Science.gov

Sample records for controlling spontaneous emission

  1. Ultrafast nonlocal control of spontaneous emission

    E-print Network

    Chao-Yuan Jin; Robert Johne; Milo Y. Swinkels; Thang B. Hoang; Leonardo Midolo; Peter J. van Veldhoven; Andrea Fiore

    2013-11-10

    Solid-state cavity quantum electrodynamics systems will form scalable nodes of future quantum networks, allowing the storage, processing and retrieval of quantum bits, where a real-time control of the radiative interaction in the cavity is required to achieve high efficiency. We demonstrate here the dynamic molding of the vacuum field in a coupled-cavity system to achieve the ultrafast nonlocal modulation of spontaneous emission of quantum dots in photonic crystal cavities, on a timescale of ~200 ps, much faster than their natural radiative lifetimes. This opens the way to the ultrafast control of semiconductor-based cavity quantum electrodynamics systems for application in quantum interfaces and to a new class of ultrafast lasers based on nano-photonic cavities.

  2. Controlling spontaneous emission in bioreplica photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Butler, Elizabeth S.; Bartl, Michael H.

    2012-04-01

    Sophisticated methods have been created by nature to produce structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  3. Ultrafast non-local control of spontaneous emission

    NASA Astrophysics Data System (ADS)

    Jin, Chao-Yuan; Johne, Robert; Swinkels, Milo Y.; Hoang, Thang B.; Midolo, Leonardo; van Veldhoven, Peter J.; Fiore, Andrea

    2014-11-01

    The radiative interaction of solid-state emitters with cavity fields is the basis of semiconductor microcavity lasers and cavity quantum electrodynamics (CQED) systems. Its control in real time would open new avenues for the generation of non-classical light states, the control of entanglement and the modulation of lasers. However, unlike atomic CQED or circuit quantum electrodynamics, the real-time control of radiative processes has not yet been achieved in semiconductors because of the ultrafast timescales involved. Here we propose an ultrafast non-local moulding of the vacuum field in a coupled-cavity system as an approach to the control of radiative processes and demonstrate the dynamic control of the spontaneous emission (SE) of quantum dots (QDs) in a photonic crystal (PhC) cavity on a ?200 ps timescale, much faster than their natural SE lifetimes.

  4. Controlled spontaneous emission in plasmonic whispering gallery antennas Ernst Jan R. Vesseura)

    E-print Network

    Polman, Albert

    Controlled spontaneous emission in plasmonic whispering gallery antennas Ernst Jan R. Vesseura a plasmonic whispering gallery nanoantenna doped with an ATTO680 dye that shows cavity-modified spontaneous

  5. Active magneto-optical control of spontaneous emission in graphene

    NASA Astrophysics Data System (ADS)

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-01

    We investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99 % in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B | , which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.

  6. Controlling the directionality of spontaneous emission by evanescent wave coupling

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Lun; Hao, Guo-Dong; Toda, Naoya

    2015-09-01

    We report an approach toward controlling the directionality of spontaneous emissions by employing the evanescent wave coupling effect in a subwavelength-sized ridge or truncated cone structure. An InGaAs/GaAs light-emitting diode in which a stripe-shaped InGaAs/GaAs quantum well with a stripe width of about 100 nm is embedded at the center of a subwavelength-sized GaAs ridge (of width ˜520 nm) is fabricated by micro processing and epitaxial regrowth techniques. Strong directionalities characterized by a half-intensity angle of 43° are observed in planes perpendicular to the ridge axis. The directionality is found to be almost independent of operating conditions.

  7. Full control of spontaneous emission in confined Tamm plasmon structures

    E-print Network

    O. Gazzano; S. Michaelis de Vasconcellos; K. Gauthron; C. Symonds; J. Bloch; P. Voisin; J. Bellessa; A. Lemaitre; P. Senellart

    2011-09-07

    We demonstrate strong confinement of the optical field by depositing a micron sized metallic disk on a planar interferential mirror. Zero dimensional Tamm plasmon modes are evidenced both experimentally and theoretically, with a lateral confinement limited to the disk area and strong coupling to TE polarized fields. Single quantum dots deterministically coupled to these modes are shown to experience acceleration of their spontaneous emission when spectrally resonant with the mode. For quantum dots spectrally detuned from the confined Tamm Plasmon mode, an inhibition of spontaneous emission by a factor 40 is observed, a record value in the optical domain.

  8. Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides

    E-print Network

    Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides Gabriele emission control of single quantum dots in bottom-up nanowire waveguides Gabriele Bulgarini,1,a),b) Michael 28 February 2012; published online 20 March 2012) Nanowire waveguides with controlled shape

  9. Plasmonic phase-gradient metasurface for spontaneous emission control

    NASA Astrophysics Data System (ADS)

    Langguth, L.; Schokker, A. H.; Guo, K.; Koenderink, A. F.

    2015-11-01

    We combine the concept of phase-gradient metasurfaces with fluorescence directionality control of an ensemble of incoherent emitters. We design a periodic metasurface to control the scattering amplitude of the lattice in momentum space. The lattice is embedded in a waveguiding layer doped with organic fluorophores. In contrast to the usual symmetric directionality that plasmonic lattices impart on emission, we find that the phase gradient translates into asymmetric directional emission into the far field, determined by scattering on a subset of the reciprocal lattice vectors. The measured asymmetry is well explained by analytical modeling.

  10. Single Photon Subradiance: Quantum Control of Spontaneous Emission and Ultrafast Readout.

    PubMed

    Scully, Marlan O

    2015-12-11

    Recent work has shown that collective single photon emission from an ensemble of resonate two-level atoms, i.e., single photon superradiance, is a rich field of study. The present Letter addresses the flip side of superradiance, i.e., subradiance. Single photon subradiant states are potentially stable against collective spontaneous emission and can have ultrafast readout. In particular it is shown how many atom collective effects provide a new way to control spontaneous emission by preparing and switching between subradiant and superradiant states. PMID:26705632

  11. Controlling spontaneous emission rates of quantum dots with plasmonic nanopatch antennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang; Akselrod, Gleb; Argyropoulos, Christos; Huang, Jiani; Smith, David; Mikkelsen, Maiken

    2015-03-01

    The radiative processes associated with quantum emitters can be strongly enhanced due to intense electromagnetic fields created by plasmonic nanostructures. Here, we experimentally demonstrate large enhancements of the spontaneous emission rate of colloidal quantum dots coupled to single plasmonic nanopatch antennas. The antennas consist of silver nanocubes (75 nm) coupled to a gold film separated by a thin polyelectrolyte spacer layer (~1 nm) and core-shell CdSe/ZnS quantum dots (~6 nm). By optimizing the size of the nanopatch antenna, the plasmonic mode is tuned to be on resonance with the quantum dot emission. We show an increase in the spontaneous emission rate by a factor of 880 (Purcell factor) and a 2300-fold enhancement in the total fluorescence while maintaining a high radiative quantum efficiency of ~50 %. The nanopatch antenna, as demonstrated here, offers highly directional and broadband radiation that can be tailored for emitters from the visible to the near infrared, providing a promising approach for the spontaneous emission control of single quantum emitters.

  12. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide.

    PubMed

    Mitsch, R; Sayrin, C; Albrecht, B; Schneeweiss, P; Rauschenbeutel, A

    2014-01-01

    The spin of light in subwavelength-diameter waveguides can be orthogonal to the propagation direction of the photons because of the strong transverse confinement. This transverse spin changes sign when the direction of propagation is reversed. Using this effect, we demonstrate the directional spontaneous emission of photons by laser-trapped caesium atoms into an optical nanofibre and control their propagation direction by the excited state of the atomic emitters. In particular, we tune the spontaneous emission into the counter-propagating guided modes from symmetric to strongly asymmetric, where more than % of the optical power is launched into one or the other direction. We expect our results to have important implications for research in quantum nanophotonics and for implementations of integrated optical signal processing in the quantum regime. PMID:25502565

  13. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide

    PubMed Central

    Mitsch, R.; Sayrin, C.; Albrecht, B.; Schneeweiss, P.; Rauschenbeutel, A.

    2014-01-01

    The spin of light in subwavelength-diameter waveguides can be orthogonal to the propagation direction of the photons because of the strong transverse confinement. This transverse spin changes sign when the direction of propagation is reversed. Using this effect, we demonstrate the directional spontaneous emission of photons by laser-trapped caesium atoms into an optical nanofibre and control their propagation direction by the excited state of the atomic emitters. In particular, we tune the spontaneous emission into the counter-propagating guided modes from symmetric to strongly asymmetric, where more than % of the optical power is launched into one or the other direction. We expect our results to have important implications for research in quantum nanophotonics and for implementations of integrated optical signal processing in the quantum regime. PMID:25502565

  14. Quenching of spontaneous emission through interference of incoherent pump processes 

    E-print Network

    Kapale, KT; Scully, Marlan O.; Zhu, S. Y.; Zubairy, M. Suhail

    2003-01-01

    controllable handle in manipulating the spontaneous emission to such an extent that, under certain conditions, complete quenching of spontaneous emission is possible. We also show that even the interference between the decay channels, which is considered a key...

  15. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ?200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ?115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ?2,500× spontaneous emission speedup at d ? 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = q?|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  16. Controlling spontaneous emission with the local density of states of honeycomb photonic crystals

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Chih; Lin, Chien-Fan; Chang, Jui-Wen

    2009-05-01

    We calculated the local density of state for various positions in a photonic crystal of honeycomb lattice to study how the spontaneous emission rate of a radiating dipole is altered in the presence of the photonic crystal. The local density of states is found to be position-sensitive and its value can be enhanced or depressed relative to the density of states, depending on the location of the dipole. Our study shows that the density of states tends to underestimate the effect of a photonic crystal on the prohibition of light propagation, while on the contrary tends to overestimate the effect on the enhancement of light emission. The calculations also indicate that it is possible to tailor the spontaneous emission of an active medium by careful selecting its location in the photonic crystal. The results are helpful in determining the insertion location of the active medium and in evaluating the efficiency of active photonic crystal devices such as light-emitting diodes or lasers.

  17. Laser cooling without spontaneous emission.

    PubMed

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2015-01-30

    This Letter reports the demonstration of laser cooling without spontaneous emission, and thereby addresses a significant controversy. It works by restricting the atom-light interaction to a time short compared to a cycle of absorption followed by natural decay. It is achieved by using the bichromatic force on an atomic transition with a relatively long excited state lifetime and a relatively short cooling time so that spontaneous emission effects are minimized. The observed width of the one-dimensional velocity distribution is reduced by ×2 thereby reducing the "temperature" by ×4. Moreover, our results comprise a compression in phase space because the spatial expansion of the atomic sample is limited. This accomplishment is of interest to direct laser cooling of molecules or in experiments where working space or time is limited. PMID:25679888

  18. All-optical control of the spontaneous emission of quantum dots using coupled-cavity quantum electrodynamics

    E-print Network

    C. Y. Jin; M. Y. Swinkels; R. Johne; T. B. Hoang; L. Midolo; P. J. van Veldhoven; A. Fiore

    2012-11-18

    We demonstrate the remote all-optical control of the spontaneous emission (SE) of quantum dots using coupled photonic crystal cavities. By spectrally tuning a Fabry-Perot cavity in resonance with a target cavity, the quality factor and the local density of states experienced by emitters in the target cavity are modified, leading to a change in the SE rate. From the theoretical analysis of the coupled-cavity quantum electrodynamics system, the SE rate change can be higher than the quality factor change due to a reduction of the vacuum field at the emitter's position when the two cavities are brought in resonance. Both the weak and strong coupling regimes of two cavities have been observed experimentally and the SE decay rate has been modified by more than a factor of three with remote optical control.

  19. Quantum Optical Coherence: Applications in Photon Switching, Control of Spontaneous Emission and Atom Localization 

    E-print Network

    Yang, Shuai

    2013-12-12

    cooling techniques enable experimental observation of Bose-Einstein con- densation (BEC) in 1995 [27, 28]. Since then, “atomic physics and quantum optics has met condensed matter physics” [29]. Particularly, the interference of counter- propagating laser... “Controllable optical switch using a Bose-Einstein condensate in an optical cavity,” by Shuai Yang, M. Al-Amri, Jo¨rg Evers, and M. Suhail Zubairy, 2011, Phys. Rev. A, vol. 83, p. 053821, copyright [2011] by American Physical Society, and “Anomalous switching...

  20. Coherent control of cooperative spontaneous emission from two identical three-level atoms in a photonic crystal

    NASA Astrophysics Data System (ADS)

    Woldeyohannes, Mesfin; Idehenre, Ighodalo; Hardin, Tyler

    2015-08-01

    The coherent control of cooperative spontaneous emission from two identical non-overlapping three-level atoms in the V-configuration located within a photonic band gap (PBG) material with two resonant frequencies near the upper band edge of the PBG and confined to a region small in comparison to their radiation wavelengths but still greater than their atomic sizes is investigated. The dependencies of cooperative effects in which a photon emitted by one atom is reabsorbed by the other atom on the inter-atomic separation, on the initial state of the two-atom system, on the strength of the driving control laser field, and on the detuning of the atomic resonant frequencies from the upper band edge frequency is analyzed so as to identify the conditions for which these cooperative effects are enhanced or inhibited. Cooperative effects between atoms are shown to be influenced more by the PBG than by the nature of the atomic transitions involved. Excited state populations as well as coherences between excited levels are expressed in terms of time-dependent amplitudes which are shown to satisfy coupled integro-differential equations for which analytic solutions are derived under special conditions. Unlike for the case of one atom in a PBG where the fractional non-zero steady state populations on the excited levels as well as the coherence between the excited levels are constants independent of time, in the case of two atoms in PBG these quantities continuously oscillate as a manifestation of beating due to the continuous exchange between the two atoms of the photon trapped by the PBG. The values of these quantities as well as the amplitudes and frequencies of their oscillations depend of the parameters of the system, providing different ways of manipulating the system. The general formalism presented here is shown to recapture the special results of investigations of similar systems in free space when the non-Markovian memory kernels of the PBG are replaced by delta function dependent Markovian memory kernels.

  1. Ultrafast spontaneous emission source using plasmonic nanoantennas

    PubMed Central

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10?ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11?ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90?GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core–shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ?50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  2. Ultrafast spontaneous emission source using plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-07-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ~50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  3. Ultrafast spontaneous emission source using plasmonic nanoantennas.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Argyropoulos, Christos; Huang, Jiani; Smith, David R; Mikkelsen, Maiken H

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10?ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11?ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90?GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ?50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  4. Modification of spontaneous emission in Bragg onion resonators

    E-print Network

    Huang, Yanyi

    Modification of spontaneous emission in Bragg onion resonators Wei Liang, Yanyi Huang and Amnon the modification of spontaneous emission in Bragg onion resonators. We consider both the case of a single light. We conclude that Bragg onion resonators can both enhance and inhibit spontaneous emission by several

  5. Modified spontaneous emission in nanophotonic structures

    NASA Astrophysics Data System (ADS)

    Pelton, Matthew

    2015-07-01

    Spontaneous emission is not an inherent property of a luminescent material; rather, it arises due to interaction between the material and its local electromagnetic environment. Changing the environment can thus alter the emission rate, with potential applications in sensing, integrated photonics and solar energy conversion. Significant increases in emission rate require an optical resonator that stores light in as small a volume as possible, for as long as possible. This is currently achieved using two main systems: photonic crystal microcavities and plasmonic metal nanoparticles. These two systems have largely been developed independently, but the underlying physical mechanisms are the same. Comparing the two provides insight into emission modification and illustrates some of the subtleties involved in interpreting experimental results.

  6. Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser

    SciTech Connect

    Robb, G. R. M.; Bonifacio, R.

    2013-03-15

    We extend previous analyses of spontaneous emission in a quantum free electron laser (QFEL) and competition between spontaneous and coherent QFEL emission to include a broad distribution of photon frequencies and momenta appropriate for spontaneous undulator radiation. We show that although the predictions of monochromatic and broadband models predict different electron momentum distributions for the quantum regime due to spontaneous emission alone after many photon emissions, the inclusion of broadband spontaneous emission has a negligible effect on the competition between spontaneous and coherent emission in the QFEL. Numerical results from both models are well described by the same condition for the threshold/critical value of spontaneous emission rate.

  7. Modified spontaneous emissions of europium complex in weak PMMA opals.

    PubMed

    Wang, Wei; Song, Hongwei; Bai, Xue; Liu, Qiong; Zhu, Yongsheng

    2011-10-28

    Engineering spontaneous emission by means of photonic crystals (PHC) is under extensive study. However PHC modification of line emissions of rare earth (RE) ions has not been thoroughly understood, especially in cases of weak opal PHCs and while emitters are well dispersed into dielectric media. In this study, poly-methyl methacrylate (PMMA) opal PHCs containing uniformly dispersed europium chelate were fabricated with finely controlled photonic stop band (PSB) positions. Measurements of luminescent dynamics and angle resolved/integrated emission spectra as well as numerical calculations of total densities of states (DOS) were performed. We determined that in weak opals, the total spontaneous emission rate (SER) of ?(5)D(0)-(7)F(J) for Eu(3+) was independent of PSB positions but was higher than that of the disordered powder sample, which was attributed to higher effective refractive indices in the PHC rather than PSB effect. Branch SER of (5)D(0)-(7)F(2) for Eu(3+) in the PHCs, on the other hand, was spatially redistributed, suppressed or enhanced in directions of elevated or reduced optical modes, keeping the angle-integrated total unchanged. All the results are in agreement with total DOS approximation. Our paper addressed two unstudied issues regarding modified narrow line emission in weak opal PHCs: firstly whether PSB could change the SER of emitters and whether there exist, apart from PSB, other reasons to change SERs; secondly, while directional enhancement and suppression by PSB has been confirmed, whether the angle-integrated overall effect is enhancing or suppressing. PMID:21938288

  8. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  9. Spontaneous emission in the presence of a spherical plasmonic cloak

    E-print Network

    W. J. M. Kort-Kamp; F. S. S. Rosa; F. A. Pinheiro; C. Farina

    2012-10-15

    We investigate the spontaneous emission of a two-level atom placed in the vicinities of a plasmonic cloak composed of a coated sphere. In the dipole approximation, we show that the spontaneous emission rate can be reduced to its vacuum value provided the atomic emission frequency lies within the plasmonic cloak frequency operation range. Considering the current status of plasmonic cloaking devices, this condition may be fulfilled for many atomic species so that we argue that atoms with a sufficiently strong transition can be used as quantum, local probes for the efficiency of plasmonic cloaks.

  10. Spontaneous Radio Frequency Emissions from Natural Aurora. Chapter 4

    NASA Technical Reports Server (NTRS)

    LaBelle, J.

    2009-01-01

    At high latitudes, suitably sensitive radio experiments tuned below 5 MHz detect up to three types of spontaneous radio emissions from the Earth s ionosphere. In recent years, ground-based and rocket-borne experiments have provided strong evidence for theoretical explanations of the generation mechanism of some of these emissions, but others remain unexplained. Achieving a thorough understanding of these ionospheric emissions, accessible to ground-based experiments, will not only bring a deeper understanding of Earth s radio environment and the interactions between waves and particles in the ionosphere but also shed light on similar spontaneous emissions occurring elsewhere in Earth s environment as well as other planetary and stellar atmospheres.

  11. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  12. Optical gain, spontaneous and stimulated emission of surface plasmon

    E-print Network

    Grandidier, Jonathan

    Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide G. Colas des Francs,1, P. Bramant,1 J. Grandidier,1,2 A. Bouhelier,1 J.-C. Weeber,1.colas-des-francs@u-bourgogne.fr Abstract: We develop a theoretical model to compute the local density of states in a confined plasmonic

  13. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer

    E-print Network

    California at San Diego, University of

    and their radiative efficiency1­6. Because molecules near a met- allic surface experience a different environment than in free space, their spontaneous radiative emission rate is generally enhanced7­9 . Such enhancement nature of the dominating plasmonic modes in uniform HMMs, limit Purcell enhancement and the external

  14. Gravitational time dilation induced decoherence during spontaneous emission

    E-print Network

    Dong Xie; Chunling Xu; Anmin Wang

    2015-10-30

    We investigate decoherence of quantum superpositions induced by gravitational time dilation and spontaneous emission between two atomic levels. It has been shown that gravitational time dilation can be an universal decoherence source. Here, we consider decoherence induced by gravitational time dilation only in the situation of spontaneous emission. Then, we obtain that the coherence of particle's position state depends on reference frame due to the time dilation changing the distinguishability of emission photon from two positions of particle. Changing the direction of light field can also result in the difference about the coherence of quantum superpositions. For observing the decoherence effect mainly due to gravitational time dilation, time-delayed feedback can be utilized to increase the decoherence of particle's superpositions.

  15. Random Number Generation Using Amplified Spontaneous Emission in a Fiber Amplifier

    E-print Network

    Anlage, Steven

    Random Number Generation Using Amplified Spontaneous Emission in a Fiber Amplifier Julia C. Salevan · Photon counting · Amplified spontaneous emission #12;System Er:Yb EDFA Bandpass Filter (FBG) ( 0 = 1552

  16. Spontaneous emission of the non-Wiener type

    SciTech Connect

    Basharov, A. M.

    2011-09-15

    The spontaneous emission of a quantum particle and superradiation of an ensemble of identical quantum particles in a vacuum electromagnetic field with zero photon density are examined under the conditions of significant Stark particle and field interaction. New fundamental effects are established: suppression of spontaneous emission by the Stark interaction, an additional 'decay' shift in energy of the decaying level as a consequence of Stark interaction unrelated to the Lamb and Stark level shifts, excitation conservation phenomena in a sufficiently dense ensemble of identical particles and suppression of superradiaton in the decay of an ensemble of excited quantum particles of a certain density. The main equations describing the emission processes under conditions of significant Stark interaction are obtained in the effective Hamiltonian representation of quantum stochastic differential equations. It is proved that the Stark interaction between a single quantum particle and a broadband electromagnetic field is represented as a quantum Poisson process and the stochastic differential equations are of the non-Wiener (generalized Langevin) type. From the examined case of spontaneous emission of a quantum particle, the main rules are formulated for studying open systems in the effective Hamiltonian representation.

  17. Efficiency and rate of spontaneous emission in organic electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Furno, Mauro; Meerheim, Rico; Hofmann, Simone; Lüssem, Björn; Leo, Karl

    2012-03-01

    We examine spontaneous emission in organic electroluminescent devices and investigate the influence of the local photonic mode density on the emissive properties of molecular emitters. Spontaneous emission in organic electroluminescent devices is modeled by means of an approximate closed-form solution for the exciton rate equation, which yields the efficiency of conversion of electrical charges into molecular excited states. The exciton decay rate and the efficiency of conversion of molecular excitation into far-field radiated photons are described using a state-of-the-art classical electromagnetic formalism suitable to model multilayered organic light-emitting diodes (OLEDs). We present an in-depth analysis of the influence of optical microcavities and the corresponding resonant modes on the luminescent properties of organic molecules. Near-field coupling and coupling to metallic reflectors are demonstrated as the main effects responsible for environment-induced modifications of the rate and efficiency of spontaneous emission. The extent to which the excitonic decay rate is modified by the optical microcavity (Purcell effect) is shown to be strictly dependent on the intrinsic luminescence quantum yield of the molecular emitter. The modeling formalism is successfully validated against experimental results obtained on three series of small-molecule p-i-n OLED samples, featuring phosphorescent or fluorescent molecular emitters, with a widely varying thickness of the optical microcavity. We demonstrate that, within its limits of validity, the theoretical treatment in this work provides a rigorous quantitative description of spontaneous emission in organic luminescent devices and allows for the identification of the factors determining the OLED internal and external quantum efficiencies.

  18. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  19. Spontaneous pion emission as a new natural radioactivity

    NASA Astrophysics Data System (ADS)

    Ion, D. B.; Ivascu, M.; Ion-Mihai, R.

    1986-10-01

    In this paper the pionic nuclear radioactivity or spontaneous poin emission by a nucleus from its ground state is investigated. The Q?-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z > 80. This new type of natural radioactivity is statistically favored especially for Z = 92 - 106 for which F ?/F SF = 40 - 200 [ MeV] 2. Experimental detection of the neutral pion and also some possible emission mechanisms are discussed.

  20. 2-.mu.m fiber amplified spontaneous emission (ASE) source

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Wu, Jianfeng (Inventor); Geng, Jihong (Inventor)

    2007-01-01

    A 2-.mu.m fiber Amplified Spontaneous Emission (ASE) source provides a wide emission bandwidth and improved spectral stability/purity for a given output power. The fiber ASE source is formed from a heavy metal oxide multicomponent glass selected from germanate, tellurite and bismuth oxides and doped with high concentrations, 0.5-15 wt. %, thulium oxides (Tm.sub.2O.sub.3) or 0.1-5 wt% holmium oxides (Ho.sub.2O.sub.3) or mixtures thereof. The high concentration of thulium dopants provide highly efficient pump absorption and high quantum efficiency. Co-doping of Tm and Ho can broaden the ASE spectrum.

  1. Highly enhanced spontaneous emission with nanoshell-based metallodielectric hybrid antennas

    NASA Astrophysics Data System (ADS)

    Cheng, Yuqing; Lu, Guowei; shen, Hongming; Wang, Yuwei; He, Yingbo; Chou, R. Yuanying; Gong, Qihuang

    2015-09-01

    The metallodielectric hybrid nanoantenna integrating plasmonic nanostructures with dielectric planar substrate can improve the spontaneous emission greatly. We demonstrated that the performances of the hybrid antenna can be substantially optimized with specific plasmonic nanostructures by employing finite-difference time-domain method. The hybrid antenna with core-shell nanostructure can enhance spontaneous emission greatly rather than the individual spherical nanoparticle. Moreover, the performances of the hybrid antenna can be boosted further through using asymmetrical nanoshell. The mechanism of the high enhancement effect is due to the hybrid structure being able to couple efficiently with the electric field by a larger dipolar moment. And the emission directivity of the hybrid antenna is able to be modified by adjusting the geometry of the plasmonic nanostructures. The results should be beneficial for various fundamental and applied research fields, including single molecule fluorescence and surface enhance Raman spectroscopy, etc. The enhancement of spontaneous emission is in demand in fundamental interests and various applied research fields. However, the electromagnetic enhancement of single plasmonic nanostructure is limited due to intrinsic loss of metal materials and quantum tunneling effect which also limits the ability of enhancement of spontaneous emission. Interestingly, it was found that hybrid structures can provide higher enhancement effect. This study is about a kind new type of optical antenna to control spontaneous emission of single emitter, i.e. a metallodielectric hybrid nanoantenna integrating plasmonic nanostructures with dielectric planar substrate which can improve the spontaneous emission greatly. We demonstrated that the performances of the hybrid antenna can be substantially optimized with specific plasmonic nanostructures by employing finite-difference time-domain method. The hybrid antenna with core-shell nanostructure can enhance spontaneous emission greatly rather than the individual spherical nanoparticle. Moreover, the performances of the hybrid antenna can be boosted further through using asymmetrical nanoshell. The mechanism of the high enhancement effect is due to the hybrid structure being able to couple efficiently with the electric field by a larger dipolar moment. And the emission directivity of the hybrid antenna is able to be modified by adjusting the geometry of the plasmonic nanostructures. The results should be beneficial for various fundamental and applied research fields, including single molecule fluorescence and surface enhance Raman spectroscopy, etc.

  2. Laser Cooling Without Spontaneous Emission Using the Bichromatic Force

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Hua, Xiang; Metcalf, Harold

    2015-05-01

    We have demonstrated laser cooling without spontaneous emission using the bichromatic force (BF). It works by restricting the atom-light interaction to a time short compared to a cycle of absorption followed by spontaneous emission. The BF exploits multiple absorption-stimulated emission cycles to cause many rapid momentum exchanges, with these cycles redistributing both energy and entropy between the atoms and light fields in the total atoms+light system. This momentum exchange is restricted to a well-defined velocity range, resulting from nonadiabatic transitions at a velocity that can be understood from simple energy conservation. The observed width of our one-dimensional velocity distribution is reduced by ×2 thereby reducing the ``temperature'' by ×4. Moreover, our results comprise a compression in phase space because the spatial expansion of the atomic sample is negligible. We have also done various simulations of the motion of atoms under the BF and they compare well with our data. This accomplishment is of interest to direct laser cooling of molecules or in experiments where working space or time is limited. Supported by ONR and Dept. of Education GAANN.

  3. Plasmonic nanogaps for broadband and large spontaneous emission rate enhancement

    SciTech Connect

    Edwards, Anthony P.; Adawi, Ali M.

    2014-02-07

    We present the optical properties of a plasmonic nanogap formed between a silver metallic nanoparticle and an extended silver film that shows a strong enhancement in the spontaneous emission rate over the whole visible range. In particular, we use three-dimensional finite difference time domain calculations to study the spontaneous emission rate and the quantum efficiency of an emitting material placed within the gap region as a function of the geometrical parameters of the plasmonic nanogap. Our calculations reveal that the enhancements in the total decay rate can be divided into two regions as a function of wavelength; region I spans the wavelength range from 350?nm to 500?nm and peaks at approximately at 400?nm. Region II covers the spectral range between 500?nm and 1000?nm. The enhancements in total decay rate in region I are mainly dominated by Ohmic losses by the metal, while the enhancements in total decay rate in region II are mainly dominated by radiative decay rate enhancements. Furthermore, our calculations show over 100 times enhancement in the spontaneous emission rate in region II. We combine this with quantum efficiency enhancements of almost 30 times from materials with low intrinsic quantum efficiencies and only a small reduction in efficiency from those with high intrinsic quantum efficiencies. All results appear easily achievable using realistic geometrical parameters and simple synthesis techniques. These results are attributed to the strong field confinements in the nanogap region. The structures are of high interest for both the fundamental understanding of light mater interactions under extreme electromagnetic field confinements and also potential applications in quantum optics and Raman spectroscopy.

  4. Amplified spontaneous emission in the spiropyran-biopolymer based system

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Sznitko, Lech; Bartkiewicz, Stanislaw; Miniewicz, Andrzej; Essaidi, Zacaria; Kajzar, Francois; Sahraoui, Bouchta

    2009-06-01

    Amplified spontaneous emission (ASE) phenomenon in the 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indolin] organic dye dispersed in a solid matrix has been observed. The biopolymer system deoxyribonucleic acid blended with cationic surfactant molecule cetyltrimethyl-ammonium chloride served as a matrix. ASE appeared under sample excitation by UV light pulses (? =355 nm) coming from nanosecond or picosecond neodymium doped yttrium aluminum garnet lasers and has been reinforced with green (? =532 nm) light excitation followed UV light pulse. The ASE characteristics in function of different excitation pulse energies as well as signal gain were measured.

  5. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  6. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N?-bis(3-methylphenyl)-N,N?-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  7. Amplified spontaneous emission properties of semiconducting organic materials.

    PubMed

    Calzado, Eva M; Boj, Pedro G; Díaz-García, María A

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  8. Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the

    E-print Network

    Hudspeth, A. James

    Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly

  9. Sex and Ear Differences in Spontaneous and Click-Evoked Otoacoustic Emissions in Young Adults

    ERIC Educational Resources Information Center

    Snihur, Adrian W. K.; Hampson, Elizabeth

    2011-01-01

    Effects of sex and handedness on the production of spontaneous and click-evoked otoacoustic emissions (OAEs) were explored in a non-hearing impaired population (ages 17-25 years). A sex difference in OAEs, either produced spontaneously (spontaneous OAEs or SOAEs) or in response to auditory stimuli (click-evoked OAEs or CEOAEs) has been reported in…

  10. Enhanced spontaneous emission from nanodiamond colour centres on opal photonic crystal

    E-print Network

    Faraz A Inam; Torsten Gaebel; Carlo Bradac; Luke Stewart; Michael J Withford; Judith M Dawes; James R Rabeau; Michael J Steel

    2011-02-02

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for developing efficient single photon sources with high collection efficiency. A number of groups have produced enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. Here we characterise in detail the spontaneous emission rates of nitrogen-vacancy centres positioned in various locations on a structured substrate. We show an average factor of 1.5 enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observe changes in the lifetime distribution. We present a model to explain these observations and associate the lifetime properties with dipole orientation and polarization effects.

  11. Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity

    E-print Network

    D. B. Ion; M. L. D. Ion; Reveica Ion-Mihai

    2011-01-24

    In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility parameters attain their limiting value X=1. Hence, the SHE-region is characterized by the absence of a classical barrier toward spontaneous muon and pion emissions. Numerical estimations on the yields for the natural muonic radioactivities of the transuranium elements as well numerical values for barrier heights are given only for even-even parent nuclei. Some experimental results from LCP-identification emission spectrum are reviewed. Also, the experimental results obtained by Khryachkov et al, using new spectrometer for investigation of ternary nuclear fission, are presented. The OPERA-experiment proposed to perform search for muonic radioactivity from lead nuclei, in the low background conditions offered by the Gran Sasso underground Laboratory (LNGS), is discussed.

  12. Spatial Pauli blocking of spontaneous emission in optical lattices

    SciTech Connect

    Sandner, R. M.; Zoller, P.; Mueller, M.; Daley, A. J.

    2011-10-15

    Spontaneous emission by an excited fermionic atom can be suppressed due to the Pauli exclusion principle if the relevant final states after the decay are already occupied by identical atoms in the ground state. Here we discuss a setup where a single atom is prepared in the first excited state on a single site of an optical lattice under conditions of very tight trapping. We investigate these phenomena in the context of two experimental realizations: (1) with alkali-metal atoms, where the decay rate of the excited state is large, and (2) with alkaline-earth-metal-like atoms, where the decay rate from metastable states can be tuned in experiments. This phenomenon has potential applications towards reservoir engineering and dissipative many-body state preparation in an optical lattice.

  13. Spatial Pauli-blocking of spontaneous emission in optical lattices

    E-print Network

    R. M. Sandner; M. Müller; A. J. Daley; P. Zoller

    2011-07-18

    Spontaneous emission by an excited fermionic atom can be suppressed due to the Pauli exclusion principle if the relevant final states after the decay are already occupied by identical atoms in the ground state. Here we discuss a setup where a single atom is prepared in the first excited state on a single site of an optical lattice under conditions of very tight trapping. We investigate these phenomena in the context of two experimental realizations: (1) with alkali atoms, where the decay rate of the excited state is large and (2) with alkaline earth-like atoms, where the decay rate from metastable states can be tuned in experiments. This phenomenon has potential applications towards reservoir engineering and dissipative many-body state preparation in an optical lattice.

  14. Randomness generation based on spontaneous emissions of lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2015-06-01

    Random numbers play a key role in information science, especially in cryptography. Based on the probabilistic nature of quantum mechanics, quantum random number generators can produce genuine randomness. In particular, random numbers can be produced from laser phase fluctuations with a very high speed, typically in the Gbps regime. In this work, by developing a physical model, we investigate the origin of the randomness in quantum random number generators based on laser phase fluctuations. We show how the randomness essentially stems from spontaneous emissions. The laser phase fluctuation can be quantitatively evaluated from basic principles and qualitatively explained by the Brownian motion model. After taking account of practical device precision, we show that the randomness generation speed is limited by the finite resolution of detection devices. Our result also provides the optimal experiment design in order to achieve the maximum generation speed.

  15. Randomness generation based on spontaneous emissions of lasers

    E-print Network

    Hongyi Zhou; Xiao Yuan; Xiongfeng Ma

    2015-05-14

    Random number plays a key role in information science, especially in cryptography. Based on the probabilistic nature of quantum mechanics, quantum random number generators can produce genuine randomness. In particular, random numbers can be produced from laser phase fluctuations with a very high speed, typically in the Gbps regime. In this work, by developing a physical model, we investigate the origin of the randomness in quantum random number generators based on laser phase fluctuations. We show how the randomness essentially stems from spontaneous emissions. The laser phase fluctuation can be quantitatively evaluated from basic principles and also qualitatively explained by the Brownian motion model. After taking account of practical device precision, we show that the randomness generation speed is limited by the finite resolution of detection devices. Our result also provides the optimal experiment design in order to achieve the maximum generation speed.

  16. Fast physical random number generator using amplified spontaneous emission.

    PubMed

    Williams, Caitlin R S; Salevan, Julia C; Li, Xiaowen; Roy, Rajarshi; Murphy, Thomas E

    2010-11-01

    We report a 12.5 Gb/s physical random number generator (RNG) that uses high-speed threshold detection of the spectrally-sliced incoherent light produced by a fiber amplifier. The system generates a large-amplitude, easily measured, fluctuating signal with bandwidth that is constrained only by the optical filter and electrical detector used. The underlying physical process (spontaneous emission) is inherently quantum mechanical in origin, and therefore cannot be described deterministically. Unlike competing optical RNG approaches that require photon counting electronics, chaotic laser cavities, or state-of-the-art analog-to-digital converters, the system employs only commonly available telecommunications-grade fiber optic components and can be scaled to higher speeds or multiplexed into parallel channels. The quality of the resulting random bitstream is verified using industry-standard statistical tests. PMID:21164703

  17. Two-atom spontaneous emission in a planar microcavity

    SciTech Connect

    Ujihara, Kikuo; Dung, Ho Trung

    2002-11-01

    Spontaneous emission in a planar microcavity by two identical and spatially separated two-level atoms, both of them initially excited, is considered under fourth-order perturbation approximation in atom-field coupling constants. A delay-differential equation with proper retardation times for the probability of both atoms in the upper state is derived and expressions for the emitted-light intensity and spectrum are given. It is numerically shown that, while two-atom cooperation is enhanced for small interatomic distances, the two-atom vacuum Rabi oscillation is somewhat suppressed compared to the single-atom oscillation level when the interatomic separation is close to the cavity transverse coherence length.

  18. High spectral density transmission emulation using amplified spontaneous emission noise.

    PubMed

    Elson, Daniel J; Galdino, Lidia; Maher, Robert; Killey, Robert I; Thomsen, Benn C; Bayvel, Polina

    2016-01-01

    We demonstrate the use of spectrally shaped amplified spontaneous emission (SS-ASE) noise for wideband channel loading in the investigation of nonlinear transmission limits in wavelength-division multiplexing transmission experiments using Nyquist-spaced channels. The validity of this approach is explored through statistical analysis and experimental transmission of Nyquist-spaced 10 GBaud polarization-division multiplexing (PDM) quadrature phase-shift keying and PDM-16-ary quadrature amplitude modulation (QAM) channels, co-propagated with SS-ASE over single mode fiber. It is shown that this technique, which is simpler to implement than a fully modulated comb of channels, is valid for distances exceeding 240 km for PDM-16QAM with dispersion of 16 ps/nm/km, yields a good agreement with theory, and provides a conservative measure of system performance. PMID:26696160

  19. Optical steganography based on amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Tian, Yue; Fok, Mable P; Shastri, Bhavin J; Kanoff, Daniel R; Prucnal, Paul R

    2013-01-28

    We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called "stealth" or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver. PMID:23389187

  20. Random Number Generation Using Amplified Spontaneous Emission in a Fiber Amplifier

    E-print Network

    Anlage, Steven

    Random Number Generation Using Amplified Spontaneous Emission in a Fiber Amplifier Julia C. Salevan methods including photon counting and chaotic systems. · We examine an optical system using the amplified spontaneous emission in a fiber amplifier as our random source. System Conclusions and Future Work Statistical

  1. Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C-band

    E-print Network

    Richard Hostein; Rémy Braive; Matthieu Larqué; Ko-Hsin Lee; Anne Talneau; Luc Le Gratiet; Isabelle Robert-Philip; Isabelle Sagnes; Alexios Beveratos

    2009-03-25

    We report on the control of the spontaneous emission dynamics from InAsP self-assembled quantum dots emitting in the telecommunications C-band and weakly coupled to the mode of a double heterostructure cavity etched on a suspended InP membrane at room temperature. The quality factor of the cavity mode is 44x10^3 with an ultra-low modal volume of the order of 1.2 lambda/n)^3, inducing an enhancement of the spontaneous emission rate of up a factor of 2.8 at 300 K.

  2. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope

    PubMed Central

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application. PMID:25234712

  3. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope.

    PubMed

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application. PMID:25234712

  4. Managing emissions control technology

    SciTech Connect

    Kuehn, S.E.

    1995-08-01

    This article examines how emissions control engineers and managers are devising and implementing compliance plans while keeping production costs competitive; it also reviews what the effects that revisions to existing requirements and new requirements will have on design and costs. Topics include NSPS revision, after treatment, control costs, Salem Harbor experience, utility phase 1 and 2 response, EPRI survey, and phase 2 plans.

  5. Excitation dependent two-component spontaneous emission and ultrafast amplified spontaneous emission in dislocation-free InGaN nanowires

    SciTech Connect

    You, Guanjun; Zhang, Chunfeng; Xu, Jian; Guo, Wei; Bhattacharya, Pallab; Henderson, Ron

    2013-03-04

    Amplified spontaneous emission (ASE) at 456 nm from In{sub 0.2}Ga{sub 0.8}N nanowires grown on (001) silicon by catalyst-free molecular beam epitaxy was observed at room temperature under femtosecond excitation. The photoluminescence spectra below ASE threshold consist of two spontaneous emission bands centered at {approx}555 nm and {approx}480 nm, respectively, revealing the co-existence of deeply and shallowly localized exciton states in the nanowires. The ASE peak emerges from the 480 nm spontaneous emission band when the excitation density exceeds {approx}120 {mu}J/cm{sup 2}, indicating that optical gain arises from the radiative recombination of shallowly localized excitons in the nanowires. Time-resolved photoluminescence measurements revealed that the ASE process completes within 1.5 ps, suggesting a remarkably high stimulated emission recombination rate in one-dimensional InGaN nanowires.

  6. A coupling model for amplified spontaneous emission in laser resonators

    NASA Astrophysics Data System (ADS)

    Su, Hua; Wang, Xiaojun; Shang, Jianli; Yu, Yi; Tang, Chun

    2015-10-01

    The competition between amplified spontaneous emission (ASE) and main laser in solid-state laser resonators is investigated both theoretically and experimentally. A coupled model using the spatial volume integral instead of the Monte Carlo type raytrace technique is proposed to depict ASE in the laser resonators. This model is able to evaluate all possible reflections at both the polishing surface and the diffusive side, to calculate ASE for an inhomogeneous gain distribution, and to include the spectral correction. An experiment is carefully designed to verify the theoretical model and to investigate the distinct physical properties caused by the coupling between ASE and the laser oscillations. The experimental data exhibit an excellent agreement with the theoretical predictions. According to that model, we confirm that ASE in thin-disk lasers can be characterized approximately by the product of the threshold gain of the resonator and the diameter of the disks, as laser modes are highly overlapped with the pumping beam. Theoretical evaluation shows that the scattering characteristic of the disk side impacts on ASE significantly. Furthermore, we point out that ASE decreases output laser power by affecting threshold pumping power, while slope efficiency is not changed by ASE. This observation provides us with a simple way to estimate the decrease of the optical efficiency by ASE.

  7. Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    SciTech Connect

    Bradshaw, Douglas H.; Di Rosa, Michael D.

    2011-05-15

    Anomalously dispersive cavities, particularly white-light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, they have been proposed for use in laser interferometer gravitational-wave observatory (LIGO)-like gravity-wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed ({h_bar}/2{pi}){omega}/2. For white-light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.

  8. Efficient computation of spontaneous emission dynamics in arbitrary photonic structures

    NASA Astrophysics Data System (ADS)

    Teimourpour, M. H.; El-Ganainy, R.

    2015-12-01

    Defining a quantum mechanical wavefunction for photons is one of the remaining open problems in quantum physics. Thus quantum states of light are usually treated within the realm of second quantization. Consequently, spontaneous emission (SE) in arbitrary photonic media is often described by Fock space Hamiltonians. Here, we present a real space formulation of the SE process that can capture the physics of the problem accurately under different coupling conditions. Starting from first principles, we map the unitary evolution of a dressed two-level quantum emitter onto the problem of electromagnetic radiation from a self-interacting complex harmonic oscillator. Our formalism naturally leads to an efficient computational scheme of SE dynamics using finite difference time domain method without the need for calculating the photonic eigenmodes of the surrounding environment. In contrast to earlier investigations, our computational framework provides a unified numerical treatment for both weak and strong coupling regimes alike. We illustrate the versatility of our scheme by considering several different examples.

  9. Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes

    SciTech Connect

    Le Kien, Fam; Hakuta, K.; Dutta Gupta, S.; Balykin, V.I.

    2005-09-15

    We study the spontaneous emission of a cesium atom in the vicinity of a subwavelength-diameter fiber. We show that the confinement of the guided modes and the degeneracy of the excited and ground states substantially affect the spontaneous emission process. We demonstrate that different magnetic sublevels have different decay rates. When the fiber radius is about 200 nm, a significant fraction (up to 28%) of spontaneous emission by the atom can be channeled into guided modes. Our results may find applications for developing nanoprobes for atoms and efficient couplers for subwavelength-diameter fibers.

  10. Driving to the steady ground-state superposition assisted by spontaneous emission

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Feng; Shen, Li-Tuo; Chen, Rong-Xin; Yang, Zhen-Biao

    2015-09-01

    We propose a scheme for preparing a coherent ground-state superposition for an atom through external drivings assisted by spontaneous emission. In the scheme, the dynamics induced by the competition between the spontaneous emission and the external drives contributes to the superposition of the ground states. Compared with schemes based on the stimulated Raman adiabatic passage, such a scheme is more easily implemented because the preparation of special initial states is no longer needed, which simplifies the operation process. Moreover, since spontaneous emission is involved to act as a positive factor, a higher fidelity superposition state is achieved.

  11. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    E-print Network

    Vos, Willem L.

    Quantitative analysis of directional spontaneous emission spectra from light sources in photonic disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum

  12. Mass, Kinetic Energy and Neutron Emission of Fragments in Spontaneous Fission of 252

    E-print Network

    Titov, Anatoly

    Mass, Kinetic Energy and Neutron Emission of Fragments in Spontaneous Fission of 252 Cf, 244 Cm by individual fission fragments has been measured simulta- neously with the kinetic energy of both fragments in spontaneous fission of 252 Cf, 244 Cm and 248 Cm. A description of the experimental arrangement and data

  13. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; And Others

    This publication contains instructional materials for both teachers and students for a course in automotive emission control. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes 16 units. Each instructional unit includes some or all of the basic components of a…

  14. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; Ragazzi, Ronald

    This guide designed to assist teachers in improving instruction in the area of automotive emission control curriculum includes four areas. Each area consists of one or more units of instruction, with each instructional unit including some or all of the following basic components: Performance objectives, suggested activities for teacher and…

  15. Fast and bright spontaneous emission of Er3+ ions in metallic nanocavity

    PubMed Central

    Song, Jung-Hwan; Kim, Jisu; Jang, Hoon; Yong Kim, In; Karnadi, Indra; Shin, Jonghwa; Shin, Jung H.; Lee, Yong-Hee

    2015-01-01

    By confining light in a small cavity, the spontaneous emission rate of an emitter can be controlled via the Purcell effect. However, while Purcell factors as large as ?10,000 have been predicted, actual reported values were in the range of about 10–30 only, leaving a huge gap between theory and experiment. Here we report on enhanced 1.54-?m emission from Er3+ ions placed in a very small metallic cavity. Using a cavity designed to enhance the overall Purcell effect instead of a particular component, and by systematically investigating its photonic properties, we demonstrate an unambiguous Purcell factor that is as high as 170 at room temperature. We also observe >90 times increase in the far-field radiant flux, indicating that as much as 55% of electromagnetic energy that was initially supplied to Er3+ ions in the cavity escape safely into the free space in just one to two optical cycles. PMID:25940839

  16. Fast and bright spontaneous emission of Er(3+) ions in metallic nanocavity.

    PubMed

    Song, Jung-Hwan; Kim, Jisu; Jang, Hoon; Yong Kim, In; Karnadi, Indra; Shin, Jonghwa; Shin, Jung H; Lee, Yong-Hee

    2015-01-01

    By confining light in a small cavity, the spontaneous emission rate of an emitter can be controlled via the Purcell effect. However, while Purcell factors as large as ?10,000 have been predicted, actual reported values were in the range of about 10-30 only, leaving a huge gap between theory and experiment. Here we report on enhanced 1.54-?m emission from Er(3+) ions placed in a very small metallic cavity. Using a cavity designed to enhance the overall Purcell effect instead of a particular component, and by systematically investigating its photonic properties, we demonstrate an unambiguous Purcell factor that is as high as 170 at room temperature. We also observe >90 times increase in the far-field radiant flux, indicating that as much as 55% of electromagnetic energy that was initially supplied to Er(3+) ions in the cavity escape safely into the free space in just one to two optical cycles. PMID:25940839

  17. Atom microscopy via two-photon spontaneous emission spectroscopy RID A-5077-2009 

    E-print Network

    Qamar, Sajid; Evers, Joerg; Zubairy, M. Suhail

    2009-01-01

    We study subwavelength position measurement via spontaneous emission spectroscopy with two photons. Our model systems are a single Lambda-type three-level atom, in which a dual interaction generates two independent photons, and an M-type five...

  18. Amplified spontaneous emission from opal photonic crystals engineered with structural defectsw

    E-print Network

    Amplified spontaneous emission from opal photonic crystals engineered with structural defectsw opals engineered with planar structural defects containing a conjugated polymer emitter. Defects in opals give rise to allowed states inside the photonic stop band, which are probed by transmittance

  19. A semi-analytical approach for evaluating effects of amplified spontaneous emission on characteristics of Q-switched lasers

    SciTech Connect

    Razzaghi, D; Hajiesmaeilbaigi, F; Ruzbehani, M

    2012-08-31

    Possible effects of amplified spontaneous emission on output pulse characteristics of a Q-switched laser are discussed within the framework of a semi-analytical approach. It is shown that output energy decreases almost exponentially with average path length of the spontaneously emitted photons which in turn depends on geometrical specification and active medium properties as well as on optical finishing of the surfaces (for solid-state lasers). Optimal coupling dependence on the average path length is also investigated and shown to increase with average path length increment. (control of laser radiation parameters)

  20. Spontaneous emission near the electron plasma frequency in a plasma with a runaway electron tail

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Lee, L. C.; Wu, C. S.

    1978-01-01

    Spontaneous emission of radiation with frequencies near the electron plasma frequency is studied for a plasma which consists of both thermal and runaway electrons. It is found that a substantial enhancement of the spontaneous radiation intensity can occur in this frequency regime via a Cherenkov resonance with the runaway electrons. Numerical analysis indicates that, for reasonable estimates of densities and energies, the plasma-frequency radiation can attain levels greater than the peak thermal emission at the second gyroharmonic.

  1. Control momentum entanglement with atomic spontaneously generated coherence

    E-print Network

    Rui Guo; Hong Guo

    2007-02-28

    With atomic spontaneously generated coherence (SGC), we propose a novel scheme to coherently control the atom--photon momentum entanglement through atomic internal coherence. A novel phenomena of ``phase entanglement in momentum'' is proposed, and we found, under certain conditions, that super--high degree of momentum entanglement can be produced with this scheme.

  2. Enhanced emission and light control with tapered plasmonic nanoantennas Ivan S. Maksymov, Arthur R. Davoyan, and Yuri S. Kivshar

    E-print Network

    -sized nanoantennas Appl. Phys. Lett. 99, 253101 (2011) Controlled spontaneous emission in plasmonic whispering gallery antennas Appl. Phys. Lett. 99, 231112 (2011) Electron density measurements in a pulse

  3. Spontaneous emission lifetimes in the ground electronic states of HD/+/ and H2/+/a

    NASA Technical Reports Server (NTRS)

    Peek, J. M.; Hashemi-Attar, A.-R.; Beckel, C. L.

    1979-01-01

    Because of their simplicity, H2(+) and its isotopic species are of particular interest to molecular theorists and experimentalists. If these ions are formed in excited vibrational states under conditions of highly improbable electron-ion recombination or other reactions, spontaneous emission will occur. The present note calculates the (vibrational quantum number, J prime = 0) state lifetimes under spontaneous emission for all 22 excited vibrations of HD(+) and all 19 excited vibrations of H2(+) in their ground electron states. The lifetimes presented in Tables I and III justify the assumption that spontaneous radiative processes are unimportant under certain realizable conditions. When spontaneous radiation plays a role, however, minimum lifetime at intermediate vibrational quantum number could lead to unusual vibrational distribution functions.

  4. Enhancement of spontaneous emission in a nitride based quantum well by resonant surface plasmon coupling

    NASA Astrophysics Data System (ADS)

    Neogi, Arup; Lee, Chang-Won; Everitt, Henry; Kuroda, Takamasa; Tackeuchi, Atsushi; Yablonovitch, Eli

    2002-03-01

    The photonic density of states (DOS) and the spontaneous emission rate can be modified when emitters are coupled to a surface plasmon (SP) of a metallic film. Using time-resolved and continuous-wave photoluminescence (PL) measurements, the recombination rate in an In0.18Ga0.82N/GaN quantum well (QW) is shown to be greatly enhanced when spontaneous emission is resonantly coupled to a silver surface plasmon. The transfer of the electron-hole energy to the plasmon excitation is indicated by the decrease in the PL intensity as well as the PL decay time constants from the silvered side. The rate of enhanced spontaneous emission into the surface plasmon was as much as 92 times faster than normal QW spontaneous emission. A calculation, based on Fermi's golden rule, reveals the enhancement is very sensitive to silver thickness and indicates even greater enhancements are possible for QWs placed closer to the surface metal coating. The spontaneous emission rate into the surface plasmon is also influenced by the excitation wavelength and optical power density due to bandfilling effects.

  5. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect

    Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.; Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  6. Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide

    SciTech Connect

    Perera, Chamanei S. Vernon, Kristy C.; Mcleod, Angus

    2014-02-07

    In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50?nm?×?50?nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.

  7. Spontaneous emission by rotating objects: a scattering approach.

    PubMed

    Maghrebi, Mohammad F; Jaffe, Robert L; Kardar, Mehran

    2012-06-01

    We study the quantum electrodynamics vacuum in the presence of a body rotating along its axis of symmetry and show that the object spontaneously emits energy if it is lossy. The radiated power is expressed as a general trace formula solely in terms of the scattering matrix, making an explicit connection to the conjecture of Zel'dovich [JETP Lett. 14, 180 (1971)] on rotating objects. We further show that a rotating body drags along nearby objects while making them spin parallel to its own rotation axis. PMID:23003926

  8. Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics

    SciTech Connect

    He, Q.; Chu, Y. H.; Heron, J. T.; Yang, S. Y.; Wang, C. H.; Kuo, C. Y.; Lin, H. J.; Yu, P.; Liang, C. W.; Zeches, R. J.; Chen, C. T.; Arenholz, E.; Scholl, A.; Ramesh, R.

    2010-08-02

    The emergence of enhanced spontaneous magnetic moments in self-assembled, epitaxial nanostructures of tetragonal (T-phase) and rhombohedral phases (R-phase) of the multiferroic BiFeO{sub 3} system is demonstrated. X-ray magnetic circular dichroism based photoemission electron microscopy (PEEM) was applied to investigate the local nature of this magnetism. We find that the spontaneous magnetization of the R-phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent T-phase and the epitaxial constraint. Reversible electric field control and manipulation of this magnetic moment at room temperature is shown using a combination of piezoresponse force microscopy and PEEM studies.

  9. Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Sommar, Jonas; Li, Zhonggen; Feng, Xinbin; Lin, Che-Jen; Li, Guanghui

    2013-11-01

    Refuse disposal (e.g., landfilling and incineration) have been recognized as a significant anthropogenic source of mercury (Hg) emission globally. However, in-situ measurements of Hg emission from landfill or refuse dumping sites where fugitive spontaneous combustion occurs have not been reported. Gaseous elemental mercury (Hg0) concentration and emission flux were observed near spontaneous combustions of refuse at a landfill site in southwestern China. Ambient Hg0 concentrations above the refuse surface ranged from 42.7 ± 20.0 to 396.4 ± 114.2 ng m-3, up to 10 times enhancement due to the spontaneous burning. Using a box model with Hg0 data obtained from 2004 to 2013, we estimated that the Hg0 emission from refuse was amplified by 8-40 times due to spontaneous combustion. A micrometeorological flux measurement system based on relaxed eddy accumulation was configured downwind of the combustion sites to quantify the Hg0 emission. Extremely large turbulent deposition fluxes (up to -128.6 ?g m-2 h-1, 20 min average) were detected during periods of high Hg0 concentration events over the measurement footprint. The effect of temperature, moisture and light on the air-surface exchange of Hg0 exchange was found to be masked by the overwhelming deposition of Hg0 from the enriched air from the refuse combustion plumes. This research reveals that mercury emission from the landfill refuse can be boosted by fugitive spontaneous combustion of refuse. The emission represents an anthropogenic source that has been overlooked in Hg inventory estimates.

  10. Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries

    SciTech Connect

    Marocico, C. A.; Knoester, J.

    2011-11-15

    We use a Green's tensor method to investigate the spontaneous emission rate of a molecule and the energy-transfer rate between molecules placed in two types of layered geometries: a slab geometry and a planar waveguide. We focus especially on the role played by surface-plasmon polaritons in modifying the spontaneous emission and energy-transfer rates as compared to free space. In the presence of more than one interface, the surface-plasmon polariton modes split into several branches, and each branch can contribute significantly to modifying the electromagnetic properties of atoms and molecules. Enhancements of several orders of magnitude both in the spontaneous emission rate of a molecule and the energy-transfer rate between molecules are obtained and, by tuning the parameters of the geometry, one has the ability to control the range and magnitude of these enhancements. For the energy-transfer rate interference effects between contributions of different plasmon-polariton branches are observed as oscillations in the distance dependence of this rate.

  11. Interactions between Hair Cells Shape Spontaneous Otoacoustic Emissions in a Model of the Tokay Gecko's Cochlea

    PubMed Central

    Gelfand, Michael; Piro, Oreste; Magnasco, Marcelo O.; Hudspeth, A. J.

    2010-01-01

    Background The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions. Methodology and Principal Findings We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators. Conclusions and Significance A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko. PMID:20559557

  12. Control of Emissions

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, Landy (Inventor)

    2013-01-01

    Methods and apparatus utilizing chlorine dioxide and hydrogen peroxide are useful to reduce NOx emissions, as well as SOx and mercury (or other heavy metal) emissions, from combustion flue gas streams.

  13. The interplay between spontaneous and controlled processing in creative cognition

    PubMed Central

    Mok, Leh Woon

    2014-01-01

    Neural studies of creativity have yielded relatively little consistent results. For example, in functional neuroanatomical studies, the prefrontal cortex (PFC) has often been implicated as a critical neural substrate. However, results in electrophysiological (EEG) studies have been inconsistent as to the role of the PFC. EEG results have more often implicated widespread alpha synchronization, particularly in posterior regions, in creative cognition. Recent fMRI evidence has indicated that the PFC may be activated as a part of and together with other components of a deliberate control brain network. Controlled processing is neurologically dissociated from, but may co-occur with, spontaneous cognition mediated by a subset of the default-mode network (e.g., the angular gyrus [BA 39] in the posterior parietal cortex, which has been increasingly implicated in creative cognition). When the demand for controlled processing is substantially increased, default-mode processing may be suppressed. There is now preliminary evidence to suggest an association between alpha synchronization and default-mode processing. Creative cognition likely emerges from an optimal balance between spontaneous processing and controlled processing. PMID:25221497

  14. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  15. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    PubMed

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations. PMID:25361293

  16. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta; Lunnemann Hansen, Per; Yvind, Kresten; Mørk, Jesper

    2012-03-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising results for future compact devices for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers.

  17. Van der Waals forces and spontaneous emission in non-trivial geometries

    E-print Network

    asymptotic decrease of the force #12;· First evidence: study of gases, J D van der Waals (1873) · CorrectVan der Waals forces and spontaneous emission in non-trivial geometries Carlos Farina Universidade surfaces, demonstrates that the mechanism of adhesion is van der Waals dispersive force .." K. Autumn et al

  18. Remote-sensing GIS based investigations of coal fires in northern China; global monitoring to support the estimation of CO2 emissions from spontaneous combustion of

    E-print Network

    Remote-sensing GIS based investigations of coal fires in northern China; global monitoring to support the estimation of CO2 emissions from spontaneous combustion of coal Freek van der Meer, Paul van, disaster control, coal fires, China ABSTRACT The uncontrolled fires burning of coal seams, stock piles

  19. Optical instabilities and spontaneous light emission in moving media

    NASA Astrophysics Data System (ADS)

    Silveirinha, Mario

    2015-03-01

    We show that when an uncharged plasmonic material is set in relative motion with respect to another uncharged polarizable body the system may be electromagnetically unstable. Particularly, when the relative velocity of the two bodies is enforced to remain constant the system may support natural oscillations that grow exponentially with time, even in presence of realistic material loss and dispersion. It is proven that a friction-type force acts on the moving bodies to oppose their relative motion. Hence, the optical instabilities result from the conversion of kinetic energy into electromagnetic energy. This new purely classical phenomenon is analogous to the Cherenkov and Smith-Purcell effects but for uncharged polarizable matter. We link the optical instabilities to a spontaneous parity-time symmetry breaking of the system, and demonstrate the possibility of optical amplification of a light pulse in the broken parity-time symmetry regime. This work is supported in part by Fundação para a Ciência e a Tecnologia Grant Number PTDC/EEI-TEL/2764/2012.

  20. Plasmonic engineering of spontaneous emission from silicon nanocrystals.

    PubMed

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells. PMID:24037020

  1. Plasmonic engineering of spontaneous emission from silicon nanocrystals

    PubMed Central

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells. PMID:24037020

  2. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement.

    PubMed

    Hoffmann, Björn; Vassant, Simon; Chen, Xue-Wen; Götzinger, Stephan; Sandoghdar, Vahid; Christiansen, Silke

    2015-10-01

    Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%. PMID:26376922

  3. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement

    NASA Astrophysics Data System (ADS)

    Hoffmann, Björn; Vassant, Simon; Chen, Xue-Wen; Götzinger, Stephan; Sandoghdar, Vahid; Christiansen, Silke

    2015-10-01

    Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%.

  4. Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures

    SciTech Connect

    Jun, Y.C.

    2010-03-02

    We theoretically investigate the spontaneous emission process of an optical, dipolar emitter in metal-dielectric-metal slab and slot waveguide structures. We find that both structures exhibit strong emission enhancements at nonresonant conditions, due to the tight confinement of modes between two metallic plates. The large enhancement of surface plasmon-polariton excitation enables dipole emission to be preferentially coupled into plasmon waveguide modes. These structures find applications in creating nanoscale local light sources or in generating guided single plasmons in integrated optical circuits.

  5. Spontaneous emission with a cascaded driving field in the same transition channel

    NASA Astrophysics Data System (ADS)

    Liu, Ronggang; Liu, Tong

    2015-11-01

    We study the spontaneous emission spectrum of a driven four-level atom in both Markovian reservoir and non-Markovian reservoir, in which the two driving fields are applied to the same transition channel. It is very interesting that the increase of the Rabi frequency of the first driving field leads to the emission spectrum enhancement in Markovian reservoir, but the increase of the second one can suppress the emission spectrum significantly. The phenomenon originates from the dressed states variation induced by the first driving field. For non-Markovian reservoir case, the rich spectrum behavior is due to a strong coupling between driving fields and modified reservoir.

  6. Emissions control options for POTWs

    SciTech Connect

    Witherspoon, J.R.; Bishop, W.J.; Wallis M.J.

    1993-05-01

    Publicly owned treatment works (POTW`S) are beginning the process of identifying air emissions from their waste water treatment and collection facilities. Many facilities will be required to reduce emissions to meet air quality standards. Industrial and residential source control, enhanced liquid phase removal and process modifications are viable air emission reduction strategies that should be applied before resorting to add-on-devices.

  7. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1999-01-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  8. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-07-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  9. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-10-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  10. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  11. Experimental demonstration of enhanced self-amplified spontaneous emission by an optical klystron.

    PubMed

    Penco, G; Allaria, E; De Ninno, G; Ferrari, E; Giannessi, L

    2015-01-01

    We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model. PMID:25615469

  12. Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber

    E-print Network

    Stefan Scheel; Stefan Yoshi Buhmann; Christoph Clausen; Philipp Schneeweiss

    2015-05-06

    We study the spontaneous emission of an excited atom close to an optical nanofiber and the resulting scattering forces. For a suitably chosen orientation of the atomic dipole, the spontaneous emission pattern becomes asymmetric and a resonant Casimir--Polder force parallel to the fiber axis arises. For a simple model case, we show that the such a lateral force is due to the interaction of the circularly oscillating atomic dipole moment with its image inside the material. With the Casimir--Polder energy being constant in the lateral direction, the predicted lateral force does not derive from a potential in the usual way. Our results have implications for optical force measurements on a substrate as well as for laser cooling of atoms in nanophotonic traps.

  13. Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber

    NASA Astrophysics Data System (ADS)

    Scheel, Stefan; Buhmann, Stefan Yoshi; Clausen, Christoph; Schneeweiss, Philipp

    2015-10-01

    We study the spontaneous emission of an excited atom close to an optical nanofiber and the resulting scattering forces. For a suitably chosen orientation of the atomic dipole, the spontaneous emission pattern becomes asymmetric and a resonant Casimir-Polder force parallel to the fiber axis arises. For a simple model case, we show that such a lateral force is due to the interaction of the circularly oscillating atomic dipole moment with its image inside the material. With the Casimir-Polder energy being constant in the lateral direction, the predicted lateral force does not derive from a potential in the usual way. Our results have implications for optical force measurements on a substrate as well as for laser cooling of atoms in nanophotonic traps.

  14. Spontaneous emission from dipole-forbidden transitions in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Cotrufo, Michele; Fiore, Andrea

    2015-09-01

    We theoretically investigate the multipolar effects on the dipole-forbidden transitions of a semiconductor quantum dot. An approximated expression for the decay rate of these transitions is derived. Unlike the general theory of the spontaneous emission beyond the dipole approximation, the distinct roles of the emitter and the vacuum electric field in the transition rate are here clearly recognizable and can be separately optimized. We illustrate the potential of this formalism by calculating the spontaneous emission decay rate of an InAs/GaAs quantum dot embedded into two realistic nanostructures—an L3 photonic crystal cavity and a plasmonic dimer antenna. The obtained results show that, although the two structures provide an enhancement of the same order of magnitude, the plasmonic antenna constitutes a more promising candidate for the experimental observation of the dipole-forbidden transitions of a quantum dot.

  15. Precision localization of single atom via spontaneous emission in three dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Yu, Benli

    2015-11-01

    We present a new scheme for high-efficiency three-dimensional (3D) atom localization in a three-level atomic system via spontaneous emission. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the spontaneous emission. It is found that, by properly varying the parameters of the system, the probability of finding the atom at a particular position can be almost 100 %. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications to spatially selective single-qubit phase gate, entangling gates, and quantum error correction for quantum information processing.

  16. Filament-induced amplified spontaneous emission in air-hydrocarbons gas mixture

    NASA Astrophysics Data System (ADS)

    Hosseini, Sima; Azarm, Ali; Daigle, Jean-François; Kamali, Yousef; Chin, See Leang

    2014-04-01

    Filament-induced amplified spontaneous emission, ASE, in air-hydrocarbons (~2%) gas mixture, CH4, C2H2, and C2H4, was investigated by detecting fluorescence emitted from CH fragments prepared in the electronically excited A2? state in the filament. The fluorescence signal recorded from the side direction of the filament was linearly proportional to the length of the filament, while the fluorescence signal emitted in the backward direction of the laser propagation increased nonlinearly with the filament length. This difference showing that the filament acted as a gain medium in which the spontaneous emission from CH was amplified (ASE). This process realized by a small amount of hydrocarbon molecular species in air can be applied to remote sensing of pollutants in air.

  17. Spectrum of spontaneous emission into the mode of a cavity QED system

    E-print Network

    M. L. Terraciano; R. Olson; D. L. Freimund; L. A. Orozco; P. R. Rice

    2006-01-10

    We study the probe spectrum of light generated by spontaneous emission into the mode of a cavity QED system. The probe spectrum has a maximum on-resonance when the number of inverted atoms for an input drive is maximal. For a larger number of atoms N, the maximum splits and develops into a doublet, but its frequencies are different from those of the so-called vacuum Rabi splitting.

  18. Coupling of spontaneous emission from GaN-AlN quantum dots into silver surface plasmons

    NASA Astrophysics Data System (ADS)

    Neogi, Arup; Morkoç, Hadis; Kuroda, Takamasa; Tackeuchi, Atsushi

    2005-01-01

    We have demonstrated the decay of spontaneous emission (SE) from AlN-GaN quantum dots (QDs) into silver surface plasmon (SP) modes in the ultraviolet at approximately 375-380 nm. Using time-resolved photoluminescence (PL), we show that the electron-hole recombination rate in AlN-GaN QDs is enhanced when SE is resonantly coupled to a metal SP mode, corresponding to the dip in the continuous-wave PL spectrum. Exciton recombination by means of silver SP modes is as much as 3-7 times faster than in normal QD SE and depends strongly on emission wavelength and thickness of the silver.

  19. Coupling of spontaneous emission from GaN-AlN quantum dots into silver surface plasmons.

    PubMed

    Neogi, Arup; Morkoç, Hadis; Kuroda, Takamasa; Tackeuchi, Atsushi

    2005-01-01

    We have demonstrated the decay of spontaneous emission (SE) from AlN-GaN quantum dots (QDs) into silver surface plasmon (SP) modes in the ultraviolet at approximately 375-380 nm. Using time-resolved photoluminescence (PL), we show that the electron-hole recombination rate in AlN-GaN QDs is enhanced when SE is resonantly coupled to a metal SP mode, corresponding to the dip in the continuous-wave PL spectrum. Exciton recombination by means of silver SP modes is as much as 3-7 times faster than in normal QD SE and depends strongly on emission wavelength and thickness of the silver. PMID:15648649

  20. Enhanced Spontaneous Emission Into The Mode Of A Cavity QED System

    E-print Network

    M. L. Terraciano; R. Olson Knell; D. L. Freimund; L. A. Orozco; J. P. Clemens; P. R. Rice

    2007-02-16

    We study the light generated by spontaneous emission into a mode of a cavity QED system under weak excitation of the orthogonally polarized mode. Operating in the intermediate regime of cavity QED with comparable coherent and decoherent coupling constants, we find an enhancement of the emission into the undriven cavity mode by more than a factor of 18.5 over that expected by the solid angle subtended by the mode. A model that incorporates three atomic levels and two polarization modes quantitatively explains the observations.

  1. Advanced Emissions Control Development Program: Mercury Control

    SciTech Connect

    Evans, A.P.; Redinger, K.W.; Holmes, M.J.

    1997-07-01

    McDermott Technology, Inc. (a subsidiary of Babcock & Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA`s) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation`s abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock & Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of selenium and mercury, the majority of trace elements are well controlled due to their association with the particulate phase of flue gas. Reflecting the current focus of the US EPA and state environmental agencies on mercury as a potential candidate for regulation, the project specifically targets the measurement and control of mercury species. This paper discusses the results of testing on the quantity and species distribution of mercury while firing Ohio high-sulfur coal to assess the mercury emissions control potential of conventional SO{sub 2} and particulate control systems. Results from recent AECDP tests are presented and two alternative mercury speciation methods are compared. The AECDP results clearly show that higher total mercury control efficiency can be achieved with a wet FGD scrubber than recently reported in the interim final US EPA report on HAP emissions from fossil-fired electric utility steam generating units.

  2. Emission control technology

    SciTech Connect

    Yamaguchi, Fumihiko

    1993-12-31

    Environmental protection is indispensable for preserving the earth for later generations. Indeed, industrial development has made our life rich; however, it also accelerates environmental pollution. Above all, such global problems as acid rain caused by SOx and NOx emissions and air pollution caused by particulates have become serious in recent years. Countermeasures currently in service or under development for these problems include: upgrading of fuel-burning systems; conversion of energy sources to clean fuels; pretreatment of fuels; and flue gas treatment. This chapter focuses on technologies that treat flue gases including the circumstances of the development of the technologies.

  3. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  4. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  5. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  6. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  7. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  8. Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal.

    PubMed

    Hussain, R; Keene, D; Noginova, N; Durach, M

    2014-04-01

    Strong modification of spontaneous emission of Eu(3+) ions placed in close vicinity to thin and thick gold and silver films was clearly demonstrated in a microscope setup separately for electric and magnetic dipole transitions. We have shown that the magnetic transition was very sensitive to the thickness of the gold substrate and behaved distinctly different from the electric transition. The observations were described theoretically based on the dyadic Green's function approach for layered media and explained through modified image models for the near and far-field emissions. We established that there exists a "near-field event horizon", which demarcates the distance from the metal at which the dipole emission is taken up exclusively in the near field. PMID:24718150

  9. Spectrally Narrowed Edge Emission from Organic Light-Emitting Diodes: Evidence for Amplified Spontaneous Emission and Mirrorless Lasing

    E-print Network

    Yun Tian; Zhengqing Gan; Zhaoqun Zhou; Ji-hun Kang; Q-Han Park; David W. Lynch; Joseph Shinar

    2007-01-14

    p-Conjugated materials, including small molecules and polymers, are attracting substantial attention as novel gain media in semiconductor lasers; they offer many potential advantages not achievable with conventional inorganic semiconductors: simple processing, low cost, easy tuneability of the spectrum, and large-area integration on flexible substrates. Optically pumped lasing action in various small molecular and polymeric p-conjugated materials has been demonstrated using several resonator configurations. However, electrically pumped organic semiconductor lasers, i.e., organic injection or diode lasers, remain elusive, presumably due to various loss mechanisms, e.g., charge (polaron)-induced absorption and metal electrode absorption. Here we report on evidence for amplified spontaneous emission (ASE), also known as mirrorless lasing (i.e., wherein some of the spontaneously emitted photons are amplified by stimulated emission during their propagation) in DC-driven small molecular organic light-emitting diodes (SMOLEDs). The evidence includes a dramatic spectral line narrowing, with a full width at half maximum (FWHM) of only 5 - 10 nm, and optical gain, of the edge-emission from SMOLEDs at room temperature. However, there is no clear indication of threshold behavior associated with this spectral narrowing. Nevertheless, this discovery should pave the way towards the realization of an organic diode laser.

  10. Bremsstrahlung emission of high energy accompanying spontaneous fission of {sup 252}Cf

    SciTech Connect

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.

    2010-07-15

    The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted photons in the spontaneous fission of {sup 252}Cf was calculated in such a way. We obtained good agreement between theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV. The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and heavy fragments in the fission of {sup 252}Cf is presented.

  11. Spontaneous emission from ScF in a supersonic mixing flame

    NASA Technical Reports Server (NTRS)

    Fischell, D. R.; Cool, T. A.

    1977-01-01

    An investigation was conducted of the two reactions: Sc + F2 yields ScF(asterisk) + F and Y + Cl2 yields YCl(asterisk) + Cl. Experiments were designed for studying the reactions under the relatively high pressure conditions (5-20 torr) appropriate for chemical laser operation. A shock tube was used to provide a short duration flow through a supersonic nozzle array. Shock wave heating is used to dissociate the ScCl3 or YCl3 at temperatures of about 6000 K, before the gases are accelerated and expanded through the supersonic nozzle array. The expanded primary flow is then mixed with a secondary flow of F2 introduced through slots at the trailing edge of each nozzle blade. Graphs show the temporal behavior of the visible spontaneous emission over the range from 3000 to 9000 A for a typical test condition, a microdensitometer tracing of the visible emission over the range from 4000 to 7000 A, and the spontaneous emission from ScF(asterisk) obtained by computer image processing of intensity data.

  12. Mid- and far-field deviations from causality in spontaneous light emission by atomic Hydrogen

    E-print Network

    Vincent Debierre; Thomas Durt

    2015-09-04

    We investigate, in the case of the $2\\mathrm{p}-1\\mathrm{s}$ transition in atomic Hydrogen, the behaviour of the spontaneously emitted electromagnetic field in spacetime. We focus on Glauber's wave function for the emitted photon, a quantity which we find is nonzero outside the lightcone at all times after the start of the emission. We identify the uncertainty on the position of the decaying electron as a source of departure from causality in the naive sense of the term. We carry out a detailed study of the emitted electric field in the mid- and far-field regions, through analytical and numerical computations as well as asymptotic arguments.

  13. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  14. Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides.

    PubMed

    Calzado, Eva M; Ramírez, Manuel G; Boj, Pedro G; Díaz García, María A

    2012-06-01

    The effect of varying film thickness (h) on the amplified spontaneous emission (ASE) properties of 0.5??wt.% perylenediimide-doped polystyrene waveguides is reported. The threshold dependence on h, not previously investigated in detail, is analyzed in terms of the film absorption and photoluminescence, the confinement of the fundamental waveguide mode (TE0), and the presence of high-order modes. For h<400??nm and down to 150 nm, the ASE wavelength blueshifts, while the linewidth and threshold increase. The detrimental ASE operation in very thin films is due to the low absorption as well as to the poor confinement of the TE0 mode. PMID:22695562

  15. Amplified spontaneous emission of Rhodamine 6G embedded in pure deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Rau, Ileana; Szukalski, Adam; Sznitko, Lech; Miniewicz, Andrzej; Bartkiewicz, Stanislaw; Kajzar, Francois; Sahraoui, Bouchta; Mysliwiec, Jaroslaw

    2012-10-01

    Deoxyribonucleic acid (DNA) is commonly viewed as a genetic information carrier. However, now it is recognized as a nanomaterial, rather than as a biological material, in the research field of nanotechnology. Here, we show that using pure DNA, doped with rhodamine 6G, we are able to observe amplified spontaneous emission (ASE) phenomenon. Moderate ASE threshold, photodegradation, and reasonable gain coefficient observed in this natural host gives some perspectives for practical applications of this system in biophotonics. Obtained results open the way and will be leading to construction of truly bio-lasers using nature made luminophores, such as anthocyanins.

  16. Modified spontaneous emission of organic molecules in-filled in inverse opals.

    PubMed

    Deng, Lier; Wang, Yongsheng; He, Dawei

    2011-11-01

    Inverse opals were prepared by replication of colloidal crystal templates made from silica spheres 298 nm in diameter. The air between the silica spheres was filled with the mixture of the monomer poly(methyl methacrylate) (PMMA) and the organic molecule Alq3 that can be subsequently polymerized. After removing the silica sphere templates, the photonic bandgap effect on the spontaneous emission of Alq3 were investigated. The dip in the fluorescence spectrum was interpreted in terms of redistribution of the photon density of states in the photonic crystal. PMID:22413286

  17. On the spontaneous emission of electromagnetic radiation in the CSL model

    SciTech Connect

    Donadi, Sandro; Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste ; Deckert, Dirk-André; Bassi, Angelo; Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste

    2014-01-15

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle’s state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013). -- Highlights: •We compute the electromagnetic radiation emission in collapse models. •Under only the dipole approximation, the equations of motion are solved exactly. •The electromagnetic interaction must be treated exactly. •In order to obtain the correct emission rate the particle must be bounded.

  18. On the spontaneous emission of electromagnetic radiation in the CSL model

    E-print Network

    S. Donadi; A. Bassi; D. -A. Deckert

    2013-07-03

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in [1], the formula for the emission rate, to first perturbative order, contains two terms: One is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In [1], it was shown that the unphysical term disappears when the noises is confined to a bounded region and the final particle's state is a wave packet. Here we investigate the origin of the unphysical term and why it vanishes according to the previous prescription. For this purpose, the electrodynamic part of the equation of motion is solved exactly while the part due to the noise is treated perturbatively. We show that the unphysical term is connected to exponentially decaying function of time which dies out in the large time limit, however, approximates to 1 in the first perturbative order in the electromagnetic field.

  19. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission.

    PubMed

    Cohen, Raphael; London, Yosef; Antman, Yair; Zadok, Avi

    2014-05-19

    A new technique for Brillouin scattering-based, distributed fiber-optic measurements of temperature and strain is proposed, analyzed, simulated, and demonstrated. Broadband Brillouin pump and signal waves are drawn from the filtered amplified spontaneous emission of an erbium-doped fiber amplifier, providing high spatial resolution. The reconstruction of the position-dependent Brillouin gain spectra along 5 cm of a silica single-mode fiber under test, with a spatial resolution of 4 mm, is experimentally demonstrated using a 25 GHz-wide amplified spontaneous emission source. A 4 mm-long localized hot spot is identified by the measurements. The uncertainty in the reconstruction of the local Brillouin frequency shift is ± 1.5 MHz. The single correlation peak between the pump and signal is scanned along a fiber under test using a mechanical variable delay line. The analysis of the expected spatial resolution and the measurement signal-to-noise ratio is provided. The measurement principle is supported by numerical simulations of the stimulated acoustic field as a function of position and time. Unlike most other Brillouin optical correlation domain analysis configurations, the proposed scheme is not restricted by the bandwidth of available electro-optic modulators, microwave synthesizers, or pattern generators. Resolution is scalable to less than one millimeter in highly nonlinear media. PMID:24921326

  20. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  1. Observation of novel radioactive decay by spontaneous emission of complex nuclei

    SciTech Connect

    Barwick, S.W.

    1986-01-01

    Two years of experimental investigation on the subject of spontaneous emission of intermediate-mass fragments is described in this manuscript. A short introduction on this subject and a historical review are presented in chapter 1. In chapter 2, the author describe the experimental methods which led to the observation of /sup 14/C emission in polycarbonate etched-track detectors from the isotopes /sup 222/Ra, /sup 223/Ra, /sup 224/Ra and /sup 226/Ra at the branching ratios with respect to ..cap alpha..-decay of (3.7 +/- 0.6) x 10/sup -10/, (6.1 +/- 1.0) x 10/sup -10/, (4.3 +/- 1.2) x 10/sup -10/ and (2.9 +/- 1.0) x 10/sup -11/ respectively. Branching ratio limits for heavy-ion emission from /sup 221/Fr, /sup 221/Ra and /sup 225/Ac were determined to be at < 5.0 x 10/sup -14/, < 1.2 x 10/sup -13/ and < 4.0 x 10/sup -13/ respectively for the 90% C.L. The emission of /sup 24/Ne from /sup 232/U at a branching ratio of (2.0 +/- 0.5) x 10/sup -12/ has been discovered using polyethylene terephthalate etched-track plastics. A confirmation of /sup 24/Ne and/or /sup 25/Ne emission from /sup 233/U at a branching ratio of (5.3 +/- 2.3) x 10/sup -13/ is also reported. In chapter 3, three models of intermediate-mass decay are discussed-the analytic superasymmetric fission model, the model by Shi and Swiatecki, and a model based on a square-well + Coulomb potential.

  2. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    PubMed

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale. PMID:26214575

  3. High-power thulium-doped all-fibre amplified spontaneous emission sources

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Wang, Xiong; Xu, Jiangming; Wang, Xiaolin; Zhou, Pu

    2015-04-01

    We demonstrate high-power thulium-doped all-fibre amplified spontaneous emission (ASE) sources operating at ~2 ?m with both broadband and narrowband spectra based on thulium-doped fibre master oscillator power amplifier configuration. The maximum output power of broadband thulium-doped all-fibre ASE source reached 316 W with the spectral full width at half maximum (FWHM) of 24 nm and the slope efficiency of 53%. The maximum output power of 292 W and the FWHM of 1.5 nm were obtained with the slope efficiency of 56% in narrowband thulium-doped all-fibre ASE source. To the best of our knowledge, this is the highest output power of both broadband and narrowband all-fibre ASE sources operating at 2 ?m. Output power could be further enhanced via increasing pump power and/or employing better cooling management.

  4. Enhanced amplified spontaneous emission using layer-by-layer assembled cowpea mosaic virus

    NASA Astrophysics Data System (ADS)

    Li, Na; Deng, Zhaoqi; Lin, Yuan; Zhang, Xiaojie; Geng, Yanhou; Ma, Dongge; Su, Zhaohui

    2009-01-01

    Layer-by-layer assembly technique was used to construct ultrathin film of cowpea mosaic virus (CPMV) by electrostatic interactions, and the film was employed as a precursor on which an OF8T2 film was deposited by spin coating. Amplified spontaneous emission (ASE) was observed and improved for the OF8T2 film. Compared with OF8T2 film on quartz, the introduction of CPMV nanoparticles reduced the threshold and loss, and remarkably increased the net gain. The threshold, loss, and gain reached 0.05 mJ/pulse, 6.9 cm-1, and 82 cm-1, respectively. CPMV nanoparticles may enormously scatter light, resulting in a positive feedback, thus the ASE is easily obtained and improved.

  5. Amplified spontaneous emission in polymer films doped with a perylenediimide derivative.

    PubMed

    Calzado, Eva M; Villalvilla, José M; Boj, Pedro G; Quintana, José A; Gómez, Rafael; Segura, José L; Díaz García, María A

    2007-06-20

    The presence of amplified spontaneous emission (ASE) by optical pump in polystyrene films doped with N,N'-di(10-nonadecyl)perylene-3,4:9,10-tetracarboxylic diimide (PDI-N) in a range of PDI-N concentrations between 0.25 and 5 wt. % is reported. Gain coefficients up to 10 cm(-1), at a pump intensity of 74 kW/cm2, were obtained. The lowest thresholds (approximately 15 kW/cm2) and largest photostabilities measured at 50% (approximately 50 min, i.e., 30,000 pump pulses) were obtained for concentrations up to 1 wt. %. The observation of an increase in the ASE threshold and a decrease in the photostability for larger concentrations is attributed to the presence of aggregated species. PMID:17538681

  6. Ultrabroadband ghost imaging exploiting optoelectronic amplified spontaneous emission and two-photon detection.

    PubMed

    Hartmann, Sébastien; Molitor, Andreas; Elsäßer, Wolfgang

    2015-12-15

    Ghost imaging (GI) is one of the recent fascinating and probably counterintuitive topics of quantum optics. Here, we present an alternative classical GI scheme using spectrally ultrabroadband amplified spontaneous emission from an optoelectronic quantum dot based superluminescent diode source. This light source exhibits highly incoherent properties regarding both first- and second-order correlations with a 70 nm-wide optical spectrum as well as thermal-like photon statistics. Exploiting a two-photon-absorption detection method, we demonstrate for the first time, to the best of our knowledge, a GI experiment handling the corresponding femtosecond correlation timescales. By introducing compact broadband light sources to GI, this work contributes toward practical application of GI. PMID:26670508

  7. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  8. EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER (EPM) ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. L.B. Wichers1, J.P. Nolan2, W.H. Rowan2, M.J. Campen3, T.P. Jenkins4, D.L. Costa2, and W.P. Watkinson2. 1UNC SPH, Chap...

  9. Effects of intrinsic spontaneous-emission noise on the nonlinear dynamics of an optically injected semiconductor laser

    E-print Network

    Gao, Jianbo

    semiconductor laser J. B. Gao, S. K. Hwang, and J. M. Liu Department of Electrical Engineering, University spontaneous-emission noise on the nonlinear dynamics of an optically injected semiconductor laser s : 42.55.Px, 05.45.Xt, 42.60.Mi Nonlinear dynamics in semiconductor lasers is a subject of considerable

  10. Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals Henry P. Schriemer,* Henry M. van Driel,

    E-print Network

    Vos, Willem L.

    Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals Henry P crystals made of inverse opals in titania (TiO2). We identify stop bands with large relative widths of 15 constants 15,16 . These so-called air-sphere crystals, or inverse opals, interact so strongly with light

  11. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  12. Reducing Spontaneous Emission in Circuit Quantum Electrodynamics by a Combined Readout/Filter Technique

    E-print Network

    Nicholas T. Bronn; Easwar Magesan; Nicholas A. Masluk; Jerry M. Chow; Jay M. Gambetta; Matthias Steffen

    2015-10-20

    Physical implementations of qubits can be extremely sensitive to environmental coupling, which can result in decoherence. While efforts are made for protection, coupling to the environment is necessary to measure and manipulate the state of the qubit. As such, the goal of having long qubit energy relaxation times is in competition with that of achieving high-fidelity qubit control and measurement. Here we propose a method that integrates filtering techniques for preserving superconducting qubit lifetimes together with the dispersive coupling of the qubit to a microwave resonator for control and measurement. The result is a compact circuit that protects qubits from spontaneous loss to the environment, while also retaining the ability to perform fast, high-fidelity readout. Importantly, we show the device operates in a regime that is attainable with current experimental parameters and provide a specific example for superconducting qubits in circuit quantum electrodynamics.

  13. Spectroscopic properties and amplified spontaneous emission of fluorescein laser dye in ionic liquids as green media

    NASA Astrophysics Data System (ADS)

    AL-Aqmar, Dalal M.; Abdelkader, H. I.; Abou Kana, Maram T. H.

    2015-09-01

    The use of ionic liquids (ILs) as milieu materials for laser dyes is a promising field and quite competitive with volatile organic solvents and solid state-dye laser systems. This paper investigates some photo-physical parameters of fluorescein dye incorporated into ionic liquids; 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-Butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl4) and 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4) as promising host matrix in addition to ethanol as reference. These parameters are: absorption and emission cross-sections, fluorescence lifetime and quantum yield, in addition to the transition dipole moment, the attenuation length and oscillator strength were also investigated. Lasing characteristics such as amplified spontaneous emission (ASE), the gain, and the photostability of fluorescein laser dye dissolved in different host materials were assessed. The composition and properties of the matrix of ILs were found that it has great interest in optimizing the laser performance and photostability of the investigated laser dye. Under transverse pumping of fluorescein dye by blue laser diode (450 nm) of (400 mW), the initial ASE for dye dissolved in BMIM AlCl4 and ethanol were decreased to 39% and 36% respectively as time progressed 132 min. Relatively high efficiency and high fluorescence quantum yield (11.8% and 0.82% respectively) were obtained with good photostability in case of fluorescein in BMIM BF4 that was decreased to ?56% of the initial ASE after continuously pumping with 400 mW for 132 min.

  14. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-01-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure. PMID:24621482

  15. Brain modularity controls the critical behavior of spontaneous activity

    NASA Astrophysics Data System (ADS)

    Russo, R.; Herrmann, H. J.; de Arcangelis, L.

    2014-03-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  16. Loss of the Tectorial Membrane Protein CEACAM16 Enhances Spontaneous, Stimulus-Frequency, and Transiently Evoked Otoacoustic Emissions

    PubMed Central

    Goodyear, Richard J.; Homma, Kazuaki; Legan, P. Kevin; Korchagina, Julia; Naskar, Souvik; Siegel, Jonathan H.; Dallos, Peter; Zheng, Jing

    2014-01-01

    ?-Tectorin (TECTA), ?-tectorin (TECTB), and carcinoembryonic antigen-related cell adhesion molecule 16 (CEACAM) are secreted glycoproteins that are present in the tectorial membrane (TM), an extracellular structure overlying the hearing organ of the inner ear, the organ of Corti. Previous studies have shown that TECTA and TECTB are both required for formation of the striated-sheet matrix within which collagen fibrils of the TM are imbedded and that CEACAM16 interacts with TECTA. To learn more about the structural and functional significance of CEACAM16, we created a Ceacam16-null mutant mouse. In the absence of CEACAM16, TECTB levels are reduced, a clearly defined striated-sheet matrix does not develop, and Hensen's stripe, a prominent feature in the basal two-thirds of the TM in WT mice, is absent. CEACAM16 is also shown to interact with TECTB, indicating that it may stabilize interactions between TECTA and TECTB. Although brain-stem evoked responses and distortion product otoacoustic emissions are, for most frequencies, normal in young mice lacking CEACAM16, stimulus-frequency and transiently evoked emissions are larger. We also observed spontaneous otoacoustic emissions (SOAEs) in 70% of the homozygous mice. This incidence is remarkable considering that <3% of WT controls have SOAEs. The predominance of SOAEs >15 kHz correlates with the loss of Hensen's stripe. Results from mice lacking CEACAM16 are consistent with the idea that the organ of Corti evolved to maximize the gain of the cochlear amplifier while preventing large oscillations. Changes in TM structure appear to influence the balance between energy generation and dissipation such that the system becomes unstable. PMID:25080593

  17. Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions.

    PubMed

    Cheatham, Mary Ann; Goodyear, Richard J; Homma, Kazuaki; Legan, P Kevin; Korchagina, Julia; Naskar, Souvik; Siegel, Jonathan H; Dallos, Peter; Zheng, Jing; Richardson, Guy P

    2014-07-30

    ?-Tectorin (TECTA), ?-tectorin (TECTB), and carcinoembryonic antigen-related cell adhesion molecule 16 (CEACAM) are secreted glycoproteins that are present in the tectorial membrane (TM), an extracellular structure overlying the hearing organ of the inner ear, the organ of Corti. Previous studies have shown that TECTA and TECTB are both required for formation of the striated-sheet matrix within which collagen fibrils of the TM are imbedded and that CEACAM16 interacts with TECTA. To learn more about the structural and functional significance of CEACAM16, we created a Ceacam16-null mutant mouse. In the absence of CEACAM16, TECTB levels are reduced, a clearly defined striated-sheet matrix does not develop, and Hensen's stripe, a prominent feature in the basal two-thirds of the TM in WT mice, is absent. CEACAM16 is also shown to interact with TECTB, indicating that it may stabilize interactions between TECTA and TECTB. Although brain-stem evoked responses and distortion product otoacoustic emissions are, for most frequencies, normal in young mice lacking CEACAM16, stimulus-frequency and transiently evoked emissions are larger. We also observed spontaneous otoacoustic emissions (SOAEs) in 70% of the homozygous mice. This incidence is remarkable considering that <3% of WT controls have SOAEs. The predominance of SOAEs >15 kHz correlates with the loss of Hensen's stripe. Results from mice lacking CEACAM16 are consistent with the idea that the organ of Corti evolved to maximize the gain of the cochlear amplifier while preventing large oscillations. Changes in TM structure appear to influence the balance between energy generation and dissipation such that the system becomes unstable. PMID:25080593

  18. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.

    PubMed

    Wang, Shaobin; Luo, Kunli; Wang, Xing; Sun, Yuzhuang

    2016-02-01

    A rough estimate of the annual amount of sulfur, arsenic, mercury and fluoride emission from spontaneous combustion of coal gangue in China was determined. The weighted mean concentrations of S, As, Hg, and F in coal gangue are 1.01%, 7.98, 0.18, and 365.54 mg/kg, respectively. Amounts of S, As, Hg, and F emissions from coal gangue spontaneous combustion show approximately 1.13 Mt, and 246, 45, and 63,298 tons in 2013, respectively. The atmospheric release amount of sulfur from coal gangue is more than one tenth of this from coal combustion, and the amounts of As, Hg, and F are close to or even exceed those from coal combustion. China's coal gangue production growth from 1992 to 2013 show an obvious growth since 2002. It may indicate that Chinese coal gangue has become a potential source of air pollution, which should be included in emission inventories. PMID:26650082

  19. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; de Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-08-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ~10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700 nm) with low pump thresholds down to 5+/-1 ?J cm-2 and high values of modal net gain of at least 450+/-30 cm-1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals.

  20. Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector.

    PubMed

    Stranks, Samuel D; Wood, Simon M; Wojciechowski, Konrad; Deschler, Felix; Saliba, Michael; Khandelwal, Hitesh; Patel, Jay B; Elston, Steve J; Herz, Laura M; Johnston, Michael B; Schenning, Albertus P H J; Debije, Michael G; Riede, Moritz K; Morris, Stephen M; Snaith, Henry J

    2015-08-12

    Organic-inorganic perovskites are highly promising solar cell materials with laboratory-based power conversion efficiencies already matching those of established thin film technologies. Their exceptional photovoltaic performance is in part attributed to the presence of efficient radiative recombination pathways, thereby opening up the possibility of efficient light-emitting devices. Here, we demonstrate optically pumped amplified spontaneous emission (ASE) at 780 nm from a 50 nm-thick film of CH3NH3PbI3 perovskite that is sandwiched within a cavity composed of a thin-film (?7 ?m) cholesteric liquid crystal (CLC) reflector and a metal back-reflector. The threshold fluence for ASE in the perovskite film is reduced by at least two orders of magnitude in the presence of the CLC reflector, which results in a factor of two reduction in threshold fluence compared to previous reports. We consider this to be due to improved coupling of the oblique and out-of-plane modes that are reflected into the bulk in addition to any contributions from cavity modes. Furthermore, we also demonstrate enhanced ASE on flexible reflectors and discuss how improvements in the quality factor and reflectivity of the CLC layers could lead to single-mode lasing using CLC reflectors. Our work opens up the possibility of fabricating widely wavelength-tunable "mirror-less" single-mode lasers on flexible substrates, which could find use in applications such as flexible displays and friend or foe identification. PMID:25989354

  1. Validity of the Relation Between Spontaneous and Stimulated Emissions in Semiconductors

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Saini, Subhash (Technical Monitor)

    1999-01-01

    The Einstein relation between spontaneous emission and absorption was originally derived for a system consists of a two-state subsystem representing matter and harmonic fields representing radiation. The derivation is based on the detailed balance between these two subsystems under thermal equilibrium. The relationship was later investigated in connection with the interactions between radiation field and solids or semiconductors. The simple derivation dose not hold for semiconductors in general. In certain limiting cases, simple relation was obtained. The validity of this relation is important not only because of its fundamental role connecting two of the most fundamental optical processes in semiconductors, but mostly also because of its wide use as a practical method to measure the optical gain of a semiconductor. The validity of this relation for semiconductors has been an issue of controversial for some time. In this paper we numerically examine the validity of this relationship for several different lineshapes including Lorentzian, Gaussian, Sech, and a convoluted double Lorentzians (CDL). We find out that at relatively low density above transparency level, all first three lineshapes violate the Einstein relation. The relation is approximately valid at high density. At very high density, the validity of the Einstein relation holds well for all three lineshapes. The reason behind this observation is explained. The CDL lineshape has been shown analytically to obey the Einstein relationship previously. We show that for a 2D semiconductor with parabolic bands, the CDL lineshape can be integrated analytically. This analytic lineshape is compared with a simple Lorentzian lineshape.

  2. Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets.

    PubMed

    She, Chunxing; Fedin, Igor; Dolzhnikov, Dmitriy S; Dahlberg, Peter D; Engel, Gregory S; Schaller, Richard D; Talapin, Dmitri V

    2015-10-27

    There have been multiple demonstrations of amplified spontaneous emission (ASE) and lasing using colloidal semiconductor nanocrystals. However, it has been proven difficult to achieve low thresholds suitable for practical use of nanocrystals as gain media. Low-threshold blue ASE and lasing from nanocrystals is an even more challenging task. Here, we show that colloidal nanoplatelets (NPLs) with electronic structure of quantum wells can produce ASE in the red, yellow, green, and blue regions of the visible spectrum with low thresholds and high gains. In particular, for blue-emitting NPLs, the ASE threshold is 50 ?J/cm(2), lower than any reported value for nanocrystals. We then demonstrate red, yellow, green, and blue lasing using NPLs with different thicknesses. We find that the lateral size of NPLs does not show any strong effect on the Auger recombination rates and, correspondingly, on the ASE threshold or gain saturation. This observation highlights the qualitative difference of multiexciton dynamics in CdSe NPLs and other quantum-confined CdSe materials, such as quantum dots and rods. Our measurements of the gain bandwidth and gain lifetime further support the prospects of colloidal NPLs as solution-processed optical gain materials. PMID:26302368

  3. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    PubMed Central

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; De Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-01-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ?10?nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440–700?nm) with low pump thresholds down to 5±1??J?cm?2 and high values of modal net gain of at least 450±30?cm?1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. PMID:26290056

  4. Amplified spontaneous emissions in the double-clad Er:Yt co-doped fiber

    NASA Astrophysics Data System (ADS)

    Xia, Guijin; Fang, Qiang; Zhang, Jumei; Liang, Meng; Liu, Jihong

    2005-11-01

    In order to achieve higher output powers, double-clad fibers (DCF's) are widely used by optical fiber lasers and amplifiers. In this paper, we present a comprehensive mathematical model for the novel multi-mode (MM) double-clad (DC) Er: Yb co-doped hexagonal fiber, Based on the rate and propagation equations, the pump light and forward and backward-amplified spontaneous emissions (ASE+/-) light transmission in the fiber are analyzed numerically and measured. The simulative and experimental results show that pump power was absorbed almost completely when the length of the fiber is about 3.5~4 m, the suitable length of the fiber in optical fiber lasers is 2~2.5 m. and the 2 m long fiber emits at 1535 and 1543 nm simultaneously, and the peak-value wavelength of ASE+ changes to the long wavelength with the increase of the pump power. The results investigated are useful for the design of optical fiber lasers.

  5. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites.

    PubMed

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I; Nedelcu, Georgian; Humer, Markus; De Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V

    2015-01-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ?10?nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700?nm) with low pump thresholds down to 5±1??J?cm(-2) and high values of modal net gain of at least 450±30?cm(-1). Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. PMID:26290056

  6. Realization of dynamic thermal emission control.

    PubMed

    Inoue, Takuya; De Zoysa, Menaka; Asano, Takashi; Noda, Susumu

    2014-10-01

    Thermal emission in the infrared range is important in various fields of research, including chemistry, medicine and atmospheric science. Recently, the possibility of controlling thermal emission based on wavelength-scale optical structures has been intensively investigated with a view towards a new generation of thermal emission devices. However, all demonstrations so far have involved the 'static' control of thermal emission; high-speed modulation of thermal emission has proved difficult to achieve because the intensity of thermal emission from an object is usually determined by its temperature, and the frequency of temperature modulation is limited to 10-100 Hz even when the thermal mass of the object is small. Here, we experimentally demonstrate the dynamic control of thermal emission via the control of emissivity (absorptivity), at a speed four orders of magnitude faster than is possible using the conventional temperature-modulation method. Our approach is based on the dynamic control of intersubband absorption in n-type quantum wells, which is enhanced by an optical resonant mode in a photonic crystal slab. The extraction of electrical carriers from the quantum wells leads to an immediate change in emissivity from 0.74 to 0.24 at the resonant wavelength while maintaining much lower emissivity at all other wavelengths. PMID:25064232

  7. Coke pushing emission control system

    SciTech Connect

    Kwasnoski, D.; Symons, C.

    1980-07-08

    A method is described for controlling coke oven emissions comprising the steps of: (A) aligning a one-spot, open-top coke quenching car with the coke oven, (B) providing a coke guide from the coke oven to the car, (C) positioning a fume hood over the car, with the fume hood having a length about equal to the length of the car, (D) pushing hot coke from the coke oven through the coke guide and into the car, (E) withdrawing gases from the fume hood during step (D) and passing said gases to gas cleaning equipment at a gas flowrate of between about 1000 and about 3500 scfmd per ton of coke pushed under step (D), and (F) substantially upon completion of step (E) moving the car from under the fume hood to a quenching station with the hot coke in the car exposed to the atmosphere and without further withdrawal of gases from the hot coke to the gas cleaning equipment.

  8. Effortful control and spontaneous regulation of emotional behavior in children 

    E-print Network

    Kieras, Jessica E

    2013-02-22

    The development of Effortful Control and Regulation of Emotion in children was examined in this study. Of particular interest was the relationship between self-regulation and responses to social norms. Participants were ...

  9. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    SciTech Connect

    Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin

    2011-07-15

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.

  10. Spontaneous centralization of control in a network of company ownerships.

    PubMed

    Krause, Sebastian M; Peixoto, Tiago P; Bornholdt, Stefan

    2013-01-01

    We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected "core" made of a small number of large companies which control a significant part of the global economy. Here we show how a simple, adaptive "rich get richer" dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy. PMID:24324594

  11. Spontaneous Centralization of Control in a Network of Company Ownerships

    PubMed Central

    Krause, Sebastian M.; Peixoto, Tiago P.; Bornholdt, Stefan

    2013-01-01

    We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected “core” made of a small number of large companies which control a significant part of the global economy. Here we show how a simple, adaptive “rich get richer” dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy. PMID:24324594

  12. Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky-junction-based plasmonic amplifiers.

    PubMed

    Livani, Abdolber Mallah; Kaatuzian, Hassan

    2015-07-01

    An amplifier that operates on surface plasmon polaritons has been analyzed and simulated. Nonlinearity behavior and the spontaneous emission effects of the plasmonic amplifier are investigated in this paper. A rate equations approach has been used in which parameters are derived from simulation results of the plasmonic amplifier (Silvaco/ATLAS). Details on the method of this derivation are included, which were not previously reported. Rate equations are solved numerically by MATLAB codes. These codes verify the Silvaco results. The plasmonic amplifier operates on surface plasmons with a free-space wavelength of 1550 nm. Results show that, even without the effect of spontaneous emission, gain of the plasmonic amplifier saturates in high input levels. Saturation power, which can be used for comparing nonlinearity of different amplifiers, is 2.1 dBm for this amplifier. Amplified spontaneous emission reduces the gain of the amplifiers, which is long. There is an optimum value for the length of the amplifier. For the amplifier of this work, the optimum length for the small signal condition is 265 ?m. PMID:26193159

  13. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  14. Assessment of reporting consistency in a case-control study of spontaneous abortions.

    PubMed

    Fenster, L; Swan, S H; Windham, G C; Neutra, R R

    1991-03-01

    Reporting consistency was examined in a case-control study of spontaneous abortion in Santa Clara County, California. Each case (n = 100) and two pregnant controls (n = 200), frequency-matched by last menstrual period, were interviewed twice: first after the case's spontaneous abortion (on average, 24 weeks after the last menstrual period) and again after completion of the controls' pregnancies (on average, 48 weeks after the last menstrual period). Because of concern about differential reporting of water consumption in regions with publicized water contamination, interviews included detailed questions about consumption of tap water and bottled water during pregnancy, as well as other exposures. Most factors such as caffeine consumption, cigarette smoking, employment, and pregnancy history were consistently reported between interviews and did not appear to be subject to differential reporting between cases and controls. When variables were examined by univariate analysis, controls deleted reports of tap water consumption (any vs. more) more often than did cases. There was also a suggestion of differential reporting of up to two glasses per day for tap water and bottle water consumption when they were examined as continuous variables. However, the degree of differential reporting was not sufficient to appreciably alter the measures of association between water consumption during pregnancy and spontaneous abortion. PMID:2000858

  15. Comment on “Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser” [Phys. Plasmas 20, 033106 (2013)

    SciTech Connect

    Petrillo, V.; Rossi, A. R.; Serafini, L.

    2013-12-15

    We point out that in the equation for the electron distribution evolution during Thomson/Compton or undulator radiation used in the paper: “Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser” by G. R. M. Robb and R. Bonifacio [Phys. Plasmas 20, 033106 (2013)], the weight function should be the distribution of the number of emitted photons and not the photon energy distribution. Nevertheless, the considerations expressed in this comment do not alter the conclusions drawn in the paper in object.

  16. Variable emissivity laser thermal control system

    DOEpatents

    Milner, Joseph R. (Livermore, CA)

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  17. Peritonitis - spontaneous

    MedlinePLUS

    ... catheter used in peritoneal dialysis. Antibiotics may control infection in cases of spontaneous peritonitis with liver or kidney disease. Intravenous therapy can treat dehydration . You may need to stay ...

  18. On what controls the spacing of spontaneous adiabatic shear bands in collapsing thick-walled cylinders

    NASA Astrophysics Data System (ADS)

    Lovinger, Zev; Rosenberg, Zvi; Rittel, Daniel

    2015-09-01

    Shear bands formation in collapsing thick walled cylinders occurs in a spontaneous manner. The advantage of examining spontaneous, as opposed to forced shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. The Thick-Walled Cylinder technique (TWC) provides a controllable and repeatable technique to create and study multiple adiabatic shear bands. The technique, reported in the literature uses an explosive cylinder to create the driving force, collapsing the cylindrical sample. Recently, we developed an electro-magnetic set-up using a pulsed current generator to provide the collapsing force, replacing the use of explosives. Using this platform we examined the shear band evolution at different stages of formation in 7 metallic alloys, spanning a wide range of strength and failure properties. We examined the number of shear bands and spacing between them for the different materials to try and figure out what controls these parameters. The examination of the different materials enabled us to better comprehend the mechanisms which control the spatial distribution of multiple shear bands in this geometry. The results of these tests are discussed and compared to explosively driven collapsing TWC results in the literature and to existing analytical models for spontaneous adiabatic shear localization.

  19. Multi-level quantum electrodynamic calculation of spontaneous emission and small signal gain in high voltage free electron lasers

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Fluhler, H. U.

    1991-12-01

    Using the Weisskopf-Wigner technique, a self consistent quantum electrodynamic (SCQED) theory of spontaneous emission of radiation and single photon small signal gain is developed for high voltage free electron lasers (FEL). Excellent agreement is obtained simultaneously to our knowledge for the first time between the predictions and the experimental observations for lineshift, linewidth and gain. The SCQED theory predicts lineshift and broadening due to quantum mechanical effects for linear, helical and tapered undulator FELs which are not predicted by the classical/conventional FEL theories, but which have been observed 4,5,18,22,23,45,46. Excellent agreement is obtained between the SCQED theory predicted spontaneous emission spectra and the 1980?81 ACO FEL4,18, ACO Optical Klystron FEL45,46, Stanford 10.6 ?m FEL22 and Stanford 3.4 ?m FEL23 experimental spectra. This agreement is much better than the prediction from the classical/conventional FEL theory which gives errors of many tens of percent. We show that the spontaneous emission spectrum obtained from classical/conventional FEL theories is valid only in the limit of a short undulator containing a small number of periods. The small signal gain derived from the SCQED theory is shown to reduce to Colson's gain formula12,34 in the classical limit. However, the SCQED theory predicts significant reductions in the small signal gain which agree well with the ACO gain data5, and are not predicted well by Colson's formula. Due to the non-neglible finite electron state lifetime, it is discovered that a fundamental physical gain limit exists which is universal to all types of FELs within the limits of the single photon transition scheme considered (i.e. if multiphoton effects are ignored). Finally, the implications of the theoretically obtained results are discussed for practical conditions of experimental interest. It is shown that under practical experimental conditions quantum effects can be quite important in the FEL.

  20. CO2 emission of coal spontaneous combustion and its relation with coal microstructure, China.

    PubMed

    Wang, Haiyan; Chen Chen; Huang, Tao; Gao, Wei

    2015-07-01

    Coal spontaneous combustion is widely distributed all over the world. CO2 is the main greenhouse gas emitted by coal spontaneous combustion. In the present study characters of CO2 emitted by 10 typical Chinese coal spontaneous combustion and the influence of raw coal functional group on CO2 was studied. CO2 already exists under normal temperature as coal exposed in atmosphere. Under low temperature, the quality of CO2 released by coal spontaneous combustion is relatively small, but tends to increase. And corresponding with it, the oxygen consumption amount is also small. At medium temperature, the oxygen consumption increases rapidly and CO2 mass release rate begins to increase rapidly. Then, CO2 release rate increase rapidly under relatively high temperature (higher than 673 K). Over 873K, concentration of O2 is 6% and release rate of CO2 tends to be steady. It also concluded that mass ratio of CO to CO2 (CO/CO2) during coal spontaneous combustion was lowerthan 0.10 at low temperature. And then, it increased rapidly at medium temperature and reached to top at about 673 K. At 673-873 K, the ratio decreased again, and did not decrease evidently at about 873K. At temperature higher than 873K, the ratio was about 0.13. During the whole testing temperature range, CO/CO2 was not be higher than 0.26, lower than 0.2. This means that release rate of CO2 was much higher than CO during the whole process of coal spontaneous combustion. Moreover, the gas release quantity of CO2 is positively related with carbony content in raw coal. Carbonyl and carboxyl were both material basis of CO2. PMID:26364484

  1. Reduced threshold of optically pumped amplified spontaneous emission and narrow line-width electroluminescence at cutoff wavelength from bilayer organic waveguide devices.

    PubMed

    Chang, Jui-Fen; Huang, Yu-Syuan; Chen, Po-Ting; Kao, Ruei-Lin; Lai, Xuan-You; Chen, Chii-Chang; Lee, Cheng-Chung

    2015-06-01

    We present a detailed study of the optically and electrically pumped emission in the BSB-Cz/PVK bilayer waveguide devices. By optical pumping we demonstrate that PVK as a spacer between fluorescent BSB-Cz and ITO electrode allows the significant reduction of the threshold for amplified spontaneous emission (ASE) of BSB-Cz. The simulation provides a better understanding of how the PVK thickness affects the waveguide mode field distribution and hence the ASE threshold of BSB-Cz. On the other hand, the BSB-Cz/PVK bilayer OLED exhibits the external quantum efficiency of >1% and anisotropic electroluminescence with spectrally narrowed edge emission at the cutoff wavelength controlled by the BSB-Cz thickness. When tuning the cutoff wavelength to match the peak gain of BSB-Cz, we demonstrate an intense, particularly narrow edge emission (~5 nm) without obvious degradation of efficiency at a high current density of 1000 mA/cm2, suggesting a reliable device performance for high-power applications and further exploration of electrically-pumped ASE. PMID:26072828

  2. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Distributed extraction of amplified spontaneous emission from a randomly inhomogeneous active medium

    NASA Astrophysics Data System (ADS)

    Starikov, F. A.

    1993-05-01

    This paper investigates the dynamics of amplified spontaneous x-ray emission escaping from a randomly inhomogeneous plasma active medium through its ends and lateral surface. It is shown that the scattering of radiation by fluctuations in the dielectric permittivity, ?˜, can be utilized to extract energy through the lateral surface of the active medium. The radiant intensity is maximal in an off-axis direction in this case. When both regular refraction and scattering by ?˜ are operating, the distributed extraction of the light is determined by that effect which has the smaller characteristic length (i.e., the scattering length or the refraction length).

  3. Low threshold simultaneous multi-wavelength amplified spontaneous emission modulated by the lithium fluoride/Ag layers.

    PubMed

    Wei, Mengjie; Xu, Tao; Gao, Yulai; Chen, Guo; Wei, Bin

    2015-07-27

    This paper describes a multi-wavelength amplified spontaneous emission (ASE) with multilayer stacked active planar waveguides. A modulating layer of Ag is applied to make a good confinement of ASE in one active layer, while a lithium fluoride layer is inserted between the active layer and the modulating layer to avoid fluorescence quenching and confine the pump energy in one waveguide. Under optical pumping, ASE at 503 and 662 nm corresponding to the respective active layer are simultaneously observed, with extremely low thresholds at ~37.2 and ~39.7 KW/cm2. PMID:26367547

  4. Economic growth and carbon emission control

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu

    The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal policies of emissions control required for achieving the social goal in a private context. The results suggest that the efficiency of abatement technology is crucial for the timing of executing the emission tax. And emission tax is preferred to an input tax, as long as the detection of emissions is not costly and abatement technology is efficient. Keywords: Economic growth, Carbon emission, Power generation, Joint production, China

  5. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Control of hydrocarbon emissions. 52.987 Section 52... Louisiana § 52.987 Control of hydrocarbon emissions. (a) Notwithstanding...This shall result in an estimated hydrocarbon emission reduction of at least 208...

  6. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Control of hydrocarbon emissions. 52.987 Section 52... Louisiana § 52.987 Control of hydrocarbon emissions. (a) Notwithstanding...This shall result in an estimated hydrocarbon emission reduction of at least 208...

  7. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Control of hydrocarbon emissions. 52.987 Section 52... Louisiana § 52.987 Control of hydrocarbon emissions. (a) Notwithstanding...This shall result in an estimated hydrocarbon emission reduction of at least 208...

  8. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 false Control of hydrocarbon emissions. 52.987 Section 52... Louisiana § 52.987 Control of hydrocarbon emissions. (a) Notwithstanding...This shall result in an estimated hydrocarbon emission reduction of at least 208...

  9. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Control of hydrocarbon emissions. 52.987 Section 52... Louisiana § 52.987 Control of hydrocarbon emissions. (a) Notwithstanding...This shall result in an estimated hydrocarbon emission reduction of at least 208...

  10. Amplified spontaneous emission over the XeF(D+X) transition in solid Kr H. Kunttu, W. G. Lawrence, and V. A. Apkariar?)

    E-print Network

    Apkarian, V. Ara

    Amplified spontaneous emission over the XeF(D+X) transition in solid Kr H. Kunttu, W. G. Lawrence of gain on pump intensity and low divergence of the amplified beam are taken as evidence for self to amplified sponta- neous emission (ASE) is observed and used to characterize the gain in the medium.2

  11. Controlling quantum dot emission by plasmonic nanoarrays.

    PubMed

    Guo, R; Derom, S; Väkeväinen, A I; van Dijk-Moes, R J A; Liljeroth, P; Vanmaekelbergh, D; Törmä, P

    2015-11-01

    Metallic nanoparticle arrays support localized surface plasmon resonances (LSPRs) and propagating surface lattice resonances (SLRs). We study the control of quantum dot (QD) emission coupled to the optical modes of silver nanoparticle arrays, both experimentally and numerically. With a hybrid lithography-functionalization method, the QDs are deposited in the vicinity of the nanoparticles. Directionality and enhancement of the emission are observed in photoluminescence spectra and fluorescence lifetime measurements, respectively. Similar features are also demonstrated in the numerical simulations. The tunable emission of this type of hybrid structures could lead to potential applications in light sources. PMID:26561091

  12. Controllable cavity linewidth narrowing via spontaneously generated coherence in a four level atomic system

    NASA Astrophysics Data System (ADS)

    Tian, Si-Cong; Wan, Ren-Gang; Shan, Xiao-Nan; Tong, Cun-Zhu; Qin, Li; Ning, Yong-Qiang

    2015-12-01

    A scheme for cavity linewidth narrowing in a four-level atomic system with spontaneously generated coherence is proposed. The atomic system consists of three closely spaced excited levels, which decay to one common ground level. In such a system, spontaneously generated coherence can result in the appearance of two narrow transparency windows accomplished by steep normal dispersion. When the medium is embedded in a ring cavity, two ultranarrow transmission peaks locating close to the position of the transparency windows can be obtained simultaneously. The cavity linewidth narrowing is owing to the quantum interference between the three decay channels and can be controlled by the frequency splitting of the excited levels, requiring no coupling lasers.

  13. Geometry effect on spontaneous emission decay in nanosized Y2O3-Eu3+ particles

    NASA Astrophysics Data System (ADS)

    Zaitsev, S. V.; Yermolayeva, Yu. V.; Gruzintsev, A. N.; Kudrenko, E. A.; Zverkova, I. I.; Bezkrovnyi, O.; Tolmachev, A. V.; Emelchenko, G. A.

    2014-11-01

    A strong influence of shape and size on spontaneous luminescence of Eu atoms has been observed in a new class of Y2O3-Eu3+ nanoparticles including nanospheres, nanopowder and nanoplates. We demonstrate a possibility of engineering recombination time ? in nano-objects by changing the local optical environment.

  14. Averaged kinetic temperature controlling algorithm: Application to spontaneous alloying in microclusters

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo R.; Ikeda, Kensuke S.; Shimizu, Yasushi; Sawada, Shin-ichi

    2003-04-01

    A simple algorithm of velocity scaling is proposed for the isothermal simulation of nonequilibrium relaxation processes accompanied with heat generation or absorption. The algorithm controls the kinetic temperature averaged over an arbitrary time interval at an arbitrary relaxation rate and at an arbitrary velocity scaling interval. The general conditions of controlling temperature are derived analytically and criteria for stable control are established. Our algorithm is applied to simulating the effect of substrate on the "spontaneous alloying" process of metal microclusters [H. Yasuda, H. Mori, M. Komatsu, K. Takeda, and H. Fujita, J. Electron Microsc. 41, 267 (1992)]. The results are compared with the results obtained by the Langevin algorithm in which the kinetic energy of every atom is controlled by respective stochastic heat reservoir. In spite of the marked difference between the two algorithms the relaxation dynamics agree very well in quantity over a sufficient wide range of control parameters.

  15. Destruction of amplified spontaneous emission via chemical doping at low-work-function metal/conjugated polymer interfaces

    NASA Astrophysics Data System (ADS)

    Tremolet de Villers, Bertrand; Schwartz, Benjamin J.

    2007-02-01

    The authors investigate how the use of different metal electrodes affects the ability of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) films to undergo amplified spontaneous emission (ASE). High-work-function metals such as Ag or Au have little effect on the ASE threshold, but low-work-function metals such as Ca or Al completely shut off ASE. ASE is restored when a thin spacer layer, such as a few nanometers of polystyrene or oxidized Ca, is introduced between the MEH-PPV film and the Ca or Al electrode. This suggests that low-work-function metals chemically dope the polymer, creating polarons that destroy ASE not only by lowering the gain through emission quenching but primarily by increasing the loss via optical absorption. Thus, the exponential sensitivity of ASE to optical losses provides a spectroscopic probe of conjugated polymer/metal interfaces.

  16. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design factors for SCR systems and aid in the development of urea control strategy for maximum NOx reduction with minimum NH3 slip. A durable co-fueling system was successfully built and tested, with the help of service station nozzle and dispenser manufacturers, for simultaneous delivery of diesel fuel and aqueous urea to the vehicle. The business case for an aqueous urea infrastructure in the US for light-duty vehicles was explored.

  17. Systematics of spontaneous emission of intermediate mass fragments from heavy nuclei

    SciTech Connect

    Barwick, S.W.; Price, P.B.; Ravn, H.L.; Hourani, E.; Hussonnois, M.

    1986-07-01

    We have used polycarbonate track-recording films to confirm the rare decay mode of /sup 226/Ra by /sup 14/C emission and to set stringent upper limits on /sup 14/C-emission rates of /sup 221/Fr, /sup 221/Ra, and /sup 225/Ac. The /sup 14/C-emission rate exhibits a pronounced odd-even effect. For Ra isotopes the hindrance factor for odd-even parents relative to even-even parents is at least 10 times higher for /sup 14/C emission than for ..cap alpha.. emission.

  18. FIRED HEATERS: NITROGEN OXIDES EMISSIONS AND CONTROLS

    EPA Science Inventory

    The report gives results of a study of nitrogen oxide (NOx) emissions from, and controls for, fired heaters. The petroleum refining and chemical manufacturing industries account for most of fired-heater energy use with an estimated 4600 fired heaters in operation, in these two in...

  19. CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION

    EPA Science Inventory

    Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

  20. WASTE INCINERATION AND EMISSION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper gives results of a survey of available waste incineration and emission control technologies in the U.S., Japan, and Western Europe. Increasing concern over landfills as a waste management option and the decreasing availability of sites have focused attention on incinera...

  1. CONTROLLING ODOROUS EMISSIONS FROM IRON FOUNDRIES

    EPA Science Inventory

    The report discusses the control of odorous emissions from iron foundries. he main process sources of odors in iron foundries are mold and core making, casting, and sand shakeout. he odors are usually caused by chemicals, which may be present as binders and other additives to the...

  2. Variable emissivity laser thermal control system

    DOEpatents

    Milner, J.R.

    1994-10-25

    A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

  3. Photoelectric charging of dust particles: Effect of spontaneous and light induced field emission of electrons

    SciTech Connect

    Sodha, M. S.; Dixit, A.

    2009-09-07

    The authors have analyzed the charging of dust particles in a plasma, taking into account the electron/ion currents to the particles, electron/ion generation and recombination, electric field emission, photoelectric emission and photoelectric field emission of electrons under the influence of light irradiation; the irradiance has been assumed to be at a level, which lets the particles retain the negative sign of the charge. Numerical results and discussion conclude the papers.

  4. Tap or bottled water consumption and spontaneous abortion: a 1986 case-control study in California.

    PubMed

    Windham, G C; Swan, S H; Fenster, L; Neutra, R R

    1992-03-01

    To investigate whether drinking tap or bottled water during pregnancy affects the risk of spontaneous abortion, we asked questions about water consumption in a large case-control study (626 cases, 1,300 controls). The study ascertained cases from hospital pathology laboratory reports of pregnancies that began in 1986 and obtained controls from birth certificates. The crude odds ratio for consumption of any vs no cold tapwater at home during the first trimester was 1.2 (95% confidence interval = 1.0-1.5), with no dose-response effect. The crude odds ratio for any bottled water consumption was 0.79 (95% confidence interval = 0.65-0.96), with a downward trend by amount consumed. Adjusting for many potential confounders did not alter these associations appreciably, although some variables appeared to be effect modifiers. The point estimates were stronger among women who were more difficult to contact, suggesting the possibility of bias. PMID:1576215

  5. Neutron emission as a function of fragment energy in the spontaneous fission of /sup 260/Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeiser, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Brandt, R.; Patzelt, P.

    1989-04-19

    We have made the first measurement of the number of neutrons emitted in the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of /sup 254/Es, we produced 28-d /sup 260/Md, which was neutron-counted in a 1-m-diam spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58 +- 0.11, substantially less than for other actinides. A direct correlation of neutron multiplicity with fragment excitation energy is clearly demonstrated. 3 refs., 5 figs.

  6. Prompt neutron emission from the spontaneous fission of sup 260 Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeier, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Koop, E.; Glaser, R.E.; Brandt, R.; Patzelt, P. Philipps University, D-3550, Marburg an der Lahn, )

    1990-02-01

    We have made the first measurement of the number of neutrons emitted from the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of {sup 254}Es, we produced a large sample of 28-d {sup 260}Md, which was neutron counted in a 1-m-diameter spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58{plus minus}0.11, substantially less than for other actinides. A linear dependence of neutron multiplicity on fragment-excitation energy is observed to the highest values of total kinetic energy.

  7. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  8. Spontaneous emission from a two-level atom in anisotropic one-band photonic crystals: A fractional calculus approach

    SciTech Connect

    Wu, J.-N.; Huang, C.-H.; Cheng, S.-C.; Hsieh, W.-F.

    2010-02-15

    Spontaneous emission (SE) from a two-level atom in an anisotropic photonic crystal (PC) is investigated by the fractional calculus. Physical phenomena of the SE are studied analytically by solving the fractional kinetic equations of the SE. There is a dynamical discrepancy between the SE of anisotropic and isotropic PCs. We find that, contrary to the SE phenomenon of the isotropic PC, the SE near the band edge of an anisotropic PC shows no photon-atom bound state. It is consistent with the experimental results of Barth, Schuster, Gruber, and Cichos [Phys. Rev. Lett. 96, 243902 (2006)] that the anisotropic property of the system enhances the SE. We also study effects of dispersion curvatures on the changes of the photonic density of states and the appearance of the diffusion fields in the SE.

  9. Advanced Emissions Control Development Program: Phase III

    SciTech Connect

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve high removals when the scrubber is operated downstream of an ESP. Phase III (Advanced Concepts and Comparison Coals) testing was directed at the development of enhanced air toxics emissions control strategies to further reduce the emissions of mercury. Phase III results further supported the findings of previous phases and demonstrated several methods of enhancing mercury control for both unscrubbed systems and systems equipped with WFGD. Results confirmed that the addition of sorbents can be used to significantly improve the capture of mercury in downstream particulate collection equipment. In addition, Phase III testing demonstrated three methods of minimizing the potential negative impact of an ESP on downstream control of mercury in WFGD systems. These methods included decreased oxidation air flow, the addition of H{sub 2}S into the flue gas at the scrubber inlet, and the addition of EDTA into the absorber reaction tank.

  10. Spontaneous emission interference enhancement with a {mu}-negative metamaterial slab

    SciTech Connect

    Zeng Xiaodong; Xu Jingping; Yang Yaping

    2011-09-15

    The spontaneous decay and quantum interference of a V-type Zeeman atom placed near a {mu}-negative metamaterial (MNG) slab are investigated. Based on the fact that MNG slab supports only TE-polarized surface-plasmon polariton (SPP) modes, the decay rate of the dipole component parallel to the interface would be much larger than that normal to the interface, because one can couple while another decouple to TE modes. Consequently, high-level anisotropic environment is created and the two dipoles can interfere with each other strongly by sharing such SPP modes even if they are orthogonal. In our work, we analyze the influence of the parameters of the MNG slab as well as the atomic location on the interference intensity in detail. In addition, the dissipation of the slab is considered, and the quantum interference is still excellent even with large absorption.

  11. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  12. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Standards to control metals emissions. 266.106 Section 266... § 266.106 Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by...

  13. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Standards to control metals emissions. 266.106 Section 266... § 266.106 Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by...

  14. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Standards to control metals emissions. 266.106 Section 266... § 266.106 Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by...

  15. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Standards to control metals emissions. 266.106 Section 266... § 266.106 Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by...

  16. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Standards to control metals emissions. 266.106 Section 266... § 266.106 Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by...

  17. Model Identification for Optimal Diesel Emissions Control

    SciTech Connect

    Stevens, Andrew J.; Sun, Yannan; Song, Xiaobo; Parker, Gordon

    2013-06-20

    In this paper we develop a model based con- troller for diesel emission reduction using system identification methods. Specifically, our method minimizes the downstream readings from a production NOx sensor while injecting a minimal amount of urea upstream. Based on the linear quadratic estimator we derive the closed form solution to a cost function that accounts for the case some of the system inputs are not controllable. Our cost function can also be tuned to trade-off between input usage and output optimization. Our approach performs better than a production controller in simulation. Our NOx conversion efficiency was 92.7% while the production controller achieved 92.4%. For NH3 conversion, our efficiency was 98.7% compared to 88.5% for the production controller.

  18. Spectral discrimination between healthy people and cold patients using spontaneous photon emission

    PubMed Central

    Yang, Meina; Pang, Jiangxiang; Liu, Junyan; Liu, Yanli; Fan, Hua; Han, Jinxiang

    2015-01-01

    In this paper, ultra-weak photon emission (UPE) was used to distinguish cold patients from healthy subjects. The UPE intensity of fingertips of two hands from healthy subjects and cold patients was measured using a two-hand UPE detecting system and a group of cut-off filters. We found a significant difference in the maximum spectral peak and photon emission ratio between the filter of 550nm and 495nm, which can be used in distinguish cold patients from healthy people. Methods and results in this work could be useful for developing a new optical diagnostic tool for early disease diagnosis in the future. PMID:25909016

  19. The research and implementation of coalfield spontaneous combustion of carbon emission WebGIS based on Silverlight and ArcGIS server

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Bi, J.; Wang, X.; Zhu, W.

    2014-02-01

    As an important sub-topic of the natural process of carbon emission data public information platform construction, coalfield spontaneous combustion of carbon emission WebGIS system has become an important study object. In connection with data features of coalfield spontaneous combustion carbon emissions (i.e. a wide range of data, which is rich and complex) and the geospatial characteristics, data is divided into attribute data and spatial data. Based on full analysis of the data, completed the detailed design of the Oracle database and stored on the Oracle database. Through Silverlight rich client technology and the expansion of WCF services, achieved the attribute data of web dynamic query, retrieval, statistical, analysis and other functions. For spatial data, we take advantage of ArcGIS Server and Silverlight-based API to invoke GIS server background published map services, GP services, Image services and other services, implemented coalfield spontaneous combustion of remote sensing image data and web map data display, data analysis, thematic map production. The study found that the Silverlight technology, based on rich client and object-oriented framework for WCF service, can efficiently constructed a WebGIS system. And then, combined with ArcGIS Silverlight API to achieve interactive query attribute data and spatial data of coalfield spontaneous emmission, can greatly improve the performance of WebGIS system. At the same time, it provided a strong guarantee for the construction of public information on China's carbon emission data.

  20. Factors controlling dimethylsulfide emission from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, S. G.; Howes, B. L.

    1985-01-01

    The factors that control the emission of methylated gases from salt marshes are being studied. Research focusses on dimethylsulfide (DMS) formation and the mechanism of DMS and CH4 emission to the atmosphere. The approach is to consider the plants as valves regulating the emission of methylated gases to the atmosphere with the goal of developing appropriate methods for emission measurement. In the case of CH4, the sediment is the source and transport to the atmosphere occurs primarily through the internal gas spaces in the plants. The source of DMS appears to be dimethyl sulfoniopropionate (DMSP) which may play a role in osmoregulation in plant tissues. Concentrations of DMSP in leaves are typically several-fold higher than in roots and rhizomes. Even so, the large below ground biomass of this plant means that 2/3 of the DMSP in the ecosystem is below ground on the aerial basis. Upon introduction to sediment water, DMSP rapidly decomposes to DMS and acrylic acid. The solubility of a gas (its equilibrium vapor pressure) is a fundamental aspect of gas exchange kinetics. The first comprehensive study was conducted of DMS solubility in freshwater and seawater. Data suggest that the Setchenow relation holds for H at intermediate salinities collected. These data support the concept that the concentration of DMS in the atmosphere is far from equilibrium with seawater.

  1. Spontaneous emission of Bloch oscillation radiation under the competing influences of microcavity enhancement and inhomogeneous interface degradation

    SciTech Connect

    Sokolov, V. N.; Iafrate, G. J.

    2014-02-07

    A theory for the spontaneous emission (SE) of terahertz radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity, while undergoing elastic scattering is presented. The Bloch electron is accelerated under the influence of a superimposed external constant electric field and an internal inhomogeneous electric field, while radiating into a microcavity. The analysis of the SE accounts for both the spectral structure of nonharmonic miniband components and the Bloch oscillation degradation effects arising from elastic scattering due to SL interface roughness. The interface roughness effects are decomposed into contributions arising from independent planar and cross-correlated neighboring planar interfaces; parametric numerical estimates show that the cross-correlated contribution to the SE relaxation rate is relatively small, representing less than roughly 10% of the total relaxation rate. It is shown that the degradation effects from SL interface roughness can be more than compensated for by the enhancements derived from microcavity-based tuning of the emission frequency to the cavity density of states peak. The theoretical approach developed herein has general applicability beyond its use for elastic scattering due to interface roughness. As well, the results obtained in this analysis can be useful in the development of SL-based Bloch-oscillator terahertz devices.

  2. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    SciTech Connect

    Lumpkin, A.H.; Dejus, R.J.; Sereno, N.S.; /Argonne

    2009-02-01

    Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source (LCLS) accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge (LSC) microbunching instability which leads to coherent OTR (COTR) emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible-UV regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  3. IDENTIFICATION, ASSESSMENT, AND CONTROL OF FUGITIVE PARTICULATE EMISSIONS

    EPA Science Inventory

    The technical manual, designed to assist national, state, and local control agency personnel and industry personnel in evaluating fugitive emission control plans and in developing cost-effective control strategies, describes the identification, assessment, and control of fugitive...

  4. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry.

    PubMed

    Martin, Sophie G

    2015-11-01

    Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites. PMID:26338468

  5. Asbestos emissions from baghouse controlled sources.

    PubMed

    Harwood, C F; Oestreich, D K; Siebert, P; Stockham, J D

    1975-08-01

    There is virtually no information published on the absolute efficiency of baghouses in reducing the emmisions of fine particles of asbestos. This lack of information is unfortunate because serious occupational health problems may result from the common practice of recirculating air to conserve energy. Emission testing has been conducted at five asbestos processing plants where the emissions are controlled by baghouses. The results showed that the mass removal efficiency frequently exceeded 99.00%. Membrane filter samples of the effluent were examined by optical and electron microscope. It was observed that despite the high mass efficiency, the number of fibers emitted, which were greater than 1.5 mum in length, was about 10(4)-10(5) fibers/m3, while the number of fibers less than 1.5 mum was 10(7)-10(8) fibers/m3. The significance of the size of the fibers in terms of probably health impact is briefly discussed. PMID:1227285

  6. Influence of pump-phase fluctuations on entanglement generation using a correlated spontaneous-emission laser

    SciTech Connect

    Qamar, Shahid; Xiong Han; Zubairy, M. Suhail

    2007-06-15

    In this paper, we study the effect of phase fluctuations of the pump field upon the entanglement generation in a two-photon correlated emission laser (CEL). We consider initial vacuum and coherent state for the two-cavity modes. In both cases, we find reduction in the entanglement due to the phase fluctuations. However, our results indicate that entanglement generation is highly sensitive to phase fluctuations when we have initial coherent state in the two modes.

  7. Enhancement of spontaneous emission in metal-dielectric multilayer structures accounting losses

    NASA Astrophysics Data System (ADS)

    Gubaydullin, A. R.; Kaliteevski, M. A.

    2015-11-01

    We study the emission rate enhancement of the dipole emitter centred in the stratified metal-dielectric metamaterial, characterized by the hyperbolic isofrequency surface. We find out a limited enhancement of the Purcell factor in the layered metamaterial. We demonstrate that the radiative decay rate is strongly depends on a ratio of the thickness of layers and is affected by the level of losses in metal.

  8. Synergy between pollution and carbon emissions control: Comparing

    E-print Network

    Synergy between pollution and carbon emissions control: Comparing China and the United States between pollution and carbon emissions control: Comparing China and the United States Kyung-Min Nam a Q43 Q48 Q52 Q53 Q54 Q58 Keywords: Air pollution Carbon mitigation Cobenefit Emissions cross

  9. Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-12-01

    DNA as a genetic biomolecule is more commonly referred to in life sciences, genetics, and microbiology. With the development of ‘DNA photonics’, it has shown tremendous applicability as an optical and photonic material. In this letter, we introduce a novel dye PicoGreen as a lasing medium in which DNA not only acts as a host matrix but also functions as a fluorescence enhancer. A dramatic increase in the fluorescence led us to the observation of optical amplification in dye doped DNA thin films. We also indicate the possible tunability of the output emission in the green–yellow region. With the obtained results, we have enough reasons to lead to the development of DNA-based bio-lasers.

  10. Could Spontaneous Transitions be Spontaneous?

    E-print Network

    Bernd A. Berg

    1998-07-18

    It is considered to re-formulate quantum theory as it appears: A theory of continuous and causal time evolution, interrupted by discontinuous and stochastic jumps. To develop the (missing) theory of jumps a heuristic-phenomenological approach is suggested. Relying on a global reduction process, a hypothesis is introduced postulating spontaneous collapse of superpositions of states which describe spontaneous absorption or emission. The collapse probability determines a mean collapse time $\\tau^c = b \\hbar / \\triangle E$, where $b$ is a dimensionless constant and $\\triangle E$ is the difference in energy distribution between alternative branches. Ramsey atomic beam spectroscopy yields a lower bound on $b$ and avalanche photodiodes give an upper bound, such that $1.35\\cdot 10^{11} < b < 3.8\\cdot 10^{21}$. Ample opportunities for experimental improvements exist.

  11. CONTROL OF HYDROCARBON EMISSIONS FROM GASOLINE LOADING BY REFRIGERATION SYSTEMS

    EPA Science Inventory

    The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration sy...

  12. Suppression of transverse parasitic lasing and amplified spontaneous emission in Ti:sapphire amplifier by polarization-selection pump.

    PubMed

    Chu, Yuxi; Liang, Xiaoyan; Gan, Zebiao; Yu, Lianghong; Xu, Lu; Li, Ruxin; Xu, Zhizhan

    2015-07-10

    Based on the polarized-dependent absorption characteristic of Ti:S crystals, we propose a method to reduce the absorption coefficient of Ti:S by using a ?-polarized pump. For Ti:S crystals, the absorption cross section of ?-polarized pump light is approximately half that of ?-polarized pump light, which reduces the excited state density near the surface of the amplifier crystal, resulting in reduced transverse parasitic lasing and amplified spontaneous emission. The experimental results based on a diameter of 80 mm Ti:S confirmed the proposed method with different index-matched cladding materials [ethanol and bromonaphthalene (BN)]. In the case of an ethanol cladding, the maximum amplified output energies for ?- and ?-polarized pumping are 20.8 J and 26.8 J, respectively-corresponding to 28.8% energy improvement achieved by the ?-polarized pump. In the case of a BN cladding, the maximum amplified output energies achieved by ?- and ?-polarized pumping are 40 J and 44 J, respectively; this result corresponds to about 10% energy improvement achieved by the ?-polarized pump. This method can be used in larger size Ti:S amplifiers. PMID:26193406

  13. Control emissions from marine vessel loading

    SciTech Connect

    Lawrence, G.N.; Cross, S.R.

    1994-03-01

    Regulations set by the US Coast Guard require safety measures during the loading of marine vessels connected to vapor collection systems. These regulations (which were promulgated in July 1990) immediately impacted all companies involved with the loading of benzene, due to previously enacted US Environmental Protection Agency regulations governing benzene transfer. In addition, regulations issued by the states of California, New Jersey, and Louisiana impose additional marine emission control requirements. These regulations effectively work together--the federal or state environmental rule first requires the collection of the vapors generate from vessel loading, and then the Coast Guard regulation governs the safety features that must be applied to the system. Depending on the vapor pressure of the chemical, a 10,000-barrel barge may emit over one ton of chemical to the atmosphere. Such large volumes make marine loading a prime target for the push to further reduce atmospheric pollution, and its is a good be that many more companies will be asked to look at the recovery of vapors during the loading of marine vessels. This article will aid the engineer who may be asked to evaluate the various methods of controlling emissions from vessel loading. It provides some guidance on the requirements of the Coast Guard regulations and briefly outlines some of the technologies that have been used to process the collected vapors. Some important design considerations unique to marine systems are discussed to help engineers avoid some of the potential pitfalls. Finally, some estimated costs are provided for two common types of marine vapor control systems.

  14. Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface.

    PubMed

    Wouchuk, J G; López Cavada, J

    2004-10-01

    An analytic model to study perturbation evolution in the space between a corrugated shock and a piston surface is presented. The conditions for stable oscillation patterns are obtained by looking at the poles of the exact Laplace transform. It is seen that besides the standard D'yakov-Kontorovich (DK) mode of oscillation, the shock surface can exhibit an additional finite set of discrete frequencies, due to the interaction with the piston which reflects sound waves from behind. The additional eigenmodes are excited when the shock is launched at t= 0(+) . The first eigenmode (the DK mode) is always present, if the Hugoniot curve has the correct slope in the V-p plane. However, the additional frequencies could be excited for strong enough shocks. The predictions of the model are verified for particular cases by studying a van der Waals gas, as in the work of Phys. Fluids 11, 462 (1999)]; Phys. Rev. Lett. 84, 1180 (2000)]. Only acoustic emission modes are considered. PMID:15600515

  15. Spontaneous spiking and synaptic depression underlie noradrenergic control of feed-forward inhibition

    PubMed Central

    Kuo, Sidney P.; Trussell, Laurence O.

    2011-01-01

    Summary Inhibitory interneurons across diverse brain regions commonly exhibit spontaneous spiking activity, even in the absence of external stimuli. It is not well understood how stimulus-evoked inhibition can be distinguished from background inhibition arising from spontaneous firing. We found that noradrenaline simultaneously reduced spontaneous inhibitory inputs and enhanced evoked inhibitory currents recorded from principal neurons of the mouse dorsal cochlear nucleus (DCN). Together, these effects produced a large increase in signal-to-noise ratio for stimulus-evoked inhibition. Surprisingly, the opposing effects on background and evoked currents could both be attributed to noradrenergic silencing of spontaneous spiking in glycinergic interneurons. During spontaneous firing, glycine release was decreased due to strong short-term depression. Elimination of background spiking relieved inhibitory synapses from depression and thereby enhanced stimulus-evoked inhibition. Our findings illustrate a simple yet powerful neuromodulatory mechanism to shift the balance between background and stimulus-evoked signals. PMID:21791289

  16. Organic Crystals with Near-Infrared Amplified Spontaneous Emissions Based on 2'-Hydroxychalcone Derivatives: Subtle Structure Modification but Great Property Change.

    PubMed

    Cheng, Xiao; Wang, Kai; Huang, Shuo; Zhang, Houyu; Zhang, Hongyu; Wang, Yue

    2015-07-13

    A series of highly efficient deep red to near-infrared (NIR) emissive organic crystals 1-3 based on the structurally simple 2'-hydroxychalcone derivatives were synthesized through a simple one-step condensation reaction. Crystal 1 displays the highest quantum yield (?f) of 0.32 among the reported organic single crystals with an emission maximum (?em) over 710?nm. Comparison between the bright emissive crystals 1-3 and the nearly nonluminous compounds 4-7 clearly gives evidence that a subtle structure modification can arouse great property changes, which is instructive in designing new high-efficiency organic luminescent materials. Notably, crystals 1-3 exhibit amplified spontaneous emissions (ASE) with extremely low thresholds. Thus, organic deep red to NIR emissive crystals with very high ?f have been obtained and are found to display the first example of NIR fluorescent crystal ASE. PMID:26036645

  17. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission

    NASA Astrophysics Data System (ADS)

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-01

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  18. Coke quench car emission control system

    SciTech Connect

    Baum, J.P.

    1983-07-19

    A coke quench car emission control system includes a coke car and a filter car connected in tandem for joint movement on rails disposed adjacent a coke oven. A hood and recuperator are mounted on a third car disposed on auxiliary rails which extend longitudinally along the upper portions of both the quench car and the filter car and in end-wise alignment. The hood is adapted to be coupled to the coke oven for receiving coke during a pushing operation. The recuperation has an inlet coupled to the hood for receiving emissions and withdrawing heat therefrom. The recuperator also has an outlet which is disposed adjacent the inlet of a filter system mounted on the filter car, when the third car is positioned atop the quench car. The third car is sized so that it can be moved on the auxiliary rails from a position atop the quench car to a position atop the filter car whereby the quench car can be exposed for a quenching operation.

  19. Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers.

    PubMed

    Gao, Shiming; Yang, Changxi; Xiao, Xiaosheng; Tian, Yu; You, Zheng; Jin, Guofan

    2006-04-01

    We propose and demonstrate wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light sources based on hybrid four-wave mixing (HFWM) in highly nonlinear, dispersion- shifted fibers (HNL-DSFs). The theory of HFWM between coherent pumps and incoherent signal is analyzed. The degenerate HFWM is demonstrated experimentally in a 1-km-long HNL-DSF, where the coherent pump light is provided by a tunable cw laser source and the incoherent signal light is spectrum-sliced from a broadband amplified spontaneous emission light source. A conversion efficiency of about -20.4 dB and a bandwidth of about 38 nm are measured. The experimental result agrees well with the theoretical analysis. PMID:19516424

  20. Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers

    NASA Astrophysics Data System (ADS)

    Gao, Shiming; Yang, Changxi; Xiao, Xiaosheng; Tian, Yu; You, Zheng; Jin, Guofan

    2006-04-01

    We propose and demonstrate wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light sources based on hybrid four-wave mixing (HFWM) in highly nonlinear, dispersion- shifted fibers (HNL-DSFs). The theory of HFWM between coherent pumps and incoherent signal is analyzed. The degenerate HFWM is demonstrated experimentally in a 1-km-long HNL-DSF, where the coherent pump light is provided by a tunable cw laser source and the incoherent signal light is spectrum-sliced from a broadband amplified spontaneous emission light source. A conversion efficiency of about 20.4 dB and a bandwidth of about 38 nm are measured. The experimental result agrees well with the theoretical analysis.

  1. Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fascicularis) used in toxicity studies.

    PubMed

    Chamanza, Ronnie; Marxfeld, Heike A; Blanco, Ana I; Naylor, Stuart W; Bradley, Alys E

    2010-06-01

    The authors performed a retrospective study to determine the incidences and range of spontaneous pathology findings in control cynomolgus monkeys. Data were collected from 570 monkeys (285 animals per sex), aged twelve to thirty-six months, from sixty regulatory studies evaluated at our laboratory between 2003 and 2009. The most common finding overall was lymphoplasmacytic infiltrates observed in the following incidence: liver (60.7%), kidneys (28.8%), heart (25.8%), salivary glands (21.2%), and stomach (12.1%). Inflammation also commonly occurred in the heart, kidneys, lungs, and stomach. The most common degenerative changes were localized fatty change in the liver, myocardial degeneration, and mineralization and pigment deposits in various tissues. Parathyroid, thyroid, and pituitary cysts; ectopic thymus in the parathyroid or thyroid gland; accessory spleen within the pancreas; and adrenohepatic fusion were among the most common congenital findings. Some incidental findings bearing similarities to drug-induced lesions were also encountered in various organs. It is hoped that the results presented here and elsewhere could form the groundwork for the creation of a reliable database of incidental pathology findings in laboratory nonhuman primates. PMID:20448082

  2. Interplay of ?2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion

    PubMed Central

    Avale, Maria Elena; Faure, Philippe; Pons, Stéphanie; Robledo, Patricia; Deltheil, Thierry; David, Denis J.; Gardier, Alain M.; Maldonado, Rafael; Granon, Sylvie; Changeux, Jean-Pierre; Maskos, Uwe

    2008-01-01

    Acetylcholine (ACh) is a known modulator of the activity of dopaminergic (DAergic) neurons through the stimulation of nicotinic ACh receptors (nAChRs). Yet, the subunit composition and specific location of nAChRs involved in DA-mediated locomotion remain to be established in vivo. Mice lacking the ?2 subunit of nAChRs (?2KO) display striking hyperactivity in the open field, which suggests an imbalance in DA neurotransmission. Here, we performed the selective gene rescue of functional ?2*-nAChRs in either the substantia nigra pars compacta (SNpc) or the ventral tegmental area (VTA) of ?2KO mice. SNpc rescued mice displayed normalization of locomotor activity, both in familiar and unfamiliar environments, whereas restoration in the VTA only rescued exploratory behavior. These data demonstrate the dissociation between nigrostriatal and mesolimbic ?2*-nAChRs in regulating unique locomotor functions. In addition, the site-directed knock-down of the ?2 subunit in the SNpc by RNA interference caused hyperactivity in wild-type mice. These findings highlight the crucial interplay of nAChRs over the DA control of spontaneous locomotion. PMID:18832468

  3. SUPPORTING INFORMATION Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid

    E-print Network

    Ismagilov, Rustem F.

    bar is 500 µm. SI Movie 3: Droplets of citrated human whole blood flowed spontaneously on a FEP (Dektak 150, Veeco, CA). Through holes were drilled in the top plate with a 0.035" drill bit (Diamond ball

  4. Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hidetoshi; Oyamada, Takahito; Sasabe, Hiroyuki; Adachi, Chihaya

    2004-02-01

    We succeeded in observing amplified spontaneous emissions (ASEs) from an organic semiconductor laser structure equipped with transparent carrier injection electrodes under optical pumping. We employed a transparent indium-tin-oxide (ITO) anode and cathode, which significantly minimized light propagation loss compared with that in conventional metal electrodes. In particular, we incorporated an ultrathin MgAg layer between the organic electron transport layer and ITO cathode to enhance electron injection efficiency, while maintaining low light propagation loss, and also to protect the organic layer from plasma damage when forming the ITO. By optically pumping the ITO [30 nm]/4,4'-bis[N(1-naphthyl)-N-phenyl-amino]biphenyl (?-NPD) [20 nm]/ 4,4'-di(N-carbazolyl)biphenyl (CBP) doped with 1,4-dimethoxy-2,5-bis[p-{N-phenyl-N(m-tolyl)amino}styryl]benzene (BSB) [70 nm]/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) [20 nm]/tris-(8-hydroxy-quinoline)aluminum (Alq3) [20 nm]/MgAg [2.5 nm]/ITO [20 nm] device, a low ASE threshold of Eth=5.1±1.0 ?J/cm2 with a full width at half maximum of 11 nm was obtained under optical excitation. We also evaluated electrical pumping with this device. Although we observed high efficiency electroluminescence at an external quantum efficiency (?ext) of 3.6% at a low current density of J=0.1 mA/cm2, a rapid decrease in ?ext was observed with an increase in current density, suggesting the presence of large exciton-polaron annihilation.

  5. Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems.

    PubMed

    Tang, Shida; Frank, Brian P; Lanni, Thomas; Rideout, Greg; Meyer, Norman; Beregszaszy, Chris

    2007-07-15

    This study evaluated the effects of various combinations of fuels and emission control technologies on exhaust emissions from a heavy-duty diesel engine tested on an engine dynamometer. Ten fuels were studied in twenty four combinations of fuel and emission control technology configurations. Emission control systems evaluated were diesel oxidation catalyst (DOC), continuously regenerating diesel particulate filter (CRDPF), and the CRDPF coupled with an exhaust gas recirculation system (EGRT). The effects of fuel type and emission control technology on emissions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, elemental carbon and organic carbon (EC/OC), carbonyls, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs (n-PAHs) are presented in this paper. Regulated gaseous criteria pollutants of total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have been reported elsewhere. In general, individual unregulated emission with a CRDPF or an EGRT system is similar (at very low emission level) or much lower than that operating solely with a DOC and choosing a "best" fuel. The water emulsion PuriNO(x) fuel exhibited higher BTEX, carbonyls and PAHs emissions compared to other ultralow sulfur diesel (ULSD) fuels tested in this study while n-PAH emissions were comparable to that from other ULSD fuels. Naphthalene accounted for greater than 50% of the total PAH emissions in this study and there was no significant increase of n-PAHs with the usage of CRDPF. PMID:17711220

  6. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  7. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  8. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  9. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  10. Coherent control of attosecond emission from aligned molecules

    E-print Network

    Loss, Daniel

    LETTERS Coherent control of attosecond emission from aligned molecules W. BOUTU1 , S. HAESSLER1 , H.salieres@cea.fr Published online: 4 May 2008; doi:10.1038/nphys964 Controlling attosecond electron wave packets and soft X packets on a subfemtosecond timescale, resulting in the emission of attosecond bursts of extreme

  11. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  12. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  13. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... height (Ha) may not exceed good engineering practice as specified in 40 CFR 51.100(ii). (iii) If the TESH... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the...

  14. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... height (Ha) may not exceed good engineering practice as specified in 40 CFR 51.100(ii). (iii) If the TESH... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the...

  15. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... height (Ha) may not exceed good engineering practice as specified in 40 CFR 51.100(ii). (iii) If the TESH... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the...

  16. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... height (Ha) may not exceed good engineering practice as specified in 40 CFR 51.100(ii). (iii) If the TESH... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the...

  17. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... height (Ha) may not exceed good engineering practice as specified in 40 CFR 51.100(ii). (iii) If the TESH... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the...

  18. Percolating plasmonic networks for light emission control.

    PubMed

    Gaio, Michele; Castro-Lopez, Marta; Renger, Jan; van Hulst, Niek; Sapienza, Riccardo

    2015-01-01

    Optical nanoantennas have revolutionised the way we manipulate single photons emitted by individual light sources in a nanostructured photonic environment. Complex plasmonic architectures allow for multiscale light control by shortening or stretching the light wavelength for a fixed operating frequency, meeting the size of the emitter and that of propagating modes. Here, we study self-assembled semi-continuous gold films and lithographic gold networks characterised by large local density of optical state (LDOS) fluctuations around the electrical percolation threshold, a regime where the surface is characterised by large metal clusters with fractal topology. We study the formation of plasmonic networks and their effect on light emission from embedded fluorescent probes in these systems. Through fluorescence dynamics experiments we discuss the role of global long-range interactions linked to the degree of percolation and to the network fractality, as well as the local near-field contributions coming from the local electro-magnetic fields and the topology. Our experiments indicate that local properties dominate the fluorescence modification. PMID:25711923

  19. Response to "Comment on `Frequency-domain stimulated and spontaneous light emission signals at molecular junctions'" [J. Chem. Phys. 142, 137101 (2015)

    NASA Astrophysics Data System (ADS)

    Harbola, Upendra; Agarwalla, Bijay Kumar; Mukamel, Shaul

    2015-04-01

    In a recent work [U. Harbola, B. K. Agrawalla, and S. Mukamel, J. Chem. Phys. 141, 074107 (2014)], we have presented a superoperator (Liouville space) diagrammatic formulation of spontaneous and stimulated optical signals from current-carrying molecular junctions. We computed the diagrams that contribute to the spontaneous light emission SLE (fluorescence and Raman) signal using a diagrammatic method which clearly distinguishes between the Raman and the fluorescence contributions. We pointed out some discrepancies with the work of Galperin, Ratner and Nitzan (GRN) [M. Galperin, M. A. Ratner and, A. Nitzan, J. Chem. Phys. 130, 144109 (2009)]. In their response [M. Galperin, M. A. Ratner and A. Nitzan, "Comment on` Frequency-domain stimulated and spontaneous light emission signals at molecular junctions'" [J. Chem. Phys. 141, 074107 (2014)], J. Chem. Phys. 142, 137101 (2015)] to our work, GRN have argued that there are no differences in the choice of Raman diagrams in both works. Here we reply to their points and show where the differences exist.

  20. Dynamic control of light emission faster than the lifetime limit using VO2 phase-change.

    PubMed

    Cueff, Sébastien; Li, Dongfang; Zhou, You; Wong, Franklin J; Kurvits, Jonathan A; Ramanathan, Shriram; Zia, Rashid

    2015-01-01

    Modulation is a cornerstone of optical communication, and as such, governs the overall speed of data transmission. Currently, the two main strategies for modulating light are direct modulation of the excited emitter population (for example, using semiconductor lasers) and external optical modulation (for example, using Mach-Zehnder interferometers or ring resonators). However, recent advances in nanophotonics offer an alternative approach to control spontaneous emission through modifications to the local density of optical states. Here, by leveraging the phase-change of a vanadium dioxide nanolayer, we demonstrate broadband all-optical direct modulation of 1.5??m emission from trivalent erbium ions more than three orders of magnitude faster than their excited state lifetime. This proof-of-concept demonstration shows how integration with phase-change materials can transform widespread phosphorescent materials into high-speed optical sources that can be integrated in monolithic nanoscale devices for both free-space and on-chip communication. PMID:26489436

  1. Dynamic control of light emission faster than the lifetime limit using VO2 phase-change

    PubMed Central

    Cueff, Sébastien; Li, Dongfang; Zhou, You; Wong, Franklin J.; Kurvits, Jonathan A.; Ramanathan, Shriram; Zia, Rashid

    2015-01-01

    Modulation is a cornerstone of optical communication, and as such, governs the overall speed of data transmission. Currently, the two main strategies for modulating light are direct modulation of the excited emitter population (for example, using semiconductor lasers) and external optical modulation (for example, using Mach–Zehnder interferometers or ring resonators). However, recent advances in nanophotonics offer an alternative approach to control spontaneous emission through modifications to the local density of optical states. Here, by leveraging the phase-change of a vanadium dioxide nanolayer, we demonstrate broadband all-optical direct modulation of 1.5??m emission from trivalent erbium ions more than three orders of magnitude faster than their excited state lifetime. This proof-of-concept demonstration shows how integration with phase-change materials can transform widespread phosphorescent materials into high-speed optical sources that can be integrated in monolithic nanoscale devices for both free-space and on-chip communication. PMID:26489436

  2. Dynamic control of light emission faster than the lifetime limit using VO2 phase-change

    NASA Astrophysics Data System (ADS)

    Cueff, Sébastien; Li, Dongfang; Zhou, You; Wong, Franklin J.; Kurvits, Jonathan A.; Ramanathan, Shriram; Zia, Rashid

    2015-10-01

    Modulation is a cornerstone of optical communication, and as such, governs the overall speed of data transmission. Currently, the two main strategies for modulating light are direct modulation of the excited emitter population (for example, using semiconductor lasers) and external optical modulation (for example, using Mach-Zehnder interferometers or ring resonators). However, recent advances in nanophotonics offer an alternative approach to control spontaneous emission through modifications to the local density of optical states. Here, by leveraging the phase-change of a vanadium dioxide nanolayer, we demonstrate broadband all-optical direct modulation of 1.5 ?m emission from trivalent erbium ions more than three orders of magnitude faster than their excited state lifetime. This proof-of-concept demonstration shows how integration with phase-change materials can transform widespread phosphorescent materials into high-speed optical sources that can be integrated in monolithic nanoscale devices for both free-space and on-chip communication.

  3. Cooperative spontaneous emission of N atoms: Many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators

    SciTech Connect

    Svidzinsky, Anatoly A.; Chang, J.-T.; Scully, Marlan O.

    2010-05-15

    We consider collective emission of a single photon from a cloud of N two-level atoms (one excited, N-1 ground state). For a dense cloud the problem is reduced to finding eigenfunctions and eigenvalues of an integral equation. We discuss an exact analytical solution of this many-atom problem for a spherically symmetric atomic cloud. Some eigenstates decay much faster then the single atom decay rate, while the others undergo very slow decay. We show that virtual processes yield a small effect on the evolution of rapidly decaying states. However, they change the long time dynamics from exponential decay into a power-law behavior which can be observed experimentally. For trapped states virtual processes are much more important yielding additional decay channels which results in a slow decay of the otherwise trapped states. We also show that quantum mechanical treatment of spontaneous emission of weakly excited atomic ensemble is analogous to emission of N classical harmonic oscillators.

  4. Controlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons

    E-print Network

    Ozer, Mahmut; Uzuntarla, Muhammet

    2009-01-01

    We investigate the regularity of spontaneous spiking activity on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise and fraction of blocked voltage-gated sodium and potassium ion channels embedded in neuronal membranes. We show that there exists an optimal fraction of shortcut links between physically distant neurons, as well as an optimal intensity of intrinsic noise, which warrant an optimally ordered spontaneous spiking activity. This doubly coherence resonance-like phenomenon depends significantly, and can be controlled via the fraction of closed sodium and potassium ion channels, whereby the impacts can be understood via the analysis of the firing rate function as well as the deterministic system dynamics. Potential biological implications of our findings for information propagation across neural networks are also discussed.

  5. Gaseous emissions from plants in controlled environments

    NASA Technical Reports Server (NTRS)

    Dubay, Denis T.

    1988-01-01

    Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.

  6. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER

    SciTech Connect

    Rohringer, N

    2008-08-08

    X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The core-hole excited 1s{sup -1} 3p state is embedded in the continuum and decays via Auger-process on the timescale of approximately 5 fs. Increasing the x-ray intensity above 1.5 x 10{sup 18} W/cm{sup 2}, a peak intensity accessible with xFEL sources in the near future, x-ray induced emission from 3p back to 1s becomes possible, i.e. Rabi oscillations between these two levels can be induced. For the numerical analysis of this process, an effective two-level model, including a description of the resonant Auger decay process, is employed. The observation of x-ray-driven atomic populations dynamics in the time domain is challenging for chaotic xFEL pulses. In addition to requiring single-shot measurements, sub-femtosecond temporal resolution would be needed. The Rabi oscillations will, however, be imprinted on the kinetic energy distribution of the resonant Auger electron (see Fig. 1). Measuring the resonant Auger-electron line profile will provide information on both atomic population dynamics and x-ray pulse properties.

  7. Temperature Dependence of Factors Controlling Isoprene Emissions

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  8. AIR TOXICS EMISSIONS CHARACTERIZATION, CONTROLS & PREVENTION

    EPA Science Inventory

    The goals of this research are to develop improved techniques to characterize hazardous air pollutant emissions from outdoor and indoor sources; use thee techniques to better understand the relative contribution of specific sources to actual human exposure, and identify innovativ...

  9. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    SciTech Connect

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi

    2014-03-07

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on k·p approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.

  10. Measure of the transverse coherence of a self amplified spontaneous emission of a free electron laser with the heterodyne speckles method

    NASA Astrophysics Data System (ADS)

    Siano, M.; Paroli, B.; Manfredda, M.; Alaimo, M.; Potenza, M. A. C.

    2015-05-01

    We describe the method of Heterodyne Near Field Speckles (HNFS) for the characterization of spatial and temporal coherence of radiation. The method relies on the statistical properties of the speckle field produced by spherical particles randomly distributed and suspended in a fluid. We report preliminary results obtained with broadband light sources. We discuss the results obtained with the Self-Amplified Spontaneous Emission free electron laser SPARC LAB. This method will enable to calibrate and realize a diagnostics for the X-ray, broadband betatron radiation emitted in laser-plasma accelerators.

  11. Achieving Acceptable Air Quality: Some Reflections on Controlling Vehicle Emissions

    NASA Astrophysics Data System (ADS)

    Calvert, J. G.; Heywood, J. B.; Sawyer, R. F.; Seinfeld, J. H.

    1993-07-01

    Motor vehicle emissions have been and are being controlled in an effort to abate urban air pollution. This article addresses the question: Will the vehicle exhaust emission control and fuel requirements in the 1990 Clean Air Act Amendments and the California Air Resources Board regulations on vehicles and fuels have a significant impact? The effective control of in-use vehicle emissions is the key to a solution to the motor vehicle part of the urban air pollution problem for the next decade or so. It is not necessary, except perhaps in Southern California, to implement extremely low new car emission standards before the end of the 20th century. Some of the proposed gasoline volatility and composition changes in reformulated gasoline will produce significant reductions in vehicle emissions (for example, reduced vapor pressure, sulfur, and light olefin and improved high end volatility), whereas others (such as substantial oxygenate addition and aromatics reduction) will not.

  12. Alternative control technology document for bakery oven emissions. Final report

    SciTech Connect

    Sanford, C.W.

    1992-12-01

    The document was produced in response to a request by the baking industry for Federal guidance to assist in providing a more uniform information base for State decision-making with regard to control of bakery oven emissions. The information in the document pertains to bakeries that produce yeast-leavened bread, rolls, buns, and similar products but not crackers, sweet goods, or baked foodstuffs that are not yeast leavened. Information on the baking processes, equipment, operating parameters, potential emissions from baking, and potential emission control options are presented. Catalytic and regenerative oxidation are identified as the most appropriate existing control technologies applicable to VOC emissions from bakery ovens. Cost analyses for catalytic and regenerative oxidation are included. A predictive formula for use in estimating oven emissions has been derived from source tests done in junction with the development of the document. Its use and applicability are described.

  13. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines.

    PubMed

    Ren, Xing W; Wang, Feng Z; Guo, Qing; Zuo, Zhao B; Fang, Qi S

    2015-11-01

    In China, 47.3% of state-owned coal mines are located in coal seams that are prone to spontaneous combustion. The spontaneous combustion of coal is the main cause of the generation of a large amount of carbon monoxide, which can cause serious health issues to miners. A new technique using foam-gel formation was developed to effectively control the spontaneous combustion of coal. The gel can capture more than 90% of the water in the grout and at the same time the foam can cover dangerous areas in the goaf by stacking and cooling of foam in all directions. In this study, a mechanism of foam-gel formation was introduced and the optimal proportions of additives were defined based on experiments of different foaming properties, gelling time and water loss rate as the main index parameters. The results of a field application in a coal mine promise that this new technique would effectively prevent coal oxidation in the goaf and reduce the generation of carbon monoxide. PMID:26259722

  14. Precipitation controls isoprene emissions from tropical ecosystems

    NASA Astrophysics Data System (ADS)

    Potosnak, M. J.; Gatti, L. V.; Guenther, A. B.; Karl, T.; Trostdorf, C. R.; Martins, W. C.; Rinne, H. J.; Yamazaki, A.

    2003-12-01

    Isoprene emissions from tropical regions account for a majority of isoprene produced globally. Current estimates of global isoprene emissions use meteorological inputs (temperature and light), ecosystem leaf area, and a time invariant, ecosystem specific emissions factor. This approach has been verified to work well for deciduous mid-latitude forests, but the approach has not been tested for tropical ecosystems where seasonality is induced by precipitation. Recent flux studies at two field stations in the tropics found strong effects of precipitation regime (dry vs. wet season) on isoprene emissions. A flux study conducted during the wet season (October 1999) at the La Selva Biological Station (10° 26' N, 83° 59' W, precipitation 4000 mm yr{-1}) found whole system isoprene emissions rates between 2--10 mg C m-2 h-1, while a second campaign during the dry season (April 2003) found values ranging 8--16 mg C m-2 h-1. This difference could not be explained by changes in ambient temperature or light using established emissions algorithms. The second field site near Santarém, Brazil in the Floresta Nacional do Tapajós (2° 51' S, 54° 58' W, precipitation 2000 mm yr{-1}), part of the Large scale Biosphere-atmosphere experiment in Amazônia (LBA), showed a similar pattern. Additionally, a 13 month isoprene concentration record at this station found a 4 fold increase during the dry season. Application of a one dimensional chemistry model predicts a similar change in isoprene source strength. A standard emission model using temperature and light could not account for these seasonal changes, but adding an empirical term that accounted for previous precipitation greatly enhanced the fit.

  15. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  16. CONTROL OF MOTOR VEHICLE EMISSIONS - THE U.S. EXPERIENCE

    EPA Science Inventory

    An historical overview of the U.S. experience with controlling emissions from highway motor vehicles is presented. he evolution of new motor vehicle emissions certification practice, end-of-assembly-line inspection, in-use surveillance and recall, inspection and maintenance, and ...

  17. PERFORMANCE OF EMISSIONS CONTROL SYSTEMS ON MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The paper reports results of several EPA-supported field evaluations of data on gaseous pollutant emissions from modern municipal waste combustors/incinerators and emissions control by flue gas cleaning systems. The results are presented in terms of acid gas (HCl and SO2), trace ...

  18. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy

    PubMed Central

    Krook-Magnuson, Esther; Armstrong, Caren; Oijala, Mikko; Soltesz, Ivan

    2013-01-01

    Temporal lobe epilepsy is the most common type of epilepsy in adults, is often medically refractory, and due to broad actions and long-time scales, current systemic treatments have major negative side-effects. However, temporal lobe seizures tend to arise from discrete regions before overt clinical behaviour, making temporally and spatially specific treatment theoretically possible. Here we report the arrest of spontaneous seizures using a real-time, closed-loop, response system and in vivo optogenetics in a mouse model of temporal lobe epilepsy. Either optogenetic inhibition of excitatory principal cells, or activation of a subpopulation of GABAergic cells representing <5% of hippocampal neurons, stops seizures rapidly upon light application. These results demonstrate that spontaneous temporal lobe seizures can be detected and terminated by modulating specific cell populations in a spatially restricted manner. A clinical approach built on these principles may overcome many of the side-effects of currently available treatment options. PMID:23340416

  19. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Determination of equivalent emission control technology. 63.325 Section 63.325 Protection...Determination of equivalent emission control technology. (a) Any person requesting...illustrating the emission control technology, its operation and integration...

  20. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Determination of equivalent emission control technology. 63.325 Section 63.325 Protection...Determination of equivalent emission control technology. (a) Any person requesting...illustrating the emission control technology, its operation and integration...

  1. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Determination of equivalent emission control technology. 63.325 Section 63.325 Protection...Determination of equivalent emission control technology. (a) Any person requesting...illustrating the emission control technology, its operation and integration...

  2. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Determination of equivalent emission control technology. 63.325 Section 63.325 Protection...Determination of equivalent emission control technology. (a) Any person requesting...illustrating the emission control technology, its operation and integration...

  3. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Determination of equivalent emission control technology. 63.325 Section 63.325 Protection...Determination of equivalent emission control technology. (a) Any person requesting...illustrating the emission control technology, its operation and integration...

  4. Controlling laser emission by selecting crystal orientation

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang

    2013-01-01

    Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm ? 1061/1062 + 1068 nm ? 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.

  5. A Novel New Approach to VOC and HAP Emission Control 

    E-print Network

    McGinness, M.

    2000-01-01

    HAP (Hazardous Air Pollutant) and VOC (Volatile Organic Compound) thermal emission control devices (ECD) usually require large amounts of energy to operate. They also require large capital investments in heat recovery options and large amounts...

  6. Self-organized global control of carbon emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  7. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide

    NASA Astrophysics Data System (ADS)

    Moraes, Thiago A.; Barlow, Peter W.; Klingelé, Emile; Gallep, Cristiano M.

    2012-06-01

    Semi-circadian rhythms of spontaneous photon emission from wheat seedlings germinated and grown in a constant environment (darkened chamber) were found to be synchronized with the rhythm of the local gravimetric (lunisolar) tidal acceleration. Time courses of the photon-count curves were also found to match the growth velocity profile of the seedlings. Pair-wise analyses of the data—growth, photon count, and tidal—by local tracking correlation always revealed significant coefficients ( P > 0.7) for more than 80% of any of the time periods considered. Using fast Fourier transform, the photon-count data revealed periodic components similar to those of the gravimetric tide. Time courses of biophoton emissions would appear to be an additional, useful, and innovative tool in both chronobiological and biophysical studies.

  8. Spectroscopic studies, fluorescence quenching by molecular oxygen and amplified spontaneous emission of 1,4-bis [2-(2-pyridyl) vinyl] benzene (P2VB) diolefinic laser dye

    NASA Astrophysics Data System (ADS)

    El-Daly, Samy A.; Ebeid, E. M.

    2014-04-01

    The UV-visible electronic absorption spectra, molar absorptivity, fluorescence spectra, fluorescence quantum yield and excited state lifetime of 1,4-bis [2-(2-pyridyl) vinyl] benzene P2VB were measured in different solvents. The fluorescence quenching of P2VB by molecular oxygen was also studied using lifetime measurements. A 2 × 10-4 mol dm-3 solution of P2VB in dimethyl formamide (DMF) gave amplified spontaneous emission (ASE) in blue spectral region with emission maximum at 420 nm upon pumping by 337.1 nitrogen laser pulse. The photochemical quantum yields (?c) of trans-cis photoisomerization of P2VB were calculated in different organic solvents. The photoreactivity of P2VB are also studied PMMA matrix.

  9. Sulfur oxide adsorbents and emissions control

    DOEpatents

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  10. CONTROLLING NOX EMISSION FROM INDUSTRIAL SOURCES

    EPA Science Inventory

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx ...

  11. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  12. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  13. VOC from Vehicular Evaporation Emissions: Status and Control Strategy.

    PubMed

    Liu, Huan; Man, Hanyang; Tschantz, Michael; Wu, Ye; He, Kebin; Hao, Jiming

    2015-12-15

    Vehicular evaporative emissions is an important source of volatile organic carbon (VOC), however, accurate estimation of emission amounts and scientific evaluation of control strategy for these emissions have been neglected outside of the United States. This study provides four kinds of basic emission factors: diurnal, hot soak, permeation, and refueling. Evaporative emissions from the Euro 4 vehicles (1.6 kg/year/car) are about four times those of U.S. vehicles (0.4 kg/year/car). Closing this emissions gap would have a larger impact than the progression from Euro 3 to Euro 6 tailpipe HC emission controls. Even in the first 24 h of parking, China's current reliance upon the European 24 h diurnal standard results in 508 g/vehicle/year emissions, higher than 32 g/vehicle/year from Tier 2 vehicles. The U.S. driving cycle matches Beijing real-world conditions much better on both typical trip length and average speed than current European driving cycles. At least two requirements should be added to the Chinese emissions standards: an onboard refueling vapor recovery to force the canister to be sized sufficiently large, and a 48-h evaporation test requirement to ensure that adequate purging occurs over a shorter drive sequence. PMID:26599318

  14. A new gas detection technique utilizing amplified spontaneous emission light source from a ? co-doped silica fibre in the 2.0 ?m region

    NASA Astrophysics Data System (ADS)

    Oh, Kyunghwan; Morse, T. F.; Kilian, A.

    1998-09-01

    A new technique for the measurement of the concentration of gas species is presented. The method is based on absorption spectroscopy in the infrared region utilizing a high-power broad band amplified spontaneous emission source from an optical fibre. Vibrational bands of 0957-0233/9/9/007/img8 gas in the range 1.9-2.1 0957-0233/9/9/007/img9m were measured and the relative intensities of bands were calibrated in terms of concentration. The amplified spontaneous emission from a 0957-0233/9/9/007/img10 co-doped silica fibre pumped near 800 nm was used as a light source that consisted of the 0957-0233/9/9/007/img11 transition of the 0957-0233/9/9/007/img12 ion and the 0957-0233/9/9/007/img13 transition of the 0957-0233/9/9/007/img14 ion with a full width at half maximum of 225 nm and total output power over 1 mW. The technique has potential for the simultaneous detection of multiple gas species due to its high spectral energy density over a wide wavelength band in the infrared where the vibrational overtones of gas molecules are located.

  15. Electric-utility emissions: control strategies and costs

    SciTech Connect

    Van Horn, A.; Arpi, D.; Bowen, C.; Chapman, R.; Cooper, R.; Greenfield, S.; Moffett, M.; Wells, M.

    1981-04-01

    The Utility Simulation Model has been used to project the emissions, costs, and operating decisions of the electric utilities for each year between 1980 and 2000. For each steam generating unit in the United States, the model simulates the compliance decision, including choice of fuels and pollution controls, as well as emissions and pollution control costs. Results are aggregated to state, regional, and national levels. The results presented here, summarized by strategy for selected years, include SO/sub 2/ and NO/sub x/ emissions, annual revenue requirements, the average price of electricity, dollars per ton of SO/sub 2/ reduced, coal capacity with FGD, utility fuel consumption, and regional production of coal for utility consumption. Because the strategies analyzed were aimed at SO/sub 2/ reduction, the results focus on the emissions and costs of controlling SO/sub 2/. This report is not intended to provide complete analysis and interpretation of the numerical results given in Section 3.

  16. Historical evaluation of vehicle emission control in Guangzhou based on a multi-year emission inventory

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Liu, Huan; Wu, Xiaomeng; Zhou, Yu; Yao, Zhiliang; Fu, Lixin; He, Kebin; Hao, Jiming

    2013-09-01

    The Guangzhou government adopted many vehicle emission control policies and strategies during the five-year preparation (2005-2009) to host the 2010 Asian Games. This study established a multi-year emission inventory for vehicles in Guangzhou during 2005-2009 and estimated the uncertainty in total vehicle emissions by taking the assumed uncertainties in fleet-average emission factors and annual mileage into account. In 2009, the estimated total vehicle emissions in Guangzhou were 313 000 (242 000-387 000) tons of CO, 60 900 (54 000-70 200) tons of THC, 65 600 (56 800-74 100) tons of NOx and 2740 (2100-3400) tons of PM10. Vehicle emissions within the urban area of Guangzhou were estimated to be responsible for ˜40% of total gaseous pollutants and ˜25% of total PM10 in the entire city. Although vehicle use intensity increased rapidly in Guangzhou during 2005-2009, vehicle emissions were estimated to have been reduced by 12% for CO, 21% for THC and 20% for PM10 relative to those in 2005. NOx emissions were estimated to have remained almost constant during this period. Compared to the "without control" scenario, 19% (15%-23%) of CO, 20% (18%-23%) of THC, 9% (8%-10%) of NOx and 16% (12%-20%) of PM10 were estimated to have been mitigated from a combination of the implementation of Euro III standards for light-duty vehicles (LDVs) and heavy-duty diesel vehicles and improvement of fuel quality. This study also evaluated several enhanced vehicle emission control actions taken recently. For example, the enhanced I/M program for LDVs was estimated to reduce 11% (9%-14%) of CO, 9% (8%-10%) of THC and 2% (2%-3%) of NOx relative to total vehicle emissions in 2009. Total emission reductions by temporary traffic controls for the Asian Games were estimated equivalent to 9% (7%-11%) of CO, 9% (8%-10%) of THC, 5% (5%-6%) of NOx and 10% (8%-13%) of PM10 estimated total vehicle emissions in 2009. Those controls are essential to further vehicle emission mitigation in Guangzhou required by the new National Ambient Air Quality Standards.

  17. Controlling Emissions of SOx and NOx from power plants

    E-print Network

    Toohey, Darin W.

    zone" Alley, F.C., and C. David Cooper. Air Pollution Control: A Design Approach. 3rd ed. New York, NYControlling Emissions of SOx and NOx from power plants By: Ben Bernardo #12;Main Control are reduced drastically #12;Limestone Scrubbing Most widely used because it is very cost effective Current

  18. CONTROL OF SULFUR EMISSIONS FROM OIL SHALE RETORTS

    EPA Science Inventory

    The objectives of this study were to determine the best available control technology (BACT) for control of sulfur emissions from oil shale processing facilities and then to develop a design for a mobile slipstream pilot plant that could be used to test and demonstrate that techno...

  19. SUMMARY REPORT CONTROL OF NOX EMISSIONS BY REBURNING

    EPA Science Inventory

    This report covers NOx control employing reburning technology: A new, effective method of controlling NOx emissions from a wide range of stationary combustion sources including large, coal-fired, utility boilers. Although reburning potentially is applicable ...

  20. Optical control of the emission direction of a quantum dot

    SciTech Connect

    Luxmoore, I. J.; Wasley, N. A.; Fox, A. M.; Skolnick, M. S.; Ramsay, A. J.; Thijssen, A. C. T.; Oulton, R.; Hugues, M.; CNRS-CRHEA, rue Bernard Grégory, 06560 Valbonne

    2013-12-09

    Using the helicity of a non-resonant excitation laser, control over the emission direction of an InAs/GaAs quantum dot is demonstrated. The quantum dot is located off-center in a crossed-waveguide structure, such that photons of opposite circular polarization are emitted into opposite waveguide directions. By preferentially exciting spin-polarized excitons, the direction of emission can therefore be controlled. The directional control is quantified by using the ratio of the intensity of the light coupled into the two waveguides, which reaches a maximum of ±35%.

  1. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L. (Oak Ridge, TN)

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  2. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  3. Positional control of plasmonic fields and electron emission

    SciTech Connect

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R.

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800?nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  4. Complex instability of axially compressed tubular lipid membrane with controlled spontaneous curvature.

    PubMed

    Golushko, I Yu; Rochal, S B; Lorman, V L

    2015-10-01

    Tubular lipid membranes (TLMs) are formed by an external pulling force from artificial or biological bilayer vesicles and can be subsequently stabilized by incorporating proteins or amphiphilic polymers into the lipid bilayer. The arising spontaneous curvature of the lipid sheet allows switching off the pulling force without TLM destabilization. However, here we show that during this process two different thermal fluctuation modes drastically increase their amplitudes making fluctuations of the TLM much greater than its radius. Due to the system's proximity to the critical fluctuation point, a weak axial compressive force is sufficient to destabilize the TLM. Its absolute value is shown to be much smaller than that of the pulling force required for the initial lipid nanotube formation. Induced complex instability was studied in the frame of Landau phase transition theory. The process involves two consecutive second-order phase transitions and leads to the tube deformation combining annular corrugation with completely unconventional chiral buckling. PMID:26507403

  5. Modeling study of natural emissions, source apportionment, and emission control of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Shetty, Suraj K.

    Mercury (Hg) is a toxic pollutant and is important to understand its cycling in the environment. In this dissertation, a number of modeling investigations were conducted to better understand the emission from natural surfaces, the source-receptor relationship of the emissions, and emission reduction of atmospheric mercury. The first part of this work estimates mercury emissions from vegetation, soil and water surfaces using a number of natural emission processors and detailed (LAI) Leaf Area Index data from GIS (Geographic Information System) satellite products. East Asian domain was chosen as it contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. The estimated annual natural mercury emissions (gaseous elemental mercury) in the domain are 834 Mg yr-1 with 462 Mg yr-1 contributing from China. Compared to anthropogenic sources, natural sources show greater seasonal variability (highest in simmer). The emissions are significant, sometimes dominant, contributors to total mercury emission in the regions. The estimates provide possible explanation for the gaps between the anthropogenic emission estimates based on activity data and the emission inferred from field observations in the regions. To understand the contribution of domestic emissions to mercury deposition in the United States, the second part of the work applies the mercury model of Community Multi-scale Air Quality Modeling system (CMAQ-Hg v4.6) to apportion the various emission sources attributing to the mercury wet and dry deposition in the 6 United States receptor regions. Contributions to mercury deposition from electric generating units (EGU), iron and steel industry (IRST), industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC) in domain was estimated. The model results for 2005 compared reasonably well to field observations made by MDN (Mercury Deposition Network) and CAMNet (Canadian Atmospheric Mercury Measurement Network). The model estimated a total deposition of 474 Mg yr-1 to the CONUS (Contiguous United States) domain, with two-thirds being dry deposited. Reactive gaseous mercury contributed the most to 60% of deposition. Emission speciation distribution is a key factor for local deposition as contribution from large point sources can be as high as 75% near (< 100 km) the emission sources, indicating that emission reduction may result in direct deposition decrease near the source locations. Among the sources, BC contributes to about 68% to 91% of total deposition. Excluding the BC's contribution, EGU contributes to nearly 50% of deposition caused by CONUS emissions in the Northeast, Southeast and East Central regions, while emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). The modeling results implies that implementation of the new emission standards proposed by USEPA (United States Environmental Protection Agency) would significantly benefit regions that have larger contributions from EGU sources. Control of mercury emissions from coal combustion processes has attracted great attention due to its toxicity and the emission-control regulations and has lead to advancement in state-of-the-art control technologies that alleviate the impact of mercury on ecosystem and human health. This part of the work applies a sorption model to simulate adsorption of mercury in flue gases, onto a confined-bed of activated carbon. The model's performances were studied at various flue gas flow rates, inlet mercury concentrations and adsorption bed temperatures. The process simulated a flue gas, with inlet mercury concentration of 300 ppb, entering at a velocity of 0.3 m s-1 from the bottom into a fixed bed (inside bed diameter of 1 m and 3 m bed height; bed temperature of 25 °C) of activated carbon (particle size of 0.004 m with density of 0.5 g cm-3 and surface area of 90.25 cm2 g -1). The model result demonstrated that a batch of activated carbon

  6. Mercury emissions control technologies for mixed waste thermal treatment

    SciTech Connect

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.; Roberts, D.; Broderick, T.

    1997-12-31

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

  7. Self-organized global control of carbon emissions

    E-print Network

    Zhao, Zhenyuan; Hui, Pak Ming; Johnson, Neil F

    2009-01-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens' everyday health), industrial efficiency (affecting the nation's economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent, can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks.

  8. New emission controls for Missouri batch-type charcoal kilns

    SciTech Connect

    Yronwode, P.; Graf, W.J.

    1999-07-01

    Charcoal kilns have been exempted from air emission regulation in the state of Missouri. Today, 80% of US charcoal production takes place in Missouri. As a result of a petition filed by people in the area around an installation in southern Missouri, the US Environmental Protection Agency (EPA) set up air monitors and measured ambient air levels at that charcoal manufacturing installation. These monitors yielded the highest particulate matter less than 10 micron (PM{sub 10}) levels ever recorded in the state. Earlier stack testing at another charcoal manufacturing installation indicated that toxics and carcinogens are present in charcoal kiln air emissions. A Charcoal Kiln Workgroup was formed to determine the Best Available Control Technology (BACT) for charcoal kilns and to draft a charcoal kiln rule that requires BACT. The BACT report determined that afterburners were suitable for controlling emissions from batch-type charcoal kilns. In addition, the charcoal industry supported incorporating the BACT limits and requirements into an enforceable state rule and submitting this rule to the EPA for federal approval. A consent agreement between the EPA and three major charcoal companies was signed with provisions to install, operate, and maintain emission control devices on charcoal kilns. This agreement was to settle complaints alleging that the three major charcoal producers had failed to report toxic air emissions to federal and state regulators. The agreement provided that industry would install control devices on a set schedule with some charcoal kilns being shut down.

  9. Coal-fueled diesel technology development Emissions Control

    SciTech Connect

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  10. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    NASA Astrophysics Data System (ADS)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 ?J/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  11. Combined planar imaging of schlieren photography with OH-LIPF and spontaneous OH-emission in a 2-D valveless pulse combustor

    SciTech Connect

    Ishino, Yojiro; Hasegawa, Tatsuya; Yamaguchi, Shigeki; Ohiwa, Norio

    1999-07-01

    Using a novel optical system, simultaneous imaging of schlieren photography and laser induced predissociation fluorescence of OH radicals (OH-LIPF) have been carried out to examine combustion processes and flame structure in a two-dimensional valveless pulse combustor. Simultaneous imaging of schlieren photographs and spontaneous OH-emission have also been made, in order to obtain information on the behavior of the flame front during a cycle of pulsation. The pulse combustor used in this experiment consists of a combustion chamber of a volume of 125 cm{sup 3} and a tailpipe of a length of 976 mm, which is followed by an automobile muffler. The fuel used is commercial grade gaseous propane.

  12. Oscillation structures in the spontaneous emission rate of an atom in a medium with refractive index n between mirrors: a solvable model

    E-print Network

    H. J. Zhao; M. L. Du

    2006-12-18

    We study the multi-periodic oscillations in the spontaneous emission rate of an atom in a medium with refractive index n sandwiched between two parallel mirrors. The oscillations are not obvious in the analytical formula for the rate derived based on Fermi's golden rule but can be extracted using Fourier transforms by varying the system scale while holding the configuration. The oscillations are interpreted as interferences and correspond to various closed-orbits of the emitted photon going away from and returning to the atom. This system provides a rare example that the oscillations can be explicitly derived by following the emitted wave until it returns to the emitting atom. We demonstrate the summation over a large number of closed-orbits converges to the rate formula of golden rule.

  13. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

    PubMed

    Zettler, J K; Corfdir, P; Geelhaar, L; Riechert, H; Brandt, O; Fernández-Garrido, S

    2015-11-01

    We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time. PMID:26457772

  14. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process

    NASA Astrophysics Data System (ADS)

    Zettler, J. K.; Corfdir, P.; Geelhaar, L.; Riechert, H.; Brandt, O.; Fernádez-Garrido, S.

    2015-11-01

    We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.

  15. Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments

    NASA Astrophysics Data System (ADS)

    Mohtashami, Abbas; Femius Koenderink, A.

    2013-04-01

    Nitrogen-vacancy (NV) centers in diamond are generally recognized as highly promising as indefinitely stable highly efficient single-photon sources. We report an experimental quantification of the brightness, radiative decay rate, nonradiative decay rate and quantum efficiency of single NV centers in diamond nanocrystals. Our experiments show that the commonly observed large spread in fluorescence decay rates of NV centers in nanodiamond is inconsistent with the common explanation of large nanophotonic mode-density variations in the ultra-small high-index crystals at near-unity quantum efficiency. We report that NV centers in 25 nm nanocrystals are essentially insensitive to local density of optical states (LDOS) variations that we induce at a dielectric interface by using liquids to vary the refractive index, and propose that quantum efficiencies in such nanocrystals are widely distributed between 0 and 20%. For single NV centers in larger 100 nm nanocrystals, we show that decay rate changes can be reversibly induced by nanomechanically approaching a mirror to change the LDOS. Using this scanning mirror method, for the first time we report calibrated quantum efficiencies of NV centers, and show that different but nominally identical nanocrystals have widely distributed quantum efficiencies between 10 and 90%. Our measurements imply that nanocrystals that are to be assembled into hybrid photonic structures for cavity QED should first be individually screened to assess fluorescence properties in detail.

  16. On the understanding and control of the spontaneous heating of dried tannery wastewater sludge.

    PubMed

    Biasin, A; Della Zassa, M; Zerlottin, M; Refosco, D; Bertani, R; Canu, P

    2014-04-01

    We studied the spontaneous heating of dried sludge produced by treating wastewater mainly originating from tanneries. Heating up to burning has been observed in the presence of air and moisture, starting at ambient temperature. To understand and prevent the process we combined chemical and morphological analyses (ESEM) with thermal activity monitoring in insulated vessels. Selective additions of chemicals, either to amplify or depress the reactivity, have been used to investigate and identify both the chemical mechanism causing the sludge self-heating, and a prevention or a mitigation strategy. FeS additions accelerate the onset of reactivity, while S sustains it over time. On the contrary, Ca(OH)2, Na2CO3, NaHCO3, FeCl2, EDTA, NaClO can limit, up to completely preventing, the exothermic activity. All the experimental evidences show that the reactions supporting the dried sludge self-heating involve the Fe/S/O system. The total suppression of the reactivity requires amounts of additives that are industrially incompatible with waste reduction and economics. The best prevention requires reduction or removal of S and Fe from the dried solid matrix. PMID:24484766

  17. Enhanced control of mercury emissions through modified speciation

    SciTech Connect

    Livengood, C.D.; Mendelsohn, M.H.

    1997-07-01

    In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. Argonne National Laboratory has supported the DOE Fossil Energy Program for over 15 years with research on advanced environmental control technologies. The emphasis in Argonne`s work has been on integrated systems that combine control of several pollutants. Specific topics have included spray drying for sulfur dioxide and particulate-matter control with high-sulfur coal, combined sulfur dioxide and nitrogen oxides control technologies, and techniques to enhance mercury control in existing FGC systems. The latter area has focused on low-cost dry sorbents for use with fabric filters or electrostatic precipitators and techniques for improving the capture of mercury in wet flue-gas desulfurization (FGD) systems. This paper presents results from recent work that has studied the effects of several oxidizing agents in combination with typical flue-gas species (e.g., nitrogen oxides and sulfur dioxide) on the oxidation of Hg{sup 0}.

  18. The interplay of controlled and automatic processing in the expression of spontaneously inferred traits: A PDP analysis.

    PubMed

    McCarthy, Randy J; Skowronski, John J

    2011-02-01

    Inferences made about actors influence subsequent processing about those actors. Three experiments conducted in the context of spontaneous trait inference (STI) making demonstrate that such influences occur can either occur via automatic processes or via controlled processes. Results from Experiment 1 demonstrated that processing goals manipulated prior to encoding actor behavior affected the extent to which STIs automatically influenced subsequent responses but did not alter the extent to which STIs influenced those responses via controlled processes. Results from Experiment 2 showed that the extent to which STIs affected subsequent responding via the action of controlled processes were more affected by a delay between exposure to an actor behavior and the response task than the extent to which STIs affected task performance via the action of automatic processes. Finally, results from Experiment 3 showed that participants' subjective experience of awareness of their trait inferences is related to estimates of the extent to which controlled processing is involved in the production of their future responses but not to estimates of the extent to which those responses are affected by automatic processing. PMID:21299314

  19. Survey of medical waste incinerators and emissions control. Final report

    SciTech Connect

    Barton, R.G.; Hansell, D.W.; Furlong, D.; Hassell, G.R.; Lanier, W.S.

    1992-01-01

    The report contains two volumes. Volume I of the report assesses the state-of-the-art of medical waste thermal treatment. The program involved a survey of existing information on medical waste treatment. This information was combined with data from municipal and hazardous waste combustion to identify potential mechanisms responsible for toxic emissions. Manufacturers of combustion and flue gas cleaning equipment were contacted. Information on current design practice was obtained. Volume II was prepared to assist local air pollution management districts implement Section 93104, Title 17, of the California Code of Regulations. Section 93104 places restrictions on polychlorodibenzo-p-dioxins (PCDD) and polychlorodibenzofurans (PCDF) emission levels and medical waste incinerator operating parameters which may affect PCDD/PCDF emissions. Part I of Volume II provides direct guidance for implementing the regulations. Part II provides background information on the operation and capabilities of flue gas cleaning systems used to control particulate, acid gas, metals, and PCDD/PCDF emissions.

  20. Emissions, combustion dynamics, and control of a multiple swirl combustor

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang

    To achieve single digit NOx emission from gas turbine combustors and prevent the combustion dynamics encountered in Lean Premixed Combustion, it is essential to understand the correlations among emission characteristics, combustion dynamics, and dynamics and characteristics of swirling flow field. The focus of this dissertation is to investigate the emission characteristics and combustion dynamics of multiple swirl dump combustors either in premixing or non-premixed combustion (e.g. Lean Direct Injection), and correlate these combustion characteristics (emissions, combustion instability and lean flammability) to the fluids dynamics (flow structures and its evolution). This study covers measurement of velocity flow field, temperature field, and combustion under effects of various parameters, including inlet flow Reynolds number, inlet air temperature, swirl configurations, downstream exhaust nozzle contraction ratios, length of mixing tube. These parameters are tested in both liquid and gaseous fuel combustions. Knowledge obtained through this comprehensive study is applied to passive and active controls for improving gas turbine combustion performance in the aid of novel sensor and actuator technologies. Emissions and combustion characteristics are shown closely related to the shape and size of central recirculation zone (CRZ), the mean and turbulence velocity and strain rate, and dynamics of large vortical structures. The passive controls, mostly geometry factors, affect the combustion characteristics and emissions through their influences on flow fields, and consequently temperature and radical fields. Air assist, which is used to adjust the momentum of fuel spray, is effective in reducing NOx and depress combustion oscillation without hurting LBO. Fuel distribution/split is also one important factor for achieving low NOx emission and control of combustion dynamics. The dynamics of combustion, including flame oscillations close to LBO and acoustic combustion instability, can be characterized by OH*/CH* radical oscillations and phase-locked chemiluminescence imaging. The periodic fluctuation of jet velocity and formation of large vortical structures within CRZ are responsible for combustion instability in multiple swirl combustors.

  1. Switching regulator emission control circuit for ion sources

    NASA Technical Reports Server (NTRS)

    Clay, F. P., Jr.; Brock, F. J.; Melfi, L. T., Jr.

    1975-01-01

    An electron emission control circuit of the switching regulator type operating at 100 kHz has been developed which maintains a constant emission current within 0.1% for a cathode power demand variation of approximately 100%. The power output stage has an efficiency of 67%, and the overall efficiency is 45% when driving a thoria-coated iridium cathode having a nominal resistance at operating temperature of 2.5 ohms. Under optimum conditions, the bus power demand is 1.75 W. The circuit is useful in controlling the electron emission current of ion sources in applications which involve a substantial variation of the cathode work function, such as oxygen partial pressure measurements over a large dynamic range.

  2. ASSESSMENT OF THE USE OF FUGITIVE EMISSION CONTROL DEVICES

    EPA Science Inventory

    The report compares the efficiencies and utility consumptions expected from three fugitive emission control techniques--building evacuation, charged fog sprays, and water sprays with additives--if they were applied in primary lead and copper smelters. Estimates are provided of th...

  3. SPRAY CHARGING AND TRAPPING SCRUBBER FOR FUGITIVE PARTICLE EMISSION CONTROL

    EPA Science Inventory

    The report gives results of a theoretical and experimental evaluation of the control of fugitive particle emissions (FPE) with a Spray Charging and Trapping (SCAT) Scrubber that uses an air curtain and/or jets to contain, convey, and divert the FPE into a charged spray scrubber. ...

  4. PHYSICAL COAL CLEANING FOR UTILITY BOILER SO2 EMISSION CONTROL

    EPA Science Inventory

    The report examines physical coal cleaning as a control technique for sulfur oxides emissions. It includes an analysis of the availability of low-sulfur coal and of coal cleanable to compliance levels for alternate New Source Performance Standards (NSPS). Various alternatives to ...

  5. Emission control valve with internal spring

    SciTech Connect

    Betterton, J.T.; Glover, A.H.; McKee, T.S.; Romanczuk, C.S.

    1990-03-06

    This patent describe, with an internal combustion engine, a crankcase gas flow control device located between the engine crankcase and the engine fuel-air induction. It comprises: a hollow housing defining an inlet at one end, a cylindrical flow passage, a diverging orifice passage and an outlet passage; a slender rod extending coaxially through the cylindrical flow passage and the diverging orifice passage; a tubular valve element within the housing and supported about the slender rod thereby allowing axial movement of the valve element along the rod; a coil-type compression spring extending about the rod and within the tubular valve element, one end of the spring fixedly connected to the rod, the other end of the spring bearing against the tubular valve element tending to move it along the rod toward the housing inlet and away from the diverging orifice passage whereby a gas pressure differential produced between the crankcase and the fuel-air induction causes the valve element to move against the spring force and resultantly the gas flows over the exterior of the valve element without interference by the spring thereby preventing turbulence. The housing has a walled elbow portion between the diverging orifice passage and the outlet whereby the downstream end of the rod is supported by the elbow wall.

  6. NOx Sensor for Direct Injection Emission Control

    SciTech Connect

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

  7. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

    PubMed

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-01-01

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly. PMID:26436776

  8. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission

    PubMed Central

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-01-01

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly. PMID:26436776

  9. Stark interaction of identical particles with the vacuum electromagnetic field as quantum Poisson process suppressing collective spontaneous emission

    SciTech Connect

    Basharov, A. M.

    2011-07-15

    The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for terms of second order in the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of first order in the coupling constant are represented by the quantum Wiener process, whereas terms of second order are expressed by the quantum Poisson process. During the course of the investigation, it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. Fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppression in the collective decaying process of an excited ensemble with a determined number of particles.

  10. Control of Trace Metal Emissions During Coal Combustion

    SciTech Connect

    Thomas C. Ho

    1997-10-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The project was started on July 1, 1994 and this is the thirteenth quarterly technical progress report. Specifically, the following progress has been made during this performance period from July 1, 1997 through September 30, 1997.

  11. Air emission control equipment - the new challenge for equpiment suppliers

    SciTech Connect

    Lobb, F.H.

    1997-12-31

    The combination of Title V, the CAM Rule and the Credible Evidence Rule demand industrial sites view the selection and operation of emission control devices in a whole new light. No longer can users see these devices as detached end of pipe pieces of equipment essentially purchased off lowest bid. These regulatory changes force plants to fully integrate the operation of these devices into their process control systems and instrumentation. And this is specifically EPA`s stated intent. EPA believes that by forcing sites to exercise the same knowledge and attention to air emissions that they do to operate their production processes, emissions will undergo a natural reduction across the country. Process and operational data that historically has been the sole province of sites becomes public. And compliance with state defined requirements must be demonstrated essentially continuously. This paper explores the new approach to compliance and provides insight through specific field examples/installations of emission control equipment. The author seeks to promote understanding through discussion of these significant regulatory changes.

  12. Revisiting factors controlling methane emissions from high-arctic tundra

    NASA Astrophysics Data System (ADS)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Tagesson, Torbern; Strom, Lena; Tamstorf, Mikkel; Lund, Magnus; Christensen, Torben

    2013-04-01

    Among the numerous studies of methane emission from northern wetlands the number of measurements carried on at high latitudes (north of the Arctic Circle) is very limited, and within these there is a bias towards studies of the growing season. Here we present results of five years of automatic chamber measurements at a high-arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in period. The measurements show clear seasonal dynamics in methane emission. In the beginning of the growing season increase in CH4 fluxes was strongly related to the date of snow melt. The greatest variation in fluxes between the study years were observed during the first part of the growing season. Somewhat surprisingly this variability could not be explained by commonly known factors controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4 coinciding with soil freezing in the autumn were observed at least during three out of five years 2006 - 2010. The accumulated emission during the freeze-in CH4 bursts was comparable in size with the growing season emission for the year 2007, and about one third of the growing season emissions for the years 2009 and 2010. In all three cases the CH4 burst was accompanied by a corresponding episodic increase in CO2 emission, which can compose a significant contribution to the annual CO2 flux budget. The most probable mechanism of the late season CH4 and CO2 bursts is physical release of gases, accumulated in the soil during the growing season. In this study we investigate the drivers and links between growing season and late season fluxes. The reported surprising seasonal dynamics of CH4 emissions at this site show that there are important occasions where conventional knowledge on factors controlling methane emissions is overruled by other processes, acting in longer than seasonal time scales. Our findings suggest the importance of multiyear studies with continued focus on shoulder seasons.

  13. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...PET and polystyrene affected sources-emissions control provisions. 63.1316 Section...AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air...

  14. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...and polystyrene affected sources-emissions control provisions. 63.1316...PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air...

  15. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...and polystyrene affected sources-emissions control provisions. 63.1316...PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air...

  16. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...PET and polystyrene affected sources-emissions control provisions. 63.1316 Section...AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air...

  17. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  18. The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, J.; Nielsen, C. P.

    2014-03-01

    To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total primary particulate matter (PM), PM10, and PM2.5 are estimated to decline 7%, 20%, 41%, 34%, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and partial implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17% (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12% and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants and taking account of more diverse environmental impacts is also urgently needed.

  19. The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, J.; Nielsen, C. P.

    2014-09-01

    To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.

  20. Soil acidification in China: Is controlling SO2 emissions enough?

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C. P.; Hao, J.

    2009-12-01

    Facing challenges of regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector, in order to achieve the national goal of 10% reduction in sulfur dioxide (SO2) emissions from 2005 to 2010. In this study, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO2, oxides of nitrogen (NOX), particulate matter (PM), and ammonia (NH3) in 2005 were estimated to be 30.7, 19.6, 31.3 and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO2 and PM emissions, while those of NOX and NH3 will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur deposition (indicated by CLmax(S)) was exceeded in 28% of the country’s territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (combining effects of eutrophication and acidification, indicated by CL(N)) will double from 2005 to 2020 due to increased NOX and NH3 emissions. Combining the acidification effects of S and N(indicated by CL(S)), the benefits of SO2 reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (both NOX and NH3) and deposition will be a major challenge to China, requiring both policy development and technology investments. To mitigate acidification in the future, China needs a multi-pollutant control strategy that integrates measures to reduce S, N and PM. Exceedances of critical loads for acidification and nutrient nitrogen in 2005, 2010, and 2020. Critical load exceedance in 2005, 2010 and 2020

  1. Control of Several Emissions during Olive Pomace Thermal Degradation

    PubMed Central

    Miranda, Teresa; Nogales, Sergio; Román, Silvia; Montero, Irene; Arranz, José Ignacio; Sepúlveda, Francisco José

    2014-01-01

    Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min?1. The following species were analysed: aromatic compounds (benzene and toluene), sulphur emissions (sulphur dioxide), 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor. PMID:25314298

  2. Ozone trends in Atlanta, Georgia - Have emission controls been effective?

    NASA Technical Reports Server (NTRS)

    Lindsay, Ronald W.; Richardson, Jennifer L.; Chameldes, William L.

    1989-01-01

    Nine years of summertime ozone data from the Atlanta metropolitan area are analyzed and compared to local emissions of volatile organic carbon and nitrogen oxides. Trends from 1979 to 1987 were studied for the number of days per year ozone exceeded the NAAQS standard, the second-highest ozone level observed per year, and the first quartile summertime average ozone observed, as well as the mean difference between the ozone level observed downwind and upwind of the city. Because this last parameter is sensitive to chemical factors but relatively insensitive to the number of days each year with meteorological conditions conducive to ozone formation, its trend may be best suited for determining how effective emission controls have been in reducing O3 in the Atlanta area. In spite of the fact that sizeable reductions have been claimed for volatile organic carbon emissions over the past several years, the data give no indication that ozone levels have decreased and in fact, imply that summertime ozone production may have increased. The results imply that either emissions have not decreased as much as has been claimed or that ozone is not sensitive to anthropogenic volatile organic carbon emissions.

  3. Health and climate policy impacts on sulfur emission control

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Russell, Lynn M.; Bradford, David F.

    2005-12-01

    Sulfate aerosol from burning fossil fuels not only has strong cooling effects on the Earth's climate but also imposes substantial costs on human health. To assess the impact of addressing air pollution on climate policy, we incorporate both the climate and health effects of sulfate aerosol into an integrated-assessment model of fossil fuel emission control. Our simulations show that a policy that adjusts fossil fuel and sulfur emissions to address both warming and health simultaneously will support more stringent fossil fuel and sulfur controls. The combination of both climate and health objectives leads to an acceleration of global warming in the 21st century as a result of the short-term climate response to the decreased cooling from the immediate removal of short-lived sulfate aerosol. In the long term (more than 100 years), reducing sulfate aerosol emissions requires that we decrease fossil fuel combustion in general, thereby removing some of the coemitted carbon emissions and leading to a reduction in global warming.

  4. Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices

    SciTech Connect

    Parks, II, James E; Kass, Michael D; Huff, Shean P; Barone, Teresa L; Lewis Sr, Samuel Arthur; Prikhodko, Vitaly Y; Storey, John Morse

    2010-01-01

    A light-duty diesel engine has been operated in advanced combustion modes known generally as premixed charge compression ignition (PCCI). The emissions have been characterized for several load and speed combinations. Fewer NO{sub x} and particulate matter (PM) emissions are produced by PCCI, but higher CO and hydrocarbon (HC) emissions result. In addition, the nature of the PM differs from conventional combustion; the PM is smaller and has a much higher soluble organic fraction (SOF) content (68% vs. 30% for conventional combustion). Three catalyst technologies were studied to determine the affects of HECC on catalyst performance; the technologies were a lean NO{sub x} trap (LNT), diesel oxidation catalyst (DOC), and diesel particulate filter (DPF). The LNT benefited greatly from the reduced NO{sub x} emissions associated with PCCI. NO{sub x} capacity requirements are reduced as well as overall tailpipe NO{sub x} levels particularly at low load and temperature conditions where regeneration of the LNT is difficult. The DOC performance requirements for PCCI are more stringent due to the higher CO and HC emissions; however, the DOC was effective at controlling the higher CO and HC emissions at conditions above the light-off temperature. Below light-off, CO and HC emissions are problematic. The study of DPF technology focused on the fuel penalties associated with DPF regeneration or 'desoot' due to the different PM loading rates from PCCI vs. conventional combustion. Less frequent desoot events were required from the lower PM from PCCI and, when used in conjunction with an LNT, the lower PM from less frequent LNT regeneration. The lower desoot frequency leads a {approx}3% fuel penalty for a mixture of PCCI and conventional loads vs. {approx}4% for conventional only combustion.

  5. The Control of NOx Emissions from Combustion and Incinerators 

    E-print Network

    Heap, M. P.; Chen, S. L.; Seeker, W. R.; Pershing, D. W.

    1988-01-01

    staged combustion and reburning, for the control of nitrogen oxide emissions from coal fired combustors is most often limited by problems due to carbon burnout or flame impingement. This paper presents new data on the use of selective reducing agents... process. The kinetic modeling suggests thst the critical factor is an external source of OH radicals to initiate the decomposition of the agent. In the present approach the oxidation of the CO from the fuel rich stage provides the OH. Finally, a...

  6. Controlling automotive exhaust emissions: successes and underlying science.

    PubMed

    Twigg, Martyn V

    2005-04-15

    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures. PMID:15901550

  7. DEGRADATION OF EMISSIONS CONTROL PERFORMANCE OF WOODSTOVES IN CRESTED BUTTE, CO

    EPA Science Inventory

    The report discusses the degradation of emissions control performance of woodstoves in Crested Butte, Colorado. Four seasons of field monitoring of EPA-certified woodstoves in and around Crested Butte has demonstrated some significant failures in emissions control performance. In...

  8. 40 CFR 57.702 - Compliance with constant control emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Compliance with constant control emission limitation... PRIMARY NONFERROUS SMELTER ORDERS Compliance Schedule Requirements § 57.702 Compliance with constant control emission...

  9. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...emission controls for certain wood products. 3280.308 Section...emission controls for certain wood products. (a) Formaldehyde...particleboard: (A) The finishing or top coat is changed and the new finishing or top coat has a greater...

  10. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...emission controls for certain wood products. 3280.308 Section...emission controls for certain wood products. (a) Formaldehyde...particleboard: (A) The finishing or top coat is changed and the new finishing or top coat has a greater...

  11. The effect of spontaneously generated coherence on the Goos-Hänchen shifts behavior

    NASA Astrophysics Data System (ADS)

    Rezaei, Mojtaba; Sahrai, Mostafa

    2014-12-01

    The behavior of the Goos-Hänchen (GH) shifts of a probe beam reflected from or transmitted through a cavity with a fixed geometrical configuration is theoretically investigated. It is shown that in the absence of coherent control fields and just by quantum interference of spontaneous emission, the behavior of GH shift can be controlled.

  12. Effects of a T-type calcium channel blocker, ABT-639, on spontaneous activity in C-nociceptors in patients with painful diabetic neuropathy: a randomized controlled trial.

    PubMed

    Serra, Jordi; Duan, W Rachel; Locke, Charles; Solà, Romà; Liu, Wei; Nothaft, Wolfram

    2015-11-01

    T-type calcium channels are a potential novel target for treatment of neuropathic pain such as painful diabetic neuropathy. ABT-639 is a peripherally acting highly selective T-type Cav3.2 calcium channel blocker that has demonstrated analgesic efficacy in preclinical models and may have the potential to reduce spontaneous fiber activity. Microneurography is a unique technique that directly assesses the function of peripheral sensory afferents and measures abnormal spontaneous activity in single peripheral nociceptive C fibers. Abnormal spontaneous activity in C-nociceptors functions as a marker for spontaneous pain, as reduction of this activity could indicate analgesic efficacy. This randomized, double-blind controlled study evaluated the effects of a single 100-mg oral dose of ABT-639, compared with placebo, on abnormal spontaneous activity in peripheral C-nociceptors, measured for the first time by microneurography in adult patients with painful diabetic neuropathy. Lidocaine was included in this study and compared with placebo. Pharmacokinetics and safety of ABT-639 were evaluated. Thirty-nine patients were randomized, and a total of 56 analyzable C-nociceptors with spontaneous activity were identified in 34 patients. There were no significant differences in C-nociceptor activities after ABT-639 treatment vs placebo. Similar findings were observed for lidocaine vs placebo. There were no clinically significant findings in the safety of ABT-639. Further research of T-type Cav3.2 calcium channels as potential treatment targets for painful diabetic neuropathy is warranted. The utilization of microneurography as a means to measure abnormal activity in C-nociceptors in human clinical studies opens new possibilities for future studies of compounds targeting peripheral nerve hyperexcitability. ClinicalTrials.gov identifier: NCT01589432. PMID:26035253

  13. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.

    PubMed

    Estrin, Y; Rich, D H; Rozenfeld, N; Arad-Vosk, N; Ron, A; Sa'ar, A

    2015-10-30

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ?2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ?sp, and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals. PMID:26436289

  14. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Rich, D. H.; Rozenfeld, N.; Arad-Vosk, N.; Ron, A.; Sa'ar, A.

    2015-10-01

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ˜2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ?sp, and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

  15. Solution processable 2-(trityloxy)ethyl and tert-butyl group containing amorphous molecular glasses of pyranylidene derivatives with light-emitting and amplified spontaneous emission properties

    NASA Astrophysics Data System (ADS)

    Zarins, Elmars; Vembris, Aivars; Misina, Elina; Narels, Martins; Grzibovskis, Raitis; Kokars, Valdis

    2015-11-01

    Small organic molecules with incorporated 4H-pyran-4-ylidene (pyranylidene) fragment as the ?-conjugation system which bonds the electron acceptor fragment (A) with electron donor part (D) in the molecule - also well known as derivatives of 4-(dicyano-methylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran (DCM) laser dye-have attracted considerable attention of scientists as potential new generation materials for organic photonics and molecular electronics due to their low-cost fabrication possibility, flexibility and low-weight. Six glassy derivatives of 4H-pyran-4-ylidene (pyranylidene) with attached bulky 2-(trityloxy)ethyl and tert-butyl groups are described in this report. Almost all of the synthesized compounds form good optical quality transparent amorphous films from volatile organic solvents and could be obtained in good yields up to 75%. Their light emission in solution and thin solid films is in the range of 600-700 nm, they are thermally stable and show glass transition in the range of 108-158 °C. The amplified spontaneous emission threshold values of the neat films of the glassy pyranylidene derivatives vary from 155 to 450 ?J/cm2 and their HOMO and LUMO energy levels are between of those of tris(8-hydroxy quinolinato) aluminum (Alq3). The photoluminescence quantum yields of the glassy compounds are in the range from 1% to about 7.7% and their electroluminescence properties have been investigated. Therefore, glassy pyranylidene derivatives could be a very potential low-cost solution processable materials for Alq3 hosted light-amplification and light-emitting application studies.

  16. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission.

    PubMed

    Pan, Jun; Sarmah, Smritakshi P; Murali, Banavoth; Dursun, Ibrahim; Peng, Wei; Parida, Manas R; Liu, Jiakai; Sinatra, Lutfan; Alyami, Noktan; Zhao, Chao; Alarousu, Erkki; Ng, Tien Khee; Ooi, Boon S; Bakr, Osman M; Mohammed, Omar F

    2015-12-17

    We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic-organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes. The latter has not been observed before in the family of perovskite materials. More importantly, passivated perovskite QD films showed remarkable photostability under continuous pulsed laser excitation in ambient conditions for at least 34 h (corresponds to 1.2 × 10(8) laser shots), substantially exceeding the stability of other colloidal QD systems in which ASE has been observed. PMID:26624490

  17. Self-assembly, highly modified spontaneous emission and energy transfer properties of LaPO4:Ce3+, Tb3+ inverse opals.

    PubMed

    Zhu, Yongsheng; Sun, Zhipeng; Yin, Ze; Song, Hongwei; Xu, Wen; Wang, Yunfeng; Zhang, Ligong; Zhang, Hanzhuang

    2013-06-14

    The modification of photonic crystals (PCs) on photoluminescence of rare earth (RE) ions has attracted considerable interest, however, the modification of PCs on energy transfer (ET) processes of two separate RE centers has not been investigated yet. In this paper, three-dimensional Ce(3+), Tb(3+)-codoped LaPO4 inverse opal PCs (IOPCs) were fabricated by the PMMA colloidal template method. The modification of the photonic stop band (PSB) on emission spectra and the dynamics of the 5d-4f transition of Ce(3+) and the 4f-4f transition of Tb(3+) ions were systematically studied. It is interesting to observe that the spontaneous decay rates (SDR) of (5)D4-(7)F5 in the IOPCs were suppressed as highly as 173% in contrast to the reference ground powder samples (REF) due to the modification of the effective refractive index (n(eff)). The energy transfer (ET) rate of Ce(3+) to Tb(3+) did not change in the IOPCs, however, the energy migration rate among Tb(3+) ions was largely restrained. It is also significant to observe that, in the IOPCs, the temperature quenching and radiation trapping of photoluminescence were greatly suppressed due to the periodic empty cavity structure of IOPCs, which is significant for high-power light sources and laser devices. PMID:23571776

  18. Synergy between Pollution and Carbon Emissions Control: Comparing China and the U.S.

    E-print Network

    Synergy between Pollution and Carbon Emissions Control: Comparing China and the U.S. Kyung-Min Nam between Pollution and Carbon Emissions Control: Comparing China and the U.S. Kyung-Min Nam* , Caleb J synergy between pollution and climate control in the U.S. and China, summarizing the results as emissions

  19. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would not be effective for control. Testing in the combustor rig showed that open-loop pulsing of the fuel was, in fact, able to effectively modulate the combustor pressure. To suppress the combustor pressure oscillations due to thermoacoustic instabilities, it is desirable to time the injection of the fuel so that it interferes with the instability. A closed-loop control scheme was developed that uses combustion pressure feedback and a phase-shifting controller to time the fuel-injection pulses. Some suppression of the pressure oscillations at the 280-Hz instability frequency was demonstrated (see the next figure). However, the overall peak-to- peak pressure oscillations in the combustor were only mildly reduced. Improvements to control hardware and control methods are being continued to gain improved closed-loop reduction of the pressure oscillations.pulse the fuel at

  20. THE IMPACT OF PARTICULATE EMISSIONS CONTROL ON THE CONTROL OF OTHER MWC AIR EMISSIONS

    EPA Science Inventory

    On December 20, 1989, the Environmental Protection Agency (EPA) proposed revised new source performance standards for new municipal waste combustion (MWC) units and guidelines for existing sources. The proposed national regulations require tighter particulate matter control and a...

  1. Technology for CO{sub 2} emission monitoring and control

    SciTech Connect

    Joyce, E.L. Jr.; Unkefer, P.J.; Pendergrass, J.H.; Parkinson, W.J.; Loose, V.W.; Brainard, J.R.

    1998-12-31

    The authors examined three specific areas relative to CO{sub 2} emissions and controls: (1) the effect of deregulation of the utility industry on emissions, (2) the role of advanced power systems in reducing emissions, and (3) developing CO{sub 2} mitigation technologies. In this work the Energy Technologies program office at Los Alamos attempted to initiate an integrated approach that includes a range of tasks involving both point and distributed CO{sub 2} control. The authors have examined evolving mitigation (separation and sequestration) technologies for CO{sub 2} disposal. The separation of hydrogen gas from high-temperature CO{sub 2}-containing streams is a critical component of carbon dioxide mitigation technology, and cost-effective point sequestration will require separation of CO{sub 2} from H{sub 2}. They investigated four types of separation techniques: two high-temperature membrane technologies, an intermediate-temperature membrane technology, and a separation technology based on the formation of CO{sub 2} hydrate compounds through reaction of CO{sub 2} with water at near freezing conditions. At Los Alamos, sequestration technologies are being developed along three principal areas: mineral sequestration of CO{sub 2}, the enhancement of natural sinks using biotechnology methods, and the conversion of CO{sub 2} to methanol using high-temperature photolysis.

  2. Proposed rule highlights need for effective emissions monitoring, control

    SciTech Connect

    Not Available

    1994-03-01

    While the regulated community for the last year or so has found comfort in reports that EPA has failed to meet its mandated schedule for issuing new CAA regulations and setting compliance deadlines, the Agency has not been idle. The Agency in October proposed a major rule that would, in effect, abandon traditional methods of monitoring and enforcing compliance with CAA's air pollution control regulations. Instead of relying on plant inspections or citizens' complaints to uncover regulatory infractions, the proposed regulations would require most emissions sources to demonstrate--not during a single test or inspection, but continuously--compliance with emissions regulations. This proposed continuous, or enhanced,'' monitoring rule would be tied to CAA's Title 5 operating permit program.

  3. Greenhouse gas emission from covered windrow composting with controlled ventilation.

    PubMed

    Ermolaev, Evgheni; Pell, Mikael; Smårs, Sven; Sundberg, Cecilia; Jönsson, Håkan

    2012-02-01

    Data on greenhouse gas (GHG) emissions from full-scale composting of municipal solid waste, investigating the effects of process temperature and aeration combinations, is scarce. Oxygen availability affects the composition of gases emitted during composting. In the present study, two experiments with three covered windrows were set up, treating a mixture of source separated biodegradable municipal solid waste (MSW) fractions from Uppsala, Sweden, and structural amendment (woodchips, garden waste and re-used compost) in the volume proportion 1:2. The effects of different aeration and temperature settings on the emission of methane (CH(4)), nitrous oxide (N(2)O) and carbon dioxide (CO(2)) during windrow composting with forced aeration following three different control schemes were studied. For one windrow, the controller was set to keep the temperature below 40 °C until the pH increased, another windrow had minimal aeration at the beginning of the process and the third one had constant aeration. In the first experiment, CH(4) concentrations (CH(4):CO(2) ratio) increased, from around 0.1% initially to between 1 and 2% in all windrows. In the second experiment, the initial concentrations of CH(4) displayed similar patterns of increase between windrows until day 12, when concentration peaked at 3 and 6%, respectively, in two of the windrows. In general, the N(2)O fluxes remained low (0.46 ± 0.02 ppm) in the experiments and were two to three times the ambient concentrations. In conclusion, the emissions of CH(4) and N(2)O were low regardless of the amount of ventilation. The data indicates a need to perform longer experiments in order to observe further emission dynamics. PMID:21994145

  4. CONTROL OF AIR EMISSIONS FROM MOLYBDENUM ROASTING. VOLUME 1. EMISSIONS CHARACTERIZATION AND PARTICULATE CONTROL

    EPA Science Inventory

    The primary objective of this project was to evaluate a baghouse employing Teflon coated fabric bags for particulate recovery and control. This system was of great interest because of the corrosion resistance of Teflon coated fabric filters and this unique application in the nonf...

  5. Optimizing the mix of strategies for control of vehicular emissions

    SciTech Connect

    Lejano, R.P.; Ayala, P.M.; Gonzales, E.A.

    1997-01-01

    A number of strategies for the control of vehicular emissions are being considered by the Philippine government to address Metropolitan Manila`s air quality problem. An analytical tool is needed for optimizing criteria pollutant reductions given the budgetary constraints. The simplest approach is to take costs and pollutant removals to be linear with each strategy`s scale of activity, and this is readily solved as a linear programming problem. Another approach is to use a dynamic system of weights which shift with progressive improvements in pollutant emissions. The two approaches yield somewhat different results, suggesting the sensitivity of the solution to the assumed weights. The study also illustrates the importance of a sound methodology for evaluating priorities given to different air quality goals. One such methodology may involve a polling of expert panels and the public to gain insight into the relative importance given to competing emissions reduction goals. An informal polling of resource agency staff was conducted and discussed in this paper. The authors take the position that proper planning involves tracing intermediate steps to the final outcome and not just focusing on the latter. 17 refs., 1 fig., 8 tabs.

  6. Controlling GT arc length from arc light emissions

    SciTech Connect

    Richardson, R.W.; Edwards, F.S.

    1996-12-31

    Conventional systems for mechanized Gas Tungsten Arc (GTA) welding control arc length by utilizing its well known relationship with arc voltage. Such systems maintain a constant arc voltage by movement of the torch relative to the work surface. This has proven to be practicable over the years where the welding machine operator can make frequent visual observations of arc length, and then adjust the arc voltage set point in order to compensate for subtle changes in the arc length/arc voltage relationship. Fully automated robotic type welding systems do not present this luxury since weld cycles are required to proceed over long periods without manual intervention. The key fundamental difficulty is that the arc voltage is dominated by large voltage drops near the electrode surfaces which are independent of arc length. This paper presents a review of past and related work in the area, followed by results of a new study of arc light sensitivity and its application to arc length control. For this work, a standard automatic voltage controller was used which was modified to receive either arc voltage or a suitably scaled voltage signal derived from an arc light emission sensor. This allowed a direct comparison of conventional and arc light based control approaches. It was found that arc light control behaved more robustly when encountering disturbances which are known to seriously trouble a voltage based control. A prime example is welding from one base material onto another which was found to produce only a minor effect on a light based control, but unacceptable behavior of a voltage control. Details of experiments and results are presented.

  7. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2014-01-01

    To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning. PMID:25414644

  8. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control

    PubMed Central

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2014-01-01

    To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning. PMID:25414644

  9. Control of acid mist emissions from FGD systems

    SciTech Connect

    Dahlin, R S; Brown, T D

    1991-01-01

    Improved control of acid mist emissions can be achieved by replacing or augmenting the conventional mist eliminators with a wet electrostatic precipitator (WESP). This paper describes a two-phased study performed to determine the degree of control that can be achieved with this approach. Phase I was a study of the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  10. CONTROL OF TRACE METAL EMISSIONS DURING COAL COMBUSTION

    SciTech Connect

    THOMAS C. HO

    1998-02-18

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. This final technical report details the work performed, the conclusions obtained, and the accomplishments achieved over the project performance period from July 1, 1994 through December 31, 1997. Specifically, this report consists of the following five chapters: Chapter 1. Executive Summary; Chapter 2. Metal Capture by Various Sorbents; Chapter 3. Simultaneous Metal and Sulfur Capture; Chapter 4. Sorption and Desorption of Mercury on Sorbents; and Chapter 5. Project Conclusions. In summary, the metals involved in the project were arsenic, cadmium, chromium, lead, mercury and selenium and the sorbents tested included bauxite, zeolite and calcined limestone. The three sorbents have been found to have various degree of metal capture capability on arsenic, cadmium, chromium and lead. Among them, calcined limestone is capable of simultaneouely capturing metals and sulfur. Mercury and selenium, however, can not be effectively retained by these sorbents under the combustion conditions. Mercury adsorption by sorbents at low temperatures was also investigated and the developed mass transfer model for mercury absorption appears to describe reasonably well the experimental results. Overall, the project has generated 18 presentations and/or publications in professional conferences and journals.

  11. CO? laser emission modes to control enamel erosion.

    PubMed

    Scatolin, Renata Siqueira; Alonso-Filho, Fernando Luiz; Galo, Rodrigo; Rios, Daniela; Borsatto, Maria Cristina; Corona, Silmara Aparecida Milori

    2015-08-01

    Considering the importance and prevalence of dental erosion, the aim of this in vitro study was to evaluate the influence of different modes of pulse emission of CO2 laser associated or not to acidulated phosphate fluoride (APF) 1.23% gel, in controlling enamel erosion by profilometry. Ninety-six fragments of bovine enamel were flattened and polished, and the specimens were subjected to initial erosive challenge with hydrochloric acid (pH?=?2). Specimens were randomly assigned according to surface treatment: APF 1.23% gel and gel without fluoride (control), and subdivided according to the modes of pulse CO2 laser irradiation: no irradiation (control), continuous, ultrapulse, and repeated pulse (n?=?12). After surface treatment, further erosive challenges were performed for 5 days, 4 × 2 min/day. Enamel structure loss was quantitatively determined by a profilometer, after surface treatment and after 5 days of erosive challenges. Two-away ANOVA revealed a significant difference between the pulse emission mode of the CO2 laser and the presence of fluoride (P???0.05). The Duncan's test showed that CO2 laser irradiation in continuous mode and the specimens only received fluoride, promoted lower enamel loss than that other treatments. A lower dissolution of the enamel prisms was observed when it was irradiated with CO2 laser in continuous mode compared other groups. It can be concluded that CO2 laser irradiation in continuous mode was the most effective to control the enamel structure loss submitted to erosive challenges with hydrochloric acid. PMID:25988247

  12. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    SciTech Connect

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled ?Krakow Clean Fossil Fuels and Energy Efficiency Program.? The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI?s cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI?s combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  13. Controlling mercury emissions from coal-fired power plants

    SciTech Connect

    Chang, R.

    2009-07-15

    Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

  14. Survey of Emissions Associated with Enclosed Combustor Emission Control Devices in the Denver-Julesburg Basin

    NASA Astrophysics Data System (ADS)

    Knighton, W. B.; Floerchinger, C. R.; Wormhoult, J.; Massoli, P.; Fortner, E.; Brooks, B.; Roscioli, J. R.; Bon, D.; Herndon, S. C.

    2014-12-01

    Volatile organic compounds (VOCs) play an important role in local and regional air quality. A large source of VOCs comes from the oil and gas industry and the Denver-Julesburg Basin (D-J Basin) has seen a sharp increase in production in recent years primarily due to advances in horizontal drilling techniques. To help curb emissions with extraction and production of natural gas and its associated oil, emission control devices are required for facilities emitting over 6 tons of hydrocarbons per year. Within the ozone non-attainment area, which encompasses Denver and much of the front range, enclosed combustion devices (enclosed flares) are required to reduce hydrocarbon emissions by at least 95%. While certification tests indicate that these enclosed combustor devices provide high destruction removal efficiencies, there is considerable interest in knowing how well they perform in the field. As part of Front Range Air Pollution and Photochemistry Experiment (FRAPPE) project conducted during the Summer of 2014, the Aerodyne Mobile Laboratory (AML) surveyed oil and gas operations within the Wattenberg gas field and the surrounding D-J Basin. The AML deployed a full suite of gas and particle phase instrumentation providing a comprehensive set of on-line, real-time measurements for the major natural gas components (methane and ethane) and their combustion products (CO2, CO, NOx) using a variety of spectroscopic techniques. Additional gas phase organic gas emissions were made using a proton transfer reaction mass spectrometer (PTR-MS). Particle number and composition were determined using a condensation particle counter and an Aerodyne Aerosol Mass Spectrometer (AMS). A summary of the number of enclosed combustor devices measured and their observed combustion efficiencies will be presented.

  15. Methane emissions from process equipment at natural gas production sites in the United States: pneumatic controllers.

    PubMed

    Allen, David T; Pacsi, Adam P; Sullivan, David W; Zavala-Araiza, Daniel; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Sawyer, Robert F; Seinfeld, John H

    2015-01-01

    Emissions from 377 gas actuated (pneumatic) controllers were measured at natural gas production sites and a small number of oil production sites, throughout the United States. A small subset of the devices (19%), with whole gas emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95% of emissions. More than half of the controllers recorded emissions of 0.001 scf/h or less during 15 min of measurement. Pneumatic controllers in level control applications on separators and in compressor applications had higher emission rates than controllers in other types of applications. Regional differences in emissions were observed, with the lowest emissions measured in the Rocky Mountains and the highest emissions in the Gulf Coast. Average methane emissions per controller reported in this work are 17% higher than the average emissions per controller in the 2012 EPA greenhouse gas national emission inventory (2012 GHG NEI, released in 2014); the average of 2.7 controllers per well observed in this work is higher than the 1.0 controllers per well reported in the 2012 GHG NEI. PMID:25488196

  16. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  17. Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission

    E-print Network

    Elliott, Emily M.

    Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

  18. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    NASA Astrophysics Data System (ADS)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and are significantly increased. More comprehensive analysis of the effects of SCR on diesel NOx and N2O emissions will be reported in the presentation. These on-road emission studies indicate that advanced emission control systems such as DPF and SCR dramatically reduce PM and NOx emissions, but can cause undesirable side effects like increased NO2 and N2O emissions.

  19. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal effects; Method 25A emissions from lumber drying can be modeled from a knowledge of the airflow through the kiln; A heat transfer model shows that VOCs released during hot-pressing mainly originate from the surface of the board; and Boiler ash can be used to adsorb formaldehyde from air streams.

  20. The Effect of Pleural Abrasion on the Treatment of Primary Spontaneous Pneumothorax: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Ming, Mo-yu; Cai, Shuang-qi; Chen, Yi-Qiang

    2015-01-01

    Background Pleural abrasion has been widely used to control the recurrence of primary spontaneous pneumothorax (PSP). However, controversy still exists regarding the advantages and disadvantages of pleural abrasion compared with other interventions in preventing the recurrence of PSP. Methods The PubMed, Embase, and Cochrane Central Register of Controlled Trials databases were searched up to December 15, 2014 to identify randomized controlled trials (RCTs) that compared the effects of pleural abrasion with those of other interventions in the treatment of PSP. The study outcomes included the PSP recurrence rate and the occurrence rate of adverse effects. Results Mechanical pleural abrasion and apical pleurectomy after thoracoscopic stapled bullectomy exhibited similarly persistent postoperative air leak occurrence rates (p = 0.978) and 1-year PSP recurrence rates (p = 0.821), whereas pleural abrasion led to reduced residual chest pain and discomfort (p = 0.001) and a smaller rate of hemothorax (p = 0.036) than did apical pleurectomy. However, the addition of minocycline pleurodesis to pleural abrasion did not reduce the pneumothorax recurrence rate compared with apical pleurectomy (3.8% for both procedures) but was associated with fewer complications. There was no statistical difference in the pneumothorax recurrence rate between mechanical pleural abrasion and chemical pleurodesis with minocycline on either an intention-to-treat basis (4 of 42 versus 0 of 42, p = 0.12; Fisher exact test) or after exclusions (2 of 40 versus 0 of 42, p = 0.24; Fisher exact test). Pleural abrasion plus minocycline pleurodesis also did not reduce the pneumothorax recurrence rate compared with pleural abrasion alone (p = 0.055). Moreover, pleural abrasion plus minocycline pleurodesis was associated with more intense acute chest pain. The postoperative overall recurrence rate in patients who underwent staple line coverage with absorbable cellulose mesh and fibrin glue was similar to that with mechanical abrasion after thoracoscopic bullectomy (13.8% vs. 14.2%, respectively; p = 0.555), but staple line coverage resulted in less postoperative residual pain than mechanical abrasion (0.4% vs.3.2%; p<0.0001). Pleural abrasion after thoracoscopic wedge resection did not decrease the recurrence of pneumothorax compared with wedge resection alone (p = 0.791), but the intraoperative bleeding and postoperative pleural drainage rates were higher when pleural abrasion was performed. Conclusions In addition to resulting in the same pneumothorax recurrence rate, thoracoscopic pleural abrasion with or without minocycline pleurodesis is safer than apical pleurectomy in the treatment of PSP. However, minocycline pleurodesis with or without pleural abrasion is not any more effective than pleural abrasion alone. Moreover, additional mechanical abrasion is not safer than additional staple line coverage with absorbable cellulose mesh and fibrin glue after thoracoscopic bullectomy because of increased postoperative pain. Additionally, pleural abrasion after thoracoscopic wedge resection should not be recommended for routine application due to the greater incidence of adverse effects than wedge resection alone. However, further large-scale, well-designed RCTs are needed to confirm the best procedure. PMID:26042737

  1. Catalytic destruction vs. adsorption in controlling dioxin emission.

    PubMed

    Hsu, Wei Ting; Hung, Pao Chen; Chang, Moo Been

    2015-12-01

    This study investigates the removal efficiencies of PCDD/Fs achieved with a catalytic filter (CF) and with activated carbon injection followed by bag filter (ACI+BF) as applied in an industrial waste incinerator (IWI) and a hazardous waste incinerator (HWI), respectively. Catalytic filtration has been successfully applied to remove PCDD/Fs from gas streams. Comparing the CF to the ACI+BF system, it appears that the PCDD/F removal efficiency achieved with a CF is higher than that of an ACI+BF system. The PCDD/F emissions from both incinerators are well controlled to meet the regulatory limit of 0.1ng I-TEQ/Nm(3). Additionally, the PCDD/F concentration in BF ash is higher than the regulation limit of Taiwan (1.0ng I-TEQ/g). In contrast, the PCDD/F concentration in CF ash is only 0.274ng I-TEQ/g. The difference is attributed to the fact that the ACI+BF system just transfers PCDD/Fs from gas phase to solid phase and further increases the PCDD/F concentration in fly ash, while CF technology effectively destroys the gas-phase PCDD/Fs. Therefore, the disposal of the fly ash discharged from CF would be less expensive compared with the fly ash discharged from the ACI+BF system. In this study, the PCDD/F emission factors of both incinerators are also established. PMID:26350401

  2. Control of the emissions of transportation and stationary diesel engines

    SciTech Connect

    Levendis, Y.A.

    1996-12-31

    This manuscript describes a novel exhaust aftertreatment system for effective reduction of all diesel engine emissions. This system employs high-efficiency ceramic filter elements and filtered exhaust gas recirculation (EGR) to control particulate and NO{sub x} emissions. The filters are periodically regenerated aerodynamically, that is, by pulses of compressed air flowing in the opposite to the exhaust direction. The fact that the filtration system is kept at moderate temperatures, at all times, promotes the condensation of volatile hydrocarbons on the soot. Results obtained from extensive road-testing of various configurations of such systems show that (a) soot filtration efficiencies of over 99% can be achieved, (b) volatile hydrocarbon reductions of over 50% are feasible by condensation and (c) 50% reduction of NO{sub x} can be obtained with 20% EGR. Additional benefits include capture of ash and sulfates. To accommodate engines of different sizes a multi-module system is proposed. The optimum number of filters and the frequency of regeneration varies according to the size of the engine. Upon regeneration, soot is collected in a separate chamber where it is incinerated or it is periodically removed by a vacuum system.

  3. Carbon bed mercury emissions control for mixed waste treatment.

    PubMed

    Soelberg, Nick; Enneking, Joe

    2010-11-01

    Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations. PMID:21141428

  4. Application of microturbines to control emissions from associated gas

    DOEpatents

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  5. Spontaneous fission properties and lifetime systematics

    SciTech Connect

    Hoffman, D.C.

    1989-03-01

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs.

  6. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. PMID:26445364

  7. Controlling satellite communication system unwanted emissions in congested RF spectrum

    NASA Astrophysics Data System (ADS)

    Olsen, Donald; Heymann, Roger

    2007-09-01

    The International Telecommunication Union (ITU), a United Nations (UN) agency, is the agency that, under an international treaty, sets radio spectrum usage regulations among member nations. Within the United States of America (USA), the organization that sets regulations, coordinates an application for use, and provides authorization for federal government/agency use of the radio frequency (RF) spectrum is the National Telecommunications and Information Administration (NTIA). In this regard, the NTIA defines which RF spectrum is available for federal government use in the USA, and how it is to be used. The NTIA is a component of the United States (U.S.) Department of Commerce of the federal government. The significance of ITU regulations is that ITU approval is required for U.S. federal government/agency permission to use the RF spectrum outside of U.S. boundaries. All member nations have signed a treaty to do so. U.S. federal regulations for federal use of the RF spectrum are found in the Manual of Regulations and Procedures for Federal Radio Frequency Management, and extracts of the manual are found in what is known as the Table of Frequency Allocations. Nonfederal government and private sector use of the RF spectrum within the U.S. is regulated by the Federal Communications Commission (FCC). There is a need to control "unwanted emissions" (defined to include out-of-band emissions, which are those immediately adjacent to the necessary and allocated bandwidth, plus spurious emissions) to preclude interference to all other authorized users. This paper discusses the causes, effects, and mitigation of unwanted RF emissions to systems in adjacent spectra. Digital modulations are widely used in today's satellite communications. Commercial communications sector standards are covered for the most part worldwide by Digital Video Broadcast - Satellite (DVB-S) and digital satellite news gathering (DSNG) evolutions and the second generation of DVB-S (DVB-S2) standard, developed by the European Telecommunications Standards Institute (ETSI). In the USA, the Advanced Television Systems Committee (ATSC) has adopted Europe's DVB-S and DVB-S2 standards for satellite digital transmission. With today's digital modulations, RF spectral side lobes can extend out many times the modulating frequency on either side of the carrier at excessive power levels unless filtered. Higher-order digital modulations include quadrature phase shift keying (QPSK), 8 PSK (8-ary phase shift keying), 16 APSK (also called 12-4 APSK (amplitude phase shift keying)), and 16 QAM (quadrature amplitude modulation); they are key for higher spectrum efficiency to enable higher data rate transmissions in limited available bandwidths. Nonlinear high-power amplifiers (HPAs) can regenerate frequency spectral side lobes on input-filtered digital modulations. The paper discusses technologies and techniques for controlling these spectral side lobes, such as the use of square root raised cosine (SRRC) filtering before or during the modulation process, HPA output power back-off (OPBO), and RF filters after the HPA. Spectral mask specifications are a common method of the NTIA and ITU to define spectral occupancy power limits. They are intended to reduce interference among RF spectrum users by limiting excessive radiation at frequencies beyond the regulatory allocated bandwidth.The focus here is on the communication systems of U.S. government satellites used for space research, space operations, Earth exploration satellite services (EESS), meteorological satellite services (METSATS), and other government services. The 8025 to 8400 megahertz (MHz) X band can be used to illustrate the "unwanted emissions" issue. 8025 to 8400 MHz abuts the 8400 to 8450 MHz band allocated by the NTIA and ITU to space research for space-to-Earth transmissions such as receiving very weak Deep Space Network signals. The views and ideas expressed in this paper are those of the authors and do not necessarily reflect those of The Aerospace Corporation or The National Oceanic and Atmosphe

  8. The next decade and emission controls for electric utilities

    SciTech Connect

    Herrin, W.D.

    1997-12-31

    The historical efforts to achieve attainment with the ozone and particulate related standards span over 25 years and involve billions of dollars with only minimal success related to ozone and unknown success related to certain fine particulates. The 1990 Clean Air Act Amendments mandated significant new efforts, including Title IV - Acid Rain, to achieve reductions in ozone and fine particulate precursors and attainment with the standards. Initial reduction efforts have only recently been implemented and yet another hot summer continues to portray our futile efforts to gain much ground towards attainment with existing and revised or new standards. In order to review the issues more fully and to investigate the issue of regional transport. EPA has given the states a reprieve on ozone attainment plans until mid-1997 and set up the Clean Air Act Advisory Committee (CAAAC) structure to review implementation issues with new or revised standards. The states and other stockholders are involved in these EPA processes through the Ozone Transport Assessment Group (OTAG) and the CAAAC along with numerous working groups to get new answers arid help towards innovative solutions. A major target in these efforts is emissions from fossil-fuel fired utility boilers. The OTAG process has developed regional control strategy targets for utility NO{sub x} sources at three levels. These levels include consideration of costs, timing and availability of controls, and the anticipated reductions in NO{sub x}. The CAAAC is also considering regional controls and the associated implementation issues for both ozone and fine particulates. EPA is also considering a Clean Air Power Initiative (CAPI) to wrap all the utility control issues in a single consensus package. The next 10 years will be a crucial time for electric utilities in juggling environmental and competitive issues.

  9. Fine particle (2.5 microns) emissions: regulations, measurement, and control

    SciTech Connect

    John D. McKenna; James H. Turner; James P. McKenna, Jr.

    2008-09-15

    Contents: Introduction; Health effects; Air monitoring; Emission control methods - fabric filter/baghouses, electrostatic precipitators, wet scrubbers; Environmental technology verification and baghouse filtration products; Cost considerations; and Nanoparticulates.

  10. Characterization and control of terpene emissions in Finnish sawmills.

    PubMed

    Welling, I; Mielo, T; Räisänen, J; Hyvärinen, M; Liukkonen, T; Nurkka, T; Lonka, P; Rosenberg, C; Peltonen, Y; Svedberg, U; Jäppinen, P

    2001-01-01

    This article describes an experimental study of terpene emission rates during fresh pine and spruce sawing and processing. Total terpene emission was determined by summing the product of the exhaust airflow rate and the mean concentration in the exhaust. Terpene concentrations were measured at fixed sampling points between the sawing lines. Terpene emission during pine sawing was found to be around 10 times greater than that during spruce sawing. The emission rates given here can be used to predict emission rates for various production rates. The predicted emission rates can be used in mass balance models to predict concentrations or required airflow rates to achieve the target concentration level. PMID:11331989

  11. Risk factors and surgical outcomes for spontaneous rupture of BCLC stages A and B hepatocellular carcinoma: A case-control study

    PubMed Central

    Li, Jing; Huang, Liang; Liu, Cai-Feng; Cao, Jie; Yan, Jian-Jun; Xu, Feng; Wu, Meng-Chao; Yan, Yi-Qun

    2014-01-01

    AIM: To investigate the risk factors and surgical outcomes for spontaneous rupture of Barcelona Clinic Liver Cancer (BCLC) stages A and B hepatocellular carcinoma (HCC). METHODS: From April 2002 to November 2006, 92 consecutive patients with spontaneous rupture of BCLC stage A or B HCC undergoing hepatic resection were included in a case group. A control arm of 184 cases (1:2 ratio) was chosen by matching the age, sex, BCLC stage and time of admission among the 2904 consecutive patients with non-ruptured HCC undergoing hepatic resection. Histological confirmation of HCC was available for all patients and ruptured HCC was confirmed by focal discontinuity of the tumor with surrounding perihepatic hematoma observed intraoperatively. Patients with microvascular thrombus in the hepatic vein branches were excluded from the study. Clinical data and survival time were collected and analysed. RESULTS: Sixteen patients were excluded from the study based on exclusion criteria, of whom 3 were in the case group and 13 in the control group. Compared with the control group, more patients in the case group had underlying diseases of hypertension (10.1% vs 3.5%, P = 0.030) and liver cirrhosis (82.0% vs 57.9%, P < 0.001). Tumors in 67 (75.3%) patients in the case group were located in segments II, III and VI, and the figure in the control group was also 67 (39.7%) (P < 0.001). On multivariate analysis, hypertension (HR = 7.38, 95%CI: 1.91-28.58, P = 0.004), liver cirrhosis (HR = 6.04, 95%CI: 2.83-12.88, P < 0.001) and tumor location in segments II, III and VI (HR = 5.03, 95%CI: 2.70-6.37, P < 0.001) were predictive for spontaneous rupture of HCC. In the case group, the median survival time and median disease-free survival time were 12 mo (range: 1-78 mo) and 4 mo (range: 0-78 mo), respectively. The 1-, 3- and 5-year overall survival rates and disease-free survival rates were 66.3%, 23.4% and 10.1%, and 57.0%, 16.8% and 4.5%, respectively. Only radical resection remained predictive for overall survival (HR = 0.32, 95%CI: 0.08-0.61, P = 0.015) and disease-free survival (HR = 0.12, 95%CI: 0.01-0.73, P = 0.002). CONCLUSION: Tumor location, hypertension and liver cirrhosis are associated with spontaneous rupture of HCC. One-stage hepatectomy should be recommended to patients with BCLC stages A and B disease. PMID:25083085

  12. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Allendorf; D. K. Ottesen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1998-11-02

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom of line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  13. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  14. A Model for Optimal Dynamic Control of Emissions

    E-print Network

    Patel, Nitin R.

    This paper argues that, for large air pollution sources, it may be better to set emission standards which differ for days with differing ventilation conditions instead of the common method of setting a single emission ...

  15. Modeling and control of airport departure processes for emissions reduction

    E-print Network

    Simaiakis, Ioannis

    2009-01-01

    Taxiing aircraft contribute significantly to the fuel burn and emissions at airports. This thesis investigates the possibility of reducing fuel burn and emissions from surface operations through a reduction of the taxi ...

  16. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  17. SETTING PRIORITIES FOR CONTROL OF FUGITIVE PARTICULATE EMISSIONS FROM OPEN SOURCES

    EPA Science Inventory

    The report describes setting priorities for controlling fugitive particulate emissions. Emission rate estimates of suspended particulates from open sources in the U.S. were obtained from emission factors and source extents in the literature. Major open sources, with their estimat...

  18. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  19. The evolution of shipping emissions and the costs of recent and forthcoming emission regulations in the northern European emission control area

    NASA Astrophysics Data System (ADS)

    Johansson, L.; Jalkanen, J.-P.; Kalli, J.; Kukkonen, J.

    2013-06-01

    An extensive inventory of marine exhaust emissions is presented in the northern European emission control area (ECA) in 2009 and 2011. The emissions of SOx, NOx, CO2, CO and PM2.5 were evaluated using the Ship Traffic Emission Assessment Model (STEAM). We have combined the information on individual vessel characteristics and position reports generated by the Automatic Identification System (AIS). The emission limitations from 2009 to 2011 have had a significant impact on reducing the emissions of both SOx and PM2.5. The predicted emissions of SOx originated from IMO-registered marine traffic have been reduced by 33%, from 322 ktons to 217 ktons, in the ECA from 2009 to 2011. The corresponding predicted reduction of PM2.5 emissions was 20%, from 74 ktons to 59 ktons. The highest CO2 and PM2.5 emissions in 2011 were located in the vicinity of the coast of the Netherlands, in the English Channel, near the South-Eastern UK and along the busiest shipping lines in the Danish Straits and the Baltic Sea. The changes of emissions and the financial costs caused by various regulative actions since 2005 were also evaluated, based on the increased direct fuel costs. We also simulated the effects and direct costs associated with the forthcoming switch to low-sulfur distillate fuels in 2015. According to the projections for the future, there will be a reduction of 85% in SOx emissions and a~reduction of 50% in PM2.5 emissions in 2015, compared with the corresponding shipping emissions in 2011 in the ECA. The corresponding relative increase in fuel costs for all shipping varied between 10% and 63%, depending on the development of the prices of fuels and the use of the sulfur scrubber equipment.

  20. MULTIPOLLUTANT EMISSION CONTROL TECHNOLOGY OPTIONS FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The report presents and analyzes various existing and novel control technologies designed to achieve multipollutant [sulfur dioxide (SO2), nitrogen oxide (NOX), and mercury (Hg)] emission reductions. Summary descriptions are included of 23 multipollutant control technologies that...

  1. Synergy between Pollution and Carbon Emissions Control: Comparing China and the U.S.

    E-print Network

    Nam, Kyung-Min

    We estimate the potential synergy between pollution and climate control in the U.S. and China, summarizing the results as emissions cross-elasticities of control. We set a range of NOx and SO2 targets, and record the ...

  2. EVALUATION OF NOX EMISSION CONTROL CATALYSTS FOR POWER PLANT SCR INSTALLATIONS

    EPA Science Inventory

    The paper gives results of an evaluation of nitrogen oxide (NOx) emission control catalysts commercially developed for power plant selective catalytic reduction (SCR) installations. ith the objective of establishing the performance of SCR catalysts and related technology, control...

  3. OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)

    SciTech Connect

    Sverdrup, George M.

    2000-08-20

    The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

  4. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen

    PubMed Central

    Niinemets, Ülo; Sun, Zhihong

    2015-01-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 ?mol mol–1 or elevated [CO2] of 780 ?mol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  5. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    PubMed

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 ?mol mol(-1) or elevated [CO2] of 780 ?mol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  6. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  7. MULTIPOLLUTANT EMISSION CONTROL TECHNOLOGY OPTIONS FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The report presents and analyzes various existing and novel control technologies designed to achieve multi-emission [sulfur dioxide (SO2), nitrogen oxide (NOX), and mercury (Hg)] reductions. Summary descriptions are included of 27 multi-emission control technologies that have rea...

  8. Preface: Special Issue on Catalytic Control of Lean-Burn Engine Exhaust Emissions

    SciTech Connect

    Yezerets, Aleksey; Peden, Charles HF; Szanyi, Janos; Nova, Isabella; Epling, Bill

    2012-04-30

    This issue of Catalysis Today includes original research articles based on select presentations from the Mobile Emissions Control Symposium at the 22nd North American Catalysis Society (NACS) Meeting held in Detroit in June 2011, with a particular focus on catalyzed diesel emissions control. The Symposium was dedicated to the memory of Dr. Haren Gandhi, a visionary technology leader and a passionate environmental advocate.

  9. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  10. Estimation of automobile emissions and control strategies in India.

    PubMed

    Nesamani, K S

    2010-03-15

    Rapid, but unplanned urban development and the consequent urban sprawl coupled with economic growth have aggravated auto dependency in India over the last two decades. This has resulted in congestion and pollution in cities. The central and state governments have taken many ameliorative measures to reduce vehicular emissions. However, evolution of scientific methods for emission inventory is crucial. Therefore, an attempt has been made to estimate the emissions (running and start) from on-road vehicles in Chennai using IVE model in this paper. GPS was used to collect driving patterns. The estimated emissions from motor vehicles in Chennai in 2005 were 431, 119, 46, 7, 4575, 29, and 0.41 tons/days respectively for CO, VOC, NO(x), PM, CO(2,) CH(4) and N(2)O. It is observed from the results that air quality in Chennai has degraded. The estimation revealed that two and three-wheelers emitted about 64% of the total CO emissions and heavy-duty vehicles accounted for more than 60% and 36% of the NO(x) and PM emissions respectively. About 19% of total emissions were that of start emissions. It is also estimated that on-road transport contributes about 6637 tons/day CO(2) equivalent in Chennai. This paper has further examined various mitigation options to reduce vehicular emissions. The study has concluded that advanced vehicular technology and augmentation of public transit would have significant impact on reducing vehicular emissions. PMID:20149922

  11. Control of NOx Emissions from Stationary Combustion Sources

    EPA Science Inventory

    In general, NOx control technologies are categorized as being either primary control technologies or secondary control technologies. Primary control technologies reduce the formation of NOx in the primary combustion zone. In contrast, secondary control technologies destroy the NO...

  12. Rotary regenerative catalytic oxidizer for VOC emission control

    SciTech Connect

    Fu, J.C.; Chen, J.M.

    1998-12-31

    Thermal or catalytic oxidation has been widely accepted in industries as one of the most effective technologies for the control of VOC emissions. To reduce energy cost, this technology normally incorporates heat exchanger to recover waste heat from hot combustion exhaust. Among various heat recovery methods, it is known that the regenerative system has the highest thermal efficiency (> 90%). The normal regenerative heat exchanger design is to use ceramic heat sink material packed in a fixed-bed configuration to capture excess heat from outgoing hot combustion exhaust and use it later to preheat incoming cold VOC laden gas stream by periodically switching gas streams using valves. This paper presents a novel design of the regenerative catalytic oxidizer. This design uses a honeycomb rotor with discrete parallel channels as the heat transfer media on which catalyst is coated to promote oxidation reaction. Heat recovery of this unit is accomplished by rotating the rotor between cold and hot flow streams. The thermal efficiency of the unit can be controlled by the rotation speed. Because it can rotate between hot and cold streams at higher rate than that can be achieved by valve switching, the rotary regenerative catalytic oxidizer uses much less heat transfer media than that is normally required for the fixed-bed design for the same thermal efficiency. This leads to a more compact and less costly unit design. The continuous rotation mechanism also eliminates the pressure fluctuation that is experienced by the fixed-bed design using valves for flow switching. The advantages of this new design are demonstrated by the data collected from a laboratory scale test unit.

  13. Energy, Carbon-emission and Financial Savings from Thermostat Control

    SciTech Connect

    Blasing, T J; Schroeder, Dana

    2013-08-01

    Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

  14. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    SciTech Connect

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  15. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  16. Emission Controls Using Different Temperatures of Combustion Air

    PubMed Central

    Holub?ík, Michal; Papu?ík, Štefan

    2014-01-01

    The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass. PMID:24971376

  17. Sheath structure transition controlled by secondary electron emission

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Langendorf, S. J.; Walker, M. L. R.; Keidar, M.

    2015-04-01

    In particle-in-cell Monte Carlo collision (PIC MCC) simulations and in an experiment we study sheath formation over an emissive floating Al2O3 plate in a direct current discharge plasma at argon gas pressure 10-4 Torr. The discharge glow is maintained by the beam electrons emitted from a negatively biased hot cathode. We observe three types of sheaths near the floating emissive plate and the transition between them is driven by changing the negative bias. The Debye sheath appears at lower voltages, when secondary electron emission is negligible. With increasing applied voltage, secondary electron emission switches on and a first transition to a new sheath type, beam electron emission (BEE), takes place. For the first time we find this specific regime of sheath operation near the floating emissive surface. In this regime, the potential drop over the plate sheath is about four times larger than the temperature of plasma electrons. The virtual cathode appears near the emissive plate and its modification helps to maintain the BEE regime within some voltage range. Further increase of the applied voltage U initiates the second smooth transition to the plasma electron emission sheath regime and the ratio ??s/Te tends to unity with increasing U. The oscillatory behavior of the emissive sheath is analyzed in PIC MCC simulations. A plasmoid of slow electrons is formed near the plate and transported to the bulk plasma periodically with a frequency of about 25 kHz.

  18. Quantifying the effects of China's pollution control on atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhong, H.

    2014-12-01

    China has conducted series of air pollution control policies to reduce the pollutant emissions. Although not specifically for mercury (Hg), those policies are believed to have co-benefits on atmospheric Hg emission control. On the basis of field-tests data and updated information of energy conservation and emission control, we have developed multiple-year inventories of anthropogenic mercury emissions in China from 2005 to 2012. Three scenarios (scenario 0(S0), scenario 1(S1), scenario 2(S2)) with different emission controls and energy path are designed for prediction of the future Hg emissions for the country. In particular, comprehensive assessments has been conducted to evaluate the evolution of emission factors, recent emission trends, effects of control measures as well as the reliability of our results. The national total emissions of anthropogenic Hg are estimated to increase from 679.0 metric tons (t) in 2005 to 749.8 t in 2012, with the peak at 770.6 t in 2011. The annual growth rate of emissions can then be calculated at 2.1% during 2005-2011, much lower than that of energy consumption or economy of the country. Coal combustion, gold metallurgy and nonferrous metal smelting are the most significant Hg sources of anthropogenic origin, accounting together for 85% of national total emissions. Tightened air pollution controls in China should be important reasons for the smooth emission trends. Compared with 2005, 299 t Hg were reduced in 2010 from power plants, iron and steel smelting, nonferrous-smelting and cement production, benefiting from the improvement of control measures for those sectors. The speciation of Hg emissions is relatively stable for recent years, with the mass fractions of around 55%, 9% and 6% for Hg0, Hg2+ and Hgp respectively. Integrating the policy commitments on energy saving, different from the most conservative case S0, S2 shares the same energy path with S1, but includes more stringent emission control. Under those scenarios, we predict China's atmospheric Hg emissions are 814, 805, and 620 t for 2015, 844, 823, and 621t for 2020, and 869, 813t, and 579t for 2030. Compared to levels of energy consumption and industrial production, policies on emission control would have greater benefits for Hg abatement for the country.

  19. VOC EMISSION CONTROL TECHNOLOGIES FOR SHIP PAINTING FACILITIES: INDUSTRY CHARACTERIZATION

    EPA Science Inventory

    The U.S. Environmental Protection Agency has the responsibility of reducing the levels of VOC emissions from the nation's stationary and mobile sources. The project was directed at assessing the levels of VOC emissions from ship painting operations with the intent of determining ...

  20. CHARACTERIZATION OF EMISSIONS FROM COMBUSTION SOURCES: CONTROLLED STUDIES

    EPA Science Inventory

    The paper summarizes Session I papers (given at the EPA Workshop on Characterization of Contaminant Emissions from Indoor Sources, Chapel Hill, NC, May 1985) that illustrate the progress made to date on characterizing indoor combustion emissions from unvented space heaters, gas a...

  1. COMBUSTION CONTROL OF ORGANIC EMISSIONS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    More than two decades ago, researchers identified benzo(a)pyrene and other organic species in the emissions from incineration of solid waste. Chlorinated dibenzo-p-dioxins and-furans (CDD/CDF) were first detected in municipal waste combustor (MWC) emissions in 1977. Since then, C...

  2. FIELD TESTING OF EMISSION CONTROLS FOR ASBESTOS MANUFACTURING WASTE PILES

    EPA Science Inventory

    Abatement of fugitive emissions from asbestos cement waste disposal activities has been studied. The primary sources of asbestos emissions are, (1) transfer of baghouse fines to the dump, (2) crushing and leveling of waste on the fines, (3) active dump areas, (4) inactive dump ar...

  3. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  4. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  5. ORGANIC EMISSIONS FROM FERROUS METALLURGICAL INDUSTRIES: COMPILATION OF EMISSION FACTORS AND CONTROL TECHNOLOGIES

    EPA Science Inventory

    The report gives results of a review and analysis of the information and data available in the public domain on organic emissions from the ferrous metallurgy industry, specifically the iron and steel, iron foundry, and ferroalloy industries. Emission sources and information gaps ...

  6. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    PubMed Central

    Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  7. Climatic and Chemical Controls on Methane Emissions from Wetlands

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Gauci, Vincent; Prigent, Catherine; Travis, Larry (Technical Monitor)

    2002-01-01

    Natural wetlands are the largest single source of methane to the atmosphere and the only one dominated by climate. Although interannual variations in methane emissions from short-term climate variations are becoming better understood, major uncertainties remain with respect to the sensitivity of wetlands and their CH4 emissions to climate variability, the sensitivity of suppression of wetland methane missions to changes in low-dose sulfate deposition, and the response of wetland dynamics to climate variations. We present results from modeling, field, and remote sensing research that integrate current understanding of the dynamics of wetlands and their methane emissions.

  8. Evidence for solar wind control of Saturn radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1982-01-01

    Using data collected by the Voyager 1 and 2 spacecraft in 1980 and 1981, strong evidence is presented for a direct correlation between variations in the solar wind at Saturn and the level of activity of Saturn's nonthermal radio emission. Correlation coefficients of 57 to 58% are reached at lag times of 0 to 1 days between the arrival at Saturn of high pressure solar wind streams and the onset of increased radio emission. The radio emission exhibits a long-term periodicity of 25 days, identical to the periodicity seen in the solar wind at this time and consistent with the solar rotation period. The energy coupling efficiency between the solar wind with the Saturn radio emission is estimated and compared with that for Earth.

  9. Environmental factors controlling methane emissions from peatlands in northern Minnesota

    NASA Technical Reports Server (NTRS)

    Dise, Nancy B.; Gorham, Eville; Verry, Elon S.

    1993-01-01

    The environmental factors affecting the emission of methane from peatlands were investigated by correlating CH4 emission data for two years, obtained from five different peatland ecosystems in northern Minnesota, with peat temperature, water table position, and degree of peat humification. The relationship obtained between the CH4 flux and these factors was compared to results from a field manipulation experiment in which the water table was artificially raised in three experimental plots within the driest peatland. It was found that peat temperature, water table position, and degree of peat humification explained 91 percent of the variance in log CH4 flux, successfully predicted annual CH4 emission from individual wetlands, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased CH4 emission by 2.5 and 2.2 times, respectively.

  10. CONTROL OF EMISSIONS FROM RESIDENTIAL WOOD BURNING BY COMBUSTION MODIFICATION

    EPA Science Inventory

    The report describes an exploratory study of factors contributing to atmospheric emissions from residential wood-fired combustion equipment. Three commercial appliances were operated with both normal and modified designs, providing different burning modes: updraft with a grate, u...

  11. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    NASA Astrophysics Data System (ADS)

    Cochems, P.; Kirk, A. T.; Bunert, E.; Runge, M.; Goncalves, P.; Zimmermann, S.

    2015-06-01

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  12. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    SciTech Connect

    Cochems, P.; Kirk, A. T.; Bunert, E.; Runge, M.; Goncalves, P.; Zimmermann, S.

    2015-06-15

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  13. Emission of greenhouse gases from controlled incineration of cattle manure.

    PubMed

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure. PMID:22988613

  14. Gaseous and particulate emission profiles during controlled rice straw burning

    NASA Astrophysics Data System (ADS)

    Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M.

    2014-12-01

    Burning of rice straw can emit considerable amounts of atmospheric pollutants. We evaluated the effect of rice straw moisture content (5%, 10%, and 20%) on the emission of carbon dioxide (CO2) and on the organic and inorganic constituents of released particulate matter (PM): dioxins, heavy metals, and polycyclic aromatic hydrocarbons (PAHs). Four burning tests were conducted per moisture treatment using the open chamber method. Additionally, combustion characteristics, including burning stages, durations, temperature, and relative humidity, were recorded. Burning tests showed flaming and smoldering stages were significantly longer in 20% moisture treatment (P < 0.05) compared with the rest. The amount of burned straw and ashes decreased with increasing straw moisture content (P < 0.001). Carbon dioxide was the main product obtained during combustion with emission values ranging from 692 g CO2 kg dry straw-1 (10% moisture content) to 835 g CO2 kg dry straw-1 (20% moisture content). Emission factors for PM were the highest in 20% moisture treatment (P < 0.005). Fine PM (PM2.5) accounted for more than 60% of total PM mass. Emission factors for dioxins increased with straw moisture content, being the highest in 20% moisture treatment, although showing a wide variability among burning tests (P > 0.05). Emissions factors for heavy metals were low and similar among moisture treatments (P > 0.05). Emission factors for individual PAHs were generally higher in 20% moisture treatment. Overall, emission factors of atmospheric pollutants measured in our study were higher in the 20% moisture content. This difference could be attributed to the incomplete combustion at higher levels of rice straw moisture content. According to our results, rice straw burning should be done after straw drying and under minimal moisture conditions to lower pollutant emission levels.

  15. Factors controlling emissions of dimethylsulphide from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, Stuart G.; King, Gary M.

    1987-01-01

    Salt marshes are presently identified as systems exhibiting high area-specific sulfur emission in the form of dimethylsulfide (DMS) and H2S, with the former predominating in vegetated areas of the marshes. Attention is presently given to the distribution of DMS in salt marshes; it is found that this compound primarily arises from physiological processes in the leaves of higher plants, especially the grass species Spartina alterniflora. Uncertainties associated with DMS emission measurements are considered.

  16. Control for oriented growth of large size KCl crystals by the competition between spontaneous and induced nucleation/growth on a Langmuir Blodgett film

    NASA Astrophysics Data System (ADS)

    Lu, Fei; Zhao, Xinmei; Zhou, Guangdong; Wang, Hai-Shui; Ozaki, Yukihiro

    2008-06-01

    Langmuir-Blodgett (LB) film of stearic acid was used as template to induce the nucleation and growth of KCl crystals when the KCl solution was cooled from 50 to 25 °C. When the LB film template was vertically dipped into the solution, only induced crystals with (1 1 0) orientation were formed. However, if the template was horizontally placed into solutions, both the induced nuclei at the solution/film interface and spontaneous nuclei formed in solution were simultaneously absorbed onto the LB film, and then grew further to form crystals. X-ray diffraction (XRD) patterns and optical microscopy images showed that the orientation and morphology of the crystals were controlled properly by changing the orientation and position of the LB films in the solutions.

  17. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 1

    SciTech Connect

    DOE; ORNL; NREL; EMA; MECA

    1999-08-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim data report summarizes results as of August, 1999, on the status of the test programs being conducted on three technologies: lean-NO{sub x} catalysts, diesel particulate filters and diesel oxidation catalysts.

  18. Fuel consumptions and exhaust emissions induced by cooperative adaptive cruise control strategies

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Shi, Zhongke

    2015-04-01

    Many cooperative adaptive cruise control strategies have been presented to improve traffic efficiency as well as road traffic safety, but scholars have rarely explored the impacts of these strategies on cars' fuel consumptions and exhaust emissions. In this paper, we respectively select two-velocity difference model, multiple velocity difference model and the car-following model considering multiple preceding cars' accelerations to investigate each car's fuel consumptions, carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOX) emissions and carry out comparative analysis. The comparisons of fuel consumptions and exhaust emissions in three different cruise control strategies show that cooperative cars simulated by the car-following model considering multiple preceding cars' accelerations can run with the minimal fuel consumptions, CO, HC and NOX emissions, thus, taking the car-following model considering multiple preceding cars' accelerations as the cooperative adaptive cruise control strategy can significantly improve cars' fuel efficiency and exhaust emissions.

  19. Influence of binder viscosity on the control of infrared emissivity in low emissivity coating

    NASA Astrophysics Data System (ADS)

    Yuan, Le; Weng, Xiaolong; Deng, Longjiang

    2013-01-01

    Low emissivity is the complex system and polymer binder is one of the most important factors that affect optical and mechanical properties of the coating. Low infrared emissivity coatings were prepared by using flake aluminum particles and three types of polymer resins as fillers and binders, respectively. The influence of polymer binder viscosity on pigment particles distribution, surface morphology and infrared emissivity of the coating was systematically investigated. The results indicate that infrared emissivity of the coating can be strongly affected by the resin viscosity at the same preparation condition, which induces different aluminum particles distribution and surface morphology of the coating. Low resin viscosity is helpful for aggregating pigments and reducing the top polymer layer thickness near the surface, thus the infrared emissivity is reduced. If the resin viscosity value is decreased by two orders of magnitude, the infrared emissivity values would be reduced as much as 0.2. Additionally, a theoretical model is proposed to account for this mechanism, which indicates that sedimentation, evaporation and diffusion play important roles in forming different aluminum particles distribution during the drying process of the coating.

  20. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    PubMed

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations. PMID:25711007

  1. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China.

    PubMed

    Cheng, Ke; Wang, Yan; Tian, Hezhong; Gao, Xiang; Zhang, Yongxin; Wu, Xuecheng; Zhu, Chuanyong; Gao, Jiajia

    2015-01-20

    A bottom-up inventory of atmospheric emissions of five precedent-controlled toxic heavy metals (HMs), including mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), and chromium (Cr), from primary anthropogenic sources in China is established for the period 2000–2010. Total emissions of HMs demonstrate a gradually ascending trend along with the increase of coal consumption and industrial production, which are estimated at approximately 842.22 t for Hg, 4196.31 t for As, 29272.14 t for Pb, 795.29 t for Cd, and 13715.33 t for Cr for 2010. Coal combustion is found to be the primary source of HMs emissions. Owing to the dramatic differences of coal use by industrial and power sectors among provinces, spatial allocation performs remarkably uneven characteristics, and spatial distribution features are demonstrated by allocating the emissions into 0.5° × 0.5° grid cells with GDP and population as surrogate indexes. Further, HMs emissions from specified anthropogenic sources under three different control scenarios for the target year 2015 are projected, and collaborative and specialized control strategies are proposed to meet the demand of emission reduction goals of different regions. In the future, a whole processes control management system will be the most effective way for control of HMs. PMID:25526283

  2. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES (EPA/600/R-01/031)

    EPA Science Inventory

    This report summarizes the results of field testing of the effectiveness of control
    measures for sources of fugitive particulate emissions found at construction sites.
    Tests of the effectiveness of watering of temporary unpaved travel surfaces on PM-10
    emissions were per...

  3. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true PET and polystyrene affected sources-emissions control provisions. 63.1316 Section 63.1316 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  4. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    ERIC Educational Resources Information Center

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  5. ADDENDUM TO ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    This report is an addendum to a 1996 report, Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries. It presents additional evaluation of the biological treatment of styrene emissions, Dow Chemical Company's Sorbathene solvent vapor recovery system, Occupa...

  6. Soil physiochemical controls on trace gas emissions for a North Dakota mollisol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of trace gas emissions and an increased understanding of soil controls on emissions during freeze-thaw cycles are essential to refine climate change models. Six similar, intact soil cores were collected to a depth of 80 cm from an undisturbed prairie in central North Dakota. Trace g...

  7. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Determination of equivalent emission... Determination of equivalent emission control technology. (a) Any person requesting that the use of certain equipment or procedures be considered equivalent to the requirements under § 63.322 shall collect,...

  8. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Determination of equivalent emission... Determination of equivalent emission control technology. (a) Any person requesting that the use of certain equipment or procedures be considered equivalent to the requirements under § 63.322 shall collect,...

  9. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Determination of equivalent emission... Determination of equivalent emission control technology. (a) Any person requesting that the use of certain equipment or procedures be considered equivalent to the requirements under § 63.322 shall collect,...

  10. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Determination of equivalent emission... Determination of equivalent emission control technology. (a) Any person requesting that the use of certain equipment or procedures be considered equivalent to the requirements under § 63.322 shall collect,...

  11. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Determination of equivalent emission... Determination of equivalent emission control technology. (a) Any person requesting that the use of certain equipment or procedures be considered equivalent to the requirements under § 63.322 shall collect,...

  12. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT

    EPA Science Inventory

    The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...

  13. DEVELOPMENT OF TECHNOLOGY FOR CONTROLLING BOP (BASIC OXYGEN PROCESS) CHARGING EMISSIONS

    EPA Science Inventory

    The report gives results of a study of the basic oxygen process (BOP) hot metal charging emission control technology, conducted with a 900 kg pilot vessel designed for the experiments. Complete instrumentation was provided to measure the emissions, the effectiveness of the variou...

  14. ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    The report gives results of an evaluation of several conventional and novel emission control technologies that have been used or could be used to treat styrene emissions from open molding processes in fiberglass-reinforced plastics/composites (FRP/C) and fiberglass boat building ...

  15. PRELIMINARY PERFORMANCE AND COST ESTIMATES OF MERCURY EMISSION CONTROL OPTIONS FOR ELECTRIC UTILITY BOILERS

    EPA Science Inventory


    The paper discusses preliminary performance and cost estimates of mercury emission control options for electric utility boilers. Under the Clean Air Act Amendments of 1990, EPA had to determine whether mercury emissions from coal-fired power plants should be regulated. To a...

  16. Hydrological controls on nitrous oxide and carbon dioxide emissions across an agricultural landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in hydrological controls on soil greenhouse gas emissions could result in important climate change feedbacks. Water table fluctuations into surface soils are “hot moments” of soil CO2 and N2O emissions. Future global change may affect the frequency and magnitude of water table fluctuations...

  17. Assessment of methods for methyl iodide emission reduction and pest control using a simulation model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various methods have been developed to reduce atmospheric emissions from the agricultural use of highly volatile pesticides and mitigate their adverse environmental effects. The effectiveness of various methods on emissions reduction and pest control was assessed using simulation model in this study...

  18. EMISSION TESTING AND EVALUATION OF FORD/KOPPERS COKE PUSHING CONTROL SYSTEM. VOLUME II. APPENDICES

    EPA Science Inventory

    The report documents a field testing and engineering evaluation of the performance of a retrofitted, mobile-hood, high-energy-scrubber control system, abating coke-side pushing emissions from a 58-oven coke battery. It documents the venturi-scrubber inlet and outlet emission rate...

  19. EMISSION TESTING AND EVALUATION OF FORD/KOPPERS COKE PUSHING CONTROL SYSTEM. VOLUME I. FINAL REPORT

    EPA Science Inventory

    The report documents a field testing and engineering evaluation of the performance of a retrofitted, mobile-hood, high-energy-scrubber control system, abating coke-side pushing emissions from a 58-oven coke battery. It documents the venturi-scrubber inlet and outlet emission rate...

  20. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...in section 2.1.2.1(b) of appendix A to this part, except that the words “maximum potential NOX emission rate (MER)” shall be replaced with the words “maximum controlled NOX emission rate (MCR)” and the NOX MEC shall be used...

  1. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...in section 2.1.2.1(b) of appendix A to this part, except that the words “maximum potential NOX emission rate (MER)” shall be replaced with the words “maximum controlled NOX emission rate (MCR)” and the NOX MEC shall be used...

  2. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...in section 2.1.2.1(b) of appendix A to this part, except that the words “maximum potential NOX emission rate (MER)” shall be replaced with the words “maximum controlled NOX emission rate (MCR)” and the NOX MEC shall be used...

  3. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...in section 2.1.2.1(b) of appendix A to this part, except that the words “maximum potential NOX emission rate (MER)” shall be replaced with the words “maximum controlled NOX emission rate (MCR)” and the NOX MEC shall be used...

  4. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...in section 2.1.2.1(b) of appendix A to this part, except that the words “maximum potential NOX emission rate (MER)” shall be replaced with the words “maximum controlled NOX emission rate (MCR)” and the NOX MEC shall be used...

  5. Developing a Reference Material for Diffusion-Controlled Formaldehyde Emissions Testing

    EPA Science Inventory

    Emissions of formaldehyde from building materials can contaminate indoor air and create significant risks to human health. The need to control formaldehyde emissions from indoor materials is made more urgent by the prevailing drive to improve building energy by decreasing ventil...

  6. 78 FR 49701 - Approval and Promulgation of Implementation Plans; Connecticut; Control of Visible Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ...-508-18, ``Control of particulate emissions,'' into the Connecticut SIP (47 FR 41958). Section 19-508... SIP on August 31, 2006 (71 FR 51761). After reviewing CT DEEP's December 1, 2004 SIP submittal for... emissions standards under existing federal New Source Performance Standards (NSPS) set forth in 40 CFR...

  7. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  8. CAPSULE REPORT: SOURCES AND AIR EMISSION CONTROL TECHNOLOGIES AT WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The chemicals processed during waste management operations can volatilize into the atmosphere and cause carcinogenic or other toxic effects or contribute to ozone formation. Regulations have been developed to control air emissions from these operations. The EPA has promulgated st...

  9. CONTROL OF UTILITY BOILER AND GAS TURBINE POLLUTANT EMISSIONS BY COMBUSTION MODIFICATION - PHASE I

    EPA Science Inventory

    The report gives results of a field study to assess the applicability of combustion modification techniques to control NOx and other pollutant emissions from utility boilers and gas turbines without causing deleterious side effects. Comprehensive, statistically designed tests wer...

  10. 78 FR 5346 - Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...State of Missouri; Control of Sulfur Emissions From Stationary Boilers AGENCY: Environmental Protection Agency (EPA). ACTION...a precursor pollutant to PM 2.5 ), from industrial boilers. EPA is approving this revision because it strengthens...

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, HONEYWELL POWER SYSTEMS, INC. PARALLON 75 KW TURBOGENERATOR WITH CO EMISSIONS CONTROL

    EPA Science Inventory

    The Greenhouse Gas Technology Center (GHG Center), one of six verification organizations under the Environmental Technology Verification (ETV) program, evaluated the performance of the Parallon 75 kW Turbogenerator (Turbogenerator) with carbon monoxide (CO) emissions control syst...

  12. Impact of the Volkswagen emissions control defeat device on US public health

    E-print Network

    Ashok, Akshay

    The US Environmental Protection Agency (EPA) has alleged that Volkswagen Group of America (VW) violated the Clean Air Act (CAA) by developing and installing emissions control system 'defeat devices' (software) in model ...

  13. COST OF CONTROLLING DIRECTLY EMITTED ACIDIC EMISSIONS FROM MAJOR INDUSTRIAL SOURCES

    EPA Science Inventory

    The report gives results of estimates, using a model plant approach, of costs for retrofitting selected acidic emission control systems to utility and industrial boilers, Claus sulfur recovery plants, catalytic cracking units, primary copper smelters, coke oven plants, primary al...

  14. Spontaneous Photoemission From Metamaterial Junction: A Conjecture

    E-print Network

    Subir Ghosh; Santanu K. Maiti

    2013-07-29

    The possibility of spontaneous photon pair emission from a normal material - metamaterial junction is investigated in a quantum field theory setting. We consider a pair of photons arising from vacuum fluctuations of the electromagnetic field close to the junction where one photon each comes from the normal and metamaterial sectors. Mixing between the positive and negative norm photon modes can give rise to spontaneous photoemission, the rate of which is calculated.

  15. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  16. Southern California Edison's (SCE) Research Program for Industrial Volatile Organic Compound (VOC) Emissions Control 

    E-print Network

    Sung, R. D.; Cascone, R.; Reese, J.

    1990-01-01

    EDISON'S (SCE) RESEARCH PROGRAM FOR INDUSTRIAL VOLATILE ORGANIC COMPOUND (VOC) EMISSIONS CONTROL ROGER D. SUNG RON CASCONE JIM REESE Program Manager Senior Consultant Manager Southern California Edison Chem Systems, Inc. Applied Utility Systems...-on controls. Vendors were identified, contacted, and evaluated for system performance. Industrial targets were selected based on need for assistance, magnitude of emissions, and number of facilities affected. Many facility operators were approached...

  17. Increased photon density of states at defect-mode frequencies led enhancement of tunability of spontaneous emission from Eu2+, 3+ doped SiO2/SnO2 one-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Das, Pratyusha; Maiti, Rishi; Ray, Samit K.; Shivakiran Bhaktha, B. N.

    2015-03-01

    One-dimensional photonic crystal (1DPhC) micro-cavity resonators, constituted of Eu2+, 3+ doped silica layer inserted between two 5-bilayered SiO2/SnO2 Bragg mirrors, are fabricated by sol-gel process. The 1DPhC exhibits a ˜180 nm wide stop-band, with peak-reflectivity of more than 96%. Spectral modifications of the photonic stop-band by varying the angle of detection with respect to the sample surface normal are studied. With an increase in the detection angle from 0° to 45° the defect-mode continuously sweeps from 598.6 nm to 532.0 nm, selectively enhancing the coinciding Eu2+, 3+ emission. To quantify the increase in spontaneous emission at defect-mode frequencies, a relative enhancement factor is devised. The increased photon density of states at defect-mode frequencies is found to enhance the weak emission tail of Eu2+, 3+ ions by a factor of ˜9.

  18. Spontaneous emission and lame shift in photonic crystals This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-print Network

    emission of atoms in photonic crystals (PCs). A position-sensitive generalized Lorentzian formalism (non and Centre for Ultra-high bandwidth Devices for Optical Systems, Research School of Physical Sciences

  19. VOC Emission Control with the Brayton Cycle Pilot Plant Operations 

    E-print Network

    Enneking, J. C.

    1992-01-01

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  20. PM - EMISSION CHARACTERIZATION, FACTORS AND CONTROLS (NAS 12)

    EPA Science Inventory

    The program will focus on diesel trucks, prescribed and open burning, construction sites and residential wood combustion. Differences in emission rates due to changes in operating conditions and fuel type will be included in the revised factors. Ammonia research will produce i...

  1. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  2. CONTROL TECHNOLOGIES FOR PARTICULATE AND TAR EMISSIONS FROM COAL CONVERTERS

    EPA Science Inventory

    The report gives results of a characterization of solid and tar particulate emissions in raw product gases from several types of coal gasifiers, in terms of their total quantities, chemical composition, and size distribution. Fixed-bed gasifiers produce the smallest particulate l...

  3. Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained

    NASA Astrophysics Data System (ADS)

    Niinemets, ÜLo; Reichstein, Markus

    2003-04-01

    Volatile (VOC) flux from leaves may be expressed as GS?P, where GS is stomatal conductance to specific compound and ?P partial pressure gradient between the atmosphere and substomatal cavities. It has been suggested that decreases in GS are balanced by increases in ?P such that stomata cannot control VOC emission. Yet, responses of emission rates of various volatiles to experimental manipulations of stomatal aperture are contrasting. To explain these controversies, a dynamic emission model was developed considering VOC distribution between gas and liquid phases using Henry's law constant (H, Pa m3 mol-1). Our analysis demonstrates that highly volatile compounds such as isoprene and monoterpenes with H values on the order of 103 have gas and liquid pool half-times of a few seconds, and thus cannot be controlled by stomata. More soluble compounds such as alcohols and carboxylic acids with H values of 10-2-101 are controlled by stomata with the degree of stomatal sensitivity varying with H. Inability of compounds with high solubility to support a high partial pressure, and thus to balance ?P in response to a decrease in GS is the primary explanation for different stomatal sensitivities. For compounds with low H, the analysis predicts bursts of emission after stomatal opening that accord with experimental observations, but that cannot be currently explained. Large within-leaf VOC pool sizes in compounds with low H also increase the system inertia to environmental fluctuations. In conclusion, dynamic models are necessary to simulate diurnal variability of the emissions of compounds that preferably partition to aqueous phase.

  4. Emission Controls Versus Meteorological Conditions in Determining Aerosol Concentrations in Beijing during the 2008 Olympic Games

    SciTech Connect

    Gao, Yi; Liu, Xiaohong; Zhao, Chun; Zhang, Meigen

    2011-12-12

    A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on August 8th-24th, 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30-50% during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that emission control strategy should focus on the regional scale instead of the local scale to improve the air quality over Beijing.

  5. Study of emissions and control of stratospheric ozone-depleting compounds in California. Final report

    SciTech Connect

    Gibbs, M.J.; Wasson, J.; Magee, T.; Linquiti, P.; Kesavan, S.

    1992-10-01

    The objective of the project is to compile data and analyses for the Air Resources Board (ARB) that will allow the Board and its staff to understand and assess the full range of issues regarding emissions of stratospheric ozone-depleting compounds (ODCs) and their control. The ODCs of interest in the study are the fully halogenated chlorofluorocarbons (CFCs); the partially-halogenated chlorofluorocarbons (HCFCs); the bromine-containing halon compounds; methyl chloroform; and carbon tetrachloride. These compounds are currently the focus of national and international control efforts. The report presents: (1) U.S. and California ODC emissions inventories for 1990 and 2005 that reflect current and expected future restrictions on ODC production, use and emissions; (2) detailed descriptions of the technologies available for reducing ODC use and emissions; and (3) summaries of current federal, state, and local legislations affecting ODC use and emissions.

  6. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Divergence and intensity of amplified spontaneous emission coupled out of an active medium by a distributed refraction method

    NASA Astrophysics Data System (ADS)

    Ladagin, V. K.; Starikov, F. A.; Urlin, V. D.

    1993-05-01

    The dynamics of the radiation in the near and far zones has been studied analytically and numerically for the case in which nonlinearly amplified spontaneous x radiation is coupled out of a plasma active medium by a distributed refraction method. The divergence ?? of the amplified noise falls off exponentially with increasing length of the active medium, z. When z is equal to five or six refraction lengths, ?? is an order of magnitude smaller than the geometric divergence. The maximum radiation flux qm is at the refraction angle and increases exponentially with increasing z. The rate of increase of qm and the rate of decrease of ?? may be lowered by diffraction. In the case of a linear amplification of the noise, qm also corresponds to the refraction angle and may be much greater than the paraxial flux density. However, the advantage over coupling out the end in the case of a homogeneous active medium is achieved at a substantial cost in power.

  7. Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures.

    PubMed

    Hussain, Rabia; Kruk, Sergey S; Bonner, Carl E; Noginov, Mikhail A; Staude, Isabelle; Kivshar, Yuri S; Noginova, Natalia; Neshev, Dragomir N

    2015-04-15

    We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions. PMID:25872041

  8. Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas

    NASA Astrophysics Data System (ADS)

    Moldanová, J.; Fridell, E.; Winnes, H.; Holmin-Fridell, S.; Boman, J.; Jedynska, A.; Tishkova, V.; Demirdjian, B.; Joulie, S.; Bladt, H.; Ivleva, N. P.; Niessner, R.

    2013-12-01

    In this paper emission factors (EFs) for particulate matter (PM) and some sub-components as well as gaseous substances were investigated in two onboard measurement campaigns. Emissions from two 4-stroke main engines were measured under stable-load conditions. The impact of varying engine load on the emissions was investigated on one of the engines, and the impact of fuel quality on the other, where heavy fuel oil (HFO) with sulphur content 1% and 0.5% and marine gas oil (MGO) with sulphur content 0.1% were used. Furthermore, emissions from one auxiliary engine were studied. The measured EFs for PM mass were in the range of 0.3 to 2.7 g kg-1 fuel with the lowest values for emissions from the combustion of MGO, and the highest values for HFO with a sulphur content of 1%. The PM mass size distribution was dominated by particles in accumulation mode. Emission factors for particle numbers EF(PN) in the range of 5 × 1015-1 × 1017 # kg-1 fuel were found, the number concentration was dominated by particles in the ultrafine mode and ca. 2/3 of the particle number were non-volatile. The most abundant component of the PM mass was organic carbon, making up 25-60% of the PM. The measured EFs for organic carbon (OC) were 0.6 g kg-1 fuel for HFO and 0.2 g kg-1 fuel for MGO. Elemental carbon (EC) made up 10-38% of the PM mass, with no significant differences between HFO and MGO fuels. The concentrations of metals on sampled filters were investigated with energy dispersive X-ray fluorescence (EDXRF) and the detected metal elements in exhaust when using HFO was concluded to originate from both the fuel (V, Ni, Fe) and the lubricant (Ca, Zn), while for the case of MGO combustion, most of the metals were concluded to originate from the lubricants. The measured emission factors for sulphate particles, EF (SO2-4), were low, ca. 0.1-0.2 g kg-1 fuel for HFO with 1% sulphur, 0.07-0.09 g kg-1 fuel for HFO with 0.5% sulphur and 0.003-0.006 g kg-1 fuel for MGO. This corresponds to 0.1-0.8% and 0.1-0.6% of fuel S converted to PM sulphate for HFO and MGO, respectively. Scanning transmission electron microscopy (STEM) images of the collected PM showed three different types of particles: relatively pure soot; char and char-mineral particles; and amorphous, probably organic particles containing inorganic impurities. The maps of elements obtained from STEM showed a heterogeneous composition of primary soot particles with respect to the trace metals and sulphur. Temperature-programmed oxidation (TPO) of PM showed higher soot oxidation reactivity compared to automotive diesel soot, PM from the HFO exhaust being more reactive than PM from the MGO exhaust. Oxidative potential measured as the rate of consumption of Dithiothreitol (DTT) was for the first time measured on PM from ship exhaust. The obtained values were between 0.01 and 0.04 nmol DTT min-1 ?g-1 PM, which is quite similar to oxidative potentials of PM collected at urban and traffic sites. The data obtained during the experiments add information about emission factors for both gaseous and PM-bound compounds from ship engines using different fuels and under different engine-load conditions. Observed variability of the EFs illustrates uncertainties of these emission factors as a result of influences from fuel and lubricant composition, from differences between individual engines and from the differences in sampling conditions.

  9. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial

    PubMed Central

    Wrigge, Hermann; Zinserling, Jörg; Neumann, Peter; Muders, Thomas; Magnusson, Anders; Putensen, Christian; Hedenstierna, Göran

    2005-01-01

    Introduction Experimental and clinical studies have shown a reduction in intrapulmonary shunt with spontaneous breathing during airway pressure release ventilation (APRV) in acute lung injury. This reduction was related to reduced atelectasis and increased aeration. We hypothesized that spontaneous breathing will result in better ventilation and aeration of dependent lung areas and in less cyclic collapse during the tidal breath. Methods In this randomized controlled experimental trial, 22 pigs with oleic-acid-induced lung injury were randomly assigned to receive APRV with or without spontaneous breathing at comparable airway pressures. Four hours after randomization, dynamic computed tomography scans of the lung were obtained in an apical slice and in a juxtadiaphragmatic transverse slice. Analyses of regional attenuation were performed separately in nondependent and dependent halves of the lungs on end-expiratory scans and end-inspiratory scans. Tidal changes were assessed as differences between inspiration and expiration of the mechanical breaths. Results Whereas no differences were observed in the apical slices, spontaneous breathing resulted in improved tidal ventilation of dependent lung regions (P < 0.05) and less cyclic collapse (P < 0.05) in the juxtadiaphragmatic slices. In addition, with spontaneous breathing, the end-expiratory aeration increased and nonaerated tissue decreased in dependent lung regions close to the diaphragm (P < 0.05 for the interaction ventilator mode and lung region). Conclusion Spontaneous breathing during APRV redistributes ventilation and aeration to dependent, usually well-perfused, lung regions close to the diaphragm, and may thereby contribute to improved arterial oxygenation. Spontaneous breathing also counters cyclic collapse, which is a risk factor for ventilation-associated lung injury. PMID:16356227

  10. Single photon emission from site-controlled InGaN/GaN quantum dots

    SciTech Connect

    Zhang, Lei; Hill, Tyler A.; Deng, Hui; Teng, Chu-Hsiang; Lee, Leung-Kway; Ku, Pei-Cheng

    2013-11-04

    Single photon emission was observed from site-controlled InGaN/GaN quantum dots. The single-photon nature of the emission was verified by the second-order correlation function up to 90?K, the highest temperature to date for site-controlled quantum dots. Micro-photoluminescence study on individual quantum dots showed linearly polarized single exciton emission with a lifetime of a few nanoseconds. The dimensions of these quantum dots were well controlled to the precision of state-of-the-art fabrication technologies, as reflected in the uniformity of their optical properties. The yield of optically active quantum dots was greater than 90%, among which 13%–25% exhibited single photon emission at 10?K.

  11. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    SciTech Connect

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  12. Car mix in Italy and applicable emission control systems

    SciTech Connect

    Cavallino, F.

    1986-01-01

    The trend of the Italian car market is towards the use of cars having lower weight and smaller engine displacements than the U.S. and European average. However, many Italian models fit well in the typical US/European segments. The challenge of the Italian car makers is to optimize the emission system as a function of car category, target performances and costs with an eye to innovative solutions such as the lean burn types.

  13. Modeling Nitrous Oxide emissions and identifying emission controlling factors for a spruce forest ecosystem on drained organic soil

    NASA Astrophysics Data System (ADS)

    He, Hongxing; Kasimir, Åsa; Jansson, Per-Erik; Svensson, Magnus; Meyer, Astrid; Klemedtsson, Leif

    2015-04-01

    High Nitrous Oxide (N2O) emission has been identified in hemiboreal forests on drained organic soils. However, the controlling factors regulating the emissions have been unclear. To examine the importance of different factors on the N2O emission in a spruce forest on drained organic soil, a process-based model, CoupModel, was calibrated by the generalized likelihood uncertainty estimation (GLUE) method. The calibrated model reproduced most of the high resolution data (total net radiation, soil temperature, groundwater level, net ecosystem exchange, etc.) very well, as well as accumulated measured N2O emissions, but showed difficulties to capture all the measured emission peaks. Parameter uncertainties could be reduced by combining selected criteria with the measurement data. The model showed the N2O emissions during the summer to be controlled mainly by the competition between plants and microbes while during the winter season snow melt periods are important. The simulated N budget shows >100 kg N ha-1 yr-1 to be in circulation between soil and plants and back again. Each year the peat mineralization adds about 60 kg N ha-1 and atmospheric deposition 12 kg N ha-1. Most of the mineralized litter and peat N is directly taken up by the plants but only a part accumulates in the plant biomass. As long as no timber is harvested the main N loss from the system is through nitrate leaching (30 kg N ha-1 yr-1) and gas emissions (20 kg N ha-1 yr-1), 55% as NO, 27% as N2O and 18% as N2. Regarding N2O gas emissions, our modeling indicates denitrification to be the most responsible process, of the size 6 kg N ha-1 yr-1, which could be compared to 0.04 kg N ha-1 yr-1 from nitrification. Our modelling also reveal 88% of the N2O mainly to be produced by denitrification in the capillary fringe (c.a. 40-60 cm below soil surface) of the anaerobic zone using nitrate produced in the upper more aerobic layers. We conclude N2O production/emission to be controlled mainly by the complex interaction between soil N availability, mediated by mineralization, nitrification, and plant growth together with soil anaerobicity controlled by the groundwater level. The model is currently used for modelling greenhouse gas emissions from drained organic soils over the entire forest cycle, from plantation to harvest. Different land use and plant production are compared like Spruce, Willow and Reed Canary Grass as well as rewetting options. This work was funded by the Swedish Energy Agency and conducted within the research programs BECC (Biodiversity and Ecosystem services in a Changing Climate) and LAGGE (Landscape and Greenhouse Gas Exchange).

  14. Comment on ''Effect of entanglement on the decay dynamics of a pair of H(2p) atoms due to spontaneous emission''

    SciTech Connect

    Sancho, Pedro; Plaja, Luis

    2011-06-15

    T. Tanabe et al. [Phys. Rev. A 82, 040101(R) (2010)] have experimentally demonstrated that the emission properties of unstable atoms in entangled and product states are different. The authors define an apparent decay time as a fitting parameter which falls below the lifetime of the single atom for entangled pairs. We argue that their results about coincidence time spectra are correct, but those concerning lifetimes cannot be considered conclusive because they assume the emission of photons by the two atoms to be independent processes, a doubtful hypothesis for entangled states. We suggest an improved evaluation of the lifetimes based on a rigorous approach, which demands some modifications of the experimental procedure.

  15. Model estimates of climate controls on pan-Arctic wetland methane emissions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Bohn, T. J.; Lettenmaier, D. P.

    2015-11-01

    Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH4) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH4 emissions using an enhanced version of the Variable Infiltration Capacity (VIC) land surface model. We simulated CH4 emissions from wetlands across the pan-Arctic domain over the period 1948-2006, yielding annual average emissions of 36.1 ± 6.7 Tg CH4 yr-1 for the period 1997-2006. We characterized historical sensitivities of CH4 emissions to air temperature, precipitation, incident long- and shortwave radiation, and atmospheric [CO2] as a function of average summer air temperature and precipitation. Emissions from relatively warm and dry wetlands in the southern (permafrost-free) portion of the domain were positively correlated with precipitation and negatively correlated with air temperature, while emissions from wetter and colder wetlands further north (permafrost) were positively correlated with air temperature. Over the entire period 1948-2006, our reconstructed CH4 emissions increased by 20 %, the majority of which can be attributed to an increasing trend in summer air temperature. We estimated future emissions in response to 21st century warming as predicted by CMIP5 (Coupled Model Intercomparison Project Phase 5) model projections to result in end-of-century CH4 emissions 38-53 % higher than our reconstructed 1997-2006 emissions, accompanied by the northward migration of warmer and drier than optimal conditions for CH4 emissions, implying a reduced role for temperature in driving future increases in emissions.

  16. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  17. Emission control equipment fractional efficiency considerations for recirculated exhaust systems

    SciTech Connect

    Brackbill, E.A.

    1984-01-01

    Process exhaust recirculation is an often considered, simple method for heat recovery. However, since most process exhaust streams contain some type of contaminant, the air must be cleaned prior to recirculation. In many cases, air-cleaning equipment has already been installed under the impetus of air pollution control regulations. Although adequate for compliance with these regulations, this same control equipment may not be efficient enough to permit recirculation. The mass collection efficiency basis inherent to air pollution control regulations is not necessarily relevant to the evaluation of a potential exhaust recirculation situation. The fractional efficiency, or the control equipment's ability to collect particles of specific size, is far more relevant. All control equipment exhibits varying degrees of reduced efficiency in the respirable particulate size range. Knowledge of the extent of this reduction for the actual system under consideration is very important, since it can result in increased hazard and preclude recirculation as a heat recovery option.

  18. Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2?=?0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology. PMID:23029240

  19. PERFORMANCE AND COST OF MERCURY AND MULTIPOLLUTANT EMISSION CONTROL TECHNOLOGY APPLICATIONS ON ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The report presents estimates of the performance and cost of both powdered activated carbon (PAC) and multipollutant control technologies that may be useful in controlling mercury emissions. Based on currently available data, cost estimates for PAC injection range are 0.03-3.096 ...

  20. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... add-on emission controls. (a) The owner or operator of an affected unit equipped with add-on SO2 and... assurance/quality control program for the unit, required by section 1 in appendix B of this part. To provide... applied; or (2) This paragraph, (a)(2), applies only to a unit which, as provided in § 75.74(a) or §...