Sample records for controls bacterial genes

  1. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. PMID:25155412

  2. Bacterial Gene Transfer

    NSDL National Science Digital Library

    Roberta Ellington (Northwestern University; )

    1991-01-01

    This resource provides detailed instructions for carrying out several laboratory exercises relating to bacterial transformation and conjugation. In this multi-session experiment, students are exposed to various techniques in microbiology, including bacterial transformation and assay and sterile techniques.

  3. Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.

    PubMed

    Binder, Dennis; Grünberger, Alexander; Loeschcke, Anita; Probst, Christopher; Bier, Claus; Pietruszka, Jörg; Wiechert, Wolfgang; Kohlheyer, Dietrich; Jaeger, Karl-Erich; Drepper, Thomas

    2014-08-01

    Light can be used to control numerous cellular processes including protein function and interaction as well as gene expression in a non-invasive fashion and with unprecedented spatiotemporal resolution. However, for chemical phototriggers tight, gradual, and homogeneous light response has never been attained in living cells. Here, we report on a light-responsive bacterial T7 RNA polymerase expression system based on a photocaged derivative of the inducer molecule isopropyl-?-d-thiogalactopyranoside (IPTG). We have comparatively analyzed different Escherichia coli lac promoter-regulated expression systems in batch and microfluidic single-cell cultivation. The lacY-deficient E. coli strain Tuner(DE3) harboring additional plasmid-born copies of the lacI gene exhibited a sensitive and defined response to increasing IPTG concentrations. Photocaged IPTG served as a synthetic photo-switch to convert the E. coli system into an optogenetic expression module allowing for precise and gradual light-triggering of gene expression as demonstrated at the single cell level. PMID:24894989

  4. Specific Gene Repression by CRISPRi System Transferred through Bacterial Conjugation

    PubMed Central

    2014-01-01

    In microbial communities, bacterial populations are commonly controlled using indiscriminate, broad range antibiotics. There are few ways to target specific strains effectively without disrupting the entire microbiome and local environment. Here, we use conjugation, a natural DNA horizontal transfer process among bacterial species, to deliver an engineered CRISPR interference (CRISPRi) system for targeting specific genes in recipient Escherichia coli cells. We show that delivery of the CRISPRi system is successful and can specifically repress a reporter gene in recipient cells, thereby establishing a new tool for gene regulation across bacterial cells and potentially for bacterial population control. PMID:25409531

  5. Gene Control

    NSDL National Science Digital Library

    2003-09-26

    The development of creatures that appear to have nothing in common is directed by a surprisingly small number of genes. In this video segment, learn about the power of master control genes. Footage from The Secret of Life: Birth, Sex & Death.

  6. Measurement of bacterial gene expression in vivo.

    PubMed Central

    Hautefort, I; Hinton, J C

    2000-01-01

    The complexities of bacterial gene expression during mammalian infection cannot be addressed by in vitro experiments. We know that the infected host represents a complex and dynamic environment, which is modified during the infection process, presenting a variety of stimuli to which the pathogen must respond if it is to be successful. This response involves hundreds of ivi (in vivo-induced) genes which have recently been identified in animal and cell culture models using a variety of technologies including in vivo expression technology, differential fluorescence induction, subtractive hybridization and differential display. Proteomic analysis is beginning to be used to identify IVI proteins, and has benefited from the availability of genome sequences for increasing numbers of bacterial pathogens. The patterns of bacterial gene expression during infection remain to be investigated. Are ivi genes expressed in an organ-specific or cell-type-specific fashion? New approaches are required to answer these questions. The uses of the immunologically based in vivo antigen technology system, in situ PCR and DNA microarray analysis are considered. This review considers existing methods for examining bacterial gene expression in vivo, and describes emerging approaches that should further our understanding in the future. PMID:10874733

  7. Gene flow and bacterial transformation

    SciTech Connect

    Dixon, B.

    1993-07-01

    It is common knowledge that Salmonella which should be removed during the processing of sewage can persist is sewage sludge that is sprayed as agricultural fertilizer. Currently, researchers have found that Salmonella may become nonculturable by conventional means, while remaining viable. The issue raised by this article is the knowledge of lateral gene flow as secure as scientist suppose The author sites several research papers that suggest that intergeneric transformation can and does take place in marine environments such as tropical and subtropical estuaries.

  8. Highly potent dUTPase inhibition by a bacterial repressor protein reveals a novel mechanism for gene expression control

    PubMed Central

    Szabó, Judit E.; Németh, Veronika; Papp-Kádár, Veronika; Nyíri, Kinga; Leveles, Ibolya; Bendes, Ábris Á.; Zagyva, Imre; Róna, Gergely; Pálinkás, Hajnalka L.; Besztercei, Balázs; Ozohanics, Olivér; Vékey, Károly; Liliom, Károly; Tóth, Judit; Vértessy, Beáta G.

    2014-01-01

    Transfer of phage-related pathogenicity islands of Staphylococcus aureus (SaPI-s) was recently reported to be activated by helper phage dUTPases. This is a novel function for dUTPases otherwise involved in preservation of genomic integrity by sanitizing the dNTP pool. Here we investigated the molecular mechanism of the dUTPase-induced gene expression control using direct techniques. The expression of SaPI transfer initiating proteins is repressed by proteins called Stl. We found that ?11 helper phage dUTPase eliminates SaPIbov1 Stl binding to its cognate DNA by binding tightly to Stl protein. We also show that dUTPase enzymatic activity is strongly inhibited in the dUTPase:Stl complex and that the dUTPase:dUTP complex is inaccessible to the Stl repressor. Our results disprove the previously proposed G-protein-like mechanism of SaPI transfer activation. We propose that the transfer only occurs if dUTP is cleared from the nucleotide pool, a condition promoting genomic stability of the virulence elements. PMID:25274731

  9. Bacterial symbiosis in arthropods and the control of disease transmission.

    PubMed Central

    Beard, C. B.; Durvasula, R. V.; Richards, F. F.

    1998-01-01

    Bacterial symbionts may be used as vehicles for expressing foreign genes in arthropods. Expression of selected genes can render an arthropod incapable of transmitting a second microorganism that is pathogenic for humans and is an alternative approach to the control of arthropod-borne diseases. We discuss the rationale for this alternative approach, its potential applications and limitations, and the regulatory concerns that may arise from its use in interrupting disease transmission in humans and animals. PMID:9866734

  10. Gene-for-gene tolerance to bacterial wilt in Arabidopsis.

    PubMed

    Van der Linden, Liesl; Bredenkamp, Jane; Naidoo, Sanushka; Fouché-Weich, Joanne; Denby, Katherine J; Genin, Stephane; Marco, Yves; Berger, Dave K

    2013-04-01

    Bacterial wilt caused by Ralstonia solanacearum is a disease of widespread economic importance that affects numerous plant species, including Arabidopsis thaliana. We describe a pathosystem between A. thaliana and biovar 3 phylotype I strain BCCF402 of R. solanacearum isolated from Eucalyptus trees. A. thaliana accession Be-0 was susceptible and accession Kil-0 was tolerant. Kil-0 exhibited no wilting symptoms and no significant reduction in fitness (biomass, seed yield, and germination efficiency) after inoculation with R. solanacearum BCCF402, despite high bacterial numbers in planta. This was in contrast to the well-characterized resistance response in the accession Nd-1, which limits bacterial multiplication at early stages of infection and does not wilt. R. solanacearum BCCF402 was highly virulent because the susceptible accession Be-0 was completely wilted after inoculation. Genetic analyses, allelism studies with Nd-1, and RRS1 cleaved amplified polymorphic sequence marker analysis showed that the tolerance phenotype in Kil-0 was dependent upon the resistance gene RRS1. Knockout and complementation studies of the R. solanacearum BCCF402 effector PopP2 confirmed that the tolerance response in Kil-0 was dependent upon the RRS1-PopP2 interaction. Our data indicate that the gene-for-gene interaction between RRS1 and PopP2 can contribute to tolerance, as well as resistance, which makes it a useful model system for evolutionary studies of the arms race between plants and bacterial pathogens. In addition, the results alert biotechnologists to the risk that deployment of RRS1 in transgenic crops may result in persistence of the pathogen in the field. PMID:23234403

  11. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    SciTech Connect

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  12. Stable expression of a bacterial GUS gene in vegetatively propagated transgenic pear lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of a transgene in the genomes of in vitro propagated transgenic pear lines was assessed. A bacterial GUS reporter gene under the control of an Arabidopsis sucrose transporter gene promoter was introduced into pear cultivar ‘Old Home’ through Agrobacterium-mediated leaf-explant transfo...

  13. Reservoir of Bacterial Exotoxin Genes in the Environment

    PubMed Central

    Casas, Veronica; Magbanua, Joseph; Sobrepeña, Gerico; Kelley, Scott T.; Maloy, Stanley R.

    2010-01-01

    Many bacteria produce secreted virulence factors called exotoxins. Exotoxins are often encoded by mobile genetic elements, including bacteriophage (phage). Phage can transfer genetic information to the bacteria they infect. When a phage transfers virulence genes to an avirulent bacterium, the bacterium can acquire the ability to cause disease. It is important to understand the role played by the phage that carry these genes in the evolution of pathogens. This is the first report of an environmental reservoir of a bacterial exotoxin gene in an atypical host. Screening bacterial isolates from the environment via PCR identified an isolate with a DNA sequence >95% identical to the Staphylococcus aureus enterotoxin A gene (sea). 16S DNA sequence comparisons and growth studies identified the environmental isolate as a psychrophilic Pseudomonas spp. The results indicate that the sea gene is present in an alternative bacterial host, providing the first evidence for an environmental pool of exotoxin genes in bacteria. PMID:21318166

  14. Transport of Magnesium by a Bacterial Nramp-Related Gene

    PubMed Central

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (?0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  15. Artificial bacterial flagella: Fabrication and magnetic control

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Abbott, Jake J.; Dong, Lixin; Kratochvil, Bradley E.; Bell, Dominik; Nelson, Bradley J.

    2009-02-01

    Inspired by the natural design of bacterial flagella, we report artificial bacterial flagella (ABF) that have a comparable shape and size to their organic counterparts and can swim in a controllable fashion using weak applied magnetic fields. The helical swimmer consists of a helical tail resembling the dimensions of a natural flagellum and a thin soft-magnetic "head" on one end. The swimming locomotion of ABF is precisely controlled by three orthogonal electromagnetic coil pairs. Microsphere manipulation is performed, and the thrust force generated by an ABF is analyzed. ABF swimmers represent the first demonstration of microscopic artificial swimmers that use helical propulsion. Self-propelled devices such as these are of interest in fundamental research and for biomedical applications.

  16. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    PubMed Central

    Martínez, Luary C.; Vadyvaloo, Viveka

    2014-01-01

    Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria. PMID:24724055

  17. Efficient Gene Transfer in Bacterial Cell Chains

    E-print Network

    Babic, Ana

    Horizontal gene transfer contributes to evolution and the acquisition of new traits. In bacteria, horizontal gene transfer is often mediated by conjugative genetic elements that transfer directly from cell to cell. Integrative ...

  18. Gene identication in bacterial and organellar genomes using GeneScan

    E-print Network

    Ramaswamy, Ram

    Gene identi®cation in bacterial and organellar genomes using GeneScan Ramaswamy Ramakrishnaa, 110 067, India Received 23 June 1998; accepted 13 November 1998 Abstract The performance of the GeneScan algorithm for gene identi®cation has been improved by incorporation of a directed iterative scanning

  19. Three computational tools for predicting bacterial essential genes.

    PubMed

    Guo, Feng-Biao; Ye, Yuan-Nong; Ning, Lu-Wen; Wei, Wen

    2015-01-01

    Essential genes are those genes indispensable for the survival of any living cell. Bacterial essential genes constitute the cornerstones of synthetic biology and are often attractive targets in the development of antibiotics and vaccines. Because identification of essential genes with wet-lab ways often means expensive economic costs and tremendous labor, scientists changed to seek for alternative way of computational prediction. Aiming to help to solve this issue, our research group (CEFG: group of Computational, Comparative, Evolutionary and Functional Genomics, http://cefg.uestc.edu.cn) has constructed three online services to predict essential genes in bacterial genomes. These freely available tools are applicable for single gene sequences without annotated functions, single genes with definite names, and complete genomes of bacterial strains. To ensure reliable predictions, the investigated species should belong to the same family (for EGP) or phylum (for CEG_Match and Geptop) with one of the reference species, respectively. As the pilot software for the issue, predicting accuracies of them have been assessed and compared with existing algorithms, and note that all of other published algorithms have not any formed online services. We hope these services at CEFG will help scientists and researchers in the field of essential genes. PMID:25636621

  20. A RAPD-derived STS marker is linked to a bacterial wilt ( Burkholderia caryophylli ) resistance gene in carnation

    Microsoft Academic Search

    Takashi Onozaki; Natsu Tanikawa; Mitsuyasu Taneya; Kiyofumi Kudo; Takuya Funayama; Hiroshi Ikeda; Michio Shibata

    2004-01-01

    Bacterial wilt caused by Burkholderia caryophylli is one of the most important and damaging diseases of carnations (Dianthus caryophyllus) in Japan. We aimed to identify random amplified polymorphic DNA (RAPD) markers associated with the genes controlling bacterial wilt resistance in a resistance-segregating population of 134 progeny plants derived from a cross between ‘Carnation Nou No. 1’ (a carnation breeding line

  1. Controlling rice bacterial blight in Africa: needs and prospects.

    PubMed

    Verdier, Valérie; Vera Cruz, Casiana; Leach, Jan E

    2012-06-30

    Rice cultivation has drastically increased in Africa over the last decade. During this time, the region has also seen a rise in the incidence of rice bacterial blight caused by the pathogen Xanthomonas oryzae pv. oryzae. The disease is expanding to new rice production areas and threatens food security in the region. Yield losses caused by X. oryzae pv. oryzae range from 20 to 30% and can be as high as 50% in some areas. Employing resistant cultivars is the most economical and effective way to control this disease. To facilitate development and strategic deployment of rice cultivars with resistance to bacterial blight, biotechnology tools and approaches, including marker-assisted breeding, gene combinations for disease control, and multiplex-PCR for pathogen diagnosis, have been developed. Although these technologies are routinely used elsewhere, their application in Africa remains limited, usually due to high cost and advanced technical skills required. To combat this problem, developers of the technologies at research institutions need to work with farmers from an early stage to create and promote the integration of successful, low cost applications of research biotech products. Here, we review the current knowledge and biotechnologies available to improve bacterial blight control. We will also discuss how to facilitate their application in Africa and delivery to the field. PMID:21963588

  2. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease

    Microsoft Academic Search

    Y. Hu; J. Zhang; H. Jia; D. Sosso; T. Li; W. B. Frommer; B. Yang; F. F. White; N. Wang; J. B. Jones

    2014-01-01

    Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector

  3. Regulation of bacterial virulence gene expression by cell envelope stress responses.

    PubMed

    Flores-Kim, Josué; Darwin, Andrew J

    2014-11-17

    The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens. PMID:25603429

  4. Towards an Informative Mutant Phenotype for Every Bacterial Gene

    PubMed Central

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Tarjan, Daniel R.; Xu, Zhuchen; Shao, Wenjun; Leon, Dacia

    2014-01-01

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness. PMID:25112473

  5. Towards an informative mutant phenotype for every bacterial gene.

    PubMed

    Deutschbauer, Adam; Price, Morgan N; Wetmore, Kelly M; Tarjan, Daniel R; Xu, Zhuchen; Shao, Wenjun; Leon, Dacia; Arkin, Adam P; Skerker, Jeffrey M

    2014-10-01

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness. PMID:25112473

  6. Enhanced resistance against bacterial wilt in transgenic tomato ( Lycopersicon esculentum ) lines expressing the Xa21 gene

    Microsoft Academic Search

    Amber Afroz; Zubeda Chaudhry; Umer Rashid; Ghulam Muhammad Ali; Farhat Nazir; Javaid Iqbal; Muhammad Rashid Khan

    2011-01-01

    To enhance bacterial wilt resistance in tomato plants and simplify the protocol of Agrobacterium tumefaciens mediated gene transfer, parameters affecting transformation efficiency in tomato have been optimized. A. tumefaciens strain EHA101, harboring a recombinant binary expression vector pTCL5 containing the Xa21 gene under the control of the CaMV 35S promoter was used for transformation. Five cultivars of tomato (Rio Grande,

  7. Identification of Genes Induced in Lolium multiflorum by Bacterial Wilt Infection

    Microsoft Academic Search

    Fabienne Wichmann; Torben Asp; Franco Widmer; Roland Kölliker

    \\u000a \\u000a Xanthomonas translucens pv. graminis(Xtg) causes bacterial wilt in many forage grasses including Italian ryegrass (Lolium multiflorum Lam), seriously reducing yield and quality. Breeding for resistance is currently the only practicable means of disease control.\\u000a Molecular markers closely linked to resistance genes or QTL could complement and support phenotypic selection. We used comparative\\u000a gene expression analysis of a partially resistant L.

  8. Bacterial gene transfer by natural genetic transformation in the environment.

    PubMed Central

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924

  9. Genes Necessary for Bacterial Magnetite Biomineralization Identified by Transposon Mutagenesis

    NASA Astrophysics Data System (ADS)

    Nash, C. Z.; Komeili, A.; Newman, D. K.; Kirschvink, J. L.

    2004-12-01

    Magnetic bacteria synthesize nanoscale crystals of magnetite in intracellular, membrane-bounded organelles (magnetosomes). These crystals are preserved in the fossil record at least as far back as the late Neoproterozoic and have been tentatively identified in much older rocks (1). This fossil record may provide deep time calibration points for molecular evolution studies once the genes involved in biologically controlled magnetic mineralization (BCMM) are known. Further, a genetic and biochemical understanding of BCMM will give insight into the depositional environment and biogeochemical cycles in which magnetic bacteria play a role. The BCMM process is not well understood, though proteins have been identified from the magnetosome membrane and genetic manipulation and biochemical characterization of these proteins are underway. Most of the proteins currently thought to be involved are encoded within the mam cluster, a large cluster of genes whose products localize to the magnetosome membrane and are conserved among magnetic bacteria (2). In an effort to identify all of the genes necessary for bacterial BCMM, we undertook a transposon mutagenesis of Magnetospirillum magneticum AMB-1. Non-magnetic mutants (MNMs) were identified by growth in liquid culture followed by a magnetic assay. The insertion site of the transposon was identified two ways. First MNMs were screened with a PCR assay to determine if the transposon had inserted into the mam cluster. Second, the transposon was rescued from the mutant DNA and cloned for sequencing. The majority insertion sites are located within the mam cluster. Insertion sites also occur in operons which have not previously been suspected to be involved in magnetite biomineralization. None of the insertion sites have occurred within genes reported from previous transposon mutagenesis studies of AMB-1 (3, 4). Two of the non-mam cluster insertion sites occur in operons containing genes conserved particularly between MS-1 and MC-1. We are undertaking a complementation strategy to demonstrate the necessity of these novel genes in BCMM as well as characterizing the phenotypes of the mutants. 1. S. B. R. Chang, J. F. Stolz, J. L. Kirschvink, S. M. Awramik, Precambrian Res. 43, 305-315 (1989). 2. K. Grünberg, C. Wawer, B. M. Tebo, D. Schüler, Appl. Environ. Microbiol. 67, 4573-4582 (2001). 3. A. T. Wahyudi, H. Takeyama, T. Matsunaga, Appl. Biochem. Biotechnol. 91-3, 147-154 (2001). 4. T. Matsunaga, C. Nakamura, J. G. Burgess, K. Sode, J. Bacteriol. 174, 2748-2753 (1992).

  10. Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight.

    PubMed

    Essenberg, Margaret; Bayles, Melanie B; Pierce, Margaret L; Verhalen, Laval M

    2014-10-01

    ABSTRACT Near-isogenic lines of upland cotton (Gossypium hirsutum) carrying single, race-specific genes B4, BIn, and b7 for resistance to bacterial blight were used to develop a pyramid of lines with all possible combinations of two and three genes to learn whether the pyramid could achieve broad and high resistance approaching that of L. A. Brinkerhoff's exceptional line Im216. Isogenic strains of Xanthomonas axonopodis pv. malvacearum carrying single avirulence (avr) genes were used to identify plants carrying specific resistance (B) genes. Under field conditions in north-central Oklahoma, pyramid lines exhibited broader resistance to individual races and, consequently, higher resistance to a race mixture. It was predicted that lines carrying two or three B genes would also exhibit higher resistance to race 1, which possesses many avr genes. Although some enhancements were observed, they did not approach the level of resistance of Im216. In a growth chamber, bacterial populations attained by race 1 in and on leaves of the pyramid lines decreased significantly with increasing number of B genes in only one of four experiments. The older lines, Im216 and AcHR, exhibited considerably lower bacterial populations than any of the one-, two-, or three-B-gene lines. A spreading collapse of spray-inoculated AcBIn and AcBInb7 leaves appears to be a defense response (conditioned by BIn) that is out of control. PMID:24655289

  11. Gene calling and bacterial genome annotation with BG7.

    PubMed

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services). PMID:25343866

  12. CRISPR-Cas systems: new players in gene regulation and bacterial physiology.

    PubMed

    Sampson, Timothy R; Weiss, David S

    2014-01-01

    CRISPR-Cas systems are bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids or other sources. These systems are targeted in an RNA-dependent, sequence-specific manner, and are also adaptive, providing protection against previously encountered foreign elements. In addition to their canonical function in defense against foreign nucleic acid, their roles in various aspects of bacterial physiology are now being uncovered. We recently revealed a role for a Cas9-based Type II CRISPR-Cas system in the control of endogenous gene expression, a novel form of prokaryotic gene regulation. Cas9 functions in association with two small RNAs to target and alter the stability of an endogenous transcript encoding a bacterial lipoprotein (BLP). Since BLPs are recognized by the host innate immune protein Toll-like Receptor 2 (TLR2), CRISPR-Cas-mediated repression of BLP expression facilitates evasion of TLR2 by the intracellular bacterial pathogen Francisella novicida, and is essential for its virulence. Here we describe the Cas9 regulatory system in detail, as well as data on its role in controlling virulence traits of Neisseria meningitidis and Campylobacter jejuni. We also discuss potential roles of CRISPR-Cas systems in the response to envelope stress and other aspects of bacterial physiology. Since ~45% of bacteria and ~83% of Archaea encode these machineries, the newly appreciated regulatory functions of CRISPR-Cas systems are likely to play broad roles in controlling the pathogenesis and physiology of diverse prokaryotes. PMID:24772391

  13. In vivo genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection

    PubMed Central

    Cronin, Shane J. F.; Nehme, Nadine T.; Limmer, Stefanie; Liegeois, Samuel; Pospisilik, J. Andrew; Schramek, Daniel; Leibbrandt, Andreas; Simoes, Ricardo de Matos; Gruber, Susanne; Puc, Urszula; Ebersberger, Ingo; Zoranovic, Tamara; Neely, G. Gregory; von Haeseler, Arndt; Ferrandon, Dominique; Penninger, Josef M.

    2010-01-01

    Innate immunity represents the first line of defense in animals. We report a genome-wide in vivo Drosophila RNA interference screen to uncover genes involved in susceptibility or resistance to intestinal infection with the bacterium Serratia marcescens. We employed first whole-organism gene suppression followed by tissue-specific silencing in gut epithelium or hemocytes to identify several hundred genes involved in intestinal anti-bacterial immunity. Among the pathways identified, we showed that the JAK-STAT signaling pathway controls host defense in the gut by regulating stem cell proliferation and thus epithelial cell homeostasis. Thus, we revealed multiple genes involved in anti-bacterial defense and the regulation of innate immunity. PMID:19520911

  14. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.

    PubMed

    Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N

    2013-11-01

    1,2,4-butanetriol (butanetriol) is a useful precursor for the synthesis of the energetic material butanetriol trinitrate and several pharmaceutical compounds. Bacterial synthesis of butanetriol from xylose or arabinose takes place in a pathway that requires four enzymes. To produce butanetriol in plants by expressing bacterial enzymes, we cloned native bacterial or codon optimized synthetic genes under different promoters into a binary vector and stably transformed Arabidopsis plants. Transgenic lines expressing introduced genes were analyzed for the production of butanetriol using gas chromatography coupled to mass spectrometry (GC-MS). Soil-grown transgenic plants expressing these genes produced up to 20 µg/g of butanetriol. To test if an exogenous supply of pentose sugar precursors would enhance the butanetriol level, transgenic plants were grown in a medium supplemented with either xylose or arabinose and the amount of butanetriol was quantified. Plants expressing synthetic genes in the arabinose pathway showed up to a forty-fold increase in butanetriol levels after arabinose was added to the medium. Transgenic plants expressing either bacterial or synthetic xylose pathways, or the arabinose pathway showed toxicity symptoms when xylose or arabinose was added to the medium, suggesting that a by-product in the pathway or butanetriol affected plant growth. Furthermore, the metabolite profile of plants expressing arabinose and xylose pathways was altered. Our results demonstrate that bacterial pathways that produce butanetriol can be engineered into plants to produce this chemical. This proof-of-concept study for phytoproduction of butanetriol paves the way to further manipulate metabolic pathways in plants to enhance the level of butanetriol production. PMID:24126081

  15. Evolution of a Bacterial Regulon Controlling Virulence Homeostasis

    E-print Network

    Granada, Universidad de

    Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis J. Christian Perez1,2¤a governs virulence and Mg2+ homeostasis in several bacterial species. We establish that the ancestral Pho Regulon Controlling Virulence and Mg2+ Homeostasis. PLoS Genet 5(3): e1000428. doi:10.1371/journal

  16. Gene regulation mediates host specificity of a bacterial pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2011-12-01

    Many bacterial plant pathogens have a gene-for-gene relationship that determines host specificity. However, there are pathogens such as the xylem-limited bacterium Xylella fastidiosa that do not carry genes considered essential for the gene-for-gene model, such as those coding for a type III secretion system and effector molecules. Nevertheless, X.?fastidiosa subspecies are host specific. A comparison of symptom development and host colonization after infection of plants with several mutant strains in two hosts, grapevines and almonds, indicated that X.?fastidiosa virulence mechanisms are similar in those plants. Thus, we tested if modification of gene regulation patterns, by affecting the production of a cell-cell signalling molecule (DSF), impacted host specificity in X.?fastidiosa. Results show that disruption of the rpfF locus, required for DSF synthesis, in a strain incapable of causing disease in grapevines, leads to symptom development in that host. These data are indicative that the core machinery required for the colonization of grapevines is present in that strain, and that changes in gene regulation alone can lead X.?fastidiosa to exploit a novel host. The study of the evolution and mechanisms of host specificity mediated by gene regulation at the genome level could lead to important insights on the emergence of new diseases. PMID:23761371

  17. Use of Bacteriophages to control bacterial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages can provide a natural method and an effective alternative to antibiotics to reduce bacterial pathogens in animals, foods, and other environments. Bacteriophages (phages) are viruses which infect bacterial cells and eventually kill them through lysis, and represent the most abun...

  18. Limits of feedback control in bacterial chemotaxis.

    PubMed

    Dufour, Yann S; Fu, Xiongfei; Hernandez-Nunez, Luis; Emonet, Thierry

    2014-06-01

    Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper coupling between sensors, which gather information during motion, and actuators, which control behavior. Because reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime different from the resting state. How then can organisms maintain proper information transfer through the pathway while navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant. While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters such as adaptation rate and adapted activity affect chemotactic performance, especially when considering that the swimming behavior of the cell determines the input signal. We examine this issue using analytical models and simulations that incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation. By focusing on how sensory information carried by the response regulator is best utilized by the motor, we identify an operational regime that maximizes drift velocity along chemical concentration gradients for a wide range of environments and sensor adaptation rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal operational regime in all environments, suggesting that diversity could be beneficial. PMID:24967937

  19. Limits of Feedback Control in Bacterial Chemotaxis

    PubMed Central

    Hernandez-Nunez, Luis; Emonet, Thierry

    2014-01-01

    Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper coupling between sensors, which gather information during motion, and actuators, which control behavior. Because reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime different from the resting state. How then can organisms maintain proper information transfer through the pathway while navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant. While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters such as adaptation rate and adapted activity affect chemotactic performance, especially when considering that the swimming behavior of the cell determines the input signal. We examine this issue using analytical models and simulations that incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation. By focusing on how sensory information carried by the response regulator is best utilized by the motor, we identify an operational regime that maximizes drift velocity along chemical concentration gradients for a wide range of environments and sensor adaptation rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal operational regime in all environments, suggesting that diversity could be beneficial. PMID:24967937

  20. Adaptive identification and control algorithms for nonlinear bacterial growth systems

    Microsoft Academic Search

    D. DOCHAINt; G. BASTIN

    1984-01-01

    This paper suggests how nonlinear adaptive control of nonlinear bacterial growth systems could be performed. The process is described by a time-varying nonlinear model obtained from material balance equations. Two different control problems are considered: substrate concentration control and production rate control. For each of these cases, an adaptive minimum variance control algorithm is proposed and its effectiveness is shown

  1. Bacterial patterning controlled by light exposure.

    PubMed

    Velema, Willem A; van der Berg, Jan Pieter; Szymanski, Wiktor; Driessen, Arnold J M; Feringa, Ben L

    2015-01-27

    Patterning of multiple bacterial strains in one system is achieved by employing a single photo-activated antibiotic. Varying the light-exposure time results in zones with mixed and single populations. PMID:25530471

  2. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease

    PubMed Central

    Hu, Yang; Zhang, Junli; Jia, Hongge; Sosso, Davide; Li, Ting; Frommer, Wolf B.; Yang, Bing; White, Frank F.; Wang, Nian; Jones, Jeffrey B.

    2014-01-01

    Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccAw, induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations. PMID:24474801

  3. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease.

    PubMed

    Hu, Yang; Zhang, Junli; Jia, Hongge; Sosso, Davide; Li, Ting; Frommer, Wolf B; Yang, Bing; White, Frank F; Wang, Nian; Jones, Jeffrey B

    2014-01-28

    Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccA(w), induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations. PMID:24474801

  4. [Expression of the starfish complement component C3 gene homologue under the influence of bacterial lipopolysaccharide].

    PubMed

    Mogilenko, D A; Kudriavtsev, I V; Orlov, S V; Kharazova, A D; Polevshchikov, A V

    2010-01-01

    The fragment of a homologue of complement component C3 gene has been cloned and sequenced from the starfish, Asterias rubens. Phylogenetic analysis of ArC3-like gene demonstrates that ArC3-like gene has close similarity to C3 gene homologues of Deuterostomia invertebrate animals. High level of ArC3-like gene expression was identified in circulating cells (coelomocytes), in a gut's derivate (hepatopancreas) and in male gonada but not in stomach, female gonad and rectal gland of A. rubens starfish. ArC3-like gene expression was shown in all types of starfish coelomocytes: in lymphocyte-like cells, granular and nongranular amebocytes. Injection of bacterial lipopolysaccharide (LPS) solution into the coelomic cavity of starfish leads to the increase of ArC3-like gene expression in coelomocytes and hepatopancreas over the control level of sterile sea water injection. The level of ArC3-like gene expression increased in response to LPS reaching the maximum 6 h after the stimulation, and decreased to basal level 24 h after the stimulation. Injection of LPS solution stimulated the increase of ArC3-like gene expression level in hepatopancreas reaching the maximum 6-12 h after the stimulation, and the level of mRNA of ArC3-like gene had still been increased 48 h after LPS injection. The data demonstrates sustained positive regulation of ArC3-like gene expression under the influence of LPS. PMID:20198861

  5. The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction

    E-print Network

    Rankin, Daniel

    The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes Bacterial genomes commonly contain `addiction' gene complexes that code for both a toxin and a corre-segregational killing; genetic addiction; toxin­antitoxin systems 1. INTRODUCTION Genomes comprise multiple genes

  6. Targeting xa13 , a recessive gene for bacterial blight resistance in rice

    Microsoft Academic Search

    Zhaohui Chu; Binying Fu; Hong Yang; Caiguo Xu; Zhikang Li; A. Sanchez; Y. J. Park; J. L. Bennetzen; Qifa Zhang; Shiping Wang

    2006-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases of rice worldwide. Thirty bacterial blight resistance (R) genes (21 dominant genes and 9 recessive genes) in rice have been identified. They are the main sources for the genetic\\u000a improvement of rice for resistance to Xoo. However, little is known about the recessive R

  7. Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle

    Microsoft Academic Search

    Wayne L. Morris; Laurence J. M. Ducreux; Peter Hedden; Steve Millam; Mark A. Taylor

    2006-01-01

    Potato tubers were engineered to express a bacterial gene encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS) in order to investigate the effects of perturbation of isoprenoid biosynthesis. Twenty-four independent transgenic lines out of 38 generated produced tubers with significantly elongated shape that also exhibited an early tuber sprouting phenotype. Expression analy- sis of nine transgenic lines (four exhibiting the pheno- type and

  8. Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments.

    PubMed

    Laverock, B; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2014-02-01

    In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments. PMID:24596269

  9. Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments

    PubMed Central

    Laverock, B; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2014-01-01

    In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments. PMID:24596269

  10. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community

    PubMed Central

    2013-01-01

    Background Butyrate, which is produced by the human microbiome, is essential for a well-functioning colon. Bacteria that produce butyrate are phylogenetically diverse, which hinders their accurate detection based on conventional phylogenetic markers. As a result, reliable information on this important bacterial group is often lacking in microbiome research. Results In this study we describe a gene-targeted approach for 454 pyrotag sequencing and quantitative polymerase chain reaction for the final genes in the two primary bacterial butyrate synthesis pathways, butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk). We monitored the establishment and early succession of butyrate-producing communities in four patients with ulcerative colitis who underwent a colectomy with ileal pouch anal anastomosis and compared it with three control samples from healthy colons. All patients established an abundant butyrate-producing community (approximately 5% to 26% of the total community) in the pouch within the 2-month study, but patterns were distinctive among individuals. Only one patient harbored a community profile similar to the healthy controls, in which there was a predominance of but genes that are similar to reference genes from Acidaminococcus sp., Eubacterium sp., Faecalibacterium prausnitzii and Roseburia sp., and an almost complete absence of buk genes. Two patients were greatly enriched in buk genes similar to those of Clostridium butyricum and C. perfringens, whereas a fourth patient displayed abundant communities containing both genes. Most butyrate producers identified in previous studies were detected and the general patterns of taxa found were supported by 16S rRNA gene pyrotag analysis, but the gene-targeted approach provided more detail about the potential butyrate-producing members of the community. Conclusions The presented approach provides quantitative and genotypic insights into butyrate-producing communities and facilitates a more specific functional characterization of the intestinal microbiome. Furthermore, our analysis refines but and buk reference annotations found in central databases. PMID:24451334

  11. MLST revisited: the gene-by-gene approach to bacterial genomics

    PubMed Central

    Maiden, Martin C. J.; Jansen van Rensburg, Melissa J.; Bray, James E.; Earle, Sarah G.; Ford, Suzanne A.; Jolley, Keith A.; McCarthy, Noel D.

    2014-01-01

    Multilocus sequence typing (MLST) was proposed in 1998 as a portable sequence-based method for identifying clonal relationships among bacteria. Today, in the whole-genome era of microbiology, the need for systematic, standardized descriptions of bacterial genotypic variation remains a priority. Here, to meet this need, we draw on the successes of MLST and 16S rRNA gene sequencing to propose a hierarchical gene-by-gene approach that reflects functional and evolutionary relationships and catalogues bacteria ‘from domain to strain’. Our gene-based typing approach using online platforms such as the Bacterial Isolate Genome Sequence Database (BIGSdb) allows the scalable organization and analysis of whole-genome sequence data. PMID:23979428

  12. Chromosomal Integration and Expression of Two Bacterial ?-Acetolactate Decarboxylase Genes in Brewer's Yeast

    PubMed Central

    Blomqvist, K.; Suihko, M.-L.; Knowles, J.; Penttilä, M.

    1991-01-01

    A bacterial gene encoding ?-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the ?-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the ?-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer. Images PMID:16348559

  13. Bacterial Transport and Fate and Its Effect on Horizontal Gene Transfer in Soil

    NASA Astrophysics Data System (ADS)

    Lv, N.; Massoudieh, A.; Nguyen, T. H.; Kamai, T.; Zilles, J. L.; Ginn, T. R.; Liang, X.

    2013-12-01

    Biogeochemical cycling in ecosystems relies heavily on soil bacterial communities. Bacterial communities adapt to natural or anthropogenic disruptions through mutation and horizontal gene transfer. Horizontal gene transfer alters bacterial communities rapidly by transferring DNA across species. A systematic understanding of bacterial transport and fate and its effects on horizontal gene transfer is critical for predicting and harnessing bacterial adaption and evolution in soil. In this work, a multi-scale approach was applied to study the effects of both flagella and motility on transport and fate of the soil bacterium Azotobacter vinelandii in porous media. Both micromodel and column experiments showed decreasing deposition over time, suggesting that both flagellated and non-flagellated cells were blocked from deposition by previously deposited cells. In later stages, ripening effects were also observed, and they appeared earlier for the non-flagellated strain. Based on the overall clean collector removal efficiencies determined from micromodel and column experiments, the non-motile and non-flagellated strain DJNM deposited the most, while the motile, wild-type strain DJ showed the least deposition. The overall clean collector removal efficiencies was due to decreased deposition of motile cells on the front sides of the collectors (relative to the flow direction). The horizontal gene transfer of extracellular DNA, known as natural transformation, was evaluated with both dissolved and adsorbed extracellular DNA and with motile and non-motile but flagellated strains (DJ and DJ77, respectively). The distinct transport mechanisms of these strains resulted in different natural transformation rates and relationships to the concentration of cells and dissolved extracellular DNA. A modified mass action type relationship with power relationships was established to model the differences in natural transformation between DJ and DJ77. A cell-DNA pairing hypothesis was formulated as a cell and DNA pair together and can eventually develop into a successful transformation reaction depending on time. The paring (Kz) and DNA power relationship (n2) parameters were similar for the two strains. However, the cell concentration power relationship (n1) was 0.77 and 0.39 for DJ and DJ77, respectively. The fact that n1 was smaller than 1 showed that transformation of both DJ and DJ77 suffered from cell concentration increase. The n1 of DJ being 2 times larger than that of DJ77 strongly suggested motility recovered transformation. Our microscopic observations further suggest that the approach of cells to extracellular DNA depends on bacterial motility. Combining microscopic observation of bacterial movement, assays of gene transfer, and macroscopic measurements provides insights into bacterial transport mechanisms and their influence on horizontal gene transfer. Our best opportunity to understand, control and harness bacterial communities stems from a fundamental understanding of bacterial transport and fate in the soil environment.

  14. Distance Matters: The Impact of Gene Proximity in Bacterial Gene Regulation

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Otto; Metzler, Ralf

    2013-05-01

    Following recent discoveries of colocalization of downstream-regulating genes in living cells, the impact of the spatial distance between such genes on the kinetics of gene product formation is increasingly recognized. We here show from analytical and numerical analysis that the distance between a transcription factor (TF) gene and its target gene drastically affects the speed and reliability of transcriptional regulation in bacterial cells. For an explicit model system, we develop a general theory for the interactions between a TF and a transcription unit. The observed variations in regulation efficiency are linked to the magnitude of the variation of the TF concentration peaks as a function of the binding site distance from the signal source. Our results support the role of rapid binding site search for gene colocalization and emphasize the role of local concentration differences.

  15. Metabolic bacterial genes and the construction of high-level composite lineages of life

    PubMed Central

    Méheust, Raphaël; Lopez, Philippe; Bapteste, Eric

    2015-01-01

    Understanding how major organismal lineages originated is fundamental for understanding processes by which life evolved. Major evolutionary transitions, like eukaryogenesis, merging genetic material from distantly related organisms, are rare events, hence difficult ones to explain causally. If most archaeal lineages emerged after massive acquisitions of bacterial genes, a rule however arises: metabolic bacterial genes contributed to all major evolutionary transitions. PMID:25601290

  16. Detecting rare gene transfer events in bacterial populations

    PubMed Central

    Nielsen, Kaare M.; Bøhn, Thomas; Townsend, Jeffrey P.

    2014-01-01

    Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research. PMID:24432015

  17. Method of controlling gene expression

    DOEpatents

    Peters, Norman K. (Berkeley, CA); Frost, John W. (Menlo Park, CA); Long, Sharon R. (Palo Alto, CA)

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  18. The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex.

    PubMed

    Van Gijsegem, F; Gough, C; Zischek, C; Niqueux, E; Arlat, M; Genin, S; Barberis, P; German, S; Castello, P; Boucher, C

    1995-03-01

    Five transcription units of the Pseudomonas solanacearum hrp gene cluster are required for the secretion of the HR-inducing PopA1 protein. The nucleotide sequences of two of these, units 1 and 3, have been reported. Here, we present the nucleotide sequence of the three other transcription units, units 2, 4 and 7, which are together predicted to code for 15 hrp genes. This brings the total number of Hrp proteins encoded by these five transcription units to 20, including HrpB, the positive regulatory protein, and HpaP, which is apparently not required for plant interactions. Among the 18 other proteins, eight belong to protein families regrouping proteins involved in type III secretion pathways in animal and plant bacterial pathogens and in flagellum biogenesis, while two are related solely to proteins involved in secretion systems. For the various proteins found to be related to P. solanacearum Hrp proteins, those in plant-pathogenic bacteria include proteins encoded by hrp genes. For Hrp-related proteins of animal pathogens, those encoded by the spa and mxi genes of Shigella flexneri and of Salmonella typhimurium and by the ysc genes of Yersinia are involved in type III secretion pathways. Proteins involved in flagellum biogenesis, which are related to Hrp proteins of P. solancearum, include proteins encoded by fli and flh genes of S. typhimurium, Bacillus subtilis and Escherichia coli and by mop genes of Erwinia carotovora. P. solanacearum Hrp proteins were also found to be related to proteins of Rhizobium fredii involved in nodulation specificity. PMID:7623665

  19. Host PGRP gene expression and bacterial release in endosymbiosis of the weevil Sitophilus zeamais.

    PubMed

    Anselme, Caroline; Vallier, Agnès; Balmand, Séverine; Fauvarque, Marie-Odile; Heddi, Abdelaziz

    2006-10-01

    Intracellular symbiosis (endosymbiosis) with gram-negative bacteria is common in insects, yet little is known about how the host immune system perceives the endosymbionts and controls their growth and invasion without complete bacterial clearance. In this study, we have explored the expression of a peptidoglycan recognition protein gene of the weevil Sitophilus zeamais (wPGRP); an ortholog in Drosophila (i.e., PGRP-LB) was recently shown to downregulate the Imd pathway (A. Zaidman-Remy, M. Herve, M. Poidevin, S. Pili-Floury, M. S. Kim, D. Blanot, B. H. Oh, R. Ueda, D. Mengin-Lecreulx, and B. Lemaitre, Immunity 24:463-473, 2006). Insect challenges with bacteria have demonstrated that wPGRP is induced by gram-negative bacteria and that the level of induction depends on bacterial growth. Real-time reverse transcription-PCR quantification of the wPGRP gene transcript performed at different points in insect development has shown a high steady-state level in the bacteria-bearing organ (the bacteriome) of larvae and a high level of wPGRP up-regulation in the symbiotic nymphal phase. Concomitantly, during this stage fluorescence in situ hybridization has revealed an endosymbiont release from the host bacteriocytes. Together with the previously described high induction level of endosymbiont virulence genes at the nymphal phase (C. Dale, G. R. Plague, B. Wang, H. Ochman, and N. A. Moran, Proc. Natl. Acad. Sci. USA 99:12397-12402, 2002), these findings indicate that insect mutualistic relationships evolve through an interplay between bacterial virulence and host immune defense and that the host immunity engages the PGRP gene family in that interplay. PMID:17021229

  20. Bacterial gene abundances as indicators of greenhouse gas emission in soils.

    PubMed

    Morales, Sergio E; Cosart, Theodore; Holben, William E

    2010-06-01

    Nitrogen fixing and denitrifying bacteria, respectively, control bulk inputs and outputs of nitrogen in soils, thereby mediating nitrogen-based greenhouse gas emissions in an ecosystem. Molecular techniques were used to evaluate the relative abundances of nitrogen fixing, denitrifying and two numerically dominant ribotypes (based on the > or =97% sequence similarity at the 16S rRNA gene) of bacteria in plots representing 10 agricultural and other land-use practices at the Kellogg biological station long-term ecological research site. Quantification of nitrogen-related functional genes (nitrite reductase, nirS; nitrous oxide reductase, nosZ; and nitrogenase, nifH) as well as two dominant 16S ribotypes (belonging to the phyla Acidobacteria, Thermomicrobia) allowed us to evaluate the hypothesis that microbial community differences are linked to greenhouse gas emissions under different land management practices. Our results suggest that the successional stages of the ecosystem are strongly linked to bacterial functional group abundance, and that the legacy of agricultural practices can be sustained over decades. We also link greenhouse gas emissions with specific compositional responses in the soil bacterial community and assess the use of denitrifying gene abundances as proxies for determining nitrous oxide emissions from soils. PMID:20182521

  1. Bacterial cell curvature through mechanical control of cell growth

    E-print Network

    Weibel, Douglas B.

    Bacterial cell curvature through mechanical control of cell growth Matthew T Cabeen1 , Godefroid and Borisy, 2003), and the other is by affecting cell growth (Smith and Oppenheimer, 2005; Cabeen and Jacobs-Wagner, 2007; Fischer et al, 2008). In bacteria, as in plants and fungi, cell growth depends on cell wall

  2. Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses

    PubMed Central

    Ambrose, Karen V.; Koppenhöfer, Albrecht M.; Belanger, Faith C.

    2014-01-01

    Horizontal gene transfer is recognized as an important factor in genome evolution, particularly when the newly acquired gene confers a new capability to the recipient species. We identified a gene similar to the makes caterpillars floppy (mcf1 and mcf2) insect toxin genes in Photorhabdus, bacterial symbionts of nematodes, in the genomes of the Epichloë fungi, which are intercellular symbionts of grasses. Infection by Epichloë spp. often confers insect resistance to the grass hosts, largely due to the production of fungal alkaloids. A mcf-like gene is present in all of the Epichloë genome sequences currently available but in no other fungal genomes. This suggests the Epichloë genes were derived from a single lineage-specific HGT event. Molecular dating was used to estimate the time of the HGT event at between 7.2 and 58.8 million years ago. The mcf-like coding sequence from Epichloë typhina subsp. poae was cloned and expressed in Escherichia coli. E. coli cells expressing the Mcf protein were toxic to black cutworms (Agrotis ipsilon), whereas E. coli cells containing the vector only were non-toxic. These results suggest that the Epichloë mcf-like genes may be a component, in addition to the fungal alkaloids, of the insect resistance observed in Epichloë-infected grasses. PMID:24990771

  3. Electromagnetically Controlled Biological Assembly of Aligned Bacterial Cellulose Nanofibers

    Microsoft Academic Search

    Michael B. Sano; Andrea D. Rojas; Paul Gatenholm; Rafael V. Davalos

    2010-01-01

    We have developed a new biofabrication process in which the precise control of bacterial motion is used to fabricate customizable\\u000a networks of cellulose nanofibrils. This article describes how the motion of Acetobacter xylinum can be controlled by electric fields while the bacteria simultaneously produce nanocellulose, resulting in networks with\\u000a aligned fibers. Since the electrolysis of water due to the application

  4. Bacterial parasite shows potential in disease control

    NSDL National Science Digital Library

    Lon Bram

    This online article reports that researchers have sequenced the complete genome of one strain of Wolbachia pipientis and are gaining new insight into the biology and evolution of Wolbachia-host interactions. It discusses practical applications such as disease and pest control.

  5. Peripheral blood RNA gene expression profiling in patients with bacterial meningitis

    PubMed Central

    Lill, Margit; Kõks, Sulev; Soomets, Ursel; Schalkwyk, Leonard C.; Fernandes, Cathy; Lutsar, Irja; Taba, Pille

    2013-01-01

    Objectives: The aim of present study was to find genetic pathways activated during infection with bacterial meningitis (BM) and potentially influencing the course of the infection using genome-wide RNA expression profiling combined with pathway analysis and functional annotation of the differential transcription. Methods: We analyzed 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed using GeneChip Human Gene 1.0 ST Arrays which can assess the transcription of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define the altered genetic networks. We also analyzed whether gene expression profiles depend on the clinical course and outcome. In order to verify the microarray results, the expression levels of ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, and IL7R) were confirmed by quantitative real-time (qRT) PCR. Results: There were 8569 genes displaying differential expression at a significance level of p < 0.05. Following False Discovery Rate (FDR) correction, a total of 5500 genes remained significant at a p-value of < 0.01. Quantitative RT-PCR confirmed the differential expression in 10 selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in both adults and in children with BM compared to the healthy controls. The gene expression profiles did not significantly depend on the clinical outcome, but there was a strong influence of the specific type of pathogen underlying BM. Conclusion: This study demonstrates that there is a very strong activation of immune response at the transcriptional level during BM and that the type of pathogen influences this transcriptional activation. PMID:23515576

  6. Cloning and Characterization of the Zymobacter palmae Pyruvate Decarboxylase Gene (pdc) and Comparison to Bacterial Homologues

    Microsoft Academic Search

    Krishnan Chandra Raj; Lee A. Talarico; Lonnie O. Ingram; Julie A. Maupin-Furlow

    2002-01-01

    Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used

  7. A new bacterial gene ( groP C) which affects ? DNA replication

    Microsoft Academic Search

    C. P. Georgopoulos

    1977-01-01

    A bacterial mutation affecting ? DNA replication, called groPC756, has been mapped between the thr and leu bacterial loci. Most of the parental ? DNA does not undergo even one round of replication in this host. Lambda mutants, called p, which map in the ? P gene are able to overcome the inhibitory effect of the groPC756 mutation. It is

  8. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR

    Microsoft Academic Search

    N. Huang; E. R. Angeles; J. Domingo; G. Magpantay; S. Singh; G. Zhang; N. Kumaravadivel; J. Bennett; G. S. Khush

    1997-01-01

    DNA marker-assisted selection was used to pyramid four bacterial blight resistance genes, Xa-4, xa-5, xa-13 and Xa-21. Breeding lines with two, three and four resistance genes were developed and tested for resistance to the bacterial blight\\u000a pathogen (Xanthomonas oryzae pv. oryzae). The pyramid lines showed a wider spectrum and a higher level of resistance than lines with only a single

  9. Genes for all metals—a bacterial view of the Periodic Table

    Microsoft Academic Search

    S Silver

    1998-01-01

      Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4\\u000a +, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, PO4\\u000a 3-, SO4\\u000a 2- and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids\\u000a encode resistance systems for toxic metal and metalloid ions including Ag+

  10. Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host

    PubMed Central

    Nikoh, Naruo; McCutcheon, John P.; Kudo, Toshiaki; Miyagishima, Shin-ya; Moran, Nancy A.; Nakabachi, Atsushi

    2010-01-01

    Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria), which have highly reduced genomes (420–650 kb), raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD–carboxypeptidases (LdcA1, LdcA2,?LdcA), five rare lipoprotein As (RlpA1-5), N-acetylmuramoyl-L-alanine amidase (AmiD), 1,4-beta-N-acetylmuramidase (bLys), DNA polymerase III alpha chain (?DnaE), and ATP synthase delta chain (?AtpH). Buchnera was the apparent source of two highly truncated pseudogenes (?DnaE and ?AtpH). Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria). At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys) appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5) are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the host nuclear genome, but suggest that aphids utilize a set of duplicated genes acquired from other bacteria in the context of the Buchnera–aphid mutualism. PMID:20195500

  11. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host.

    PubMed

    Nikoh, Naruo; McCutcheon, John P; Kudo, Toshiaki; Miyagishima, Shin-ya; Moran, Nancy A; Nakabachi, Atsushi

    2010-02-01

    Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria), which have highly reduced genomes (420-650 kb), raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD-carboxypeptidases (LdcA1, LdcA2,psiLdcA), five rare lipoprotein As (RlpA1-5), N-acetylmuramoyl-L-alanine amidase (AmiD), 1,4-beta-N-acetylmuramidase (bLys), DNA polymerase III alpha chain (psiDnaE), and ATP synthase delta chain (psiAtpH). Buchnera was the apparent source of two highly truncated pseudogenes (psiDnaE and psiAtpH). Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria). At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys) appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5) are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the host nuclear genome, but suggest that aphids utilize a set of duplicated genes acquired from other bacteria in the context of the Buchnera-aphid mutualism. PMID:20195500

  12. Controlled bacterial lysis for electron tomography of native cell membranes.

    PubMed

    Fu, Xiaofeng; Himes, Benjamin A; Ke, Danxia; Rice, William J; Ning, Jiying; Zhang, Peijun

    2014-12-01

    Cryo-electron tomography (cryoET) has become a powerful tool for direct visualization of 3D structures of native biological specimens at molecular resolution, but its application is limited to thin specimens (<300 nm). Recently, vitreous sectioning and cryoFIB milling technologies were developed to physically reduce the specimen thickness; however, cryoET analysis of membrane protein complexes within native cell membranes remains a great challenge. Here, we use phage ?X174 lysis gene E to rapidly produce native, intact, bacterial cell membranes for high resolution cryoET. We characterized E gene-induced cell lysis using FIB/SEM and cryoEM and showed that the bacteria cytoplasm was largely depleted through spot lesion, producing ghosts with the cell membranes intact. We further demonstrated the utility of E-gene-induced lysis for cryoET using the bacterial chemotaxis receptor signaling complex array. The described method should have a broad application for structural and functional studies of native, intact cell membranes and membrane protein complexes. PMID:25456413

  13. Quantitative Analysis of Bacterial Gene Expression by Using the gusA Reporter Gene System

    PubMed Central

    Sun, Jun; Smets, Ilse; Bernaerts, Kristel; Van Impe, Jan; Vanderleyden, Jos; Marchal, Kathleen

    2001-01-01

    An Azospirillum brasilense Sp7 strain containing a plasmid-borne translational cytN-gusA fusion was grown in a continuous culture to quantitatively evaluate the influence of extracellular signals (such as O2) on expression of the cytNOQP operon. The dissolved oxygen concentration was shifted at regular time intervals before the steady state was reached. The measured ?-glucuronidase activity was used to monitor cytN gene expression. However, as the ?-glucuronidase activity in the experimental setup not only depended on altered transcription of the hybrid gene when the signal was varied but was also influenced by cellular accumulation, degradation, and dilution of the hybrid fusion protein, a mathematical method was developed to describe the intrinsic properties of the dynamic bioprocess. After identification and validation of the mathematical model, the apparent specific rate of expression of the fusion, which was independent of the experimental setup, could be deduced from the model and used to quantify gene expression regulated by extracellular environmental signals. In principle, this approach can be generalized to assess the effects of external signals on bacterial gene expression. PMID:11472903

  14. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils.

    PubMed

    Jung, Jaejoon; Yeom, Jinki; Han, Jiwon; Kim, Jisun; Park, Woojun

    2012-06-01

    The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change. PMID:22752898

  15. Lineage-Specific Gene Expansions in Bacterial and Archaeal Genomes

    Microsoft Academic Search

    I. King Jordan; Kira S. Makarova; John L. Spouge; Yuri I. Wolf; Eugene V. Koonin

    2001-01-01

    Gene duplication is an important mechanistic antecedent to the evolution of new genes and novel biochemical functions. In an attempt to assess the contribution of gene duplication to genome evolution in archaea and bacteria, clusters of related genes that appear to have expanded subsequent to the diversification of the major prokaryotic lineages (lineage-specific expansions) were analyzed. Analysis of 21 completely

  16. GSK3? and the control of infectious bacterial diseases

    PubMed Central

    Wang, Huizhi H.; Lamont, Richard J.; Kumar, Akhilesh; Scott, David A.

    2014-01-01

    Glycogen synthesis kinase 3? (GSK3?) has been shown to be a critical mediator of the intensity and direction of the innate immune system responding to bacterial stimuli. This review will focus on: (i) the central role of GSK3? in the regulation of pathogen-induced inflammatory responses through the regulation of pro- and anti-inflammatory cytokine production. (ii) The extensive ongoing efforts to exploit GSK3? for its therapeutic potential in the control of infectious diseases. (iii) The increasing evidence that specific pathogens target GSK3?-related pathways for immune evasion. A better understanding of complex bacterial–GSK3? interactions is likely to lead to more effective anti-inflammatory interventions and novel targets to circumvent pathogen colonization and survival. PMID:24618402

  17. The role of bacterial vaginosis in preterm labor and preterm birth: a case-control study

    Microsoft Academic Search

    Damien Subtil; Valérie Denoit; Françoise Le Gouëff; Marie-Odile Husson; Dominique Trivier; Francis Puech

    2002-01-01

    Objective: To study the association between preterm labor and bacterial vaginosis; in women with preterm labor, to determine whether vaginosis modifies the risk of preterm delivery. Study Design: Case-control study. We used Amsel’s clinical criteria to test 102 patients hospitalized for preterm labor and 102 control patients for bacterial vaginosis. Results: Patients with preterm labor were diagnosed with bacterial vaginosis

  18. Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines.

    PubMed

    Duplantis, Barry N; Osusky, Milan; Schmerk, Crystal L; Ross, Darrell R; Bosio, Catharine M; Nano, Francis E

    2010-07-27

    All bacteria share a set of evolutionarily conserved essential genes that encode products that are required for viability. The great diversity of environments that bacteria inhabit, including environments at extreme temperatures, place adaptive pressure on essential genes. We sought to use this evolutionary diversity of essential genes to engineer bacterial pathogens to be stably temperature-sensitive, and thus useful as live vaccines. We isolated essential genes from bacteria found in the Arctic and substituted them for their counterparts into pathogens of mammals. We found that substitution of nine different essential genes from psychrophilic (cold-loving) bacteria into mammalian pathogenic bacteria resulted in strains that died below their normal-temperature growth limits. Substitution of three different psychrophilic gene orthologs of ligA, which encode NAD-dependent DNA ligase, resulted in bacterial strains that died at 33, 35, and 37 degrees C. One ligA gene was shown to render Francisella tularensis, Salmonella enterica, and Mycobacterium smegmatis temperature-sensitive, demonstrating that this gene functions in both Gram-negative and Gram-positive lineage bacteria. Three temperature-sensitive F. tularensis strains were shown to induce protective immunity after vaccination at a cool body site. About half of the genes that could be tested were unable to mutate to temperature-resistant forms at detectable levels. These results show that psychrophilic essential genes can be used to create a unique class of bacterial temperature-sensitive vaccines for important human pathogens, such as S. enterica and Mycobacterium tuberculosis. PMID:20624965

  19. Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines

    PubMed Central

    Duplantis, Barry N.; Osusky, Milan; Schmerk, Crystal L.; Ross, Darrell R.; Bosio, Catharine M.; Nano, Francis E.

    2010-01-01

    All bacteria share a set of evolutionarily conserved essential genes that encode products that are required for viability. The great diversity of environments that bacteria inhabit, including environments at extreme temperatures, place adaptive pressure on essential genes. We sought to use this evolutionary diversity of essential genes to engineer bacterial pathogens to be stably temperature-sensitive, and thus useful as live vaccines. We isolated essential genes from bacteria found in the Arctic and substituted them for their counterparts into pathogens of mammals. We found that substitution of nine different essential genes from psychrophilic (cold-loving) bacteria into mammalian pathogenic bacteria resulted in strains that died below their normal-temperature growth limits. Substitution of three different psychrophilic gene orthologs of ligA, which encode NAD-dependent DNA ligase, resulted in bacterial strains that died at 33, 35, and 37 °C. One ligA gene was shown to render Francisella tularensis, Salmonella enterica, and Mycobacterium smegmatis temperature-sensitive, demonstrating that this gene functions in both Gram-negative and Gram-positive lineage bacteria. Three temperature-sensitive F. tularensis strains were shown to induce protective immunity after vaccination at a cool body site. About half of the genes that could be tested were unable to mutate to temperature-resistant forms at detectable levels. These results show that psychrophilic essential genes can be used to create a unique class of bacterial temperature-sensitive vaccines for important human pathogens, such as S. enterica and Mycobacterium tuberculosis. PMID:20624965

  20. Selection effects on the positioning of genes and gene structures from the interplay of replication and transcription in bacterial genomes.

    PubMed

    Arakawa, Kazuharu; Tomita, Masaru

    2007-01-01

    Bacterial chromosomes are partly shaped by the functional requirements for efficient replication, which lead to strand bias as commonly characterized by the excess of guanines over cytosines in the leading strand. Gene structures are also highly organized within bacterial genomes as a result of such functional constraints, displaying characteristic positioning and structuring along the genome. Here we analyze the gene structures in completely sequenced bacterial chromosomes to observe the positional constraints on gene orientation, length, and codon usage with regard to the positions of replication origin and terminus. Selection on these gene features is different in regions surrounding the terminus of replication from the rest of the genome, but the selection could be either positive or negative depending on the species, and these positional effects are partly attributed to the A-T enrichment near the terminus. Characteristic gene structuring relative to the position of replication origin and terminus is commonly observed among most bacterial species with circular chromosomes, and therefore we argue that the highly organized gene positioning as well as the strand bias should be considered for genomics studies of bacteria. PMID:19461975

  1. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance.

    PubMed

    Wichmann, Fabienne; Asp, Torben; Widmer, Franco; Kölliker, Roland

    2011-02-01

    Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, a severe disease of forage grasses such as Italian ryegrass (Lolium multiflorum Lam.). In order to gain a more detailed understanding of the genetic control of resistance mechanisms and to provide prerequisites for marker assisted selection, the partial transcriptomes of two Italian ryegrass genotypes, one resistant and one susceptible to bacterial wilt were compared at four time points after Xtg infection. A cDNA microarray developed from a perennial ryegrass (Lolium perenne) expressed sequence tag set consisting of 9,990 unique genes was used for transcriptome analysis in Italian ryegrass. An average of 4,487 (45%) of the perennial ryegrass sequences spotted on the cDNA microarray were detected by cross-hybridisation to Italian ryegrass. Transcriptome analyses of the resistant versus the susceptible genotype revealed substantial gene expression differences (>1,200) indicating that great gene expression differences between different Italian ryegrass genotypes exist which potentially contribute to the observed phenotypic divergence in Xtg resistance between the two genotypes. In the resistant genotype, several genes differentially expressed after Xtg inoculation were identified which revealed similarities to transcriptional changes triggered by pathogen-associated molecular patterns in other plant-pathogen interactions. These genes represent candidate genes of particular interest for the development of tools for marker assisted resistance breeding. PMID:20976589

  2. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance.

    PubMed

    Bhardwaj, Ashima K; Vinothkumar, Kittappa; Rajpara, Neha

    2013-04-01

    Quorum sensing (QS) is a bacterial communication process that depends on the bacterial population density. It involves small diffusible signaling molecules which activate the expression of myriad genes that control diverse array of functions like bioluminescence, virulence, biofilm formation, sporulation, to name a few. Since QS is responsible for virulence in the clinically relevant bacteria, inhibition of QS appears to be a promising strategy to control these pathogenic bacteria. With indiscriminate use of antibiotics, there has been an alarming increase in the number of antibiotic resistant pathogens. Antibiotics are no longer the magic bullets they were once thought to be and therefore there is a need for development of new antibiotics and/or other novel strategies to combat the infections caused by multidrug resistant organisms. Quorum sensing inhibition or quorum quenching has been pursued as one of such novel strategies. While antibiotics kill or slow down the growth of bacteria, quorum sensing inhibitors (QSIs) or quorum quenchers (QQs) attenuate bacterial virulence. A large body of work on QS has been carried out in deadly pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio fischeri, V. harveyi, Escherichia coli and V. cholerae etc to unravel the mechanisms of QS as well as identify and study QSIs. This review describes various aspects of QS, QSI, different model systems to study these phenomena and recent patents on various QSIs. It suggests QSIs as attractive alternatives for controlling human, animal and plant pathogens and their utility in agriculture and other industries. PMID:23394143

  3. Physical and functional repetition in a bacterial ice nucleation gene

    Microsoft Academic Search

    Robert L. Green; Gareth J. Warren

    1985-01-01

    Nucleation of a physical process is distinct from catalysis, and as the function of a protein it is highly unusual. The ability to nucleate ice formation in supercooled water is a property of some members of the bacterial genera Erwinia, Pseudomonas and Xanthomonas1-3. This property is implicated in the ability of bacteria to cause frost injury to plants. Orser et

  4. Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers.

    PubMed

    Sano, Michael B; Rojas, Andrea D; Gatenholm, Paul; Davalos, Rafael V

    2010-08-01

    We have developed a new biofabrication process in which the precise control of bacterial motion is used to fabricate customizable networks of cellulose nanofibrils. This article describes how the motion of Acetobacter xylinum can be controlled by electric fields while the bacteria simultaneously produce nanocellulose, resulting in networks with aligned fibers. Since the electrolysis of water due to the application of electric fields produces the oxygen in the culture media far from the liquid-air boundary, aerobic cellulose production in 3D structures is readily achievable. Five separate sets of experiments were conducted to demonstrate the assembly of nanocellulose by A. xylinum in the presence of electric fields in micro- and macro-environments. This study demonstrates a new concept of bottom up material synthesis by the control of a biological assembly process. PMID:20300846

  5. A dual switch controls bacterial enhancer-dependent transcription.

    PubMed

    Wiesler, Simone C; Burrows, Patricia C; Buck, Martin

    2012-11-01

    Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant ?(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125

  6. A dual switch controls bacterial enhancer-dependent transcription

    PubMed Central

    Wiesler, Simone C.; Burrows, Patricia C.; Buck, Martin

    2012-01-01

    Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant ?54 factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125

  7. 13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED BEHIND MANAGER'S ART DECO-STYLE CONTROL DESK, WITH CONTROL CUBICLE 1 AT FAR RIGHT AND CONTROL CUBICLE 9 AT FAR LEFT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  8. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss

    Microsoft Academic Search

    Henk C den Bakker; Craig A Cummings; Vania Ferreira; Paolo Vatta; Renato H Orsi; Lovorka Degoricija; Melissa Barker; Olga Petrauskene; Manohar R Furtado; Martin Wiedmann

    2010-01-01

    BACKGROUND: The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying

  9. Expression of a Bacterial Gene in a Trypanosomatid Protozoan

    Microsoft Academic Search

    Vivian Bellofatto; George A. M. Cross

    1989-01-01

    A simple and reproducible assay for DNA-mediated transfection in the trypanosomatid protozoan Leptomonas seymouri has been developed. The assay is based on expression of the Escherichia coli chloramphenicol acetyl transferase (CAT) gene flanked by Leptomonas DNA fragments that are likely to contain necessary elements for gene expression in trypanosomes. After electroporation of cells in the presence of plasmid DNA, CAT

  10. [Differential expression of genes related to bacterial wilt resistance in peanut (Arachis hypogaea L.)].

    PubMed

    Peng, Wen-Fang; Lv, Jian-Wei; Ren, Xiao-Ping; Huang, Li; Zhao, Xin-Yan; Wen, Qi-Gen; Jiang, Hui-Fang

    2011-04-01

    Peanut bacterial wilt (BW) caused by Ralstonia solanacearum is one of the most devastating diseases for peanut production in the world. It is believed that breeding and subsequent planting BW-resistant cultivars of peanut (Arachis hypogaea L.) should represent the most effective and economic means of controlling the disease. To illustrate the molecular mechanism of peanut resistant to BW, a BW-resistant cultivar, 'Yuanza 9102', and a BW-sensitive one, 'Zhonghua 12', were infected with Ralstonia solanacearum and differential expression of the genes related to BW-resistance was analyzed using complementary DNA amplified length polymorphism (cDNA-AFLP) technique. The infected 3-leaflet seedlings were followed for 48 h and root samples were taken at 0, 2, 10, 24 and 48 h after inoculation, respectively. A total of 12596 transcript-derived fragments (TDFs) were amplified with 256 primer combinations, including 709 differential expressed TDFs, which were generated from 119 primer combinations. Ninety-eight TDFs were randomly chosen for DNA sequence analysis. BLASTx analysis of the obtained sequences revealed that 40 TDFs encoded gene products associated with energy, transcription, signal transduction, defense, metabolism, cell growth, cell structure or/and protein synthesis. Analysis of the expression of four genes by qRT-PCR verified the results from cDNA-AFLP. Strikingly, one of the identified TDFs, 32-54-1, occurred for 47 times in a known BW-resistant SSH library. These results suggest that resistance to BW in peanut involves multifaceted biochemical and physiological reactions, including regulation of the genes involved in different pathways, such as defense, singal transduction, metabolism, transcription and abiotic stresses. The TDF 32-54-1 was predicted to be closely related to BW resistance in peanut. PMID:21482530

  11. Bacterial IMPDH gene used for the selection of mammalian cell transfectants.

    SciTech Connect

    Baccam, M.; Huberman, E.; Energy Systems

    2003-06-01

    Stable cell transfection is used for the expression of exogenous genes or cDNAs in eukaryotic cells. Selection of these transfectants requires a dominant selectable marker. A variety of such markers has been identified and is currently in use. However, many of these are not suitable for all cell types or require unique conditions. Here we describe a simple and versatile dominant selectable marker that involves bacterial IMP dehydrogenase (IMPDH), an enzyme essential for the replication of mammalian and bacterial cells. Although IMPDH is evolutionarily conserved, the bacterial enzyme is orders of magnitude more resistant to the toxic effect of the drug mycophenolic acid, which is an IMPDH inhibitor. We have demonstrated that transfection of human, monkey or Chinese hamster cell lines with an expression vector containing bacterial IMPDH and mycophenolic acid treatment resulted in the selection of colonies with a strikingly increased resistance to mycophenolic acid toxicity. Analysis of cells derived from these colonies indicated that the acquisition of this resistance was associated with bacterial IMPDH protein expression. As a proof of principle, we showed that mammalian cell transfection with a hicistronic IMPDH/GFP expression vector and mycophenolic acid treatment can he used to successfully select transfectants that express the fluorescent protein. These results indicate that bacterial IMPDH is a practical dominant selectable marker that can be used for the selection of transfectants that express exogenous genes or cDNAs in mammalian cells.

  12. Genomic analyses of bacterial porin-cytochrome gene clusters

    PubMed Central

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-01-01

    The porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c-type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides. PMID:25505896

  13. Genomic Analyses of Bacterial Porin-Cytochrome Gene Clusters

    SciTech Connect

    Shi, Liang; Fredrickson, Jim K.; Zachara, John M.

    2014-11-26

    The porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.

  14. Profiling of biodegradation and bacterial 16S rRNA genes in diverse contaminated ecosystems using 60-mer oligonucleotide microarray

    Microsoft Academic Search

    Ashutosh Pathak; Rishi Shanker; Satyendra Kumar Garg; Natesan Manickam

    2011-01-01

    We have developed an oligonucleotide microarray for the detection of biodegradative genes and bacterial diversity and tested\\u000a it in five contaminated ecosystems. The array has 60-mer oligonucleotide probes comprising 14,327 unique probes derived from\\u000a 1,057 biodegradative genes and 880 probes representing 110 phylogenetic genes from diverse bacterial communities, and we named\\u000a it as BiodegPhyloChip. The biodegradative genes are involved in

  15. Effects of microcystin-LR on bacterial and fungal functional genes profile in rat gut.

    PubMed

    Lin, Juan; Chen, Jun; He, Jun; Chen, Jing; Yan, Qingyun; Zhou, Jizhong; Xie, Ping

    2015-03-01

    The short-term exposure to microcystin-LR (MC-LR, one of the most common and toxic variants generated by toxigenic cyanobacteria) induced gut dysfunction such as generation of reactive oxygen species, cell erosion and deficient intestinal absorption of nutrients. However, till now, little is known about its impact on gut microbial community, which has been considered as necessary metabolic assistant and stresses resistant entities for the host. This study was designed to reveal the shift of microbial functional genes in the gut of rat orally gavaged with MC-LR. GeoChip detected a high diversity of bacterial and fungal genes involved in basic metabolic processes and stress resistance. The results showed that the composition of functional genes was significantly changed in rat gut after one week of exposure to MC-LR, and we found some relatively enriched genes that are involved in carbon degradation including chitin, starch and limonene metabolism, and these genes were mainly derived from fungal and bacterial pathogens. In addition, we found large amounts of significantly enriched genes relevant to degradation of the specific carbon compounds, aromatics. The dysbiosis of bacterial and fungal flora gave an implication of pathogens invasion. The enriched gene functions could be linked to acute gastroenteritis induced by MC-LR. PMID:25617596

  16. Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol.

    PubMed

    Bhauso, Tengale Dipak; Radhakrishnan, Thankappan; Kumar, Abhay; Mishra, Gyan Prakash; Dobaria, Jentilal Ramjibhai; Patel, Kirankumar; Rajam, Manchikatla Venkat

    2014-01-01

    In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L.) crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated. PMID:25436223

  17. Overexpression of Bacterial mtlD Gene in Peanut Improves Drought Tolerance through Accumulation of Mannitol

    PubMed Central

    Bhauso, Tengale Dipak; Radhakrishnan, Thankappan; Kumar, Abhay; Mishra, Gyan Prakash; Dobaria, Jentilal Ramjibhai; Patel, Kirankumar; Rajam, Manchikatla Venkat

    2014-01-01

    In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L.) crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated. PMID:25436223

  18. Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene.

    PubMed

    Wang, Lin; Samac, Deborah A; Shapir, Nir; Wackett, Lawrence P; Vance, Carroll P; Olszewski, Neil E; Sadowsky, Michael J

    2005-09-01

    Atrazine is one of the most widely used herbicides in the USA. Atrazine chlorohydrolase (AtzA), the first enzyme in a six-step pathway leading to the mineralization of atrazine in Gram-negative soil bacteria, catalyses the hydrolytic dechlorination and detoxification of atrazine to hydroxyatrazine. In this study, we investigated the potential use of transgenic plants expressing atzA to take up, dechlorinate and detoxify atrazine. Alfalfa, Arabidopsis thaliana and tobacco were transformed with a modified bacterial atzA gene, p-atzA, under the control of the cassava vein mosaic virus promoter. All transgenic plant species actively expressed p-atzA and grew over a wide range of atrazine concentrations. Thin layer chromatography analyses indicated that in planta expression of p-atzA resulted in the production of hydroxyatrazine. Hydroponically grown transgenic tobacco and alfalfa dechlorinated atrazine to hydroxyatrazine in leaves, stems and roots. Moreover, p-atzA was found to be useful as a conditional-positive selection system to isolate alfalfa and Arabidopsis transformants following Agrobacterium-mediated transformation. Our work suggests that the in planta expression of p-atzA may be useful for the development of plants for the phytoremediation of atrazine-contaminated soils and soil water, and as a marker gene to select for the integration of exogenous DNA into the plant genome. PMID:17173634

  19. The Ecology of Bacterial Genes and the Survival of the New

    PubMed Central

    Francino, M. Pilar

    2012-01-01

    Much of the observed variation among closely related bacterial genomes is attributable to gains and losses of genes that are acquired horizontally as well as to gene duplications and larger amplifications. The genomic flexibility that results from these mechanisms certainly contributes to the ability of bacteria to survive and adapt in varying environmental challenges. However, the duplicability and transferability of individual genes imply that natural selection should operate, not only at the organismal level, but also at the level of the gene. Genes can be considered semiautonomous entities that possess specific functional niches and evolutionary dynamics. The evolution of bacterial genes should respond both to selective pressures that favor competition, mostly among orthologs or paralogs that may occupy the same functional niches, and cooperation, with the majority of other genes coexisting in a given genome. The relative importance of either type of selection is likely to vary among different types of genes, based on the functional niches they cover and on the tightness of their association with specific organismal lineages. The frequent availability of new functional niches caused by environmental changes and biotic evolution should enable the constant diversification of gene families and the survival of new lineages of genes. PMID:22900231

  20. Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses

    Microsoft Academic Search

    Yanhe Ma; Weizhou Zhang; Yanfen Xue; Peijin Zhou; Antonio Ventosa; William D. Grant

    2004-01-01

    Bacterial diversity associated with Baer Soda Lake in Inner Mongolia of China was investigated using a culture-independent method. Bacterial 16S rRNA gene libraries were generated using bacterial oligonucleotide primers, and 16S rRNA gene sequences of 58 clones were analyzed phylogenetically. The library was dominated by 16S rDNAs of Gram-negative bacteria (24% a-Proteobacteria, 31% ß-Proteobacteria, 33% ?-Proteobacteria, and 2% d-Proteobacteria), with

  1. Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes.

    PubMed

    Birky, C W; Walsh, J B

    1992-03-01

    We investigate the possibility that differences between synonymous substitution rates of organelle and bacterial genes differing only in copy number may be due to conversion bias. We find that the rather large observed difference in the synonymous rates between genes in the single copy and inverted-repeat regions of chloroplasts can be accounted for by a very small bias against new mutants. More generally, differences in the within-organelle fixation probability result in different apparent mutation rates as measured by the expected rate of appearance of cells homoplasmic for new mutants. Thus, differences in intracellular population parameters rather than molecular mechanisms can account for some variation in the apparent mutation rates of organelle genes, and possibly in other systems with variable numbers of gene copies. On the other hand, our analysis suggests that conversion bias is not a likely explanation for relatively low mutation rates observed near the replication origin of bacterial chromosomes. PMID:1551584

  2. Quantifying bacterial population dynamics in compost using 16S rRNA gene probes

    Microsoft Academic Search

    Patrick D. Schloss; Anthony G. Hay; David B. Wilson; James M. Gossett; Larry P. Walker

    2005-01-01

    Composting provides a dynamic setting for studying ecological topics such as succession, competition, and community stability in a relatively short period of time. This study used hierarchical small sub-unit-based rRNA gene probes to quantify the change in the relative abundance of phylogenetic groups common to compost in laboratory scale reactors. Bacterial 16S rRNA gene targets accounted for only 37% of

  3. Clavanin bacterial sepsis control using a novel methacrylate nanocarrier.

    PubMed

    Saúde, Amanda C M; Ombredane, Alicia S; Silva, Osmar N; Barbosa, João A R G; Moreno, Susana E; Araujo, Ana Claudia Guerra; Falcão, Rosana; Silva, Luciano P; Dias, Simoni C; Franco, Octávio L

    2014-01-01

    Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT(®) L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections. PMID:25382976

  4. Clavanin bacterial sepsis control using a novel methacrylate nanocarrier

    PubMed Central

    Saúde, Amanda CM; Ombredane, Alicia S; Silva, Osmar N; Barbosa, João ARG; Moreno, Susana E; Guerra Araujo, Ana Claudia; Falcão, Rosana; Silva, Luciano P; Dias, Simoni C; Franco, Octávio L

    2014-01-01

    Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT® L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections. PMID:25382976

  5. A Functional Gene Array for Detection of Bacterial Virulence Elements

    PubMed Central

    Jaing, Crystal; Gardner, Shea; McLoughlin, Kevin; Mulakken, Nisha; Alegria-Hartman, Michelle; Banda, Phillip; Williams, Peter; Gu, Pauline; Wagner, Mark; Manohar, Chitra; Slezak, Tom

    2008-01-01

    Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known or novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. PMID:18478124

  6. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes

    Microsoft Academic Search

    Shiaoching Gong; Chen Zheng; Martin L. Doughty; Kasia Losos; Nicholas Didkovsky; Uta B. Schambra; Norma J. Nowak; Alexandra Joyner; Gabrielle Leblanc; Mary E. Hatten; Nathaniel Heintz

    2003-01-01

    The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic

  7. Genetic Diversity of Bacterial Communities and Gene Transfer Agents in Northern South China Sea

    PubMed Central

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820

  8. Identification and expression profiles of multiple genes in Nile tilapia in response to bacterial infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophi...

  9. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes

    PubMed Central

    2014-01-01

    Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (?-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on ?-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, ?-lactamase and ?-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring ?-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the ?-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for elucidation of gene function in bacterial species that have been refractory to experimental introduction of exogenous DNA. PMID:25401071

  10. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain.

    PubMed

    Ji, Xianling; Lu, Guobing; Gai, Yingping; Zheng, Chengchao; Mu, Zhimei

    2008-09-01

    Forty-five bacterial isolates were collected from surface-sterilized leaves of mulberry (Morus alba L.). By screening their antagonistic activities against Ralstonia solanacearum in vitro, four isolates showed a remarkable inhibitory effect. The evaluation of the antagonistic strains against bacterial wilt of mulberry indicated that the strain Lu144 effectively reduced disease incidence. In the greenhouse, Lu144 displayed effective biological control against bacterial wilt of mulberry when it was applied to sterile or nonsterile soil before the infection by the pathogen. Based on bacteriological properties and 16S rRNA gene sequencing, Lu144 was identified as a strain of Bacillus subtilis. The endophytic population and infection process of Lu144 in mulberry seedlings was explored following recovery of the green fluorescent protein (GFP)-labeled Lu144 and examination of the labeled strain by confocal laser scanning microscopy. Interestingly, the infection of GFP-labeled Lu144 cells into the mulberry seedlings occurred through the cracks formed at the lateral root junctions and the zone of differentiation and elongation, and the cells were able to develop and transfer in mulberry and mainly in the intercellular spaces of different tissues. The population of the GFP-labeled Lu144 inoculant was larger and more stable in leaves than that in roots and stems. PMID:18631174

  11. Recurrent Horizontal Transfer of Bacterial Toxin Genes to Eukaryotes

    PubMed Central

    Moran, Yehu; Fredman, David; Szczesny, Pawel; Grynberg, Marcin; Technau, Ulrich

    2012-01-01

    In this work, we report likely recurrent horizontal (lateral) gene transfer events of genes encoding pore-forming toxins of the aerolysin family between species belonging to different kingdoms of life. Clustering based on pairwise similarity and phylogenetic analysis revealed several distinct aerolysin sequence groups, each containing proteins from multiple kingdoms of life. These results strongly support at least six independent transfer events between distantly related phyla in the evolutionary history of one protein family and discount selective retention of ancestral genes as a plausible explanation for this patchy phylogenetic distribution. We discuss the possible roles of these proteins and show evidence for a convergent new function in two extant species. We hypothesize that certain gene families are more likely to be maintained following horizontal gene transfer from commensal or pathogenic organism to its host if they 1) can function alone; and 2) are immediately beneficial for the ecology of the organism, as in the case of pore-forming toxins which can be utilized in multicellular organisms for defense and predation. PMID:22411854

  12. A functional gene array for detection of bacterial virulence elements

    SciTech Connect

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  13. An essential protease involved in bacterial cell-cycle control.

    PubMed Central

    Jenal, U; Fuchs, T

    1998-01-01

    Proteolytic inactivation of key regulatory proteins is essential in eukaryotic cell-cycle control. We have identified a protease in the eubacterium Caulobacter crescentus that is indispensable for viability and cell-cycle progression, indicating that proteolysis is also involved in controlling the bacterial cell cycle. Mutants of Caulobacter that lack the ATP-dependent serine protease ClpXP are arrested in the cell cycle before the initiation of chromosome replication and are blocked in the cell division process. ClpXP is composed of two types of polypeptides, the ClpX ATPase and the ClpP peptidase. Site-directed mutagenesis of the catalytically active serine residue of ClpP confirmed that the proteolytic activity of ClpXP is essential. Analysis of mutants lacking ClpX or ClpP revealed that both proteins are required in vivo for the cell-cycle-dependent degradation of the regulatory protein CtrA. CtrA is a member of the response regulator family of two-component signal transduction systems and controls multiple cell-cycle processes in Caulobacter. In particular, CtrA negatively controls DNA replication and our findings suggest that specific degradation of the CtrA protein by the ClpXP protease contributes to G1-to-S transition in this organism. PMID:9755166

  14. Carboxymethylcellulose film for bacterial wound infection control and healing.

    PubMed

    Wong, Tin Wui; Ramli, Nor Amlizan

    2014-11-01

    Infection control and wound healing profiles of sodium carboxymethylcellulose (SCMC) films were investigated as a function of their anti-bacterial action, physical structures, polymer molecular weights and carboxymethyl substitution degrees. The films were prepared with in vitro polymer/film and in vivo microbe-colonized wound healing/systemic infection profiles examined. Adhesive high carboxymethyl substituted SCMC films aided healing via attaching to microbes and removing them from wound. Pseudomonas aeruginosa was removed via encapsulating in gelling low molecular weight SCMC film, whereas Staphylococcus aureus was trapped in tight folds of high molecular weight SCMC film. Incomplete microbe removal from wound did not necessary translate to inability to heal as microbe remnant at wound induced fibroblast migration and aided tissue reconstruction. Using no film nonetheless will cause systemic blood infection. SCMC films negate infection and promote wound healing via specific polymer-microbe adhesion, and removal of S. aureus and P. aeruginosa requires films of different polymer characteristics. PMID:25129756

  15. Bacterial metal resistance genes and metal bioavailability in contaminated sediments.

    PubMed

    Roosa, Stéphanie; Wattiez, Ruddy; Prygiel, Emilie; Lesven, Ludovic; Billon, Gabriel; Gillan, David C

    2014-06-01

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. PMID:24662000

  16. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling.

    PubMed

    Feng, Dong Xin; Tasset, Céline; Hanemian, Mathieu; Barlet, Xavier; Hu, Jian; Trémousaygue, Dominique; Deslandes, Laurent; Marco, Yves

    2012-06-01

    Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ?hrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ?hrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum. PMID:22432714

  17. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    SciTech Connect

    Hwang, Chiachi; Wu, Weimin; Gentry, Terry J.; Carley, Jack; Corbin, Gail A.; Carroll, Sue L.; Watson, David B.; Jardine, Phil M.; Zhou, Jizhong; Criddle, Craig S.; Fields, Matthew W.

    2009-05-22

    Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared to the population variation via canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bio-reduction; however, the two bio-stimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.

  18. Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing

    NASA Astrophysics Data System (ADS)

    Lim, Ci Ji; Lee, Sin Yi; Kenney, Linda J.; Yan, Jie

    2012-07-01

    H-NS is an abundant nucleoid-associated protein in bacteria that globally silences genes, including horizontally-acquired genes related to pathogenesis. Although it has been shown that H-NS has multiple modes of DNA-binding, which mode is employed in gene silencing is still unclear. Here, we report that in H-NS mutants that are unable to silence genes, are unable to form a rigid H-NS nucleoprotein filament. These results indicate that the H-NS nucleoprotein filament is crucial for its gene silencing function, and serves as the fundamental structural basis for gene silencing by H-NS and likely other H-NS-like bacterial proteins.

  19. Role of starvation genes in the survival of deep subsurface bacterial communities. Final report

    SciTech Connect

    Matin, A. [Stanford Univ., CA (United States). Dept. of Microbiology and Immunology; Schmidt, T. [Michigan State Univ., East Lansing, MI (United States). Dept. of Microbiology; Caldwell, D. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Microbiology

    1998-11-01

    The investigation dealt with several aspects of subsurface bacterial survival and their nature. Mutants of Pseudomonas putida, a common environmental bacterium with counterparts in the subsurface, were isolated by transposon mutagenesis. These mutants were highly sensitive to starvation stress. Reporter gene fusions also showed that these genes were starvation genes since they were induced several fold when the cultures were started. Since the regulatory religions (promoters) of starvation genes are of interest in bioremediation and in experiments designed to understand the roles of starvation genes in the maintenance of microbial community structure, the promoter of one of these genes (pstarv1, contained in strain MK107) was characterized in detail. As a preliminary to these studies, the growth characteristics of Pseudomonas putida MK1 and MK107 were compared for cells growing in batch cultures or as an attached monolayer in microstat cultures.

  20. Both msa genes in Renibacterium salmoninarum are needed for full virulence in bacterial kidney disease

    USGS Publications Warehouse

    Coady, A.M.; Murray, A.L.; Elliott, D.G.; Rhodes, L.D.

    2006-01-01

    Renibacterium salmoninarum, a gram-positive diplococcobacillus that causes bacterial kidney disease among salmon and trout, has two chromosomal loci encoding the major soluble antigen (msa) gene. Because the MSA protein is widely suspected to be an important virulence factor, we used insertion-duplication mutagenesis to generate disruptions of either the msa1 or msa2 gene. Surprisingly, expression of MSA protein in broth cultures appeared unaffected. However, the virulence of either mutant in juvenile Chinook salmon (Oncorhynchus tshawytscha) by intraperitoneal challenge was severely attenuated, suggesting that disruption of the msa1 or msa2 gene affected in vivo expression. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.

  1. Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control

    PubMed Central

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J.; Richardson, David J.

    2012-01-01

    Abstract Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments. Antioxid. Redox Signal. 16, 819–852. PMID:22098259

  2. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  3. Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations?

    PubMed Central

    Muniesa, Maite; Colomer-Lluch, Marta; Jofre, Juan

    2013-01-01

    Environments without any contact with anthropogenic antibiotics show a great abundance of antibiotic resistance genes that use to be chromosomal and are part of the core genes of the species that harbor them. Some of these genes are shared with human pathogens where they appear in mobile genetic elements. Diversity of antibiotic resistance genes in non-contaminated environments is much greater than in human and animal pathogens, and in environments contaminated with antibiotic from anthropogenic activities. This suggests the existence of some bottleneck effect for the mobilization of antibiotic resistance genes among different biomes. Bacteriophages have characteristics that make them suitable vectors between different biomes, and as well for transferring genes from biome to biome. Recent metagenomic studies and detection of bacterial genes by genomic techniques in the bacteriophage fraction of different microbiota provide indirect evidences that the mobilization of genes mediated by phages, including antibiotic resistance genes, is far more relevant than previously thought. Our hypothesis is that bacteriophages might be of critical importance for evading one of the bottlenecks, the lack of ecological connectivity that modulates the pass of antibiotic resistance genes from natural environments such as waters and soils, to animal and human microbiomes. This commentary concentrates on the potential importance of bacteriophages in transferring resistance genes from the environment to human and animal body microbiomes, but there is no doubt that transduction occurs also in body microbiomes. PMID:24195016

  4. Direct Detection and Quantification of Bacterial Genes Associated with Inflammation in DNA Isolated from Stool

    PubMed Central

    Gómez-Moreno, Ramón; Robledo, Iraida E.; Baerga-Ortiz, Abel

    2014-01-01

    Although predominantly associated with health benefits, the gut microbiota has also been shown to harbor genes that promote inflammation. In this work, we report a method for the direct detection and quantification of these pro-inflammatory bacterial genes by PCR and qPCR in DNA extracted from human stool samples. PCR reactions were performed to detect (i) the pks island genes, (ii) tcpC, which is present in some strains of Escherichia coli and (iii) gelE presented in some strains of Enterococcus faecalis. Additionally, we screened for the presence of the following genes encoding cyclomodulins that disrupted mammalian cell division: (iv) cdt (which encodes the cytolethal distending toxin) and (v) cnf-1 (which encodes the cytotoxic necrotizing factor-1). Our results show that 20% of the samples (N = 41) tested positive for detectable amounts of pks island genes, whereas 10% of individuals were positive for tcpC or gelE and only one individual was found to harbor the cnf-1 gene. Of the 13 individuals that were positive for at least one of the pro-inflammatory genes, 5 were found to harbor more than one. A quantitative version of the assay, which used real-time PCR, revealed the pro-inflammatory genes to be in high copy numbers: up to 1.3 million copies per mg of feces for the pks island genes. Direct detection of specific genes in stool could prove useful toward screening for the presence of pro-inflammatory bacterial genes in individuals with inflammatory bowel diseases or colorectal cancer. PMID:25635239

  5. Relationship between bacterial load, morbidity and cagA gene in patients infected by Helicobacter pylori.

    PubMed

    Belda, S; Saez, J; Santibáñez, M; Rodríguez, J C; Sola-Vera, J; Ruiz-García, M; Brotons, A; López-Girona, E; Pérez, E; Sillero, C; Royo, G

    2012-07-01

    One hundred and seventy-six biopsies of the gastric corpus and antrum from 97 patients were processed using classical and molecular methods in order to study the relationship between the factor cagA of Helicobacter pylori, bacterial load and morbidity. Bacterial load in patients with cagA was greater than in patients without it, both in the antrum and corpus (p<0.01). There was a statistically significant association between cagA and consumption of proton pump inhibitors (adjusted odds ratio 3.11). Haemorrhage of the upper digestive tract was more associated with bacterial load than with the cagA gene (adjusted odds ratio 2.34 and 1.12, respectively), but none of these associations yielded statistical significance. PMID:22551001

  6. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system

    E-print Network

    Zhang, Feng

    The ability to artificially control transcription is essential both to the study of gene function and to the construction of synthetic gene networks with desired properties. Cas9 is an RNA-guided double-stranded DNA nuclease ...

  7. In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides.

    PubMed

    Fraune, Sebastian; Augustin, René; Anton-Erxleben, Friederike; Wittlieb, Jörg; Gelhaus, Christoph; Klimovich, Vladimir B; Samoilovich, Marina P; Bosch, Thomas C G

    2010-10-19

    Early embryos of many organisms develop outside the mother and are immediately confronted with myriads of potential colonizers. How these naive developmental stages control and shape the bacterial colonization is largely unknown. Here we show that early embryonic stages of the basal metazoan Hydra are able to control bacterial colonization by using maternal antimicrobial peptides. Antimicrobial peptides of the periculin family selecting for a specific bacterial colonization during embryogenesis are produced in the oocyte and in early embryos. If overexpressed in hydra ectodermal epithelial cells, periculin1a drastically reduces the bacterial load, indicating potent antimicrobial activity. Unexpectedly, transgenic polyps also revealed that periculin, in addition to bactericidal activity, changes the structure of the bacterial community. These findings delineate a role for antimicrobial peptides both in selecting particular bacterial partners during development and as important components of a "be prepared" strategy providing transgenerational protection. PMID:20921390

  8. In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides

    PubMed Central

    Fraune, Sebastian; Augustin, René; Anton-Erxleben, Friederike; Wittlieb, Jörg; Gelhaus, Christoph; Klimovich, Vladimir B.; Samoilovich, Marina P.; Bosch, Thomas C. G.

    2010-01-01

    Early embryos of many organisms develop outside the mother and are immediately confronted with myriads of potential colonizers. How these naive developmental stages control and shape the bacterial colonization is largely unknown. Here we show that early embryonic stages of the basal metazoan Hydra are able to control bacterial colonization by using maternal antimicrobial peptides. Antimicrobial peptides of the periculin family selecting for a specific bacterial colonization during embryogenesis are produced in the oocyte and in early embryos. If overexpressed in hydra ectodermal epithelial cells, periculin1a drastically reduces the bacterial load, indicating potent antimicrobial activity. Unexpectedly, transgenic polyps also revealed that periculin, in addition to bactericidal activity, changes the structure of the bacterial community. These findings delineate a role for antimicrobial peptides both in selecting particular bacterial partners during development and as important components of a “be prepared” strategy providing transgenerational protection. PMID:20921390

  9. Quality Control of Bacterial mRNA Decoding and Decay

    PubMed Central

    Richards, Jamie; Sundermeier, Thomas; Svetlanov, Anton; Karzai, A. Wali

    2008-01-01

    Studies in eukaryotes and prokaryotes have revealed that gene expression is not only controlled through altering the rate of transcription but also through varying rates of translation and mRNA decay. Indeed, the expression level of a protein is strongly affected by the steady state level of its mRNA. RNA decay can, along with transcription, play an important role in regulating gene expression by fine-tuning the steady state level of a given transcript and affecting its subsequent decoding during translation. Alterations in mRNA stability can in turn have dramatic effects on cell physiology and as a consequence the fitness and survival of the organism. Recent evidence suggests that mRNA decay can be regulated in response to environmental cues in order to enable the organism to adapt to its changing surroundings. Bacteria have evolved unique post transcriptional control mechanisms to enact such adaptive responses through: 1) general mRNA decay, 2) differential mRNA degradation using small non-coding RNAs (sRNAs), and 3) selective mRNA degradation using the tmRNA quality control system. Here, we review our current understanding of these molecular mechanisms, gleaned primarily from studies of the model gram negative organism E. coli, that regulate the stability and degradation of normal and defective transcripts. PMID:18342642

  10. Anti-inflammatory effect and prostate gene expression profiling of steryl ferulate on experimental rats with non-bacterial prostatitis.

    PubMed

    Hu, Yinzhou; Xiong, Lina; Huang, Weisu; Cai, Huafang; Luo, Yanxi; Zhang, Ying; Lu, Baiyi

    2014-06-01

    Steryl ferulate (SF) is a bioactive mixture extracted from rice bran and shows higher inhibitory activity against inflammation than the corresponding free sterols. In this study, the aim was to investigate the anti-inflammatory effect and prostate gene expression profiling of SF using a Xiaozhiling-induced non-bacterial prostatitis (NBP) rat model. The anti-inflammatory effect was evaluated by prostate weight, prostate index, acid phosphatase, density of lecithin corpuscles (DLC), white blood cell count (WBC), and prostatic histologic section. Prostate gene expression profiling was assessed by a cDNA microarray and validated by quantitative real-time PCR of five selected genes. Pathway analysis and Gene ontology (GO) analysis were applied to determine the roles of these differentially expressed genes involved in these biological pathways or GO terms. SF treatment could significantly inhibit prostate weight, prostate index, total acid phosphatase, prostatic acid phosphatase and WBC, suppress the severity of histological lesion and increase the DLC. Compared with the control group, the SF treatment group contained 238 up-regulated genes and 111 down-regulated genes. GO analysis demonstrated that the most significant expression genes were closely related to the terms of fibrinolysis, inflammatory response, high-density lipoprotein particle, protein-lipid complex, enzyme inhibitor activity, peptidase inhibitor activity and others. Canonical pathway analysis indicated five pathways were significantly regulated, which were associated with inflammation and tumorgenesis. In conclusion, SF may be used as a health supplement to prevent NBP, in that it could inhibit prostate inflammation in NBP patients by affecting the expression of genes in the related GO terms and pathways. PMID:24686498

  11. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens.

    PubMed

    Winstel, Volker; Liang, Chunguang; Sanchez-Carballo, Patricia; Steglich, Matthias; Munar, Marta; Bröker, Barbara M; Penadés, Jose R; Nübel, Ulrich; Holst, Otto; Dandekar, Thomas; Peschel, Andreas; Xia, Guoqing

    2013-01-01

    Mobile genetic elements (MGEs) encoding virulence and resistance genes are widespread in bacterial pathogens, but it has remained unclear how they occasionally jump to new host species. Staphylococcus aureus clones exchange MGEs such as S. aureus pathogenicity islands (SaPIs) with high frequency via helper phages. Here we report that the S. aureus ST395 lineage is refractory to horizontal gene transfer (HGT) with typical S. aureus but exchanges SaPIs with other species and genera including Staphylococcus epidermidis and Listeria monocytogenes. ST395 produces an unusual wall teichoic acid (WTA) resembling that of its HGT partner species. Notably, distantly related bacterial species and genera undergo efficient HGT with typical S. aureus upon ectopic expression of S. aureus WTA. Combined with genomic analyses, these results indicate that a 'glycocode' of WTA structures and WTA-binding helper phages permits HGT even across long phylogenetic distances thereby shaping the evolution of Gram-positive pathogens. PMID:23965785

  12. Tightly Regulated and Heritable Division Control in Single Bacterial Cells

    PubMed Central

    Siegal-Gaskins, Dan; Crosson, Sean

    2008-01-01

    The robust surface adherence property of the aquatic bacterium Caulobacter crescentus permits visualization of single cells in a linear microfluidic culture chamber over an extended number of generations. The division rate of Caulobacter in this continuous-flow culture environment is substantially faster than in other culture apparati and is independent of flow velocity. Analysis of the growth and division of single isogenic cells reveals that the cell cycle control network of this bacterium generates an oscillatory output with a coefficient of variation lower than that of all other bacterial species measured to date. DivJ, a regulator of polar cell development, is necessary for maintaining low variance in interdivision timing, as transposon disruption of divJ significantly increases the coefficient of variation of both interdivision time and the rate of cell elongation. Moreover, interdivision time and cell division arrest are significantly correlated between mother and daughter cells, providing evidence for epigenetic inheritance of cell division behavior in Caulobacter. The single-cell growth/division results reported here suggest that future predictive models of Caulobacter cell cycle regulation should include parameters describing the variance and inheritance properties of this system. PMID:18469083

  13. CONJUGAL GENE TRANSFER IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCHLORA CRUSGALLI): INFLUENCE OF ROOT EXUDATE AND BACTERIAL ACTIVITY

    EPA Science Inventory

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  14. ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes

    PubMed Central

    Gupta, Sushim Kumar; Padmanabhan, Babu Roshan; Diene, Seydina M.; Lopez-Rojas, Rafael; Kempf, Marie; Landraud, Luce

    2014-01-01

    ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) is a new bioinformatic tool that was created to detect existing and putative new antibiotic resistance (AR) genes in bacterial genomes. ARG-ANNOT uses a local BLAST program in Bio-Edit software that allows the user to analyze sequences without a Web interface. All AR genetic determinants were collected from published works and online resources; nucleotide and protein sequences were retrieved from the NCBI GenBank database. After building a database that includes 1,689 antibiotic resistance genes, the software was tested in a blind manner using 100 random sequences selected from the database to verify that the sensitivity and specificity were at 100% even when partial sequences were queried. Notably, BLAST analysis results obtained using the rmtF gene sequence (a new aminoglycoside-modifying enzyme gene sequence that is not included in the database) as a query revealed that the tool was able to link this sequence to short sequences (17 to 40 bp) found in other genes of the rmt family with significant E values. Finally, the analysis of 178 Acinetobacter baumannii and 20 Staphylococcus aureus genomes allowed the detection of a significantly higher number of AR genes than the Resfinder gene analyzer and 11 point mutations in target genes known to be associated with AR. The average time for the analysis of a genome was 3.35 ± 0.13 min. We have created a concise database for BLAST using a Bio-Edit interface that can detect AR genetic determinants in bacterial genomes and can rapidly and easily discover putative new AR genetic determinants. PMID:24145532

  15. Expression of tumor suppressor genes in channel catfish after bacterial infections.

    PubMed

    Mu, Weijie; Yao, Jun; Zhang, Jiaren; Liu, Shikai; Wen, Haishen; Feng, Jianbin; Liu, Zhanjiang

    2015-01-01

    Tumor suppressor genes are negative regulators of tumor formation. While their anti-tumor functions have been well studied, they have been found to be also involved in immune responses and innate immunity. In this study, 21 tumor suppressor genes in channel catfish (Ictalurus punctatus) were characterized. Phylogenetic and syntenic analyses allowed annotation of all 21 catfish tumor suppressor genes. The expression profiles of the 21 catfish tumor suppressor genes were determined using the RNA-Seq datasets. After Edwardsiella ictaluri infection, expression of five of the 21 tumor suppressor genes was up-regulated at 3?days in the intestine, and four of the 21 genes were up-regulated in the liver 14 days post-infection. With Flavobacterium columnare infection, seven genes were up-regulated in the gill at 48?h post-infection. These results expanded our knowledge on the tumor suppressor genes in teleosts, setting a foundation for future studies to unravel functions of tumor suppressor genes in response to stresses, particularly after bacterial disease infections. PMID:25453578

  16. Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene

    PubMed Central

    Cernadas, Raul A.; Doyle, Erin L.; Niño-Liu, David O.; Wilkins, Katherine E.; Bancroft, Timothy; Wang, Li; Schmidt, Clarice L.; Caldo, Rico; Yang, Bing; White, Frank F.; Nettleton, Dan; Wise, Roger P.; Bogdanove, Adam J.

    2014-01-01

    Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting. PMID:24586171

  17. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses.

    PubMed Central

    Dow, S W; Potter, T A

    1997-01-01

    Bacterial superantigens are potent T cell activators, and superantigen proteins have been injected into mice and other animals to study T cell responses in vivo. When superantigen proteins are injected, however, the T cell stimulatory effects cannot be confined to specific tissues. Therefore, to target superantigen expression to specific tissues, we used gene transfer techniques to express bacterial superantigen genes in mammalian cells in vitro and in tissues in vivo. Murine, human, and canine cells transfected with superantigen genes in vitro all produced superantigen proteins both intracellularly and extracellularly, as assessed by bioassay, immunocytochemistry, and antigen ELISA. Superantigens produced by transfected eukaryotic cells retained their biologic specificity for T cell receptor binding. Intramuscular injection of superantigen plasmid DNA in vivo induced an intense intramuscular mononuclear cell infiltrate, an effect that could not be reproduced by intramuscular injection of superantigen protein. Intradermal and intravenous injection of superantigen DNA induced cutaneous and intrapulmonary mononuclear cell inflammatory responses, respectively. Thus, superantigen genes can be expressed by mammalian cells in vivo. Superantigen gene therapy represents a novel method of targeting localized T cell inflammatory reactions, with potential application to treatment of cancer and certain infectious diseases. PMID:9169491

  18. Emerging or re-emerging bacterial zoonoses: factors of emergence, surveillance and control

    Microsoft Academic Search

    Jean Blancou; Bruno B. Chomel; Albino Belotto

    2005-01-01

    Surveillance and control of emerging bacterial zoonoses is essential in order to prevent both human and animal deaths and to avoid potential economic disorders created by trade barriers or a ban on free circulation of human or animal populations. An increased risk of exposition to zoonotic agents, the breakdown of the host's defenses, the emergence of bacterial strains resistant to

  19. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23.

    PubMed

    Wang, Chunlian; Fan, Yinglun; Zheng, Chongke; Qin, Tengfei; Zhang, Xiaoping; Zhao, Kaijun

    2014-10-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial disease of rice (Oryza sativa L.), a staple food crop that feeds half of the world's population. In management of this disease, the most economical and effective approach is cultivating resistant varieties. Due to rapid change of pathogenicity in the pathogen, it is necessary to identify and characterize more host resistance genes for breeding new resistant varieties. We have previously identified the BB resistance (R) gene Xa23 that confers the broadest resistance to Xoo strains isolated from different rice-growing regions and preliminarily mapped the gene within a 1.7 cm region on the long arm of rice chromosome 11. Here, we report fine genetic mapping and in silico analysis of putative candidate genes of Xa23. Based on F2 mapping populations derived from crosses between Xa23-containing rice line CBB23 and susceptible varieties JG30 or IR24, six new STS markers Lj36, Lj46, Lj138, Lj74, A83B4, and Lj13 were developed. Linkage analysis revealed that the new markers were co-segregated with or closely linked to the Xa23 locus. Consequently, the Xa23 gene was mapped within a 0.4 cm region between markers Lj138 and A83B4, in which the co-segregating marker Lj74 was identified. The corresponding physical distance between Lj138 and A83B4 on Nipponbare genome is 49.8 kb. Six Xa23 candidate genes have been annotated, including four candidate genes encoding hypothetical proteins and the other two encoding a putative ADP-ribosylation factor protein and a putative PPR protein. These results will facilitate marker-assisted selection of Xa23 in rice breeding and molecular cloning of this valuable R gene. PMID:24715026

  20. Genes and chromosomes: control of development

    Microsoft Academic Search

    Oleg Serov; Irina Serova

    2004-01-01

    The past decade has witnessed immense progress in research into the molecular basis behind the developmen- tal regulation of genes. Sets of genes functioning under hierarchical control have been identified, evolutionary conserved systems of genes effecting the cell-to-cell transmission of transmembrane signals and assigned a central role in morphogenesis have been intensively studied; the concept of genomic regulatory networks coordinating

  1. Ubiquity and Diversity of Heterotrophic Bacterial nasA Genes in Diverse Marine Environments

    PubMed Central

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the ?-Proteobacteria, ?-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, ?-Proteobacteria, ?-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the ?-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with ?-Proteobacteria, ?-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities. PMID:25647610

  2. Ubiquity and Diversity of Heterotrophic Bacterial nasA Genes in Diverse Marine Environments.

    PubMed

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the ?-Proteobacteria, ?-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, ?-Proteobacteria, ?-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the ?-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with ?-Proteobacteria, ?-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities. PMID:25647610

  3. Gene Expression in Gut Symbiotic Organ of Stinkbug Affected by Extracellular Bacterial Symbiont

    PubMed Central

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations. PMID:23691247

  4. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    PubMed

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations. PMID:23691247

  5. GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands.

    PubMed

    Lassalle, Florent; Périan, Séverine; Bataillon, Thomas; Nesme, Xavier; Duret, Laurent; Daubin, Vincent

    2015-02-01

    The characterization of functional elements in genomes relies on the identification of the footprints of natural selection. In this quest, taking into account neutral evolutionary processes such as mutation and genetic drift is crucial because these forces can generate patterns that may obscure or mimic signatures of selection. In mammals, and probably in many eukaryotes, another such confounding factor called GC-Biased Gene Conversion (gBGC) has been documented. This mechanism generates patterns identical to what is expected under selection for higher GC-content, specifically in highly recombining genomic regions. Recent results have suggested that a mysterious selective force favouring higher GC-content exists in Bacteria but the possibility that it could be gBGC has been excluded. Here, we show that gBGC is probably at work in most if not all bacterial species. First we find a consistent positive relationship between the GC-content of a gene and evidence of intra-genic recombination throughout a broad spectrum of bacterial clades. Second, we show that the evolutionary force responsible for this pattern is acting independently from selection on codon usage, and could potentially interfere with selection in favor of optimal AU-ending codons. A comparison with data from human populations shows that the intensity of gBGC in Bacteria is comparable to what has been reported in mammals. We propose that gBGC is not restricted to sexual Eukaryotes but also widespread among Bacteria and could therefore be an ancestral feature of cellular organisms. We argue that if gBGC occurs in bacteria, it can account for previously unexplained observations, such as the apparent non-equilibrium of base substitution patterns and the heterogeneity of gene composition within bacterial genomes. Because gBGC produces patterns similar to positive selection, it is essential to take this process into account when studying the evolutionary forces at work in bacterial genomes. PMID:25659072

  6. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription activator-like (TAL) effectors found in Xanthomonas spp. promote bacterial growth and plant susceptibility by binding specific DNA sequences or, effector-binding elements (EBEs), and inducing host gene expression. In this study, we have found substantially different transcriptional pro...

  7. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  8. Mechanisms of control of gene expression

    SciTech Connect

    Cullen, B.; Gage, L.P.; Siddiqui, M.A.Q.; Skalka, A.M.; Weissbach, H.

    1987-01-01

    This book examines an array of topics on the regulation of gene expression, including an examination of DNA-protein interactions and the role of oncogene proteins in normal and abnormal cellular responses. The book focuses on the control of mRNA transcription in eykaryotes and delineates other areas including gene regulation in prokaryotes and control of stable RNA synthesis.

  9. Ras GTPase-Like Protein MglA, a Controller of Bacterial Social-Motility in Myxobacteria, Has Evolved to Control Bacterial Predation by Bdellovibrio

    PubMed Central

    Milner, David S.; Till, Rob; Cadby, Ian; Lovering, Andrew L.; Basford, Sarah M.; Saxon, Emma B.; Liddell, Susan; Williams, Laura E.; Sockett, R. Elizabeth

    2014-01-01

    Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P) at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP)-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglABd GTP-binding are conserved. Deletion of mglABd abolished prey-invasion, but not gliding, and reduced T4P formation. MglABd interacted with a previously uncharacterised tetratricopeptide repeat (TPR) domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomRBd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the “lone-hunter” Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio. PMID:24721965

  10. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio.

    PubMed

    Milner, David S; Till, Rob; Cadby, Ian; Lovering, Andrew L; Basford, Sarah M; Saxon, Emma B; Liddell, Susan; Williams, Laura E; Sockett, R Elizabeth

    2014-04-01

    Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P) at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP)-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd) GTP-binding are conserved. Deletion of mglA(Bd) abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd) interacted with a previously uncharacterised tetratricopeptide repeat (TPR) domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd) and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio. PMID:24721965

  11. Importance of Combinatorial Gene Control

    NSDL National Science Digital Library

    BEGIN:VCARD VERSION:2.1 FN:Bruce Alberts N:Alberts; Bruce REV:2005-04-16 END:VCARD

    1998-07-01

    A hypothetical scheme illustrating how combinations of a few gene regulatory proteins can generate many different cell types during development. In this simple scheme a "decision" to make a new gene regulatory protein (shown as a numbered circle) is made after each cell division. Repetition of this simple rule enables eight cell types (A through H) to be created using only three different regulatory proteins. Each of these hypothetical cell types would then express different genes, as dictated by the combination of gene regulatory proteins that are present within it.

  12. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer. ?? 2009 Pearson et al; licensee BioMed Central Ltd.

  13. Multiplex immune-related genes expression analysis response to bacterial challenge in mud crab, Scylla paramamosain.

    PubMed

    Zhang, Fengying; Jiang, Keji; Sun, Manman; Zhang, Dan; Ma, Lingbo

    2013-02-01

    Crabs lack an acquired adaptive immune system and host defense is believed to depend entirely on innate, non-adaptive mechanisms to resist invasion by pathogens. Discovery of immune-related factors are helpful for understanding the molecular response of crabs to pathogens. The mud crab Scylla paramamosain is an important marine species for aquaculture in China because of its high nutritional value for humans. In recent years, the crab is prone to being infected by microbes with the enlargement of breeding scale. In this study, eight immune-related genes were analyzed by multiplex genes expression analysis using the GenomeLab GeXP analysis system (Beckman Coulter). The expression levels of all the detected genes rose after challenged by the live bacteria, but the levels of only four genes (C-type lectin, alpha 2-macroglobulin, HSP70 and thioredoxin 1) increased after challenge in heat-killed bacteria group. So the live bacteria were more effective in motivating expressions of immune factors than heat-killed bacteria. However, the transcript of C-type lectin firstly increased at 1 h after challenge in both heat-killed and live bacteria group. This indicated that C-type lectin was a quite susceptive immune factor responding to external pathogen. In group challenged by live bacteria, the genes of alpha 2-macroglobulin, HSP40, thioredoxin 1 and prophenoloxidase activating factor (PPAF) showed response earlier than the other genes. The rise of PPAF expression preceded prophenoloxidase (proPO), which suggested that PPAF might trigger production of proPO transcripts in the early stage of phenoloxidase reaction system. C-type lectin, proPO, thioredoxin 1, HSP40, and alpha 2-macroglobulin are very important immunity factors in response to bacterial infection. According to the result of heat-killed group, HSP70 is a sensitively inductive factor to foreign stimulus compared with the other genes. The multi-gene analysis presented an alternative approach for screening of immune-related genes, and provided a more global overview of genes transcript alteration in response to bacterial challenge. PMID:23231853

  14. Feedback control of gene expression

    Microsoft Academic Search

    Jen Sheen

    1994-01-01

    Although feedback regulation of photosynthesis by carbon metabolites has long been recognized and investigated, its underlying molecular mechanisms remain unclear. The recent discovery that glucose and acetate trigger global repression of maize photosynthetic gene transcription provides the first direct evidence that a fundamental mechanism is used for feedback regulation of photosynthesis in higher plants. The metabolic repression of photosynthetic genes

  15. Sticky Situations: Key Components That Control Bacterial Surface Attachment

    PubMed Central

    Petrova, Olga E.

    2012-01-01

    The formation of bacterial biofilms is initiated by cells transitioning from the free-swimming mode of growth to a surface. This review is aimed at highlighting the common themes that have emerged in recent research regarding the key components, signals, and cues that aid in the transition and those involved in establishing a more permanent surface association during initial attachment. PMID:22389478

  16. Visualizing high error levels during gene expression in living bacterial cells.

    PubMed

    Meyerovich, Mor; Mamou, Gideon; Ben-Yehuda, Sigal

    2010-06-22

    To monitor inaccuracy in gene expression in living cells, we designed an experimental system in the bacterium Bacillus subtilis whereby spontaneous errors can be visualized and quantified at a single-cell level. Our strategy was to introduce mutations into a chromosomally encoded gfp allele, such that errors in protein production are reported in real time by the formation of fluorescent GFP molecules. The data reveal that the amount of errors can greatly exceed previous estimates, and that the error rate increases dramatically at lower temperatures and during stationary phase. Furthermore, we demonstrate that when facing an antibiotic threat, an increase in error level is sufficient to allow survival of bacteria carrying a mutated antibiotic-resistance gene. We propose that bacterial gene expression is error prone, frequently yielding protein molecules that differ slightly from the sequence specified by their DNA, thus generating a cellular reservoir of nonidentical protein molecules. This variation may be a key factor in increasing bacterial fitness, expanding the capability of an isogenic population to face environmental challenges. PMID:20534550

  17. Analysis of gene expression levels in individual bacterial cells without image segmentation

    SciTech Connect

    Kwak, In Hae; Son, Minjun [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States)] [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States); Hagen, Stephen J., E-mail: sjhagen@ufl.edu [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  18. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists

    PubMed Central

    Chow, Cheryl-Emiliane T; Kim, Diane Y; Sachdeva, Rohan; Caron, David A; Fuhrman, Jed A

    2014-01-01

    Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0–5?m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus–bacteria relationships were more cross-linked than protist–bacteria relationships, suggestive of increased taxonomic specificity in virus–bacteria relationships. We also found that 80% of bacterial–protist and 74% of bacterial–viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance. PMID:24196323

  19. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists.

    PubMed

    Chow, Cheryl-Emiliane T; Kim, Diane Y; Sachdeva, Rohan; Caron, David A; Fuhrman, Jed A

    2014-04-01

    Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0-5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus-bacteria relationships were more cross-linked than protist-bacteria relationships, suggestive of increased taxonomic specificity in virus-bacteria relationships. We also found that 80% of bacterial-protist and 74% of bacterial-viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance. PMID:24196323

  20. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters

    PubMed Central

    Seyedsayamdost, Mohammad R.

    2014-01-01

    Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as “cryptic” or “silent” to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria. PMID:24808135

  1. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Martin, K. A.; Abdi, F.; Widger, W. R.; Fox, G. E.

    1997-01-01

    Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

  2. [Transcriptional control of ciliary genes].

    PubMed

    Vieillard, Jennifer; Jerber, Julie; Durand, Bénédicte

    2014-11-01

    Cilia are found in many eukaryotic species and share a common microtubule architecture that can nonetheless show very diverse features within one animal. The genesis of cilia and their diversity require the expression of different specific genes. At least two classes of transcription factors are involved in ciliogenesis: the RFX family, essential for the assembly of most cilia and the FOXJ1 transcription factors that are key regulators of motile cilia assembly. These two different families of transcription factors have both specific and common target genes and they can also cooperate for the formation of cilia. In collaboration with cell type specific factors, they also contribute to the specialisation of cilia. As a consequence, the identification of RFX and FOXJ1 target genes has emerged as an efficient strategy to identify novel ciliary genes, and in particular genes potentially implicated in ciliopathies. PMID:25388578

  3. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism

    PubMed Central

    Sullivan, Matthew J.; Gates, Andrew J.; Appia-Ayme, Corinne; Rowley, Gary; Richardson, David J.

    2013-01-01

    Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus denitrificans. Here we demonstrate that expression of the gene encoding the nitrous oxide reductase (NosZ), which converts N2O to N2, is regulated in response to the extracellular copper concentration. We show that elevated levels of N2O released as a consequence of decreased cellular NosZ activity lead to the bacterium switching from vitamin B12-dependent to vitamin B12-independent biosynthetic pathways, through the transcriptional modulation of genes controlled by vitamin B12 riboswitches. This inhibitory effect of N2O can be rescued by addition of exogenous vitamin B12. PMID:24248380

  4. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. The role of horizontal gene transfer in the evolution of selected foodborne bacterial pathogens.

    PubMed

    Kelly, B G; Vespermann, A; Bolton, D J

    2009-05-01

    Bacteria use various ways to transfer genetic information. These methods include: conjugation, which requires cell to cell contact between cells, transduction, which is bacteriophage-facilitated transfer of genetic information, and transformation, which is the uptake of free DNA from the environment. Usually the genes to be transferred lie on mobile genetic elements, pieces of DNA that encode proteins important to facilitate movement of DNA within or between genomes. This review highlights the transfer methods and the role of the assorted mobile genetic elements in the evolution of four foodborne bacterial pathogens: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus and Listeria monocytogenes. PMID:18420329

  6. Optimal control and analysis of two-color genomotyping experiments using bacterial multistrain arrays

    Microsoft Academic Search

    Francisco R Pinto; Sandra I Aguiar; J Melo-Cristino; Mário Ramirez

    2008-01-01

    BACKGROUND: Microarray comparative genomic hybridization (aCGH) evaluates the distribution of genes of sequenced bacterial strains among unsequenced strains of the same or related species. As genomic sequences from multiple strains of the same species become available, multistrain microarrays are designed, containing spots for every unique gene in all sequenced strains. To perform two-color aCGH experiments with multistrain microarrays, the choice

  7. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing.

    PubMed

    Roux, Brice; Rodde, Nathalie; Jardinaud, Marie-Françoise; Timmers, Ton; Sauviac, Laurent; Cottret, Ludovic; Carrère, Sébastien; Sallet, Erika; Courcelle, Emmanuel; Moreau, Sandra; Debellé, Frédéric; Capela, Delphine; de Carvalho-Niebel, Fernanda; Gouzy, Jérôme; Bruand, Claude; Gamas, Pascal

    2014-03-01

    Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions. This study, focused on the association between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti, led to the production of 942 million sequencing read pairs that were unambiguously mapped on plant and bacterial genomes. Bioinformatic and statistical analyses enabled in-depth comparison, at a whole-genome level, of gene expression in specific nodule zones. Previously characterized symbiotic genes displayed the expected spatial pattern of expression, thus validating the robustness of our approach. We illustrate the use of this resource by examining gene expression associated with three essential elements of nodule development, namely meristem activity, cell differentiation and selected signaling processes related to bacterial Nod factors and redox status. We found that transcription factor genes essential for the control of the root apical meristem were also expressed in the nodule meristem, while the plant mRNAs most enriched in nodules compared with roots were mostly associated with zones comprising both plant and bacterial partners. The data, accessible on a dedicated website, represent a rich resource for microbiologists and plant biologists to address a variety of questions of both fundamental and applied interest. PMID:24483147

  8. Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone.

    PubMed

    Shen, Yao-Qing; Bonnot, Florence; Imsand, Erin M; RoseFigura, Jordan M; Sjölander, Kimmen; Klinman, Judith P

    2012-03-20

    Pyrroloquinoline quinone (PQQ) is a small, redox active molecule that serves as a cofactor for several bacterial dehydrogenases, introducing pathways for carbon utilization that confer a growth advantage. Early studies had implicated a ribosomally translated peptide as the substrate for PQQ production. This study presents a sequence- and structure-based analysis of the components of the pqq operon. We find the necessary components for PQQ production are present in 126 prokaryotes, most of which are Gram-negative and a number of which are pathogens. A total of five gene products, PqqA, PqqB, PqqC, PqqD, and PqqE, are identified as being obligatory for PQQ production. Three of the gene products in the pqq operon, PqqB, PqqC, and PqqE, are members of large protein superfamilies. By combining evolutionary conservation patterns with information from three-dimensional structures, we are able to differentiate the gene products involved in PQQ biosynthesis from those with divergent functions. The observed persistence of a conserved gene order within analyzed operons strongly suggests a role for protein-protein interactions in the course of cofactor biosynthesis. These studies propose previously unidentified roles for several of the gene products, as well as identifying possible new targets for antibiotic design and application. PMID:22324760

  9. Detecting the molecular signature of social conflict: theory and a test with bacterial quorum sensing genes.

    PubMed

    Van Dyken, J David; Wade, Michael J

    2012-04-01

    Extending social evolution theory to the molecular level opens the door to an unparalleled abundance of data and statistical tools for testing alternative hypotheses about the long-term evolutionary dynamics of cooperation and conflict. To this end, we take a collection of known sociality genes (bacterial quorum sensing [QS] genes), model their evolution in terms of patterns that are detectable using gene sequence data, and then test model predictions using available genetic data sets. Specifically, we test two alternative hypotheses of social conflict: (1) the "adaptive" hypothesis that cheaters are maintained in natural populations by frequency-dependent balancing selection as an evolutionarily stable strategy and (2) the "evolutionary null" hypothesis that cheaters are opposed by purifying kin selection yet exist transiently because of their recurrent introduction into populations by mutation (i.e., kin selection-mutation balance). We find that QS genes have elevated within- and among-species sequence variation, nonsignificant signatures of natural selection, and putatively small effect sizes of mutant alleles, all patterns predicted by our evolutionary null model but not by the stable cheater hypothesis. These empirical findings support our theoretical prediction that QS genes experience relaxed selection due to nonclonality of social groups, conditional expression, and the individual-level advantage enjoyed by cheaters. Furthermore, cheaters are evolutionarily transient, persisting in populations because of their recurrent introduction by mutation and not because they enjoy a frequency-dependent fitness advantage. PMID:22437174

  10. Atmospheric pressure plasmas: infection control and bacterial responses.

    PubMed

    Mai-Prochnow, Anne; Murphy, Anthony B; McLean, Keith M; Kong, Michael G; Ostrikov, Kostya Ken

    2014-06-01

    Cold atmospheric pressure plasma (APP) is a recent, cutting-edge antimicrobial treatment. It has the potential to be used as an alternative to traditional treatments such as antibiotics and as a promoter of wound healing, making it a promising tool in a range of biomedical applications with particular importance for combating infections. A number of studies show very promising results for APP-mediated killing of bacteria, including removal of biofilms of pathogenic bacteria such as Pseudomonas aeruginosa. However, the mode of action of APP and the resulting bacterial response are not fully understood. Use of a variety of different plasma-generating devices, different types of plasma gases and different treatment modes makes it challenging to show reproducibility and transferability of results. This review considers some important studies in which APP was used as an antibacterial agent, and specifically those that elucidate its mode of action, with the aim of identifying common bacterial responses to APP exposure. The review has a particular emphasis on mechanisms of interactions of bacterial biofilms with APP. PMID:24637224

  11. Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm

    PubMed Central

    Huang, Ying; Callahan, Sean; Hadfield, Michael G.

    2012-01-01

    Metamorphically competent larvae of the marine tubeworm Hydroides elegans can be induced to metamorphose by biofilms of the bacterium Pseudoalteromonas luteoviolacea strain HI1. Mutational analysis was used to identify four genes that are necessary for metamorphic induction and encode functions that may be related to cell adhesion and bacterial secretion systems. No major differences in biofilm characteristics, such as biofilm cell density, thickness, biomass and EPS biomass, were seen between biofilms composed of P. luteoviolacea (HI1) and mutants lacking one of the four genes. The analysis indicates that factors other than those relating to physical characteristics of biofilms are critical to the inductive capacity of P. luteoviolacea (HI1), and that essential inductive molecular components are missing in the non-inductive deletion-mutant strains. PMID:22355742

  12. Biological controls on bacterial populations in ballast water during ocean transit.

    PubMed

    Seiden, Jennica M; Rivkin, Richard B

    2014-01-15

    Bacteria (and viruses) numerically dominate ballast water communities, but what controls their population dynamics during transit is largely unexplored. Here, bacterial abundance, net and intrinsic growth rates, and grazing mortality were determined during a trans-Atlantic voyage. The effects of grazing pressure by microzooplankton on heterotrophic bacteria during transit were determined for source port, mid-ocean exchange (MOE), and six-day-old source port ballast water. When the grazer component was removed, bacterial abundances significantly increased. Additionally, we determined that the grazer-mediated mortality for ballast water originating from ports was greater than MOE water and that mortality decreased over time for the source port ballast water. This study shows that bacterial populations in transit are controlled by microzooplankton grazing. If these findings are representative of ballast water environments, they suggest that if the grazing component is selectively removed by various treatment methods, bacterial populations may increase; this could have environmental and human health consequences. PMID:24246652

  13. Selected Lactic Acid-Producing Bacterial Isolates with the Capacity to Reduce Salmonella Translocation and Virulence Gene Expression in Chickens

    PubMed Central

    Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua

    2014-01-01

    Background Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. Methodology/Principal Findings In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3–1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (106–7 CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (104 CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. Conclusions/Significance The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens. PMID:24728092

  14. Spatial and temporal variations in chitinolytic gene expression and bacterial biomass production during chitin degradation.

    PubMed

    Baty, A M; Eastburn, C C; Techkarnjanaruk, S; Goodman, A E; Geesey, G G

    2000-08-01

    Growth of the chitin-degrading marine bacterium S91 on solid surfaces under oligotrophic conditions was accompanied by the displacement of a large fraction of the surface-derived bacterial production into the flowing bulk aqueous phase, irrespective of the value of the surface as a nutrient source. Over a 200-h period of surface colonization, 97 and 75% of the bacterial biomass generated on biodegradable chitin and a nonnutritional silicon surface, respectively, detached to become part of the free-living population in the bulk aqueous phase. Specific surface-associated growth rates that included the cells that subsequently detached from the substrata varied depending on the nutritional value of the substratum and during the period of surface colonization. Specific growth rates of 3.79 and 2.83 day(-1) were obtained when cells first began to proliferate on a pure chitin film and a silicon surface, respectively. Later, when cell densities on the surface and detached cells as CFU in the bulk aqueous phase achieved a quasi-steady state, specific growth rates decreased to 1.08 and 0.79 day(-1) on the chitin and silicon surfaces, respectively. Virtually all of the cells that detached from either the chitin or the silicon surfaces and the majority of cells associated with the chitin surface over the 200-h period of surface colonization displayed no detectable expression of the chitin-degrading genes chiA and chiB. Cells displaying high levels of chiA-chiB expression were detected only on the chitin surface and then only clustered in discrete areas of the surface. Surface-associated, differential gene expression and displacement of bacterial production from surfaces represent adaptations at the population level that promote efficient utilization of limited resources and dispersal of progeny to maximize access to new sources of energy and maintenance of the population. PMID:10919823

  15. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm.

    PubMed

    Wang, Zhao; Yang, Yuyin; Sun, Weimin; Dai, Yu; Xie, Shuguang

    2015-02-01

    Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation. PMID:25277711

  16. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss

    PubMed Central

    2010-01-01

    Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While Listeria includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic Listeria strains. PMID:21126366

  17. Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius.

    PubMed

    Kiselev, Konstantin V; Ageenko, Natalya V; Kurilenko, Valeria V

    2013-03-26

    Bacterial infections are one of the most important problems in mass aquaculture, causing the loss of millions of juvenile organisms. We isolated 22 bacterial strains from the cavity fluid of the sea urchin Strongylocentrotus pallidus and used phylogenetic analysis based on 16S rRNA gene sequences to separate the bacterial strains into 9 genera (Aliivibrio, Bizionia, Colwellia, Olleya, Paenibacillus, Photobacterium, Pseudoalteromonas, Shewanella, and Vibrio). Incubating Strongylocentrotus intermedius larvae with a strain from each of the 9 bacterial genera, we investigated the viability of the larvae, the amount of pigment cells, and the level of polyketide synthase (pks) and sulfotransferase (sult) gene expression. Results of the assay on sea urchin development showed that all bacterial strains, except Pseudoalteromonas and Bizionia, suppressed sea urchin development (resulting in retardation of the embryos' development with cellular disorders) and reduced cell viability. We found that pks expression in the sea urchin larvae after incubation with the bacteria of 9 tested genera was significantly increased, while the sult expression was increased only after the treatment with Pseudoalteromonas and Shewanella. Shikimic acid, which is known to activate the biosynthesis of naphthoquinone pigments, increased the tolerance of the sea urchin embryos to the bacteria. In conclusion, we show that the cell-specific pigment genes pks and sult are involved in the bacterial defense response of sea urchins. PMID:23548362

  18. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    PubMed Central

    Hong, Jeum Kyu; Kang, Su Ran; Kim, Yeon Hwa; Yoon, Dong June; Kim, Do Hoon; Kim, Hyeon Ji; Sung, Chang Hyun; Kang, Han Sol; Choi, Chang Won; Kim, Seong Hwan; Kim, Young Shik

    2013-01-01

    Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H2O2) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O2?) and H2O2 was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H2O2and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H2O2and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 106 and 107 cfu/ml of R. solanacearum. H2O2- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC)’ was calculated to compare disease protection by H2O2 and/or SNP with untreated control. Neither H2O2 nor SNP protect the tomato seedlings from the bacterial wilt, but H2O2+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H2O2 and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents. PMID:25288967

  19. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants.

    PubMed

    Hong, Jeum Kyu; Kang, Su Ran; Kim, Yeon Hwa; Yoon, Dong June; Kim, Do Hoon; Kim, Hyeon Ji; Sung, Chang Hyun; Kang, Han Sol; Choi, Chang Won; Kim, Seong Hwan; Kim, Young Shik

    2013-12-01

    Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H2O2) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O2 (-)) and H2O2 was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H2O2and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H2O2and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10(6) and 10(7) cfu/ml of R. solanacearum. H2O2- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by H2O2 and/or SNP with untreated control. Neither H2O2 nor SNP protect the tomato seedlings from the bacterial wilt, but H2O2+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H2O2 and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents. PMID:25288967

  20. Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements.

    PubMed

    Ochi, Kozo; Tanaka, Yukinori; Tojo, Shigeo

    2014-02-01

    Since bacteria were found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often "silent" under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. We review current progress on this topic, describing concepts for activating silent genes. We especially focus on genetic manipulation of transcription and translation, as well as the utilization of rare earth elements as a novel method to activate the silent genes. The possible roles of silent genes in bacterial physiology are also discussed. PMID:24127067

  1. Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes

    PubMed Central

    Labbé, Alain; Ganopolsky, Jorge G.; Martoni, Christopher J.; Prakash, Satya; Jones, Mitchell L.

    2014-01-01

    We performed an analysis to determine the importance of bile acid modification genes in the gut microbiome of inflammatory bowel disease and type 2 diabetic patients. We used publicly available metagenomic datasets from the Human Microbiome Project and the MetaHIT consortium, and determined the abundance of bile salt hydrolase gene (bsh), 7 alpha-dehydroxylase gene (adh) and 7-alpha hydroxysteroid dehydrogenase gene (hsdh) in fecal bacteria in diseased populations of Crohn's disease (CD), Ulcerative Colitis (UC) and Type 2 diabetes mellitus (T2DM). Phylum level abundance analysis showed a significant reduction in Firmicute-derived bsh in UC and T2DM patients but not in CD patients, relative to healthy controls. Reduction of adh and hsdh genes was also seen in UC and T2DM patients, while an increase was observed in the CD population as compared to healthy controls. A further analysis of the bsh genes showed significant differences in the correlations of certain Firmicutes families with disease or healthy populations. From this observation we proceeded to analyse BSH protein sequences and identified BSH proteins clusters representing the most abundant strains in our analysis of Firmicute bsh genes. The abundance of the bsh genes corresponding to one of these protein clusters was significantly reduced in all disease states relative to healthy controls. This cluster includes bsh genes derived from Lachospiraceae, Clostridiaceae, Erysipelotrichaceae and Ruminococcaceae families. This metagenomic analysis provides evidence of the importance of bile acid modifying enzymes in health and disease. It further highlights the importance of identifying gene and protein clusters, as the same gene may be associated with health or disease, depending on the strains expressing the enzyme, and differences in the enzymes themselves. PMID:25517115

  2. Embryonal brain tumors and developmental control genes

    SciTech Connect

    Aguzzi, A. [Univ. Hospital, Schmelzbergstr (Switzerland)

    1995-12-31

    Cell proliferation in embryogenesis and neoplastic transformation is thought to be controlled by similar sets of regulatory genes. This is certainly true for tumors of embryonic origin, such as Ewing sarcoma, Wilms` tumor and retinoblastoma, in which developmental control genes are either activated as oncogenes to promote proliferation, or are inactivated to eliminate their growth suppressing function. However, to date little is known about the genetic events underlying the pathogenesis of medulloblastoma, the most common brain tumor in children, which still carries an unfavourable prognosis. None of the common genetic alterations identified in other neuroectodermal tumors, such as mutation of the p53 gene or amplification of tyrosine kinase receptor genes, could be uncovered as key events in the formation of medulloblastoma. The identification of regulatory genes which are expressed in this pediatric brain tumor may provide an alternative approach to gain insight into the molecular aspects of tumor formation.

  3. Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13

    Microsoft Academic Search

    Z. Chu; Y. Ouyang; J. Zhang; H. Yang; S. Wang

    2004-01-01

    Defense responses triggered by dominant and recessive disease resistance ( R) genes are presumed to be regulated by different molecular mechanisms. In order to characterize the genes activated in defense responses against bacterial blight mediated by the recessive R gene xa13, two pathogen-induced subtraction cDNA libraries were constructed using the resistant rice line IRBB13—which carries xa13 —and its susceptible, near-isogenic,

  4. Review: phage therapy: a modern tool to control bacterial infections.

    PubMed

    Qadir, Muhammad Imran

    2015-01-01

    The evolution of antibiotic-resistant in bacteria has aggravated curiosity in development of alternative therapy to conventional drugs. One of the emerging drugs that can be used alternative to antibiotics is bacteriophage therapy. The use of living phages in the cure of lethal infectious life threatening diseases caused by Gram positive and Gram negative bacteria has been reported. Another development in the field of bacteriophage therapy is the use of genetically modified and non replicating phages in the treatment of bacterial infection. Genetically engineered bacteriophages can be used as adjuvant along with antibiotic therapy. Phages encoded with lysosomal enzymes are also effectual in the treatment of infectious diseases. PMID:25553704

  5. Biomarkers and Bacterial Pneumonia Risk in Patients with Treated HIV Infection: A Case-Control Study

    PubMed Central

    Bjerk, Sonja M.; Baker, Jason V.; Emery, Sean; Neuhaus, Jacqueline; Angus, Brian; Gordin, Fred M.; Pett, Sarah L.; Stephan, Christoph; Kunisaki, Ken M.

    2013-01-01

    Background Despite advances in HIV treatment, bacterial pneumonia continues to cause considerable morbidity and mortality in patients with HIV infection. Studies of biomarker associations with bacterial pneumonia risk in treated HIV-infected patients do not currently exist. Methods We performed a nested, matched, case-control study among participants randomized to continuous combination antiretroviral therapy (cART) in the Strategies for Management of Antiretroviral Therapy trial. Patients who developed bacterial pneumonia (cases) and patients without bacterial pneumonia (controls) were matched 1?1 on clinical center, smoking status, age, and baseline cART use. Baseline levels of Club Cell Secretory Protein 16 (CC16), Surfactant Protein D (SP-D), C-reactive protein (hsCRP), interleukin-6 (IL-6), and d-dimer were compared between cases and controls. Results Cases (n?=?72) and controls (n?=?72) were 25.7% female, 51.4% black, 65.3% current smokers, 9.7% diabetic, 36.1% co-infected with Hepatitis B/C, and 75.0% were on cART at baseline. Median (IQR) age was 45 (41, 51) years with CD4+ count of 553 (436, 690) cells/mm3. Baseline CC16 and SP-D were similar between cases and controls, but hsCRP was significantly higher in cases than controls (2.94 µg/mL in cases vs. 1.93 µg/mL in controls; p?=?0.02). IL-6 and d-dimer levels were also higher in cases compared to controls, though differences were not statistically significant (p-value 0.06 and 0.10, respectively). Conclusions In patients with cART-treated HIV infection, higher levels of systemic inflammatory markers were associated with increased bacterial pneumonia risk, while two pulmonary-specific inflammatory biomarkers, CC16 and SP-D, were not associated with bacterial pneumonia risk. PMID:23457535

  6. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    PubMed

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management. PMID:25423586

  7. 10. Development of component technologies for control of bacterial wilt in potato

    Microsoft Academic Search

    Oni Setiani Gunawan; Z. Abidin; R. S. Basuki; A. Dimyati; A. Asgar; Elske van de Fliert

    Research strategies to control potato bacterial wilt (Ralstonia solanacearum) were conducted in Pangalengan subdistrict in West Java from January to December 2001. Activities were done to determine the following: 1) status of Ralstonia solanacearum in farmers' and experimental fields, 2) effects of control components including seed selection during storage, crop rotation, field sanitation, mulching, and manuring with beneficial organisms added,

  8. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase.

    PubMed Central

    Pear, J R; Kawagoe, Y; Schreckengost, W E; Delmer, D P; Stalker, D M

    1996-01-01

    In spite of much effort, no one has succeeded in isolating and characterizing the enzyme(s) responsible for synthesis of cellulose, the major cell wall polymer of plants. We have characterized two cotton (Gossypium hirsutum) cDNA clones and identified one rice (Oryza sativa) cDNA that are homologs of the bacterial celA genes that encode the catalytic subunit of cellulose synthase. Three regions in the deduced amino acid sequences of the plant celA gene products are conserved with respect to the proteins encoded by bacterial celA genes. Within these conserved regions, there are four highly conserved subdomains previously suggested to be critical for catalysis and/or binding of the substrate UDP-glucose (UDP-Glc). An overexpressed DNA segment of the cotton celA1 gene encodes a polypeptide fragment that spans these domains and binds UDP-Glc, while a similar fragment having one of these domains deleted does not. The plant celA genes show little homology at the N- and C-terminal regions and also contain two internal insertions of sequence, one conserved and one hypervariable, that are not found in the bacterial gene sequences. Cotton celA1 and celA2 genes are expressed at high levels during active secondary wall cellulose synthesis in developing cotton fibers. Genomic Southern blot analyses in cotton demonstrate that celA forms a small gene family. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8901635

  9. Fabrication of microtemplates for the control of bacterial immobilization

    SciTech Connect

    Miyahara, Yasuhiro; Mitamura, Koji; Saito, Nagahiro; Takai, Osamu [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603 (Japan); EcoTopia Science Research Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603 (Japan); Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University and Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603 (Japan); Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University and EcoTopia Science Research Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603 (Japan)

    2009-09-15

    The authors described a region-selective immobilization methods of bacteria by using superhydrophobic/superhydrophilic and superhydrophobic/poly(ethylene glycol) (PEG) micropatterns for culture scaffold templates. In the case of superhydrophobic/superhydrophilic micropatterns, the superhydrophobic surface was prepared first by microwave-plasma enhanced chemical vapor deposition (MPECVD) from trimethylmethoxysilane. Then the superhydrophilic regions were fabricated by irradiating the superhydrophobic surface with vuv light through a stencil mask. In the case of the superhydrophobic/PEG micropatterned surfaces, PEG surfaces were fabricated first by chemical reaction of ester groups of p-nitrophenyl PEG with NH{sub 2} group of NH{sub 2}-terminated self assembled monolayer from n-6-hexyl-3-aminopropyltrimethoxysilane. The superhydrophobic regions were fabricated by MPECVD thorough a stencil mask. In this study four bacteria were selected from viewpoint of peptidoglycan cell wall (E. coli versus B. subtilis), extracellular polysaccharide (E.coli versus P. stutzeri, P. aeruginosa), and growth rate (P. stutzeri versus P. aeruginosa). The former micropattern brought discrete adhesions of E. coli and B. subtilis specifically on the hydrophobic regions, Furthermore, using the superhydrophobic/PEG micropattern, adhesion of bacteria expanded for E. coli, B. subtilis, P. stutzeri, and P. aeruginosa. They observed a high bacterial adhesion onto superhydrophobic surfaces and the inhibitive effect of bacterial adhesion on PEG surfaces.

  10. Assessment of Bacterial bph Gene in Amazonian Dark Earth and Their Adjacent Soils

    PubMed Central

    Brossi, Maria Julia de Lima; Mendes, Lucas William; Germano, Mariana Gomes; Lima, Amanda Barbosa; Tsai, Siu Mui

    2014-01-01

    Amazonian Anthrosols are known to harbour distinct and highly diverse microbial communities. As most of the current assessments of these communities are based on taxonomic profiles, the functional gene structure of these communities, such as those responsible for key steps in the carbon cycle, mostly remain elusive. To gain insights into the diversity of catabolic genes involved in the degradation of hydrocarbons in anthropogenic horizons, we analysed the bacterial bph gene community structure, composition and abundance using T-RFLP, 454-pyrosequencing and quantitative PCR essays, respectively. Soil samples were collected in two Brazilian Amazon Dark Earth (ADE) sites and at their corresponding non-anthropogenic adjacent soils (ADJ), under two different land use systems, secondary forest (SF) and manioc cultivation (M). Redundancy analysis of T-RFLP data revealed differences in bph gene structure according to both soil type and land use. Chemical properties of ADE soils, such as high organic carbon and organic matter, as well as effective cation exchange capacity and pH, were significantly correlated with the structure of bph communities. Also, the taxonomic affiliation of bph gene sequences revealed the segregation of community composition according to the soil type. Sequences at ADE sites were mostly affiliated to aromatic hydrocarbon degraders belonging to the genera Streptomyces, Sphingomonas, Rhodococcus, Mycobacterium, Conexibacter and Burkholderia. In both land use sites, shannon's diversity indices based on the bph gene data were higher in ADE than ADJ soils. Collectively, our findings provide evidence that specific properties in ADE soils shape the structure and composition of bph communities. These results provide a basis for further investigations focusing on the bio-exploration of novel enzymes with potential use in the biotechnology/biodegradation industry. PMID:24927167

  11. Application of nanotechnology to control bacterial adhesion and patterning on material surfaces

    PubMed Central

    Costello, Cait M.; Yeung, Chun L.; Rawson, Frankie J.; Mendes, Paula M.

    2012-01-01

    Bacterial adhesion and biofilm formation on surfaces raises health hazard issues in the medical environment. Previous studies of bacteria adhesion have focused on observations in their natural/native environments. Recently, surface science has contributed in advancing the understanding of bacterial adhesion by providing ideal platforms that attempt to mimic the bacteria's natural environments, whilst also enabling concurrent control, selectivity and spatial control of bacterial adhesion. In this review, we will look at techniques of how nanotechnology is used to control cell adhesion on a planar scale, in addition to describing the use of nanotools for cell micropatterning. Additionally, it will provide a general background of common methods for nanoscale modification enabling biologist unfamiliar with nanotechnology to enter the field. PMID:24273593

  12. Genes and Co-Expression Modules Common to Drought and Bacterial Stress Responses in Arabidopsis and Rice

    PubMed Central

    Shaik, Rafi; Ramakrishna, Wusirika

    2013-01-01

    Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape within the cell. Identification and characterization of the synergistic and antagonistic components of stress response mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress responses. To this end, we performed meta-analysis of drought (abiotic), bacterial (biotic) stress response in rice and Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214) and 28.7% (272) DEGs were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while ‘CO-like’ TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-expression network analysis divided DEG sets into multiple modules that show high co-expression and identified stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and reversed co-expression patterns. PMID:24130868

  13. Terrestrial Runoff Controls the Bacterial Community Composition of Biofilms along a Water Quality Gradient in the Great Barrier Reef

    PubMed Central

    Wild, Christian; Uthicke, Sven

    2012-01-01

    16S rRNA gene molecular analysis elucidated the spatiotemporal distribution of bacterial biofilm communities along a water quality gradient. Multivariate statistics indicated that terrestrial runoff, in particular dissolved organic carbon and chlorophyll a concentrations, induced shifts of specific bacterial communities between locations and seasons, suggesting microbial biofilms could be suitable bioindicators for water quality. PMID:22904059

  14. DNA Microarray-Based Identification of Genes Controlled by Autoinducer 2Stimulated Quorum Sensing in Escherichia coli

    Microsoft Academic Search

    MATTHEW P. DELISA; CHI-FANG WU; LIANG WANG; JAMES J. VALDES; WILLIAM E. BENTLEY

    2001-01-01

    Bacterial cell-to-cell communication facilitates coordinated expression of specific genes in a growth rate-II and cell density-dependent manner, a process known as quorum sensing. While the discovery of a diffusible Escherichia coli signaling pheromone, termed autoinducer 2 (AI-2), has been made along with several quorum sensing genes, the overall number and coordination of genes controlled by quorum sensing through the AI-2

  15. Population-level control of gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment.

  16. Nucleotide Diversity Analysis of Three Major Bacterial Blight Resistance Genes in Rice

    PubMed Central

    Bimolata, Waikhom; Kumar, Anirudh; M, Sai Kiran Reddy; Sundaram, Raman Meenakshi; Laha, Gouri Sankar; Qureshi, Insaf Ahmed; Ghazi, Irfan Ahmad

    2015-01-01

    Nucleotide sequence polymorphisms among R gene alleles influence the process of co-evolutionary interaction between host and pathogen by shaping the response of host plants towards invading pathogens. Here, we present the DNA sequence polymorphisms and diversities present among natural alleles of three rice bacterial blight resistance genes, Xa21, Xa26 and xa5. The diversity was examined across different wild relatives and cultivars of Oryza species. Functional significance of selected alleles was evaluated through semi-quantitative reverse transcription polymerase chain reaction and real time PCR. The greatest nucleotide diversity and singleton variable sites (SVS) were present in Xa26 (? = 0.01958; SVS = 182) followed by xa5 and Xa21 alleles. The highest frequency of single nucleotide polymorphisms were observed in Xa21 alleles and least in xa5. Transition bias was observed in all the genes and ‘G’ to ‘A’ transitions were more favored than other form of transitions. Neutrality tests failed to show the presence of selection at these loci, though negative Tajima’s D values indicate the presence of a rare form of polymorphisms. At the interspecies level, O. nivara exhibited more diversity than O. sativa. We have also identified two nearly identical resistant alleles of xa5 and two sequentially identical alleles of Xa21. The alleles of xa5 showed basal levels of expression while Xa21 alleles were functionally not expressed. PMID:25807168

  17. Light without substrate amendment: the bacterial luciferase gene cassette as a mammalian bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Xu, Tingting; Smartt, Abby E.; Jegier, Pat; Ripp, Steven A.; Sayler, Gary S.

    2011-06-01

    Bioluminescent production represents a facile method for bioreporter detection in mammalian tissues. The lack of endogenous bioluminescent reactions in these tissues allows for high signal to noise ratios even at low signal strength compared to fluorescent signal detection. While the luciferase enzymes commonly employed for bioluminescent detection are those from class Insecta (firefly and click beetle luciferases), these are handicapped in that they require concurrent administration of a luciferin compound to elicit a bioluminescent signal. The bacterial luciferase (lux) gene cassette offers the advantages common to other bioluminescent proteins, but is simultaneously capable of synthesizing its own luciferin substrates using endogenously available cellular compounds. The longstanding shortcoming of the lux cassette has been its recalcitrance to function in the mammalian cellular environment. This paper will present an overview of the work completed to date to overcome this limitation and provide examples of mammalian lux-based bioreporter technologies that could provide the framework for advanced, biomedically relevant real-time sensor development.

  18. Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis

    E-print Network

    Washington, Tracy (Tracy Alexander)

    2013-01-01

    DnaA is the bacterial replication initiator, which also functions as a transcription factor to regulate gene expression. In B. subtilis, DnaA has previously been shown to repress its own transcription and has also been ...

  19. Natural Transformation Facilitates Transfer of Transposons, Integrons and Gene Cassettes between Bacterial Species

    PubMed Central

    Domingues, Sara; Harms, Klaus; Fricke, W. Florian; Johnsen, Pål J.; da Silva, Gabriela J.; Nielsen, Kaare Magne

    2012-01-01

    We have investigated to what extent natural transformation acting on free DNA substrates can facilitate transfer of mobile elements including transposons, integrons and/or gene cassettes between bacterial species. Naturally transformable cells of Acinetobacter baylyi were exposed to DNA from integron-carrying strains of the genera Acinetobacter, Citrobacter, Enterobacter, Escherichia, Pseudomonas, and Salmonella to determine the nature and frequency of transfer. Exposure to the various DNA sources resulted in acquisition of antibiotic resistance traits as well as entire integrons and transposons, over a 24 h exposure period. DNA incorporation was not solely dependent on integrase functions or the genetic relatedness between species. DNA sequence analyses revealed that several mechanisms facilitated stable integration in the recipient genome depending on the nature of the donor DNA; homologous or heterologous recombination and various types of transposition (Tn21-like and IS26-like). Both donor strains and transformed isolates were extensively characterized by antimicrobial susceptibility testing, integron- and cassette-specific PCRs, DNA sequencing, pulsed field gel electrophoreses (PFGE), Southern blot hybridizations, and by re-transformation assays. Two transformant strains were also genome-sequenced. Our data demonstrate that natural transformation facilitates interspecies transfer of genetic elements, suggesting that the transient presence of DNA in the cytoplasm may be sufficient for genomic integration to occur. Our study provides a plausible explanation for why sequence-conserved transposons, IS elements and integrons can be found disseminated among bacterial species. Moreover, natural transformation of integron harboring populations of competent bacteria revealed that interspecies exchange of gene cassettes can be highly efficient, and independent on genetic relatedness between donor and recipient. In conclusion, natural transformation provides a much broader capacity for horizontal acquisitions of genetic elements and hence, resistance traits from divergent species than previously assumed. PMID:22876180

  20. Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes

    Microsoft Academic Search

    Jeremy A. Frank; Claudia I. Reich; Shobha Sharma; Jon S. Weisbaum; Brenda A. Wilson; Gary J. Olsen

    2008-01-01

    rRNA-based studies, which have become the most common method for assessing microbial communities, rely upon faithful amplification of the corresponding genes from the original DNA sample. We report here an analysis and reevaluation of commonly used primers for amplifying the DNA between positions 27 and 1492 of bacterial 16S rRNA genes (numbered according to the Escherichia coli rRNA). We propose

  1. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum

    PubMed Central

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  2. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum.

    PubMed

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-03-24

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  3. Journal of Theoretical Biology 244 (2007) 326348 Bacterial gene regulation in diauxic and non-diauxic growth

    E-print Network

    Pilyugin, Sergei S.

    Journal of Theoretical Biology 244 (2007) 326­348 Bacterial gene regulation in diauxic and non-diauxic growth Atul Naranga,�, Sergei S. Pilyuginb a Department of Chemical Engineering, University of Florida growth-limiting substrates, they exhibit a rich spectrum of substrate consumption patterns including

  4. Identification and transcriptional profile of multiple genes in the posterior kidney of Nile tilapia at 6h post bacterial infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophi...

  5. Analysis of Bacterial Community Structure in Sulfurous-Oil-Containing Soils and Detection of Species Carrying Dibenzothiophene Desulfurization (dsz) Genes

    Microsoft Academic Search

    GABRIELA FROIS DUARTE; ALEXANDRE SOARES ROSADO; LUCY SELDIN; WELINGTON DE ARAUJO; JAN DIRK VAN ELSAS

    2001-01-01

    The selective effects of sulfur-containing hydrocarbons, with respect to changes in bacterial community structure and selection of desulfurizing organisms and genes, were studied in soil. Samples taken from a polluted field soil (A) along a concentration gradient of sulfurous oil and from soil microcosms treated with dibenzothiophene (DBT)-containing petroleum (FSL soil) were analyzed. Analyses included plate counts of total bacteria

  6. Distinct Ectomycorrhizospheres Share Similar Bacterial Communities as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Oger, P.; Morin, E.; Frey-Klett, P.

    2012-01-01

    Analysis of the 16S rRNA gene sequences generated from Xerocomus pruinatus and Scleroderma citrinum ectomycorrhizospheres revealed that similar bacterial communities inhabited the two ectomycorrhizospheres in terms of phyla and genera, with an enrichment of the Burkholderia genus. Compared to the bulk soil habitat, ectomycorrhizospheres hosted significantly more Alpha-, Beta-, and Gammaproteobacteria. PMID:22307291

  7. Glycosylation Genes Expressed in Seam Cells Determine Complex Surface Properties and Bacterial Adhesion to the Cuticle of Caenorhabditis elegans

    PubMed Central

    Gravato-Nobre, Maria J.; Stroud, Dave; O'Rourke, Delia; Darby, Creg; Hodgkin, Jonathan

    2011-01-01

    The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property—contact recognition of hermaphrodites by males during mating—was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway. PMID:20980242

  8. Combinatorial control of gene expression.

    PubMed

    Bhattacharjee, Soumya; Renganaath, Kaushik; Mehrotra, Rajesh; Mehrotra, Sandhya

    2013-01-01

    The complexity and diversity of eukaryotic organisms are a feat of nature's engineering. Pulling the strings of such an intricate machinery requires an even more masterful and crafty approach. Only the number and type of responses that they generate exceed the staggering proportions of environmental signals perceived and processed by eukaryotes. Hence, at first glance, the cell's sparse stockpile of controlling factors does not seem remotely adequate to carry out this response. The question as to how eukaryotes sense and respond to environmental cues has no single answer. It is an amalgamation, an interplay between several processes, pathways, and factors-a combinatorial control. A short description of some of the most important elements that operate this entire conglomerate is given in this paper. PMID:24069600

  9. Engineering an Enhanced, Thermostable, Monomeric Bacterial Luciferase Gene As a Reporter in Plant Protoplasts

    PubMed Central

    Song, Yunhong; Wei, Jinsong; Li, Changfu; Wang, Tietao; Wang, Yao; Zhao, Tianyong; Shen, Xihui

    2014-01-01

    The application of the luxCDABE operon of the bioluminescent bacterium Photorhabdus luminescens as a reporter has been published for bacteria, yeast and mammalian cells. We report here the optimization of fused luxAB (the bacterial luciferase heterodimeric enzyme) expression, quantum yield and its application as a reporter gene in plant protoplasts. The fused luxAB gene was mutated by error prone PCR or chemical mutagenesis and screened for enhanced luciferase activity utilizing decanal as substrate. Positive luxAB mutants with superior quantum yield were subsequently shuffled by DNase I digestion and PCR assembly for generation of recombinants with additional increases in luciferase activity in bacteria. The coding sequence of the best recombinant, called eluxAB, was then optimized further to conform to Arabidopsis (Arabidopsis thaliana) codon usage. A plant expression vector of the final, optimized eluxAB gene (opt-eluxAB) was constructed and transformed into protoplasts of Arabidopsis and maize (Zea mays). Luciferase activity was dramatically increased for opt-eluxAB compared to the original luxAB in Arabidopsis and maize cells. The opt-eluxAB driven by two copies of the 35S promoter expresses significantly higher than that driven by a single copy. These results indicate that the eluxAB gene can be used as a reporter in plant protoplasts. To our knowledge, this is the first report to engineer the bacterium Photorhabdus luminescens luciferase luxAB as a reporter by directed evolution which paved the way for further improving the luxAB reporter in the future. PMID:25271765

  10. Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1.

    PubMed

    Kakar, Kaleem Ullah; Nawaz, Zarqa; Cui, Z; Almoneafy, Abdlwareth A; Zhu, Bo; Xie, Guan-Lin

    2014-02-01

    Biological control efficacy of Brevibacillus laterosporus B4 associated with rice rhizosphere was assessed against bacterial brown stripe of rice caused by Acidovorex avenae subsp. avenae. A biochemical bactericide (chitosan) was used as positive control in this experiment. Result of in vitro analysis indicated that B. laterosporus B4 and its culture filtrates (70%; v/v) exhibited low inhibitory effects than chitosan (5 mg/ml). However, culture suspension of B. laterosporus B4 prepared in 1% saline solution presented significant ability to control bacterial brown stripe in vivo. Bacterization of rice seeds for 24 h yielded a greater response (71.9%) for controlling brown stripe in vivo than chitosan (56%). Studies on mechanisms revealed that B. laterosporus B4 suppressed the biofilm formation and severely disrupted cell membrane integrity of A. avenae subsp. avenae, causing the leakage of intracellular substances. In addition, the expression level of virulence-related genes in pathogen recovered from biocontrol-agent-treated plants showed that the genes responsible for biofilm formation, motility, niche adaptation, membrane functionality and virulence of A. avenae subsp. avenae were down-regulated by B. laterosporus B4 treatment. The biocontrol activity of B. laterosporus B4 was attributed to a substance with protein nature. This protein nature was shown by using ammonium sulfate precipitation and subsequent treatment with protease. The results obtained from this study showed the potential effectiveness of B. laterosporus B4 as biocontrol agent in control of bacterial brown stripe of rice. PMID:23990042

  11. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.

    PubMed

    Bikard, David; Jiang, Wenyan; Samai, Poulami; Hochschild, Ann; Zhang, Feng; Marraffini, Luciano A

    2013-08-01

    The ability to artificially control transcription is essential both to the study of gene function and to the construction of synthetic gene networks with desired properties. Cas9 is an RNA-guided double-stranded DNA nuclease that participates in the CRISPR-Cas immune defense against prokaryotic viruses. We describe the use of a Cas9 nuclease mutant that retains DNA-binding activity and can be engineered as a programmable transcription repressor by preventing the binding of the RNA polymerase (RNAP) to promoter sequences or as a transcription terminator by blocking the running RNAP. In addition, a fusion between the omega subunit of the RNAP and a Cas9 nuclease mutant directed to bind upstream promoter regions can achieve programmable transcription activation. The simple and efficient modulation of gene expression achieved by this technology is a useful asset for the study of gene networks and for the development of synthetic biology and biotechnological applications. PMID:23761437

  12. Bacterial Diversity in Oral Samples of Children in Niger with Acute Noma, Acute Necrotizing Gingivitis, and Healthy Controls

    PubMed Central

    Stadelmann, Benoît; Baratti-Mayer, Denise; Gizard, Yann; Mombelli, Andrea; Pittet, Didier; Schrenzel, Jacques

    2012-01-01

    Background Noma is a gangrenous disease that leads to severe disfigurement of the face with high morbidity and mortality, but its etiology remains unknown. Young children in developing countries are almost exclusively affected. The purpose of the study was to record and compare bacterial diversity in oral samples from children with or without acute noma or acute necrotizing gingivitis from a defined geographical region in Niger by culture-independent molecular methods. Methods and Principal Findings Gingival samples from 23 healthy children, nine children with acute necrotizing gingivitis, and 23 children with acute noma (both healthy and diseased oral sites) were amplified using “universal” PCR primers for the 16 S rRNA gene and pooled according to category (noma, healthy, or acute necrotizing gingivitis), gender, and site status (diseased or control site). Seven libraries were generated. A total of 1237 partial 16 S rRNA sequences representing 339 bacterial species or phylotypes at a 98–99% identity level were obtained. Analysis of bacterial composition and frequency showed that diseased (noma or acute necrotizing gingivitis) and healthy site bacterial communities are composed of similar bacteria, but differ in the prevalence of a limited group of phylotypes. Large increases in counts of Prevotella intermedia and members of the Peptostreptococcus genus are associated with disease. In contrast, no clear-cut differences were found between noma and non-noma libraries. Conclusions Similarities between acute necrotizing gingivitis and noma samples support the hypothesis that the disease could evolve from acute necrotizing gingivitis in certain children for reasons still to be elucidated. This study revealed oral microbiological patterns associated with noma and acute necrotizing gingivitis, but no evidence was found for a specific infection-triggering agent. PMID:22413030

  13. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene

    PubMed Central

    Chen, Xi; Liang, Yong; Hua, Jing; Tao, Li; Qin, Wensheng; Chen, Sanfeng

    2010-01-01

    In order to efficiently utilize natural cellulose materials to produce ethylene, three expression vectors containing the ethylene-forming enzyme (efe) gene from Pseudomonas syringae pv. glycinea were constructed. The target gene was respectively controlled by different promoters: cbh I promoter from Trichoderma reesei cellobiohydrolases I gene, gpd promoter from Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase gene and pgk I promoter from T. reesei 3-phosphoglycerate kinase I gene. After transforming into T. reesei QM9414, 43 stable transformants were obtained by PCR amplification and ethylene determination. Southern blot analysis of 14 transformants demonstrated that the efe gene was integrated into chromosomal DNA with copy numbers from 1 to 4. Reverse transcription polymerase chain reaction (RT-PCR) analysis of 6 transformants showed that the heterologous gene was transcribed. By using wheat straw as a carbon source, the ethylene production rates of aforementioned 14 transformants were measured. Transformant C30-3 with pgk I promoter had the highest ethylene production (4,012 nl h-1 l-1). This indicates that agricultural wastes could be used to produce ethylene in recombinant filamentous fungus T. reesei. PMID:20150979

  14. Medium-dependent control of the bacterial growth rate.

    PubMed

    Ehrenberg, Måns; Bremer, Hans; Dennis, Patrick P

    2013-04-01

    By combining results from previous studies of nutritional up-shifts we here re-investigate how bacteria adapt to different nutritional environments by adjusting their macromolecular composition for optimal growth. We demonstrate that, in contrast to a commonly held view the macromolecular composition of bacteria does not depend on the growth rate as an independent variable, but on three factors: (i) the genetic background (i.e. the strain used), (ii) the physiological history of the bacteria used for inoculation of a given growth medium, and (iii) the kind of nutrients in the growth medium. These factors determine the ribosome concentration and the average rate of protein synthesis per ribosome, and thus the growth rate. Immediately after a nutritional up-shift, the average number of ribosomes in the bacterial population increases exponentially with time at a rate which eventually is attained as the final post-shift growth rate of all cell components. After a nutritional up-shift from one minimal medium to another minimal medium of higher nutritional quality, ribosome and RNA polymerase syntheses are co-regulated and immediately increase by the same factor equal to the increase in the final growth rate. However, after an up-shift from a minimal medium to a medium containing all 20 amino acids, RNA polymerase and ribosome syntheses are no longer coregulated; a smaller rate of synthesis of RNA polymerase is compensated by a gradual increase in the fraction of free RNA polymerase, possibly due to a gradual saturation of mRNA promoters. We have also analyzed data from a recent publication, in which it was concluded that the macromolecular composition in terms of RNA/protein and RNA/DNA ratios is solely determined by the effector molecule ppGpp. Our analysis indicates that this is true only in special cases and that, in general, medium adaptation also depends on factors other than ppGpp. PMID:23228516

  15. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance

    Microsoft Academic Search

    Fabienne Wichmann; Torben Asp; Franco Widmer; Roland Kölliker

    2011-01-01

    Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, a severe disease of forage grasses such as Italian ryegrass (Lolium multiflorum Lam.). In order to gain a more detailed understanding of the genetic control of resistance mechanisms and to provide prerequisites\\u000a for marker assisted selection, the partial transcriptomes of two Italian ryegrass genotypes, one resistant and one susceptible\\u000a to bacterial wilt

  16. Factors influencing efficacy of plastic shelters for control of bacterial blight of lilac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastic shelters are thought to manage bacterial blight by protecting plants from rain and/or frost. In February to April 2008 and 2009, we studied the contribution of frost protection to efficacy of this cultural control practice. Lilacs in 1-gallon pots were exposed to four treatments: 1) plants...

  17. Expression of a bacterial carotene hydroxylase gene ( crtZ ) enhances UV tolerance in tobacco

    Microsoft Academic Search

    Thomas Götz; Gerhard Sandmann; Susanne Römer

    2002-01-01

    Carotenoids are essential components of the photosynthetic apparatus involved in plant photoprotection. To investigate the protective role of zeaxanthin under high light and UV stress we have increased the capacity for its biosynthesis in tobacco plants (Nicotiana tabacum L. cv. Samsun) by transformation with a heterologous carotenoid gene encoding ß-carotene hydroxylase (crtZ) from Erwinia uredovora under constitutive promoter control. This

  18. Chronic Dermatomycoses of the Foot as Risk Factors for Acute Bacterial Cellulitis of the Leg: A Case-Control Study

    Microsoft Academic Search

    Jean-Claude Roujeau; Bardur Sigurgeirsson; Hans-Christian Korting; Helmut Kerl; Carle Paul

    2004-01-01

    Objective: To assess the role of foot dermatomycosis (tinea pedis and onychomycosis) and other candidate risk factors in the development of acute bacterial cellulitis of the leg. Methods: A case-control study, including 243 patients (cases) with acute bacterial cellulitis of the leg and 467 controls, 2 per case, individually matched for gender, age (±5 years), hospital and admission date (±2

  19. Analysis of gene expression levels in individual bacterial cells without image segmentation

    PubMed Central

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J.

    2012-01-01

    Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analysing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs. fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different expression levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly. PMID:22487793

  20. Transfer and expression of the bacterial NPT-II gene in chick embryos using a Schmidt-Ruppin retrovirus vector.

    PubMed Central

    Hippenmeyer, P J; Krivi, G G; Highkin, M K

    1988-01-01

    In an effort to introduce foreign genes into chickens, the bacterial neomycin phosphotransferase (NPT-II) gene was cloned into an infectious avian retroviral vector derived from the Schmidt-Ruppin A strain of RSV. The NPT-II gene was stable in the vector during passage in vitro and infected cells were resistant to G418. Fertilized chicken embryos were inoculated with the recombinant virus on day 0 and screened on day 20 for the NPT-II gene in blood cell DNA. Approximately 12% of the embryos were positive for the NPT-II gene. Screening of DNA from the brain, muscle, liver and foot of the positive embryos indicated that the NPT-II gene copy number could vary in a single embryo. However, some embryos had nearly equal NPT-II copy number in each tissue examined. To determine the expression of the bacterial gene, tissue extracts from the positive embryos were assayed for NPT-II activity. The results indicated that NPT-II activity varied depending on the tissue, with activity being highest in muscle and foot regardless of NPT-II gene copy number. Images PMID:2842731

  1. Transcriptional Control in the Segmentation Gene Network

    E-print Network

    Siggia, Eric

    that computational methods are a powerful complement to experimental approaches in the analysis of transcriptionTranscriptional Control in the Segmentation Gene Network of Drosophila Mark D. Schroeder1 of maternal and zygotic factors that generate, by transcriptional (cross-) regulation, expression patterns

  2. [Control of buccal peroxidases by a bacterial NADH-hypothiocyanite oxidoreductase].

    PubMed

    Courtois, P

    1996-01-01

    Oral peroxidases (myeloperoxidase, sialoperoxidase) catalyze thiocyanate peroxidation into hypothiocyanite which is bacteriostatic or bactericidal against numerous bacterial species. NADH-hypothiocyanite-oxidoreductase is thought to protect bacteria which can express it; up to now, this enzyme activity was never purified. The present study analyzes, on one hand, the susceptibility of periodontal bacteria against hypothiocyanite and, on the other hand, proposes a purification design for the NADH-hypothiocyanite-oxidoreductase from Streptococcus sanguis, a commensal micro-organism of dental surfaces. The data suggest the importance of the bacterial biofilm on dental surfaces for production of antiseptic oxidants and for the control of their toxicity. PMID:9491629

  3. Finding immune gene expression differences induced by marine bacterial pathogens in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    NASA Astrophysics Data System (ADS)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-02-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterized by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio strains. Flavobacterium suspensions were also used as an irrelevant bacterium. Gene expression analyses were carried out using gill samples from animals dissected at 12 h and 24 h post-infection times by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h and 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the microorganism species inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly around a protein area, of 18 KDa molecular mass, where most dissimilarities were found. Multivariate analyses demonstrated that immune genes, as well as experimental infections, clustered in discrete groups in accordance with the patterns observed in gene expression changes induced by bacterial pathogens.

  4. Finding immune gene expression differences induced by marine bacterial pathogens in the Deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    NASA Astrophysics Data System (ADS)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-11-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterised by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio bacteria. Flavobacterium suspensions were also used as a non-pathogenic bacterium. Gene expression analyses were carried out using gill samples from infected animals by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h to 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the bacterium inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly evident for proteins of 18-20 KDa molecular mass, where most dissimilarity was found. Multivariate analyses demonstrated that immune genes, as well as experimental infections, clustered in discrete groups in accordance with the gene expression patterns induced by bacterial pathogens.

  5. D-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight.

    PubMed

    Kano, Akihito; Hosotani, Kouji; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Shirakawa, Chikage; Fukumoto, Takeshi; Ohtani, Kouhei; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Akimitsu, Kazuya

    2011-10-15

    We examined rice responses to a rare sugar, d-psicose. Rice growth was inhibited by d-psicose but not by common sugars. Microarray analysis revealed that d-psicose treatment caused an upregulation of many defense-related genes in rice, and dose-dependent upregulation of these genes was confirmed by quantitative reverse-transcription polymerase chain reaction. The level of upregulation of defense-related genes by d-psicose was low compared with that by d-allose, which is another rare sugar known to confer induction of resistance to rice bacterial blight in rice. Treatment with d-psicose conferred resistance to bacterial blight in rice in a dose-dependent manner, and the results indicate that d-psicose might be a candidate plant activator for reducing disease development in rice. PMID:21601944

  6. Systematic 16S rRNA Gene Sequencing of Atypical Clinical Isolates Identified 27 New Bacterial Species Associated with Humans

    PubMed Central

    Drancourt, M.; Berger, P.; Raoult, D.

    2004-01-01

    Clinical microorganisms isolated during a 5-year study in our hospital that could not be identified by conventional criteria were studied by 16S rRNA gene sequence analysis. Each isolate yielded a ?1,400-bp sequence containing <5 ambiguities which was compared with the GenBank 16S rRNA gene library; 1,404 such isolates were tested, and 120 were considered unique (27 isolates) or rare (?10 cases reported in the literature) human pathogens. Eleven new species, “Actinobaculum massiliae,” “Candidatus Actinobaculum timonae,” Paenibacillus sanguinis, “Candidatus Bacteroides massiliae,” Chryseobacterium massiliae, “Candidatus Chryseobacterium timonae,” Paenibacillus massiliensis, “Candidatus Peptostreptococcus massiliae,” “Candidatus Prevotella massiliensis,” Rhodobacter massiliensis, and “Candidatus Veillonella atypica” were identified. Sixteen species were obtained from humans for the first time. Our results show the important role that 16S rRNA gene sequence-based bacterial identification currently plays in recognizing unusual and emerging bacterial diseases. PMID:15131188

  7. Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the

    E-print Network

    Silver, Rae

    Temporal and spatial expression patterns of canonical clock genes and clock-controlled genesB)-containing cells is retinorecipient and the cells therein lack rhythmic expression of clock genes and electrical of expression of the canonical clock genes Per1, Per2 and vasopressin mRNA, a clock-controlled gene

  8. Robust perfect adaptation in bacterial chemotaxis through integral feedback control

    Microsoft Academic Search

    Tau-Mu Yi; Yun Huang; Melvin I. Simon; John Doyle

    2002-01-01

    Integral feedback control is a basic engineering strategy for en- suring that the output of a system robustly tracks its desired value independent of noise or variations in system parameters. In bio- logical systems, it is common for the response to an extracellular stimulus to return to its prestimulus value even in the continued presence of the signal—a process termed

  9. Integrated Control of Fire Blight with Bacterial Antagonists and Oxytetracycline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Pacific Northwest of the United States, the antibiotic streptomycin provided excellent control of fire blight until resistant isolates of Erwinia amylovora were prevalent. Oxytetracycline (Mycoshield) is now sprayed as an alternative antibiotic. We found that the duration of inhibitory acti...

  10. Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    PubMed Central

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  11. Two Host Clades, Two Bacterial Arsenals: Evolution through Gene Losses in Facultative Endosymbionts.

    PubMed

    Rollat-Farnier, Pierre-Antoine; Santos-Garcia, Diego; Rao, Qiong; Sagot, Marie-France; Silva, Francisco J; Henri, Hélène; Zchori-Fein, Einat; Latorre, Amparo; Moya, Andrés; Barbe, Valérie; Liu, Shu-Sheng; Wang, Xiao-Wei; Vavre, Fabrice; Mouton, Laurence

    2015-01-01

    Bacterial endosymbiosis is an important evolutionary process in insects, which can harbor both obligate and facultative symbionts. The evolution of these symbionts is driven by evolutionary convergence, and they exhibit among the tiniest genomes in prokaryotes. The large host spectrum of facultative symbionts and the high diversity of strategies they use to infect new hosts probably impact the evolution of their genome and explain why they undergo less severe genomic erosion than obligate symbionts. Candidatus Hamiltonella defensa is suitable for the investigation of the genomic evolution of facultative symbionts because the bacteria are engaged in specific relationships in two clades of insects. In aphids, H. defensa is found in several species with an intermediate prevalence and confers protection against parasitoids. In whiteflies, H. defensa is almost fixed in some species of Bemisia tabaci, which suggests an important role of and a transition toward obligate symbiosis. In this study, comparisons of the genome of H. defensa present in two B. tabaci species (Middle East Asia Minor 1 and Mediterranean) and in the aphid Acyrthosiphon pisum revealed that they belong to two distinct clades and underwent specific gene losses. In aphids, it contains highly virulent factors that could allow protection and horizontal transfers. In whiteflies, the genome lost these factors and seems to have a limited ability to acquire genes. However it contains genes that could be involved in the production of essential nutrients, which is consistent with a primordial role for this symbiont. In conclusion, although both lineages of H. defensa have mutualistic interactions with their hosts, their genomes follow distinct evolutionary trajectories that reflect their phenotype and could have important consequences on their evolvability. PMID:25714744

  12. 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries

    PubMed Central

    Jagathrakshakan, Sri Nisha; Sethumadhava, Raghavendra Jayesh; Mehta, Dhaval Tushar; Ramanathan, Arvind

    2015-01-01

    Objective: To identify the prevalence of acidogenic and nonacidogenic bacteria in patients with polycaries lesions, and to ascertain caries specific bacterial prevalence in relation to noncaries controls. Materials and Methods: Total genomic DNA extracted from saliva of three adults and four children from the same family were subjected to 16S rRNA gene sequencing analysis on a next generation sequencer, the PGS-Ion Torrent. Those bacterial genera with read counts > 1000 were considered as significant in each of the subject and used to associate the occurrence with caries. Results and Conclusion: Sequencing analysis indicated a higher prevalence of Streptococcus, Rothia, Granulicatella, Gemella, Actinomyces, Selenomonas, Haemophilus and Veillonella in the caries group relative to controls. While higher prevalence of Streptococcus, Rothia and Granulicatella were observed in all caries samples, the prevalence of others was observable in 29–57% of samples. Interestingly, Rothia and Selenomonas, which are known to occur within anaerobic environments of dentinal caries and subgingival plaque biofilms, were seen in the saliva of these caries patients. Taken together, the study has identified for the first time a unique co-prevalence pattern of bacteria in caries patients that may be explored as distinct caries specific bacterial signature to predict cariogenesis in high-risk primary and mixed dentition age groups. PMID:25713496

  13. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  14. 14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN STATION MANAGER'S CONTROL DESK. ELECTRICAL CONTROL INDICATORS AND CONTROLS FOR REGULATING ELECTRICITY INTO PLANT AS WELL AS SYNCHRONIZING STARTUP OF PUMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  15. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

    PubMed Central

    Wilson, J. W.; Ott, C. M.; zu Bentrup, K. Höner; Ramamurthy, R.; Quick, L.; Porwollik, S.; Cheng, P.; McClelland, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumars, P.; Norwood, K.; Bober, R.; Devich, J.; Ruggles, A.; Goulart, C.; Rupert, M.; Stodieck, L.; Stafford, P.; Catella, L.; Schurr, M. J.; Buchanan, K.; Morici, L.; McCracken, J.; Allen, P.; Baker-Coleman, C.; Hammond, T.; Vogel, J.; Nelson, R.; Pierson, D. L.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth. PMID:17901201

  16. Spaceflight Alters Bacterial Gene Expression and Virulence and Reveals Role for Global Regulator Hfq

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Ott, C. M.; zuBentrup, K. Honer; Ramamurthy R.; Quick, L.; Porwollik, S.; Cheng, P.; McClellan, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumaras, P.; Norwood, K.; Nickerson, C. A.; Bober, R.; Devich, J.; Ruggles, A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.

  17. Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs

    PubMed Central

    Mizrahi-Man, Orna; Davenport, Emily R.; Gilad, Yoav

    2013-01-01

    Massively parallel high throughput sequencing technologies allow us to interrogate the microbial composition of biological samples at unprecedented resolution. The typical approach is to perform high-throughout sequencing of 16S rRNA genes, which are then taxonomically classified based on similarity to known sequences in existing databases. Current technologies cause a predicament though, because although they enable deep coverage of samples, they are limited in the length of sequence they can produce. As a result, high-throughout studies of microbial communities often do not sequence the entire 16S rRNA gene. The challenge is to obtain reliable representation of bacterial communities through taxonomic classification of short 16S rRNA gene sequences. In this study we explored properties of different study designs and developed specific recommendations for effective use of short-read sequencing technologies for the purpose of interrogating bacterial communities, with a focus on classification using naïve Bayesian classifiers. To assess precision and coverage of each design, we used a collection of ?8,500 manually curated 16S rRNA gene sequences from cultured bacteria and a set of over one million bacterial 16S rRNA gene sequences retrieved from environmental samples, respectively. We also tested different configurations of taxonomic classification approaches using short read sequencing data, and provide recommendations for optimal choice of the relevant parameters. We conclude that with a judicious selection of the sequenced region and the corresponding choice of a suitable training set for taxonomic classification, it is possible to explore bacterial communities at great depth using current technologies, with only a minimal loss of taxonomic resolution. PMID:23308262

  18. Using Bacterial Extract along with Differential Gene Expression in Acropora millepora Larvae to Decouple the Processes of Attachment and Metamorphosis

    PubMed Central

    Siboni, Nachshon; Abrego, David; Seneca, Francois; Motti, Cherie A.; Andreakis, Nikos; Tebben, Jan; Blackall, Linda L.; Harder, Tilmann

    2012-01-01

    Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0–2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05) in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05) following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that utilized cues, such as crustose coralline algae, biofilms or with GLW-amide neuropeptides that stimulate the entire onset of larval metamorphosis and attachment. PMID:22655067

  19. Integrating Chemical and Genetic Silencing Strategies To Identify Host Kinase-Phosphatase Inhibitor Networks That Control Bacterial Infection

    PubMed Central

    2013-01-01

    Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more potential targets for manipulation in order to control bacterial infection, as exemplified by the observation that inhibiting the host kinase Akt supports the elimination of different intracellular bacteria including Salmonella and M. tuberculosis. If host kinases are involved in the control of bacterial infections, phosphatases could be as well. Here we present an integrated small interference RNA and small molecule screen to identify host phosphatase-inhibitor combinations that control bacterial infection. We define host phosphatases inhibiting intracellular growth of Salmonella and identify corresponding inhibitors for the dual specificity phosphatases DUSP11 and 27. Pathway analysis places many kinases and phosphatases controlling bacterial infection in an integrated pathway centered around Akt. This network controls host cell metabolism, survival, and growth and bacterial survival and reflect a natural host cell response to bacterial infection. Inhibiting two enzyme classes with opposite activities–kinases and phosphatases–may be a new strategy to overcome infections by antibiotic-resistant bacteria. PMID:24274083

  20. New insight into the molecular control of bacterial functional amyloids

    PubMed Central

    Taylor, Jonathan D.; Matthews, Steve J.

    2015-01-01

    Amyloid protein structure has been discovered in a variety of functional or pathogenic contexts. What distinguishes the former from the latter is that functional amyloid systems possess dedicated molecular control systems that determine the timing, location, and structure of the fibers. Failure to guide this process can result in cytotoxicity, as observed in several pathologies like Alzheimer's and Parkinson's Disease. Many gram-negative bacteria produce an extracellular amyloid fiber known as curli via a multi-component secretion system. During this process, aggregation-prone, semi-folded curli subunits have to cross the periplasm and outer-membrane and self-assemble into surface-attached fibers. Two recent breakthroughs have provided molecular details regarding periplasmic chaperoning and subunit secretion. This review offers a combined perspective on these first mechanistic insights into the curli system.

  1. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters

    PubMed Central

    Rice, Danny W; Palmer, Jeffrey D

    2006-01-01

    Background Horizontal gene transfer (HGT) to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid. Results Although several genes gave strongly supported conflicting trees under certain conditions, we are confident of HGT in only a single case beyond the rubisco HGT already reported. Most of the conflicts involved near neighbors connected by long branches (e.g. red algae and their secondary hosts), where phylogenetic methods are prone to mislead. However, three genes – clpP, ycf2, and rpl36 – provided strong support for taxa moving far from their organismal position. Further taxon sampling of clpP and ycf2 resulted in rejection of HGT due to long-branch attraction and a serious error in the published plastid genome sequence of Oenothera elata, respectively. A single new case, a bacterial rpl36 gene transferred into the ancestor of the cryptophyte and haptophyte plastids, appears to be a true HGT event. Interestingly, this rpl36 gene is a distantly related paralog of the rpl36 type found in other plastids and most eubacteria. Moreover, the transferred gene has physically replaced the native rpl36 gene, yet flanking genes and intergenic regions show no sign of HGT. This suggests that gene replacement somehow occurred by recombination at the very ends of rpl36, without the level and length of similarity normally expected to support recombination. Conclusion The rpl36 HGT discovered in this study is of considerable interest in terms of both molecular mechanism and phylogeny. The plastid acquisition of a bacterial rpl36 gene via HGT provides the first strong evidence for a sister-group relationship between haptophyte and cryptophyte plastids to the exclusion of heterokont and alveolate plastids. Moreover, the bacterial gene has replaced the native plastid rpl36 gene by an uncertain mechanism that appears inconsistent with existing models for the recombinational basis of gene conversion. PMID:16956407

  2. Bacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis

    PubMed Central

    Heath-Heckman, Elizabeth A. C.; Peyer, Suzanne M.; Whistler, Cheryl A.; Apicella, Michael A.; Goldman, William E.; McFall-Ngai, Margaret J.

    2013-01-01

    ABSTRACT The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut. PMID:23549919

  3. Controlling autonomous underwater floating platforms using bacterial fermentation.

    PubMed

    Biffinger, Justin C; Fitzgerald, Lisa A; Howard, Erinn C; Petersen, Emily R; Fulmer, Preston A; Wu, Peter K; Ringeisen, Bradley R

    2013-01-01

    Biogenic gas has a wide range of energy applications from being used as a source for crude bio-oil components to direct ignition for heating. The current study describes the use of biogenic gases from Clostridium acetobutylicum for a new application-renewable ballast regeneration for autonomous underwater devices. Uninterrupted (continuous) and blocked flow (pressurization) experiments were performed to determine the overall biogas composition and total volume generated from a semirigid gelatinous matrix. For stopped flow experiments, C. acetobutylicum generated a maximum pressure of 55 psi over 48 h composed of 60 % hydrogen gas when inoculated in a 5 % agar (w/v) support with 5 % glucose (w/v) in the matrix. Typical pressures over 24 h at 318 K ranged from 10 to 33 psi. These blocked flow experiments show for the first time the use of microbial gas production as a way to repressurize gas cylinders. Continuous flow experiments successfully demonstrated how to deliver biogas to an open ballast control configuration for deployable underwater platforms. This study is a starting point for engineering and microbiology investigations of biogas which will advance the integration of biology within autonomous systems. PMID:22851013

  4. Long-Term Effects from Bacterial Meningitis in Childhood and Adolescence on Postural Control

    PubMed Central

    Petersen, Hannes; Patel, Mitesh; Ingason, Einar F.; Einarsson, Einar J.; Haraldsson, Ásgeir; Fransson, Per-Anders

    2014-01-01

    Bacterial meningitis in childhood is associated with cognitive deficiencies, sensorimotor impairments and motor dysfunction later in life. However, the long-term effects on postural control is largely unknown, e.g., whether meningitis subjects as adults fully can utilize visual information and adaptation to enhance stability. Thirty-six subjects (20 women, mean age 19.3 years) treated in childhood or adolescence for bacterial meningitis, and 25 controls (13 women, mean age 25.1 years) performed posturography with eyes open and closed under unperturbed and perturbed standing. The meningitis subjects were screened for subjective vertigo symptoms using a questionnaire, clinically tested with headshake and head thrust test, as well as their hearing was evaluated. Meningitis subjects were significantly more unstable than controls during unperturbed (p?0.014) and perturbed standing, though while perturbed only with eyes open in anteroposterior direction (p?=?0.034) whereas in lateral direction both with eyes open and closed (p<0.001). Meningitis subjects had poorer adaption ability to balance perturbations especially with eyes open, and they frequently reported symptoms of unsteadiness (88% of the subjects) and dizziness (81%), which was found significantly correlated to objectively decreased stability. Out of the 36 subjects only 3 had unilateral hearing impairment. Hence, survivors of childhood bacterial meningitis may suffer long-term disorders affecting postural control, and would greatly benefit if these common late effects became generally known so treatments can be developed and applied. PMID:25405756

  5. Influence of Particle Size on Bacterial Community Structure in Aquatic Sediments as Revealed by 16S rRNA Gene Sequence Analysis

    Microsoft Academic Search

    Colin R. Jackson

    2008-01-01

    Bacterial communities associated with sediment particles were examined using PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing. Particle size influenced community structure, with attached bacterial assemblages separating into 63- to 125-, 125- to 1,000-, and 1,000- to 2,000-m fractions. Differences were particularly pronounced for the Verrucomicrobia-Planctomycetes, whose numbers were significantly re- duced on coarser particles. Bacterial communities associated with

  6. Evaluation of bacterial contamination and control methods in soluble metalworking fluids.

    PubMed

    Marchand, Geneviève; Lavoie, Jacques; Racine, Louise; Lacombe, Nancy; Cloutier, Yves; Bélanger, Eric; Lemelin, Christian; Desroches, Jean

    2010-06-01

    In the United States, 1.2 million workers are exposed to metalworking fluids. During operations, aerosols are produced and airborne contaminants can be inhaled. Although biocides are used to control the bacterial content of metalworking fluids, they can create health-related problems, and their efficiency remains to be proved. The objectives of this project were (1) to verify whether rigorous cleaning according to a standard protocol could reduce microbial contamination and (2) whether the use of biocides with different spectra could reduce the bacterial population. Four similar machines producing similar components were evaluated; a specific treatment was applied to each machine. The machine used as a control (1) was thoroughly cleaned prior to sampling, (2) did not undergo any major cleaning afterward, and (3) was operated without the use of any biocide. A major cleaning is a protocol described and recommended by the fluid manufacturer and was performed on the three other machines, two of which were subsequently treated with biocides weekly. Fluid samples from the four lathes were collected weekly during a 6-month period, and total bacterial and cultivable Gram-negative bacteria were analyzed for each sample. Major cleaning of the machines (120-4) did not significantly reduce the concentration of bacteria in the cutting fluids when compared with the control machine (120-3), which had not undergone major cleaning. The concentrations of total bacteria were in the 10(6) CFU/mL range for these two lathes; however, a reduction in the total number of fluid changes was observed for this machine. Bacterial flora in the cutting fluids was significantly controlled with the use of biocides. Bacteria concentrations were in the 10(3)-10(5) CFU/mL range for the lathes with the use of biocides. Since thorough cleaning is insufficient and biocides are recognized as being responsible for some worker health problems, other avenues for controlling bacterial flora in cutting fluids should be evaluated to reduce worker exposure to their bacterial contaminants. PMID:20379898

  7. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale

    PubMed Central

    Van Horn, David J.; Van Horn, M. Lee; Barrett, John E.; Gooseff, Michael N.; Altrichter, Adam E.; Geyer, Kevin M.; Zeglin, Lydia H.; Takacs-Vesbach, Cristina D.

    2013-01-01

    Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when determining the controls on soil microbial community characteristics. PMID:23824063

  8. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale.

    PubMed

    Van Horn, David J; Van Horn, M Lee; Barrett, John E; Gooseff, Michael N; Altrichter, Adam E; Geyer, Kevin M; Zeglin, Lydia H; Takacs-Vesbach, Cristina D

    2013-01-01

    Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when determining the controls on soil microbial community characteristics. PMID:23824063

  9. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues.

    PubMed

    Peyer, Suzanne M; Pankey, M Sabrina; Oakley, Todd H; McFall-Ngai, Margaret J

    2014-02-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or 'light organ', which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ?1/4 into embryogenesis (Naef stage 18) and the light organ ?3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light-sensing photophore. PMID:24157521

  10. Construction of a 1.2Mb contig including the citrus tristeza virus resistance gene locus using a bacterial artificial chromosome library of Poncirus trifoliata (L.) Raf

    Microsoft Academic Search

    Zhong-Nan Yang; Xin-Rong Ye; Sandong Choi; Joe Molina; Francis Moonan; Rod A. Wing; Mikeal L. Roose; T. Erik Mirkov

    2001-01-01

    The citrus tristeza virus resistance gene ( Ctv) is a single dominant gene in Poncirus trifoliata, a sexually compatible relative of citrus. To clone this gene, a bacterial artificial chromosome (BAC) library has been constructed from an individual plant that was homozygous for Ctv. This library contains 45 696 clones with an average insert size of 80 kb, corresponding to

  11. Levels of Bacterial Community Diversity in Four Arid Soils Compared by Cultivation and 16S rRNA Gene Cloning

    PubMed Central

    Dunbar, John; Takala, Shannon; Barns, Susan M.; Davis, Jody A.; Kuske, Cheryl R.

    1999-01-01

    Techniques based on amplification of 16S rRNA genes for comparing bacterial communities are now widely used in microbial ecology, but calibration of these techniques with traditional tools, such as cultivation, has been conspicuously absent. In this study, we compared levels of bacterial community diversity in two pinyon rhizosphere soil samples and two between-tree (interspace) soil samples by analyzing 179 cultivated bacterial isolates and 801 16S rRNA genes amplified from extracted soil DNA. Phylotypes were defined by performing a restriction fragment length polymorphism analysis of 16S rRNA gene sequences with the enzymes RsaI and BstUI. The average level of 16S rRNA gene sequence similarity of members of a phylotype was 86.6% based on an analysis of partial sequences. A total of 498 phylotypes were identified among the 16S ribosomal DNA (rDNA) clones, while 34 phylotypes occurred among the cultivated isolates. Analysis of sequences from a subset of the phylotypes showed that at least seven bacterial divisions were represented in the clone libraries, whereas the isolates represented only three. The phylotype richness, frequency distribution (evenness), and composition of the four culture collections and the four clone libraries were investigated by using a variety of diversity indices. Although cultivation and 16S rRNA cloning analyses gave contradictory descriptions of the relative phylotype richness for one of the four environments, the two methods identified qualitatively consistent relationships when levels of evenness were compared. The levels of phylotype similarity between communities were uniformly low (15 to 31%). Both methods consistently indicated that one environment was distinct from the other three. Our data illustrate that while 16S rDNA cloning and cultivation generally describe similar relationships between soil microbial communities, significant discrepancies can occur. PMID:10103265

  12. INFLUENCE OF ROOT EXUDATES AND BACTERIAL METABOLIC ACTIVITY ON APPARENT CONJUGAL GENE TRANSFER FREQUENCIES IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCLORA CRUSGALLI)

    EPA Science Inventory

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  13. Chemical and cultural control of bacterial blossom blight of kiwifruit caused by Pseudomonas syringae in Korea

    Microsoft Academic Search

    Young Jin Koh; Dong Hyun Lee; Jong Sup Shin

    2001-01-01

    Disease incidence of bacterial blossom blight (Pseudomonas syringae van Hall) ranged from 13.0 to 36.2% in naturally infected kiwifruit (Actinidia deliciosa (A. Chev) C. F. Liang et A. R. Ferguson) orchards of the major kiwi fruit?growing areas in Korea from 1997 to 1999. A significant correlation occurred between disease incidence and rainfall at flowering. Several control practices were compared with

  14. Microbial control of the culture of Artemia juveniles through preemptive colonization by selected bacterial strains.

    PubMed

    Verschuere, L; Rombaut, G; Huys, G; Dhont, J; Sorgeloos, P; Verstraete, W

    1999-06-01

    The use of juvenile Artemia as feed in aquaculture and in the pet shop industry has been getting more attention during the last decade. In this study, the use of selected bacterial strains to improve the nutritional value of dry food for Artemia juveniles and to obtain control of the associated microbial community was examined. Nine bacterial strains were selected based on their positive effects on survival and/or growth of Artemia juveniles under monoxenic culture conditions, while other strains caused no significant effect, significantly lower rates of survival and/or growth, or even total mortality of the Artemia. The nine selected strains were used to preemptively colonize the culture water of Artemia juveniles. Xenic culture of Artemia under suboptimal conditions yielded better survival and/or growth rates when they were grown in the preemptively colonized culture medium than when grown in autoclaved seawater. The preemptive colonization of the culture water had a drastic influence on the microbial communities that developed in the culture water or that were associated with the Artemia, as determined with Biolog GN community-level physiological profiles. Chemotaxonomical characterization based on fatty acid methyl ester analysis of bacterial isolates recovered from the culture tanks was performed, and a comparison with the initially introduced strains was made. Finally, several modes of action for the beneficial effect of the bacterial strains are proposed. PMID:10347038

  15. Genome-Wide Identification of Hsp40 Genes in Channel Catfish and Their Regulated Expression after Bacterial Infection

    PubMed Central

    Li, Chao; Yao, Jun; Jiang, Chen; Li, Yun; Liu, Shikai; Liu, Zhanjiang

    2014-01-01

    Heat shock proteins (HSPs) consist of a large group of chaperones whose expression is induced by high temperature, hypoxia, infection and a number of other stresses. Among all the HSPs, Hsp40 is the largest HSP family, which bind to Hsp70 ATPase domain in assisting protein folding. In this study, we identified 57 hsp40s in channel catfish (Ictalurus punctatus) through in silico analysis using RNA-Seq and genome databases. These genes can be classified into three different types, Type I, II and III, based on their structural similarities. Phylogenetic and syntenic analyses provided strong evidence in supporting the orthologies of these HSPs. Meta-analyses of RNA-Seq datasets were conducted to analyze expression profile of Hsp40s following bacterial infection. Twenty seven hsp40s were found to be significantly up- or down-regulated in the liver after infection with E. ictaluri; 19 hsp40s were found to be significantly regulated in the intestine after infection with E. ictaluri; and 19 hsp40s were found to be significantly regulated in the gill following infection with F. columnare. Altogether, a total of 42 Hsp40 genes were regulated under disease situations involving three tissues and two bacterial infections. The significant regulated expression of Hsp40 genes after bacterial infection suggested their involvement in disease defenses in catfish. PMID:25542027

  16. Transgenic tobacco with rice zinc-finger gene OsLOL2 exhibits an enhanced resistance against bacterial-wilt

    Microsoft Academic Search

    Khizar Hayat Bhatti; Naeem-ud-Din Ahmed; Amin Shah; Mazhar Iqbal; Tahir Iqbal; Wu Jiahe

    2011-01-01

    LSD1-related proteins have been found to regulate programmed cell death (PCD) and disease related signaling in the plants.\\u000a Rice LSD1-like (OsLOL1) gene was involved in regulation of cell death and OsLOL\\u000a \\u000a 2\\u000a (rice zinc-finger gene) has been reported to regulate plant growth and disease resistance in plants. Bacterial-wilt is a\\u000a devastating disease caused by Ralstonia solanacearum that needs to be

  17. Imprinted control of gene activity in Drosophila.

    PubMed

    Golic, K G; Golic, M M; Pimpinelli, S

    1998-11-19

    Genetic imprinting is defined as a reversible, differential marking of genes or chromosomes that is determined by the sex of the parent from whom the genetic material is inherited [1]. Imprinting was first observed in insects where, in some species, most notably among the coccoids (scale insects and allies), the differential marking of paternally and maternally transmitted chromosome sets leads to inactivation or elimination of paternal chromosomes [2]. Imprinting is also widespread in plants and mammals [3,4], in which paternally and maternally inherited alleles may be differentially expressed. Despite imprinting having been discovered in insects, clear examples of parental imprinting are scarce in the model insect species Drosophila melanogaster. We describe a case of imprint-mediated control of gene expression in Drosophila. The imprinted gene - the white+ eye-color gene - is expressed at a low level when transmitted by males, and at a high level when transmitted by females. Thus, in common with coccoids, Drosophila is capable of generating an imprint, and can respond to that imprint by silencing the paternal allele. PMID:9822579

  18. Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library.

    PubMed

    Jacquiod, Samuel; Demanèche, Sandrine; Franqueville, Laure; Ausec, Luka; Xu, Zhuofei; Delmont, Tom O; Dunon, Vincent; Cagnon, Christine; Mandic-Mulec, Ines; Vogel, Timothy M; Simonet, Pascal

    2014-11-20

    A mix of oligonucleotide probes was used to hybridize soil metagenomic DNA from a fosmid clone library spotted on high density membranes. The pooled radio-labeled probes were designed to target genes encoding glycoside hydrolases GH18, dehalogenases, bacterial laccases and mobile genetic elements (integrases from integrons and insertion sequences). Positive hybridizing spots were affiliated to the corresponding clones in the library and the metagenomic inserts were sequenced. After assembly and annotation, new coding DNA sequences related to genes of interest were identified with low protein similarity against the closest hits in databases. This work highlights the sensitivity of DNA/DNA hybridization techniques as an effective and complementary way to recover novel genes from large metagenomic clone libraries. This study also supports that some of the identified catabolic genes might be associated with horizontal transfer events. PMID:24721211

  19. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5? untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems. PMID:9841679

  20. Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague.

    PubMed

    Chauvaux, Sylvie; Rosso, Marie-Laure; Frangeul, Lionel; Lacroix, Céline; Labarre, Laurent; Schiavo, Angèle; Marceau, Michaël; Dillies, Marie-Agnès; Foulon, Jeannine; Coppée, Jean-Yves; Médigue, Claudine; Simonet, Michel; Carniel, Elisabeth

    2007-09-01

    Yersinia pestis is the aetiologic agent of plague. Without appropriate treatment, the pathogen rapidly causes septicaemia, the terminal and fatal phase of the disease. In order to identify bacterial genes which are essential during septicaemic plague in humans, we performed a transcriptome analysis on the fully virulent Y. pestis CO92 strain grown in either decomplemented human plasma or Luria-Bertani medium, incubated at either 28 or 37 degrees C and harvested at either the mid-exponential or the stationary growth phase. Y. pestis genes involved in 12 iron-acquisition systems and one iron-storage system (bfr, bfd) were specifically induced in human plasma. Of these, the ybt and tonB genes (encoding the yersiniabactin siderophore virulence factor and the siderophore transporter, respectively) were induced at 37 degrees C, i.e. under conditions mimicking the mammalian environment. Growth in human plasma also upregulated genes involved in the synthesis of five fimbrial-like structures (including the Psa virulence factor), and in purine/pyrimidine metabolism (the nrd genes). Genes known to play a role in the virulence of several bacterial pathogens (such as those encoding the Lpp lipoprotein and non-iron metal-uptake proteins) were induced in human plasma, during either the exponential or the stationary phase. Finally, 120 genes encoding proteins of unknown function were upregulated in human plasma. Eleven of these genes were specifically transcribed at 37 degrees C and may thus represent new virulence factors that are important during the septicaemic phase of human plague. PMID:17768254

  1. Quantification of Yeast and Bacterial Gene Transcripts in Retail Cheeses by Reverse Transcription-Quantitative PCR

    PubMed Central

    Straub, Cécile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Françoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed. PMID:23124230

  2. Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been ob...

  3. Antisense Suppression of a (+)-?-Cadinene Synthase Gene in Cotton Prevents the Induction of This Defense Response Gene during Bacterial Blight Infection But Not Its Constitutive Expression1[w

    PubMed Central

    Townsend, Belinda J.; Poole, Andrew; Blake, Christopher J.; Llewellyn, Danny J.

    2005-01-01

    In cotton (Gossypium hirsutum) the enzyme (+)-?-cadinene synthase (CDNS) catalyzes the first committed step in the biosynthesis of cadinane-type sesquiterpenes, such as gossypol, that provide constitutive and inducible protection against pests and diseases. A cotton cDNA clone encoding CDNS (cdn1-C4) was isolated from developing embryos and functionally characterized. Southern analysis showed that CDNS genes belong to a large multigene family, of which five genomic clones were studied, including three pseudogenes and one gene that may represent another subfamily of CDNS. CDNS expression was shown to be induced in cotton infected with either the bacterial blight or verticillium wilt pathogens. Constructs for the constitutive or seed-specific antisense suppression of cdn1-C4 were introduced into cotton by Agrobacterium-mediated transformation. Gossypol levels were not reduced in the seeds of transformants with either construct, nor was the induction of CDNS expression affected in stems of the constitutive antisense plants infected with Verticillium dahliae Kleb. However, the induction of CDNS mRNA and protein in response to bacterial blight infection of cotyledons was completely blocked in the constitutive antisense plants. These results suggest that cdn1-C4 may be involved specifically in the bacterial blight response and that the CDNS multigene family comprises a complex set of genes differing in their temporal and spatial regulation and responsible for different branches of the cotton sesquiterpene pathway. PMID:15849309

  4. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel.

    PubMed

    Afzal, Muhammad; Yousaf, Sohail; Reichenauer, Thomas G; Kuffner, Melanie; Sessitsch, Angela

    2011-02-28

    The combined use of plants and associated microorganisms has great potential for cleaning up soils contaminated with petroleum hydrocarbons. Apart from environmental conditions the physicochemical properties of the soil are the main factors influencing the survival and activity of an inoculated strain as well as the growth of plants. This study examined the effect of different soil types (sandy, loamy sand and loam) on the survival, gene abundance and catabolic gene expression of two inoculated strains (Pseudomonas sp. strain ITRI53 and Pantoea sp. strain BTRH79) in the rhizosphere and shoot interior of Italian ryegrass vegetated in diesel contaminated soils. High colonization, gene abundance and expression in loamy soils were observed. By contrast, low colonization, gene abundance and absence of gene expression in sandy soil were found. The highest levels of genes expression and hydrocarbon degradation were seen in loamy soil that had been inoculated with BTRH79 and were significantly higher compared to those in other soils. A positive correlation was observed between gene expression and hydrocarbon degradation indicating that catabolic gene expression is necessary for contaminant degradation. These results suggest that soil type influences the bacterial colonization and microbial activities and subsequently the efficiency of contaminant degradation. PMID:21216097

  5. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes.

    PubMed Central

    Warren, R F; Henk, A; Mowery, P; Holub, E; Innes, R W

    1998-01-01

    Recognition of pathogens by plants is mediated by several distinct families of functionally variable but structurally related disease resistance (R) genes. The largest family is defined by the presence of a putative nucleotide binding domain and 12 to 21 leucine-rich repeats (LRRs). The function of these LRRs has not been defined, but they are speculated to bind pathogen-derived ligands. We have isolated a mutation in the Arabidopsis RPS5 gene that indicates that the LRR region may interact with other plant proteins. The rps5-1 mutation causes a glutamate-to-lysine substitution in the third LRR and partially compromises the function of several R genes that confer bacterial and downy mildew resistance. The third LRR is relatively well conserved, and we speculate that it may interact with a signal transduction component shared by multiple R gene pathways. PMID:9724691

  6. Information dimension analysis of bacterial essential and nonessential genes based on chaos game representation

    NASA Astrophysics Data System (ADS)

    Zhou, Qian; Yu, Yong-ming

    2014-11-01

    Essential genes are indispensable for the survival of an organism. Investigating features associated with gene essentiality is fundamental to the prediction and identification of the essential genes. Selecting features associated with gene essentiality is fundamental to predict essential genes with computational techniques. We use fractal theory to make comparative analysis of essential and nonessential genes in bacteria. The information dimensions of essential genes and nonessential genes available in the DEG database for 27 bacteria are calculated based on their gene chaos game representations (CGRs). It is found that weak positive linear correlation exists between information dimension and gene length. Moreover, for genes of similar length, the average information dimension of essential genes is larger than that of nonessential genes. This indicates that essential genes show less regularity and higher complexity than nonessential genes. Our results show that for bacterium with a similar number of essential genes and nonessential genes, the CGR information dimension is helpful for the classification of essential genes and nonessential genes. Therefore, the gene CGR information dimension is very probably a useful gene feature for a genetic algorithm predicting essential genes.

  7. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; LeBlanc, Carly L.; Honer zu Bentrup, Kerstin; Hammond, Timothy; Pierson, Duane L.

    2003-01-01

    Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.

  8. Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice.

    PubMed

    Wu, Jiao; Yu, Haichuan; Dai, Haofu; Mei, Wenli; Huang, Xin; Zhu, Shuifang; Peng, Ming

    2012-08-01

    The metabolic changes of bacterial blight-resistant line C418/Xa23 generated by molecular marker-assisted selection (n= 12), transgenic variety C418-Xa21 generated by using the Agrobacterium-mediated system (n= 12), and progenitor cultivar C418 (n= 12) were monitored using gas chromatography/mass spectrometry. The validation, discrimination, and establishment of correlative relationships between metabolite signals were performed by cluster analysis, principal component analysis, and partial least squares-discriminant analysis. Significant and unintended changes were observed in 154 components in C418/Xa23 and 48 components in C418-Xa21 compared with C418 (P< 0.05, Fold change > 2.0). The most significant decreases detected (P< 0.001) in both C418/Xa23 and C418-Xa21 were in three amino acids: glycine, tyrosine, and alanine, and four identified metabolites: malic acid, ferulic acid, succinic acid, and glycerol. Linoleic acid was increased specifically in C418/Xa23 which was derived from traditional breeding. This line, possessing a distinctive metabolite profile as a positive control, shows more differences vs. the parental than the transgenic line. Only succinic acid that falls outside the boundaries of natural variability between the two non-transgenic varieties C418 and C418/Xa23 should be further investigated with respect to safety or nutritional impact. PMID:22687573

  9. Regulated bioluminescence as a tool for bioremediation process monitoring and control of bacterial cultures

    NASA Technical Reports Server (NTRS)

    Burlage, Robert S.; Heitzer, Armin; Digrazia, Philip M.

    1991-01-01

    An effective on-line monitoring technique for toxic waste bioremediation using bioluminescent microorganisms has shown great potential for the description and optimization of biological processes. The lux genes of the bacterium Vibrio fischeri are used by this species to produce visible light. The lux genes can be genetically fused to the control region of a catabolic gene, with the result that bioluminescence is produced whenever the catabolic gene is induced. Thus the detection of light from a sample indicates that genetic expression from a specific gene is occurring. This technique was used to monitor biodegradation of specific contaminants from waste sites. For these studies, fusions between the lux genes and the operons for naphthalene and toluene/xylene degradation were constructed. Strains carrying one of these fusions respond sensitively and specifically to target substrates. Bioluminescence from these cultures can be rapidly measured in a nondestructive and noninvasive manner. The potential for this technique in this and other biological systems is discussed.

  10. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant

    PubMed Central

    Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis

    2013-01-01

    Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, blaTEM, blaCTX-M, blaSHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347

  11. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice

    PubMed Central

    2013-01-01

    Background The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome’) strategy to expand our understanding of human gene regulation in vivo. Results In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. Conclusions We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression. PMID:24124870

  12. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux.

    PubMed

    Lakshmanan, Venkatachalam; Castaneda, Rafael; Rudrappa, Thimmaraju; Bais, Harsh P

    2013-10-01

    Our previous work has demonstrated that Arabidopsis thaliana can actively recruit beneficial rhizobacteria Bacillus subtilis strain FB17 (hereafter FB17) through an unknown shoot-to-root long-distance signaling pathway post a foliar bacterial pathogen attack. However, it is still not well understood which genetic targets FB17 affects in plants. Microarray analysis of A. thaliana roots treated with FB17 post 24 h of treatment showed 168 and 129 genes that were up- and down-regulated, respectively, compared with the untreated control roots. Those up-regulated include auxin-regulated genes as well as genes involved in metabolism, stress response, and plant defense. In addition, other defense-related genes, as well as cell-wall modification genes were also down-regulated with FB17 colonization. Expression patterns of 20 selected genes were analyzed by semi-quantitative RT-PCR, validating the microarray results. A. thaliana insertion mutants were used against FB17 to further study the functional response of the differentially expressed genes. Five mutants for the up-regulated genes were tested for FB17 colonization, three (at3g28360, at3g20190 and at1g21240) mutants showed decreased FB17 colonization on the roots while increased FB17 titers was seen with three mutants of the down-regulated genes (at3g27980, at4g19690 and at5g56320). Further, these mutants for up-regulated genes and down-regulated genes were foliar infected with Pseudomonas syringae pv. tomato (hereafter PstDC3000) and analyzed for Aluminum activated malate transporter (ALMT1) expression which showed that ALMT1 may be the key regulator for root FB17 colonization. Our microarray showed that under natural condition, FB17 triggers plant responses in a manner similar to known plant growth-promoting rhizobacteria and to some extent also suppresses defense-related genes expression in roots, enabling stable colonization. The possible implication of this study opens up a new dialogin terms of how beneficial microbes regulate plant genetic response for mutualistic associations. PMID:23794026

  13. Gene targets for fungal and mycotoxin control.

    PubMed

    Kim, J H; Campbell, B C; Molyneux, R; Mahoney, N; Chan, K L; Yu, J; Wilkinson, J; Cary, J; Bhatnagar, D; Cleveland, T E

    2006-03-01

    It was initially shown that gallic acid, from hydrolysable tannins in the pelliele of walnut kernels, dramatically inhibits biosynthesis of aflatoxin byAspergillus flavus. The mechanism of this inhibition was found to take place upstream from the gene cluster, including the regulatory gene,aflR, involved in aflatoxin biosynthesis. Additional research using other antioxidant phenolics showed similar antiaflatoxigenic activity to gallic acid. Treatment ofA. flavus withtert-butyl hydroperoxide resulted in an almost doubling of aflatoxin biosynthesis compared to untreated samples. Thus, antioxidative response systems are potentially useful molecular targets for control ofA. flavus. A high throughput screening system was developed using yeast,Saccharomyces cerevisiae, as a model fungus. This screening provided an avenue to quickly identify fungal genes that were vulnerable to treatment by phenolic compounds. The assay also provided a means to quickly assess effects of combinations of phenolics and certain fungicides affecting mitochondrial respiration. For example, theS. cerevisiae sod2† mutant was highly sensitive to treatment by certain phenolics and strobilurins/antimycin A, fungicides which inhibit complex III of the mitochondrial respiratory chain. Verification of stress to this system in the target fungus,A. flavus, was shown through complementation analysis, wherein the mitochondrial superoxide dismutase (Mn-SOD) gene (sodA) ofA. flavus in the ortholog mutant,sod2†, ofS. cerevisiae, relieved phenolic-induced stress. Mitochondrial antioxidative stress systems play an important role in fungal response to antifungals. Combined treatment of fungi with phenolics and inhibitors of mitochondrial respiration can effectively suppress growth ofA. flavus in a synergistic fashion. PMID:23605494

  14. Spatiotemporal control of gene expression using microfluidics.

    PubMed

    Benedetto, Alexandre; Accetta, Giovanni; Fujita, Yasuyuki; Charras, Guillaume

    2014-04-01

    Accurate spatiotemporal regulation of genetic expression and cell microenvironment are both essential to epithelial morphogenesis during development, wound healing and cancer. In vivo, this is achieved through the interplay between intrinsic cellular properties and extrinsic signals. Amongst these, morphogen gradients induce specific concentration- and time-dependent gene expression changes that influence a target cell's fate. As systems biology attempts to understand the complex mechanisms underlying morphogenesis, the lack of experimental setup to recapitulate morphogen-induced patterning in vitro has become limiting. For this reason, we developed a versatile microfluidic-based platform to control the spatiotemporal delivery of chemical gradients to tissues grown in Petri dishes. Using this setup combined with a synthetic inducible gene expression system, we were able to restrict a target gene's expression within a confluent epithelium to bands of cells as narrow as four cell diameters with a one cell diameter accuracy. Applied to the targeted delivery of growth factor gradients to a confluent epithelium, this method further enabled the localized induction of epithelial-mesenchymal transitions and associated morphogenetic changes. Our approach paves the way for replicating in vitro the morphogen gradients observed in vivo to determine the relative contributions of known intrinsic and extrinsic factors in differential tissue patterning, during development and cancer. It could also be readily used to spatiotemporally control cell differentiation in ES/iPS cell cultures for re-engineering of complex tissues. Finally, the reversibility of the microfluidic chip assembly allows for pre- and post-treatment sample manipulations and extends the range of patternable samples to animal explants. PMID:24531367

  15. Vitamin K1 accumulation in tobacco plants overexpressing bacterial genes involved in the biosynthesis of salicylic acid.

    PubMed

    Verberne, Marianne C; Sansuk, Kamonchanok; Bol, John F; Linthorst, Huub J M; Verpoorte, Robert

    2007-01-30

    Phylloquinone (Vitamin K(1)) is an essential component of the photosynthetic electron transfer. As isochorismate is required for the biosynthesis of Vitamin K(1), isochorismate synthase (ICS) activity is expected to be present in all green plants. In bacteria salicylic acid (SA) is synthesized via a two step pathway involving ICS and isochorismate pyruvate lyase (IPL). The effect of the introduction in tobacco plants of the bacterial ICS and IPL genes on the endogenous isochorismate pathway was investigated. Transgenic tobacco plants in which IPL was targeted to the chloroplast suffered severe growth retardation and had low Vitamin K(1) content. Probably because isochorismate was channeled towards SA production, the plants were no longer able to produce normal levels of Vitamin K(1). Transgenic tobacco plants in which the bacterial ICS was present in the chloroplast showed higher Vitamin K(1) contents than wild type plants. PMID:17084477

  16. Description of Drinking Water Bacterial Communities Using 16S rRNA Gene Sequence Analyses

    EPA Science Inventory

    Descriptions of bacterial communities inhabiting water distribution systems (WDS) have mainly been accomplished using culture-based approaches. Due to the inherent selective nature of culture-based approaches, the majority of bacteria inhabiting WDS remain uncharacterized. The go...

  17. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato.

    PubMed

    Hyakumachi, Mitsuro; Nishimura, Mitsuyoshi; Arakawa, Tatsuyuki; Asano, Shinichiro; Yoshida, Shigenobu; Tsushima, Seiya; Takahashi, Hideki

    2013-01-01

    Bacillus thuringiensis is a naturally abundant Gram-positive bacterium and a well-known, effective bio-insecticide. Recently, B. thuringiensis has attracted considerable attention as a potential biological control agent for the suppression of plant diseases. In this study, the bacterial wilt disease-suppressing activity of B. thuringiensis was examined in tomato plants. Treatment of tomato roots with B. thuringiensis culture followed by challenge inoculation with Ralstonia solanacearum suppressed the development of wilt symptoms to less than one third of the control. This disease suppression in tomato plants was reproduced by pretreating their roots with a cell-free filtrate (CF) that had been fractionated from B. thuringiensis culture by centrifugation and filtration. In tomato plants challenge-inoculated with R. solanacearum after pretreatment with CF, the growth of R. solanacearum in stem tissues clearly decreased, and expression of defense-related genes such as PR-1, acidic chitinase, and ?-1,3-glucanase was induced in stem and leaf tissues. Furthermore, the stem tissues of tomato plants with their roots were pretreated with CF exhibited resistance against direct inoculation with R. solanacearum. Taken together, these results suggest that treatment of tomato roots with the CF of B. thuringiensis systemically suppresses bacterial wilt through systemic activation of the plant defense system. PMID:23257909

  18. Biotechnology of the Bacterial Gellan Gum: Genes and Enzymes of the Biosynthetic Pathway

    Microsoft Academic Search

    Arsénio M. Fialho; Leonilde M. Moreira; Ana Teresa Granja; Karen Hoffmann; Alma Popescu; Isabel Sá-Correia

    Bacterial exopolysaccharides (EPS) are a diverse and remarkably versatile class of materials that have potential applications\\u000a in virtually all sectors of modern industry and economy. Currently, many biopolymers are still in the developmental stage,\\u000a but important applications are beginning to emerge in the areas of food production and biomedicine. A few bacterial EPS can\\u000a directly replace synthetically derived material in

  19. Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli

    Microsoft Academic Search

    Mildred Zapata; James S. Beaver; Timothy G. Porch

    2011-01-01

    The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence\\u000a of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines\\u000a show a differential

  20. A Comparison between Droplet Digital and Quantitative PCR in the Analysis of Bacterial 16S Load in Lung Tissue Samples from Control and COPD GOLD 2

    PubMed Central

    Sze, Marc A.; Abbasi, Meysam; Hogg, James C.; Sin, Don D.

    2014-01-01

    Background Low biomass in the bacterial lung tissue microbiome utilizes quantitative PCR (qPCR) 16S bacterial assays at their limit of detection. New technology like droplet digital PCR (ddPCR) could allow for higher sensitivity and accuracy of quantification. These attributes are needed if specific bacteria within the bacterial lung tissue microbiome are to be evaluated as potential contributors to diseases such as chronic obstructive pulmonary disease (COPD). We hypothesize that ddPCR is better at quantifying the total bacterial load in lung tissue versus qPCR. Methods Control (n?=?16) and COPD GOLD 2 (n?=?16) tissue samples were obtained from patients who underwent lung resection surgery, were cut on a cryotome, and sections were assigned for use in quantitative histology or for DNA extraction. qPCR and ddPCR were performed on these samples using primers spanning the V2 region on the 16S rRNA gene along with negative controls. Total 16S counts were compared between the two methods. Both methods were assessed for correlations with quantitative histology measurements of the tissue. Results There was no difference in the average total 16S counts (P>0.05) between the two methods. However, the negative controls contained significantly lower counts in the ddPCR (0.55 ± 0.28 16S/uL) than in the qPCR assay (1.00 ± 0.70 16S copies) (P <0.05). The coefficient of variation was significantly lower for the ddPCR assay (0.18 ± 0.14) versus the qPCR assay (0.62 ± 0.29) (P<0.05). Conclusion Overall the ddPCR 16S assay performed better by reducing the background noise in 16S of the negative controls compared with 16S qPCR assay. PMID:25329701

  1. Design of a new universal real-time PCR system targeting the tuf gene for the enumeration of bacterial counts in food.

    PubMed

    Tanaka, Yuichiro; Takahashi, Hajime; Simidu, Usio; Kimura, Bon

    2010-04-01

    A novel universal real-time PCR, consisting of newly designed oligonucleotide subsets, was designed for a bacterial housekeeping gene encoding the peptide elongation factor Tu. Specificity and universality were confirmed in 66 bacterial strains, including 51 genera and 63 species. The amplification kinetics of tuf gene-targeted real-time quantitative PCR were consistent in a wide range of bacterial species tested. A calibration curve (r(2) = 0.97) was produced for the estimation of bacterial counts, based on measurements of representative inoculations with 10-fold serial dilutions of the cells of representative bacterial species. Linear regression analysis of the real-time PCR-derived bacterial counts and aerobic plate counts, in a total 149 samples consisting of 25 minced meat, 34 fresh-cut vegetables, and 90 fish, exhibited a high correlation (r(2) = 0.84, 0.87, and 0.95, respectively) over the range of 3.0 to 9.0 log CFU/g. In total, the difference between the two methods was less than 0.5 log in 75 of these samples, and in the remaining 74 samples, the difference was 0.5 to 1.0 log. Presently, our tuf gene-targeted real-time quantitative PCR assay achieves a rapid (within 2 h) estimation of bacterial counts of 3.0 to 9.0 log CFU/g, in a practical manner. PMID:20377955

  2. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    SciTech Connect

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  3. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    NASA Astrophysics Data System (ADS)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  4. Identification of a new steroid degrading bacterial strain H5 from the Baltic Sea and isolation of two estradiol inducible genes.

    PubMed

    Sang, Yingying; Xiong, Guangming; Maser, Edmund

    2012-03-01

    The presence of steroid hormones in the aquatic environment is potentially threatening the population dynamics of all kinds of sea animals and public health. Environmental estrogens in water have been reported to be associated with abnormal sexual development and abnormal feminizing responses in some animals. New approaches for the bioremediation of steroid hormones from the environment are therefore urgently sought. We have previously isolated a steroid degrading bacterial strain (H5) from the Baltic Sea, at Kiel, Germany. In the present investigation, 16S rRNA analysis showed that marine strain H5 belongs to the genus Vibrio, family Vibrionaceae and class Gamma-Proteobacteria. To enable identification of steroid inducible genes from bacterial strain H5, a library was constructed of H5 chromosomal DNA fragments cloned into a fluorescent reporter (pKEGFP-2). A reporter plasmid pK3?-4.6-EGFP3 containing the estrogen-inducible gene 3?-hydroxysteroid dehydrogenase/carbonyl reductase (3?-HSD/CR) from Comamonas testosteroni (C. testosteroni) was created as a positive control. Steroid induction could be detected by a microplate fluorescence reader, when the plasmids were transformed into Escherichia coli (E. coli) HB101 cells. With our meta-genomic pKEGFP-2 approach, we identified two estradiol-inducible genes from marine strain H5, which are obviously involved in steroid degradation. Sequencing of the pKEGFP-2 inserts and data base research at NCBI revealed that one gene corresponds to 3-ketosteroid-delta-1-dehydrogenase from several Mycobacterium strains, while the other showed high similarity to carboxylesterase in Sebadella termitidis and Brachyspira murdochii. Both 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase are one of the first enzymes in steroid degradation. In addition, we identified a strain H5 specific DNA sequence of 480bp which allows sensitive PCR detection and quantification of strain H5 bacteria in "unknown" seawater samples. Currently, the exact characterization and systematic classification of the marine steroid degrading bacterial strain H5 is envisaged, which might be used for the bioremediation of steroid contaminations in seawater. Article from a special issue on steroids and microorganisms. PMID:21310233

  5. Enrichment of carotenoids in flaxseed by introducing a bacterial phytoene synthase gene.

    PubMed

    Fujisawa, Masaki; Misawa, Norihiko

    2010-01-01

    Carotenoids are well-known natural pigments, typically ranging from yellow to red. Carotenoids are industrially utilized as functional materials due to their strong antioxidant properties. Phytoene synthesis is known to be a rate-determining step in the entire carotenoid biosynthetic pathway in plants. We show methods of pathway engineering for the enrichment of carotenoids in flaxseed (linseed; Linum usitatissimum L.), which is an industrially important oleaginous crop. A phytoene synthase gene (crtB) derived from a soil bacterium Pantoea ananatis (formerly called Erwinia uredovora) strain 20D3 was introduced into L. usitatissimum WARD cultivar. The resulting transgenic flax plants formed orange seeds, which contained phytoene, alpha-carotene, beta-carotene, and lutein. The total carotenoid amount in the transgenic seeds was 156 microg/g fresh weight at the maximum, corresponding to 18.6-fold increase compared with that of untransformed controls. PMID:20552453

  6. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  7. Vaginal clindamycin in preventing preterm birth and peripartal infections in asymptomatic women with bacterial vaginosis: a randomized, controlled trial

    Microsoft Academic Search

    M Kekki; T Kurki; J Pelkonen; M Kurkinen-Raty; B Cacciatore; J Paavonen

    2001-01-01

    Objective: To determine whether treatment of bacterial vaginosis (BV) in early pregnancy decreases the risk of preterm delivery and peripartum infectious morbidity.Methods: In this multicenter, randomized, double-masked, placebo-controlled intervention trial, screening for BV was performed by vaginal Gram stain obtained from 5432 healthy women with singleton pregnancies during the first antenatal clinic visit at 10–17 weeks’ gestation. Bacterial vaginosis-positive women

  8. Bacterial colonization factors control specificity and stability of the gut microbiota.

    PubMed

    Lee, S Melanie; Donaldson, Gregory P; Mikulski, Zbigniew; Boyajian, Silva; Ley, Klaus; Mazmanian, Sarkis K

    2013-09-19

    Mammals harbour a complex gut microbiome, comprising bacteria that confer immunological, metabolic and neurological benefits. Despite advances in sequence-based microbial profiling and myriad studies defining microbiome composition during health and disease, little is known about the molecular processes used by symbiotic bacteria to stably colonize the gastrointestinal tract. We sought to define how mammals assemble and maintain the Bacteroides, one of the most numerically prominent genera of the human microbiome. Here we find that, whereas the gut normally contains hundreds of bacterial species, germ-free mice mono-associated with a single Bacteroides species are resistant to colonization by the same, but not different, species. To identify bacterial mechanisms for species-specific saturable colonization, we devised an in vivo genetic screen and discovered a unique class of polysaccharide utilization loci that is conserved among intestinal Bacteroides. We named this genetic locus the commensal colonization factors (ccf). Deletion of the ccf genes in the model symbiont, Bacteroides fragilis, results in colonization defects in mice and reduced horizontal transmission. The ccf genes of B. fragilis are upregulated during gut colonization, preferentially at the colonic surface. When we visualize microbial biogeography within the colon, B. fragilis penetrates the colonic mucus and resides deep within crypt channels, whereas ccf mutants are defective in crypt association. Notably, the CCF system is required for B. fragilis colonization following microbiome disruption with Citrobacter rodentium infection or antibiotic treatment, suggesting that the niche within colonic crypts represents a reservoir for bacteria to maintain long-term colonization. These findings reveal that intestinal Bacteroides have evolved species-specific physical interactions with the host that mediate stable and resilient gut colonization, and the CCF system represents a novel molecular mechanism for symbiosis. PMID:23955152

  9. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences.

    PubMed Central

    Hiorns, W D; Methé, B A; Nierzwicki-Bauer, S A; Zehr, J P

    1997-01-01

    Bacterial communities of seven lakes in the Adirondack Mountains of New York State were characterized by amplification and sequencing of 16S ribosomal DNA. Analysis of over 100 partial sequences revealed a diverse collection of lineages, largely of the class Proteobacteria (19% alpha subdivision, 31% beta subdivision, and 9% gamma subdivision), the phylum Cytophaga-Flavobacteria-Bacteroides (15%), and the order Actinomycetales (18%). Additionally, a number of the sequences were similar to those of the order Verrucomicrobiales. However, few of the sequence types are closely related to those of characterized species. The relative contributions of the groups of sequences differed among the lakes, suggesting that bacterial population structure varies and that it may be possible to relate aquatic bacterial community structure to water chemistry. PMID:9212443

  10. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences.

    PubMed

    Hiorns, W D; Methé, B A; Nierzwicki-Bauer, S A; Zehr, J P

    1997-07-01

    Bacterial communities of seven lakes in the Adirondack Mountains of New York State were characterized by amplification and sequencing of 16S ribosomal DNA. Analysis of over 100 partial sequences revealed a diverse collection of lineages, largely of the class Proteobacteria (19% alpha subdivision, 31% beta subdivision, and 9% gamma subdivision), the phylum Cytophaga-Flavobacteria-Bacteroides (15%), and the order Actinomycetales (18%). Additionally, a number of the sequences were similar to those of the order Verrucomicrobiales. However, few of the sequence types are closely related to those of characterized species. The relative contributions of the groups of sequences differed among the lakes, suggesting that bacterial population structure varies and that it may be possible to relate aquatic bacterial community structure to water chemistry. PMID:9212443

  11. Genomic-scale Analysis of Bacterial Gene and Protein Expression in the Host

    PubMed Central

    Cullen, Paul A.; Adler, Ben

    2004-01-01

    The developing complementary technologies of DNA microarrays and proteomics are allowing the response of bacterial pathogens to different environments to be probed at the whole genome level. Although using these technologies to analyze pathogens within a host is still in its infancy, initial studies indicate that these technologies will be valuable tools for understanding how the pathogen reacts to the in vivo microenvironment. Some bacterial pathogens have been shown to substantially modify their surface components in response to the host immune system and modify their energy metabolism and transport pathways to allow efficient growth within the host. Further detailed analyses of these responses will increase understanding of the molecular mechanisms of pathogenesis, identify new bacterial virulence factors, and aid in the design of new vaccines. PMID:15496234

  12. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  13. Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity

    PubMed Central

    Adams, Heather E.; Crump, Byron C.; Kling, George W.

    2015-01-01

    Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacterial production (14C-labeled leucine uptake) up to seven times over controls, and warmer incubation temperatures increased the speed of this response to added nutrients. Bacterial cell numbers also increased in response to temperature and nutrient additions with cell-specific carbon uptake initially increasing and then declining after 2 days. Bacterial community composition (BCC; determined by means of 16S denaturing gradient gel electrophoresis fingerprinting) shifted rapidly in response to changes in incubation temperature and the addition of nutrients, within 2 days in some cases. While the bacteria in these habitats responded to nutrient additions with rapid changes in productivity and community composition, water temperature controlled the speed of the metabolic response and affected the resultant change in bacterial community structure, constraining the potential responses to pulsed nutrient subsidies associated with storm events. In all cases, at higher nutrient levels and temperatures the effect of initial BCC on bacterial activity was muted, suggesting a consistent, robust interaction of temperature, and nutrients controlling activity in these aquatic systems.

  14. Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity.

    PubMed

    Adams, Heather E; Crump, Byron C; Kling, George W

    2015-01-01

    Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacterial production ((14)C-labeled leucine uptake) up to seven times over controls, and warmer incubation temperatures increased the speed of this response to added nutrients. Bacterial cell numbers also increased in response to temperature and nutrient additions with cell-specific carbon uptake initially increasing and then declining after 2 days. Bacterial community composition (BCC; determined by means of 16S denaturing gradient gel electrophoresis fingerprinting) shifted rapidly in response to changes in incubation temperature and the addition of nutrients, within 2 days in some cases. While the bacteria in these habitats responded to nutrient additions with rapid changes in productivity and community composition, water temperature controlled the speed of the metabolic response and affected the resultant change in bacterial community structure, constraining the potential responses to pulsed nutrient subsidies associated with storm events. In all cases, at higher nutrient levels and temperatures the effect of initial BCC on bacterial activity was muted, suggesting a consistent, robust interaction of temperature, and nutrients controlling activity in these aquatic systems. PMID:25873916

  15. Bacterial communities in two Antarctic ice cores analyzed by 16S rRNA gene sequencing analysis

    NASA Astrophysics Data System (ADS)

    Segawa, Takahiro; Ushida, Kazunari; Narita, Hideki; Kanda, Hiroshi; Kohshima, Shiro

    2010-08-01

    Antarctic ice cores could preserve ancient airborne microorganisms. We examined bacteria in two Antarctic ice core samples, an interglacial age sample from Mizuho Base and a glacial age sample from the Yamato Mountains, by 16S rRNA gene sequencing analysis. Bacterial density, the number of bacterial OTUs and Simpson’s diversity index was larger in the Mizuho sample than in the Yamato sample. The 16S rDNA clone library from the Mizuho sample was dominated by the phylum Firmicutes, while the large part of that from the Yamato sample was composed of the Gamma proteobacteria group. Major sources of these identified bacteria estimated from their database records also differed between the samples: in the Mizuho sample bacterial species recorded from animals were higher than that of the Yamato sample, while in the Yamato sample bacteria from aquatic and snow-ice environments were higher than that of the Mizuho sample. The results suggest that these bacteria were past airborne bacteria that would vary in density, diversity and species composition depending on global environmental change. Our results imply that bacteria in Antarctic ice cores could be used as new environmental markers for past environmental studies.

  16. Robust Marking of Photoreceptor Cells and Pinealocytes with Several Reporters under Control of the Crx Gene

    PubMed Central

    Samson, Maria; Emerson, Mark M.; Cepko, Constance L.

    2010-01-01

    Crx is a member of the Otx family of homeobox genes with expression restricted to vertebrate retinal photoreceptor and bipolar cells as well as the pinealocytes of the pineal organ. To facilitate the visualization of Crx-expressing cells, we generated transgenic mice expressing several reporters under the control of the Crx regulatory sequences present within a bacterial artificial chromosome (BAC). These mice expand the transgenic mouse collection, which uses photoreceptor regulatory elements for reporter gene expression by providing a broader repertoire of reporter genes. In addition, since Crx is expressed very soon after a cell fated to be a photoreceptor cell becomes postmitotic, they provide a means for early identification of immature photoreceptor cells. PMID:19882727

  17. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas

    PubMed Central

    Duque-Correa, María A.; Kühl, Anja A.; Rodriguez, Paulo C.; Zedler, Ulrike; Schommer-Leitner, Sandra; Rao, Martin; Weiner, January; Hurwitz, Robert; Qualls, Joseph E.; Kosmiadi, George A.; Murray, Peter J.; Kaufmann, Stefan H. E.; Reece, Stephen T.

    2014-01-01

    Lung granulomas develop upon Mycobacterium tuberculosis (Mtb) infection as a hallmark of human tuberculosis (TB). They are structured aggregates consisting mainly of Mtb-infected and -uninfected macrophages and Mtb-specific T cells. The production of NO by granuloma macrophages expressing nitric oxide synthase-2 (NOS2) via l-arginine and oxygen is a key protective mechanism against mycobacteria. Despite this protection, TB granulomas are often hypoxic, and bacterial killing via NOS2 in these conditions is likely suboptimal. Arginase-1 (Arg1) also metabolizes l-arginine but does not require oxygen as a substrate and has been shown to regulate NOS2 via substrate competition. However, in other infectious diseases in which granulomas occur, such as leishmaniasis and schistosomiasis, Arg1 plays additional roles such as T-cell regulation and tissue repair that are independent of NOS2 suppression. To address whether Arg1 could perform similar functions in hypoxic regions of TB granulomas, we used a TB murine granuloma model in which NOS2 is absent. Abrogation of Arg1 expression in macrophages in this setting resulted in exacerbated lung granuloma pathology and bacterial burden. Arg1 expression in hypoxic granuloma regions correlated with decreased T-cell proliferation, suggesting that Arg1 regulation of T-cell immunity is involved in disease control. Our data argue that Arg1 plays a central role in the control of TB when NOS2 is rendered ineffective by hypoxia. PMID:25201986

  18. SearchDOGS Bacteria, Software That Provides Automated Identification of Potentially Missed Genes in Annotated Bacterial Genomes

    PubMed Central

    ÓhÉigeartaigh, Seán S.; Armisén, David; Byrne, Kevin P.

    2014-01-01

    We report the development of SearchDOGS Bacteria, software to automatically detect missing genes in annotated bacterial genomes by combining BLAST searches with comparative genomics. Having successfully applied the approach to yeast genomes, we redeveloped SearchDOGS to function as a standalone, downloadable package, requiring only a set of GenBank annotation files as input. The software automatically generates a homology structure using reciprocal BLAST and a synteny-based method; this is followed by a scan of the entire genome of each species for unannotated genes. Results are provided in a HTML interface, providing coordinates, BLAST results, syntenic location, omega values (Ka/Ks, where Ks is the number of synonymous substitutions per synonymous site and Ka is the number of nonsynonymous substitutions per nonsynonymous site) for protein conservation estimates, and other information for each candidate gene. Using SearchDOGS Bacteria, we identified 155 gene candidates in the Shigella boydii sb227 genome, including 56 candidates of length < 60 codons. SearchDOGS Bacteria has two major advantages over currently available annotation software. First, it outperforms current methods in terms of sensitivity and is highly effective at identifying small or highly diverged genes. Second, as a freely downloadable package, it can be used with unpublished or confidential data. PMID:24659774

  19. Diversity of endophytic bacteria in Malaysian plants as revealed by 16S rRNA encoding gene sequence based method of bacterial identification?

    PubMed Central

    Loh, Chye Ying; Tan, Yin Yin; Rohani, Rahim; Weber, Jean-Frédéric F.; Bhore, Subhash Janardhan

    2013-01-01

    Bacterial endophytes do have several potential applications in pharmacy, medicine and agricultural biotech industry. The main objective of this study was to understand types of bacterial endophytes associated with dicotyledonous (dicot) and monocotyledonous (monocot) plant species. Isolation of the endophytic bacteria was performed using surface-sterilized various tissue samples, and identification of the endophytic bacterial isolates (EBIs) was completed using 16S rRNA encoding gene sequence similarity based method. In total, 996 EBIs were isolated and identified from 1055 samples of 31 monocot and 65 dicot plant species from Peninsular Malaysia. The 996 EBIs represented 71 different types of bacterial species. Twelve (12) out of 71 species are reported as endophytes for the first time. We conclude that diverse types of bacterial endophytes are associated with dicot and monocot plants, and could be useful in pharmacy, medicine and agricultural biotechnology for various potential applications. PMID:24396249

  20. Binding motifs in bacterial gene promoters modulate transcriptional effects of global regulators CRP and ArcA

    SciTech Connect

    Leuze, Mike; Karpinets, Tatiana V.; Syed, Mustafa H.; Beliaev, Alex S.; Uberbacher, Edward

    2012-05-30

    Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location.

  1. Bacterial Cell Wall Synthesis Gene uppP Is Required for Burkholderia Colonization of the Stinkbug Gut

    PubMed Central

    Kim, Jiyeun Kate; Lee, Ho Jin; Kikuchi, Yoshitomo; Kitagawa, Wataru; Nikoh, Naruo

    2013-01-01

    To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ?uppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ?uppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ?uppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ?uppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont. PMID:23747704

  2. Use of 16S rRNA Gene Terminal Restriction Fragment Analysis To Assess the Impact of Solids Retention Time on the Bacterial Diversity of Activated Sludge

    Microsoft Academic Search

    Pascal E. Saikaly; Peter G. Stroot; Daniel B. Oerther

    2005-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes was used to investigate the reproducibility and stability in the bacterial community structure of laboratory-scale sequenc- ing batch bioreactors (SBR) and to assess the impact of solids retention time (SRT) on bacterial diversity. Two experiments were performed. In each experiment two sets of replicate SBRs were operated for a

  3. Quantitative PCR Monitoring of Antibiotic Resistance Genes and Bacterial Pathogens in Three European Artificial Groundwater Recharge Systems? †

    PubMed Central

    Böckelmann, Uta; Dörries, Hans-Henno; Ayuso-Gabella, M. Neus; Salgot de Marçay, Miquel; Tandoi, Valter; Levantesi, Caterina; Masciopinto, Costantino; Van Houtte, Emmanuel; Szewzyk, Ulrich; Wintgens, Thomas; Grohmann, Elisabeth

    2009-01-01

    Aquifer recharge presents advantages for integrated water management in the anthropic cycle, namely, advanced treatment of reclaimed water and additional dilution of pollutants due to mixing with natural groundwater. Nevertheless, this practice represents a health and environmental hazard because of the presence of pathogenic microorganisms and chemical contaminants. To assess the quality of water extracted from recharged aquifers, the groundwater recharge systems in Torreele, Belgium, Sabadell, Spain, and Nardò, Italy, were investigated for fecal-contamination indicators, bacterial pathogens, and antibiotic resistance genes over the period of 1 year. Real-time quantitative PCR assays for Helicobacter pylori, Yersinia enterocolitica, and Mycobacterium avium subsp. paratuberculosis, human pathogens with long-time survival capacity in water, and for the resistance genes ermB, mecA, blaSHV-5, ampC, tetO, and vanA were adapted or developed for water samples differing in pollutant content. The resistance genes and pathogen concentrations were determined at five or six sampling points for each recharge system. In drinking and irrigation water, none of the pathogens were detected. tetO and ermB were found frequently in reclaimed water from Sabadell and Nardò. mecA was detected only once in reclaimed water from Sabadell. The three aquifer recharge systems demonstrated different capacities for removal of fecal contaminators and antibiotic resistance genes. Ultrafiltration and reverse osmosis in the Torreele plant proved to be very efficient barriers for the elimination of both contaminant types, whereas aquifer passage followed by UV treatment and chlorination at Sabadell and the fractured and permeable aquifer at Nardò posed only partial barriers for bacterial contaminants. PMID:19011075

  4. Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems.

    PubMed

    Böckelmann, Uta; Dörries, Hans-Henno; Ayuso-Gabella, M Neus; Salgot de Marçay, Miquel; Tandoi, Valter; Levantesi, Caterina; Masciopinto, Costantino; Van Houtte, Emmanuel; Szewzyk, Ulrich; Wintgens, Thomas; Grohmann, Elisabeth

    2009-01-01

    Aquifer recharge presents advantages for integrated water management in the anthropic cycle, namely, advanced treatment of reclaimed water and additional dilution of pollutants due to mixing with natural groundwater. Nevertheless, this practice represents a health and environmental hazard because of the presence of pathogenic microorganisms and chemical contaminants. To assess the quality of water extracted from recharged aquifers, the groundwater recharge systems in Torreele, Belgium, Sabadell, Spain, and Nardò, Italy, were investigated for fecal-contamination indicators, bacterial pathogens, and antibiotic resistance genes over the period of 1 year. Real-time quantitative PCR assays for Helicobacter pylori, Yersinia enterocolitica, and Mycobacterium avium subsp. paratuberculosis, human pathogens with long-time survival capacity in water, and for the resistance genes ermB, mecA, blaSHV-5, ampC, tetO, and vanA were adapted or developed for water samples differing in pollutant content. The resistance genes and pathogen concentrations were determined at five or six sampling points for each recharge system. In drinking and irrigation water, none of the pathogens were detected. tetO and ermB were found frequently in reclaimed water from Sabadell and Nardò. mecA was detected only once in reclaimed water from Sabadell. The three aquifer recharge systems demonstrated different capacities for removal of fecal contaminators and antibiotic resistance genes. Ultrafiltration and reverse osmosis in the Torreele plant proved to be very efficient barriers for the elimination of both contaminant types, whereas aquifer passage followed by UV treatment and chlorination at Sabadell and the fractured and permeable aquifer at Nardò posed only partial barriers for bacterial contaminants. PMID:19011075

  5. Bacterial Diversity in Adirondack Mountain Lakes as Revealed by 16S rRNA Gene Sequences

    Microsoft Academic Search

    WILLIAM D. HIORNS; BARBARA A. METHE; SANDRA A. NIERZWICKI-BAUER; JONATHAN P. ZEHR; Darrin Fresh

    1997-01-01

    Bacterial communities of seven lakes in the Adirondack Mountains of New York State were characterized by amplification and sequencing of 16S ribosomal DNA. Analysis of over 100 partial sequences revealed a diverse collection of lineages, largely of the class Proteobacteria (19% alpha subdivision, 31% beta subdivision, and 9% gamma subdivision), the phylum Cytophaga-Flavobacteria-Bacteroides (15%), and the order Actinomycetales (18%). Additionally,

  6. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens.

    PubMed

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L; Lynch, Susan V

    2015-01-01

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci. PMID:25658760

  7. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens

    PubMed Central

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.

    2015-01-01

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci. PMID:25658760

  8. The M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of Riemerella anatipestifer.

    PubMed

    Zou, Jiechi; Wang, Xiaolan; Tian, Mingxing; Cao, Shoulin; Hou, Wanwan; Wang, Shaohui; Han, Xiangan; Ding, Chan; Yu, Shengqing

    2015-05-15

    Riemerella anatipestifer is one of the most economically important pathogens of farm ducks worldwide. However, the molecular mechanisms regarding its antigenicity and pathogenicity are poorly understood. We previously constructed a library of random Tn4351 transposon mutants using R. anatipestifer strain CH3. In this study, M949_1556 gene inactivated mutant strain CH3?M949_1556 was identified by screening of the library using monoclonal antibody against R. anatipestifer serotype 1 lipopolysaccharide (LPS) (anti-LPS MAb) followed by sequence analysis. The mutant strain presented no reactivity to the anti-LPS MAb in an indirect ELISA. Animal studies showed that the median lethal dose (LD50) of CH3?M949_1556 was >10(10) colony forming units (CFU), which was attenuated more than 50 times, compared with that of wild-type strain CH3 (LD50=2×10(8)CFU). The bacterial loads in the blood of CH3?M949_1556 infected ducks were significantly decreased, compared with those of CH3-infected ducks. In addition, CH3?M949_1556 presented significant, higher susceptibility to complement-dependent killing than CH3 did in vitro. Furthermore, CH3?M949_1556 showed increased bacterial adhesion and invasion capacities to Vero cells. Immunization with CH3?M949_1556-inactived vaccine was effective in protecting the ducks from challenge with R. anatipestifer serotype 1 strain WJ4, serotype 2 strain Yb2 and serotype 10 strain HXb2, suggesting that the mutant strain CH3?M949_1556 could provide a broad cross-protection among R. anatipestifer serotypes 1, 2 and 10 strains. Our results demonstrated that the M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of R. anatipestifer. PMID:25804836

  9. Influence of Rice Development on the Function of Bacterial Blight Resistance Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease resistance genes most commonly used in breeding programs are single, dominant, resistance (R) genes with relative effectiveness influenced by plant developmental stage. Knowing the developmental stages at which an R gene is functional is important for disease management. In rice, resistanc...

  10. Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies

    PubMed Central

    2014-01-01

    Background The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations. Results Analysis of 10 individuals from each of seven geographic regions, encompassing Africa, Asia and Europe, revealed that the genes gdh and ITS exhibited the highest number of polymorphic sites (59% and 79%, respectively) and most OTUs (defined at 99% identity) were unique to a given country. In contrast, the gene gtf had the lowest number of polymorphic sites (21%), and most OTUs were shared among countries. Most of the variation in the gdh and ITS genes was explained by the high clonal diversity within individuals (around 80%) followed by inter-individual variation of around 20%, leaving the geographic region as providing virtually no source of sequence variation. Conversely, for gtf the variation within individuals accounted for 32%, between individuals for 57% and among geographic regions for 11%. This geographic signature persisted upon extension of the analysis to four additional locations from the American continent. Pearson correlation analysis, pairwise Fst-cluster analysis as well as UniFrac analyses consistently supported a tree structure in which the European countries clustered tightly together and branched with American countries and South Africa, to the exclusion of Asian countries and the Congo. Conclusion This study shows that saliva harbours protein-coding bacterial genes that are geographically structured, and which could potentially be used for addressing previously unresolved human migration events. PMID:25183372

  11. Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.

    PubMed Central

    Borodovsky, M; Rudd, K E; Koonin, E V

    1994-01-01

    The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins. Images PMID:7984428

  12. Genetic markers reveal novel genes which control rice cooking quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice molecular markers have been developed in the gene (Waxy) that controls grain amylose content and the gene (Alk) that controls alkali spreading value. Both of these factors are considered the major determinants of rice cooking quality and texture. This set of markers is now being routinely used...

  13. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

    PubMed Central

    Medema, Marnix H.; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A.; Weber, Tilmann; Takano, Eriko

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org. PMID:21672958

  14. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.

    PubMed Central

    Osteryoung, K W; Stokes, K D; Rutherford, S M; Percival, A L; Lee, W Y

    1998-01-01

    The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis FtsZ gene (AtFtsZ1-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent FtsZ gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process. PMID:9836740

  15. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins are central regulators of plant growth and development, but little is known about their mode of action. By using differential display, we identified a gene, IBC6 (for induced by cytokinin), from etiolated Arabidopsis seedlings, that is induced rapidly by cytokinin. The steady state level of IBC6 mRNA was elevated within 10 min by the exogenous application of cytokinin, and this induction did not require de novo protein synthesis. IBC6 was not induced by other plant hormones or by light. A second Arabidopsis gene with a sequence highly similar to IBC6 was identified. This IBC7 gene also was induced by cytokinin, although with somewhat slower kinetics and to a lesser extent. The pattern of expression of the two genes was similar, with higher expression in leaves, rachises, and flowers and lower transcript levels in roots and siliques. Sequence analysis revealed that IBC6 and IBC7 are similar to the receiver domain of bacterial two-component response regulators. This homology, coupled with previously published work on the CKI1 histidine kinase homolog, suggests that these proteins may play a role in early cytokinin signaling.

  16. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4.

    PubMed

    Saucet, Simon B; Ma, Yan; Sarris, Panagiotis F; Furzer, Oliver J; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-01-01

    Plant immunity requires recognition of pathogen effectors by intracellular NB-LRR immune receptors encoded by Resistance (R) genes. Most R proteins recognize a specific effector, but some function in pairs that recognize multiple effectors. Arabidopsis thaliana TIR-NB-LRR proteins RRS1-R and RPS4 together recognize two bacterial effectors, AvrRps4 from Pseudomonas syringae and PopP2 from Ralstonia solanacearum. However, AvrRps4, but not PopP2, is recognized in rrs1/rps4 mutants. We reveal an R gene pair that resembles and is linked to RRS1/RPS4, designated as RRS1B/RPS4B, which confers recognition of AvrRps4 but not PopP2. Like RRS1/RPS4, RRS1B/RPS4B proteins associate and activate defence genes upon AvrRps4 recognition. Inappropriate combinations (RRS1/RPS4B or RRS1B/RPS4) are non-functional and this specificity is not TIR domain dependent. Distinct putative orthologues of both pairs are maintained in the genomes of Arabidopsis thaliana relatives and are likely derived from a common ancestor pair. Our results provide novel insights into paired R gene function and evolution. PMID:25744164

  17. The host metabolite D-serine contributes to bacterial niche specificity through gene selection.

    PubMed

    Connolly, James Pr; Goldstone, Robert J; Burgess, Karl; Cogdell, Richard J; Beatson, Scott A; Vollmer, Waldemar; Smith, David Ge; Roe, Andrew J

    2015-01-01

    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host-pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an 'evolutionary incompatibility' between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity. PMID:25526369

  18. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    PubMed

    An, Shi-qi; Caly, Delphine L; McCarthy, Yvonne; Murdoch, Sarah L; Ward, Joseph; Febrer, Melanie; Dow, J Maxwell; Ryan, Robert P

    2014-10-01

    Bis-(3',5') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d)?2 µM). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence. PMID:25329577

  19. Novel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence

    PubMed Central

    An, Shi-qi; Caly, Delphine L.; McCarthy, Yvonne; Murdoch, Sarah L.; Ward, Joseph; Febrer, Melanie; Dow, J. Maxwell; Ryan, Robert P.

    2014-01-01

    Bis-(3?,5?) cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (Kd?2 µM). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence. PMID:25329577

  20. Dose–response relationships and statistical performance of a battery of bacterial gene profiling assays

    Microsoft Academic Search

    F. Dardenne; I. Nobels; W. De Coen; R. Blust

    2007-01-01

    Because of increasing awareness and legislative demands, there is a demand for the development and use of biological assays\\u000a for the assessment of the toxicity of chemicals, environmental samples. Recently, a growing number of bacterial reporter assays\\u000a have been developed and implemented. Nevertheless, little data is published on the performance of these assays in terms of\\u000a analytical parameters. We present

  1. A general system for generating unlabelled gene replacements in bacterial chromosomes

    Microsoft Academic Search

    K. Leenhouts; G. Buist; A. Bolhuis; A. ten Berge; J. Kiel; I. Mierau; M. Dabrowska; G. Venema; J. Kok

    1996-01-01

    A general system is described that facilitates gene replacements such that the recombinant strains are not labelled with\\u000a antibiotic resistance genes. The method is based on the conditional replication of derivatives of the lactococcal plasmid\\u000a pWV01, which lacks the repA gene encoding the replication initiation protein. Replacement vectors can be constructed in and isolated from gram-positive\\u000a and gram-negative helper strains

  2. A Locked Nucleic Acid (LNA)-Based Real-Time PCR Assay for the Rapid Detection of Multiple Bacterial Antibiotic Resistance Genes Directly from Positive Blood Culture.

    PubMed

    Zhu, Lingxiang; Shen, Dingxia; Zhou, Qiming; Li, Zexia; Fang, Xiangdong; Li, Quan-Zhen

    2015-01-01

    Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA)-based quantitative real-time PCR (LNA-qPCR) method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU) per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4%) were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates. PMID:25775001

  3. A Locked Nucleic Acid (LNA)-Based Real-Time PCR Assay for the Rapid Detection of Multiple Bacterial Antibiotic Resistance Genes Directly from Positive Blood Culture

    PubMed Central

    Zhu, Lingxiang; Shen, Dingxia; Zhou, Qiming; Li, Zexia; Fang, Xiangdong; Li, Quan-Zhen

    2015-01-01

    Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA)-based quantitative real-time PCR (LNA-qPCR) method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1–10 colony forming units (CFU) per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4%) were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates. PMID:25775001

  4. Membrane Proteases in the Bacterial Protein Secretion and Quality Control Pathway

    PubMed Central

    Wang, Peng; van Dijl, Jan Maarten

    2012-01-01

    Summary: Proteolytic cleavage of proteins that are permanently or transiently associated with the cytoplasmic membrane is crucially important for a wide range of essential processes in bacteria. This applies in particular to the secretion of proteins and to membrane protein quality control. Major progress has been made in elucidating the structure-function relationships of many of the responsible membrane proteases, including signal peptidases, signal peptide hydrolases, FtsH, the rhomboid protease GlpG, and the site 1 protease DegS. These enzymes employ very different mechanisms to cleave substrates at the cytoplasmic and extracytoplasmic membrane surfaces or within the plane of the membrane. This review highlights the different ways that bacterial membrane proteases degrade their substrates, with special emphasis on catalytic mechanisms and substrate delivery to the respective active sites. PMID:22688815

  5. A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors

    PubMed Central

    Ortega, Davi R.; Yang, Chen; Ames, Peter; Baudry, Jerome; Parkinson, John S.; Zhulin, Igor B.

    2015-01-01

    Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signaling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signaling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396' pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well. PMID:24335957

  6. Posttranscriptional controls -adding a new layer of control to clock gene1 expression2

    E-print Network

    Boyer, Edmond

    1 Posttranscriptional controls - adding a new layer of control to clock gene1 expression2 3 Marie. The cycles with intermediate periods rely on20 endogenous clocks that consist of oscillating gene expression of gene expression22 (exerted on pre-mRNAs and mRNAs) in biological clocks through two examples: the23

  7. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus.

    PubMed

    Hobley, Laura; Fung, Rowena K Y; Lambert, Carey; Harris, Maximilian A T S; Dabhi, Jayesh M; King, Simon S; Basford, Sarah M; Uchida, Kaoru; Till, Robert; Ahmad, Rashidah; Aizawa, Shin-Ichi; Gomelsky, Mark; Sockett, R Elizabeth

    2012-02-01

    Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP), which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742) resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434) resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367) abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125) substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766) had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly useful in anti-pathogen applications. In contrast to many studies in other bacteria, Bdellovibrio shows specificity and lack of overlap in c-di-GMP signalling pathways. PMID:22319440

  8. Pathogenic Bacterial Species Associated with Endodontic Infection Evade Innate Immune Control by Disabling Neutrophils

    PubMed Central

    Matsui, Aritsune; Jin, Jun-O; Johnston, Christopher D.; Yamazaki, Hajime; Houri-Haddad, Yael

    2014-01-01

    Endodontic infections, in which oral bacteria access the tooth pulp chamber, are common and do not resolve once established. To investigate the effects of these infections on the innate immune response, we established a mouse subcutaneous chamber model, where a mixture of four oral pathogens commonly associated with these infections (endodontic pathogens [EP]), i.e., Fusobacterium nucleatum, Streptococcus intermedius, Parvimonas micra, and Prevotella intermedia, was inoculated into subcutaneously implanted titanium chambers. Cells that infiltrated the chamber after these infections were primarily neutrophils; however, these neutrophils were unable to control the infection. Infection with a nonpathogenic oral bacterial species, Streptococcus mitis, resulted in well-controlled infection, with bacterial numbers reduced by 4 to 5 log units after 7 days. Propidium iodide (PI) staining of the chamber neutrophils identified three distinct populations: neutrophils from EP-infected chambers were intermediate in PI staining, while cells in chambers from mice infected with S. mitis were PI positive (apoptotic) or negative (live). Strikingly, neutrophils from EP-infected chambers were severely impaired in their ability to phagocytose and to generate reactive oxygen species in vitro after removal from the chamber compared to cells from S. mitis-infected chambers. The mechanism of neutrophil impairment was necrotic cell death as determined by morphological analyses. P. intermedia alone could induce a similar neutrophil phenotype. We conclude that the endodontic pathogens, particularly P. intermedia, can efficiently disable and kill infiltrating neutrophils, allowing these infections to become established. These results can help explain the persistence of endodontic infections and demonstrate a new virulence mechanism associated with P. intermedia. PMID:25024367

  9. Tetracycline Resistance Gene Maintenance under Varying Bacterial Growth Rate, Substrate and Oxygen Availability, and Tetracycline

    E-print Network

    Alvarez, Pedro J.

    R ) genes. The response of E. coli (a model resistant strain excreted by farm animals) versus Pseudomonas attenuation. INTRODUCTION Recent studies have shown that antibiotic resistant bacteria and associated resistance genes are widespread in a multitude of natural environments.1-6 The propagation of antibiotic

  10. Analysis of developmental control genes using virus-induced gene silencing.

    PubMed

    Geuten, Koen; Viaene, Tom; Vekemans, Dries; Kourmpetli, Sofia; Drea, Sinead

    2013-01-01

    A consistent challenge in studying the evolution of developmental processes has been the problem of explicitly assessing the function of developmental control genes in diverse species. In recent years, virus-induced gene silencing (VIGS) has proved to be remarkably adaptable and efficient in silencing developmental control genes in species across the angiosperms. Here we describe proven protocols for Nicotiana benthamiana and Papaver somniferum, representing a core and basal eudicot species. PMID:23386295

  11. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana.

    PubMed

    Eamens, Andrew L; McHale, Marcus; Waterhouse, Peter M

    2014-01-01

    In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA* (passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/amiRNA* sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana. PMID:24057368

  12. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    PubMed

    Richter, Catherine A; Wright-Osment, Maureen K; Zajicek, James L; Honeyfield, Dale C; Tillitt, Donald E

    2009-12-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity. PMID:20218497

  13. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    USGS Publications Warehouse

    Richter, C.A.; Wright-Osment, M. K.; Zajicek, J.L.; Honeyfield, D.C.; Tillitt, D.E.

    2009-01-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity.

  14. An Acidic PATHOGENESIS-RELATED1 Gene of Oryza grandiglumis is Involved in Disease Resistance Response Against Bacterial Infection.

    PubMed

    Shin, Sang Hyun; Pak, Jung-Hun; Kim, Mi Jin; Kim, Hye Jeong; Oh, Ju Sung; Choi, Hong Kyu; Jung, Ho Won; Chung, Young Soo

    2014-06-01

    Wild rice, Oryza grandiglumis shows hyper-resistance response to pathogen infection. In order to identify genes necessary for defense response in plants, we have carried out a subtractive hybridization coupled with a cDNA macroarray. An acidic PATHOGENESIS-RELATED1 (PR1) gene of the wild rice is highly identical to the acidic PR1 genes of different plant species. The OgPR1a cDNA has an apparent single open reading frame with a predicted molecular mass 40,621 Da and an isoelectic point of 5.14. Both in silico analysis and a transient expression assay in onion epidermal cells revealed that the OgPR1a protein could be localized in intercellular space in plants. The OgPR1a mRNA was strongly transcribed by the exogenous treatment with ethylene and jasmonic acid as well as protein phosphatase inhibitors. Additionally, ectopic expression of the OgPR1a conferred disease resistance on Arabidopsis to the bacterial and fungal infections. PMID:25289005

  15. Isolation of Poly-3-Hydroxybutyrate Metabolism Genes from Complex Microbial Communities by Phenotypic Complementation of Bacterial Mutants

    PubMed Central

    Wang, Chunxia; Meek, David J.; Panchal, Priya; Boruvka, Natalie; Archibald, Frederick S.; Driscoll, Brian T.; Charles, Trevor C.

    2006-01-01

    The goal of this study was to initiate investigation of the genetics of bacterial poly-3-hydroxybutyrate (PHB) metabolism at the community level. We constructed metagenome libraries from activated sludge and soil microbial communities in the broad-host-range IncP cosmid pRK7813. Several unique clones were isolated from these libraries by functional heterologous complementation of a Sinorhizobium meliloti bdhA mutant, which is unable to grow on the PHB cycle intermediate d-3-hydroxybutyrate due to absence of the enzyme d-3-hydroxybutyrate dehydrogenase activity. Clones that conferred d-3-hydroxybutyrate utilization on Escherichia coli were also isolated. Although many of the S. meliloti bdhA mutant complementing clones restored d-3-hydroxybutyrate dehydrogenase activity to the mutant host, for some of the clones this activity was not detectable. This was also the case for almost all of the clones isolated in the E. coli selection. Further analysis was carried out on clones isolated in the S. meliloti complementation. Transposon mutagenesis to locate the complementing genes, followed by DNA sequence analysis of three of the genes, revealed coding sequences that were broadly divergent but lay within the diversity of known short-chain dehydrogenase/reductase encoding genes. In some cases, the amino acid sequence identity between pairs of deduced BdhA proteins was <35%, a level at which detection by nucleic acid hybridization based methods would probably not be successful. PMID:16391068

  16. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL

    PubMed Central

    Doerner, Julia F.; Febvay, Sebastien; Clapham, David E.

    2013-01-01

    Bacterial mechanosensitive channels are some of the largest pores in nature. In particular, MscL, with a pore diameter > 25 Å, allows passage of large organic ions and small proteins. Functional MscL reconstitution into lipids has been proposed for applications in vesicular-based drug release. Here we show that these channels can be functionally expressed in mammalian cells to afford rapid controlled uptake of membrane impermeable molecules. We first demonstrate that MscL gating in response to increased membrane tension is preserved in mammalian cell membranes. Molecular delivery is controlled by adopting an established method of MscL charge-induced activation. We then determine pore size limitations using fluorescently labeled model cargoes. Finally, we activate MscL to introduce the cell-impermeable bi-cyclic peptide phalloidin, a specific marker for actin filaments, into cells. We propose that MscL will be a useful tool for gated and controlled delivery of bioactive molecules into cells. PMID:22871809

  17. Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite.

    PubMed

    Third, K A; Cord-Ruwisch, R; Watling, H R

    2002-05-20

    Shake flask and stirred tank bioleaching experiments showed that the dissolution of chalcopyrite is inhibited by ferric ion concentrations as low as 200 mg L(-1) and redox potentials >420 mV (vs. Ag/AgCl). Chemical leaching of chalcopyrite (4% suspension, surface area 2.3 m2 g(-1)) was enhanced fourfold in the presence of 0.1 M ferrous sulphate compared with 0.1 M ferric sulphate. A computer-controlled reactor was designed to function as a "potentiostat"-bioreactor by arresting the air supply to the reactor when the redox potential in solution was greater than a designated setpoint. Leaching at a low, constant redox potential (380 mV vs. Ag/AgCl) achieved final copper recoveries of 52%-61%, which was twice that achieved with a continuous supply of oxygen (<30% extraction). The bacterial populations were observed to continue growing under oxygen limitation but in a controlled manner that was found to improve chalcopyrite dissolution. As the control mechanism is easily established and is likely to decrease production cost, the use of this technology may find application in industry. PMID:11948450

  18. A Bacterial Gene, mms6, as a New Reporter Gene for Magnetic Resonance Imaging of Mammalian Cells.

    PubMed

    Zhang, Xiao-Yong; Robledo, Brenda N; Harris, Steven S; Hu, Xiaoping P

    2014-11-01

    AbstractMagnetic resonance imaging (MRI) allows for noninvasive, deep tissue imaging with high spatial resolution, making it an attractive modality for in vivo cellular imaging. Since reporter genes can generate magnetic resonance (MR) contrast based on molecular activity, they offer a potentially powerful tool for cellular imaging. The mms6 gene was originally identified in magnetotactic bacteria (MTB), which is known to play a key role in magnetic crystal formation. The purpose of the present work was to investigate the possibility of using mms6 as an MR reporter gene. We established a transgenic mammalian cell line that stably expresses mms6. In vitro experiments show that mms6-expressing cells form clusters of nanoparticles within and outside membrane-enclosed structures and produce changes in MR contrast, most likely by increasing iron uptake of intracellular iron. Additionally, in vivo MRI experiments demonstrate that mms6-expressing tumors can be distinguished from parental tumors not expressing mms6, even in the absence of exogenous iron supplementation. Our results demonstrate that mms6 can function as an MR reporter gene with the potential to monitor gene expression and to visualize the proliferation, migration, and metastasis of tumor cells expressing it. PMID:25430958

  19. Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle.

    PubMed

    Reiter, Lillian; Kolstø, Anne-Brit; Piehler, Armin P

    2011-08-01

    Quantitative reverse-transcription PCR (RT-qPCR) has become a major tool to better understand the biology and pathogenesis of bacteria. One prerequisite of valid RT-qPCR data is their proper normalization to stably expressed reference genes. To identify and evaluate reference genes suitable for normalization of gene expression data in Bacillus cereus group strains, mRNA levels of eleven candidate reference genes (rpsU, nifU, udp (UDP-N-acetylglucosamine 2-epimerase), BT9727_5154/BC_5475, BT9727_4034/BC_4293, BT9727_4549/BC_4813, pspA, gatB_Yqey (gatB_Yqey domain containing protein), helicase (SWF/SNF family protein), adk and pta) and a target gene (BT9727_3305/BC3547+BC3546) were quantified by RT-qPCR at different time points throughout the entire life cycle of the wild-type B. cereus ATCC 14579 and Bacillus thuringiensis subsp. konkukian 97-27, a phylogenetically closely related strain to Bacillus anthracis. The programs geNorm and Normfinder were used to calculate expression stabilities and identified the genes gatB_Yqey, rpsU and udp as the most stably expressed reference genes. Compared to this combination or the sets of reference genes as recommended by geNorm or Normfinder, normalization using a traditional housekeeping gene (adk) alone resulted in significantly different gene expression results and in a significant overestimation of the target gene transcription. Normalization of the data to the reference gene gatB_Yqey alone showed no or only small differences to the reference gene combinations indicating that gatB_Yqey may be used as a single reference gene when investigating rather large changes in mRNA transcription. Otherwise, a combination of the stably expressed reference genes is recommended. In conclusion, the present study underlines the importance of normalization to stably expressed reference genes and presents valid endogenous controls suitable for normalization of transcriptional data throughout the life cycle of B. cereus group strains. PMID:21620905

  20. Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces

    PubMed Central

    2014-01-01

    Background Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. A total of 37 resistance genes against Xoo has been identified in rice. Of these, ten BLB resistance genes have been mapped on rice chromosomes, while 6 have been cloned, sequenced and characterized. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal. Results In this study 34 pairs of primers were designed from conserved domains of 6 BLB resistance genes; Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 diverse rice accessions of known disease phenotype. A total of 140 alleles were identified including 41 rare and 26 null alleles. The average polymorphism information content (PIC) value was 0.56/primer pair. The DNA profiles identified each of the rice landraces unequivocally. The amplified polymorphic DNA bands were used to calculate genetic similarity of the rice landraces in all possible pair combinations. The similarity among the rice accessions ranged from 18% to 89% and the dendrogram produced from the similarity values was divided into 2 major clusters. The conserved domains identified within the sequenced rare alleles include Leucine-Rich Repeat, BED-type zinc finger domain, sugar transferase domain and the domain of the carbohydrate esterase 4 superfamily. Conclusions This study revealed high genetic diversity at conserved domains of six BLB resistance genes in a set of 22 rice accessions. The inclusion of more genotypes from remote ecological niches and hotspots holds promise for identification of further genetic diversity at the BLB resistance genes. PMID:25016378

  1. Organization and control of genes encoding catabolic enzymes in Rhizobiaceae

    SciTech Connect

    Parke, D.; Ornston, L.N.

    1993-03-01

    Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the [beta]-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novel regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate [beta]-carboxy-cis,cis-muconate. [beta]-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for [beta]-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to [beta]-carboxy-cis,cis-muconate.

  2. Integration of selective breeding and vaccination to improve disease resistance in aquaculture: Application to control bacterial cold water disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial cold water disease (BCWD) is a frequent cause of elevated mortality in rainbow trout and the development of effective control strategies is a priority within the U.S. A goal of the NCCCWA breeding program is to produce germplasm with superior growth and survival following exposure to infe...

  3. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.

    PubMed

    Rivero, Mercedes; Furman, Nicolás; Mencacci, Nicolás; Picca, Pablo; Toum, Laila; Lentz, Ezequiel; Bravo-Almonacid, Fernando; Mentaberry, Alejandro

    2012-01-20

    Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens. PMID:22115953

  4. Bacterial and Archaeal 16S rRNA Genes in Late Pleistocene to Holocene Muddy Sediments from the Kanto Plain of Japan

    Microsoft Academic Search

    Mio Takeuchi; Takeshi Komai; Satoshi Hanada; Hideyuki Tamaki; Susumu Tanabe; Yoshinori Miyachi; Mieko Uchiyama; Tsutomu Nakazawa; Katsumi Kimura; Yoichi Kamagata

    2009-01-01

    Microbial communities in ancient marine sediments composed of clay and silt obtained from the terrestrial subsurface were phylogenetically analyzed based on their 16S rRNA gene sequences. Chloroflexi and Miscellaneous Crenarchaeotic Group were predominant in bacterial and archaeal clone libraries, respectively. Of 44 operational taxonomic units (OTUs) that had close relatives in the database, 30 were close to sequences obtained from

  5. GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: New substitution models incorporating strand bias

    E-print Network

    Xia, Xuhua

    GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: New DNA replication GC skew Genomic evolution a b s t r a c t The DNA strands in most prokaryotic genomes composition, typically measured by GC skew, between the leading and the lagging strand. Casting such strand

  6. A polymorphism in the promoter region of TNF and bacterial vaginosis: preliminary evidence of gene-environment interaction in the etiology of spontaneous preterm birth

    Microsoft Academic Search

    George A Macones; Samuel Parry; Mohammed Elkousy; Bonnie Clothier; Serdar H Ural; Jerome F Strauss

    2004-01-01

    ObjectiveThe rarer of 2 alleles of a polymorphism in the promoter of the tumor necrosis factor alpha gene (TNF) has been associated with spontaneous preterm birth following preterm premature rupture of the fetal membranes in some populations. The aim of this study was to assess if the presence of symptomatic bacterial vaginosis amplifies the risk of spontaneous preterm birth in

  7. Evolution of Bacterial Phosphoglycerate Mutases: Non-Homologous Isofunctional Enzymes Undergoing Gene Losses, Gains and Lateral Transfers

    PubMed Central

    Foster, Jeremy M.; Davis, Paul J.; Raverdy, Sylvine; Sibley, Marion H.; Raleigh, Elisabeth A.; Kumar, Sanjay; Carlow, Clotilde K. S.

    2010-01-01

    Background The glycolytic phosphoglycerate mutases exist as non-homologous isofunctional enzymes (NISE) having independent evolutionary origins and no similarity in primary sequence, 3D structure, or catalytic mechanism. Cofactor-dependent PGM (dPGM) requires 2,3-bisphosphoglycerate for activity; cofactor-independent PGM (iPGM) does not. The PGM profile of any given bacterium is unpredictable and some organisms such as Escherichia coli encode both forms. Methods/Principal Findings To examine the distribution of PGM NISE throughout the Bacteria, and gain insight into the evolutionary processes that shape their phyletic profiles, we searched bacterial genome sequences for the presence of dPGM and iPGM. Both forms exhibited patchy distributions throughout the bacterial domain. Species within the same genus, or even strains of the same species, frequently differ in their PGM repertoire. The distribution is further complicated by the common occurrence of dPGM paralogs, while iPGM paralogs are rare. Larger genomes are more likely to accommodate PGM paralogs or both NISE forms. Lateral gene transfers have shaped the PGM profiles with intradomain and interdomain transfers apparent. Archaeal-type iPGM was identified in many bacteria, often as the sole PGM. To address the function of PGM NISE in an organism encoding both forms, we analyzed recombinant enzymes from E. coli. Both NISE were active mutases, but the specific activity of dPGM greatly exceeded that of iPGM, which showed highest activity in the presence of manganese. We created PGM null mutants in E. coli and discovered the ?dPGM mutant grew slowly due to a delay in exiting stationary phase. Overexpression of dPGM or iPGM overcame this defect. Conclusions/Significance Our biochemical and genetic analyses in E. coli firmly establish dPGM and iPGM as NISE. Metabolic redundancy is indicated since only larger genomes encode both forms. Non-orthologous gene displacement can fully account for the non-uniform PGM distribution we report across the bacterial domain. PMID:21187861

  8. Linking Temporal Changes in Bacterial Community Structures with the Detection and Phylogenetic Analysis of Neutral Metalloprotease Genes in the Sediments of a Hypereutrophic Lake

    PubMed Central

    Tsuboi, Shun; Yamamura, Shigeki; Imai, Akio; Satou, Takayuki; Iwasaki, Kazuhiro

    2014-01-01

    We investigated spatial and temporal variations in bacterial community structures as well as the presence of three functional proteolytic enzyme genes in the sediments of a hypereutrophic freshwater lake in order to acquire an insight into dynamic links between bacterial community structures and proteolytic functions. Bacterial communities determined from 16S rRNA gene clone libraries markedly changed bimonthly, rather than vertically in the sediment cores. The phylum Firmicutes dominated in the 4–6 cm deep sediment layer sample after August in 2007, and this correlated with increases in interstitial ammonium concentrations (p < 0.01). The Firmicutes clones were mostly composed of the genus Bacillus. npr genes encoding neutral metalloprotease, an extracellular protease gene, were detected after the phylum Firmicutes became dominant. The deduced Npr protein sequences from the retrieved npr genes also showed that most of the Npr sequences used in this study were closely related to those of the genus Bacillus, with similarities ranging from 61% to 100%. Synchronous temporal occurrences of the 16S rRNA gene and Npr sequences, both from the genus Bacillus, were positively associated with increases in interstitial ammonium concentrations, which may imply that proteolysis by Npr from the genus Bacillus may contribute to the marked increases observed in ammonium concentrations in the sediments. Our results suggest that sedimentary bacteria may play an important role in the biogeochemical nitrogen cycle of freshwater lakes. PMID:25130992

  9. Nucleotide and partner-protein control of bacterial replicative helicase structure and function

    PubMed Central

    Strycharska, Melania S.; Arias-Palomo, Ernesto; Lyubimov, Artem Y.; Erzberger, Jan P.; O’Shea, Valerie; Bustamante, Carlos J.; Berger, James M.

    2014-01-01

    Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB complexed with nucleotide reveals a new conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active, but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an auto-regulatory hub that controls the ability of the helicase to transition between different functional states in response to nucleotide and both replication initiation and elongation factors. PMID:24373746

  10. Bacterial Biosynthetic Gene Clusters Encoding the Anti-cancer Haterumalide Class of Molecules

    PubMed Central

    Matilla, Miguel A.; Stöckmann, Henning; Leeper, Finian J.; Salmond, George P. C.

    2012-01-01

    Haterumalides are halogenated macrolides with strong antitumor properties, making them attractive targets for chemical synthesis. Unfortunately, current synthetic routes to these molecules are inefficient. The potent haterumalide, oocydin A, was previously identified from two plant-associated bacteria through its high bioactivity against plant pathogenic fungi and oomycetes. In this study, we describe oocydin A (ooc) biosynthetic gene clusters identified by genome sequencing, comparative genomics, and chemical analysis in four plant-associated enterobacteria of the Serratia and Dickeya genera. Disruption of the ooc gene cluster abolished oocydin A production and bioactivity against fungi and oomycetes. The ooc gene clusters span between 77 and 80 kb and encode five multimodular polyketide synthase (PKS) proteins, a hydroxymethylglutaryl-CoA synthase cassette and three flavin-dependent tailoring enzymes. The presence of two free-standing acyltransferase proteins classifies the oocydin A gene cluster within the growing family of trans-AT PKSs. The amino acid sequences and organization of the PKS domains are consistent with the chemical predictions and functional peculiarities associated with trans-acyltransferase PKS. Based on extensive in silico analysis of the gene cluster, we propose a biosynthetic model for the production of oocydin A and, by extension, for other members of the haterumalide family of halogenated macrolides exhibiting anti-cancer, anti-fungal, and other interesting biological properties. PMID:23012376

  11. INTRODUCTION A hierarchy of regulatory genes controls somatic sex

    E-print Network

    Baker, Bruce S.

    INTRODUCTION A hierarchy of regulatory genes controls somatic sex determination and differentiation differentiation in the CNS (Taylor and Truman, 1992; Villella and Hall, 1996). The sex determination function differentiation genes that are sex-specifically regulated by the somatic sex determination hierarchy are the yolk

  12. GenePRIMP: A software quality control tool

    SciTech Connect

    Amrita Pati

    2010-05-05

    Amrita Pati of the DOE Joint Genome Institute's Genome Biology group describes the software tool GenePRIMP and how it fits into the quality control pipeline for microbial genomics. Further details regarding GenePRIMP appear in a paper published online May 2, 2010 in Nature Methods.

  13. GenePRIMP: A software quality control tool

    ScienceCinema

    Amrita Pati

    2010-09-01

    Amrita Pati of the DOE Joint Genome Institute's Genome Biology group describes the software tool GenePRIMP and how it fits into the quality control pipeline for microbial genomics. Further details regarding GenePRIMP appear in a paper published online May 2, 2010 in Nature Methods.

  14. Artificial repressors for controlling gene expression in bacteria.

    PubMed

    Politz, Mark C; Copeland, Matthew F; Pfleger, Brian F

    2013-05-14

    Transcriptional repression is a common approach to control gene expression in synthetic biology applications. Here, an engineered DNA binding protein based upon a transcription activator-like effector (TALE) scaffold was shown to outperform LacI in blocking transcription from a promoter and to repress expression of a downstream gene in an operon. PMID:23230569

  15. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing

    PubMed Central

    Kuffner, Melanie; Hai, Brigitte; Rattei, Thomas; Melodelima, Christelle; Schloter, Michael; Zechmeister-Boltenstern, Sophie; Jandl, Robert; Schindlbacher, Andreas; Sessitsch, Angela

    2012-01-01

    Climate warming may induce shifts in soil microbial communities possibly altering the long-term carbon mineralization potential of soils. We assessed the response of the bacterial community in a forest soil to experimental soil warming (+4 °C) in the context of seasonal fluctuations. Three experimental plots were sampled in the fourth year of warming in summer and winter and compared to control plots by 16S rRNA gene pyrosequencing. We sequenced 17 308 amplicons per sample and analysed operational taxonomic units at genetic distances of 0.03, 0.10 and 0.25, with respective Good's coverages of 0.900, 0.977 and 0.998. Diversity indices did not differ between summer, winter, control or warmed samples. Summer and winter samples differed in community structure at a genetic distance of 0.25, corresponding approximately to phylum level. This was mainly because of an increase of Actinobacteria in winter. Abundance patterns of dominant taxa (> 0.06% of all reads) were analysed individually and revealed, that seasonal shifts were coherent among related phylogenetic groups. Seasonal community dynamics were subtle compared to the dynamics of soil respiration. Despite a pronounced respiration response to soil warming, we did not detect warming effects on community structure or composition. Fine-scale shifts may have been concealed by the considerable spatial variation. PMID:22670891

  16. Control of globin gene expression during development and erythroid differentiation

    PubMed Central

    Stamatoyannopoulos, George

    2010-01-01

    Extensive studies during the last 30 years have led to considerable understanding of cellular and molecular control of hemoglobin switching. Cell biology studies in the 1970s defined the control of globin genes during erythroid differentiation and led to development of therapies for sickle cell disease. Molecular investigations of the last 20 years have delineated the two basic mechanisms that control globin gene activity during development—autonomous silencing and gene competition. Studies of hemoglobin switching have provided major insights on the control of gene loci by remote regulatory elements. Research in this field has an impact on understanding regulatory mechanisms in general and is of particular importance for eventual development of molecular cures for sickle cell disease and ? thalassemia. PMID:15730849

  17. PI Control of Gene Expression in Tumorous Cell Lines

    E-print Network

    Mendonca, Rouella J.

    2010-01-16

    cancer cell line genes behave more like their Human Embryonic Kidney cell line counterparts. Two methods of intervention were introduced. The first method was the simpler on-off control intervention while the second method used a more advanced...

  18. Inference of Quantitative Models of Bacterial Promoters from Time-Series Reporter Gene Data

    PubMed Central

    Stefan, Diana; Pinel, Corinne; Pinhal, Stéphane; Cinquemani, Eugenio; Geiselmann, Johannes; de Jong, Hidde

    2015-01-01

    The inference of regulatory interactions and quantitative models of gene regulation from time-series transcriptomics data has been extensively studied and applied to a range of problems in drug discovery, cancer research, and biotechnology. The application of existing methods is commonly based on implicit assumptions on the biological processes under study. First, the measurements of mRNA abundance obtained in transcriptomics experiments are taken to be representative of protein concentrations. Second, the observed changes in gene expression are assumed to be solely due to transcription factors and other specific regulators, while changes in the activity of the gene expression machinery and other global physiological effects are neglected. While convenient in practice, these assumptions are often not valid and bias the reverse engineering process. Here we systematically investigate, using a combination of models and experiments, the importance of this bias and possible corrections. We measure in real time and in vivo the activity of genes involved in the FliA-FlgM module of the E. coli motility network. From these data, we estimate protein concentrations and global physiological effects by means of kinetic models of gene expression. Our results indicate that correcting for the bias of commonly-made assumptions improves the quality of the models inferred from the data. Moreover, we show by simulation that these improvements are expected to be even stronger for systems in which protein concentrations have longer half-lives and the activity of the gene expression machinery varies more strongly across conditions than in the FliA-FlgM module. The approach proposed in this study is broadly applicable when using time-series transcriptome data to learn about the structure and dynamics of regulatory networks. In the case of the FliA-FlgM module, our results demonstrate the importance of global physiological effects and the active regulation of FliA and FlgM half-lives for the dynamics of FliA-dependent promoters. PMID:25590141

  19. Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes.

    PubMed

    Coyne, C J; McClendon, M T; Walling, J G; Timmerman-Vaughan, G M; Murray, S; Meksem, K; Lightfoot, D A; Shultz, J L; Keller, K E; Martin, R R; Inglis, D A; Rajesh, P N; McPhee, K E; Weeden, N F; Grusak, M A; Li, C-M; Storlie, E W

    2007-09-01

    Pea (Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2-0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits. PMID:17893728

  20. The Influence of DNA Extraction Procedure and Primer Set on the Bacterial Community Analysis by Pyrosequencing of Barcoded 16S rRNA Gene Amplicons.

    PubMed

    Starke, Ingo C; Vahjen, Wilfried; Pieper, Robert; Zentek, Jürgen

    2014-01-01

    In this study, the effect of different DNA extraction procedures and primer sets on pyrosequencing results regarding the composition of bacterial communities in the ileum of piglets was investigated. Ileal chyme from piglets fed a diet containing different amounts of zinc oxide was used to evaluate a pyrosequencing study with barcoded 16S rRNA PCR products. Two DNA extraction methods (bead beating versus silica gel columns) and two primer sets targeting variable regions of bacterial 16S rRNA genes (8f-534r versus 968f-1401r) were considered. The SEED viewer software of the MG-RAST server was used for automated sequence analysis. A total of 5.2 × 10(5) sequences were used for analysis after processing for read length (150?bp), minimum sequence occurrence (5), and exclusion of eukaryotic and unclassified/uncultured sequences. DNA extraction procedures and primer sets differed significantly in total sequence yield. The distribution of bacterial order and main bacterial genera was influenced significantly by both parameters. However, this study has shown that the results of pyrosequencing studies using barcoded PCR amplicons of bacterial 16S rRNA genes depend on DNA extraction and primer choice, as well as on the manner of downstream sequence analysis. PMID:25120931

  1. Nonsporulating bacterial species contain DNA sequences homologous to the Bacillus spore-specific C-protein gene.

    PubMed

    Vocero-Villeta, A M; Schilling, D M; Fliss, E R

    1991-02-01

    Genes for small, acid-soluble spore proteins (SASPs) are ubiquitous among the spore-forming bacteria and are expressed only during sporulation. Although they perform the function of amino acid storage in spores, the members of the SASP-C multigene family probably serve additional functions, so that similar sequences might be present in non-spore-formers. Using the SASP-C gene (ssp-c) as a hybridization probe, restriction digests of whole genomic DNA from seven nonsporulating bacterial species were examined for similar sequences. Hybridization was found in four species: Streptococcus pyogenes, Staphylococcus aureus, Neisseria sicca, and Mycobacterium phlei, indicating the presence of similar sequences in some, but not all, of the non-spore-formers. In each of these positive species, multiple bands hybridized. A 4.5-kb hybridizing fragment from S. pyogenes and a 9.0-kb hybridizing fragment from M. phlei have been cloned and partially sequenced. These fragments show substantial DNA sequence homology to ssp-c and their deduced amino acid sequences show substantial homology to SASP-C. PMID:1848527

  2. Cloning and expression analysis of a ubiquitin gene ( Ub L40 ) in the haemocytes of Crassostrea hongkongensis under bacterial challenge

    NASA Astrophysics Data System (ADS)

    Fu, Dingkun; Zhang, Yang; Yu, Ziniu

    2011-01-01

    Ubiquitin, a highly conserved stress-related protein, is assigned multiple functions, such as DNA processing, protein degradation, and ribosome synthesis. The Crassostrea hongkongensis ubiquitin gene (designated ChUb L40 ) was cloned by a combination of suppressive subtractive hybridization (SSH) and rapid amplification of cDNA ends (RACE). The full-length cDNA of ChUb L40 is 496 bp in length, consisting of a 5' untranslated region (UTR) of 34 bp, a 3'-UTR of 75 bp and an open reading frame of 387 bp encoding a ubiquitin fusion protein of 128 amino acids. Analysis of the amino acid sequence of ChUb L40 reveals that Ub L40 is highly conservative during evolution. The expression patterns of ChUb L40 gene in various tissues were examined by real-time PCR. The expression level of ChUb L40 in haemocytes is down-regulated at 4 h and gradually returned to its original level from 6 h to 24 h after Vibrio alginolyticus challenge. Our results suggest that ChUb L40 is ubiquitously expressed and plays an important role in immune defense against bacterial challenge.

  3. Loop-Mediated Isothermal Amplification of Specific Endoglucanase Gene Sequence for Detection of the Bacterial Wilt Pathogen Ralstonia solanacearum

    PubMed Central

    Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja

    2014-01-01

    The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488

  4. Spatiotemporal Analysis of Bacterial Diversity in Sediments of Sundarbans Using Parallel 16S rRNA Gene Tag Sequencing.

    PubMed

    Basak, Pijush; Majumder, Niladri Shekhar; Nag, Sudip; Bhattacharyya, Anish; Roy, Debojyoti; Chakraborty, Arpita; SenGupta, Sohan; Roy, Arunava; Mukherjee, Arghya; Pattanayak, Rudradip; Ghosh, Abhrajyoti; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2015-04-01

    The influence of temporal and spatial variations on the microbial community composition was assessed in the unique coastal mangrove of Sundarbans using parallel 16S rRNA gene pyrosequencing. The total sediment DNA was extracted and subjected to the 16S rRNA gene pyrosequencing, which resulted in 117 Mbp of data from three experimental stations. The taxonomic analysis of the pyrosequencing data was grouped into 24 different phyla. In general, Proteobacteria were the most dominant phyla with predominance of Deltaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria within the sediments. Besides Proteobacteria, there are a number of sequences affiliated to the following major phyla detected in all three stations in both the sampling seasons: Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Chloroflexi, Cyanobacteria, Nitrospira, and Firmicutes. Further taxonomic analysis revealed abundance of micro-aerophilic and anaerobic microbial population in the surface layers, suggesting anaerobic nature of the sediments in Sundarbans. The results of this study add valuable information about the composition of microbial communities in Sundarbans mangrove and shed light on possible transformations promoted by bacterial communities in the sediments. PMID:25256302

  5. Influence of temperature regimes on resistance gene-mediated response to rice bacterial blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing temperatures could reduce yield growth rate of rice by 10% in several rice production areas. Similarly, higher temperatures are predicted to accelerate the breakdown of plant disease resistance through higher disease pressure or altered resistance (R) gene effectiveness in many host-path...

  6. Application of genomics and proteomics for identification of bacterial gene products as potential vaccine candidates

    Microsoft Academic Search

    Deb N Chakravarti; Michael J Fiske; Leah D Fletcher; Robert J Zagursky

    2000-01-01

    The ability of bioinformatics to characterize genomic sequences from pathogenic bacteria for prediction of genes that may encode vaccine candidates, e.g. surface localized proteins, has been evaluated. By applying appropriate tools for genomic mining to the published sequence of Haemophilus influenzae Rd genome, it was possible to identify a putative vaccine candidate, the outer membrane lipoprotein, P6. Proteomics complements genomics

  7. Bacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis

    E-print Network

    McFall-Ngai, Margaret

    , biological rhythms of the intestinal epithelium and the associated mucosal immune system regulate such diverse processes as lipid trafficking and the immune response to pathogens. While these same processes expression of a cryptochrome gene in the symbiotic organ. The finding that bacteria can di- rectly influence

  8. Control of Bacterial Wilt Disease of Tomato Through Integrated Crop Management Strategies

    Microsoft Academic Search

    O. S. Adebayo; A. A. Kintomo; H. Y. Fadamiro

    2009-01-01

    Tomato cultivation is severely affected by bacterial wilt disease caused by the soilborne pathogen Ralstonia solanacearum (previously known as Pseudomonas solanacearum Smith). Effects of rotation of tomato (Lycopersicon esculentum Mill.) with other crops on soil populations of R. solanacearum and on bacterial wilt disease incidence of tomato were evaluated in the field. Monocropped Cassava (Manihot esculenta Crantz), Mucuna puriens L.,

  9. Mechanism for gene control by a natural allosteric group I ribozyme

    PubMed Central

    Chen, Andy G.Y.; Sudarsan, Narasimhan; Breaker, Ronald R.

    2011-01-01

    An allosteric ribozyme consisting of a metabolite-sensing riboswitch and a group I self-splicing ribozyme was recently found in the pathogenic bacterium Clostridium difficile. The riboswitch senses the bacterial second messenger c-di-GMP, thereby controlling 5?-splice site choice by the downstream ribozyme. The proximity of this allosteric ribozyme to the open reading frame (ORF) for CD3246 suggests that coenzyme-mediated regulation of splicing controls expression of this putative virulence gene. In the presence of c-di-GMP, the allosteric ribozyme in the CD3246 precursor transcript generates a spliced transcript that retains the riboswitch aptamer. In the absence of c-di-GMP, the ribozyme mediates an alternative GTP attack that results in a truncated transcript (alternative GTP-attack product). Using reporter assays in Escherichia coli, we investigated the difference in gene expression between the spliced product and the alternative GTP-attack product. We provide evidence that CD3246 gene expression is activated if allosteric ribozyme splicing creates a ribosome binding site (RBS) for translation from a UUG start codon. In addition, biochemical and genetic analyses reveal that the riboswitch may further control CD3246 expression by revealing or occluding this newly formed RBS. Therefore, this architecture provides the riboswitch with a mechanism for extended regulation after splicing has occurred or as a backup mechanism for suppression of translation in the event of misregulated splicing. PMID:21960486

  10. From amplification to gene in thyroid cancer: A high-resolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization

    SciTech Connect

    Chen, X.N.; Gonsky, R.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States). Cedars-Sinai Research Inst.] [UCLA School of Medicine, Los Angeles, CA (United States). Cedars-Sinai Research Inst.; Knauf, J.A.; Fagin, J.A. [Univ. of Cincinnati, OH (United States). Div. of Endocrinology/Metabolism] [Univ. of Cincinnati, OH (United States). Div. of Endocrinology/Metabolism; Wang, M.; Lai, E.H. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Pharmacology] [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Pharmacology; Chissoe, S. [Washington Univ. School of Medicine, St. Louis, MO (United States). Genome Sequencing] [Washington Univ. School of Medicine, St. Louis, MO (United States). Genome Sequencing

    1998-08-01

    Chromosome rearrangements associated with neoplasms provide a rich resource for definition of the pathways of tumorigenesis. The power of comparative genome hybridization (CGH) to identify novel genes depends on the existence of suitable markers, which are lacking throughout most of the genome. The authors now report a general approach that translates CGH data into higher-resolution genomic-clone data that are then used to define the genes located in aneuploid regions. They used CGH to study 33 thyroid-tumor DNAs and two tumor-cell-line DNAs. The results revealed amplifications of chromosome band 2p21, with less-intense amplification on 2p13, 19q13.1, and 1p36 and with least-intense amplification on 1p34, 1q42, 5q31, 5q33-34, 9q32-34, and 14q32. To define the 2p21 region amplified, a dense array of 373 FISH-mapped chromosome 2 bacterial artificial chromosomes (BACs) was constructed, and 87 of these were hybridized to a tumor-cell line. Four BACs carried genomic DNA that was amplified in these cells. The maximum amplified region was narrowed to 3--6 Mb by multicolor FISH with the flanking BACs, and the minimum amplicon size was defined by a contig of 420 kb. Sequence analysis of the amplified BAC 1D9 revealed a fragment of the gene, encoding protein kinase C epsilon (PKC{epsilon}), that was then shown to be amplified and rearranged in tumor cells. In summary, CGH combined with a dense mapped resource of BACs and large-scale sequencing has led directly to the definition of PKC{epsilon} as a previously unmapped candidate gene involved in thyroid tumorigenesis.

  11. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom

    PubMed Central

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-01-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB. PMID:24646695

  12. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom.

    PubMed

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-09-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB. PMID:24646695

  13. Rates of Gyrase Supercoiling and Transcription Elongation Control Supercoil Density in a Bacterial Chromosome

    PubMed Central

    Chesnokova, Olga; Pang, Zhenhua; Higgins, N. Patrick

    2012-01-01

    Gyrase catalyzes negative supercoiling of DNA in an ATP-dependent reaction that helps condense bacterial chromosomes into a compact interwound “nucleoid.” The supercoil density (?) of prokaryotic DNA occurs in two forms. Diffusible supercoil density (?D) moves freely around the chromosome in 10 kb domains, and constrained supercoil density (?C) results from binding abundant proteins that bend, loop, or unwind DNA at many sites. Diffusible and constrained supercoils contribute roughly equally to the total in vivo negative supercoil density of WT cells, so ??=??C+?D. Unexpectedly, Escherichia coli chromosomes have a 15% higher level of ? compared to Salmonella enterica. To decipher critical mechanisms that can change diffusible supercoil density of chromosomes, we analyzed strains of Salmonella using a 9 kb “supercoil sensor” inserted at ten positions around the genome. The sensor contains a complete Lac operon flanked by directly repeated resolvase binding sites, and the sensor can monitor both supercoil density and transcription elongation rates in WT and mutant strains. RNA transcription caused (?) supercoiling to increase upstream and decrease downstream of highly expressed genes. Excess upstream supercoiling was relaxed by Topo I, and gyrase replenished downstream supercoil losses to maintain an equilibrium state. Strains with TS gyrase mutations growing at permissive temperature exhibited significant supercoil losses varying from 30% of WT levels to a total loss of ?D at most chromosome locations. Supercoil losses were influenced by transcription because addition of rifampicin (Rif) caused supercoil density to rebound throughout the chromosome. Gyrase mutants that caused dramatic supercoil losses also reduced the transcription elongation rates throughout the genome. The observed link between RNA polymerase elongation speed and gyrase turnover suggests that bacteria with fast growth rates may generate higher supercoil densities than slow growing species. PMID:22916023

  14. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    PubMed

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. PMID:21564458

  15. Magnetic field-controlled gene expression in encapsulated cells

    PubMed Central

    Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas

    2012-01-01

    Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778

  16. In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties.

    PubMed

    Reithofer, Michael R; Lakshmanan, Anupama; Ping, Andy T K; Chin, Jia M; Hauser, Charlotte A E

    2014-08-01

    We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility. PMID:24933510

  17. Control of the Human B-Globin Gene

    NSDL National Science Digital Library

    BEGIN:VCARD VERSION:2.1 FN:Bruce Alberts N:Alberts; Bruce REV:2005-04-16 END:VCARD

    1998-07-01

    The diagram shows some of the gene regulatory proteins thought to control expression of this gene during red blood cell development. Some of the gene regulatory proteins shown, such as CP1, are found in many types of cells, while others, such as GATA-1, are present in only a few types of cells, including red blood cell precursors, and are therefore thought to contribute to the cell-type specificity of beta-globin gene expression. As indicated by the bidirectional arrows, several of the binding sites for GATA-1 overlap those of other gene regulatory proteins; it is thought that occupancy of these sites by GATA-1 excludes binding of other proteins. (Adapted from B. Emerson, In Gene Expression: General and Cell-Type Specific (M. Karin, ed.), pp. 116-161. Boston: Birkhauser, 1993.)

  18. Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments.

    PubMed

    Sotsky, J B; Greer, C W; Atlas, R M

    1994-11-01

    A significant proportion of the naturally occurring hydrocarbon-degrading populations within Alaskan sediments affected by the Exxon Valdez oil spill had both the xylE and alkB genes and could convert hexadecane and naphthalene to carbon dioxide; a greater proportion of the population had xylE than had alkB, reflecting the composition of the residual oil at the time of sampling; nearly equal populations with xylE alone, alkB alone, and xylE + alkB genes together were found after exposure to fresh crude oil; populations with xylE lacking alkB increased after enrichment on naphthalene. Thus, the genotypes of hydrocarbon-degrading populations reflected the composition of the hydrocarbons to which they were exposed. PMID:7804909

  19. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence

    PubMed Central

    Clark, Laura C.; Seipke, Ryan F.; Prieto, Pilar; Willemse, Joost; van Wezel, Gilles P.; Hutchings, Matthew I.; Hoskisson, Paul A.

    2013-01-01

    Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction with other soil organisms. Disruption of the mce cluster resulted in virulence towards amoebae (Acanthamoeba polyphaga) and reduced colonization of plant (Arabidopsis) models, indicating these genes may play an important role in Streptomyces survival in the environment. Our data suggest that loss of mce in Streptomyces spp. may have profound effects on survival in a competitive soil environment, and provides insight in to the evolution and selection of these genes as virulence factors in related pathogenic organisms. PMID:23346366

  20. Use of Bacterial Quorum-Sensing Components to Regulate Gene Expression in Plants1[W

    PubMed Central

    You, Young-Sook; Marella, Heather; Zentella, Rodolfo; Zhou, Yiyong; Ulmasov, Tim; Ho, Tuan-Hua David; Quatrano, Ralph S.

    2006-01-01

    We describe an efficient inducible system to regulate gene expression in plants based on quorum-sensing components found in Gram-negative bacteria such as Agrobacterium tumefaciens. These bacteria monitor their own population density by utilizing members of the N-acyl homoserine lactone family as inducers and a transcriptional activator as its receptor. In our study, we utilize the components from A. tumefaciens (i.e. 3-oxooctanyl-l-homoserine lactone [OOHL]) synthesized by the TraI protein and its receptor, TraR. When OOHL binds to TraR, it recognizes its specific cis-element, the tra box. We translationally fused the eukaryotic VP16 activation domain to the N terminus of TraR. In the presence of OOHL, the chimeric VP16:TraR transcriptional regulator induces reporter gene expression in moss (Physcomitrella patens), barley (Hordeum vulgare), and carrot (Daucus carota) cells, as well as in transgenic Arabidopsis (Arabidopsis thaliana) seedlings. The inducible system shows a low level of reporter gene expression in the absence of the inducer. Foliar application and a floating-leaf assay in the presence of the inducer shows a 30- and 200-fold induction, respectively. Induction by foliar application of the inducer to whole seedlings is achieved within 8 h. The VP16:TraR activator also shows specificity for binding to its cognate inducer, OOHL. Based on microarray analyses, endogenous gene expression is not significantly affected due to overexpression of the TraR protein or presence of OOHL in either wild-type or lactone-inducible transgenic plants. PMID:16607032

  1. Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division

    Microsoft Academic Search

    Kirsten Reutter; Rainer Atzorn; Birgit Hadeler; Thomas Schmülling; Ralf Reski

    1998-01-01

    .   Development of Physcomitrella patens (Hedw.) B.S.G. starts with a filamentous protonema growing by apical cell division. As a developmental switch, some subapical\\u000a cells produce three-faced apical cells, the so-called buds, which grow to form leafy shoots, the gametophores. Application\\u000a of cytokinins enhances bud formation but no subsequent gametophore development in several mosses. We used the ipt gene of Agrobacterium

  2. Conservation of Transcription Start Sites within Genes across a Bacterial Genus

    SciTech Connect

    Shao, Wenjun; Price, Morgan N.; Deutschbauer, Adam M.; Romine, Margaret F.; Arkin, Adam P.

    2014-07-01

    Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5?-end RNA sequencing, we identified 2,531 TSSs in S. oneidensis MR-1, of which 18% were located inside coding sequences (CDSs). Comparative transcriptome analysis with seven additional Shewanella species revealed that the majority (76%) of the TSSs within the upstream regions of annotated genes (gTSSs) were conserved. Thirty percent of the TSSs that were inside genes and on the sense strand (iTSSs) were also conserved. Sequence analysis around these iTSSs showed conserved promoter motifs, suggesting that many iTSS are under purifying selection. Furthermore, conserved iTSSs are enriched for regulatory motifs, suggesting that they are regulated, and they tend to eliminate polar effects, which confirms that they are functional. In contrast, the transcription of antisense TSSs located inside CDSs (aTSSs) was significantly less likely to be conserved (22%). However, aTSSs whose transcription was conserved often have conserved promoter motifs and drive the expression of nearby genes. Overall, our findings demonstrate that some internal TSSs are conserved and drive protein expression despite their unusual locations, but the majority are not conserved and may reflect noisy initiation of transcription rather than a biological function.

  3. EVALUATION OF BIOTIC AND TREATMENT FACTORS RELATING TO BACTERIAL CONTROL OF ZEBRA MUSSELS

    SciTech Connect

    Daniel P. Molloy

    2002-04-30

    Testing over the last quarter has indicated the following regarding control of zebra mussels with bacterium Pseudomonas fluorescens strain CL0145A: (1) the concentration of bacteria suspended in water is directly correlated with mussel kill; (2) the ratio of bacterial mass per mussel, if too low, could limit mussel kill; a treatment must be done at a high enough ratio so that mussels do not deplete all the suspended bacteria before the end of the desired exposure period; (3) bacteria appear to lose almost all their toxicity after suspension for 24 hr in highly oxygenated water; (4) in a recirculating pipe system, the same percentage mussel kill will be achieved irrespective of whether all the bacteria are applied at once or divided up and applied intermittently in smaller quantities over a 10-hr period. Since this is the fourth quarterly report, a summation of all test results over the last twelve months is provided as a table in this report. The table includes the above-mentioned fourth-quarter results.

  4. Traffic Control of Bacteria-Derived Molecules: A New System of Host-Bacterial Crosstalk

    PubMed Central

    Konishi, Hiroaki; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-01-01

    Virulent microorganisms, such as pathogenic bacteria and viruses, are recognized by pattern recognition receptors (PRRs), including toll-like receptors (TLRs) and nucleotide-binding oligomerization-domain proteins (NODs), and induce inflammatory responses in mammalian hosts. Conversely, commensal bacteria and probiotics, which symbiotically confer health benefits on the host organisms, can lodge in the host intestinal tract without inducing intestinal inflammation. Recent advances in investigations concerning host-microbial interactions have shown that some effector molecules secreted from beneficial bacteria activate cell survival pathways, such as those mediated by p38 MAPK and Akt, and bring health benefits to mammalian hosts. It is noteworthy that such bacteria-derived molecules are taken into the intestinal epithelia through a transport or endocytosis system, thereafter exhibiting their beneficial effects. Understanding this traffic control process can aid in the comprehension of host and microbe interactions and may provide new insight to clarify the pathogenesis of intestinal disorders. This paper highlights the intestinal trafficking systems of bacteria-derived molecules that affect the bacterial functions and modulate epithelial signaling cascades. The latter mechanism may contribute to the maintenance of intestinal homeostasis by improving the host damage induced by virulence factors and various disease states. PMID:23606846

  5. A Novel Bacterial Pathogen of Biomphalaria glabrata: A Potential Weapon for Schistosomiasis Control?

    PubMed Central

    Duval, David; Galinier, Richard; Mouahid, Gabriel; Toulza, Eve; Allienne, Jean François; Portela, Julien; Calvayrac, Christophe; Rognon, Anne; Arancibia, Nathalie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2015-01-01

    Background Schistosomiasis is the second-most widespread tropical parasitic disease after malaria. Various research strategies and treatment programs for achieving the objective of eradicating schistosomiasis within a decade have been recommended and supported by the World Health Organization. One of these approaches is based on the control of snail vectors in endemic areas. Previous field studies have shown that competitor or predator introduction can reduce snail numbers, but no systematic investigation has ever been conducted to identify snail microbial pathogens and evaluate their molluscicidal effects. Methodology/Principal findings In populations of Biomphalaria glabrata snails experiencing high mortalities, white nodules were visible on snail bodies. Infectious agents were isolated from such nodules. Only one type of bacteria, identified as a new species of Paenibacillus named Candidatus Paenibacillus glabratella, was found, and was shown to be closely related to P. alvei through 16S and Rpob DNA analysis. Histopathological examination showed extensive bacterial infiltration leading to overall tissue disorganization. Exposure of healthy snails to Paenibacillus-infected snails caused massive mortality. Moreover, eggs laid by infected snails were also infected, decreasing hatching but without apparent effects on spawning. Embryonic lethality was correlated with the presence of pathogenic bacteria in eggs. Conclusions/Significance This is the first account of a novel Paenibacillus strain, Ca. Paenibacillus glabratella, as a snail microbial pathogen. Since this strain affects both adult and embryonic stages and causes significant mortality, it may hold promise as a biocontrol agent to limit schistosomiasis transmission in the field. PMID:25719489

  6. Diversity of bacterial communities that colonize the filter units used for controlling plant pathogens in soilless cultures.

    PubMed

    Renault, David; Vallance, Jessica; Déniel, Franck; Wery, Nathalie; Godon, Jean Jacques; Barbier, Georges; Rey, Patrice

    2012-01-01

    In recent years, increasing the level of suppressiveness by the addition of antagonistic bacteria in slow filters has become a promising strategy to control plant pathogens in the recycled solutions used in soilless cultures. However, knowledge about the microflora that colonize the filtering columns is still limited. In order to get information on this issue, the present study was carried out over a 4-year period and includes filters inoculated or not with suppressive bacteria at the start of the filtering process (two or three filters were used each year). After 9 months of filtration, polymerase chain reaction (PCR)-single strand conformation polymorphism analyses point out that, for the same year of experiment, the bacterial communities from control filters were relatively similar but that they were significantly different between the bacteria-amended and control filters. To characterize the changes in bacterial communities within the filters, this microflora was studied by quantitative PCR, community-level physiological profiles, and sequencing 16SrRNA clone libraries (filters used in year 1). Quantitative PCR evidenced a denser bacterial colonization of the P-filter (amended with Pseudomonas putida strains) than control and B-filter (amended with Bacillus cereus strains). Functional analysis focused on the cultivable bacterial communities pointed out that bacteria from the control filter metabolized more carbohydrates than those from the amended filters whose trophic behaviors were more targeted towards carboxylic acids and amino acids. The bacterial communities in P- and B-filters both exhibited significantly more phylotype diversity and markedly distinct phylogenetic compositions than those in the C-filter. Although there were far fewer Proteobacteria in B- and P-filters than in the C-filter (22% and 22% rather than 69% of sequences, respectively), the percentages of Firmicutes was much higher (44% and 55% against 9%, respectively). Many Pseudomonas species were also found in the bacterial communities of the control filter. The persistence of the amended suppressive-bacteria in the filters is discussed with regards to the management of suppressive microflora in soilless culture. PMID:22015683

  7. Effect of ultrasound irradiation on bacterial internalization and bacteria-mediated gene transfer to cancer cells.

    PubMed

    Ninomiya, Kazuaki; Yamada, Ryuji; Meisaku, Hitomi; Shimizu, Nobuaki

    2014-05-01

    The present study demonstrates that ultrasound irradiation can facilitate bacteria-mediated gene delivery (bactofection). Escherichia coli modified with avidin were employed as a vehicle for delivery of the green fluorescent protein (GFP) gene, a model heterologous gene, into the breast cancer cell line MCF-7. Avidin-mediated binding of E. coli to MCF-7 cells enhanced the internalization of E. coli by approximately 17%, irrespective of the use of ultrasound irradiation. Furthermore, the use of ultrasound irradiation increased the internalization by approximately 5%, irrespective of the presence of avidin on the E. coli cell surface. The percentages of GFP-expressing MCF-7 cells at 24h after bactofection were below 0.5% and 2% for the case with only avidin-modification of E. coli cell surface and only ultrasound irradiation, respectively. However, combining avidin modification with the ultrasound treatment increased this value to 8%. Thus, the use of avidin-modified bacteria in conjunction with ultrasound irradiation has potential as an effective strategy for tumor-targeted bactofection. PMID:24373691

  8. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee

    PubMed Central

    Acuña, Ricardo; Padilla, Beatriz E.; Flórez-Ramos, Claudia P.; Rubio, José D.; Herrera, Juan C.; Benavides, Pablo; Lee, Sang-Jik; Yeats, Trevor H.; Egan, Ashley N.; Doyle, Jeffrey J.; Rose, Jocelyn K. C.

    2012-01-01

    Horizontal gene transfer (HGT) involves the nonsexual transmission of genetic material across species boundaries. Although often detected in prokaryotes, examples of HGT involving animals are relatively rare, and any evolutionary advantage conferred to the recipient is typically obscure. We identified a gene (HhMAN1) from the coffee berry borer beetle, Hypothenemus hampei, a devastating pest of coffee, which shows clear evidence of HGT from bacteria. HhMAN1 encodes a mannanase, representing a class of glycosyl hydrolases that has not previously been reported in insects. Recombinant HhMAN1 protein hydrolyzes coffee berry galactomannan, the major storage polysaccharide in this species and the presumed food of H. hampei. HhMAN1 was found to be widespread in a broad biogeographic survey of H. hampei accessions, indicating that the HGT event occurred before radiation of the insect from West Africa to Asia and South America. However, the gene was not detected in the closely related species H. obscurus (the tropical nut borer or “false berry borer”), which does not colonize coffee beans. Thus, HGT of HhMAN1 from bacteria represents a likely adaptation to a specific ecological niche and may have been promoted by intensive agricultural practices. PMID:22371593

  9. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee.

    PubMed

    Acuña, Ricardo; Padilla, Beatriz E; Flórez-Ramos, Claudia P; Rubio, José D; Herrera, Juan C; Benavides, Pablo; Lee, Sang-Jik; Yeats, Trevor H; Egan, Ashley N; Doyle, Jeffrey J; Rose, Jocelyn K C

    2012-03-13

    Horizontal gene transfer (HGT) involves the nonsexual transmission of genetic material across species boundaries. Although often detected in prokaryotes, examples of HGT involving animals are relatively rare, and any evolutionary advantage conferred to the recipient is typically obscure. We identified a gene (HhMAN1) from the coffee berry borer beetle, Hypothenemus hampei, a devastating pest of coffee, which shows clear evidence of HGT from bacteria. HhMAN1 encodes a mannanase, representing a class of glycosyl hydrolases that has not previously been reported in insects. Recombinant HhMAN1 protein hydrolyzes coffee berry galactomannan, the major storage polysaccharide in this species and the presumed food of H. hampei. HhMAN1 was found to be widespread in a broad biogeographic survey of H. hampei accessions, indicating that the HGT event occurred before radiation of the insect from West Africa to Asia and South America. However, the gene was not detected in the closely related species H. obscurus (the tropical nut borer or "false berry borer"), which does not colonize coffee beans. Thus, HGT of HhMAN1 from bacteria represents a likely adaptation to a specific ecological niche and may have been promoted by intensive agricultural practices. PMID:22371593

  10. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control

    PubMed Central

    Rutherford, Steven T.; Bassler, Bonnie L.

    2012-01-01

    Quorum sensing is a process of cell–cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics. PMID:23125205

  11. Structure-Function Analysis of a Broad Specificity Populus trichocarpa Endo-?-glucanase Reveals an Evolutionary Link between Bacterial Licheninases and Plant XTH Gene Products*

    PubMed Central

    Eklöf, Jens M.; Shojania, Shaheen; Okon, Mark; McIntosh, Lawrence P.; Brumer, Harry

    2013-01-01

    The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/?-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage ?(1?3)/?(1?4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins. PMID:23572521

  12. Chromatin control of HIV?1 gene expression

    Microsoft Academic Search

    Giuseppe Marzio; Mauro Giacca

    1999-01-01

    Upon infection of susceptible cells, the RNA genome of the human immunodeficiency virus type 1 (HIV?1) is reverse transcribed into double-stranded DNA, which can be subsequently integrated into the cellular genome. After integration, the viral long terminal repeat (LTR) promoter is present in a nucleosome-bound conformation and is transcriptionally silent in the absence of stimulation. Activation of HIV-1 gene expression

  13. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol

    Microsoft Academic Search

    Mamoru Komatsu; Muneya Tsuda; Satoshi Omura; Hideaki Oikawa; Haruo Ikeda

    2008-01-01

    To identify the genes for biosynthesis of the off-flavor terpenoid alcohol, 2-methylisoborneol (2-MIB), the key genes encoding monoterpene cyclase were located in bacterial genome databases by using a combination of hidden Markov models, protein-family search, and the sequence alignment of their gene products. Predicted terpene cyclases were classified into three groups: sesquiterpene, diterpene, and other terpene cyclases. Genes of the

  14. A bacterial model for expression of mutations in the human ornithine transcarbamylase (OTC) gene

    SciTech Connect

    Tuchman, M.; McCann, M.T.; Qureshi, A.A. [Univ. of Minnesota, Mineapolis (United States)

    1994-09-01

    OTC is a mitochondrial enzyme catalyzing the formation of citrulline from carbamyl phosphate and ornithine. X-linked deficiency of OTC is the most prevalent genetic defect of ureagenesis. Mutations and polymorphisms in the OTC gene identified in deficient patients have indicated the occurrence of many family-specific, unique alleles. Due to the low frequency of recurrent mutations, distinguishing between deleterious mutations and polymorphisms is difficult. Using a human OTC gene containing plasmid driven by a tac promoter, we have devised a simple and efficient method for expressing mutations in the mature human OTC enzyme. To demonstrate this method, PCR engineered site-directed mutagenesis was employed to generated cDNA fragments which contained either the R151Q or R277W known mutations found in patients with neonatal and late-onset OTC deficiency, respectively. The normal allele for each mutation was also generated by an identical PCR procedure. Digestion with Bgl II- and Sty I-generated mutant and normal replacement cassettes containing the respective mutant and wild type sequences. Upon transformation of JM109 E.coli cells, OTC enzymatic activity was measured at log and stationary phases of growth using a radiochromatographic method. The R141Q mutation abolished enzymatic activity (<0.02% of normal), whereas the R277W mutation expressed partial activity (2.3% of normal). In addition, a PCR-generated mutation, A280V, resulted in 73% loss of catalytic activity. This OTC expression system is clinically applicable for distinguishing between mutations and polymorphisms, and it can be used to investigate the effects of mutations on various domains of the OTC gene.

  15. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions

    Microsoft Academic Search

    Simon Silver; Le T. Phung

    2005-01-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2?, AsO43?, Cd2+, Co2+, CrO42?, Cu2+, Hg2+, Ni2+, Pb2+, TeO32?, Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations\\u000a (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone\\u000a CopZ

  16. Structural factors which control the position of the Q(y) absorption band of bacteriochlorophyll a in purple bacterial antenna complexes.

    PubMed

    Cogdell, R J; Howard, T D; Isaacs, N W; McLuskey, K; Gardiner, A T

    2002-01-01

    This paper presents a concise review of the structural factors which control the energy of the Q(y) absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. The energy of these Q(y) absorption bands is important for excitation energy transfer within the bacterial photosynthetic unit. PMID:16228551

  17. Dynamics of fecal indicator bacteria, bacterial pathogen genes, and organic wastewater contaminants in the Little Calumet River: Portage Burns Waterway, Indiana

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.

    2013-01-01

    Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.

  18. Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population.

    PubMed

    Colomer-Lluch, Marta; Calero-Cáceres, William; Jebri, Sihem; Hmaied, Fatma; Muniesa, Maite; Jofre, Juan

    2014-12-01

    The emergence and increased prevalence of antibiotic resistance genes (ARGs) in the environment may pose a serious global health concern. This study evaluates the abundance of several ARGs in bacterial and bacteriophage DNA via real-time qPCR in samples from five different sampling points in Tunisia; three wastewater treatment plants (WWTP 1, 2 and 3) and wastewater from two abattoirs slaughtering different animals. Results are compared with those obtained in the Barcelona area, in northeast Spain. Eight ARGs were quantified by qPCR from total and phage DNA fraction from the samples. Three ?-lactamases (bla(TEM), bla(CTX-M) cluster 1 and bla(CTX-M) cluster 9), two quinolone resistance genes (qnrA and qnrS), the mecA gene that confers resistance to methicillin in Staphylococcus aureus, the emerging armA gene, conferring resistance to aminoglycosides and sul1, the most extended gene conferring resistance to sulfonamides, were evaluated. Sul1 and bla(TEM) were the most prevalent ARGs detected at all five Tunisian sampling points, similarly with the observations in Barcelona. bla(CTX-M-9) was more prevalent than bla(CTX-M-1) both in bacterial and DNA within phage particles in all samples analysed. mecA and armA were almost absent in Tunisian waters from human or animal origin in contrast with Barcelona that showed a medium prevalence. qnrA was more prevalent than qnrS in bacterial and phage DNA from all sampling points. In conclusion, our study shows that ARGs are found in the bacterial and is reflected in the phage DNA fraction of human and animal wastewaters. The densities of each ARGs vary depending on the ARGs shed by each population and is determined by the characteristics of each area. Thus, the evaluation of ARGs in wastewaters seems to be suitable as marker reflecting the antibiotic resistance patterns of a population. PMID:25127043

  19. Optimal control of gene expression for fast proteome adaptation to environmental change

    PubMed Central

    Pavlov, Michael Y.; Ehrenberg, Måns

    2013-01-01

    Bacterial populations growing in a changing world must adjust their proteome composition in response to alterations in the environment. Rapid proteome responses to growth medium changes are expected to increase the average growth rate and fitness value of these populations. Little is known about the dynamics of proteome change, e.g., whether bacteria use optimal strategies of gene expression for rapid proteome adjustments and if there are lower bounds to the time of proteome adaptation in response to growth medium changes. To begin answering these types of questions, we modeled growing bacteria as stoichiometrically coupled networks of metabolic pathways. These are balanced during steady-state growth in a constant environment but are initially unbalanced after rapid medium shifts due to a shortage of enzymes required at higher concentrations in the new environment. We identified an optimal strategy for rapid proteome adjustment in the absence of protein degradation and found a lower bound to the time of proteome adaptation after medium shifts. This minimal time is determined by the ratio between the Kullback–Leibler distance from the pre- to the postshift proteome and the postshift steady-state growth rate. The dynamics of optimally controlled proteome adaptation has a simple analytical solution. We used detailed numerical modeling to demonstrate that realistic bacterial control systems can emulate this optimal strategy for rapid proteome adaptation. Our results may provide a conceptual link between the physiology and population genetics of growing bacteria. PMID:24297927

  20. The role of bacterial biofilm in persistent infections and control strategies

    PubMed Central

    Chen, Li; Wen, Yu-mei

    2011-01-01

    Bacterial biofilms can be viewed as a specific type of persistent bacterial infection. After initial invasion, microbes can attach to living and non-living surfaces, such as prosthetics and indwelling medical devices, and form a biofilm composed of extracellular polysaccharides, proteins, and other components. In hosts, biofilm formation may trigger drug resistance and inflammation, resulting in persistent infections. The clinical aspects of biofilm formation and leading strategies for biofilm inhibitors will be discussed in this mini-review. PMID:21485310

  1. The phasin PhaF controls bacterial shape and size in a network-forming strain of Pseudomonas putida.

    PubMed

    Obeso, José I; Gómez-Botrán, José L; Olivera, Elías R; Luengo, José M

    2015-04-10

    Pseudomonas putida N, a poly-3-hydroxyalkonate (PHA)-producing bacterium, showing ampicillin resistance, is an unusual strain. In the presence of this antibiotic, it grows as giant cells (25-50?m) forming complex networks inter-connected by micro-tubular structures. The transformation of this bacterium with a plasmid containing the gene phaF, which encodes a phasin involved in the molecular architecture of the PHA-granules, (i) restores the wild-type phenotype by reducing both bacterial size and length (coco-bacilli ranging between 0.5 and 3?m), and (ii) increases ampicillin resistance by more than 100-fold. PMID:25661838

  2. Resource Availability and Spatial Heterogeneity Control Bacterial Community Response to Nutrient Enrichment in Lakes

    PubMed Central

    Jankowski, KathiJo; Schindler, Daniel E.; Horner-Devine, M. Claire

    2014-01-01

    The diversity and composition of ecological communities often co-vary with ecosystem productivity. However, the relative importance of productivity, or resource abundance, versus the spatial distribution of resources in shaping those ecological patterns is not well understood, particularly for the bacterial communities that underlie most important ecosystem functions. Increasing ecosystem productivity in lakes has been shown to influence the composition and ecology of bacterial communities, but existing work has only evaluated the effect of increasing resource supply and not heterogeneity in how those resources are distributed. We quantified how bacterial communities varied with the trophic status of lakes and whether community responses differed in surface and deep habitats in response to heterogeneity in nutrient resources. Using ARISA fingerprinting, we found that bacterial communities were more abundant, richer, and more distinct among habitats as lake trophic state and vertical heterogeneity in nutrients increased, and that spatial resource variation produced habitat specific responses of bacteria in response to increased productivity. Furthermore, changes in communities in high nutrient lakes were not produced by turnover in community composition but from additional taxa augmenting core bacterial communities found in lower productivity lakes. These data suggests that bacterial community responses to nutrient enrichment in lakes vary spatially and are likely influenced disproportionately by rare taxa. PMID:24489823

  3. Does bacterial gastroenteritis predispose people to functional gastrointestinal disorders? A prospective, community-based, case–control study

    Microsoft Academic Search

    Sally D. Parry; Rosamund Stansfield; Diana Jelley; Wendy Gregory; Elizabeth Phillips; J. Roger Barton; Mark R. Welfare

    2003-01-01

    OBJECTIVES:Irritable bowel syndrome (IBS) might develop after gastroenteritis. Most previous studies of this relationship have been uncontrolled, and little is known regarding other functional gastrointestinal disorders (FGIDs) after gastroenteritis. The primary aim of this study was to determine the frequency of IBS, functional dyspepsia, or functional diarrhea 6 months after bacterial gastroenteritis.METHODS:This was a prospective, community-based, case–control study. Cases had

  4. Image-guided, noninvasive, spatiotemporal control of gene expression

    PubMed Central

    Deckers, Roel; Quesson, Bruno; Arsaut, Josette; Eimer, Sandrine; Couillaud, Franck; Moonen, Chrit T. W.

    2009-01-01

    Spatiotemporal control of transgene expression is of paramount importance in gene therapy. Here, we demonstrate the use of magnetic resonance temperature imaging (MRI)-guided, high-intensity focused ultrasound (HIFU) in combination with a heat-inducible promoter [heat shock protein 70 (HSP70)] for the in vivo spatiotemporal control of transgene activation. Local gene activation induced by moderate hyperthermia in a transgenic mouse expressing luciferase under the control of the HSP70 promoter showed a high similarity between the local temperature distribution in vivo and the region emitting light. Modulation of gene expression is possible by changing temperature, duration, and location of regional heating. Mild heating protocols (2 min at 43°C) causing no tissue damage were sufficient for significant gene activation. The HSP70 promoter was shown to be induced by the local temperature increase and not by the mechanical effects of ultrasound. Therefore, the combination of MRI-guided HIFU heating and transgenes under control of heat-inducible HSP promoter provides a direct, noninvasive, spatial control of gene expression via local hyperthermia. PMID:19164593

  5. Comparison of bacterial communities in the Solimões and Negro River tributaries of the Amazon River based on small subunit rRNA gene sequences.

    PubMed

    Peixoto, J C C; Leomil, L; Souza, J V; Peixoto, F B S; Astolfi-Filho, S

    2011-01-01

    The microbiota of the Amazon River basin has been little studied. We compared the structure of bacterial communities of the Solimões and Negro Rivers, the main Amazon River tributaries, based on analysis of 16S rRNA gene sequences. Water was sampled with a 3-L Van Dorn collection bottle; samples were collected at nine different points/depths totaling 27 L of water from each river. Total DNA was extracted from biomass retained by a 0.22-?m filter after sequential filtration of the water through 0.8- and 0.22-?m filters. The 16S rRNA gene was amplified by PCR, cloned and sequenced, and the sequences were analyzed with the PHYLIP and DOTUR programs to obtain the operational taxonomic units (OTUs) and to calculate the diversity and richness indices using the SPADE program. Taxonomic affiliation was determined using the naive Bayesian rRNA Classifier of the RDP II (Ribosomal Database Project). We recovered 158 sequences from the Solimões River grouped into 103 OTUs, and 197 sequences from the Negro River library grouped into 90 OTUs by the DOTUR program. The Solimões River was found to have a greater diversity of bacterial genera, and greater estimated richness of 446 OTUs, compared with 242 OTUs from the Negro River, as calculated by ACE estimator. The Negro River has less bacterial diversity, but more 16S rRNA gene sequences belonging to the bacterial genus Polynucleobacter were detected; 56 sequences from this genus were found (about 30% of the total sequences). We suggest that a more in-depth investigation be made to elucidate the role played by these bacteria in the river environment. These differences in bacterial diversity between Solimões and Negro Rivers could be explained by differences in organic matter content and pH of the rivers. PMID:22183948

  6. Histone demethylases and control of gene expression in plants.

    PubMed

    Prakash, S; Singh, R; Lodhi, N

    2014-01-01

    Covalent histone modifications, chromatin remodeling and incorporation of histone variants regulate the dynamics of chromatin structure. Among covalent histone modifications, histone methylation mediates by histone methylases that influence the gene expression in heterochromatin silencing, genomic imprinting and transcription. In contrast to methylases, histone demethylases remove the methyl groups from lysine or arginine residues of histones and have enormous impact on gene expression via modified chromatin structures. Two types of histone lysie demethylases have been identified, including lysine specific demethylases 1 (LSD1) and Jmj (Jumonji) domain containing family proteins. The human demethyliminase (PADI4) converts monomethyl arginine residue to citrulline by the arginine demethylimination. In this review we summarize recent advances to understand the mechanism of demethylases in regulation of plant gene expression. In addition we are highlighting the function of four human like LSD1 (LDL) and jmj domain containing genes of Arabidopsis that regulate the defense related, flowering controlling and brassinosteroid response genes. PMID:25535719

  7. A highly efficient molecular cloning platform that utilises a small bacterial toxin gene.

    PubMed

    Mok, Wendy W K; Li, Yingfu

    2013-04-15

    Molecular cloning technologies that have emerged in recent years are more efficient and simpler to use than traditional strategies, but many have the disadvantages of requiring multiple steps and expensive proprietary enzymes. We have engineered cloning vectors containing variants of IbsC, a 19-residue toxin from Escherichia coli K-12. These toxic peptides offer selectivity to minimise the background, labour, and cost associated with conventional molecular cloning. As demonstrated with the cloning of reporter genes, this "detox cloning" system consistently produced over 95?% positive clones. Purification steps between digestion and ligation are not necessary, and the total time between digestion and plating of transformants can be as little as three hours. Thus, these IbsC-based cloning vectors are as reliable and amenable to high-throughput cloning as commercially available systems, and have the advantage of being more time-efficient and cost-effective. PMID:23512843

  8. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters.

    PubMed

    Kolinko, Isabel; Lohße, Anna; Borg, Sarah; Raschdorf, Oliver; Jogler, Christian; Tu, Qiang; Pósfai, Mihály; Tompa, Eva; Plitzko, Jürgen M; Brachmann, Andreas; Wanner, Gerhard; Müller, Rolf; Zhang, Youming; Schüler, Dirk

    2014-03-01

    The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temperature is challenging. In nature, magnetosomes--membrane-bound magnetic nanocrystals with unprecedented magnetic properties--can be biomineralized by magnetotactic bacteria. However, these microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidious microorganisms within other organisms could therefore greatly expand their nanotechnological and biomedical applications. So far, this has been hindered by the structural and genetic complexity of the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Magnetospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored magnetic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous magnetization of various organisms by synthetic biology. PMID:24561353

  9. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters

    NASA Astrophysics Data System (ADS)

    Kolinko, Isabel; Lohße, Anna; Borg, Sarah; Raschdorf, Oliver; Jogler, Christian; Tu, Qiang; Pósfai, Mihály; Tompa, Éva; Plitzko, Jürgen M.; Brachmann, Andreas; Wanner, Gerhard; Müller, Rolf; Zhang, Youming; Schüler, Dirk

    2014-03-01

    The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temperature is challenging. In nature, magnetosomes--membrane-bound magnetic nanocrystals with unprecedented magnetic properties--can be biomineralized by magnetotactic bacteria. However, these microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidious microorganisms within other organisms could therefore greatly expand their nanotechnological and biomedical applications. So far, this has been hindered by the structural and genetic complexity of the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Magnetospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored magnetic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous magnetization of various organisms by synthetic biology.

  10. Cloning and expression of bacterial ice nucleation genes in Escherichia coli.

    PubMed Central

    Orser, C; Staskawicz, B J; Panopoulos, N J; Dahlbeck, D; Lindow, S E

    1985-01-01

    Epiphytic populations of Pseudomonas syringae and Erwinia herbicola are important sources of ice nuclei that incite frost damage in agricultural crop plants. We have cloned and characterized DNA segments carrying the genes (ice) responsible for the ice-nucleating ability of these bacteria. The ice region spanned 3.5 to 4.0 kilobases and was continuous over this region in P. syringae Cit7R1. The cloned fragments imparted ice-nucleating activity in Escherichia coli. Substantial increases in the nucleating activity of both E. coli and P. syringae were obtained by subcloning the DNA fragments on multicopy plasmid vectors. Southern blot analysis showed substantial homology between the ice regions of P. syringae and E. herbicola, although individual restriction sites within the ice regions differed between the two species. Images PMID:3900043

  11. Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists.

    PubMed

    Savchuk, Sarah; Dilantha Fernando, W G

    2004-09-01

    Antagonistic Pseudomonas spp. (DF-41 and PA-23) were evaluated for inhibition of germination of ascospores, and for the effect of timing of application and its effect on biological control of Sclerotinia sclerotiorum (Lib.) de Bary, causal agent of stem rot of canola. Population dynamics were also assessed. In all studies, a petal inoculation technique was used. Significant inhibition (P < 0.05) of germination of ascospores was observed at both log 4 and log 8 cfu (colony forming units) ml(-1) of bacterial populations. In the population study, the pathogen had no significant effect (P < 0.05) on bacterial populations; however, a significant (P < 0.05) increase in bacterial populations was observed after 24 h and a decrease occurred between 96 and 120 h. Significant differences in disease severity (P < 0.05) were found with respect to timing of ascospore applications in the control treatments (ascospores only). One isolate completely suppressed disease when co-applied with ascospores, while only minor suppression occurred when applied 24 or 48 h after. Results from all studies indicate PA-23 and DF-41 to be effective biocontrol agents against S. sclerotiorum of canola and to have practical implications for biological control of this disease by bacteria in the field. PMID:19712288

  12. Cyclic AMP Receptor Protein Regulates cspD, a Bacterial Toxin Gene, in Escherichia coli

    PubMed Central

    Shetty, Deeksha M.; Jawali, Narendra

    2014-01-01

    cspD, a member of cspA family of cold shock genes in Escherichia coli, is not induced during cold shock. Its expression is induced during stationary phase. CspD inhibits DNA replication, and a high level of the protein is toxic to cells. Recently, CspD was proposed to be associated with persister cell formation in E. coli. Here, we show that cyclic AMP receptor protein (CRP) upregulates cspD transcription. Sequence analysis of the cspD upstream region revealed two tandem CRP target sites, CRP site-I (the proximal site centered at ?83.5 with respect to the transcription start) and CRP site-II (the distal site centered at ?112.5). The results from electrophoretic mobility shift assays showed that CRP indeed binds to these two target sites in PcspD. The promoter-proximal CRP target site was found to play a major role in PcspD activation by CRP, as studied by transcriptional fusions carrying mutations in the target sites. The results from in vitro transcription assays demonstrated that CRP activates PcspD transcription in the absence of additional factors other than RNA polymerase. The requirement for activating region 1 of CRP in PcspD activation, along with the involvement of the 287, 265, and 261 determinants of the ?-CTD, suggest that CRP activates by a class I-type mechanism. However, only moderate activation in vitro was observed compared to high activation in vivo, suggesting there might be additional activators of PcspD. Overall, our findings show that CRP, a global metabolic regulator in E. coli, activates a gene potentially related to persistence. PMID:24509317

  13. Phage–host interplay: examples from tailed phages and Gram-negative bacterial pathogens

    PubMed Central

    Chaturongakul, Soraya; Ounjai, Puey

    2014-01-01

    Complex interactions between bacteriophages and their bacterial hosts play significant roles in shaping the structure of environmental microbial communities, not only by genetic transduction but also by modification of bacterial gene expression patterns. Survival of phages solely depends on their ability to infect their bacterial hosts, most importantly during phage entry. Successful dynamic adaptation of bacteriophages when facing selective pressures, such as host adaptation and resistance, dictates their abundance and diversification. Co-evolution of the phage tail fibers and bacterial receptors determine bacterial host ranges, mechanisms of phage entry, and other infection parameters. This review summarizes the current knowledge about the physical interactions between tailed bacteriophages and bacterial pathogens (e.g., Salmonella enterica and Pseudomonas aeruginosa) and the influences of the phage on host gene expression. Understanding these interactions can offer insights into phage–host dynamics and suggest novel strategies for the design of bacterial pathogen biological controls. PMID:25191318

  14. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice.

    PubMed

    Chae, Jong-Chan; Hung, Nguyen Bao; Yu, Sang-Mi; Lee, Ha Kyung; Lee, Yong Hoon

    2014-06-28

    Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice-growing regions of the world. In spite of their economic importance, there are no effective ways of protecting rice plants from this disease. Bacteriophages infecting Xoo affect the population dynamics of the pathogen and consequently the occurrence of the disease. In this study, we investigated the diversity, host range, and infectivity of Xoo phages, and their use as a bicontrol agent on BLB was tested. Among the 34 phages that were isolated from floodwater in paddy fields, 29 belonged to the Myoviridae family, which suggests that the dominant phage in the ecosystem was Myoviridae. The isolated phages were classified into two groups based on plaque size produced on the lawn of Xoo. In general, there was a negative relationship between plaque size and host range, and interestingly the phages having a narrow host range had low efficiency of infectivity. The deduced protein sequence analysis of htf genes indicated that the gene was not a determinant of host specificity. Although the difference in host range and infectivity depending on morphotype needs to be addressed, the results revealed deeper understanding of the interaction between the phages and Xoo strains in floodwater and damp soil environments. The phage mixtures reduced the occurrence of BLB when they were treated with skim milk. The results indicate that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals. PMID:24651644

  15. Enhanced heterologous protein display on bacterial magnetic particles using a lon protease gene deletion mutant in Magnetospirillum magneticum AMB-1.

    PubMed

    Kanetsuki, Yuka; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Yoshino, Tomoko

    2013-07-01

    Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1, are used as magnetic supports or carriers for a variety of biomedical and environmental applications. Although protein expression systems on BacMPs have been established in previous studies, the expression efficiency was dependent on the introduced protein sequences. Recombinant human proteins are often poorly expressed on BacMPs because of proteolytic degradation by endogenous proteases. We constructed a lon protease gene deletion mutant strain (?lon) of M. magneticum AMB-1 by homologous recombination to increase the efficiency of functional protein display on BacMPs using ?lon host cells. Wild-type and ?lon-M. magneticum AMB-1 cells were transformed using expression plasmids for human proteins, thyroid-stimulating hormone receptor (TSHR) and the class II major histocompatibility complex (MHC II) molecules onto BacMPs. Although mRNA expression of both TSHR and MHC II was the same level in the wild-type and ?lon transformants, the protein expression levels in ?lon transformants were significantly increased versus wild-type cells. Furthermore, the amounts of two different human proteins on BacMPs were successfully improved. This phenomenon could be due to the reduction of the degradation of target proteins in the ?lon strain. This is the first report to construct a protease deletion mutant in magnetotactic bacteria. The ?lon strain is a useful host to provide BacMPs displaying target proteins for various experimental, and ultimately, clinical applications. PMID:23578586

  16. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities

    PubMed Central

    Hanshew, Alissa S.; Mason, Charles J.; Raffa, Kenneth F.; Currie, Cameron R.

    2014-01-01

    Chloroplast sequence contamination in 16S ribosomal RNA gene (16S) analyses can be particularly problematic when sampling microbial communities in plants and folivorous arthropods. We previously encountered high levels of plastid contamination in herbivorous insect samples when we used the predominant 454 pyrosequencing 16S methodologies described in the literature. 799F, a primer previously found to exclude chloroplast sequences, was modified to enhance its efficacy, and we describe, in detail, our methodology throughout amplicon pyrosequencing. Thirteen versions of 799F were assessed for the exclusion of chloroplast sequences from our samples. We found that a shift in the mismatch between 799F and chloroplast 16S resulted in significant reduction of chloroplast reads. Our results also indicate that amplifying sequences from environmental samples in a two-step PCR process, with the addition of the multiplex identifiers and 454 adapters in a second round of PCR, further improved primer specificity. Primers that included 3? phosphorothioate bonds, which were designed to block primer degradation, did not amplify consistently across samples. The different forward primers do not appear to bias the bacterial communities detected. We provide a methodological framework for reducing chloroplast reads in high-throughput sequencing data sets that can be applied to a number of environmental samples and sequencing techniques. PMID:23968645

  17. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers.

    PubMed

    Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz

    2014-01-01

    Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5'-untranslated region (5'-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5'-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes. PMID:24755616

  18. Host resistance to infection: genetic control of lipopolysaccharide responsiveness by Toll-like receptor genes

    Microsoft Academic Search

    Salman T Qureshi; Philippe Gros; Danielle Malo

    1999-01-01

    Gram-negative bacterial lipopolysaccharide evokes a protective inflammatory response in the normal host. Through genetic analysis of mutant mice, the gene encoding Toll-like receptor 4 (Tlr4) was recently identified as a critical component of this host defense mechanism. Tlr4 is a member of an ancient gene family that regulates antimicrobial host defense in plants, invertebrates and mammals.

  19. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts.

    PubMed

    Daniell, H; McFadden, B A

    1987-09-01

    The uptake and expression by plastids isolated from dark-grown cucumber cotyledons (etioplasts) of two pUC derivatives, pCS75 and pUC9-CM, respectively carrying genes for the large small subunits of ribulose bisphosphate carboxylase/oxygenase of Anacystis nidulans or chloramphenicol acetyltransferase, is reported. Untreated etioplasts take up only 3% as much DNA as that taken up by EDTA-washed etioplasts after 2 hr of incubation with nick-translated [32P]-pCS75. The presence or absence of light does not affect DNA uptake, binding, or breakdown by etioplasts. Calcium or magnesium ions inhibit DNA uptake by 86% but enhance binding (23-200%) and breakdown (163-235%) of donor DNA by EDTA-treated etioplasts. Uncouplers that abolish membrane potential (delta psi), transmembrane proton gradient (delta pH), or both do not affect DNA uptake, binding, or breakdown by etioplast. However, both DNA uptake and binding are severely inhibited by ATP. Presumably this results from the hydrolysis of ATP, because the poorly hydrolyzable analog adenyl-5'-yl imidodiphosphate does not inhibit the uptake or binding of DNA by etioplasts. beta-Lactamase specified by the ampicillin resistance gene of pCS75 can be detected only in EDTA-treated etioplasts that have been incubated with the plasmid pCS75. After the incubation of EDTA-treated etioplasts with pCS75, immunoprecipitation using antiserum to the small subunit of ribulose bisphosphate carboxylase/oxygenase from A. nidulans reveals the synthesis of small subunits; these are smaller by 2 kDa than the cucumber small subunit encoded by the nuclear genome. Treatment of etioplasts with 10 mM EDTA shows a 10-min duration to be optimal for the expression of chloramphenicol acetyltransferase encoded by pUC9-CM. A progressive increase in the expression of this enzyme is observed with an increase in the concentration of pUC9-CM in the DNA uptake medium. The plasmid-dependent incorporation of [35S]methionine by EDTA-treated organelles declines markedly during cotyledon greening in vivo. PMID:3114748

  20. Control of Middle Ear Inflammatory and Ion Homeostasis Genes by Transtympanic Glucocorticoid and Mineralocorticoid Treatments

    PubMed Central

    Lighthall, Jessyka G.; Kempton, J. Beth; Hausman, Frances; MacArthur, Carol J.; Trune, Dennis R.

    2015-01-01

    Hypothesis Transtympanic steroid treatment will induce changes in ion homeostasis and inflammatory gene expression to decrease middle ear inflammation due to bacterial inoculation. Background Otitis media is common, but treatment options are limited to systemic antibiotic therapy or surgical intervention. Systemic glucocorticoid treatment of mice decreases inflammation and improves fluid clearance. However, transtympanic delivery of glucocorticoids or mineralocorticoid has not been explored to determine if direct steroid application is beneficial. Methods Balb/c mice received transtympanic inoculation of heat-killed Haemophilus influenzae (H flu), followed by transtympanic treatment with either prednisolone or aldosterone. Mice given PBS instead of steroid and untreated mice were used as controls. Four hours after steroid treatment, middle ears were harvested for mRNA extraction and 24 hours after inoculation middle ears were harvested and examined for measures of inflammation. Results H flu inoculation caused the increased expression of nearly all inflammatory cytokine genes and induced changes in expression of several genes related to cellular junctions and transport channels. Both steroids generally reversed the expression of inflammatory genes and caused ion and water regulatory genes to return to normal or near normal levels. Histologic evaluation of middle ears showed improved fluid and inflammatory cell clearance. Conclusion Improvement in middle ear inflammation was noted with both the glucocorticoid prednisolone and the mineralocorticoid aldosterone. This was due to reversal of inflammation-induced changes in middle ear cytokine genes, as well as those involved in ion and water homeostasis. Because glucocorticoids bind to the mineralocorticoid receptor, but not the reverse, it is concluded that much of the reduction of fluid and other inflammation measures was due to these steroids impact on ion and water transport channels. Further research is necessary to determine if this alternative mineralocorticoid treatment for otitis media will be clinically effective with fewer side effects than glucocorticoids. PMID:25811752

  1. Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY

    PubMed Central

    Brinsmade, Shaun R.; Alexander, Elizabeth L.; Livny, Jonathan; Stettner, Arion I.; Segrè, Daniel; Rhee, Kyu Y.; Sonenshein, Abraham L.

    2014-01-01

    Global regulators that bind strategic metabolites allow bacteria to adapt rapidly to dynamic environments by coordinating the expression of many genes. We report an approach for determining gene regulation hierarchy using the regulon of the Bacillus subtilis global regulatory protein CodY as proof of principle. In theory, this approach can be used to measure the dynamics of any bacterial transcriptional regulatory network that is affected by interaction with a ligand. In B. subtilis, CodY controls dozens of genes, but the threshold activities of CodY required to regulate each gene are unknown. We hypothesized that targets of CodY are differentially regulated based on varying affinity for the protein’s many binding sites. We used RNA sequencing to determine the transcription profiles of B. subtilis strains expressing mutant CodY proteins with different levels of residual activity. In parallel, we quantified intracellular metabolites connected to central metabolism. Strains producing CodY variants F71Y, R61K, and R61H retained varying degrees of partial activity relative to the WT protein, leading to gene-specific, differential alterations in transcript abundance for the 223 identified members of the CodY regulon. Using liquid chromatography coupled to MS, we detected significant increases in branched-chain amino acids and intermediates of arginine, proline, and glutamate metabolism, as well as decreases in pyruvate and glycerate as CodY activity decreased. We conclude that a spectrum of CodY activities leads to programmed regulation of gene expression and an apparent rerouting of carbon and nitrogen metabolism, suggesting that during changes in nutrient availability, CodY prioritizes the expression of specific pathways. PMID:24843172

  2. A Protein Thermometer Controls Temperature-Dependent Transcription of Flagellar Motility Genes in Listeria monocytogenes

    PubMed Central

    Kamp, Heather D.; Higgins, Darren E.

    2011-01-01

    Facultative bacterial pathogens must adapt to multiple stimuli to persist in the environment or establish infection within a host. Temperature is often utilized as a signal to control expression of virulence genes necessary for infection or genes required for persistence in the environment. However, very little is known about the molecular mechanisms that allow bacteria to adapt and respond to temperature fluctuations. Listeria monocytogenes (Lm) is a food-borne, facultative intracellular pathogen that uses flagellar motility to survive in the extracellular environment and to enhance initial invasion of host cells during infection. Upon entering the host, Lm represses transcription of flagellar motility genes in response to mammalian physiological temperature (37°C) with a concomitant temperature-dependent up-regulation of virulence genes. We previously determined that down-regulation of flagellar motility is required for virulence and is governed by the reciprocal activities of the MogR transcriptional repressor and the bifunctional flagellar anti-repressor/glycosyltransferase, GmaR. In this study, we determined that GmaR is also a protein thermometer that controls temperature-dependent transcription of flagellar motility genes. Two-hybrid and gel mobility shift analyses indicated that the interaction between MogR and GmaR is temperature sensitive. Using circular dichroism and limited proteolysis, we determined that GmaR undergoes a temperature-dependent conformational change as temperature is elevated. Quantitative analysis of GmaR in Lm revealed that GmaR is degraded in the absence of MogR and at 37°C (when the MogR:GmaR complex is less stable). Since MogR represses transcription of all flagellar motility genes, including transcription of gmaR, changes in the stability of the MogR:GmaR anti-repression complex, due to conformational changes in GmaR, mediates repression or de-repression of flagellar motility genes in Lm. Thus, GmaR functions as a thermo-sensing anti-repressor that incorporates temperature signals into transcriptional control of flagellar motility. To our knowledge, this is the first example of a protein thermometer that functions as an anti-repressor to control a developmental process in bacteria. PMID:21829361

  3. The bacterial adaptive response gene, barA , encodes a novel conserved histidine kinase regulatory switch for adaptation and modulation of metabolism in Escherichia coli

    Microsoft Academic Search

    Surasri Nandan Sahu; Sharmistha Acharya; Helina Tuminaro; Isha Patel; Kim Dudley; J. Eugene LeClerc; Thomas A. Cebula; Suman Mukhopadhyay

    2003-01-01

    Histidine kinases are important prokaryotic determinants of cellular adaptation to environmental conditions, particularly stress. The highly conserved histidine kinase, BarA, encoded by the bacterial adaptive response gene, barA, is a member of the family of tripartite histidine kinases, and is involved in stress adaptation. BarA has been implicated to play a role during infection of epithelial cells. Homologues and orthologues

  4. Cotton plants transformed with a bacterial degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid

    Microsoft Academic Search

    Bruce R. Lyon; Yvonne L. Cousins; Danny J. Llewellyn; Elizabeth S. Dennis

    1993-01-01

    The agronomic performance of broad leaved crop plants such as cotton would be greatly improved if genetically-engineered resistance to broadleaf herbicides could both protect the plants from accidental spray drift damage and allow the suppression of problem broadleaf weeds by chemical means. Followingin vitro modification and the addition of plant expression signals, the gene for 2,4-D monooxygenase, a bacterial enzyme

  5. Carbapenem-Hydrolyzing GES-5-Encoding Gene on Different Plasmid Types Recovered from a Bacterial Community in a Sewage Treatment Plant

    PubMed Central

    Girlich, Delphine; Poirel, Laurent; Szczepanowski, Rafael; Schlüter, Andreas

    2012-01-01

    Plasmids pRSB113 and pRSB115 were recovered from an activated sludge bacterial community of a municipal wastewater treatment plant in Germany. Both plasmids carry the same blaGES-5 carbapenemase gene, located within two distinct class 1 integrons. These plasmids have different backbones, belong to different incompatibility groups, and could replicate in both Pseudomonas aeruginosa and Escherichia coli. PMID:22156421

  6. Effects of DNA extraction and universal primers on 16S rRNA gene-based DGGE analysis of a bacterial community from fish farming water

    Microsoft Academic Search

    Peng Luo; Chaoqun Hu; Lüping Zhang; Chunhua Ren; Qi Shen

    2007-01-01

    Among many reports investigating microbial diversity from environmental samples with denaturing gradient gel electrophoresis\\u000a (DGGE), limited attention has been given to the effects of universal primers and DNA extraction on the outcome of DGGE analysis.\\u000a In this study, these effects were tested with 16S rRNA gene-based DGGE on a bacterial community from farming water samples.\\u000a The results indicate that the

  7. Phylogenetically Diverse ureC Genes and Their Expression Suggest the Urea Utilization by Bacterial Symbionts in Marine Sponge Xestospongia testudinaria

    PubMed Central

    Su, Jing; Jin, Liling; Jiang, Qun; Sun, Wei; Zhang, Fengli; Li, Zhiyong

    2013-01-01

    Urea is one of the dominant organic nitrogenous compounds in the oligotrophic oceans. Compared to the knowledge of nitrogen transformation of nitrogen fixation, ammonia oxidization, nitrate and nitrite reduction mediated by sponge-associated microbes, our knowledge of urea utilization in sponges and the phylogenetic diversity of sponge-associated microbes with urea utilization potential is very limited. In this study, Marinobacter litoralis isolated from the marine sponge Xestospongia testudinaria and the slurry of X. testudinaria were found to have urease activity. Subsequently, phylogenetically diverse bacterial ureC genes were detected in the total genomic DNA and RNA of sponge X. testudinaria, i.e., 19 operative taxonomic units (OTUs) in genomic DNA library and 8 OTUs in cDNA library at 90% stringency. Particularly, 6 OTUs were common to both the genomic DNA library and the cDNA library, which suggested that some ureC genes were expressed in this sponge. BLAST and phylogenetic analysis showed that most of the ureC sequences were similar with the urease alpha subunit of members from Proteobacteria, which were the predominant component in sponge X. testudinaria, and the remaining ureC sequences were related to those from Magnetococcus, Cyanobacteria, and Actinobacteria. This study is the first assessment of the role of sponge bacterial symbionts in the regenerated utilization of urea by the detection of transcriptional activity of ureC gene, as well as the phylogenetic diversity of ureC gene of sponge bacterial symbionts. The results suggested the urea utilization by bacterial symbionts in marine sponge X. testudinaria, extending our understanding of nitrogen cycling mediated by sponge-associated microbiota. PMID:23741404

  8. Fluoroquinolones compared with ?-lactam antibiotics for the treatment of acute bacterial sinusitis: a meta-analysis of randomized controlled trials

    PubMed Central

    Karageorgopoulos, Drosos E.; Giannopoulou, Konstantina P.; Grammatikos, Alexandros P.; Dimopoulos, George; Falagas, Matthew E.

    2008-01-01

    Background The presumed superiority of newer fluoroquinolones for the treatment of acute bacterial sinusitis is based on laboratory data but has not yet been established on clinical grounds. Methods We performed a meta-analysis of randomized controlled trials comparing the effectiveness and safety of fluoroquinolones and ?-lactams in acute bacterial sinusitis. Results We identified 8 randomized controlled trials investigating the newer “respiratory” fluoroquinolones moxifloxacin, levofloxacin and gatifloxacin. In the primary effectiveness analysis involving 2133 intention-to-treat patients from 5 randomized controlled trials, the extent of clinical cure and improvement did not differ between fluoroquinolones and ?-lactams (odds ratio [OR] 1.09, 95% confidence interval [CI] 0.85–1.39) at the test-of-cure assessment, which varied from 10 to 31 days after the start of treatment. Fluoroquinolones were associated with an increased chance of clinical success among the clinically evaluable patients in all of the randomized controlled trials (OR 1.29, 95% CI 1.03–1.63) and in 4 blinded randomized controlled trials (OR 1.45, 95% CI 1.05–2.00). There was no statistically significant difference between fluoroquinolones and amoxicillin–clavulanate (OR 1.24, 95% CI 0.93–1.65). Eradication or presumed eradication of the pathogens isolated before treatment was more likely with fluoroquinolone treatment than with ?-lactam treatment (OR 2.11, 95% CI 1.09–4.08). In the primary safety analysis, adverse events did not differ between treatments (OR 1.17, 95% CI 0.86–1.59). However, more adverse events occurred with fluoroquinolone use than with ?-lactam use in 2 blinded randomized controlled trials. The associations described here were generally consistent when we included 3 additional studies involving other fluoroquinolones (ciprofloxacin and sparfloxacin) in the analysis. Interpretation In the treatment of acute bacterial sinusitis, newer fluoroquinolones conferred no benefit over ?-lactam antibiotics. The use of fluoroquinolones as first-line therapy cannot be endorsed. PMID:18362380

  9. Seasonal Variations of Virus Abundance and Viral Control of the Bacterial Production in a Backwater System of the Danube River

    PubMed Central

    Mathias, C. B.; Kirschner, A.; Velimirov, B.

    1995-01-01

    The abundance of virus-like particles in a backwater system of the Danube River covered a range of 1.2 x 10(sup7) to 6.1 x 10(sup7) ml(sup-1) from 1992 to 1993. Measurements of head diameters for these particles, all of which were presumed to be viruses, led to four defined size classes, ranging from <60 nm to >150 nm. The 60- to <90-nm size class contained the largest fraction of total particles (41%), followed by the 90- to <150-nm size class (33%). The frequency of size classes was not significantly different between the two years. The frequency of bacteria with mature phages ranged from 1 to 4% over the seasons, with mean burst sizes ranging from 17 to 36 phage per host cell. Among the bacterial morphotypes, rods and vibrios were the major host systems for phages, while coccoid and filamentous cells were considered negligible. Counts from transmission electron microscopy and acridine orange direct counts confirmed that rods and vibrios accounted for 85 to 95% of the bacterial population over the seasons. Virus decay experiments showed lower decay rates for temperatures between 5 and 15(deg)C (52 to 70% of the virus population remained) relative to 18 and 25(deg)C (31 to 51% of the virus remained). Bacterial production measurements, performed at the same time and under the same conditions as decay experiments, allowed us to estimate virus-induced death rates, which ranged from 15.8 to 30.1% over the year, with an average of 20% viral control of the bacterial production. Considering that mature phage particles are visible only in the last phase of the latent period and using a mean conversion factor of 5.4 from the literature, based on descriptions of various phage host systems to relate the percentage of visibly infected cells to the total percentage of the bacterial community that is phage infected, we estimate that some 5.4 to 21.6% of the bacterial population is infected with viruses. This would imply that virus-induced death rates of bacteria range from 10.8 to 43.2%. The data on virus-induced bacterial mortality obtained by both the viral decay method and the determination of the frequency of infected cells are compared and discussed. PMID:16535153

  10. Molecular biology of bacterial bioluminescence.

    PubMed Central

    Meighen, E A

    1991-01-01

    The cloning and expression of the lux genes from different luminescent bacteria including marine and terrestrial species have led to significant advances in our knowledge of the molecular biology of bacterial bioluminescence. All lux operons have a common gene organization of luxCDAB(F)E, with luxAB coding for luciferase and luxCDE coding for the fatty acid reductase complex responsible for synthesizing fatty aldehydes for the luminescence reaction, whereas significant differences exist in their sequences and properties as well as in the presence of other lux genes (I, R, F, G, and H). Recognition of the regulatory genes as well as diffusible metabolites that control the growth-dependent induction of luminescence (autoinducers) in some species has advanced our understanding of this unique regulatory mechanism in which the autoinducers appear to serve as sensors of the chemical or nutritional environment. The lux genes have now been transferred into a variety of different organisms to generate new luminescent species. Naturally dark bacteria containing the luxCDABE and luxAB genes, respectively, are luminescent or emit light on addition of aldehyde. Fusion of the luxAB genes has also allowed the expression of luciferase under a single promoter in eukaryotic systems. The ability to express the lux genes in a variety of prokaryotic and eukaryotic organisms and the ease and sensitivity of the luminescence assay demonstrate the considerable potential of the widespread application of the lux genes as reporters of gene expression and metabolic function. Images PMID:2030669

  11. Gene Control by Large Noncoding RNAs

    NSDL National Science Digital Library

    Ilya Shamovsky (NY; New York University Medical Center, New York REV)

    2006-10-03

    Large noncoding RNAs (lncRNAs) have emerged as key players in regulating various fundamental cellular processes. Recent reports identify a functional lncRNA, Evf-2, that operates during development to control the expression of specific homeodomain proteins, and they provide important insights into the mechanism of cooperation between a newly discovered nuclear receptor co-repressor protein (SLIRP) and steroid receptor activator RNA. Evf-2 is the first example of lncRNA directly involved in organogenesis in vertebrates.

  12. Multiple regulatory genes control expression of a gene family during development of Dictyostelium discoideum.

    PubMed

    Alexander, S; Cibulsky, A M; Cuneo, S D

    1986-12-01

    Mutant strains of Dictyostelium discoideum carrying dis mutations fail to transcribe specifically the family of developmentally regulated discoidin lectin genes during morphogenesis. The phenotypes of these mutants strongly suggested that the mutations reside in regulatory genes. Using these mutant strains, we showed that multiple regulatory genes are required for the expression of the lectin structural genes and that these regulatory genes (the dis+ alleles) act in trans to regulate this gene family. These regulatory genes fall into two complementation groups (disA and disB) and map to linkage groups II and III, respectively. A further regulatory locus was defined by the identification of an unlinked supressor gene, drsA (discoidin restoring), which is epistatic to disB, but not disA, and results in the restoration of lectin expression in cells carrying the disB mutation. Mutant cells carrying the drsA allele express the discoidin lectin gene family during growth and development, in contrast to wild-type cells which express it only during development. Therefore, the suppressor activity of the drsA allele appears to function by making the expression of the discoidin lectins constitutive and no longer strictly developmentally regulated. The data indicate that normal expression of the discoidin lectins is dependent on the sequential action of the disB+, drsA+, and disA+ gene products. Thus, we described an interacting network of regulatory genes which in turn controls the developmental expression of a family of genes during the morphogenesis of D. discoideum. PMID:3796605

  13. Abundance and Diversity of Bacterial Nitrifiers and Denitrifiers and Their Functional Genes in Tannery Wastewater Treatment Plants Revealed by High-Throughput Sequencing

    PubMed Central

    Wang, Zhu; Zhang, Xu-Xiang; Lu, Xin; Liu, Bo; Li, Yan; Long, Chao; Li, Aimin

    2014-01-01

    Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs) due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB) amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment. PMID:25420093

  14. Molecular identification of bacterial 16S ribosomal RNA gene in liver tissue of primary biliary cirrhosis: Is Propionibacterium acnes involved in granuloma formation?

    Microsoft Academic Search

    Kenichi Harada; Koichi Tsuneyama; Yoshiko Sudo; Shinji Masuda; Yasuni Nakanuma

    2001-01-01

    The etiopathogenesis of primary biliary cirrhosis (PBC) remains speculative. Epithelioid granulomas are often found in the vicinity of damaged interlobular bile ducts in PBC, raising the possibility of a reaction to microbial materials. In this study, we tried to detect and identify bacterial DNA within granulomatous lesions in PBC. Using liver sections from 9 patients with PBC and 13 control

  15. Inheritance and identification of SCAR marker linked to bacterial wilt-resistance in eggplant

    Microsoft Academic Search

    Cao Bi-hao; Lei Jian-jun; Wang Yong; Chen Guo-ju

    2009-01-01

    In the present work, the combinations (F1) were crossed between highly resistant and susceptible to bacterial wilt eggplant parents and its F2, BC1 segregation population plants were inoculated with race1 of Ralstonia solanacearum in greenhouse. In this paper, we reported that the inheritance of bacterial wilt resistance in eggplant was controlled by a single dominant gene showing Mendelian inheritance model.

  16. Efficiency of ciprofloxacin for bacterial control, post-thaw quality, and in vivo fertility of buffalo spermatozoa.

    PubMed

    Akhter, S; Ansari, M S; Rakha, B A; Andrabi, S M H; Qadeer, S; Iqbal, R; Ullah, N

    2013-09-01

    Ciprofloxacin (CP) was evaluated for bacterial control, post-thaw quality, and fertility of buffalo semen. Pseudomonas aeruginosa, Escherichia coli, Proteus sp., Corynebacterium sp., Micrococcus sp., and Staphylococcus sp. were isolated from buffalo semen. Pseudomonas aeruginosa, Corynebacterium sp., and Micrococcus sp. were resistant to streptomycin, whereas P. aeruginosa and Proteus sp. were resistant to penicillin. All bacteria were susceptible to CP. In vitro dose toxicity was assessed in sodium citrate buffer containing 0, 200 to 2000 ?g/mL of CP. CP up to 1000 ?g/mL was found nontoxic to motility and viability of buffalo sperm. For post-thaw quality, buffalo semen was frozen in Tris-citric acid extender containing streptomycin-penicillin (SP; 1000 ?g/mL-1000 IU/mL) or CP 600 ?g/mL and was assessed for total aerobic bacterial count (post-thaw), motility, plasma membrane integrity, viability at 0, 2, and 4 hours post-thaw. At 4 hours post-thaw, plasma membrane integrity (%) was higher (P < 0.05) in extender containing CP than SP. Total aerobic bacterial count was 0.00 in extender containing CP compared with 0.07 × 10(4) cfu/mL with SP. To assess the in vivo fertility rate, semen (two bulls) frozen in Tris-citric acid extender containing SP or CP was used to inseminate, and 400 inseminations (200/group) were recorded. Higher (P ? 0.05) fertility rate was recorded with CP (55%) compared with SP (41%). In conclusion, use of CP in extender was efficient to control the bacterial contamination without compromising the post-thaw quality and fertility of cryopreserved water buffalo bull semen. PMID:23746693

  17. [MADS-box genes controlling inflorescence morphogenesis in sunflower].

    PubMed

    Shul'ga, O A; Shennikova, A V; Angenent, G S; Skriabin, K G

    2008-01-01

    MADS-box genes play an important role in plant ontogeny, particularly, in the regulation of floral organ induction and development. Eight full-length cDNAs of HAM (Helianthus annuus MADS) genes have been isolated from sunflower. They encode MADS-box transcription factors expressed in inflorescence tissues. In the frames of the ABCDE model, the HAM proteins were classified according to their structural homology to known MADS-box transcription factors. The HAM45 and HAM59 genes encode the homeotic C function and are involved in the control of the identity of pistil and stamens, while the HAM75 and HAM92 genes determine the A identity of floral and inflorescence meristems and petal identity. The HAM31. HAM2, HAM63, and HAM91 genes encode the B function and are involved in the formation of petals and stamens; and the HAM137 gene encodes the E function. Analysis of the expression of MADS-box genes in sunflower has demonstrated that the structural and functional differences between the ray and tubular flowers in the inflorescence could be a consequence of the lack of HAM59 expression during ray flower initiation. PMID:18409375

  18. Linear Control Theory for Gene Network Modeling

    PubMed Central

    Shin, Yong-Jun; Bleris, Leonidas

    2010-01-01

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks. PMID:20862288

  19. Bacterial diversity in paclobutrazol applied agricultural soils.

    PubMed

    Lin, Chorng-Horng; Kuo, Jimmy; Wang, Yen-Wen; Chen, Michael; Lin, Chin-Ho

    2010-10-01

    The aim of this study was to investigate the bacterial communities on paclobutrazol [(2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4-triazol-1-yl) pentan-3-ol]-applied agricultural soils by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplified 16S rDNA gene fragments. Three different agricultural soil samples were collected from paclobutrazol applied mango and waxapple orchards, peanut fields and untreated rice fields as a control for DGGE analysis. The DGGE pattern of PCR- generated 16S rDNA gene fragments indicated that the bacterial populations from four paclobutrazol-applied soils of peanut fields were closely related to each other and two paclobutrazol-applied soils of mango and waxapple orchards harbored closely related bacterial communities. But, paclobutrazol-free agricultural soils comprised relatively a different bacterial group. However, the bacterial populations of mango and waxapple orchard are completely different from the bacterial communities of peanut field. Further purification and sequence analysis of 40 DGGE bands followed by phylogenetic tree assay showed similar results that soil bacteria from paclobutrazol applied mango and waxapple orchard are phylogenetically related. Based on the phylogenetic analysis, the clone M-4 was clad 100 % (bootstrap value) with Mycobacterium sp. The Mycobacterium sp. has been proved to degrade the phenolic compounds such as phenol, 4-chlorphenol, 2,4-dichlorophenol and paclobutrazol molecule containing chlorobenzene ring. PMID:20845182

  20. Transcriptional Control in the Segmentation Gene Network of Drosophila

    Microsoft Academic Search

    Mark D. Schroeder; Michael Pearce; John Fak; HongQing Fan; Ulrich Unnerstall; Eldon Emberly; Nikolaus Rajewsky; Eric D. Siggia; Ulrike Gaul

    2004-01-01

    The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross-) regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules) with excellent success and predicts many novel modules

  1. Fusogenic liposome delivers encapsulated nanoparticles for cytosolic controlled gene release

    Microsoft Academic Search

    Jun Kunisawa; Takashi Masuda; Kazufumi Katayama; Tomoaki Yoshikawa; Yasuo Tsutsumi; Mitsuru Akashi; Tadanori Mayumi; Shinsaku Nakagawa

    2005-01-01

    Therapeutic agents based on DNA or RNA oligonucleotides (e.g., antisense DNA oligonucleotide, small interfering RNA) require a regulation of their kinetics in cytoplasm to maintain an optimal concentration during the treatment period. In this respect, delivery of functional nanoparticles containing these drugs into cytoplasm has been thought to have a potential for the cytosolic controlled gene release. In this study,

  2. Control of bacterial pathogens, associated with fish diseases, by antagonistic marine actinomycetes isolated from marine sediments

    Microsoft Academic Search

    R Patil; G Jeyasekaran; S A Shanmugam; R Jeya Shakila

    Actinomycetes were isolated from different marine samples collected from various stations along the Tuticorin coast. About 133 cultures of actinomycetes were isolated from 129 marine samples. Of the 104 isolates of actinomycetes screened for their inhibitory activity against the bacterial pathogens associated with fish diseases viz. Aeromonas hydrophila, A. sobria and Edwardsiella tarda, 77 isolates were found to be inhibitory

  3. Top-down Controls on Bacterial Transport in Oxic and Suboxic Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Choi, K.; Dobbs, F. C.

    2001-12-01

    The purpose of this investigation was to assess the impact of top-down processes (protistan grazing and viral infection) on bacterial transport through a shallow, unconfined, sandy aquifer at the Department of Energy study site in Oyster, Virginia. A cultured, adhesion-deficient, viably stained, indigenous bacterial strain (DA001) was injected during a field experiment performed at an oxic site in October 1999, while DA001 and an iron-reducing bacterial strain (OY107) were co-injected at a nearby suboxic site in July 2001. Groundwater samples were collected before and after injection and abundance of protists and virus-like particles (the latter at the oxic site only) was determined. Three major groups of protists (flagellates, amoebae, and ciliates) were found at both sites during the experiments, with flagellate abundance greatly dominating the others. Following bacterial injections, concentrations up to 5000 and 3000 protists per ml were observed at the oxic and suboxic sites, respectively. However, removal of bacteria in groundwater by predation, estimated with a mass balance approach, was apparently minimal. Elevated hydraulic gradients during the injections may explain the estimated low impact of predation. The abundance of virus-like particles increased as much as six-fold in the month following injection of DA001 at the oxic site, yet plaque assays revealed no evidence supporting lytic infection of the injected bacteria.

  4. Inconsequential Effect of Nutritional Treatments on Huanglongbing Control, Fruit Quality, Bacterial Titer and Disease Progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of an enhanced nutritional programs (ENPs) to minimize the deleterious effects of the vector transmitted bacterial disease, citrus huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (Las), has been a topic of considerable discussion and debate since the discovery of HLB in Flori...

  5. Elevated gene expression of S100A12 is correlated with the predominant clinical inflammatory factors in patients with bacterial pneumonia.

    PubMed

    Hou, Fei; Wang, Likui; Wang, Hong; Gu, Junchao; Li, Meiling; Zhang, Jingkai; Ling, Xiao; Gao, Xiaofang; Luo, Cheng

    2015-06-01

    Inflammation is the predominant characteristic of pneumonia. The present study aimed to to identify a faster and more reliable novel inflammatory marker for the diagnosis of pneumonia. The expression of the S100A12 gene was analyzed by reverse transcription quantitative polymerase chain reaction in samples obtained from 46 patients with bacterial pneumonia and other infections, compared with samples from 20 healthy individuals, using the 2???Ct method. The expression levels of S100A12 were increased in 12 patients with bacterial pneumonia. Compared with clinical inflammatory data, a positive correlation was observed between the expression of the S100A12 gene and levels of white blood cells, C?reactive protein (CRP), thrombocytocrit, neutrophils, erythrocyte sedimentation and soterocytes, and an inverse correlation was observed with the width of red blood cell volume distribution and platelet distribution, monocytes and hemoglobin, using Pearson's product?moment correlation method. The P?value of CRP and erythrocyte sedimentation were revealed to be statistically significant (P<0.05). A sporadic distribution of S100A12 was observed in a heatmap among the patients with different infections and bacterial pneumonia. Furthermore, the expression of S100A12 occurred in parallel to the number of clumps of inflamed tissue observed in chest computed tomography and X?ray. The value of gene expression of S100A12 (>1.0) determined using the 2???Ct method was associated with more severe respiratory diseases in the patients compromised by bacterial pneumonia, sepsis and pancreatitis. These findings suggested that S100A12 is an effective marker for inflammatory diseases. PMID:25650963

  6. Remote detection of human toxicants in real time using a human-optimized, bioluminescent bacterial luciferase gene cassette bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan; Webb, James; Ripp, Steven; Patterson, Stacey; Sayler, Gary

    2012-06-01

    Traditionally, human toxicant bioavailability screening has been forced to proceed in either a high throughput fashion using prokaryotic or lower eukaryotic targets with minimal applicability to humans, or in a more expensive, lower throughput manner that uses fluorescent or bioluminescent human cells to directly provide human bioavailability data. While these efforts are often sufficient for basic scientific research, they prevent the rapid and remote identification of potentially toxic chemicals required for modern biosecurity applications. To merge the advantages of high throughput, low cost screening regimens with the direct bioavailability assessment of human cell line use, we re-engineered the bioluminescent bacterial luciferase gene cassette to function autonomously (without exogenous stimulation) within human cells. Optimized cassette expression provides for fully endogenous bioluminescent production, allowing continuous, real time monitoring of the bioavailability and toxicology of various compounds in an automated fashion. To access the functionality of this system, two sets of bioluminescent human cells were developed. The first was programed to suspend bioluminescent production upon toxicological challenge to mimic the non-specific detection of a toxicant. The second induced bioluminescence upon detection of a specific compound to demonstrate autonomous remote target identification. These cells were capable of responding to ?M concentrations of the toxicant n-decanal, and allowed for continuous monitoring of cellular health throughout the treatment process. Induced bioluminescence was generated through treatment with doxycycline and was detectable upon dosage at a 100 ng/ml concentration. These results demonstrate that leveraging autonomous bioluminescence allows for low-cost, high throughput direct assessment of toxicant bioavailability.

  7. Nature's choice of genes controlling chronic inflammation.

    PubMed

    Holmdahl, R

    2006-01-01

    Inflammation is a physiological response that may go uncontrolled and thereby develop in a chronic way. This seems to happen in many common diseases of autoimmune, degenerative, or allergic character. Rheumatoid arthritis (RA) is by definition a chronic disease with an autoimmune inflammatory attack on diarthrodial cartilaginous joints. The development of new treatment neutralizing cytokines involved in the inflammatory attack has given relief and gives the promise of more effective treatment of already established disease. It is now time to set our eyes on a new vision to develop preventive and curative treatment based on knowledge of the unique and causative pathogenic mechanisms. To do this we believe it is important to identify the natural-selected polymorphisms that are associated with disease. These have proven to be extremely difficult to identify in complex diseases such as RA, but using animal models, this work is closer to reality. Animal models have recently been developed mimicking various aspects of the human disease. We will present an example in which a genetic polymorphism associated with the development of arthritis has been identified. On the basis of this finding, a new pathway involving control of immune tolerance by reactive oxidative species has been identified and a new class of antiinflammatory agents activating the induced oxidative burst protein complex is suggested. PMID:17824178

  8. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments.

    PubMed

    Stamper, David M; Walch, Marianne; Jacobs, Rachel N

    2003-02-01

    The bacterial population of a graywater treatment system was monitored over the course of 100 days, along with several wastewater biochemical parameters. The graywater treatment system employed an 1,800-liter membrane bioreactor (MBR) to process the waste, with essentially 100% recycling of the biomass. Graywater feed consisting of 10% galley water and 90% laundry water, selected to approximate the graywater composition on board U.S. Navy ships, was collected offsite. Five-day biological oxygen demand (BOD(5)), oils and greases (O/G), nitrogen, and phosphorus were monitored in the feed and were found to vary greatly day to day. Changes in the bacterial population were monitored by PCR amplification of region 332 to 518 (Escherichia coli numbering) of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analysis of the resultant PCR products. DGGE analysis indicated a diverse and unstable bacterial population throughout the 100-day period, with spikes in feed strength causing significant changes in community structure. Long-term similarity between the communities was 0 to 25%, depending on the method of analysis. In spite of the unstable bacterial population, the MBR system was able to meet effluent quality parameters approximately 90% of the time. PMID:12571004

  9. Intrapulmonary tumor necrosis factor gene therapy increases bacterial clearance and survival in murine gram-negative pneumonia.

    PubMed

    Standiford, T J; Wilkowski, J M; Sisson, T H; Hattori, N; Mehrad, B; Bucknell, K A; Moore, T A

    1999-04-10

    Tumor necrosis factor alpha (TNF) has been shown to be an essential cytokine mediator of innate immunity in bacterial pneumonia. To augment the expression of TNF within the lung, a recombinant adenoviral vector containing the murine TNF cDNA (Ad5mTNF) has been developed, and the intratracheal administration of this vector resulted in the dose- and time-dependent expression of TNF in the lung, but not systemically. Administration of Ad5mTNF resulted in significant airspace and peribronchial inflammation, with a predominant neutrophil influx by 2 days, and mononuclear cell infiltrates by 4 to 7 days posttreatment. Importantly, the administration of Ad5mTNF at a dose of 1 x 10(8) PFU significantly improved the survival of animals challenged concomitantly with Klebsiella pneumoniae, which occurred in association with enhanced clearance of bacteria from the lung and decreased dissemination of K. pneumoniae to the bloodstream. However, the delivery of higher doses of Ad5mTNF (5 x 10(8) PFU) was not beneficial and in fact the intratracheal administration of a similar dose of control vector (Ad5LacZ) actually enhanced Klebsiella-induced lethality by impairing clearance of K. pneumoniae from the lung. Our studies suggests that the transient transgenic expression of TNF within the lung dose dependently augments antibacterial host defense in murine Klebsiella pneumonia. PMID:10223724

  10. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene.

    PubMed Central

    Faris, Justin D; Fellers, John P; Brooks, Steven A; Gill, Bikram S

    2003-01-01

    The Q locus played a major role in the domestication of wheat because it confers the free-threshing character and influences many other agronomically important traits. We constructed a physical contig spanning the Q locus using a Triticum monococcum BAC library. Three chromosome walking steps were performed by complete sequencing of BACs and identification of low-copy markers through similarity searches of database sequences. The BAC contig spans a physical distance of approximately 300 kb corresponding to a genetic distance of 0.9 cM. The physical map of T. monococcum had perfect colinearity with the genetic map of wheat chromosome arm 5AL. Recombination data in conjunction with analysis of fast neutron deletions confirmed that the contig spanned the Q locus. The Q gene was narrowed to a 100-kb segment, which contains an APETALA2 (AP2)-like gene that cosegregates with Q. AP2 is known to play a major role in controlling floral homeotic gene expression and thus is an excellent candidate for Q. PMID:12750342

  11. Bacterial diversity and real-time PCR based assessment of linA and linB gene distribution at hexachlorocyclohexane contaminated sites.

    PubMed

    Lal, Devi; Jindal, Swati; Kumari, Hansi; Jit, Simran; Nigam, Aeshna; Sharma, Pooja; Kumari, Kirti; Lal, Rup

    2015-03-01

    The disposal of hexachlorocyclohexane (HCH) muck has created large number of HCH dumpsites all over the world from where the harmful HCH isomers are leaking into the environment. Bacteria have evolved at such contaminated sites that have the ability to degrade HCH. Degradation of various HCH isomers in bacterial strains is mediated primarily by two genes: linA and linB which encode dehydrochlorinase and haloalkane dehalogenase respectively. In this study we explored one such highly contaminated HCH dumpsite located in Lucknow, Uttar Pradesh, India. To assess the biostimulation potential of the contaminated site, microbial diversity study and real-time PCR based quantification of lin genes was carried out. The soil samples from dumpsite and surrounding areas were found to be highly contaminated with HCH residue levels as high as 1.8?×?10(5) ?mg?kg(-1) . The residues were detected in areas upto 13?km from the dumpsite. Sphingomonads, Chromohalobacter, and Marinobacter were the dominant genera present at the dump-site. Role of Sphingomonads in HCH degradation has been well documented. The highest copy numbers of linA and linB genes as determined using real-time PCR were 6.2?×?10(4) and 5.3?×?10(5) , respectively, were found in sample from the dump site. The presence of Sphingomonads, linA, and linB genes from HCH contaminated soil indicates the presence of indigenous bacterial communities capable of HCH degradation. PMID:24002962

  12. The waaL gene is involved in lipopolysaccharide synthesis and plays a role on the bacterial pathogenesis of avian pathogenic Escherichia coli.

    PubMed

    Han, Yue; Han, Xiangan; Wang, Shaohui; Meng, Qingmei; Zhang, Yuxi; Ding, Chan; Yu, Shengqing

    2014-08-27

    Avian pathogenic Escherichia coli (APEC) is a Gram-negative bacterium that causes avian colibacillosis, resulting in economically devastating to poultry industries worldwide. Lipopolysaccharide (LPS) has been identified as an important virulence factor of E. coli. The waaL gene encodes O-antigen ligase, which is responsible for attaching the O-antigen to lipid A-core oligosaccharide. In this study, a mutant strain ?waaL was constructed from APEC serotype 2 strain DE17. The mutant strain showed a decreased swimming motility and resistance to complement-mediated killing but a similar growth rate in the culture, compared with its parent strain. In addition, the mutant LPS demonstrated different patterns in SDS-PAGE followed by silver staining and western blotting. Besides, the mutant strain significantly decreased its adherence and invasion abilities to DF-1 cells, compared to its parent strain DE17. Deletion of the waaL gene in DE17 reduced the bacterial virulence by 42.2-fold in ducklings, based on measurement of the median lethal dose (LD50). Additional analysis indicated that deletion of the waaL gene increased the biofilm formation ability and reduced the resistance to environmental stress. These results suggest that the waaL gene functions on the APEC LPS synthesis and bacterial pathogenesis. PMID:24970366

  13. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    PubMed Central

    2012-01-01

    Background Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both a hemibiotrophic oomycete pathogen, P. sojae and a necrotrophic fungal pathogen, F. virguliforme that cause diseases in soybean. However, this gene does not play any role in the immunity of Arabidopsis to the bacterial pathogen, P. syringae pv. glycinea, which causes bacterial blight in soybean. Identification and further characterization of the PSS1 gene would provide further insights into a new form of nonhost resistance in Arabidopsis, which could be utilized in improving resistance of soybean to two serious pathogens. PMID:22694952

  14. Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2,3-dioxygenase genes in contaminated soils.

    PubMed

    Olapade, Ola A; Ronk, Adam J

    2015-01-01

    Indigenous bacterial assemblages with putative hydrocarbon-degrading capabilities were isolated, characterized and screened for the presence of the catechol-2,3-dioxygenase (C23O) gene after exposure to toluene in two different (i.e., pristine and conditioned) soil communities. The indigenous bacterial populations were exposed to the hydrocarbon substrate by the addition of toluene concentrations, ranging from 0.5 % to 10 % V/W in 10 g of each soil and incubated at 30 °C for upwards of 12 days. In total, 25 isolates (11 in pristine soil and 14 in conditioned soil) were phenotypically characterized according to standard microbiological methods and also screened for the 238-bp C23O gene fragment. Additionally, 16S rRNA analysis of the isolates identified some of them as belonging to the genera Bacillus, Exiguobacterium, Enterobacter, Pseudomonas and Stenotrophomonas. Furthermore, the two clone libraries that were constructed from these toluene-contaminated soils also revealed somewhat disparate phylotypes (i.e., 70 % Actinobacteria and Firmicutes to 30 % Proteobacteria in conditioned soil, whereas in pristine soil: 66 % Actinobacteria and Firmicutes; 21 % Proteobacteria and 13 % Bacteroidetes). The differences observed in bacterial phylotypes between these two soil communities may probably be associated with previous exposure to hydrocarbon sources by indigenous populations in the conditioned soil as compared to the pristine soil. PMID:25052383

  15. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    PubMed

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment. PMID:23542624

  16. Mountain Pine Beetles Colonizing Historical and Naïve Host Trees Are Associated with a Bacterial Community Highly Enriched in Genes Contributing to Terpene Metabolism

    PubMed Central

    Adams, Aaron S.; Aylward, Frank O.; Adams, Sandye M.; Erbilgin, Nadir; Aukema, Brian H.; Currie, Cameron R.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment. PMID:23542624

  17. Artificially Constructed Quorum-Sensing Circuits Are Used for Subtle Control of Bacterial Population Density

    PubMed Central

    Wang, Zhaoshou; Wu, Xin; Peng, Jianghai; Hu, Yidan; Fang, Baishan; Huang, Shiyang

    2014-01-01

    Vibrio fischeri is a typical quorum-sensing bacterium for which lux box, luxR, and luxI have been identified as the key elements involved in quorum sensing. To decode the quorum-sensing mechanism, an artificially constructed cell–cell communication system has been built. In brief, the system expresses several programmed cell-death BioBricks and quorum-sensing genes driven by the promoters lux pR and PlacO-1 in Escherichia coli cells. Their transformation and expression was confirmed by gel electrophoresis and sequencing. To evaluate its performance, viable cell numbers at various time periods were investigated. Our results showed that bacteria expressing killer proteins corresponding to ribosome binding site efficiency of 0.07, 0.3, 0.6, or 1.0 successfully sensed each other in a population-dependent manner and communicated with each other to subtly control their population density. This was also validated using a proposed simple mathematical model. PMID:25119347

  18. Small Genes under Sporulation Control in the Bacillus subtilis genome? †

    PubMed Central

    Schmalisch, Matthias; Maiques, Elisa; Nikolov, Lachezar; Camp, Amy H.; Chevreux, Bastien; Muffler, Andrea; Rodriguez, Sabrina; Perkins, John; Losick, Richard

    2010-01-01

    Using an oligonucleotide microarray, we searched for previously unrecognized transcription units in intergenic regions in the genome of Bacillus subtilis, with an emphasis on identifying small genes activated during spore formation. Nineteen transcription units were identified, 11 of which were shown to depend on one or more sporulation-regulatory proteins for their expression. A high proportion of the transcription units contained small, functional open reading frames (ORFs). One such newly identified ORF is a member of a family of six structurally similar genes that are transcribed under the control of sporulation transcription factor ?E or ?K. A multiple mutant lacking all six genes was found to sporulate with slightly higher efficiency than the wild type, suggesting that under standard laboratory conditions the expression of these genes imposes a small cost on the production of heat-resistant spores. Finally, three of the transcription units specified small, noncoding RNAs; one of these was under the control of the sporulation transcription factor ?E, and another was under the control of the motility sigma factor ?D. PMID:20709900

  19. Small genes under sporulation control in the Bacillus subtilis genome.

    PubMed

    Schmalisch, Matthias; Maiques, Elisa; Nikolov, Lachezar; Camp, Amy H; Chevreux, Bastien; Muffler, Andrea; Rodriguez, Sabrina; Perkins, John; Losick, Richard

    2010-10-01

    Using an oligonucleotide microarray, we searched for previously unrecognized transcription units in intergenic regions in the genome of Bacillus subtilis, with an emphasis on identifying small genes activated during spore formation. Nineteen transcription units were identified, 11 of which were shown to depend on one or more sporulation-regulatory proteins for their expression. A high proportion of the transcription units contained small, functional open reading frames (ORFs). One such newly identified ORF is a member of a family of six structurally similar genes that are transcribed under the control of sporulation transcription factor ?(E) or ?(K). A multiple mutant lacking all six genes was found to sporulate with slightly higher efficiency than the wild type, suggesting that under standard laboratory conditions the expression of these genes imposes a small cost on the production of heat-resistant spores. Finally, three of the transcription units specified small, noncoding RNAs; one of these was under the control of the sporulation transcription factor ?(E), and another was under the control of the motility sigma factor ?(D). PMID:20709900

  20. A genetic switch: Gene control and phage. lambda

    SciTech Connect

    Ptashne, M.

    1986-01-01

    This book examines the components of the molecular machinery regulating the gene expression of lambda phage; i.e., the operator and promoter DNA, the RNA polymerase and the two regulating proteins (lambda repressor and Cro). The molecular aspects of the operator DNA-regulatory protein interaction of the amino acid-base level are briefly discussed. Lambda growth, the control of transcription, integration, and excision, as well as possible connection to eukaryotic gene expression are summarized. Finally, the proof of the author's genetic switch theorem is discussed.

  1. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes.

    PubMed Central

    Zhou, J; Tang, X; Martin, G B

    1997-01-01

    In tomato, the Pto kinase confers resistance to bacterial speck disease by recognizing the expression of a corresponding avirulence gene, avrPto, in the pathogen Pseudomonas syringae pv. tomato. Using the yeast two-hybrid system, we have identified three genes, Pti4, Pti5 and Pti6, that encode proteins that physically interact with the Pto kinase. Pti4/5/6 each encode a protein with characteristics that are typical of transcription factors and are similar to the tobacco ethylene-responsive element-binding proteins (EREBPs). Using a gel mobility-shift assay, we demonstrate that, similarly to EREBPs, Pti4/5/6 specifically recognize and bind to a DNA sequence that is present in the promoter region of a large number of genes encoding 'pathogenesis-related' (PR) proteins. Expression of several PR genes and a tobacco EREBP gene is specifically enhanced upon Pto-avrPto recognition in tobacco. These observations establish a direct connection between a disease resistance gene and the specific activation of plant defense genes. PMID:9214637

  2. THE INABILITY OF A BACTERIAL LIPASE INHIBITOR TO CONTROL ACNE VULGARIS

    Microsoft Academic Search

    Leslie McCarty; Thomas Black; James E. Fulton Jr.

    1977-01-01

    The pathogenesis of acne is generally believed to involve the generation of fatty acids from sebum lipids by bacterial lipases. Following purification and characterization of these lipases a systematic study of inhibitors was undertaken. The class of halopyridyl phosphorus compounds, such as o,o-dimethyl-o-(3,5,6 trichloro-2-pyridyl) phosphate, fospirate, proved to be potent inhibitors in vitro at concentrations as low as 10?8 M.

  3. Evaluation of an avirulent strain of Pseudomonas solanacearum for biological control of bacterial wilt of potato

    Microsoft Academic Search

    Randy J. McLaughlin; Luis Sequeira I

    1988-01-01

    An avirulent strain ofPseudomonas solanacearum, B82, was tested for its ability to protect the potato cultivar, Ontario, from bacterial wilt caused by virulent strains\\u000a of this bacterium. Strain B82 was not antagonistic to 124 virulent strains ofP. solanacearum and was not bacteriocinogenic. When potato seedpieces were soaked for 5 hr in suspensions of B82 (108 to 109 cfu\\/ml), reduction in

  4. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice.

    PubMed

    Fagundes, Caio T; Amaral, Flávio A; Vieira, Angélica T; Soares, Adriana C; Pinho, Vanessa; Nicoli, Jacques R; Vieira, Leda Q; Teixeira, Mauro M; Souza, Danielle G

    2012-02-01

    Mammals are colonized by an astronomical number of commensal microorganisms on their environmental exposed surfaces. These symbiotic species build up a complex community that aids their hosts in several physiological activities. We have shown that lack of intestinal microbiota is accompanied by a state of active IL-10-mediated inflammatory hyporesponsiveness. The present study investigated whether the germfree state and its hyporesponsive phenotype alter host resistance to an infectious bacterial insult. Experiments performed in germfree mice infected with Klebsiella pneumoniae showed that these animals are drastically susceptible to bacterial infection in an IL-10-dependent manner. In germfree mice, IL-10 restrains proinflammatory mediator production and neutrophil recruitment and favors pathogen growth and dissemination. Germfree mice were resistant to LPS treatment. However, priming of these animals with several TLR agonists recovered their inflammatory responsiveness to sterile injury. LPS pretreatment also rendered germfree mice resistant to pulmonary K. pneumoniae infection, abrogated IL-10 production, and restored TNF-? and CXCL1 production and neutrophil mobilization into lungs of infected germfree mice. This effective inflammatory response mounted by LPS-treated germfree mice resulted in bacterial clearance and enhanced survival upon infection. Therefore, host colonization by indigenous microbiota alters the way the host reacts to environmental infectious stimuli, probably through activation of TLR-dependent pathways. Symbiotic gut colonization enables proper inflammatory response to harmful insults to the host, and increases resilience of the entire mammal-microbiota consortium to environmental pressures. PMID:22210917

  5. Motif for controllable toggle switch in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Bin, Ao; Ye, Weiming; Fan, Ying; Di, Zengru

    2015-02-01

    Toggle switch as a common phenomenon in gene regulatory networks has been recognized important for biological functions. Despite much effort dedicated to understanding the toggle switch and designing synthetic biology circuit to achieve the biological function, we still lack a comprehensive understanding of the intrinsic dynamics behind such phenomenon and the minimum structure that is imperative for producing toggle switch. In this paper, we discover a minimum structure, a motif that enables a controllable toggle switch. In particular, the motif consists of a transformative double negative feedback loop (DNFL) that is regulated by an additional driver node. By enumerating all possible regulatory configurations from the driver node, we identify two types of motifs associated with the toggle switch that is captured by the existence of bistable states. The toggle switch is controllable in the sense that the gap between the bistable states is adjustable as determined by the regulatory strength from the driver nodes. We test the effect of the motifs in self-oscillating gene regulatory network (SON) with respect to the interplay between the motifs and the other genes, and find that the switching dynamics of the whole network can be successfully controlled insofar as the network contains a single motif. Our findings are important to uncover the underlying nonlinear dynamics of controllable toggle switch and can have implications in devising biology circuit in the field of synthetic biology.

  6. Transcriptomics of the Rice Blast Fungus Magnaporthe oryzae in Response to the Bacterial Antagonist Lysobacter enzymogenes Reveals Candidate Fungal Defense Response Genes

    PubMed Central

    Mathioni, Sandra M.; Patel, Nrupali; Riddick, Bianca; Sweigard, James A.; Czymmek, Kirk J.; Caplan, Jeffrey L.; Kunjeti, Sridhara G.; Kunjeti, Saritha; Raman, Vidhyavathi; Hillman, Bradley I.; Kobayashi, Donald Y.; Donofrio, Nicole M.

    2013-01-01

    Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response. PMID:24098512

  7. Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis

    PubMed Central

    Verhelst, Rita; Verstraelen, Hans; Claeys, Geert; Verschraegen, Gerda; Delanghe, Joris; Van Simaey, Leen; De Ganck, Catharine; Temmerman, Marleen; Vaneechoutte, Mario

    2004-01-01

    Background The pathogenesis of bacterial vaginosis remains largely elusive, although some microorganisms, including Gardnerella vaginalis, are suspected of playing a role in the etiology of this disorder. Recently culture-independent analysis of microbial ecosystems has proven its efficacy in characterizing the diversity of bacterial populations. Here, we report on the results obtained by combining culture and PCR-based methods to characterize the normal and disturbed vaginal microflora. Results A total of 150 vaginal swab samples from healthy women (115 pregnant and 35 non-pregnant) were categorized on the basis of Gram stain of direct smear as grade I (n = 112), grade II (n = 26), grade III (n = 9) or grade IV (n = 3). The composition of the vaginal microbial community of eight of these vaginal swabs (three grade I, two grade II and three grade III), all from non-pregnant women, were studied by culture and by cloning of the 16S rRNA genes obtained after direct amplification. Forty-six cultured isolates were identified by tDNA-PCR, 854 cloned 16S rRNA gene fragments were analysed of which 156 by sequencing, yielding a total of 38 species, including 9 presumptively novel species with at least five species that have not been isolated previously from vaginal samples. Interestingly, cloning revealed that Atopobium vaginae was abundant in four out of the five non-grade I specimens. Finally, species specific PCR for A. vaginae and Gardnerella vaginalis pointed to a statistically significant co-occurrence of both species in the bacterial vaginosis samples. Conclusions Although historically the literature regarding bacterial vaginosis has largely focused on G. vaginalis in particular, several findings of this study – like the abundance of A. vaginae in disturbed vaginal microflora and the presence of several novel species – indicate that much is to be learned about the composition of the vaginal microflora and its relation to the etiology of BV. PMID:15102329

  8. Biogeochemical controls on the bacterial population in the eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Neogi, S. B.; Koch, B. P.; Schmitt-Kopplin, P.; Pohl, C.; Kattner, G.; Yamasaki, S.; Lara, R. J.

    2011-08-01

    Little is known about bacterial dynamics in the oligotrophic ocean, particularly about its cultivable population. We examined the abundance of total and cultivable bacteria in relation to changes in biogeochemical conditions in the eastern Atlantic Ocean with special regard to Vibrio spp., a group of bacteria that can cause diseases in human and aquatic organisms. Surface, deep water and plankton samples (<20 ?m, 20-55 ?m and >55 ?m) were collected between 50° N and 24° S. Chlorophyll-a was very low (<0.3 ?g l-1) in most areas of the nutrient-poor Atlantic, except at a few locations near upwelling regions. In surface water, dissolved organic carbon (DOC) and nitrogen (DON) concentrations were 64-95 ?M C and 2-10 ?M N accounting for ?90 % and ?76 % of total organic C and N, respectively. DOC and DON gradually decreased to ~45 ?M C and <5 ?M N in the bottom water while dissolved inorganic nutrients (Si, P, N) increased with depth. In the surface layer, culture independent total bacteria, represented by 4´-6-diamidino-2-phenylindole (DAPI) counts, ranged mostly between 107 and 108 cells l-1, while cultivable bacterial counts (CBC) and Vibrio spp. were found at concentrations of 104-107 and 102-105 colony forming units (CFU) l-1, respectively. Most bacteria (>99 %) were found in the nanoplankton fraction (<20 ?m), however, bacterial abundance did not correlate with suspended particulates (chlorophyll-a, particulate organic C and N). Instead, we found a highly significant correlation between bacterial abundance and temperature (p < 0.001) and a significant correlation with DOC and DON. Among the cultivable bacteria, the abundance of Vibrio was also highly significantly correlated with DOC and DON (p < 0.0005 and p < 0.005, respectively). In cold waters of the mid-pelagic and abyssal zones, CBC was 50 to 100-times lower than in the surface layer; however, cultivable Vibrio spp. could be isolated from the bathypelagic zone and even near the seafloor (average ~10 CFU l-1). In contrast, DAPI counts revealed a homogenous distribution of the non-cultivable bacterial population throughout the oceanic depths. Our study indicates that Vibrio and other bacteria may largely depend on dissolved organic matter to survive in nutrient-poor oceanic habitats, without being associated with plankton or particles.

  9. Bacterial Community Composition in Central European Running Waters Examined by Temperature Gradient Gel Electrophoresis and Sequence Analysis of 16S rRNA Genes? †

    PubMed Central

    Beier, Sara; Witzel, Karl-Paul; Marxsen, Jürgen

    2008-01-01

    The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions. PMID:18024682

  10. Bacterial community composition in Central European running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes.

    PubMed

    Beier, Sara; Witzel, Karl-Paul; Marxsen, Jürgen

    2008-01-01

    The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions. PMID:18024682

  11. Detection of Prosthetic Hip Infection at Revision Arthroplasty by Immunofluorescence Microscopy and PCR Amplification of the Bacterial 16S rRNA Gene

    PubMed Central

    Tunney, Michael M.; Patrick, Sheila; Curran, Martin D.; Ramage, Gordon; Hanna, Donna; Nixon, James R.; Gorman, Sean P.; Davis, Richard I.; Anderson, Neil

    1999-01-01

    In this study the detection rates of bacterial infection of hip prostheses by culture and nonculture methods were compared for 120 patients with total hip revision surgery. By use of strict anaerobic bacteriological practice during the processing of samples and without enrichment, the incidence of infection by culture of material dislodged from retrieved prostheses after ultrasonication (sonicate) was 22%. Bacteria were observed by immunofluorescence microscopy in 63% of sonicate samples with a monoclonal antibody specific for Propionibacterium acnes and polyclonal antiserum specific for Staphylococcus spp. The bacteria were present either as single cells or in aggregates of up to 300 bacterial cells. These aggregates were not observed without sonication to dislodge the biofilm. Bacteria were observed in all of the culture-positive samples, and in some cases in which only one type of bacterium was identified by culture, both coccoid and coryneform bacteria were observed by immunofluorescence microscopy. Bacteria from skin-flake contamination were readily distinguishable from infecting bacteria by immunofluorescence microscopy. Examination of skin scrapings did not reveal large aggregates of bacteria but did reveal skin cells. These were not observed in the sonicates. Bacterial DNA was detected in 72% of sonicate samples by PCR amplification of a region of the bacterial 16S rRNA gene with universal primers. All of the culture-positive samples were also positive for bacterial DNA. Evidence of high-level infiltration either of neutrophils or of lymphocytes or macrophages into associated tissue was observed in 73% of patients. Our results indicate that the incidence of prosthetic joint infection is grossly underestimated by current culture detection methods. It is therefore imperative that current clinical practice with regard to the detection and subsequent treatment of prosthetic joint infection be reassessed in the light of these results. PMID:10488193

  12. Transgenic regulation of moth chorion gene promoters in Drosophila: tissue, temporal, and quantitative control of four bidirectional promoters.

    PubMed

    Mitsialis, S A; Veletza, S; Kafatos, F C

    1989-12-01

    Bidirectional chorion gene promoter regions from three silkmoth species, Bombyx mori, Antheraea pernyi, or Antheraea polyphemus (members of two different moth families), were tested for their ability to transcriptionally activate a bacterial marker gene (chloramphenicol acetyltransferase) in transformant Drosophila. Relatively short 5' flanking DNA fragments (272-367 bp) of chorion gene pairs are sufficient to confer a high degree of tissue and choriogenic stage specificity of expression to the marker gene. Thus, significant conservation of molecular interactions controlling transcription during choriogenesis is observed between the distantly related orders, Lepidoptera and Diptera. However, quantitative and fine temporal regulation in the Drosophila host does not fully parallel the in situ regulation in moths, indicating that some regulatory protein-DNA interactions have diversified in the approximately 250 million years since the last common ancestor of these insect groups. Limited in vitro mutagenesis of a B. mori promoter DNA has shown that a central 189-bp region includes elements sufficient for the qualitative specificity of chorion-specific expression. The same experiments have shown that a previously identified essential element, centered on the TCACGT hexamer, is not sufficient for chorion-specific expression: an additional essential element or elements are found farther upstream, within a 112-bp DNA region. Comparisons of silkmoth and Drosophila chorion gene promoter sequences have identified some candidates for cis-acting elements involved in the developmental regulation of chorion gene expression. PMID:2559211

  13. Epigenetic control of skin differentiation genes by phytocannabinoids

    PubMed Central

    Pucci, Mariangela; Rapino, Cinzia; Di Francesco, Andrea; Dainese, Enrico; D'Addario, Claudio; Maccarrone, Mauro

    2013-01-01

    BACKGROUND AND PURPOSE Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases. EXPERIMENTAL APPROACH The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined. KEY RESULTS Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L. CONCLUSIONS AND IMPLICATIONS These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases. PMID:23869687

  14. Quantitative Dynamic Modelling of the Gene Regulatory Network Controlling Adipogenesis

    PubMed Central

    Ji, Chunguang; Shi, Shuliang; Cheng, Yufan; Sun, Hong; Li, Yixue

    2014-01-01

    Gene regulatory networks (GRNs) coherently coordinate the expressions of genes and control the behaviors of cellular systems. The complexity in modeling a quantitative GRN usually results from inaccurate parameter estimation, which is mostly due to small sample sizes. For better modeling of GRNs, we have designed a small-sample iterative optimization algorithm (SSIO) to quantitatively model GRNs with nonlinear regulatory relationships. The algorithm utilizes gene expression data as the primary input and it can be applied in case of small-sized samples. Using SSIO, we have quantitatively constructed the dynamic models for the GRNs controlling human and mouse adipogenesis. Compared with two other commonly-used methods, SSIO shows better performance with relatively lower residual errors, and it generates rational predictions on the adipocyte responses to external signals and steady-states. Sensitivity analysis further indicates the validity of our method. Several differences are observed between the GRNs of human and mouse adipocyte differentiations, suggesting the differences in regulatory efficiencies of the transcription factors between the two species. In addition, we use SSIO to quantitatively determine the strengths of the regulatory interactions as well as to optimize regulatory models. The results indicate that SSIO facilitates better investigation and understanding of gene regulatory processes. PMID:25333650

  15. Genomes & Developmental Control Detection of broadly expressed neuronal genes in C. elegans

    E-print Network

    Ruvinsky, Ilya

    Genomes & Developmental Control Detection of broadly expressed neuronal genes in C. elegans Ilya of the nervous system. Few such genes (sometimes referred to as pan-neuronal or broadly expressed neuronal genes broadly expressed neuronal genes and demonstrated that it is involved in control of neuronal expression

  16. Two gene co-expression modules differentiate psychotics and controls.

    PubMed

    Chen, C; Cheng, L; Grennan, K; Pibiri, F; Zhang, C; Badner, J A; Gershon, E S; Liu, C

    2013-12-01

    Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders. Associated genetic and gene expression changes have been identified, but many have not been replicated and have unknown functions. We identified groups of genes whose expressions varied together, that is co-expression modules, then tested them for association with SCZ. Using weighted gene co-expression network analysis, we show that two modules were differentially expressed in patients versus control