CO2 is positively related with carbony content in raw coal. Carbonyl and carboxyl were both material basis of CO2. PMID:26364484

  19. Control of Jovian Radio Emission by Ganymede

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Kurth, W. S.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. We present the results of a survey of the data for the frequency range 3.2 MHz to 5.6 MHz, the low-frequency decametric (DAM) emissions. While the control of a portion of the radio emission by the moon Io is well-known, we report that a small but significant portion of low-frequency DAM emission is seen to be correlated with the orbital phase of Ganymede. This result is in agreement with other recent results indicating a significant interaction of the magnetosphere of Ganymede with that of Jupiter.

  20. Multi-level quantum electrodynamic calculation of spontaneous emission and small signal gain in high voltage free electron lasers

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Fluhler, H. U.

    1991-12-01

    Using the Weisskopf-Wigner technique, a self consistent quantum electrodynamic (SCQED) theory of spontaneous emission of radiation and single photon small signal gain is developed for high voltage free electron lasers (FEL). Excellent agreement is obtained simultaneously to our knowledge for the first time between the predictions and the experimental observations for lineshift, linewidth and gain. The SCQED theory predicts lineshift and broadening due to quantum mechanical effects for linear, helical and tapered undulator FELs which are not predicted by the classical/conventional FEL theories, but which have been observed 4,5,18,22,23,45,46. Excellent agreement is obtained between the SCQED theory predicted spontaneous emission spectra and the 1980?81 ACO FEL4,18, ACO Optical Klystron FEL45,46, Stanford 10.6 ?m FEL22 and Stanford 3.4 ?m FEL23 experimental spectra. This agreement is much better than the prediction from the classical/conventional FEL theory which gives errors of many tens of percent. We show that the spontaneous emission spectrum obtained from classical/conventional FEL theories is valid only in the limit of a short undulator containing a small number of periods. The small signal gain derived from the SCQED theory is shown to reduce to Colson's gain formula12,34 in the classical limit. However, the SCQED theory predicts significant reductions in the small signal gain which agree well with the ACO gain data5, and are not predicted well by Colson's formula. Due to the non-neglible finite electron state lifetime, it is discovered that a fundamental physical gain limit exists which is universal to all types of FELs within the limits of the single photon transition scheme considered (i.e. if multiphoton effects are ignored). Finally, the implications of the theoretically obtained results are discussed for practical conditions of experimental interest. It is shown that under practical experimental conditions quantum effects can be quite important in the

  1. Controlling light scattering and emission at subwavelength scale with plasmonic nanopatch antennas (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Wu, Zilong; Zheng, Yuebing

    2015-09-01

    Controlling light scattering and emission at subwavelength scale has significant implications for solar energy conversion, sensing, and nanophotonic devices. Plasmonic nanopatch antennas (PNAs), which consist of plasmonic nanoparticle coupled with metallic films, have shown directionality of radiation and large emission rate enhancement due to the strong plasmonic waveguide modes within the spacer layer. Herein, we comparatively study the light scattering and emission behaviors of a series of plasmonic nanopatch antennas (PNAs) with different plasmonic nanoparticles (i.e., nanosquare, nanotriangle, nanorod, and nanodisk) to develop the design rules of the PNAs. Using finite-difference time-domain (FDTD) simulations, we show that the shape and size of plasmonic nanoparticles can be tuned to control the resonance peak, intensity, directionality, and spatial distribution of the scattering light as well as the directionality, spatial distribution, spontaneous emission rate, quantum efficiency, and radiation enhancement factor of light emission. For example, high radiative quantum efficiency (0.74) and radiation enhancement factor (>20) can be achieved by disk PNA, while triangle PNA shows remarkable spontaneous emission rate enhancement of over 2,500. The effects of locations of emitters relative to the PNAs on the emission properties are also examined. Our results pave the way towards the rational design of PNAs for the optimal light scattering and emission as required by targeted applications.

  2. High-precision three-dimensional atom localization via spontaneous emission in a four-level atomic system

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Yu, Benli

    2016-06-01

    We investigate the three-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detecting probability and precision of atom localization can be significantly improved due to the interference effects induced by the vacuum radiation field and the two laser fields. More importantly, the almost 100% probability of finding an atom within a certain range can be reached when corresponding conditions are satisfied. As a result, our scheme may be helpful in a spatially selective single-qubit phase gate, entangling gates, and quantum error correction for quantum information processing.

  3. Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering

    SciTech Connect

    Giannessi, L.; Ciocci, F.; Dattoli, G.; Del Franco, M.; Petralia, A.; Quattromini, M.; Ronsivalle, C.; Sabia, E.; Spassovsky, I.; Surrenti, V.; Bacci, A.; Rossi, A. R.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Cultrera, L.; Filippetto, D.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.

    2011-04-08

    We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.

  4. Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Balet, L.; Francardi, M.; Gerardino, A.; Chauvin, N.; Alloing, B.; Zinoni, C.; Monat, C.; Li, L. H.; Le Thomas, N.; Houdré, R.; Fiore, A.

    2007-09-01

    The authors demonstrate coupling at 1.3μm between single InAs quantum dots (QDs) and a mode of a two dimensional photonic crystal (PhC) defect cavity with a quality factor of 15 000. By spectrally tuning the cavity mode, they induce coupling with excitonic lines. They perform a time integrated and time-resolved photoluminescence and measure an eightfold increase in the spontaneous emission rate inducing a coupling efficiency of 96%. These measurements indicate the potential of single QDs in PhC cavities as efficient single-photon emitters for fiber-based quantum information processing applications.

  5. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Distributed extraction of amplified spontaneous emission from a randomly inhomogeneous active medium

    NASA Astrophysics Data System (ADS)

    Starikov, F. A.

    1993-05-01

    This paper investigates the dynamics of amplified spontaneous x-ray emission escaping from a randomly inhomogeneous plasma active medium through its ends and lateral surface. It is shown that the scattering of radiation by fluctuations in the dielectric permittivity, ɛ˜, can be utilized to extract energy through the lateral surface of the active medium. The radiant intensity is maximal in an off-axis direction in this case. When both regular refraction and scattering by ɛ˜ are operating, the distributed extraction of the light is determined by that effect which has the smaller characteristic length (i.e., the scattering length or the refraction length).

  6. Experimental Characterization of Nonlinear Harmonic Radiation from a Visible Self-Amplified Spontaneous Emission Free-Electron Laser at Saturation

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Wang, X. J.; Babzien, M.; Ben-Zvi, I.; Cornacchia, M.; Nuhn, H.-D.; Malone, R.; Murokh, A.; Pellegrini, C.; Reiche, S.; Rosenzweig, J.; Yakimenko, V.

    2002-05-01

    Nonlinear harmonic radiation was observed using the VISA self-amplified, spontaneous emission (SASE) free-electron laser (FEL) at saturation. The gain lengths, spectra, and energies of the three lowest SASE FEL modes were experimentally characterized. The measured nonlinear harmonic gain lengths and center spectral wavelengths decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. Both the second and third nonlinear harmonics energies are about 1% of the fundamental energy. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond x rays.

  7. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  8. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.

    PubMed

    Wang, Shaobin; Luo, Kunli; Wang, Xing; Sun, Yuzhuang

    2016-02-01

    A rough estimate of the annual amount of sulfur, arsenic, mercury and fluoride emission from spontaneous combustion of coal gangue in China was determined. The weighted mean concentrations of S, As, Hg, and F in coal gangue are 1.01%, 7.98, 0.18, and 365.54 mg/kg, respectively. Amounts of S, As, Hg, and F emissions from coal gangue spontaneous combustion show approximately 1.13 Mt, and 246, 45, and 63,298 tons in 2013, respectively. The atmospheric release amount of sulfur from coal gangue is more than one tenth of this from coal combustion, and the amounts of As, Hg, and F are close to or even exceed those from coal combustion. China's coal gangue production growth from 1992 to 2013 show an obvious growth since 2002. It may indicate that Chinese coal gangue has become a potential source of air pollution, which should be included in emission inventories. PMID:26650082

  9. Low Threshold Two-Photon-Pumped Amplified Spontaneous Emission in CH3NH3PbBr3 Microdisks.

    PubMed

    Yang, Bin; Mao, Xin; Yang, Songqiu; Li, Yajuan; Wang, Yanqiu; Wang, Meishan; Deng, Weiqiao; Han, Keli

    2016-08-01

    Two-photon-pumped amplified spontaneous emission (ASE) of CH3NH3PbBr3 microdisks (MDs) were investigated by using femtosecond laser system. Low threshold at 2.2 mJ cm(-2) was obtained. Also, emission spectral tunability from 500 to 570 nm was demonstrated by synthesis the mixed halide perovskite MDs. The spatial effect of photoluminescence (PL) properties under one-photon and two-photon excitation were also studied by means of two-photon laser scanning microscope (TPLSM) and time-resolved PL spectroscopy. It was found that the band to band emission of near-surface regions and photocarriers' diffusion from near-surface regions to interior regions is significant for one-photon excitation. By contrast, reabsorption of emission under two-photon excitation plays a major role in the emission properties of the MDs. These results will give a more comprehensive understanding of the nonlinear effect of CH3NH3PbBr3 single crystals. PMID:27391527

  10. Systematics of spontaneous emission of intermediate mass fragments from heavy nuclei

    SciTech Connect

    Barwick, S.W.; Price, P.B.; Ravn, H.L.; Hourani, E.; Hussonnois, M.

    1986-07-01

    We have used polycarbonate track-recording films to confirm the rare decay mode of /sup 226/Ra by /sup 14/C emission and to set stringent upper limits on /sup 14/C-emission rates of /sup 221/Fr, /sup 221/Ra, and /sup 225/Ac. The /sup 14/C-emission rate exhibits a pronounced odd-even effect. For Ra isotopes the hindrance factor for odd-even parents relative to even-even parents is at least 10 times higher for /sup 14/C emission than for ..cap alpha.. emission.