Science.gov

Sample records for controls bacterial genes

  1. Computational design of a Zn2+ receptor that controls bacterial gene expression

    NASA Astrophysics Data System (ADS)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  2. Gene therapy for human colorectal carcinoma using human CEA promoter controled bacterial ADP-ribosylating toxin genes: PEA and DTA gene transfer

    PubMed Central

    Cao, Guang-Wen; Qi, Zhong-Tian; Pan, Xin; Zhang, Xiao-Qin; Miao, Xiao-Hui; Feng, Yan; Lu, Xin-Hua; Shigeki, Kuriyama; Ping, Du

    1998-01-01

    AIM: To establish a tissue-specific gene therapy for colorectal carcinoma using bacterial ADP-ribosylating toxin genes. METHODS: Pseudomonas exotoxin A domain II +III (PEA) was cloned from genomic DNA of Pseudomonas aeruginosa. PEA and diphtheria toxin A chain gene (DTA) were modified to express eukaryotically. After sequencing, the toxin genes under the control of human carcinoembryonic antigen (CEA) promoter were cloned into retroviral vectors to construct CEAPEA and CEADTA respectively. In vitro cotransfection of the constructs with luciferase vectors and in vivo gene transfer in nude mice were subsequently carried out. RESULTS: Both CEAPEA and CEADTA specifically inhibited the reporter gene expression in the CEA positive human colorectal carcinoma (CRC) cells in vitro. Direct injection of CEAPEA and CEADTA constructs into the established human tumors in BALB/c nude mice led to significant and selective reductions in CRC tumor size as compared with that in control groups. CONCLUSION: The toxin genes, working as therapeutic genes, are suitable for the tissue-specific gene therapy for colorectal carcinoma. PMID:11819328

  3. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism

    PubMed Central

    Regulski, Elizabeth E; Moy, Ryan H; Weinberg, Zasha; Barrick, Jeffrey E; Yao, Zizhen; Ruzzo, Walter L; Breaker, Ronald R

    2008-01-01

    We have identified a highly conserved RNA motif located upstream of genes encoding molybdate transporters, molybdenum cofactor (Moco) biosynthesis enzymes, and proteins that utilize Moco as a coenzyme. Bioinformatics searches have identified 176 representatives in ?-Proteobacteria, ?-Proteobacteria, Clostridia, Actinobacteria, Deinococcus-Thermus species and DNAs from environmental samples. Using genetic assays, we demonstrate that a Moco RNA in Escherichia coli associated with the Moco biosynthetic operon controls gene expression in response to Moco production. In addition, we provide evidence indicating that this conserved RNA discriminates against closely related analogues of Moco. These results, together with extensive phylogenetic conservation and typical gene control structures near some examples, indicate that representatives of this structured RNA represent a novel class of riboswitches that sense Moco. Furthermore, we identify variants of this RNA that are likely to be triggered by the related tungsten cofactor (Tuco), which carries tungsten in place of molybdenum as the metal constituent. PMID:18363797

  4. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system

    PubMed Central

    Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C.; Moon, Tae Seok

    2016-01-01

    A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA–asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions. PMID:26837577

  5. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system.

    PubMed

    Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C; Moon, Tae Seok

    2016-03-18

    A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA-asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions. PMID:26837577

  6. Specific Gene Repression by CRISPRi System Transferred through Bacterial Conjugation

    PubMed Central

    2014-01-01

    In microbial communities, bacterial populations are commonly controlled using indiscriminate, broad range antibiotics. There are few ways to target specific strains effectively without disrupting the entire microbiome and local environment. Here, we use conjugation, a natural DNA horizontal transfer process among bacterial species, to deliver an engineered CRISPR interference (CRISPRi) system for targeting specific genes in recipient Escherichia coli cells. We show that delivery of the CRISPRi system is successful and can specifically repress a reporter gene in recipient cells, thereby establishing a new tool for gene regulation across bacterial cells and potentially for bacterial population control. PMID:25409531

  7. Specific gene repression by CRISPRi system transferred through bacterial conjugation.

    PubMed

    Ji, Weiyue; Lee, Derrick; Wong, Eric; Dadlani, Priyanka; Dinh, David; Huang, Verna; Kearns, Kendall; Teng, Sherry; Chen, Susan; Haliburton, John; Heimberg, Graham; Heineike, Benjamin; Ramasubramanian, Anusuya; Stevens, Thomas; Helmke, Kara J; Zepeda, Veronica; Qi, Lei S; Lim, Wendell A

    2014-12-19

    In microbial communities, bacterial populations are commonly controlled using indiscriminate, broad range antibiotics. There are few ways to target specific strains effectively without disrupting the entire microbiome and local environment. Here, we use conjugation, a natural DNA horizontal transfer process among bacterial species, to deliver an engineered CRISPR interference (CRISPRi) system for targeting specific genes in recipient Escherichia coli cells. We show that delivery of the CRISPRi system is successful and can specifically repress a reporter gene in recipient cells, thereby establishing a new tool for gene regulation across bacterial cells and potentially for bacterial population control. PMID:25409531

  8. Dynamics of bacterial gene regulation

    NASA Astrophysics Data System (ADS)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  9. Epigenetic Gene Regulation in the Bacterial World

    PubMed Central

    Casadesús, Josep; Low, David

    2006-01-01

    Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions. PMID:16959970

  10. Highly potent dUTPase inhibition by a bacterial repressor protein reveals a novel mechanism for gene expression control

    PubMed Central

    Szab, Judit E.; Nmeth, Veronika; Papp-Kdr, Veronika; Nyri, Kinga; Leveles, Ibolya; Bendes, bris .; Zagyva, Imre; Rna, Gergely; Plinks, Hajnalka L.; Besztercei, Balzs; Ozohanics, Olivr; Vkey, Kroly; Liliom, Kroly; Tth, Judit; Vrtessy, Beta G.

    2014-01-01

    Transfer of phage-related pathogenicity islands of Staphylococcus aureus (SaPI-s) was recently reported to be activated by helper phage dUTPases. This is a novel function for dUTPases otherwise involved in preservation of genomic integrity by sanitizing the dNTP pool. Here we investigated the molecular mechanism of the dUTPase-induced gene expression control using direct techniques. The expression of SaPI transfer initiating proteins is repressed by proteins called Stl. We found that ?11 helper phage dUTPase eliminates SaPIbov1 Stl binding to its cognate DNA by binding tightly to Stl protein. We also show that dUTPase enzymatic activity is strongly inhibited in the dUTPase:Stl complex and that the dUTPase:dUTP complex is inaccessible to the Stl repressor. Our results disprove the previously proposed G-protein-like mechanism of SaPI transfer activation. We propose that the transfer only occurs if dUTP is cleared from the nucleotide pool, a condition promoting genomic stability of the virulence elements. PMID:25274731

  11. Gene flow and bacterial transformation

    SciTech Connect

    Dixon, B.

    1993-07-01

    It is common knowledge that Salmonella which should be removed during the processing of sewage can persist is sewage sludge that is sprayed as agricultural fertilizer. Currently, researchers have found that Salmonella may become nonculturable by conventional means, while remaining viable. The issue raised by this article is the knowledge of lateral gene flow as secure as scientist suppose The author sites several research papers that suggest that intergeneric transformation can and does take place in marine environments such as tropical and subtropical estuaries.

  12. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  13. Gene-for-gene tolerance to bacterial wilt in Arabidopsis.

    PubMed

    Van der Linden, Liesl; Bredenkamp, Jane; Naidoo, Sanushka; Fouch-Weich, Joanne; Denby, Katherine J; Genin, Stephane; Marco, Yves; Berger, Dave K

    2013-04-01

    Bacterial wilt caused by Ralstonia solanacearum is a disease of widespread economic importance that affects numerous plant species, including Arabidopsis thaliana. We describe a pathosystem between A. thaliana and biovar 3 phylotype I strain BCCF402 of R. solanacearum isolated from Eucalyptus trees. A. thaliana accession Be-0 was susceptible and accession Kil-0 was tolerant. Kil-0 exhibited no wilting symptoms and no significant reduction in fitness (biomass, seed yield, and germination efficiency) after inoculation with R. solanacearum BCCF402, despite high bacterial numbers in planta. This was in contrast to the well-characterized resistance response in the accession Nd-1, which limits bacterial multiplication at early stages of infection and does not wilt. R. solanacearum BCCF402 was highly virulent because the susceptible accession Be-0 was completely wilted after inoculation. Genetic analyses, allelism studies with Nd-1, and RRS1 cleaved amplified polymorphic sequence marker analysis showed that the tolerance phenotype in Kil-0 was dependent upon the resistance gene RRS1. Knockout and complementation studies of the R. solanacearum BCCF402 effector PopP2 confirmed that the tolerance response in Kil-0 was dependent upon the RRS1-PopP2 interaction. Our data indicate that the gene-for-gene interaction between RRS1 and PopP2 can contribute to tolerance, as well as resistance, which makes it a useful model system for evolutionary studies of the arms race between plants and bacterial pathogens. In addition, the results alert biotechnologists to the risk that deployment of RRS1 in transgenic crops may result in persistence of the pathogen in the field. PMID:23234403

  14. Bacterial symbiosis in arthropods and the control of disease transmission.

    PubMed Central

    Beard, C. B.; Durvasula, R. V.; Richards, F. F.

    1998-01-01

    Bacterial symbionts may be used as vehicles for expressing foreign genes in arthropods. Expression of selected genes can render an arthropod incapable of transmitting a second microorganism that is pathogenic for humans and is an alternative approach to the control of arthropod-borne diseases. We discuss the rationale for this alternative approach, its potential applications and limitations, and the regulatory concerns that may arise from its use in interrupting disease transmission in humans and animals. PMID:9866734

  15. Control of gene expression at a bacterial leader RNA, the agn43 gene encoding outer membrane protein Ag43 of Escherichia coli.

    PubMed

    Wallecha, Anu; Oreh, Heather; van der Woude, Marjan W; deHaseth, Pieter L

    2014-08-01

    The family of agn alleles in Escherichia coli pathovars encodes autotransporters that have been implicated in biofilm formation, autoaggregation, and attachment to cells. The alleles all have long leader RNAs preceding the Ag43 translation initiation codon. Here we present an analysis of the agn43 leader RNA from E. coli K-12. We demonstrate the presence of a rho-independent transcription terminator just 28 bp upstream of the main translation start codon and show that it is functional in vitro. Our data indicate that an as-yet-unknown mechanism of antitermination of transcription must be operative in earlier phases of growth. However, as bacterial cell cultures mature, progressively fewer transcripts are able to bypass this terminator. In the K-12 leader sequence, two in-frame translation initiation codons have been identified, one upstream and the other downstream of the transcription terminator. For optimal agn43 expression, both codons need to be present. Translation from the upstream start codon leads to increased downstream agn43 expression. Our findings have revealed two novel modes of regulation of agn43 expression in the leader RNA in addition to the previously well-characterized regulation of phase variation at the agn43 promoter. PMID:24837285

  16. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    SciTech Connect

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  17. Stable expression of a bacterial GUS gene in vegetatively propagated transgenic pear lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of a transgene in the genomes of in vitro propagated transgenic pear lines was assessed. A bacterial GUS reporter gene under the control of an Arabidopsis sucrose transporter gene promoter was introduced into pear cultivar Old Home through Agrobacterium-mediated leaf-explant transfo...

  18. Transport of Magnesium by a Bacterial Nramp-Related Gene

    PubMed Central

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  19. Bacterial blight of soybean: Regulation of a pathogen gene determining host cultivar specificity

    SciTech Connect

    Huynh, T.V.; Dahlbeck, D.; Staskawicz, B.J. )

    1989-09-22

    Soybean cultivars resistant to Pseudomonas syringae pathovar glycinea (Psg), the causal agent of bacterial blight, exhibit a hypersensitive (necrosis) reaction (HR) to infection. Psg strains carrying the avrB gene elicit the HR in soybean cultivars carrying the resistance gene Rpg1. Psg expressing avrB at a high level and capable of eliciting the HR in the absence of de novo bacterial RNA synthesis have been obtained in in vitro culture. Nutritional signals and regions within the Psg hrp gene cluster, an approximately 20-kilobase genomic region also necessary for pathogenicity, control avrB transcription.

  20. Control of bacterial exoelectrogenesis by c-AMP-GMP

    PubMed Central

    Nelson, James W.; Sudarsan, Narasimhan; Phillips, Grace E.; Stav, Shira; Lnse, Christina E.; McCown, Phillip J.; Breaker, Ronald R.

    2015-01-01

    Major changes in bacterial physiology including biofilm and spore formation involve signaling by the cyclic dinucleotides c-di-GMP and c-di-AMP. Recently, another second messenger dinucleotide, c-AMP-GMP, was found to control chemotaxis and colonization by Vibrio cholerae. We have identified a superregulon of genes controlled by c-AMP-GMP in numerous Deltaproteobacteria, including Geobacter species that use extracellular insoluble metal oxides as terminal electron acceptors. This exoelectrogenic process has been studied for its possible utility in energy production and bioremediation. Many genes involved in adhesion, pilin formation, and others that are important for exoelectrogenesis are controlled by members of a variant riboswitch class that selectively bind c-AMP-GMP. These RNAs constitute, to our knowledge, the first known specific receptors for c-AMP-GMP and reveal that this molecule is used by many bacteria to control specialized physiological processes. PMID:25848023

  1. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    PubMed Central

    2011-01-01

    Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB). A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters. PMID:21733190

  2. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    PubMed Central

    Martínez, Luary C.; Vadyvaloo, Viveka

    2014-01-01

    Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria. PMID:24724055

  3. [Effects of transgenic cotton expressing chitinase and glucanase genes on the diversity of soil bacterial community].

    PubMed

    Li, Zhifang; Feng, Zili; Zhao, Lihong; Shi, Yongqiang; Feng, Hongjie; Zhu, Heqin

    2015-08-01

    The transgenic cotton expressing chitinase and glucanase genes was studied using nontransgenic cotton as a control. Specifically, the effects of exogenous genes on bacterial community diversity in rhizospheres of cotton at stages of seedling, budding, boll forming and boll opening were evaluated through comparing the number of cultivable bacteria and analyzing 16S rRNA gene clone libraries. The results showed that the number of cultivable bacteria was not affected by exogenous genes but the cotton growth period, and the number peaked at the stage of boll forming with vigorous metabolism. The 16S rRNA gene clone library prepared from soil bacteria in rhizospheres of transgenic and nontransgenic cotton at different stages contained 2400 clones which covered 283 genera. Among them, Acidobacterium was the most dominant group which contained 642 clones, followed by unclassified bacterium and Flavisolibacter. Compared with nontransgenic cotton, the rhizosphere bacterial diversity of transgenic cotton exhibited lower level at the same growth stage, however, their common bacterial communities increased with growth and development. Our results suggest that chitinase and glucanase genes decrease the rhizosphere bacterial diversity at distinct degrees, however, the difference of bacterial diversity between transgenic and nontransgenic cotton reduces gradually with the extension of cultivation period. PMID:26266785

  4. Towards an Informative Mutant Phenotype for Every Bacterial Gene

    PubMed Central

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Tarjan, Daniel R.; Xu, Zhuchen; Shao, Wenjun; Leon, Dacia

    2014-01-01

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness. PMID:25112473

  5. Replication and Control of Circular Bacterial Plasmids

    PubMed Central

    del Solar, Gloria; Giraldo, Rafael; Ruiz-Echevarra, Mara Jess; Espinosa, Manuel; Daz-Orejas, Ramn

    1998-01-01

    An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3?-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can sense and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions. PMID:9618448

  6. Bacterial gene transfer by natural genetic transformation in the environment.

    PubMed Central

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924

  7. Regulation of bacterial virulence gene expression by cell envelope stress responses

    PubMed Central

    Flores-Kim, Josué; Darwin, Andrew J

    2014-01-01

    The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens. PMID:25603429

  8. Genes Necessary for Bacterial Magnetite Biomineralization Identified by Transposon Mutagenesis

    NASA Astrophysics Data System (ADS)

    Nash, C. Z.; Komeili, A.; Newman, D. K.; Kirschvink, J. L.

    2004-12-01

    Magnetic bacteria synthesize nanoscale crystals of magnetite in intracellular, membrane-bounded organelles (magnetosomes). These crystals are preserved in the fossil record at least as far back as the late Neoproterozoic and have been tentatively identified in much older rocks (1). This fossil record may provide deep time calibration points for molecular evolution studies once the genes involved in biologically controlled magnetic mineralization (BCMM) are known. Further, a genetic and biochemical understanding of BCMM will give insight into the depositional environment and biogeochemical cycles in which magnetic bacteria play a role. The BCMM process is not well understood, though proteins have been identified from the magnetosome membrane and genetic manipulation and biochemical characterization of these proteins are underway. Most of the proteins currently thought to be involved are encoded within the mam cluster, a large cluster of genes whose products localize to the magnetosome membrane and are conserved among magnetic bacteria (2). In an effort to identify all of the genes necessary for bacterial BCMM, we undertook a transposon mutagenesis of Magnetospirillum magneticum AMB-1. Non-magnetic mutants (MNMs) were identified by growth in liquid culture followed by a magnetic assay. The insertion site of the transposon was identified two ways. First MNMs were screened with a PCR assay to determine if the transposon had inserted into the mam cluster. Second, the transposon was rescued from the mutant DNA and cloned for sequencing. The majority insertion sites are located within the mam cluster. Insertion sites also occur in operons which have not previously been suspected to be involved in magnetite biomineralization. None of the insertion sites have occurred within genes reported from previous transposon mutagenesis studies of AMB-1 (3, 4). Two of the non-mam cluster insertion sites occur in operons containing genes conserved particularly between MS-1 and MC-1. We are undertaking a complementation strategy to demonstrate the necessity of these novel genes in BCMM as well as characterizing the phenotypes of the mutants. 1. S. B. R. Chang, J. F. Stolz, J. L. Kirschvink, S. M. Awramik, Precambrian Res. 43, 305-315 (1989). 2. K. Grünberg, C. Wawer, B. M. Tebo, D. Schüler, Appl. Environ. Microbiol. 67, 4573-4582 (2001). 3. A. T. Wahyudi, H. Takeyama, T. Matsunaga, Appl. Biochem. Biotechnol. 91-3, 147-154 (2001). 4. T. Matsunaga, C. Nakamura, J. G. Burgess, K. Sode, J. Bacteriol. 174, 2748-2753 (1992).

  9. Subgingival bacterial colonization profiles correlate with gingival tissue gene expression

    PubMed Central

    2009-01-01

    Background Periodontitis is a chronic inflammatory disease caused by the microbiota of the periodontal pocket. We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis. A total of 120 patients undergoing periodontal surgery contributed with a minimum of two interproximal gingival papillae (range 2-4) from a maxillary posterior region. Prior to tissue harvesting, subgingival plaque samples were collected from the mesial and distal aspects of each tissue sample. Gingival tissue RNA was extracted, reverse-transcribed, labeled, and hybridized with whole-genome microarrays (310 in total). Plaque samples were analyzed using checkerboard DNA-DNA hybridizations with respect to 11 bacterial species. Random effects linear regression models considered bacterial levels as exposure and expression profiles as outcome variables. Gene Ontology analyses summarized the expression patterns into biologically relevant categories. Results Wide inter-species variation was noted in the number of differentially expressed gingival tissue genes according to subgingival bacterial levels: Using a Bonferroni correction (p < 9.15 10-7), 9,392 probe sets were differentially associated with levels of Tannerella forsythia, 8,537 with Porphyromonas gingivalis, 6,460 with Aggregatibacter actinomycetemcomitans, 506 with Eikenella corrodens and only 8 with Actinomyces naeslundii. Cluster analysis identified commonalities and differences among tissue gene expression patterns differentially regulated according to bacterial levels. Conclusion Our findings suggest that the microbial content of the periodontal pocket is a determinant of gene expression in the gingival tissues and provide new insights into the differential ability of periodontal species to elicit a local host response. PMID:19835625

  10. Predicting bacterial essential genes using only sequence composition information.

    PubMed

    Ning, L W; Lin, H; Ding, H; Huang, J; Rao, N; Guo, F B

    2014-01-01

    Essential genes are those genes that are needed by organisms at any time and under any conditions. It is very important for us to identify essential genes from bacterial genomes because of their vital role in synthetic biology and biomedical practices. In this paper, we developed a support vector machine (SVM)-based method to predict essential genes of bacterial genomes using only compositional features. These features are all derived from the primary sequences, i.e., nucleotide sequences and protein sequences. After training on the multiple samplings of the labeled (essential or not essential) features using a library for SVM, we obtained an average area under the ROC curve (AUC) of about 0.82 in a 5-fold cross-validation for Escherichia coli and about 0.74 for Mycoplasma pulmonis. We further evaluated the performance of the method proposed using the dataset consisting of 16 bacterial genomes, and an average AUC of 0.76 was achieved. Based on this training dataset, a model for essential gene prediction was established. Another two independent genomes, Shewanella oneidensis RW1 and Salmonella enterica serovar Typhimurium SL1344 were used to evalutate the model. Results showed that the AUC sores were 0.77 and 0.81, respectively. For the convenience of the vast majority of experimental scientists, a web server has been constructed, which is freely available at http://cefg.uestc.edu.cn:9999/egp. PMID:25036505

  11. Gene calling and bacterial genome annotation with BG7.

    PubMed

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services). PMID:25343866

  12. Developing of the Computer Method for Annotation of Bacterial Genes

    PubMed Central

    Golyshev, Mikhail A.; Korotkov, Eugene V.

    2015-01-01

    Over the last years a great number of bacterial genomes were sequenced. Now one of the most important challenges of computational genomics is the functional annotation of nucleic acid sequences. In this study we presented the computational method and the annotation system for predicting biological functions using phylogenetic profiles. The phylogenetic profile of a gene was created by way of searching for similarities between the nucleotide sequence of the gene and 1204 reference genomes, with further estimation of the statistical significance of found similarities. The profiles of the genes with known functions were used for prediction of possible functions and functional groups for the new genes. We conducted the functional annotation for genes from 104 bacterial genomes and compared the functions predicted by our system with the already known functions. For the genes that have already been annotated, the known function matched the function we predicted in 63% of the time, and in 86% of the time the known function was found within the top five predicted functions. Besides, our system increased the share of annotated genes by 19%. The developed system may be used as an alternative or complementary system to the current annotation systems. PMID:26770195

  13. Identification of genes and gene products necessary for bacterial bioluminescence.

    PubMed Central

    Engebrecht, J; Silverman, M

    1984-01-01

    Expression of luminescence in Escherichia coli was recently achieved by cloning genes from the marine bacterium Vibrio fischeri. One DNA fragment on a hybrid plasmid encoded regulatory functions and enzymatic activities necessary for light production. We report the results of a genetic analysis to identify the luminescence genes (lux) that reside on this recombinant plasmid. lux gene mutations were generated by hydroxylamine treatment, and these mutations were ordered on a linear map by complementation in trans with a series of polar transposon insertions on other plasmids. lux genes were defined by complementation of lux gene defects on pairs of plasmids in trans in E. coli. Hybrid plasmids were also used to direct the synthesis of polypeptides in the E. coli minicell system. Seven lux genes and the corresponding gene products were identified from the complementation analysis and the minicell programing experiments. These genes, in the order of their position on a linear map, and the apparent molecular weights of the gene products are luxR (27,000), luxI (25,000), luxC (53,000), luxD (33,000), luxA (40,000), luxB (38,000), and luxE (42,000). From the luminescence phenotypes of E. coli containing mutant plasmids, functions were assigned to these genes: luxA, luxB, luxC, luxD, and luxE encode enzymes for light production and luxR and luxI encode regulatory functions. Images PMID:6377310

  14. Proteorhodopsin genes are distributed among divergent marine bacterial taxa

    PubMed Central

    de la Torre, Jos R.; Christianson, Lynne M.; Bj, Oded; Suzuki, Marcelino T.; Karl, David M.; Heidelberg, John; DeLong, Edward F.

    2003-01-01

    Proteorhodopsin (PR) is a retinal-binding bacterial integral membrane protein that functions as a light-driven proton pump. The gene encoding this photoprotein was originally discovered on a large genome fragment derived from an uncultured marine ?-proteobacterium of the SAR86 group. Subsequently, many variants of the PR gene have been detected in marine plankton, via PCR-based gene surveys. It has not been clear, however, whether these different PR genes are widely distributed among different bacterial groups, or whether they have a restricted taxonomic distribution. We report here comparative analyses of PR-bearing genomic fragments recovered directly from planktonic bacteria inhabiting the California coast, the central Pacific Ocean, and waters offshore the Antarctica Peninsula. Sequence analysis of an Antarctic genome fragment harboring PR (ANT32C12) revealed moderate conservation in gene order and identity, compared with a previously reported PR-containing genome fragment from a Monterey Bay ?-proteobacterium (EBAC31A08). Outside the limited region of synteny shared between these clones, however, no significant DNA or protein identity was evident. Analysis of a third PR-containing genome fragment (HOT2C01) from the North Pacific subtropical gyre showed even more divergence from the ?-proteobacterial PR-flanking region. Subsequent phylogenetic and comparative genomic analyses revealed that the Central North Pacific PR-containing genome fragment (HOT2C01) originated from a planktonic ?-proteobacterium. These data indicate that PR genes are distributed among a variety of divergent marine bacterial taxa, including both ?- and ?-proteobacteria. Our analyses also demonstrate the utility of cultivation-independent comparative genomic approaches for assessing gene content and distribution in naturally occurring microbes. PMID:14566056

  15. Towards an informative mutant phenotype for every bacterial gene

    DOE PAGESBeta

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Tarjan, Daniel R.; Xu, Zhuchen; Shao, Wenjen; Leon, Dacia; Arkin, Adam P.; Skerker, Jeffrey M.

    2014-08-11

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, inmore » Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.« less

  16. Towards an informative mutant phenotype for every bacterial gene

    SciTech Connect

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Tarjan, Daniel R.; Xu, Zhuchen; Shao, Wenjen; Leon, Dacia; Arkin, Adam P.; Skerker, Jeffrey M.

    2014-08-11

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.

  17. Bacterial Cellular Engineering by Genome Editing and Gene Silencing

    PubMed Central

    Nakashima, Nobutaka; Miyazaki, Kentaro

    2014-01-01

    Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption), knock-in (insertion), and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence) target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering. PMID:24552876

  18. Use of Bacteriophages to control bacterial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages can provide a natural method and an effective alternative to antibiotics to reduce bacterial pathogens in animals, foods, and other environments. Bacteriophages (phages) are viruses which infect bacterial cells and eventually kill them through lysis, and represent the most abun...

  19. Gene regulation mediates host specificity of a bacterial pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2011-12-01

    Many bacterial plant pathogens have a gene-for-gene relationship that determines host specificity. However, there are pathogens such as the xylem-limited bacterium Xylella fastidiosa that do not carry genes considered essential for the gene-for-gene model, such as those coding for a type III secretion system and effector molecules. Nevertheless, X.?fastidiosa subspecies are host specific. A comparison of symptom development and host colonization after infection of plants with several mutant strains in two hosts, grapevines and almonds, indicated that X.?fastidiosa virulence mechanisms are similar in those plants. Thus, we tested if modification of gene regulation patterns, by affecting the production of a cell-cell signalling molecule (DSF), impacted host specificity in X.?fastidiosa. Results show that disruption of the rpfF locus, required for DSF synthesis, in a strain incapable of causing disease in grapevines, leads to symptom development in that host. These data are indicative that the core machinery required for the colonization of grapevines is present in that strain, and that changes in gene regulation alone can lead X.?fastidiosa to exploit a novel host. The study of the evolution and mechanisms of host specificity mediated by gene regulation at the genome level could lead to important insights on the emergence of new diseases. PMID:23761371

  20. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis.

    PubMed

    Rocha, Danilo J P; Santos, Carolina S; Pacheco, Luis G C

    2015-09-01

    The appropriate choice of reference genes is essential for accurate normalization of gene expression data obtained by the method of reverse transcription quantitative real-time PCR (RT-qPCR). In 2009, a guideline called the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) highlighted the importance of the selection and validation of more than one suitable reference gene for obtaining reliable RT-qPCR results. Herein, we searched the recent literature in order to identify the bacterial reference genes that have been most commonly validated in gene expression studies by RT-qPCR (in the first 5years following publication of the MIQE guidelines). Through a combination of different search parameters with the text mining tool MedlineRanker, we identified 145 unique bacterial genes that were recently tested as candidate reference genes. Of these, 45 genes were experimentally validated and, in most of the cases, their expression stabilities were verified using the software tools geNorm and NormFinder. It is noteworthy that only 10 of these reference genes had been validated in two or more of the studies evaluated. An enrichment analysis using Gene Ontology classifications demonstrated that genes belonging to the functional categories of DNA Replication (GO: 0006260) and Transcription (GO: 0006351) rendered a proportionally higher number of validated reference genes. Three genes in the former functional class were also among the top five most stable genes identified through an analysis of gene expression data obtained from the Pathosystems Resource Integration Center. These results may provide a guideline for the initial selection of candidate reference genes for RT-qPCR studies in several different bacterial species. PMID:26149127

  1. Drosophila immunity: genes on the third chromosome required for the response to bacterial infection.

    PubMed

    Wu, L P; Choe, K M; Lu, Y; Anderson, K V

    2001-09-01

    We have screened the third chromosome of Drosophila melanogaster for mutations that prevent the normal immune response. We identified mutant lines on the basis of their failure to induce transcription of an antibacterial peptide gene in response to infection or their failure to form melanized clots at the site of wounding. These mutations define 14 genes [immune response deficient (ird) genes] that have distinct roles in the immune response. We have identified the molecular basis of several ird phenotypes. Two genes, scribble and kurtz/modulo, affect the cellular organization of the fat body, the tissue responsible for antimicrobial peptide production. Two ird genes encode components of the signaling pathways that mediate responses to bacterial infection, a Drosophila gene encoding a homolog of I kappa B kinase (DmIkk beta) and Relish, a Rel-family transcription factor. These genetic studies should provide a basis for a comprehensive understanding of the genetic control of immune responses in Drosophila. PMID:11560896

  2. Conditions for the evolution of gene clusters in bacterial genomes.

    PubMed

    Ballouz, Sara; Francis, Andrew R; Lan, Ruiting; Tanaka, Mark M

    2010-02-01

    Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters. PMID:20168992

  3. Genetic Variation in the ?2-Adrenocepter Gene Is Associated with Susceptibility to Bacterial Meningitis in Adults

    PubMed Central

    Adriani, Kirsten S.; Brouwer, Matthijs C.; Baas, Frank; Zwinderman, Aeilko H.; van der Ende, Arie; van de Beek, Diederik

    2012-01-01

    Recently, the biased ?2-adrenoceptor/?-arrestin pathway was shown to play a pivotal role in crossing of the blood brain barrier by Neisseria meningitidis. We hypothesized that genetic variation in the ?2-adrenoceptor gene (ADRB2) may influence susceptibility to bacterial meningitis. In a prospective genetic association study we genotyped 542 patients with CSF culture proven community acquired bacterial meningitis and 376 matched controls for 2 functional single nucleotide polymorphisms in the ?2-adrenoceptor gene (ADRB2). Furthermore, we analyzed if the use of non-selective beta-blockers, which bind to the ?2-adrenoceptor, influenced the risk of bacterial meningitis. We identified a functional polymorphism in ADRB2 (rs1042714) to be associated with an increased risk for bacterial meningitis (Odds ratio [OR] 1.35, 95% confidence interval [CI] 1.041.76; p?=?0.026). The association remained significant after correction for age and was more prominent in patients with pneumococcal meningitis (OR 1.52, 95% CI 1.122.07; p?=?0.007). For meningococcal meningitis the difference in genotype frequencies between patients and controls was similar to that in pneumococcal meningitis, but this was not statistically significant (OR 1.43, 95% CI 0.603.38; p?=?0.72). Patients with bacterial meningitis had a lower frequency of non-selective beta-blockers use compared to the age matched population (0.9% vs. 1.8%), although this did not reach statistical significance (OR 1.96 [95% CI 0.884.39]; p?=?0.09). In conclusion, we identified an association between a genetic variant in the ?2-adrenoceptor and increased susceptibility to bacterial meningitis. The potential benefit of pharmacological treatment targeting the ?2-adrenoceptor to prevent bacterial meningitis in the general population or patients with bacteraemia should be further studied in both experimental studies and observational cohorts. PMID:22624056

  4. Small molecule control of bacterial biofilms

    PubMed Central

    Worthington, Roberta J.; Richards, Justin J.

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infections of cystic fibrosis, colitis, urethritis, conjunctivitis, otitis, endocarditis and periodontitis. Additionally, biofilm infections of indwelling medical devices are of particular concern, as once the device is colonized infection is virtually impossible to eradicate. Given the prominence of biofilms in infectious diseases, there has been an increased effort toward the development of small molecules that will modulate bacterial biofilm development and maintenance. In this review, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms. The review discuses the numerous approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. These approaches are grouped into: 1) the identification and development of small molecules that target one of the bacterial signaling pathways involved in biofilm regulation, 2) chemical library screening for compounds with anti-biofilm activity, and 3) the identification of natural products that possess anti-biofilm activity, and the chemical manipulation of these natural products to obtain analogues with increased activity. PMID:22733439

  5. Bacterial gene import and mesophilic adaptation in archaea

    PubMed Central

    López-García, Purificación; Zivanovic, Yvan; Deschamps, Philippe; Moreira, David

    2015-01-01

    It is widely believed that the archaeal ancestor was hyperthermophilic, but during archaeal evolution, several lineages — including haloarchaea and their sister methanogens, the Thaumarchaeota, and the uncultured Marine Group II and Marine Group III Euryarchaeota (MGII/III) — independently adapted to lower temperatures. Recent phylogenomic studies suggest that the ancestors of these lineages were recipients of massive horizontal gene transfer from bacteria. Many of the acquired genes, which are often involved in metabolism and cell envelope biogenesis, were convergently acquired by distant mesophilic archaea. In this Opinion article, we explore the intriguing hypothesis that the import of these bacterial genes was crucial for the adaptation of archaea to mesophilic lifestyles. PMID:26075362

  6. Bacterial community assembly based on functional genes rather than species

    PubMed Central

    Burke, Catherine; Steinberg, Peter; Rusch, Doug; Kjelleberg, Staffan; Thomas, Torsten

    2011-01-01

    The principles underlying the assembly and structure of complex microbial communities are an issue of long-standing concern to the field of microbial ecology. We previously analyzed the community membership of bacterial communities associated with the green macroalga Ulva australis, and proposed a competitive lottery model for colonization of the algal surface in an attempt to explain the surprising lack of similarity in species composition across different algal samples. Here we extend the previous study by investigating the link between community structure and function in these communities, using metagenomic sequence analysis. Despite the high phylogenetic variability in microbial species composition on different U. australis (only 15% similarity between samples), similarity in functional composition was high (70%), and a core of functional genes present across all algal-associated communities was identified that were consistent with the ecology of surface- and host-associated bacteria. These functions were distributed widely across a variety of taxa or phylogenetic groups. This observation of similarity in habitat (niche) use with respect to functional genes, but not species, together with the relative ease with which bacteria share genetic material, suggests that the key level at which to address the assembly and structure of bacterial communities may not be “species” (by means of rRNA taxonomy), but rather the more functional level of genes. PMID:21825123

  7. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease.

    PubMed

    Hu, Yang; Zhang, Junli; Jia, Hongge; Sosso, Davide; Li, Ting; Frommer, Wolf B; Yang, Bing; White, Frank F; Wang, Nian; Jones, Jeffrey B

    2014-01-28

    Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccA(w), induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations. PMID:24474801

  8. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease

    PubMed Central

    Hu, Yang; Zhang, Junli; Jia, Hongge; Sosso, Davide; Li, Ting; Frommer, Wolf B.; Yang, Bing; White, Frank F.; Wang, Nian; Jones, Jeffrey B.

    2014-01-01

    Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccAw, induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations. PMID:24474801

  9. Electrokinetic control of bacterial deposition and transport.

    PubMed

    Qin, Jinyi; Sun, Xiaohui; Liu, Yang; Berthold, Tom; Harms, Hauke; Wick, Lukas Y

    2015-05-01

    Microbial biofilms can cause severe problems in technical installations where they may give rise to microbially influenced corrosion and clogging of filters and membranes or even threaten human health, e.g. when they infest water treatment processes. There is, hence, high interest in methods to prevent microbial adhesion as the initial step of biofilm formation. In environmental technology it might be desired to enhance bacterial transport through porous matrices. This motivated us to test the hypothesis that the attractive interaction energy allowing cells to adhere can be counteracted and overcome by the shear force induced by electroosmotic flow (EOF, i.e. the water flow over surfaces exposed to a weak direct current (DC) electric field). Applying EOF of varying strengths we quantified the deposition of Pseudomonas fluorescens Lp6a in columns containing glass collectors and on a quartz crystal microbalance. We found that the presence of DC reduced the efficiency of initial adhesion and bacterial surface coverage by >85%. A model is presented which quantitatively explains the reduction of bacterial adhesion based on the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory of colloid stability and the EOF-induced shear forces acting on a bacterium. We propose that DC fields may be used to electrokinetically regulate the interaction of bacteria with surfaces in order to delay initial adhesion and biofilm formation in technical installations or to enhance bacterial transport in environmental matrices. PMID:25844535

  10. MLST revisited: the gene-by-gene approach to bacterial genomics

    PubMed Central

    Maiden, Martin C. J.; Jansen van Rensburg, Melissa J.; Bray, James E.; Earle, Sarah G.; Ford, Suzanne A.; Jolley, Keith A.; McCarthy, Noel D.

    2014-01-01

    Multilocus sequence typing (MLST) was proposed in 1998 as a portable sequence-based method for identifying clonal relationships among bacteria. Today, in the whole-genome era of microbiology, the need for systematic, standardized descriptions of bacterial genotypic variation remains a priority. Here, to meet this need, we draw on the successes of MLST and 16S rRNA gene sequencing to propose a hierarchical gene-by-gene approach that reflects functional and evolutionary relationships and catalogues bacteria from domain to strain. Our gene-based typing approach using online platforms such as the Bacterial Isolate Genome Sequence Database (BIGSdb) allows the scalable organization and analysis of whole-genome sequence data. PMID:23979428

  11. Method of controlling gene expression

    DOEpatents

    Peters, Norman K. (Berkeley, CA); Frost, John W. (Menlo Park, CA); Long, Sharon R. (Palo Alto, CA)

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  12. [Progress in expression regulation of bacterial lipase genes--A review].

    PubMed

    Zha, Daiming; Yan, Yunjun

    2015-11-01

    Microbial lipases are major sources of commercial ones, which have been extensively used in a wide variety of industrial fields, such as foods, beverages, lipids, detergents, feeds, textiles, leathers, advanced materials, fine chemicals, medicines, cosmetics, papermaking, pollution treatment, and bioenergy. Compared with fungal lipases, bacterial lipases have more types of reactions and exhibit higher activity and better stability in aqueous or organic phases. Amongst bacterial lipases, the most excellent ones are those originating from the genus Pseudomonas. So far, the conventional strategies, such as traditional breeding, optimization of medium and fermentation conditions, cannot fundamentally solve the problem of low production of bacterial lipases. Construction of genetically engineered strains to efficiently overexpress their own lipases is an effective solution. But it must base on clarifying molecular regulation mechanism of lipase gene expression and further finding out key regulators. In this article, we reviewed the progress in expression regulation of bacterial lipase genes from the aspects of direct regulators, quorum sensing system, Gac/Rsm signal transduction system, regulators controlling the Gac/Rsm system, and other regulators. To provide a useful reference for the construction of genetically engineered strains, we also discussed a research prospect in this field based on our ongoing research. PMID:26915218

  13. Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments

    PubMed Central

    Laverock, B; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2014-01-01

    In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments. PMID:24596269

  14. Genetics of Bacterial Alginate: Alginate Genes Distribution, Organization and Biosynthesis in Bacteria

    PubMed Central

    Muhammadi; Ahmed, Nuzhat

    2007-01-01

    Bacterial alginate genes are chromosomal and fairly widespread among rRNA homology group I Pseudomonads and Azotobacter. In both genera, the genetic pathway of alginate biosynthesis is mostly similar and the identified genes are identically organized into biosynthetic, regulatory and genetic switching clusters. In spite of these similarities,still there are transcriptional and functional variations between P. aeruginosa and A. vinelandii. In P. aeruginosa all biosynthetic genes except algC transcribe in polycistronic manner under the control of algD promoter while in A. vinelandii, these are organized into many transcriptional units. Of these, algA and algC are transcribed each from two different and algD from three different promoters. Unlike P. aeruginosa, the promoters of these transcriptional units except one of algC and algD are algT-independent. Both bacterial species carry homologous algG gene for Ca2+-independent epimerization. But besides algG, A. vinelandii also has algE1-7 genes which encode C-5-epimerases involved in the complex steps of Ca2+-dependent epimerization. A hierarchy of alginate genes expression under ?22(algT) control exists in P. aeruginosa where algT is required for transcription of the response regulators algB and algR, which in turn are necessary for expression of algD and its downstream biosynthetic genes. Although algTmucABCD genes cluster play similar regulatory roles in both P. aeruginosa and A. vinelandii but unlike, transcription of A. vinelandii, algR is independent of ?22. These differences could be due to the fact that in A. vinelandii alginate plays a role as an integrated part in desiccation-resistant cyst which is not found in P. aeruginosa. PMID:18645604

  15. Bacterial Transport and Fate and Its Effect on Horizontal Gene Transfer in Soil

    NASA Astrophysics Data System (ADS)

    Lv, N.; Massoudieh, A.; Nguyen, T. H.; Kamai, T.; Zilles, J. L.; Ginn, T. R.; Liang, X.

    2013-12-01

    Biogeochemical cycling in ecosystems relies heavily on soil bacterial communities. Bacterial communities adapt to natural or anthropogenic disruptions through mutation and horizontal gene transfer. Horizontal gene transfer alters bacterial communities rapidly by transferring DNA across species. A systematic understanding of bacterial transport and fate and its effects on horizontal gene transfer is critical for predicting and harnessing bacterial adaption and evolution in soil. In this work, a multi-scale approach was applied to study the effects of both flagella and motility on transport and fate of the soil bacterium Azotobacter vinelandii in porous media. Both micromodel and column experiments showed decreasing deposition over time, suggesting that both flagellated and non-flagellated cells were blocked from deposition by previously deposited cells. In later stages, ripening effects were also observed, and they appeared earlier for the non-flagellated strain. Based on the overall clean collector removal efficiencies determined from micromodel and column experiments, the non-motile and non-flagellated strain DJNM deposited the most, while the motile, wild-type strain DJ showed the least deposition. The overall clean collector removal efficiencies was due to decreased deposition of motile cells on the front sides of the collectors (relative to the flow direction). The horizontal gene transfer of extracellular DNA, known as natural transformation, was evaluated with both dissolved and adsorbed extracellular DNA and with motile and non-motile but flagellated strains (DJ and DJ77, respectively). The distinct transport mechanisms of these strains resulted in different natural transformation rates and relationships to the concentration of cells and dissolved extracellular DNA. A modified mass action type relationship with power relationships was established to model the differences in natural transformation between DJ and DJ77. A cell-DNA pairing hypothesis was formulated as a cell and DNA pair together and can eventually develop into a successful transformation reaction depending on time. The paring (Kz) and DNA power relationship (n2) parameters were similar for the two strains. However, the cell concentration power relationship (n1) was 0.77 and 0.39 for DJ and DJ77, respectively. The fact that n1 was smaller than 1 showed that transformation of both DJ and DJ77 suffered from cell concentration increase. The n1 of DJ being 2 times larger than that of DJ77 strongly suggested motility recovered transformation. Our microscopic observations further suggest that the approach of cells to extracellular DNA depends on bacterial motility. Combining microscopic observation of bacterial movement, assays of gene transfer, and macroscopic measurements provides insights into bacterial transport mechanisms and their influence on horizontal gene transfer. Our best opportunity to understand, control and harness bacterial communities stems from a fundamental understanding of bacterial transport and fate in the soil environment.

  16. Environmental and anthropogenic controls over bacterial communities in wetland soils

    PubMed Central

    Hartman, Wyatt H.; Richardson, Curtis J.; Vilgalys, Rytas; Bruland, Gregory L.

    2008-01-01

    Soil bacteria regulate wetland biogeochemical processes, yet little is known about controls over their distribution and abundance. Bacteria in North Carolina swamps and bogs differ greatly from Florida Everglades fens, where communities studied were unexpectedly similar along a nutrient enrichment gradient. Bacterial composition and diversity corresponded strongly with soil pH, land use, and restoration status, but less to nutrient concentrations, and not with wetland type or soil carbon. Surprisingly, wetland restoration decreased bacterial diversity, a response opposite to that in terrestrial ecosystems. Community level patterns were underlain by responses of a few taxa, especially the Acidobacteria and Proteobacteria, suggesting promise for bacterial indicators of restoration and trophic status. PMID:19004771

  17. Chromosomal position shift of a regulatory gene alters the bacterial phenotype.

    PubMed

    Gerganova, Veneta; Berger, Michael; Zaldastanishvili, Elisabed; Sobetzko, Patrick; Lafon, Corinne; Mourez, Michael; Travers, Andrew; Muskhelishvili, Georgi

    2015-09-30

    Recent studies strongly suggest that in bacterial cells the order of genes along the chromosomal origin-to-terminus axis is determinative for regulation of the growth phase-dependent gene expression. The prediction from this observation is that positional displacement of pleiotropic genes will affect the genetic regulation and hence, the cellular phenotype. To test this prediction we inserted the origin-proximal dusB-fis operon encoding the global regulator FIS in the vicinity of replication terminus on both arms of the Escherichia coli chromosome. We found that the lower fis gene dosage in the strains with terminus-proximal dusB-fis operons was compensated by increased fis expression such that the intracellular concentration of FIS was homeostatically adjusted. Nevertheless, despite unchanged FIS levels the positional displacement of dusB-fis impaired the competitive growth fitness of cells and altered the state of the overarching network regulating DNA topology, as well as the cellular response to environmental stress, hazardous substances and antibiotics. Our finding that the chromosomal repositioning of a regulatory gene can determine the cellular phenotype unveils an important yet unexplored facet of the genetic control mechanisms and paves the way for novel approaches to manipulate bacterial physiology. PMID:26170236

  18. Chromosomal position shift of a regulatory gene alters the bacterial phenotype

    PubMed Central

    Gerganova, Veneta; Berger, Michael; Zaldastanishvili, Elisabed; Sobetzko, Patrick; Lafon, Corinne; Mourez, Michael; Travers, Andrew; Muskhelishvili, Georgi

    2015-01-01

    Recent studies strongly suggest that in bacterial cells the order of genes along the chromosomal origin-to-terminus axis is determinative for regulation of the growth phase-dependent gene expression. The prediction from this observation is that positional displacement of pleiotropic genes will affect the genetic regulation and hence, the cellular phenotype. To test this prediction we inserted the origin-proximal dusB-fis operon encoding the global regulator FIS in the vicinity of replication terminus on both arms of the Escherichia coli chromosome. We found that the lower fis gene dosage in the strains with terminus-proximal dusB-fis operons was compensated by increased fis expression such that the intracellular concentration of FIS was homeostatically adjusted. Nevertheless, despite unchanged FIS levels the positional displacement of dusB-fis impaired the competitive growth fitness of cells and altered the state of the overarching network regulating DNA topology, as well as the cellular response to environmental stress, hazardous substances and antibiotics. Our finding that the chromosomal repositioning of a regulatory gene can determine the cellular phenotype unveils an important yet unexplored facet of the genetic control mechanisms and paves the way for novel approaches to manipulate bacterial physiology. PMID:26170236

  19. Detecting rare gene transfer events in bacterial populations

    PubMed Central

    Nielsen, Kaare M.; Bøhn, Thomas; Townsend, Jeffrey P.

    2014-01-01

    Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research. PMID:24432015

  20. Detecting rare gene transfer events in bacterial populations.

    PubMed

    Nielsen, Kaare M; Bhn, Thomas; Townsend, Jeffrey P

    2014-01-01

    Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research. PMID:24432015

  1. A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor.

    PubMed

    Takano, Eriko; Kinoshita, Hiroshi; Mersinias, Vassilis; Bucca, Giselda; Hotchkiss, Graham; Nihira, Takuya; Smith, Colin P; Bibb, Mervyn; Wohlleben, Wolfgang; Chater, Keith

    2005-04-01

    Gamma-butyrolactone signalling molecules are produced by many Streptomyces species, and several have been shown to regulate antibiotic production. In Streptomyces coelicolor A3(2) at least one gamma-butyrolactone (SCB1) has been shown to stimulate antibiotic production, and genes encoding proteins that are involved in its synthesis (scbA) and binding (scbR) have been characterized. Expression of these genes is autoregulated by a complex mechanism involving the gamma-butyrolactone. In this study, additional genes influenced by ScbR were identified by DNA microarray analysis, and included a cryptic cluster of genes for a hypothetical type I polyketide. Further analysis of this gene cluster revealed that the pathway-specific regulatory gene, kasO, is a direct target for regulation by ScbR. Gel retardation and DNase I footprinting analyses identified two potential binding sites for ScbR, one at -3 to -35 nt and the other at -222 to -244 nt upstream of the kasO transcriptional start site. Addition of SCB1 eliminated the DNA binding activity of ScbR at both sites. The expression of kasO was growth phase regulated in the parent (maximal during transition phase), undetectable in a scbA null mutant, and constitutively expressed in a scbR null mutant. Addition of SCB1 to the scbA mutant restored the expression of kasO, indicating that ScbR represses kasO until transition phase, when presumably SCB1 accumulates in sufficient quantity to relieve kasO repression. Expression of the cryptic antibiotic gene cluster was undetectable in a kasO deletion mutant. This is the first report with comprehensive in vivo and in vitro data to show that a gamma-butyrolactone-binding protein directly regulates a secondary metabolite pathway-specific regulatory gene in Streptomyces. PMID:15813737

  2. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology. PMID:26428062

  3. The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses

    PubMed Central

    V?trovsk, Tom; Baldrian, Petr

    2013-01-01

    16S ribosomal RNA currently represents the most important target of study in bacterial ecology. Its use for the description of bacterial diversity is, however, limited by the presence of variable copy numbers in bacterial genomes and sequence variation within closely related taxa or within a genome. Here we use the information from sequenced bacterial genomes to explore the variability of 16S rRNA sequences and copy numbers at various taxonomic levels and apply it to estimate bacterial genome and DNA abundances. In total, 7,081 16S rRNA sequences were in silico extracted from 1,690 available bacterial genomes (115 per genome). While there are several phyla containing low 16S rRNA copy numbers, in certain taxa, e.g., the Firmicutes and Gammaproteobacteria, the variation is large. Genome sizes are more conserved at all tested taxonomic levels than 16S rRNA copy numbers. Only a minority of bacterial genomes harbors identical 16S rRNA gene copies, and sequence diversity increases with increasing copy numbers. While certain taxa harbor dissimilar 16S rRNA genes, others contain sequences common to multiple species. Sequence identity clusters (often termed operational taxonomic units) thus provide an imperfect representation of bacterial taxa of a certain phylogenetic rank. We have demonstrated that the information on 16S rRNA copy numbers and genome sizes of genome-sequenced bacteria may be used as an estimate for the closest related taxon in an environmental dataset to calculate alternative estimates of the relative abundance of individual bacterial taxa in environmental samples. Using an example from forest soil, this procedure would increase the abundance estimates of Acidobacteria and decrease these of Firmicutes. Using the currently available information, alternative estimates of bacterial community composition may be obtained in this way if the variation of 16S rRNA copy numbers among bacteria is considered. PMID:23460914

  4. Bacterial plasmids: autonomous replication and vehicles for gene cloning.

    PubMed

    Helinski, D R

    1979-11-01

    The use of recombinant DNA techniques in the analysis of the structure and replication of bacterial plasmids has provided much information on the properties of these genetic elements and has led to the construction of plasmid elements that are potentially very useful as gene cloning vehicles in Escherichia coli and other gram-negative bacteria. The genetic and molecular properties of plasmids mini-F, ColE1, and RK2 are described with particular emphasis on the origin and direction of replication and the identification of genetic regions essential for maintenance of these elements in the extra-chromosomal state. Low molecular weight derivatives of each of these plasmids have been obtained and a restriction enzyme map determined for these various derivatives. A hybrid DNA molecule consisting of a low molecular weight derivative of ColE1 joined to a segment of bacteriophage DNA has been constructed and shown to be capable of existing either as a plasmid element or packaged as an infectious viral particle. Finally, several of the low molecular weight derivatives of these plasmids described have certain advantages as vehicles for the cloning of DNA including derivatives of he broad host range plasmid RK2 that may be useful for gene cloning in gram-negative bacteria distantly related to E. coli. PMID:115636

  5. Electrokinetic and optical control of bacterial microrobots

    NASA Astrophysics Data System (ADS)

    Steager, Edward B.; Selman Sakar, Mahmut; Kim, Dal Hyung; Kumar, Vijay; Pappas, George J.; Kim, Min Jun

    2011-03-01

    One of the great challenges in microscale science and engineering is the independent manipulation of cells and man-made objects on the micron scale. For such work, motile microorganisms are integrated with engineered systems to construct microbiorobots (MBRs). MBRs are negative photosensitive epoxy (SU-8) microfabricated structures with typical feature sizes ranging from 1 to 100 µm coated with a monolayer of swarmer cells of the bacterium Serratia marcescens. The adherent cells naturally coordinate to propel the microstructures in fluidic environments. In this study, ultraviolet light is used to control rotational motion and direct current electric fields are used to control the two-dimensional movement of MBRs. They are steered in a fully automated fashion using computer-controlled visual servoing, used to transport and manipulate micron-sized objects, and employed as cell-based biosensors. This work is a step toward in vitro mechanical or chemical manipulation of cells as well as controlled assembly of microcomponents.

  6. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato

    PubMed Central

    Tai, Thomas H.; Dahlbeck, Douglas; Clark, Eszter T.; Gajiwala, Paresh; Pasion, Romela; Whalen, Maureen C.; Stall, Robert E.; Staskawicz, Brian J.

    1999-01-01

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species. PMID:10570214

  7. Can dead bacterial cells be defined and are genes expressed after cell death?

    PubMed

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. PMID:22534140

  8. Detection of betalactamase producing bacterial genes and their clinical features.

    PubMed

    Hashim, R B; Husin, S; Rahman, M M

    2011-01-01

    The present study was aimed to identify the gene of drug resistance betalactamase producing bacteria and clinical features of the infected patients at Hospital University Kebangsaan Malaysia. Blood samples from the patients were collected, processed and betalactamase producing drug resistance bacteria were identified by antibiotic sensitivity testing. Genes of the drug resistance bacteria were detected and characterized by polymerase chain reaction. A total of 34 isolates of drug resistance Betalactamase producing E. coli and Klebsiella spp. were isolated from 2,502 patients. Most common drug resistance gene TEM was found in 50% of the isolates. 11% was found positive for both TEM and SHV. Next 11% of the isolates expressed only SHV genes. Clinical features of the patients were recorded from where the bacteria isolated. Regarding community affiliations 70.5% of the infected patients were Malay 17.6% were Indian and 11.7% were Chinese. Majority of the patients has an underlying pre-morbid condition as reflected by their diagnosis. Better infection control and hygiene in hospitals, plus controlled and prudent use of antibiotics, is required to minimize the impact of drug resistance betalactamase producing bacteria and the spread of infections. PMID:21913496

  9. Horizontal gene transfer of a bacterial insect toxin gene into the Epichlo fungal symbionts of grasses

    PubMed Central

    Ambrose, Karen V.; Koppenhfer, Albrecht M.; Belanger, Faith C.

    2014-01-01

    Horizontal gene transfer is recognized as an important factor in genome evolution, particularly when the newly acquired gene confers a new capability to the recipient species. We identified a gene similar to the makes caterpillars floppy (mcf1 and mcf2) insect toxin genes in Photorhabdus, bacterial symbionts of nematodes, in the genomes of the Epichlo fungi, which are intercellular symbionts of grasses. Infection by Epichlo spp. often confers insect resistance to the grass hosts, largely due to the production of fungal alkaloids. A mcf-like gene is present in all of the Epichlo genome sequences currently available but in no other fungal genomes. This suggests the Epichlo genes were derived from a single lineage-specific HGT event. Molecular dating was used to estimate the time of the HGT event at between 7.2 and 58.8 million years ago. The mcf-like coding sequence from Epichlo typhina subsp. poae was cloned and expressed in Escherichia coli. E. coli cells expressing the Mcf protein were toxic to black cutworms (Agrotis ipsilon), whereas E. coli cells containing the vector only were non-toxic. These results suggest that the Epichlo mcf-like genes may be a component, in addition to the fungal alkaloids, of the insect resistance observed in Epichlo-infected grasses. PMID:24990771

  10. Bacterial gene abundances as indicators of greenhouse gas emission in soils.

    PubMed

    Morales, Sergio E; Cosart, Theodore; Holben, William E

    2010-06-01

    Nitrogen fixing and denitrifying bacteria, respectively, control bulk inputs and outputs of nitrogen in soils, thereby mediating nitrogen-based greenhouse gas emissions in an ecosystem. Molecular techniques were used to evaluate the relative abundances of nitrogen fixing, denitrifying and two numerically dominant ribotypes (based on the > or =97% sequence similarity at the 16S rRNA gene) of bacteria in plots representing 10 agricultural and other land-use practices at the Kellogg biological station long-term ecological research site. Quantification of nitrogen-related functional genes (nitrite reductase, nirS; nitrous oxide reductase, nosZ; and nitrogenase, nifH) as well as two dominant 16S ribotypes (belonging to the phyla Acidobacteria, Thermomicrobia) allowed us to evaluate the hypothesis that microbial community differences are linked to greenhouse gas emissions under different land management practices. Our results suggest that the successional stages of the ecosystem are strongly linked to bacterial functional group abundance, and that the legacy of agricultural practices can be sustained over decades. We also link greenhouse gas emissions with specific compositional responses in the soil bacterial community and assess the use of denitrifying gene abundances as proxies for determining nitrous oxide emissions from soils. PMID:20182521

  11. Measuring gene expression in single bacterial cells: recent advances in methods and micro-devices.

    PubMed

    Shi, Xu; Gao, Weimin; Wang, Jiangxin; Chao, Shih-Hui; Zhang, Weiwen; Meldrum, Deirdre R

    2015-12-01

    Populations of bacterial cells that grow under the same conditions and/or environments are often considered to be uniform and thus can be described by ensemble average values of their physiologic, phenotypic, genotypic or other parameters. However, recent evidence suggests that cell-to-cell differences at the gene expression level could be an order of magnitude greater than previously thought even for isogenic bacterial populations. Such gene expression or transcriptional-level heterogeneity determines not only the fate of individual bacterial cells in a population but could also affect the ultimate fate of the population itself. Although techniques for single-cell gene expression measurement in eukaryotic cells have been successfully implemented for a decade or so, they have only recently become available for single bacterial cells. This is due to the difficulty of efficient lysis of most bacterial cells, as well as short half-life time (low stability) of bacterial mRNA. In this article, we review the recent progress and challenges associated with analyzing gene expression levels in single bacterial cells using various semi-quantitative and quantitative methods. In addition, a review of the recent progress in applying microfluidic devices to isolate single bacterial cells for gene expression analysis is also included. PMID:24708071

  12. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    PubMed

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. PMID:26897411

  13. Controlling bacterial infections by inhibiting proton-dependent processes.

    PubMed

    Kaneti, Galoz; Meir, Ohad; Mor, Amram

    2016-05-01

    Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial therapy, focused at disturbing bacterial cytoplasmic membrane functions at sub minimal inhibitory concentrations, namely through superficial physical alterations of the bilayer, thereby perturbing transmembrane signals transduction. Such a paradigm may have the advantage of fighting the infection while avoiding many of the known resistance mechanisms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26522076

  14. Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host

    PubMed Central

    Nikoh, Naruo; McCutcheon, John P.; Kudo, Toshiaki; Miyagishima, Shin-ya; Moran, Nancy A.; Nakabachi, Atsushi

    2010-01-01

    Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria), which have highly reduced genomes (420650 kb), raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LDcarboxypeptidases (LdcA1, LdcA2,?LdcA), five rare lipoprotein As (RlpA1-5), N-acetylmuramoyl-L-alanine amidase (AmiD), 1,4-beta-N-acetylmuramidase (bLys), DNA polymerase III alpha chain (?DnaE), and ATP synthase delta chain (?AtpH). Buchnera was the apparent source of two highly truncated pseudogenes (?DnaE and ?AtpH). Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria). At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys) appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5) are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the host nuclear genome, but suggest that aphids utilize a set of duplicated genes acquired from other bacteria in the context of the Buchneraaphid mutualism. PMID:20195500

  15. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host.

    PubMed

    Nikoh, Naruo; McCutcheon, John P; Kudo, Toshiaki; Miyagishima, Shin-ya; Moran, Nancy A; Nakabachi, Atsushi

    2010-02-01

    Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria), which have highly reduced genomes (420-650 kb), raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD-carboxypeptidases (LdcA1, LdcA2,psiLdcA), five rare lipoprotein As (RlpA1-5), N-acetylmuramoyl-L-alanine amidase (AmiD), 1,4-beta-N-acetylmuramidase (bLys), DNA polymerase III alpha chain (psiDnaE), and ATP synthase delta chain (psiAtpH). Buchnera was the apparent source of two highly truncated pseudogenes (psiDnaE and psiAtpH). Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria). At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys) appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5) are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the host nuclear genome, but suggest that aphids utilize a set of duplicated genes acquired from other bacteria in the context of the Buchnera-aphid mutualism. PMID:20195500

  16. Peripheral blood RNA gene expression profiling in patients with bacterial meningitis

    PubMed Central

    Lill, Margit; Kõks, Sulev; Soomets, Ursel; Schalkwyk, Leonard C.; Fernandes, Cathy; Lutsar, Irja; Taba, Pille

    2013-01-01

    Objectives: The aim of present study was to find genetic pathways activated during infection with bacterial meningitis (BM) and potentially influencing the course of the infection using genome-wide RNA expression profiling combined with pathway analysis and functional annotation of the differential transcription. Methods: We analyzed 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed using GeneChip Human Gene 1.0 ST Arrays which can assess the transcription of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define the altered genetic networks. We also analyzed whether gene expression profiles depend on the clinical course and outcome. In order to verify the microarray results, the expression levels of ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, and IL7R) were confirmed by quantitative real-time (qRT) PCR. Results: There were 8569 genes displaying differential expression at a significance level of p < 0.05. Following False Discovery Rate (FDR) correction, a total of 5500 genes remained significant at a p-value of < 0.01. Quantitative RT-PCR confirmed the differential expression in 10 selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in both adults and in children with BM compared to the healthy controls. The gene expression profiles did not significantly depend on the clinical outcome, but there was a strong influence of the specific type of pathogen underlying BM. Conclusion: This study demonstrates that there is a very strong activation of immune response at the transcriptional level during BM and that the type of pathogen influences this transcriptional activation. PMID:23515576

  17. Genes Encoding Phospholipases A2 Mediate Insect Nodulation Reactions to Bacterial Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose that expression of four genes encoding secretory phospholipases A2 (sPLA2) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis...

  18. Elucidating toxicological mechanisms of current flame retardants using a bacterial gene profiling assay.

    PubMed

    Krivoshiev, Boris V; Dardenne, Freddy; Blust, Ronny; Covaci, Adrian; Husson, Steven J

    2015-12-01

    Flame retardants are ubiquitously used chemicals that have been shown to contaminate environments. Toxicological data is largely limited, with little insight into their molecular modes of action that may give rise to their toxic phenotypes. Such insight would aid more effective risk assessments concerning these compounds, while also improving molecular design. We therefore used a bacterial stress-gene profiling assay to screen twelve currently-used flame retardants to obtain mechanistic insights of toxicity. Both brominated and organophosphate flame retardants were tested. All compounds showed statistically significant inductions of several stress genes when compared to control treatments. Triphenyl phosphate, tris(2-butoxyethyl) phosphate, tris(1,3-dichloro-2-propyl)phosphate, tris(butyl)phosphate, and tetrabromobisphenol A elicited (at least) two-fold inductions for any of the stress genes. When looking at absolute induction levels, the promoters induced are indicative of protein perturbation, DNA integrity and membrane integrity. However, normalising for the different induction potentials of the different stress genes and clustering using hierarchical and k-means algorithms indicated that in addition to protein and DNA damage, some compounds also resulted in growth arrest and oxidative damage. This research shows that this assay allows for the determination of toxicological modes-of-action while clustering and accounting for induction potentials of the different genes aids better risk assessment. PMID:26343755

  19. Controlled Bacterial Lysis for Electron Tomography of Native Cell Membranes

    PubMed Central

    Fu, Xiaofeng; Himes, Benjamin; Ke, Danxia; Rice, William J.; Ning, Jiying; Zhang, Peijun

    2014-01-01

    SUMMARY Cryo-electron tomography (cryoET) has become a powerful tool for direct visualization of 3D structures of native biological specimens at molecular resolution, but its application is limited to thin specimens (<300 nm). Recently, vitreous sectioning and cryo-FIB milling technologies were developed to physically reduce the specimen thickness; however, cryoET analysis of membrane protein complexes within native cell membranes remains a great challenge. Here, we use phage φX174 lysis gene E to rapidly produce native, intact, bacterial cell membranes for high resolution cryoET. We characterized E gene-induced cell lysis using FIB/SEM and cryoEM and show that the bacteria cytoplasm was largely depleted through spot lesion, producing ghosts with the cell membranes intact. We further demonstrate the utility of E-gene-induced lysis for cryoET using the bacterial chemotaxis receptor signaling complex array. The described method should have a broad application for structural and functional studies of native, intact cell membranes and membrane protein complexes. PMID:25456413

  20. Essentiality drives the orientation bias of bacterial genes in a continuous manner.

    PubMed

    Zheng, Wen-Xin; Luo, Cheng-Si; Deng, Yan-Yan; Guo, Feng-Biao

    2015-01-01

    Studies had found that bacterial genes are preferentially located on the leading strands. Subsequently, the preferences of essential genes and highly expressed genes were compared by classifying all genes into four groups, which showed that the former has an exclusive influence on orientation. However, only some functional classes of essential genes have this orientation bias. Nevertheless, previous studies only performed comparative analyzes by differentiating the orientation bias extent of two types of genes. Thus, it is unclear whether the influence of essentiality on strand bias works continuously. Herein, we found a significant correlation between essentiality and orientation bias extent in 19 of 21 analyzed bacterial genomes, based on quantitative measurement of gene essentiality (or fitness). The correlation coefficient was much higher than that derived from binary essentiality measures (essential or non-essential). This suggested that genes with relatively lower essentiality, i.e., conditionally essential genes, also have some orientation bias, although it is weaker than that of absolutely essential genes. The results demonstrated the continuous influence of essentiality on orientation bias and provided details on this visible structural feature of bacterial genomes. It also proved that Geptop and IFIM could serve as useful resources of bacterial gene essentiality, particularly for quantitative analysis. PMID:26560889

  1. Essentiality drives the orientation bias of bacterial genes in a continuous manner

    PubMed Central

    Zheng, Wen-Xin; Luo, Cheng-Si; Deng, Yan-Yan; Guo, Feng-Biao

    2015-01-01

    Studies had found that bacterial genes are preferentially located on the leading strands. Subsequently, the preferences of essential genes and highly expressed genes were compared by classifying all genes into four groups, which showed that the former has an exclusive influence on orientation. However, only some functional classes of essential genes have this orientation bias. Nevertheless, previous studies only performed comparative analyzes by differentiating the orientation bias extent of two types of genes. Thus, it is unclear whether the influence of essentiality on strand bias works continuously. Herein, we found a significant correlation between essentiality and orientation bias extent in 19 of 21 analyzed bacterial genomes, based on quantitative measurement of gene essentiality (or fitness). The correlation coefficient was much higher than that derived from binary essentiality measures (essential or non-essential). This suggested that genes with relatively lower essentiality, i.e., conditionally essential genes, also have some orientation bias, although it is weaker than that of absolutely essential genes. The results demonstrated the continuous influence of essentiality on orientation bias and provided details on this visible structural feature of bacterial genomes. It also proved that Geptop and IFIM could serve as useful resources of bacterial gene essentiality, particularly for quantitative analysis. PMID:26560889

  2. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake.

    PubMed

    Di Cesare, Andrea; Eckert, Ester M; Teruggi, Alessia; Fontaneto, Diego; Bertoni, Roberto; Callieri, Cristiana; Corno, Gianluca

    2015-08-01

    The fate of antibiotic resistance genes (ARGs) in environmental microbial communities is of primary concern as prodromal of a potential transfer to pathogenic bacteria. Although of diverse origin, the persistence of ARGs in aquatic environments is highly influenced by anthropic activities, allowing potential control actions in well-studied environments. However, knowledge of abundance and space-time distribution of ARGs in ecosystems is still scarce. Using quantitative real-time PCR, we investigated the presence and the abundance of twelve ARGs (against tetracyclines, ?-lactams, aminoglycosides, quinolones and sulphonamides) at different sampling sites, depths and seasons, in Lake Maggiore, a large subalpine lake, and in the area of its watershed. We then evaluated the correlation between each ARG and a number of ecological parameters in the water column in the deepest part of the lake. Our results suggest the constitutive presence of at least four ARGs within the bacterial community with a high proportion of bacteria potentially resistant to tetracyclines and sulphonamides. The presence of these ARGs was independent of the total bacterial density and temperature. The dynamics of tet(A) and sulII genes were, however, positively correlated with dissolved oxygen and negatively to chlorophyll a, suggesting that the resistant microbes inhabit specific niches. These observations indicate that the lake is a reservoir of antibiotic resistances, highlighting the need of a deeper understanding of the sources of ARGs and the factors allowing their persistence in waters. PMID:26118321

  3. Substrate Diffusion Heterogeneity Controls Bacterial Competition and Coexistence

    NASA Astrophysics Data System (ADS)

    Dechesne, A.; Or, D.; Smets, B. F.

    2005-12-01

    Diffusion has long been recognized as a key process affecting bacterial physiological functions ranging from nutrient uptake to removal of metabolic waste products. In the vadose zone, significant convective flows are limited and bacteria rely primarily on diffusion for nutrient supply. Even under relatively "wet" conditions (e.g. matric potentials -20 J/kg), soil water is fragmented and exists as thin liquid films or held in crevices imposing constraints on substrate diffusion. Our objective was to investigate the role of diffusion on soil microbial diversity, by focusing on one of the processes that shapes the structure of bacterial communities: competitive interactions. We used a simplified setup, in which the substrate (citrate) fluxes were controlled by different agar gels thicknesses and spatially heterogeneous diffusive pathways were created by an impermeable film with prescribed hole sizes and patterns. Our competition experiments involved two soil bacteria: Burkholderia xenovorans LB400 and Pseudomonas putida KT2440, which were tagged with different constitutive fluorescent markers, allowing for their on line microscopic detection. The growth parameters on citrate of these strains were thoroughly assessed. B. xenovorans LB400 is the weaker competitor. As a result, this strain was outcompeted by KT2440 under high substrate diffusivity and homogeneous conditions. Conversely, the disadvantage of the weakest competitor was not so marked under low substrate diffusivity condition. These results suggest that dry conditions in soil would provide conditions allowing the sustaining of weak bacterial competitors, resulting in the maintenance of high bacterial diversity.

  4. Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA.

    PubMed

    Sarathi, M; Simon, Martin C; Ahmed, V P Ishaq; Kumar, S Rajesh; Hameed, A S Sahul

    2008-01-01

    An in vivo expression system to produce large amounts of virus-derived dsRNAs in bacteria to provide a practical control of white spot syndrome virus (WSSV) in shrimp was developed. The bacterially synthesized dsRNA specific to VP28 gene of WSSV promoted gene-specific interference with the WSSV infection in shrimp. Virus infectivity was significantly reduced in WSSV-challenged shrimp injected with VP28-dsRNA and 100% survival was recorded. The inhibition of the expression of WSSV VP28 gene in experimentally challenged animals by VP28-dsRNA was confirmed by RT-PCR and Western blot analyses. Furthermore, we have demonstrated the efficacy of bacterially expressed VP28-dsRNA to silence VP28 gene expression in SISK cell line transfected with eukaryotic expression vector (pcDNA3.1) inserted with VP28 gene of WSSV. The expression level of VP28 gene in SISK cells was determined by fluorescent microscopy and ELISA. The results showed that the expression was significantly reduced in cells transfected with VP28dsRNA, whereas the cells transected with pcDNA-VP28 alone showed higher expression. The in vivo production of dsRNA using prokaryotic expression system could be an alternative to in vitro method for large-scale production of dsRNA corresponding to VP28 gene of WSSV for practical application to control the WSSV in shrimp farming. PMID:17965920

  5. Gene expression noise and robustness of signaling in bacterial chemotaxis

    NASA Astrophysics Data System (ADS)

    Sourjik, Victor

    2006-03-01

    Stochastic variations in protein levels are one of the major sources of noise affecting biological networks. Since networks involved in gene regulation and signal transduction must have a defined input-output relation, they can be expected to have undergone evolution for inherent robustness against such perturbations. Chemotaxis of a model bacterium Escherichia coli -- a mechanism that allows motile cells to follow chemical gradients in the environment -- has one of the most thoroughly studied signaling networks in biology. Combining theoretical and experimental analysis, we investigated robustness of this network to intercellular variations in expression levels of chemotaxis proteins, or gene expression noise. The single-cell levels of different chemotaxis proteins showed strong co-variation, which implies that stochastic variations in transcriptional control are the main source of the noise. We demonstrated that the pathway is indeed robust to such kind of perturbations by testing the effect of concerted overexpression of all chemotaxis proteins on the pathway output. Using computer simulations and theoretical analysis, we determined the network design features responsible for robustness and showed that the experimentally established network in Escherichia coli has the smallest topology that is sufficiently robust to allow a majority of the individuals in a population to maintain a correct pathway output.

  6. Adhesion controls bacterial actin polymerization-based movement.

    PubMed

    Soo, Frederick S; Theriot, Julie A

    2005-11-01

    As part of its infectious life cycle, the bacterial pathogen Listeria monocytogenes propels itself through the host-cell cytoplasm by triggering the polymerization of host-cell actin near the bacterial surface, harnessing the activity of several cytoskeletal proteins used during actin-based cell crawling. To distinguish among several classes of biophysical models of actin-based bacterial movement, we used a high-throughput tracking technique to record the movement of many individual bacteria during temperature shifts. The speed of each bacterium varied strongly with temperature, closely following the Arrhenius rate law. Among bacteria, the prefactor A of the Arrhenius dependence unexpectedly varied exponentially with apparent activation energy, E(a), over a wide range (8-21 kcal/mol), reminiscent of the "rate compensation effect" of classical catalytic reactions. Average E(a) were increased for mutant bacteria deficient in binding Ena/VASP proteins and bacteria moving in diluted extract. These two effects were additive. The observed temperature and rate compensation effects are consistent with a class of simple kinetic models in which the bacterium advances through the thermally driven, cooperative breakage of groups of adhesive bonds on its surface. The estimated number of coupled adhesive bonds N on the bacterial surface varies between 10 and 40 bonds. In contrast to other models, this model correctly predicts an experimentally observed negative correlation between bacterial speed and actin gel density. The idea that speed depends on adhesion, rather than polymerization, suggests several alternative mechanisms by which known cytoskeletal regulatory proteins could control cellular movement. PMID:16251274

  7. Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems

    PubMed Central

    Bertram, Ralph; Schuster, Christopher F.

    2014-01-01

    Toxin-antitoxin (TA) systems are small genetic elements ubiquitous in prokaryotic genomes that encode toxic proteins targeting various vital cellular functions. Typically, toxin activity is controlled by adjacently encoded protein or RNA antitoxins and unleashed as a consequence of genetic fluctuations or stressful conditions. Whereas some TA systems interfere with replication or cell wall synthesis, most of them influence transcriptional and post-transcriptional gene regulation. Antitoxin proteins often act as DNA binding transcriptional regulators and many TA toxins exhibit endoribonuclease activity to selectively degrade different RNA species and thus alter gene expression patterns. Some TA RNases cleave tRNA, tmRNAs or rRNAs, whereas most commonly mRNAs either in association with the ribosome or as free transcripts, are targeted. Examples are provided on how TA toxins differentially shape gene expression in bacterial pathogens by creating specialized ribosomes or by altering the transcriptome and how this may be tied in the control of pathogenicity factors. PMID:24524029

  8. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    PubMed Central

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  9. The interplay of homologous recombination and horizontal gene transfer in bacterial speciation.

    PubMed

    Lawrence, Jeffrey G; Retchless, Adam C

    2009-01-01

    Bacteria experience recombination in two ways. In the context of the Biological Species concept, allelic exchange purges genic variability within bacterial populations as gene exchange mediates selective sweeps. In contrast, horizontal gene transfer (HGT) increases the size of the population's pan-genome by providing an influx of novel genetic material. Here we discuss the interplay of these two processes, with an emphasis on how they allow for the maintenance of genotypically cohesive bacterial populations, yet allow for the separation of these populations upon bacterial speciation. In populations that maintain genotypic similarity by frequent allelic exchange, horizontally transferred genes may initiate ecological barriers to genetic exchange. The resulting recombination interference allows for the accumulation of neutral mutations and, consequently, the imposition of a pre-mating barrier to gene transfer. PMID:19271178

  10. 13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED BEHIND MANAGER'S ART DECO-STYLE CONTROL DESK, WITH CONTROL CUBICLE 1 AT FAR RIGHT AND CONTROL CUBICLE 9 AT FAR LEFT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  11. Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines.

    PubMed

    Duplantis, Barry N; Osusky, Milan; Schmerk, Crystal L; Ross, Darrell R; Bosio, Catharine M; Nano, Francis E

    2010-07-27

    All bacteria share a set of evolutionarily conserved essential genes that encode products that are required for viability. The great diversity of environments that bacteria inhabit, including environments at extreme temperatures, place adaptive pressure on essential genes. We sought to use this evolutionary diversity of essential genes to engineer bacterial pathogens to be stably temperature-sensitive, and thus useful as live vaccines. We isolated essential genes from bacteria found in the Arctic and substituted them for their counterparts into pathogens of mammals. We found that substitution of nine different essential genes from psychrophilic (cold-loving) bacteria into mammalian pathogenic bacteria resulted in strains that died below their normal-temperature growth limits. Substitution of three different psychrophilic gene orthologs of ligA, which encode NAD-dependent DNA ligase, resulted in bacterial strains that died at 33, 35, and 37 degrees C. One ligA gene was shown to render Francisella tularensis, Salmonella enterica, and Mycobacterium smegmatis temperature-sensitive, demonstrating that this gene functions in both Gram-negative and Gram-positive lineage bacteria. Three temperature-sensitive F. tularensis strains were shown to induce protective immunity after vaccination at a cool body site. About half of the genes that could be tested were unable to mutate to temperature-resistant forms at detectable levels. These results show that psychrophilic essential genes can be used to create a unique class of bacterial temperature-sensitive vaccines for important human pathogens, such as S. enterica and Mycobacterium tuberculosis. PMID:20624965

  12. Gene Loss Dominates As a Source of Genetic Variation within Clonal Pathogenic Bacterial Species

    PubMed Central

    Bolotin, Evgeni; Hershberg, Ruth

    2015-01-01

    Some of the most dangerous pathogens such as Mycobacterium tuberculosis and Yersinia pestis evolve clonally. This means that little or no recombination occurs between strains belonging to these species. Paradoxically, although different members of these species show extreme sequence similarity of orthologous genes, some show considerable intraspecies phenotypic variation, the source of which remains elusive. To examine the possible sources of phenotypic variation within clonal pathogenic bacterial species, we carried out an extensive genomic and pan-genomic analysis of the sources of genetic variation available to a large collection of clonal and nonclonal pathogenic bacterial species. We show that while nonclonal species diversify through a combination of changes to gene sequences, gene loss and gene gain, gene loss completely dominates as a source of genetic variation within clonal species. Indeed, gene loss is so prevalent within clonal species as to lead to levels of gene content variation comparable to those found in some nonclonal species that are much more diverged in their gene sequences and that acquire a substantial number of genes horizontally. Gene loss therefore needs to be taken into account as a potential dominant source of phenotypic variation within clonal bacterial species. PMID:26163675

  13. Gene Loss Dominates As a Source of Genetic Variation within Clonal Pathogenic Bacterial Species.

    PubMed

    Bolotin, Evgeni; Hershberg, Ruth

    2015-08-01

    Some of the most dangerous pathogens such as Mycobacterium tuberculosis and Yersinia pestis evolve clonally. This means that little or no recombination occurs between strains belonging to these species. Paradoxically, although different members of these species show extreme sequence similarity of orthologous genes, some show considerable intraspecies phenotypic variation, the source of which remains elusive. To examine the possible sources of phenotypic variation within clonal pathogenic bacterial species, we carried out an extensive genomic and pan-genomic analysis of the sources of genetic variation available to a large collection of clonal and nonclonal pathogenic bacterial species. We show that while nonclonal species diversify through a combination of changes to gene sequences, gene loss and gene gain, gene loss completely dominates as a source of genetic variation within clonal species. Indeed, gene loss is so prevalent within clonal species as to lead to levels of gene content variation comparable to those found in some nonclonal species that are much more diverged in their gene sequences and that acquire a substantial number of genes horizontally. Gene loss therefore needs to be taken into account as a potential dominant source of phenotypic variation within clonal bacterial species. PMID:26163675

  14. Multiple conversion between the genes encoding bacterial class-I release factors

    PubMed Central

    Ishikawa, Sohta A.; Kamikawa, Ryoma; Inagaki, Yuji

    2015-01-01

    Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the direction of gene conversion appeared to be opposite from one anotherfrom RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution. PMID:26257102

  15. A dual switch controls bacterial enhancer-dependent transcription.

    PubMed

    Wiesler, Simone C; Burrows, Patricia C; Buck, Martin

    2012-11-01

    Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant ?(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125

  16. The propagation of perturbations in rewired bacterial gene networks

    PubMed Central

    Baumstark, Rebecca; Hänzelmann, Sonja; Tsuru, Saburo; Schaerli, Yolanda; Francesconi, Mirko; Mancuso, Francesco M.; Castelo, Robert; Isalan, Mark

    2015-01-01

    What happens to gene expression when you add new links to a gene regulatory network? To answer this question, we profile 85 network rewirings in E. coli. Here we report that concerted patterns of differential expression propagate from reconnected hub genes. The rewirings link promoter regions to different transcription factor and σ-factor genes, resulting in perturbations that span four orders of magnitude, changing up to ∼70% of the transcriptome. Importantly, factor connectivity and promoter activity both associate with perturbation size. Perturbations from related rewirings have more similar transcription profiles and a statistical analysis reveals ∼20 underlying states of the system, associating particular gene groups with rewiring constructs. We examine two large clusters (ribosomal and flagellar genes) in detail. These represent alternative global outcomes from different rewirings because of antagonism between these major cell states. This data set of systematically related perturbations enables reverse engineering and discovery of underlying network interactions. PMID:26670742

  17. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance.

    PubMed

    Bhardwaj, Ashima K; Vinothkumar, Kittappa; Rajpara, Neha

    2013-04-01

    Quorum sensing (QS) is a bacterial communication process that depends on the bacterial population density. It involves small diffusible signaling molecules which activate the expression of myriad genes that control diverse array of functions like bioluminescence, virulence, biofilm formation, sporulation, to name a few. Since QS is responsible for virulence in the clinically relevant bacteria, inhibition of QS appears to be a promising strategy to control these pathogenic bacteria. With indiscriminate use of antibiotics, there has been an alarming increase in the number of antibiotic resistant pathogens. Antibiotics are no longer the magic bullets they were once thought to be and therefore there is a need for development of new antibiotics and/or other novel strategies to combat the infections caused by multidrug resistant organisms. Quorum sensing inhibition or quorum quenching has been pursued as one of such novel strategies. While antibiotics kill or slow down the growth of bacteria, quorum sensing inhibitors (QSIs) or quorum quenchers (QQs) attenuate bacterial virulence. A large body of work on QS has been carried out in deadly pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio fischeri, V. harveyi, Escherichia coli and V. cholerae etc to unravel the mechanisms of QS as well as identify and study QSIs. This review describes various aspects of QS, QSI, different model systems to study these phenomena and recent patents on various QSIs. It suggests QSIs as attractive alternatives for controlling human, animal and plant pathogens and their utility in agriculture and other industries. PMID:23394143

  18. Genomic analyses of bacterial porin-cytochrome gene clusters

    DOE PAGESBeta

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less

  19. Genomic analyses of bacterial porin-cytochrome gene clusters

    PubMed Central

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-01-01

    The porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c-type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides. PMID:25505896

  20. Statistical Analysis of Hurst Exponents of Essential/Nonessential Genes in 33 Bacterial Genomes

    PubMed Central

    Liu, Xiao; Wang, Baojin; Xu, Luo

    2015-01-01

    Methods for identifying essential genes currently depend predominantly on biochemical experiments. However, there is demand for improved computational methods for determining gene essentiality. In this study, we used the Hurst exponent, a characteristic parameter to describe long-range correlation in DNA, and analyzed its distribution in 33 bacterial genomes. In most genomes (31 out of 33) the significance levels of the Hurst exponents of the essential genes were significantly higher than for the corresponding full-gene-set, whereas the significance levels of the Hurst exponents of the nonessential genes remained unchanged or increased only slightly. All of the Hurst exponents of essential genes followed a normal distribution, with one exception. We therefore propose that the distribution feature of Hurst exponents of essential genes can be used as a classification index for essential gene prediction in bacteria. For computer-aided design in the field of synthetic biology, this feature can build a restraint for pre- or post-design checking of bacterial essential genes. Moreover, considering the relationship between gene essentiality and evolution, the Hurst exponents could be used as a descriptive parameter related to evolutionary level, or be added to the annotation of each gene. PMID:26067107

  1. Robust perfect adaptation in bacterial chemotaxis through integral feedback control

    PubMed Central

    Yi, Tau-Mu; Huang, Yun; Simon, Melvin I.; Doyle, John

    2000-01-01

    Integral feedback control is a basic engineering strategy for ensuring that the output of a system robustly tracks its desired value independent of noise or variations in system parameters. In biological systems, it is common for the response to an extracellular stimulus to return to its prestimulus value even in the continued presence of the signala process termed adaptation or desensitization. Barkai, Alon, Surette, and Leibler have provided both theoretical and experimental evidence that the precision of adaptation in bacterial chemotaxis is robust to dramatic changes in the levels and kinetic rate constants of the constituent proteins in this signaling network [Alon, U., Surette, M. G., Barkai, N. & Leibler, S. (1998) Nature (London) 397, 168171]. Here we propose that the robustness of perfect adaptation is the result of this system possessing the property of integral feedback control. Using techniques from control and dynamical systems theory, we demonstrate that integral control is structurally inherent in the BarkaiLeibler model and identify and characterize the key assumptions of the model. Most importantly, we argue that integral control in some form is necessary for a robust implementation of perfect adaptation. More generally, integral control may underlie the robustness of many homeostatic mechanisms. PMID:10781070

  2. Genomic analyses of bacterial porin-cytochrome gene clusters

    SciTech Connect

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.

  3. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor

    PubMed Central

    Ehrt, Sabine; Guo, Xinzheng V.; Hickey, Christopher M.; Ryou, Marvin; Monteleone, Mercedes; Riley, Lee W.; Schnappinger, Dirk

    2005-01-01

    Gene expression systems that allow the regulation of bacterial genes during an infection are valuable molecular tools but are lacking for mycobacterial pathogens. We report the development of mycobacterial gene regulation systems that allow controlling gene expression in fast and slow-growing mycobacteria, including Mycobacterium tuberculosis, using anhydrotetracycline (ATc) as inducer. The systems are based on the Escherichia coli Tn10-derived tet regulatory system and consist of a strong tet operator (tetO)-containing mycobacterial promoter, expression cassettes for the repressor TetR and the chemical inducer ATc. These systems allow gene regulation over two orders of magnitude in Mycobacterium smegmatis and M.tuberculosis. TetR-controlled gene expression was inducer concentration-dependent and maximal with ATc concentrations at least 10- and 20-fold below the minimal inhibitory concentration for M.smegmatis and M.tuberculosis, respectively. Using the essential mycobacterial gene ftsZ, we showed that these expression systems can be used to construct conditional knockouts and to analyze the function of essential mycobacterial genes. Finally, we demonstrated that these systems allow gene regulation in M.tuberculosis within the macrophage phagosome. PMID:15687379

  4. A Comprehensive Analysis of Gene Expression Changes Provoked by Bacterial and Fungal Infection in C. elegans

    PubMed Central

    Engelmann, Ilka; Griffon, Aurlien; Tichit, Laurent; Montaana-Sanchis, Frdric; Wang, Guilin; Reinke, Valerie; Waterston, Robert H.; Hillier, LaDeana W.; Ewbank, Jonathan J.

    2011-01-01

    While Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection. Using tiling arrays and/or RNA-sequencing, we have characterized the genome-wide transcriptional changes that underlie the host's response to infection by three bacterial (Serratia marcescens, Enterococcus faecalis and otorhabdus luminescens) and two fungal pathogens (Drechmeria coniospora and Harposporium sp.). We developed a flexible tool, the WormBase Converter (available at http://wormbasemanager.sourceforge.net/), to allow cross-study comparisons. The new data sets provided more extensive lists of differentially regulated genes than previous studies. Annotation analysis confirmed that genes commonly up-regulated by bacterial infections are related to stress responses. We found substantial overlaps between the genes regulated upon intestinal infection by the bacterial pathogens and Harposporium, and between those regulated by Harposporium and D. coniospora, which infects the epidermis. Among the fungus-regulated genes, there was a significant bias towards genes that are evolving rapidly and potentially encode small proteins. The results obtained using new methods reveal that the response to infection in C. elegans is determined by the nature of the pathogen, the site of infection and the physiological imbalance provoked by infection. They form the basis for future functional dissection of innate immune signaling. Finally, we also propose alternative methods to identify differentially regulated genes that take into account the greater variability in lowly expressed genes. PMID:21602919

  5. Use of Bacterially Expressed dsRNA to Downregulate Entamoeba histolytica Gene Expression

    PubMed Central

    Perdomo, Doranda; Weber, Christian; Guillén, Nancy

    2009-01-01

    Background Modern RNA interference (RNAi) methodologies using small interfering RNA (siRNA) oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules. Principal Findings Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA) targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica β-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite. Conclusions Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets. PMID:20037645

  6. Interplay of Noisy Gene Expression and Dynamics Explains Patterns of Bacterial Operon Organization

    NASA Astrophysics Data System (ADS)

    Igoshin, Oleg

    2011-03-01

    Bacterial chromosomes are organized into operons -- sets of genes co-transcribed into polycistronic messenger RNA. Hypotheses explaining the emergence and maintenance of operons include proportional co-regulation, horizontal transfer of intact ``selfish'' operons, emergence via gene duplication, and co-production of physically interacting proteins to speed their association. We hypothesized an alternative: operons can reduce or increase intrinsic gene expression noise in a manner dependent on the post-translational interactions, thereby resulting in selection for or against operons in depending on the network architecture. We devised five classes of two-gene network modules and show that the effects of operons on intrinsic noise depend on class membership. Two classes exhibit decreased noise with co-transcription, two others reveal increased noise, and the remaining one does not show a significant difference. To test our modeling predictions we employed bioinformatic analysis to determine the relationship gene expression noise and operon organization. The results confirm the overrepresentation of noise-minimizing operon architectures and provide evidence against other hypotheses. Our results thereby suggest a central role for gene expression noise in selecting for or maintaining operons in bacterial chromosomes. This demonstrates how post-translational network dynamics may provide selective pressure for organizing bacterial chromosomes, and has practical consequences for designing synthetic gene networks. This work is supported by National Institutes of Health grant 1R01GM096189-01.

  7. Effects of microcystin-LR on bacterial and fungal functional genes profile in rat gut.

    PubMed

    Lin, Juan; Chen, Jun; He, Jun; Chen, Jing; Yan, Qingyun; Zhou, Jizhong; Xie, Ping

    2015-03-01

    The short-term exposure to microcystin-LR (MC-LR, one of the most common and toxic variants generated by toxigenic cyanobacteria) induced gut dysfunction such as generation of reactive oxygen species, cell erosion and deficient intestinal absorption of nutrients. However, till now, little is known about its impact on gut microbial community, which has been considered as necessary metabolic assistant and stresses resistant entities for the host. This study was designed to reveal the shift of microbial functional genes in the gut of rat orally gavaged with MC-LR. GeoChip detected a high diversity of bacterial and fungal genes involved in basic metabolic processes and stress resistance. The results showed that the composition of functional genes was significantly changed in rat gut after one week of exposure to MC-LR, and we found some relatively enriched genes that are involved in carbon degradation including chitin, starch and limonene metabolism, and these genes were mainly derived from fungal and bacterial pathogens. In addition, we found large amounts of significantly enriched genes relevant to degradation of the specific carbon compounds, aromatics. The dysbiosis of bacterial and fungal flora gave an implication of pathogens invasion. The enriched gene functions could be linked to acute gastroenteritis induced by MC-LR. PMID:25617596

  8. Bacterial IMPDH gene used for the selection of mammalian cell transfectants.

    SciTech Connect

    Baccam, M.; Huberman, E.; Energy Systems

    2003-06-01

    Stable cell transfection is used for the expression of exogenous genes or cDNAs in eukaryotic cells. Selection of these transfectants requires a dominant selectable marker. A variety of such markers has been identified and is currently in use. However, many of these are not suitable for all cell types or require unique conditions. Here we describe a simple and versatile dominant selectable marker that involves bacterial IMP dehydrogenase (IMPDH), an enzyme essential for the replication of mammalian and bacterial cells. Although IMPDH is evolutionarily conserved, the bacterial enzyme is orders of magnitude more resistant to the toxic effect of the drug mycophenolic acid, which is an IMPDH inhibitor. We have demonstrated that transfection of human, monkey or Chinese hamster cell lines with an expression vector containing bacterial IMPDH and mycophenolic acid treatment resulted in the selection of colonies with a strikingly increased resistance to mycophenolic acid toxicity. Analysis of cells derived from these colonies indicated that the acquisition of this resistance was associated with bacterial IMPDH protein expression. As a proof of principle, we showed that mammalian cell transfection with a hicistronic IMPDH/GFP expression vector and mycophenolic acid treatment can he used to successfully select transfectants that express the fluorescent protein. These results indicate that bacterial IMPDH is a practical dominant selectable marker that can be used for the selection of transfectants that express exogenous genes or cDNAs in mammalian cells.

  9. Bacterial biogeography in the coastal waters of northern Zhejiang, East China Sea is highly controlled by spatially structured environmental gradients.

    PubMed

    Wang, Kai; Ye, Xiansen; Chen, Heping; Zhao, Qunfen; Hu, Changju; He, Jiaying; Qian, Yunxia; Xiong, Jinbo; Zhu, Jianlin; Zhang, Demin

    2015-10-01

    The underlying mechanisms of microbial community assembly in connective coastal environments are unclear. The coastal water area of northern Zhejiang, East China Sea, is a complex marine ecosystem with multiple environmental gradients, where the distributions and determinants of bacterioplankton communities remain unclear. We collected surface water samples from 95 sites across eight zones in this area for investigating bacterial community with 16S rRNA gene high-throughput sequencing. Bacterial alpha-diversity exhibits strong associations with water chemical parameters and latitude, with 75.5% of variation explained by suspended particle. The composition of dominant phyla can group the sampling sites into four bacterial provinces, and most key discriminant phyla and families/genera of each province strongly associate with specific environmental features, suggesting that local environmental conditions shape the biogeographic provincialism of bacterial taxa. At a broader and finer phylogenetic scale, bacterial beta-diversity is dominantly explained by the shared variation of environmental and spatial factors (63.3%); meanwhile, the environmental determinants of bacterial ?-diversity generally exhibit spatially structured patterns, suggesting that bacterial assembly in surface water is highly controlled by spatially structured environmental gradients in this area. This study provides evidence for the unique biogeographic pattern of bacterioplankton communities at an entire scale of this marine ecosystem. PMID:25912020

  10. A functional gene array for detection of bacterial virulence elements

    SciTech Connect

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  11. Clavanin bacterial sepsis control using a novel methacrylate nanocarrier

    PubMed Central

    Saúde, Amanda CM; Ombredane, Alicia S; Silva, Osmar N; Barbosa, João ARG; Moreno, Susana E; Guerra Araujo, Ana Claudia; Falcão, Rosana; Silva, Luciano P; Dias, Simoni C; Franco, Octávio L

    2014-01-01

    Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT® L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections. PMID:25382976

  12. Clavanin bacterial sepsis control using a novel methacrylate nanocarrier.

    PubMed

    Saúde, Amanda C M; Ombredane, Alicia S; Silva, Osmar N; Barbosa, João A R G; Moreno, Susana E; Araujo, Ana Claudia Guerra; Falcão, Rosana; Silva, Luciano P; Dias, Simoni C; Franco, Octávio L

    2014-01-01

    Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT(®) L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections. PMID:25382976

  13. Retroviral transfer of a bacterial alkyltransferase gene into murine bone marrow protects against chloroethylnitrosourea cytotoxicity.

    PubMed

    Harris, L C; Marathi, U K; Edwards, C C; Houghton, P J; Srivastava, D K; Vanin, E F; Sorrentino, B P; Brent, T P

    1995-11-01

    The chloroethylnitrosoureas (CENUs) are important antineoplastic drugs for which clinical utility has been restricted by the development of severe delayed myelosuppression in most patients. To investigate the potential of DNA repair proteins to reduce bone marrow sensitivity to the CENUs, we transferred the Escherichia coli ada gene, which encodes a Mr 39,000 O6-alkylguanine-DNA alkyltransferase (ATase), into murine bone marrow cells by the use of a high-titer ecotropic retrovirus. The ada-encoded ATase is resistant to O6-benzylguanine (O6-BG), a potent inhibitor of the mammalian ATases, thus affording the bone marrow an additional level of protection against CENUs. In methylcellulose cultures, ada-infected hematopoietic progenitor cells were twice as resistant as uninfected cells to the toxic effects of 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) following treatment with O6-BG. Although showing no obvious protective effects against leukopenia, overexpression of the bacterial ATase activity reduced the severity of anemia and thrombocytopenia in mice treated with O6-BG and BCNU. These effects, which were maximal at a BCNU dose of 12.5 mg/kg, were associated with improved survival when BCNU was given at this dose. At lower BCNU doses cytotoxicity was limited in both transduced and control mice, and at higher doses the protective effect was saturated due to cytotoxicity. These results suggest that ada gene therapy may be a feasible approach to amelioration of delayed myelosuppression following O6-BG plus CENU combination chemotherapy. PMID:9815932

  14. Overexpression of Bacterial mtlD Gene in Peanut Improves Drought Tolerance through Accumulation of Mannitol

    PubMed Central

    Bhauso, Tengale Dipak; Radhakrishnan, Thankappan; Kumar, Abhay; Mishra, Gyan Prakash; Dobaria, Jentilal Ramjibhai; Patel, Kirankumar; Rajam, Manchikatla Venkat

    2014-01-01

    In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L.) crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated. PMID:25436223

  15. Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol.

    PubMed

    Bhauso, Tengale Dipak; Radhakrishnan, Thankappan; Kumar, Abhay; Mishra, Gyan Prakash; Dobaria, Jentilal Ramjibhai; Patel, Kirankumar; Rajam, Manchikatla Venkat

    2014-01-01

    In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L.) crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated. PMID:25436223

  16. Denitrification gene expression in clay-soil bacterial community

    NASA Astrophysics Data System (ADS)

    Pastorelli, R.; Landi, S.

    2009-04-01

    Our contribution in the Italian research project SOILSINK was focused on microbial denitrification gene expression in Mediterranean agricultural soils. In ecosystems with high inputs of nitrogen, such as agricultural soils, denitrification causes a net loss of nitrogen since nitrate is reduced to gaseous forms, which are released into the atmosphere. Moreover, incomplete denitrification can lead to emission of nitrous oxide, a potent greenhouse gas which contributes to global warming and destruction of ozone layer. A critical role in denitrification is played by microorganisms and the ability to denitrify is widespread among a variety of phylogenetically unrelated organisms. Data reported here are referred to wheat cultivation in a clay-rich soil under different environmental impact management (Agugliano, AN, Italy). We analysed the RNA directly extracted from soil to provide information on in situ activities of specific populations. The expression of genes coding for two nitrate reductases (narG and napA), two nitrite reductases (nirS and nirK), two nitric oxide reductases (cnorB and qnorB) and nitrous oxide reductase (nosZ) was analyzed by reverse transcription (RT)-nested PCR. Only napA, nirS, nirK, qnorB and nosZ were detected and fragments sequenced showed high similarity with the corresponding gene sequences deposited in GenBank database. These results suggest the suitability of the method for the qualitative detection of denitrifying bacteria in environmental samples and they offered us the possibility to perform the denaturing gradient gel electrophoresis (DGGE) analyzes for denitrification genes.. Earlier conclusions showed nirK gene is more widely distributed in soil environment than nirS gene. The results concerning the nosZ expression indicated that microbial activity was clearly present only in no-tilled and no-fertilized soils.

  17. Expression of bacterial genes in transgenic tobacco: methods, applications and future prospects

    PubMed Central

    Jube, Sandro

    2009-01-01

    Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms, because it is easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. Many bacterial proteins involved in the synthesis of commercial products are currently engineered for production in tobacco. Bacterial enzymes synthesized in tobacco can enhance protection against abiotic stresses and diseases, and provide a system to test applied strategies such as phytoremediation. Examples of bacterial gene expression in tobacco include production of antigen proteins from several human bacterial pathogens as vaccines, bacterial proteins for enhancing resistance against insects, pathogens and herbicides, and bacterial enzymes for the production of polymers, sugars, and bioethanol. Further improvements in the expression of recombinant proteins and their recovery from tobacco will enhance production and commercial use of these proteins. This review highlights the dynamic use of tobacco in bacterial protein production by examining the most relevant research in this field. PMID:19750137

  18. Identifying essential genes in bacterial metabolic networks with machine learning methods

    PubMed Central

    2010-01-01

    Background Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective. Results We developed a machine learning technique to identify essential genes using the experimental data of genome-wide knock-out screens from one bacterial organism to infer essential genes of another related bacterial organism. We used a broad variety of topological features, sequence characteristics and co-expression properties potentially associated with essentiality, such as flux deviations, centrality, codon frequencies of the sequences, co-regulation and phyletic retention. An organism-wise cross-validation on bacterial species yielded reliable results with good accuracies (area under the receiver-operator-curve of 75% - 81%). Finally, it was applied to drug target predictions for Salmonella typhimurium. We compared our predictions to the viability of experimental knock-outs of S. typhimurium and identified 35 enzymes, which are highly relevant to be considered as potential drug targets. Specifically, we detected promising drug targets in the non-mevalonate pathway. Conclusions Using elaborated features characterizing network topology, sequence information and microarray data enables to predict essential genes from a bacterial reference organism to a related query organism without any knowledge about the essentiality of genes of the query organism. In general, such a method is beneficial for inferring drug targets when experimental data about genome-wide knockout screens is not available for the investigated organism. PMID:20438628

  19. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity.

    PubMed

    Yasir, Muhammad; Aslam, Zubair; Kim, Seon Won; Lee, Seon-Woo; Jeon, Che Ok; Chung, Young Ryun

    2009-10-01

    Bacterial communities and chitinase gene diversity of vermicompost (VC) were investigated to clarify the influence of earthworms on the inhibition of plant pathogenic fungi in VC. The spore germination of Fusarium moniliforme was reduced in VC aqueous extracts prepared from paper sludge and dairy sludge (fresh sludge, FS). The bacterial communities were examined by culture-dependent and -independent analyses. Unique clones selected from 16S rRNA libraries of FS and VC on the basis of restriction fragment length polymorphism (RFLP) fell into the major lineages of the domain bacteria Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria and Firmicutes. Among culture isolates, Actinobacteria dominated in VC, while almost equal numbers of Actinobacteria and Proteobacteria were present in FS. Analysis of chitinolytic isolates and chitinase gene diversity revealed that chitinolytic bacterial communities were enriched in VC. Populations of bacteria that inhibited plant fungal pathogens were higher in VC than in FS and particularly chitinolytic isolates were most active against the target fungi. PMID:19423335

  20. Infective Arthritis: Bacterial 23S rRNA Gene Sequencing as a Supplementary Diagnostic Method.

    PubMed

    Moser, Claus; Andresen, Keld; Kjerulf, Anne; Salamon, Suheil; Kemp, Michael; Christensen, Jens Jørgen

    2008-01-01

    Consecutively collected synovial fluids were examined for presence of bacterial DNA (a 700-bp fragment of the bacterial 23S rRNA gene) followed by DNA sequencing of amplicons, and by conventional bacteriological methods. One or more microorganisms were identified in 22 of the 227 synovial fluids (9,7%) originating from 17 patients. Sixteen of the patients had clinical signs of arthritis. For 11 patients molecular and conventional bacterial examinations were in agreement. Staphylococcus aureus, Streptococcus dysgalactiae subspecies equisimilis and Streptococcus pneumoniae, were detected in synovial fluids from 6, 2 and 2 patients, respectively. In 3 patients only 23S rRNA analysis was positive; 2 synovial fluids contained S. dysgalactiae subspecies equisimilis and 1 S. pneumoniae). The present study indicates a significant contribution by PCR with subsequent DNA sequencing of the 23S rRNA gene analysis in recognizing and identification of microorganisms from synovial fluids. PMID:19088916

  1. GSK3β and the control of infectious bacterial diseases

    PubMed Central

    Wang, Huizhi H.; Lamont, Richard J.; Kumar, Akhilesh; Scott, David A.

    2014-01-01

    Glycogen synthesis kinase 3β (GSK3β) has been shown to be a critical mediator of the intensity and direction of the innate immune system responding to bacterial stimuli. This review will focus on: (i) the central role of GSK3β in the regulation of pathogen-induced inflammatory responses through the regulation of pro- and anti-inflammatory cytokine production. (ii) The extensive ongoing efforts to exploit GSK3β for its therapeutic potential in the control of infectious diseases. (iii) The increasing evidence that specific pathogens target GSK3β-related pathways for immune evasion. A better understanding of complex bacterial–GSK3β interactions is likely to lead to more effective anti-inflammatory interventions and novel targets to circumvent pathogen colonization and survival. PMID:24618402

  2. Multiple micro-predators controlling bacterial communities in the environment.

    PubMed

    Johnke, Julia; Cohen, Yossi; de Leeuw, Marina; Kushmaro, Ariel; Jurkevitch, Edouard; Chatzinotas, Antonis

    2014-06-01

    Predator-prey interactions are a main issue in ecological theory, including multispecies predator-prey relationships and intraguild predation. This knowledge is mainly based on the study of plants and animals, while its relevance for microorganisms is not well understood. The three key groups of micro-predators include protists, predatory bacteria and bacteriophages. They greatly differ in size, in prey specificity, in hunting strategies and in the resulting population dynamics. Yet, their potential to jointly control bacterial populations and reducing biomass in complex environments such as wastewater treatment plants is vast. Here, we present relevant ecological concepts and recent findings on micropredators, and propose that an integrative approach to predation at the microscale should be developed enabling the exploitation of this potential. PMID:24598212

  3. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding.

    PubMed

    Li, Changyan; Wei, Jing; Lin, Yongjun; Chen, Hao

    2012-05-01

    Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes. PMID:22218673

  4. Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities.

    PubMed Central

    Barkay, T; Fouts, D L; Olson, B H

    1985-01-01

    A DNA gene probe was prepared to study genetic change mechanisms responsible for adaptation to mercury in natural bacterial communities. The probe was constructed from a 2.6-kilobase NcoI-EcoRI DNA restriction fragment which spans the majority of the mercury resistance operon (mer) in the R-factor R100. The range of specificity of this gene probe was defined by hybridization to the DNA of a wide variety of mercury-resistant bacteria previously shown to possess the mercuric reductase enzyme. All of the tested gram-negative bacteria had DNA sequences homologous to the mer probe, whereas no such homologies were detected in DNA of the gram-positive strains. Thus, the mer probe can be utilized to study gene flow processes in gram-negative bacterial communities. Images PMID:3994373

  5. Identification and expression profiles of multiple genes in Nile tilapia in response to bacterial infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophi...

  6. Genetic diversity of bacterial communities and gene transfer agents in northern South China Sea.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820

  7. Host Response to Respiratory Bacterial Pathogens as Identified by Integrated Analysis of Human Gene Expression Data

    PubMed Central

    Smith, Steven B.; Magid-Slav, Michal; Brown, James R.

    2013-01-01

    Respiratory bacterial pathogens are one of the leading causes of infectious death in the world and a major health concern complicated by the rise of multi-antibiotic resistant strains. Therapeutics that modulate host genes essential for pathogen infectivity could potentially avoid multi-drug resistance and provide a wider scope of treatment options. Here, we perform an integrative analysis of published human gene expression data generated under challenges from the gram-negative and Gram-positive bacteria pathogens, Pseudomonas aeruginosa and Streptococcus pneumoniae, respectively. We applied a previously described differential gene and pathway enrichment analysis pipeline to publicly available host mRNA GEO datasets resulting from exposure to bacterial infection. We found 72 canonical human pathways common between four GEO datasets, representing P. aeruginosa and S. pneumoniae. Although the majority of these pathways are known to be involved with immune response, we found several interesting new interactions such as the SUMO1 pathway that might have a role in bacterial infections. Furthermore, 36 host-bacterial pathways were also shared with our previous results for respiratory virus host gene expression. Based on our pathway analysis we propose several drug-repurposing opportunities supported by the literature. PMID:24086587

  8. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest

    PubMed Central

    Rasche, Frank; Knapp, Daniela; Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Sessitsch, Angela

    2011-01-01

    It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups. PMID:20882059

  9. FliZ Is a Global Regulatory Protein Affecting the Expression of Flagellar and Virulence Genes in Individual Xenorhabdus nematophila Bacterial Cells

    PubMed Central

    Severac, Dany; Rialle, Stéphanie; Longin, Cyrille; Gaudriault, Sophie; Givaudan, Alain

    2013-01-01

    Heterogeneity in the expression of various bacterial genes has been shown to result in the presence of individuals with different phenotypes within clonal bacterial populations. The genes specifying motility and flagellar functions are coordinately regulated and form a complex regulon, the flagellar regulon. Complex interplay has recently been demonstrated in the regulation of flagellar and virulence gene expression in many bacterial pathogens. We show here that FliZ, a DNA-binding protein, plays a key role in the insect pathogen, Xenorhabdus nematophila, affecting not only hemolysin production and virulence in insects, but efficient swimming motility. RNA-Seq analysis identified FliZ as a global regulatory protein controlling the expression of 278 Xenorhabdus genes either directly or indirectly. FliZ is required for the efficient expression of all flagellar genes, probably through its positive feedback loop, which controls expression of the flhDC operon, the master regulator of the flagellar circuit. FliZ also up- or downregulates the expression of numerous genes encoding non-flagellar proteins potentially involved in key steps of the Xenorhabdus lifecycle. Single-cell analysis revealed the bimodal expression of six identified markers of the FliZ regulon during exponential growth of the bacterial population. In addition, a combination of fluorescence-activated cell sorting and RT-qPCR quantification showed that this bimodality generated a mixed population of cells either expressing (“ON state”) or not expressing (“OFF state”) FliZ-dependent genes. Moreover, studies of a bacterial population exposed to a graded series of FliZ concentrations showed that FliZ functioned as a rheostat, controlling the rate of transition between the “OFF” and “ON” states in individuals. FliZ thus plays a key role in cell fate decisions, by transiently creating individuals with different potentials for motility and host interactions. PMID:24204316

  10. A Cell Cycle and Nutritional Checkpoint Controlling Bacterial Surface Adhesion

    PubMed Central

    Fiebig, Aretha; Herrou, Julien; Fumeaux, Coralie; Radhakrishnan, Sunish K.; Viollier, Patrick H.; Crosson, Sean

    2014-01-01

    In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA) that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ). Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a nutritional override system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells. PMID:24465221

  11. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes.

    PubMed

    Mitsudome, Yuya; Takahama, Mamiko; Hirose, Jun; Yoshida, Naoto

    2014-01-01

    Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (?-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on ?-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, ?-lactamase and ?-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring ?-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the ?-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for elucidation of gene function in bacterial species that have been refractory to experimental introduction of exogenous DNA. PMID:25401071

  12. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes

    PubMed Central

    2014-01-01

    Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (?-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on ?-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, ?-lactamase and ?-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring ?-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the ?-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for elucidation of gene function in bacterial species that have been refractory to experimental introduction of exogenous DNA. PMID:25401071

  13. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting.

    PubMed

    Cui, Erping; Wu, Ying; Zuo, Yiru; Chen, Hong

    2016-03-01

    Rice straw biochar (RSB) and mushroom biochar (MB) were added to lab-scale chicken manure composting to evaluate their effects on the behaviors of antibiotic resistance genes (ARGs) and on total and bio-available heavy metals (Cu, Zn and As). The associated bacterial community was characterized by 16SrRNA high-throughput sequencing. The abundance of pathogenic bacteria was also calculated. At the end of the control composting experiment, the average removal rate of ARGs was 0.86log units and the removal rate of pathogenic bacteria was 57.1%. MB addition resulted in a higher removal rate than that in the control composting experiment. However, RSB addition yielded opposite results, which may be due to the higher abundance of Erysipelotrichaceae, Lactobacillaceae, Family_XI_Incertae_Sedis (belonging to Firmicutes carrying and disseminating ARGs) and pathogenic bacteria carrying ARGs. Furthermore, the correlations between bio-available heavy metals and ARGs were more obvious than those between total heavy metals and ARGs. PMID:26720134

  14. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    PubMed Central

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-01-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future. PMID:26404329

  15. Role of starvation genes in the survival of deep subsurface bacterial communities. Final report

    SciTech Connect

    Matin, A.; Schmidt, T.; Caldwell, D.

    1998-11-01

    The investigation dealt with several aspects of subsurface bacterial survival and their nature. Mutants of Pseudomonas putida, a common environmental bacterium with counterparts in the subsurface, were isolated by transposon mutagenesis. These mutants were highly sensitive to starvation stress. Reporter gene fusions also showed that these genes were starvation genes since they were induced several fold when the cultures were started. Since the regulatory religions (promoters) of starvation genes are of interest in bioremediation and in experiments designed to understand the roles of starvation genes in the maintenance of microbial community structure, the promoter of one of these genes (pstarv1, contained in strain MK107) was characterized in detail. As a preliminary to these studies, the growth characteristics of Pseudomonas putida MK1 and MK107 were compared for cells growing in batch cultures or as an attached monolayer in microstat cultures.

  16. Horizontal Gene Transfer and the Evolution of Bacterial and Archaeal Population Structure

    PubMed Central

    Alm, Eric J.; Hanage, William P.

    2013-01-01

    Many bacterial and archaeal lineages have a history of extensive and ongoing horizontal gene transfer and loss, as evidenced by the large differences in genome content even among otherwise closely related isolates. How ecologically cohesive populations might evolve and be maintained under such conditions of rapid gene turnover has remained controversial. Here we synthesize recent literature demonstrating the importance of habitat and niche in structuring horizontal gene transfer. This leads to a model of ecological speciation via gradual genetic isolation triggered by differential habitat association of nascent populations. Further, we hypothesize that subpopulations can evolve through local gene exchange networks by tapping into a gene pool that is adaptive towards local, continuously changing organismic interactions and is, to a large degree, responsible for the observed rapid gene turnover. Overall, these insights help explain how bacteria and archaea form populations that display both ecological cohesion and high genomic diversity. PMID:23332119

  17. [Identification of a resistance gene to bacterial blight (Xanthomonas oryzae pv. oryzae) in a somaclonal mutant HX-3 of indica rice].

    PubMed

    Gao, Dong-Ying; Xu, Zhi-Gang; Chen, Zhi-Yi; Sun, Li-Hua; Sun, Qi-Ming; Lu, Fan; Hu, Bai-Shi; Liu, Yong-Feng

    2002-02-01

    Using the mature embryo of a susceptible rice variety Minghui 63 as the explant, we have obtained a somaclonal mutant HX-3 through selection in vitro, which has showed resistance to bacterial blight. In 8 successive years, the resistance of R1 to R9 generations of HX-3 was identified by ZJ173, a typical bacterial blight strain in Yangtsu River valley, and the results showed that the resistance of HX-3 was stable and heritable. Genetic analysis also indicated that the resistance of HX-3 to bacterial blight was under a dominant gene controlling. Using 32 bacterial blight strains collected in China, Philippines and Japan, the resistance spectrum of HX-3 and other 13 testers with different major dominant resistance genes were tested. Results of 2 years (1999-2000) experiment showed that HX-3 had a broad resistance spectrum, which seemed to be different with those of the other dominant resistance genes identified. Allelic tests were also conducted by crossing HX-3 with IRBB4, IRBB7, CBB12 and IRBB21, and the F2 populations of each of the 4 crosses demonstrated resistant and susceptible plant segregation, indicating that the resistance gene in HX-3 different from Xa-4, Xa-7, Xa-12 and Xa-21. All these results proved that there was a new resistance gene in HX-3. We have designated the new gene as Xa-25(t). PMID:11901997

  18. Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation, and gene over-expression.

    PubMed

    Xu, Jian-Zhong; Zhang, Wei-Guo

    2016-02-01

    With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010

  19. Strategies used for genetically modifying bacterial genome: ite-directed mutagenesis, gene inactivation, and gene over-expression*

    PubMed Central

    Xu, Jian-zhong; Zhang, Wei-guo

    2016-01-01

    With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010

  20. Both msa genes in Renibacterium salmoninarum are needed for full virulence in bacterial kidney disease

    USGS Publications Warehouse

    Coady, A.M.; Murray, A.L.; Elliott, D.G.; Rhodes, L.D.

    2006-01-01

    Renibacterium salmoninarum, a gram-positive diplococcobacillus that causes bacterial kidney disease among salmon and trout, has two chromosomal loci encoding the major soluble antigen (msa) gene. Because the MSA protein is widely suspected to be an important virulence factor, we used insertion-duplication mutagenesis to generate disruptions of either the msa1 or msa2 gene. Surprisingly, expression of MSA protein in broth cultures appeared unaffected. However, the virulence of either mutant in juvenile Chinook salmon (Oncorhynchus tshawytscha) by intraperitoneal challenge was severely attenuated, suggesting that disruption of the msa1 or msa2 gene affected in vivo expression. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.

  1. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  2. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    SciTech Connect

    Hwang, Chiachi; Wu, Weimin; Gentry, Terry J.; Carley, Jack; Corbin, Gail A.; Carroll, Sue L.; Watson, David B.; Jardine, Phil M.; Zhou, Jizhong; Criddle, Craig S.; Fields, Matthew W.

    2009-05-22

    Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared to the population variation via canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bio-reduction; however, the two bio-stimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.

  3. Laccase activity is proportional to the abundance of bacterial laccase-like genes in soil from subtropical arable land.

    PubMed

    Feng, Shuzhen; Su, Yirong; Dong, Mingzhe; He, Xunyang; Kumaresan, Deepak; O'Donnell, Anthony G; Wu, Jinshui; Chen, Xiangbi

    2015-12-01

    Laccase enzymes produced by both soil bacteria and fungi play important roles in refractory organic matter turnover in terrestrial ecosystems. We investigated the abundance and diversity of fungal laccase genes and bacterial laccase-like genes in soil from subtropical arable lands, and identified which microbial group was associated with laccase activity. Compared with fungal laccase genes, the bacterial laccase-like genes had greater abundance, richness and Shannon-Wiener diversity. More importantly, laccase activity can be explained almost exclusively by the bacterial laccase-like genes, and their abundance had significant linear relationship with laccase activity. Thus, bacterial laccase-like gene has great potential to be used as a sensitive indicator of laccase enzyme for refractory organic matter turnover in subtropical arable lands. PMID:26354020

  4. Exploration and grading of possible genes from 183 bacterial strains by a common protocol to identification of new genes: Gene Trek in Prokaryote Space (GTPS).

    PubMed

    Kosuge, Takehide; Abe, Takashi; Okido, Toshihisa; Tanaka, Naoto; Hirahata, Masaki; Maruyama, Yutaka; Mashima, Jun; Tomiki, Aki; Kurokawa, Motoyoshi; Himeno, Ryutaro; Fukuchi, Satoshi; Miyazaki, Satoru; Gojobori, Takashi; Tateno, Yoshio; Sugawara, Hideaki

    2006-12-31

    A large number of complete microorganism genomes has been sequenced and submitted to the public database and then incorporated into our complete genome database, Genome Information Broker (GIB, http://gib.genes.nig.ac.jp/). However, when comparative genomics is carried out, researchers must be aware that there are protein-coding genes not confirmed by homology or motif search and that reliable protein-coding genes are missing. Therefore, we developed a protocol (Gene Trek in Prokaryote Space, GTPS) for finding possible protein-coding genes in bacterial genomes. GTPS assigns a degree of reliability to predicted protein-coding genes. We first systematically applied the protocol to the complete genomes of all 123 bacterial species and strains that were publicly available as of July 2003, and then to those of 183 species and strains available as of September 2004. We found a number of incorrect genes and several new ones in the genome data in question. We also found a way to estimate the total number of orthologous genes in the bacterial world. PMID:17166861

  5. Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices

    PubMed Central

    Lang, Jenna Morgan; Darling, Aaron E.; Eisen, Jonathan A.

    2013-01-01

    Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a “primary concordance” tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes. PMID:23638103

  6. Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control

    PubMed Central

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J.; Richardson, David J.

    2012-01-01

    Abstract Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments. Antioxid. Redox Signal. 16, 819–852. PMID:22098259

  7. Direct Amplification of rRNA Genes in Diagnosis of Bacterial Infections

    PubMed Central

    Rantakokko-Jalava, Kaisu; Nikkari, Simo; Jalava, Jari; Eerola, Erkki; Skurnik, Mikael; Meurman, Olli; Ruuskanen, Olli; Alanen, Anna; Kotilainen, Esa; Toivanen, Paavo; Kotilainen, Pirkko

    2000-01-01

    A broad-range bacterial PCR targeting rRNA genes (rDNAs) was used to directly analyze 536 clinical samples obtained from 459 hospitalized patients during a 4-year study period. The molecular diagnosis based on DNA sequencing of the PCR product was compared to that obtained by bacterial culture. The bacteriological diagnosis was concordant for 447 (83%) specimens. Broad-range rDNA PCR was the only method that yielded an etiologic diagnosis for 11 (2.4%) of 459 patients. Compared to culture and clinical assessment, the sensitivity of the PCR method combined with sequencing was 74.2%, and the specificity was between 98.7 and 99.6%. At present, the described molecular approach proved superior to bacterial culture in two clinical situations: infections caused by bacteria with unusual growth requirements and specimens taken during antimicrobial treatment of the patient. PMID:10618059

  8. Autonomous bacterial localization and gene expression based on nearby cell receptor density

    PubMed Central

    Wu, Hsuan-Chen; Tsao, Chen-Yu; Quan, David N; Cheng, Yi; Servinsky, Matthew D; Carter, Karen K; Jee, Kathleen J; Terrell, Jessica L; Zargar, Amin; Rubloff, Gary W; Payne, Gregory F; Valdes, James J; Bentley, William E

    2013-01-01

    Escherichia coli were genetically modified to enable programmed motility, sensing, and actuation based on the density of features on nearby surfaces. Then, based on calculated feature density, these cells expressed marker proteins to indicate phenotypic response. Specifically, site-specific synthesis of bacterial quorum sensing autoinducer-2 (AI-2) is used to initiate and recruit motile cells. In our model system, we rewired E. coli's AI-2 signaling pathway to direct bacteria to a squamous cancer cell line of head and neck (SCCHN), where they initiate synthesis of a reporter (drug surrogate) based on a threshold density of epidermal growth factor receptor (EGFR). This represents a new type of controller for targeted drug delivery as actuation (synthesis and delivery) depends on a receptor density marking the diseased cell. The ability to survey local surfaces and initiate gene expression based on feature density represents a new area-based switch in synthetic biology that will find use beyond the proposed cancer model here. PMID:23340842

  9. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions.

    PubMed

    Mark, G Louise; Dow, J Maxwell; Kiely, Patrick D; Higgins, Hazel; Haynes, Jill; Baysse, Christine; Abbas, Abdelhamid; Foley, Tara; Franks, Ashley; Morrissey, John; O'Gara, Fergal

    2005-11-29

    Molecules exuded by plant roots are thought to act as signals to influence the ability of microbial strains to colonize the roots and to survive in the rhizosphere. Differential bacterial responses to signals from different plant species may mediate the selection of specific rhizosphere populations. Very little, however, is known about the effects of plant exudates on patterns of bacterial gene expression. Here, we have tested the concept that plant root exudates modulate expression of bacterial genes involved in establishing microbe-plant interactions. We have examined the influence on the Pseudomonas aeruginosa PA01 transcriptome of exudates from two varieties of sugarbeet that select for genetically distinct pseudomonad populations in the rhizosphere. The response to the two exudates showed only a partial overlap; the majority of those genes with altered expression was regulated in response to only one of the two exudates. Genes with altered expression included those with functions previously implicated in microbe-plant interactions, such as aspects of metabolism, chemotaxis and type III secretion, and a subset with putative or unknown function. Use of a panel of mutants with targeted disruptions allowed us to identify previously uncharacterized genes with roles in the competitive ability of P. aeruginosa in the rhizosphere within this subset. No genes with host-specific effects were identified. Homologues of the genes identified occur in the genomes of both beneficial and pathogenic root-associated bacteria, suggesting that this strategy may help to elucidate molecular interactions that are important for biocontrol, plant growth promotion, and plant pathogenesis. PMID:16301542

  10. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions

    PubMed Central

    Mark, G. Louise; Dow, J. Maxwell; Kiely, Patrick D.; Higgins, Hazel; Haynes, Jill; Baysse, Christine; Abbas, Abdelhamid; Foley, Tara; Franks, Ashley; Morrissey, John; O'Gara, Fergal

    2005-01-01

    Molecules exuded by plant roots are thought to act as signals to influence the ability of microbial strains to colonize the roots and to survive in the rhizosphere. Differential bacterial responses to signals from different plant species may mediate the selection of specific rhizosphere populations. Very little, however, is known about the effects of plant exudates on patterns of bacterial gene expression. Here, we have tested the concept that plant root exudates modulate expression of bacterial genes involved in establishing microbe-plant interactions. We have examined the influence on the Pseudomonas aeruginosa PA01 transcriptome of exudates from two varieties of sugarbeet that select for genetically distinct pseudomonad populations in the rhizosphere. The response to the two exudates showed only a partial overlap; the majority of those genes with altered expression was regulated in response to only one of the two exudates. Genes with altered expression included those with functions previously implicated in microbe-plant interactions, such as aspects of metabolism, chemotaxis and type III secretion, and a subset with putative or unknown function. Use of a panel of mutants with targeted disruptions allowed us to identify previously uncharacterized genes with roles in the competitive ability of P. aeruginosa in the rhizosphere within this subset. No genes with host-specific effects were identified. Homologues of the genes identified occur in the genomes of both beneficial and pathogenic root-associated bacteria, suggesting that this strategy may help to elucidate molecular interactions that are important for biocontrol, plant growth promotion, and plant pathogenesis. PMID:16301542

  11. Floating pellets containing bacterial antagonist for control sheath blight of rice: formulations, viability and bacterial release studies.

    PubMed

    Wiwattanapatapee, R; Pengnoo, A; Kanjanamaneesathian, M; Matchavanich, W; Nilratana, L; Jantharangsri, A

    2004-03-24

    Floating pellets containing spores of bacterial biological control agent, Bacillus megaterium were prepared by extrusion-spheronization process. The formulations composed of hydrogenated vegetable oil (HVO), lactose, microcrystalline cellulose (Avicel(R) PH101), and a disintegrant; cross-linked sodium carboxymethylcellulose (Ac-Di-Sol(R)). The finishing pellets contained bacteria ranging from 10(7) to 10(8) CFU/g and the viability of bacteria in all formulations remained high after 6 months storage. The scanning electron microscope (SEM) was used to observe endospores of B. megaterium on both the surface and the inside of the pellets. The formulations were tested for their physical properties, floating ability and bacterial release. The level of disintegrant in the formulations influenced the floating ability and the liberation of antagonistic bacteria from pellets. The bacterial pellets showed promising result in suppression of the development of sheath blight lesions in greenhouse experiment. PMID:15023457

  12. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle.

    PubMed

    Sobetzko, Patrick; Glinkowska, Monika; Travers, Andrew; Muskhelishvili, Georgi

    2013-07-01

    The chromosomal DNA polymer constituting the cellular genetic material is primarily a device for coding information. Whilst the gene sequences comprise the digital (discontinuous) linear code, physiological alterations of the DNA superhelical density generate in addition analog (continuous) three-dimensional information essential for regulation of both chromosome compaction and gene expression. Insight into the relationship between the DNA analog information and the digital linear code is of fundamental importance for understanding genetic regulation. Our previous study in the model organism Escherichia coli suggested that the chromosomal gene order and a spatiotemporal gradient of DNA superhelicity associated with DNA replication determine the growth phase-dependent gene transcription. In this study we reveal a general gradient of DNA thermodynamic stability correlated with the polarity of chromosomal replication and manifest in the spatiotemporal pattern of gene transcription during the bacterial growth cycle. Furthermore, by integrating the physical and dynamic features of the transcribed sequences with their functional content we identify spatiotemporal domains of gene expression encompassing different functions. We thus provide both an insight into the organisational principle of the bacterial growth program and a novel holistic methodology for exploring chromosomal dynamics. PMID:23493878

  13. Bacterial and fungal chitinase chiJ orthologs evolve under different selective constraints following horizontal gene transfer

    PubMed Central

    2012-01-01

    Background Certain bacteria from the genus Streptomyces are currently used as biological control agents against plant pathogenic fungi. Hydrolytic enzymes that degrade fungal cell wall components, such as chitinases, are suggested as one possible mechanism in biocontrol interactions. Adaptive evolution of chitinases are previously reported for plant chitinases involved in defence against fungal pathogens, and in fungal chitinases involved in fungal-fungal interactions. In this study we investigated the molecular evolution of chitinase chiJ in the bacterial genus Streptomyces. In addition, as chiJ orthologs are previously reported in certain fungal species as a result from horizontal gene transfer, we conducted a comparative study of differences in evolutionary patterns between bacterial and fungal taxa. Findings ChiJ contained three sites evolving under strong positive selection and four groups of co-evolving sites. Regions of high amino acid diversity were predicted to be surface-exposed and associated with coil regions that connect certain ?-helices and ?-strands in the family 18 chitinase TIM barrel structure, but not associated with the catalytic cleft. The comparative study with fungal ChiJ orthologs identified three regions that display signs of type 1 functional divergence, where unique adaptations in the bacterial and fungal taxa are driven by positive selection. Conclusions The identified surface-exposed regions of chitinase ChiJ where sequence diversification is driven by positive selection may putatively be related to functional divergence between bacterial and fungal orthologs. These results show that ChiJ orthologs have evolved under different selective constraints following the horizontal gene transfer event. PMID:23095575

  14. The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish.

    PubMed

    Oehlers, Stefan H; Flores, Maria Vega; Hall, Chris J; Swift, Simon; Crosier, Kathryn E; Crosier, Philip S

    2011-11-01

    Inflammatory bowel disease (IBD), in the form of Crohn's disease (CD) or ulcerative colitis (UC), is a debilitating chronic immune disorder of the intestine. A complex etiology resulting from dysfunctional interactions between the intestinal immune system and its microflora, influenced by host genetic susceptibility, makes disease modeling challenging. Mutations in NOD2 have the highest disease-specific risk association for CD, and a related gene, NOD1, is associated with UC. NOD1 and NOD2 encode intracellular bacterial sensor proteins acting as innate immune triggers, and represent promising therapeutic targets. The zebrafish has the potential to aid in modeling genetic and environmental aspects of IBD pathogenesis. Here, we report the characterization of the Nod signaling components in the zebrafish larval intestine. The nod1 and nod2 genes are expressed in intestinal epithelial cells and neutrophils together with the Nod signaling pathway genes ripk2, a20, aamp, cd147, centaurin b1, erbin and grim-19. Using a zebrafish embryo Salmonella infection model, morpholino-mediated depletion of Nod1 or Nod2 reduced the ability of embryos to control systemic infection. Depletion of Nod1 or Nod2 decreased expression of dual oxidase in the intestinal epithelium and impaired the ability of larvae to reduce intracellular bacterial burden. This work highlights the potential use of zebrafish larvae in the study of components of IBD pathogenesis. PMID:21729873

  15. Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice.

    PubMed

    Torstensson, Anders; Dinasquet, Julie; Chierici, Melissa; Fransson, Agneta; Riemann, Lasse; Wulff, Angela

    2015-10-01

    Due to climate change, sea ice experiences changes in terms of extent and physical properties. In order to understand how sea ice microbial communities are affected by changes in physicochemical properties of the ice, we used 454-sequencing of 16S and 18S rRNA genes to examine environmental control of microbial diversity and composition in Antarctic sea ice. We observed a high diversity and richness of bacteria, which were strongly negatively correlated with temperature and positively with brine salinity. We suggest that bacterial diversity in sea ice is mainly controlled by physicochemical properties of the ice, such as temperature and salinity, and that sea ice bacterial communities are sensitive to seasonal and environmental changes. For the first time in Antarctic interior sea ice, we observed a strong eukaryotic dominance of the dinoflagellate phylotype SL163A10, comprising 63% of the total sequences. This phylotype is known to be kleptoplastic and could be a significant primary producer in sea ice. We conclude that mixotrophic flagellates may play a greater role in the sea ice microbial ecosystem than previously believed, and not only during the polar night but also during summer when potential food sources are abundant. PMID:25845501

  16. Tetracycline-controlled gene expression in Entamoeba histolytica.

    PubMed

    Hamann, L; Buss, H; Tannich, E

    1997-01-01

    To provide further tools for functional genetics of the protozoan parasite Entamoeba histolytica, we have tested the suitability of the bacterial TN10-encoded tet-repressor/tet-operator system for gene regulation in ameba trophozoites. Expression of the tet-repressor within the ameba was driven by the wild-type endogenous lectin gene promoter from episomal transfected plasmids. Tetracycline-inducible expression of a reporter gene driven by a modified tet-operator-bearing lectin gene promotor was monitored by transient and episomal transfection. Promotor activity was dependent on the position of the tet-operator insertion. Under appropriate conditions, expression of the reporter gene in tet-repressor expressing cells revealed only background levels but was inducible up to 240-fold by the addition of non-toxic amounts of tetracycline reaching full activity within 36 to 48 h. Because of the tight and rapid control by tetracycline, the tet-repressor controlled lectin gene promotor should be a usefull tool for reverse genetic approaches in E. histolytica as well as for recombinant protein expression within this anaerobic organism. PMID:9041523

  17. Consequences and controls of bacterial sulfate reduction in marine sediments

    SciTech Connect

    Westrich, J.T.

    1983-01-01

    Bacterial sulfate reduction is an integral part of the geochemical cycles of carbon and sulfur. To better understand the environmental consequences of sulfate reduction and to further clarify the factors controlling this important biogeochemical process, rates of sulfate reduction were measured in Long Island Sound sediments and in controlled laboratory experiments using the /sup 35/S-SO/sub 4/= radiotracer technique. Four sediment localities (NWC, FOAM, Sachem, and BH) in the Sound, with different sedimentation rates and different macrofaunal populations, were chosen for study. Geochemical evidence from the FOAM site, based on the rate data, supports the use of a simple stoichiometric model for overall organic matter decomposition in the zone of sulfate reduction. Once other less important factors affecting the rate of sulfate reduction have been considered, both the laboratory and field work in the present study show that the rate of organic matter decomposition via sulfate reduction is ultimately dependant on the quality and quantity of the organic matter undergoing decomposition. In order to quantify this widely accepted statement, a multiple, first-order rate equation for organic matter decomposition in marine sediments is developed and its validity proven by laboratory experiments. The salient feature of this model is developed and its validity proven by laboratory experiments. The salient feature of this model is the hypothesis that a finite number of organic matter types exist, each with their own particular decay constant. The significance of the different organic matter fractions in the model is discussed in terms of general models for organic matter diagenesis and preservation.

  18. Feedback Control Architecture and the Bacterial Chemotaxis Network

    PubMed Central

    Hamadeh, Abdullah; Roberts, Mark A. J.; August, Elias; McSharry, Patrick E.; Maini, Philip K.; Armitage, Judith P.; Papachristodoulou, Antonis

    2011-01-01

    Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to reset (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a cascade control feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance. PMID:21573199

  19. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens.

    PubMed

    Winstel, Volker; Liang, Chunguang; Sanchez-Carballo, Patricia; Steglich, Matthias; Munar, Marta; Brker, Barbara M; Penads, Jose R; Nbel, Ulrich; Holst, Otto; Dandekar, Thomas; Peschel, Andreas; Xia, Guoqing

    2013-01-01

    Mobile genetic elements (MGEs) encoding virulence and resistance genes are widespread in bacterial pathogens, but it has remained unclear how they occasionally jump to new host species. Staphylococcus aureus clones exchange MGEs such as S. aureus pathogenicity islands (SaPIs) with high frequency via helper phages. Here we report that the S. aureus ST395 lineage is refractory to horizontal gene transfer (HGT) with typical S. aureus but exchanges SaPIs with other species and genera including Staphylococcus epidermidis and Listeria monocytogenes. ST395 produces an unusual wall teichoic acid (WTA) resembling that of its HGT partner species. Notably, distantly related bacterial species and genera undergo efficient HGT with typical S. aureus upon ectopic expression of S. aureus WTA. Combined with genomic analyses, these results indicate that a 'glycocode' of WTA structures and WTA-binding helper phages permits HGT even across long phylogenetic distances thereby shaping the evolution of Gram-positive pathogens. PMID:23965785

  20. Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes?

    PubMed

    Rocha, Eduardo

    2002-09-01

    Replication generates bacterial chromosomes with strands that differ in the number of genes and base composition. It has been suggested that in bacteria such as Bacillus subtilis, PolC is responsible for the synthesis of the leading strand and DnaE for the lagging strand, whereas in many other bacteria DnaE is responsible for the synthesis of both strands. Here, I show that the possession of PolC correlates with leading strands that contain an average of 78% of genes compared with 58% for genomes that do not contain PolC. This suggests that asymmetrical replication forks could have a major role in defining and constraining the structure of the bacterial chromosome. The presence of PolC is not correlated with compositional strand bias, suggesting that the two biases result from different types of structural asymmetry. PMID:12217498

  1. ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes

    PubMed Central

    Gupta, Sushim Kumar; Padmanabhan, Babu Roshan; Diene, Seydina M.; Lopez-Rojas, Rafael; Kempf, Marie; Landraud, Luce

    2014-01-01

    ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) is a new bioinformatic tool that was created to detect existing and putative new antibiotic resistance (AR) genes in bacterial genomes. ARG-ANNOT uses a local BLAST program in Bio-Edit software that allows the user to analyze sequences without a Web interface. All AR genetic determinants were collected from published works and online resources; nucleotide and protein sequences were retrieved from the NCBI GenBank database. After building a database that includes 1,689 antibiotic resistance genes, the software was tested in a blind manner using 100 random sequences selected from the database to verify that the sensitivity and specificity were at 100% even when partial sequences were queried. Notably, BLAST analysis results obtained using the rmtF gene sequence (a new aminoglycoside-modifying enzyme gene sequence that is not included in the database) as a query revealed that the tool was able to link this sequence to short sequences (17 to 40 bp) found in other genes of the rmt family with significant E values. Finally, the analysis of 178 Acinetobacter baumannii and 20 Staphylococcus aureus genomes allowed the detection of a significantly higher number of AR genes than the Resfinder gene analyzer and 11 point mutations in target genes known to be associated with AR. The average time for the analysis of a genome was 3.35 ± 0.13 min. We have created a concise database for BLAST using a Bio-Edit interface that can detect AR genetic determinants in bacterial genomes and can rapidly and easily discover putative new AR genetic determinants. PMID:24145532

  2. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris).

    PubMed

    Erler, Silvio; Popp, Mario; Lattorff, H Michael G

    2011-01-01

    The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription factor relish, which is necessary for effector gene expression. PMID:21479237

  3. Anti-inflammatory effect and prostate gene expression profiling of steryl ferulate on experimental rats with non-bacterial prostatitis.

    PubMed

    Hu, Yinzhou; Xiong, Lina; Huang, Weisu; Cai, Huafang; Luo, Yanxi; Zhang, Ying; Lu, Baiyi

    2014-06-01

    Steryl ferulate (SF) is a bioactive mixture extracted from rice bran and shows higher inhibitory activity against inflammation than the corresponding free sterols. In this study, the aim was to investigate the anti-inflammatory effect and prostate gene expression profiling of SF using a Xiaozhiling-induced non-bacterial prostatitis (NBP) rat model. The anti-inflammatory effect was evaluated by prostate weight, prostate index, acid phosphatase, density of lecithin corpuscles (DLC), white blood cell count (WBC), and prostatic histologic section. Prostate gene expression profiling was assessed by a cDNA microarray and validated by quantitative real-time PCR of five selected genes. Pathway analysis and Gene ontology (GO) analysis were applied to determine the roles of these differentially expressed genes involved in these biological pathways or GO terms. SF treatment could significantly inhibit prostate weight, prostate index, total acid phosphatase, prostatic acid phosphatase and WBC, suppress the severity of histological lesion and increase the DLC. Compared with the control group, the SF treatment group contained 238 up-regulated genes and 111 down-regulated genes. GO analysis demonstrated that the most significant expression genes were closely related to the terms of fibrinolysis, inflammatory response, high-density lipoprotein particle, protein-lipid complex, enzyme inhibitor activity, peptidase inhibitor activity and others. Canonical pathway analysis indicated five pathways were significantly regulated, which were associated with inflammation and tumorgenesis. In conclusion, SF may be used as a health supplement to prevent NBP, in that it could inhibit prostate inflammation in NBP patients by affecting the expression of genes in the related GO terms and pathways. PMID:24686498

  4. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice.

    PubMed

    Zhou, Junhui; Peng, Zhao; Long, Juying; Sosso, Davide; Liu, Bo; Eom, Joon-Seob; Huang, Sheng; Liu, Sanzhen; Vera Cruz, Casiana; Frommer, Wolf B; White, Frank F; Yang, Bing

    2015-05-01

    Bacterial blight of rice is caused by the ?-proteobacterium Xanthomonas oryzae pv. oryzae, which utilizes a group of type III TAL (transcription activator-like) effectors to induce host gene expression and condition host susceptibility. Five SWEET genes are functionally redundant to support bacterial disease, but only two were experimentally proven targets of natural TAL effectors. Here, we report the identification of the sucrose transporter gene OsSWEET13 as the disease-susceptibility gene for PthXo2 and the existence of cryptic recessive resistance to PthXo2-dependent X.oryzae pv.oryzae due to promoter variations of OsSWEET13 in japonica rice. PthXo2-containing strains induce OsSWEET13 in indica rice IR24 due to the presence of an unpredicted and undescribed effector binding site not present in the alleles in japonica rice Nipponbare and Kitaake. The specificity of effector-associated gene induction and disease susceptibility is attributable to a single nucleotide polymorphism (SNP), which is also found in a polymorphic allele of OsSWEET13 known as the recessive resistance gene xa25 from the rice cultivar Minghui 63. The mutation of OsSWEET13 with CRISPR/Cas9 technology further corroborates the requirement of OsSWEET13 expression for the state of PthXo2-dependent disease susceptibility to X.oryzae pv.oryzae. Gene profiling of a collection of 104 strains revealed OsSWEET13 induction by 42 isolates of X.oryzae pv.oryzae. Heterologous expression of OsSWEET13 in Nicotiana benthamiana leaf cells elevates sucrose concentrations in the apoplasm. The results corroborate a model whereby X.oryzae pv.oryzae enhances the release of sucrose from host cells in order to exploit the host resources. PMID:25824104

  5. Differential Regulation of Horizontally Acquired and Core Genome Genes by the Bacterial Modulator H-NS

    PubMed Central

    Aznar, Sonia; García, Jesús; Pons, Miquel; Madrid, Cristina; Juárez, Antonio

    2009-01-01

    Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization. PMID:19521501

  6. Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection

    PubMed Central

    Peng, Hai; Chen, Zheng; Fang, Zhiwei; Zhou, Junfei; Xia, Zhihui; Gao, Lifen; Chen, Lihong; Li, Lili; Li, Tiantian; Zhai, Wenxue; Zhang, Weixiong

    2015-01-01

    Rice bacterial blight (BB) is a devastating rice disease. The Xa21 gene confers a broad and persistent resistance against BB. We introduced Xa21 into Oryza sativa L ssp indica (rice 9311), through multi-generation backcrossing, and generated a nearly isogenic, blight-resistant 9311/Xa21 rice. Using next-generation sequencing, we profiled the transcriptomes of both varieties before and within four days after infection of bacterium Xanthomonas oryzae pv. oryzae. The identified differentially expressed (DE) genes and signaling pathways revealed insights into the functions of Xa21. Surprisingly, before infection 1,889 genes on 135 of the 316 signaling pathways were DE between the 9311/Xa21 and 9311 plants. These Xa21-mediated basal pathways included mainly those related to the basic material and energy metabolisms and many related to phytohormones such as cytokinin, suggesting that Xa21 triggered redistribution of energy, phytohormones and resources among essential cellular activities before invasion. Counter-intuitively, after infection, the DE genes between the two plants were only one third of that before the infection; other than a few stress-related pathways, the affected pathways after infection constituted a small subset of the Xa21-mediated basal pathways. These results suggested that Xa21 primed critically important genes and signaling pathways, enhancing its resistance against bacterial infection. PMID:26184504

  7. CONJUGAL GENE TRANSFER IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCHLORA CRUSGALLI): INFLUENCE OF ROOT EXUDATE AND BACTERIAL ACTIVITY

    EPA Science Inventory

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  8. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23.

    PubMed

    Wang, Chunlian; Fan, Yinglun; Zheng, Chongke; Qin, Tengfei; Zhang, Xiaoping; Zhao, Kaijun

    2014-10-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial disease of rice (Oryza sativa L.), a staple food crop that feeds half of the world's population. In management of this disease, the most economical and effective approach is cultivating resistant varieties. Due to rapid change of pathogenicity in the pathogen, it is necessary to identify and characterize more host resistance genes for breeding new resistant varieties. We have previously identified the BB resistance (R) gene Xa23 that confers the broadest resistance to Xoo strains isolated from different rice-growing regions and preliminarily mapped the gene within a 1.7cm region on the long arm of rice chromosome 11. Here, we report fine genetic mapping and in silico analysis of putative candidate genes of Xa23. Based on F2 mapping populations derived from crosses between Xa23-containing rice line CBB23 and susceptible varieties JG30 or IR24, six new STS markers Lj36, Lj46, Lj138, Lj74, A83B4, and Lj13 were developed. Linkage analysis revealed that the new markers were co-segregated with or closely linked to the Xa23 locus. Consequently, the Xa23 gene was mapped within a 0.4cm region between markers Lj138 and A83B4, in which the co-segregating marker Lj74 was identified. The corresponding physical distance between Lj138 and A83B4 on Nipponbare genome is 49.8kb. Six Xa23 candidate genes have been annotated, including four candidate genes encoding hypothetical proteins and the other two encoding a putative ADP-ribosylation factor protein and a putative PPR protein. These results will facilitate marker-assisted selection of Xa23 in rice breeding and molecular cloning of this valuable R gene. PMID:24715026

  9. Decreasing the effects of horizontal gene transfer on bacterial phylogeny: the Escherichia coli case study.

    PubMed

    Escobar-Pramo, Patricia; Sabbagh, Audrey; Darlu, Pierre; Pradillon, Olivier; Vaury, Christelle; Denamur, Erick; Lecointre, Guillaume

    2004-01-01

    Phylogenetic reconstructions of bacterial species from DNA sequences are hampered by the existence of horizontal gene transfer. One possible way to overcome the confounding influence of such movement of genes is to identify and remove sequences which are responsible for significant character incongruence when compared to a reference dataset free of horizontal transfer (e.g., multilocus enzyme electrophoresis, restriction fragment length polymorphism, or random amplified polymorphic DNA) using the incongruence length difference (ILD) test of Farris et al. [Cladistics 10 (1995) 315]. As obtaining this "whole genome dataset" prior to the reconstruction of a phylogeny is clearly troublesome, we have tested alternative approaches allowing the release from such reference dataset, designed for a species with modest level of horizontal gene transfer, i.e., Escherichia coli. Eleven different genes available or sequenced in this work were studied in a set of 30 E. coli reference (ECOR) strains. Either using ILD to test incongruence between each gene against the all remaining (in this case 10) genes in order to remove sequences responsible for significant incongruence, or using just a simultaneous analysis without removals, gave robust phylogenies with slight topological differences. The use of the ILD test remains a suitable method for estimating the level of horizontal gene transfer in bacterial species. Supertrees also had suitable properties to extract the phylogeny of strains, because the way they summarize taxonomic congruence clearly limits the impact of individual gene transfers on the global topology. Furthermore, this work allowed a significant improvement of the accuracy of the phylogeny within E. coli. PMID:15022774

  10. Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene

    PubMed Central

    Cernadas, Raul A.; Doyle, Erin L.; Niño-Liu, David O.; Wilkins, Katherine E.; Bancroft, Timothy; Wang, Li; Schmidt, Clarice L.; Caldo, Rico; Yang, Bing; White, Frank F.; Nettleton, Dan; Wise, Roger P.; Bogdanove, Adam J.

    2014-01-01

    Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting. PMID:24586171

  11. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    PubMed

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations. PMID:23691247

  12. Gene Expression in Gut Symbiotic Organ of Stinkbug Affected by Extracellular Bacterial Symbiont

    PubMed Central

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations. PMID:23691247

  13. Transgenic resistance confers effective field level control of bacterial spot disease in tomato.

    PubMed

    Horvath, Diana M; Stall, Robert E; Jones, Jeffrey B; Pauly, Michael H; Vallad, Gary E; Dahlbeck, Doug; Staskawicz, Brian J; Scott, John W

    2012-01-01

    We investigated whether lines of transgenic tomato (Solanum lycopersicum) expressing the Bs2 resistance gene from pepper, a close relative of tomato, demonstrate improved resistance to bacterial spot disease caused by Xanthomonas species in replicated multi-year field trials under commercial type growing conditions. We report that the presence of the Bs2 gene in the highly susceptible VF 36 background reduced disease to extremely low levels, and VF 36-Bs2 plants displayed the lowest disease severity amongst all tomato varieties tested, including commercial and breeding lines with host resistance. Yields of marketable fruit from transgenic lines were typically 2.5 times that of the non-transformed parent line, but varied between 1.5 and 11.5 fold depending on weather conditions and disease pressure. Trials were conducted without application of any copper-based bactericides, presently in wide use despite negative impacts on the environment. This is the first demonstration of effective field resistance in a transgenic genotype based on a plant R gene and provides an opportunity for control of a devastating pathogen while eliminating ineffective copper pesticides. PMID:22870280

  14. Transgenic Resistance Confers Effective Field Level Control of Bacterial Spot Disease in Tomato

    PubMed Central

    Horvath, Diana M.; Stall, Robert E.; Jones, Jeffrey B.; Pauly, Michael H.; Vallad, Gary E.; Dahlbeck, Doug; Staskawicz, Brian J.; Scott, John W.

    2012-01-01

    We investigated whether lines of transgenic tomato (Solanum lycopersicum) expressing the Bs2 resistance gene from pepper, a close relative of tomato, demonstrate improved resistance to bacterial spot disease caused by Xanthomonas species in replicated multi-year field trials under commercial type growing conditions. We report that the presence of the Bs2 gene in the highly susceptible VF 36 background reduced disease to extremely low levels, and VF 36-Bs2 plants displayed the lowest disease severity amongst all tomato varieties tested, including commercial and breeding lines with host resistance. Yields of marketable fruit from transgenic lines were typically 2.5 times that of the non-transformed parent line, but varied between 1.5 and 11.5 fold depending on weather conditions and disease pressure. Trials were conducted without application of any copper-based bactericides, presently in wide use despite negative impacts on the environment. This is the first demonstration of effective field resistance in a transgenic genotype based on a plant R gene and provides an opportunity for control of a devastating pathogen while eliminating ineffective copper pesticides. PMID:22870280

  15. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments.

    PubMed

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities. PMID:25647610

  16. Ubiquity and Diversity of Heterotrophic Bacterial nasA Genes in Diverse Marine Environments

    PubMed Central

    Jiang, Xuexia; Dang, Hongyue; Jiao, Nianzhi

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities. PMID:25647610

  17. GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands

    PubMed Central

    Lassalle, Florent; Périan, Séverine; Bataillon, Thomas; Nesme, Xavier; Duret, Laurent; Daubin, Vincent

    2015-01-01

    The characterization of functional elements in genomes relies on the identification of the footprints of natural selection. In this quest, taking into account neutral evolutionary processes such as mutation and genetic drift is crucial because these forces can generate patterns that may obscure or mimic signatures of selection. In mammals, and probably in many eukaryotes, another such confounding factor called GC-Biased Gene Conversion (gBGC) has been documented. This mechanism generates patterns identical to what is expected under selection for higher GC-content, specifically in highly recombining genomic regions. Recent results have suggested that a mysterious selective force favouring higher GC-content exists in Bacteria but the possibility that it could be gBGC has been excluded. Here, we show that gBGC is probably at work in most if not all bacterial species. First we find a consistent positive relationship between the GC-content of a gene and evidence of intra-genic recombination throughout a broad spectrum of bacterial clades. Second, we show that the evolutionary force responsible for this pattern is acting independently from selection on codon usage, and could potentially interfere with selection in favor of optimal AU-ending codons. A comparison with data from human populations shows that the intensity of gBGC in Bacteria is comparable to what has been reported in mammals. We propose that gBGC is not restricted to sexual Eukaryotes but also widespread among Bacteria and could therefore be an ancestral feature of cellular organisms. We argue that if gBGC occurs in bacteria, it can account for previously unexplained observations, such as the apparent non-equilibrium of base substitution patterns and the heterogeneity of gene composition within bacterial genomes. Because gBGC produces patterns similar to positive selection, it is essential to take this process into account when studying the evolutionary forces at work in bacterial genomes. PMID:25659072

  18. Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics.

    PubMed

    Hjort, Karin; Presti, Ilaria; Elvng, Annelie; Marinelli, Flavia; Sjling, Sara

    2014-03-01

    Plant disease caused by fungal pathogens results in vast crop damage globally. Microbial communities of soil that is suppressive to fungal crop disease provide a source for the identification of novel enzymes functioning as bioshields against plant pathogens. In this study, we targeted chitin-degrading enzymes of the uncultured bacterial community through a functional metagenomics approach, using a fosmid library of a suppressive soil metagenome. We identified a novel bacterial chitinase, Chi18H8, with antifungal activity against several important crop pathogens. Sequence analyses show that the chi18H8 gene encodes a 425-amino acid protein of 46 kDa with an N-terminal signal peptide, a catalytic domain with the conserved active site F175DGIDIDWE183, and a chitinase insertion domain. Chi18H8 was expressed (pGEX-6P-3 vector) in Escherichia coli and purified. Enzyme characterization shows that Chi18H8 has a prevalent chitobiosidase activity with a maximum activity at 35 C at pH lower than 6, suggesting a role as exochitinase on native chitin. To our knowledge, Chi18H8 is the first chitinase isolated from a metagenome library obtained in pure form and which has the potential to be used as a candidate agent for controlling fungal crop diseases. Furthermore, Chi18H8 may also answer to the demand for novel chitin-degrading enzymes for a broad range of other industrial processes and medical purposes. PMID:24121932

  19. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    PubMed

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10?m) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1?m patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. PMID:26302067

  20. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens.

    PubMed

    Zink, Steven D; Van Slyke, Greta A; Palumbo, Michael J; Kramer, Laura D; Ciota, Alexander T

    2015-10-01

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance inWNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia. PMID:26516902

  1. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens

    PubMed Central

    Zink, Steven D.; Van Slyke, Greta A.; Palumbo, Michael J.; Kramer, Laura D.; Ciota, Alexander T.

    2015-01-01

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance in WNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia. PMID:26516902

  2. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide

    PubMed Central

    Green, Jeffrey; Rolfe, Matthew D; Smith, Laura J

    2014-01-01

    Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (ironsulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis. PMID:25603427

  3. Cloning and sequencing of the genes from Salmonella typhimurium encoding a new bacterial ribonucleotide reductase.

    PubMed Central

    Jordan, A; Gibert, I; Barbé, J

    1994-01-01

    A plasmid library of Salmonella typhimurium was used to complement a temperature-sensitive nrdA mutant of Escherichia coli. Complementation was obtained with two different classes of plasmids, one carrying the E. coli nrdAB-like genes and the second containing an operon encoding a new bacterial ribonucleotide reductase. Plasmids harboring these new reductase genes also enable obligately anaerobic nrdB::Mud1 E. coli mutants to grow in the presence of oxygen. This operon consists of two open reading frames, which have been designated nrdE (2,145 bp) and nrdF (969 bp). The deduced amino acid sequences of the nrdE and nrdF products include the catalytically important residues conserved in ribonucleotide reductase enzymes of class I and show 25 and 28% overall identity with the R1 and R2 protein, respectively, of the aerobic ribonucleoside diphosphate reductase of E. coli. The 3' end of the sequenced 4.9-kb fragment corresponds to the upstream region of the previously published proU operon of both S. typhimurium and E. coli, indicating that the nrdEF genes are at 57 min on the chromosomal maps of these two bacterial species. Analysis of the nrdEF and proU sequences demonstrates that transcription of the nrdEF genes is in the clockwise direction on the S. typhimurium and E. coli maps. Images PMID:8195103

  4. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide.

    PubMed

    Green, Jeffrey; Rolfe, Matthew D; Smith, Laura J

    2014-01-01

    Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron-sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis. PMID:25603427

  5. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome.

    PubMed

    Ahn, Seung-Joon; Dermauw, Wannes; Wybouw, Nicky; Heckel, David G; Van Leeuwen, Thomas

    2014-07-01

    UDP-glycosyltransferases (UGTs) catalyze the conjugation of a variety of small lipophilic molecules with uridine diphosphate (UDP) sugars, altering them into more water-soluble metabolites. Thereby, UGTs play an important role in the detoxification of xenobiotics and in the regulation of endobiotics. Recently, the genome sequence was reported for the two-spotted spider mite, Tetranychus urticae, a polyphagous herbivore damaging a number of agricultural crops. Although various gene families implicated in xenobiotic metabolism have been documented in T. urticae, UGTs so far have not. We identified 80 UGT genes in the T. urticae genome, the largest number of UGT genes in a metazoan species reported so far. Phylogenetic analysis revealed that lineage-specific gene expansions increased the diversity of the T. urticae UGT repertoire. Genomic distribution, intron-exon structure and structural motifs in the T. urticae UGTs were also described. In addition, expression profiling after host-plant shifts and in acaricide resistant lines supported an important role for UGT genes in xenobiotic metabolism. Expanded searches of UGTs in other arachnid species (Subphylum Chelicerata), including a spider, a scorpion, two ticks and two predatory mites, unexpectedly revealed the complete absence of UGT genes. However, a centipede (Subphylum Myriapoda) and a water flea and a crayfish (Subphylum Crustacea) contain UGT genes in their genomes similar to insect UGTs, suggesting that the UGT gene family might have been lost early in the Chelicerata lineage and subsequently re-gained in the tetranychid mites. Sequence similarity of T. urticae UGTs and bacterial UGTs and their phylogenetic reconstruction suggest that spider mites acquired UGT genes from bacteria by horizontal gene transfer. Our findings show a unique evolutionary history of the T. urticae UGT gene family among other arthropods and provide important clues to its functions in relation to detoxification and thereby host adaptation. PMID:24727020

  6. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription activator-like (TAL) effectors found in Xanthomonas spp. promote bacterial growth and plant susceptibility by binding specific DNA sequences or, effector-binding elements (EBEs), and inducing host gene expression. In this study, we have found substantially different transcriptional pro...

  7. Assessing the Probability of Detection of Horizontal Gene Transfer Events in Bacterial Populations

    PubMed Central

    Townsend, Jeffrey P.; Bøhn, Thomas; Nielsen, Kaare Magne

    2012-01-01

    Experimental approaches to identify horizontal gene transfer (HGT) events of non-mobile DNA in bacteria have typically relied on detection of the initial transformants or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to be detected in a short time frame. Population genetic modeling of the growth dynamics of bacterial genotypes is therefore necessary to account for natural selection and genetic drift during the time lag and to predict realistic time frames for detection with a given sampling design. Here we draw on statistical approaches to population genetic theory to construct a cohesive probabilistic framework for investigation of HGT of exogenous DNA into bacteria. In particular, the stochastic timing of rare HGT events is accounted for. Integrating over all possible event timings, we provide an equation for the probability of detection, given that HGT actually occurred. Furthermore, we identify the key variables determining the probability of detecting HGT events in four different case scenarios that are representative of bacterial populations in various environments. Our theoretical analysis provides insight into the temporal aspects of dissemination of genetic material, such as antibiotic resistance genes or transgenes present in genetically modified organisms. Due to the long time scales involved and the exponential growth of bacteria with differing fitness, quantitative analyses incorporating bacterial generation time, and levels of selection, such as the one presented here, will be a necessary component of any future experimental design and analysis of HGT as it occurs in natural settings. PMID:22363321

  8. Assessing the probability of detection of horizontal gene transfer events in bacterial populations.

    PubMed

    Townsend, Jeffrey P; Bhn, Thomas; Nielsen, Kaare Magne

    2012-01-01

    Experimental approaches to identify horizontal gene transfer (HGT) events of non-mobile DNA in bacteria have typically relied on detection of the initial transformants or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to be detected in a short time frame. Population genetic modeling of the growth dynamics of bacterial genotypes is therefore necessary to account for natural selection and genetic drift during the time lag and to predict realistic time frames for detection with a given sampling design. Here we draw on statistical approaches to population genetic theory to construct a cohesive probabilistic framework for investigation of HGT of exogenous DNA into bacteria. In particular, the stochastic timing of rare HGT events is accounted for. Integrating over all possible event timings, we provide an equation for the probability of detection, given that HGT actually occurred. Furthermore, we identify the key variables determining the probability of detecting HGT events in four different case scenarios that are representative of bacterial populations in various environments. Our theoretical analysis provides insight into the temporal aspects of dissemination of genetic material, such as antibiotic resistance genes or transgenes present in genetically modified organisms. Due to the long time scales involved and the exponential growth of bacteria with differing fitness, quantitative analyses incorporating bacterial generation time, and levels of selection, such as the one presented here, will be a necessary component of any future experimental design and analysis of HGT as it occurs in natural settings. PMID:22363321

  9. In vivo expression technology for selection of bacterial genes specifically induced in host tissues.

    PubMed

    Slauch, J M; Mahan, M J; Mekalanos, J J

    1994-01-01

    We have developed a genetic system, termed IVET (in vivo expression technology), designed to identify bacterial genes that are induced when a pathogen infects its host. A subset of these induced genes should include those that encode virulence factors, products specifically required for the infection process. The system is based on complementation of an attenuating auxotrophic mutation by gene fusion, and it is designed to be of use in a wide variety of pathogenic organisms. In Salmonella typhimurium, we have successfully used the system to identify a number of genes that are induced in BALB/c mice, and that, when mutated, confer a virulence defect. The IVET system has several applications in the area of vaccine and antimicrobial drug development. The technique was designed for the identification of virulence factors and thus may lead to the discovery of new antigens useful as vaccine components. The IVET system facilitates the isolation of mutations in genes involved in virulence and, therefore, should aid in the construction of live attenuated vaccines. In addition, the identification of promoters that are optimally expressed in animal tissues provides a means of establishing in vivo regulated expression of heterologous antigens in live vaccines, an area that has been previously problematic. Finally, we expect that our methodology will be used to uncover many biosynthetic, catabolic, and regulatory genes that are required for growth of microbes in animal tissues. The elucidation of these gene products should provide new targets for antimicrobial drug development. PMID:8057920

  10. Ras GTPase-Like Protein MglA, a Controller of Bacterial Social-Motility in Myxobacteria, Has Evolved to Control Bacterial Predation by Bdellovibrio

    PubMed Central

    Milner, David S.; Till, Rob; Cadby, Ian; Lovering, Andrew L.; Basford, Sarah M.; Saxon, Emma B.; Liddell, Susan; Williams, Laura E.; Sockett, R. Elizabeth

    2014-01-01

    Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P) at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP)-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglABd GTP-binding are conserved. Deletion of mglABd abolished prey-invasion, but not gliding, and reduced T4P formation. MglABd interacted with a previously uncharacterised tetratricopeptide repeat (TPR) domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomRBd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the lone-hunter Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio. PMID:24721965

  11. Bacterial resistance evolution by recruitment of super-integron gene cassettes.

    PubMed

    Rowe-Magnus, Dean A; Guerout, Anne-Marie; Mazel, Didier

    2002-03-01

    The capture and spread of antibiotic resistance determinants by integrons underlies the rapid evolution of multiple antibiotic resistance among diverse Gram-negative clinical isolates. The association of multiple resistance integrons (MRIs) with mobile DNA elements facilitates their transit across phylogenetic boundaries and augments the potential impact of integrons on bacterial evolution. Recently, ancestral chromosomal versions, the super-integrons (SIs), were found to be genuine components of the genomes of diverse bacterial species. SIs possess evolutionary characteristics and stockpiles of adaptive functions, including cassettes related to antibiotic resistance determinants previously characterized in clinical isolates, which suggest that MRIs and their resistance genes were originally recruited from SIs and their pool of amassed genes. However, the recombination activity of integrons has never been demonstrated in a bacterium other than Escherichia coli. We introduced a naturally occurring MRI (TpR, SulR) on a conjugative plasmid into Vibrio cholerae, a species known to harbour a SI. We show that MRIs can randomly recruit genes directly from the cache of SI cassettes. By applying a selective constraint for the development of antibiotic resistance, we demonstrate bacterial resistance evolution through the recruitment a novel, but phenotypically silent, chloramphenicol acetyltransferase gene from the V. cholerae SI and its precise insertion into the MRI. The resulting resistance profile (CmR, TpR, SulR) could then be disseminated by conjugation to other clinically relevant pathogens at high frequency. These results demonstrate that otherwise phenotypically sensitive strains may still be a genetic source for the evolution of resistance to clinically relevant antibiotics through integron-mediated recombination events. PMID:11952913

  12. Sticky Situations: Key Components That Control Bacterial Surface Attachment

    PubMed Central

    Petrova, Olga E.

    2012-01-01

    The formation of bacterial biofilms is initiated by cells transitioning from the free-swimming mode of growth to a surface. This review is aimed at highlighting the common themes that have emerged in recent research regarding the key components, signals, and cues that aid in the transition and those involved in establishing a more permanent surface association during initial attachment. PMID:22389478

  13. Embryonal brain tumors and developmental control genes

    SciTech Connect

    Aguzzi, A.

    1995-12-31

    Cell proliferation in embryogenesis and neoplastic transformation is thought to be controlled by similar sets of regulatory genes. This is certainly true for tumors of embryonic origin, such as Ewing sarcoma, Wilms` tumor and retinoblastoma, in which developmental control genes are either activated as oncogenes to promote proliferation, or are inactivated to eliminate their growth suppressing function. However, to date little is known about the genetic events underlying the pathogenesis of medulloblastoma, the most common brain tumor in children, which still carries an unfavourable prognosis. None of the common genetic alterations identified in other neuroectodermal tumors, such as mutation of the p53 gene or amplification of tyrosine kinase receptor genes, could be uncovered as key events in the formation of medulloblastoma. The identification of regulatory genes which are expressed in this pediatric brain tumor may provide an alternative approach to gain insight into the molecular aspects of tumor formation.

  14. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer. ?? 2009 Pearson et al; licensee BioMed Central Ltd.

  15. Multiplex immune-related genes expression analysis response to bacterial challenge in mud crab, Scylla paramamosain.

    PubMed

    Zhang, Fengying; Jiang, Keji; Sun, Manman; Zhang, Dan; Ma, Lingbo

    2013-02-01

    Crabs lack an acquired adaptive immune system and host defense is believed to depend entirely on innate, non-adaptive mechanisms to resist invasion by pathogens. Discovery of immune-related factors are helpful for understanding the molecular response of crabs to pathogens. The mud crab Scylla paramamosain is an important marine species for aquaculture in China because of its high nutritional value for humans. In recent years, the crab is prone to being infected by microbes with the enlargement of breeding scale. In this study, eight immune-related genes were analyzed by multiplex genes expression analysis using the GenomeLab GeXP analysis system (Beckman Coulter). The expression levels of all the detected genes rose after challenged by the live bacteria, but the levels of only four genes (C-type lectin, alpha 2-macroglobulin, HSP70 and thioredoxin 1) increased after challenge in heat-killed bacteria group. So the live bacteria were more effective in motivating expressions of immune factors than heat-killed bacteria. However, the transcript of C-type lectin firstly increased at 1 h after challenge in both heat-killed and live bacteria group. This indicated that C-type lectin was a quite susceptive immune factor responding to external pathogen. In group challenged by live bacteria, the genes of alpha 2-macroglobulin, HSP40, thioredoxin 1 and prophenoloxidase activating factor (PPAF) showed response earlier than the other genes. The rise of PPAF expression preceded prophenoloxidase (proPO), which suggested that PPAF might trigger production of proPO transcripts in the early stage of phenoloxidase reaction system. C-type lectin, proPO, thioredoxin 1, HSP40, and alpha 2-macroglobulin are very important immunity factors in response to bacterial infection. According to the result of heat-killed group, HSP70 is a sensitively inductive factor to foreign stimulus compared with the other genes. The multi-gene analysis presented an alternative approach for screening of immune-related genes, and provided a more global overview of genes transcript alteration in response to bacterial challenge. PMID:23231853

  16. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  17. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Martin, K. A.; Abdi, F.; Widger, W. R.; Fox, G. E.

    1997-01-01

    Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

  18. Use Of Low Light Image Microscopy To Monitor Genetically Engineered Bacterial Luciferase Gene Expression In Living Cells And Gene Activation Throughout The Development Of A Transgenic Organism

    NASA Astrophysics Data System (ADS)

    Langridge, W. H.; Escher, Alan P.; Baga, M.; O'Kane, Dennis J.; Wampler, John E.; Koncz, C.; Schell, John D.; Szalay, A. A.

    1989-12-01

    Procaryotic and eucaryotic expression vectors which contain a marker gene for selection of transformants linked to genes encoding bacterial luciferase for detection of promoter activated gene expression in vivo were used to transform the appropriate host organisms and drug resistant colonies, cells, or calli were obtained. Bacterial luciferase expression was measured by a luminescence assay for quantitative determination of promoter activation. The cellular localization of bacteria inside the host plant cell cytoplasm was achieved in a single infected plant cell based on the light emitting ability of the genetically engineered bacteria. In addition, the bacterial luciferase marker gene fusions were used to monitor cell type, tissue, and organ specific gene expression in transgenic plants in vivo. To monitor physiological changes during ontogeny of a transformed plant, low light video microscopy, aided by real time image processing techniques developed specifically to enhance extreme low light images, was successfully applied.

  19. Nonylphenol biodegradation, functional gene abundance and bacterial community in bioaugmented sediment: effect of external carbon source.

    PubMed

    Wang, Zhao; Dai, Yu; Zhao, Qun; Li, Ningning; Zhou, Qiheng; Xie, Shuguang

    2015-08-01

    Nonylphenol (NP) biodegradation in river sediment using Stenotrophomonas strain Y1 and Sphingobium strain Y2 were proved to be an effective strategy to remediate NP pollution in our earlier study. The purpose of this study is to investigate the influence of glucose addition on their ability to degrade NP in both liquid cultures and sediment microcosms. The shift in bacterial community structure and relative abundance of NP degraders in sediment microcosms were characterized using terminal restriction fragment length polymorphism analysis. The proportion of NP-degrading alkB and sMO genes was assessed using quantitative polymerase chain reaction (PCR) assay. The growth of Stenotrophomonas strain Y1 and its NP biodegradation efficiency were inhibited by glucose supplementation, while the relative abundance of alkB gene increased. However, NP degradation, as well as the growth of added degraders and proportion of sMO gene, was enhanced in the glucose-amended sediment microcosms inoculated with Sphingobium strain Y2. Moreover, external glucose addition altered bacterial community structures in bioaugmented sediment microcosms, depending on the level of glucose dosage. PMID:25874439

  20. Analysis of gene expression levels in individual bacterial cells without image segmentation

    SciTech Connect

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  1. Clock genes control cortical critical period timing.

    PubMed

    Kobayashi, Yohei; Ye, Zhanlei; Hensch, Takao K

    2015-04-01

    Circadian rhythms control a variety of physiological processes, but whether they may also time brain development remains largely unknown. Here, we show that circadian clock genes control the onset of critical period plasticity in the neocortex. Within visual cortex of Clock-deficient mice, the emergence of circadian gene expression was dampened, and the maturation of inhibitory parvalbumin (PV) cell networks slowed. Loss of visual acuity in response to brief monocular deprivation was concomitantly delayed and rescued by direct enhancement of GABAergic transmission. Conditional deletion of Clock or Bmal1 only within PV cells recapitulated the results of total Clock-deficient mice. Unique downstream gene sets controlling synaptic events and cellular homeostasis for proper maturation and maintenance were found to be mis-regulated by Clock deletion specifically within PV cells. These data demonstrate a developmental role for circadian clock genes outside the suprachiasmatic nucleus, which may contribute mis-timed brain plasticity in associated mental disorders. PMID:25801703

  2. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. You Are What You Eat: Metabolic Control of Bacterial Division.

    PubMed

    Monahan, Leigh G; Harry, Elizabeth J

    2016-03-01

    Fluctuations in nutrient availability are a fact of life for bacterial cells in the 'wild'. To survive and compete, bacteria must rapidly modulate cell-cycle processes to accommodate changing nutritional conditions and concomitant changes in cell growth. Our understanding of how this is achieved has been transformed in recent years, with cellular metabolism emerging as a central player. Several metabolic enzymes, in addition to their normal catalytic functions, have been shown to directly modulate cell-cycle processes in response to changing nutrient levels. Here we focus on cell division, the final event in the bacterial cell cycle, and discuss recent compelling evidence connecting division regulation to nutritional status and metabolic activity. PMID:26690613

  4. Atmospheric pressure plasmas: infection control and bacterial responses.

    PubMed

    Mai-Prochnow, Anne; Murphy, Anthony B; McLean, Keith M; Kong, Michael G; Ostrikov, Kostya Ken

    2014-06-01

    Cold atmospheric pressure plasma (APP) is a recent, cutting-edge antimicrobial treatment. It has the potential to be used as an alternative to traditional treatments such as antibiotics and as a promoter of wound healing, making it a promising tool in a range of biomedical applications with particular importance for combating infections. A number of studies show very promising results for APP-mediated killing of bacteria, including removal of biofilms of pathogenic bacteria such as Pseudomonas aeruginosa. However, the mode of action of APP and the resulting bacterial response are not fully understood. Use of a variety of different plasma-generating devices, different types of plasma gases and different treatment modes makes it challenging to show reproducibility and transferability of results. This review considers some important studies in which APP was used as an antibacterial agent, and specifically those that elucidate its mode of action, with the aim of identifying common bacterial responses to APP exposure. The review has a particular emphasis on mechanisms of interactions of bacterial biofilms with APP. PMID:24637224

  5. Deletion of AS87_03730 gene changed the bacterial virulence and gene expression of Riemerella anatipestifer

    PubMed Central

    Wang, Xiaolan; Yue, Jiaping; Ding, Chan; Wang, Shaohui; Liu, Beibei; Tian, Mingxing; Yu, Shengqing

    2016-01-01

    Riemerella anatipestifer is an important pathogen of waterfowl, which causes septicemia anserum exsudativa in ducks. In this study, an AS87_03730 gene deletion R. anatipestifer mutant Yb2ΔAS87_03730 was constructed to investigate the role of AS87_03730 on R. anatipestifer virulence and gene regulation. By deleting a 708-bp fragment from AS87_03730, the mutant Yb2ΔAS87_03730 showed a significant decreased growth rate in TSB and invasion capacity in Vero cells, compared to wild-type strain Yb2. Moreover, the median lethal dose (LD50) of Yb2ΔAS87_03730 was 1.24 × 107 colony forming units (CFU), which is about 80-fold attenuated than that of Yb2 (LD50 = 1.53 × 105 CFU). Furthermore, RNA-Seq analysis and Real-time PCR indicated 19 up-regulated and two down-regulated genes in Yb2ΔAS87_03730. Functional analysis revealed that 12 up-regulated genes were related to “Translation, ribosomal structure and biogenesis”, two were classified into “Cell envelope biogenesis, outer membrane”, one was involved in “Amino acid transport and metabolism”, and the other four had unknown functions. Polymerase chain reaction and sequence analysis indicated that the AS87_03730 gene is highly conserved among R. anatipestifer strains, as the percent sequence identity was over 93.5%. This study presents evidence that AS87_03730 gene is involved in bacterial virulence and gene regulation of R. anatipestifer. PMID:26928424

  6. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism.

    PubMed

    Sullivan, Matthew J; Gates, Andrew J; Appia-Ayme, Corinne; Rowley, Gary; Richardson, David J

    2013-12-01

    Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus denitrificans. Here we demonstrate that expression of the gene encoding the nitrous oxide reductase (NosZ), which converts N2O to N2, is regulated in response to the extracellular copper concentration. We show that elevated levels of N2O released as a consequence of decreased cellular NosZ activity lead to the bacterium switching from vitamin B12-dependent to vitamin B12-independent biosynthetic pathways, through the transcriptional modulation of genes controlled by vitamin B12 riboswitches. This inhibitory effect of N2O can be rescued by addition of exogenous vitamin B12. PMID:24248380

  7. Detecting the molecular signature of social conflict: theory and a test with bacterial quorum sensing genes.

    PubMed

    Van Dyken, J David; Wade, Michael J

    2012-04-01

    Extending social evolution theory to the molecular level opens the door to an unparalleled abundance of data and statistical tools for testing alternative hypotheses about the long-term evolutionary dynamics of cooperation and conflict. To this end, we take a collection of known sociality genes (bacterial quorum sensing [QS] genes), model their evolution in terms of patterns that are detectable using gene sequence data, and then test model predictions using available genetic data sets. Specifically, we test two alternative hypotheses of social conflict: (1) the "adaptive" hypothesis that cheaters are maintained in natural populations by frequency-dependent balancing selection as an evolutionarily stable strategy and (2) the "evolutionary null" hypothesis that cheaters are opposed by purifying kin selection yet exist transiently because of their recurrent introduction into populations by mutation (i.e., kin selection-mutation balance). We find that QS genes have elevated within- and among-species sequence variation, nonsignificant signatures of natural selection, and putatively small effect sizes of mutant alleles, all patterns predicted by our evolutionary null model but not by the stable cheater hypothesis. These empirical findings support our theoretical prediction that QS genes experience relaxed selection due to nonclonality of social groups, conditional expression, and the individual-level advantage enjoyed by cheaters. Furthermore, cheaters are evolutionarily transient, persisting in populations because of their recurrent introduction by mutation and not because they enjoy a frequency-dependent fitness advantage. PMID:22437174

  8. Organomercurials removal by heterogeneous merB genes harboring bacterial strains.

    PubMed

    Chien, Mei-Fang; Narita, Masaru; Lin, Kuo-Hsing; Matsui, Kazuaki; Huang, Chieh-Chen; Endo, Ginro

    2010-07-01

    Organomercury lyase (MerB) is a key enzyme in bacterial detoxification and bioremediation of organomercurials. However, the merB gene is often considered as an ancillary component of the mer operon because there is zero to three merB genes in different mer operons identified so far. In this study, organomercurials' removal abilities of native mercury-resistant bacteria that have one or multiple merB genes were examined. Each heterogeneous merB genes from these bacteria was further cloned into Escherichia coli to investigate the substrate specificity of each MerB enzyme. The merB1 gene from Bacillus megaterium MB1 conferred the highest volatilization ability to methylmercury chloride, ethylmercury chloride, thimerosal and p-chloromercuribenzoate, while the merB3 from B. megaterium MB1 conferred the fastest mercury volatilization activity to p-chloromercuribenzoate. The substrate specificities among these MerB enzymes show the necessity for selecting the appropriate bacteria strains or MerB enzymes to apply them in bioremediation engineering for cleaning up specific organomercurial contaminations. PMID:20541123

  9. A Phylogenomic Approach to Bacterial Phylogeny: Evidence of a Core of Genes Sharing a Common History

    PubMed Central

    Daubin, Vincent; Gouy, Manolo; Perrire, Guy

    2002-01-01

    It has been claimed that complete genome sequences would clarify phylogenetic relationships between organisms, but up to now, no satisfying approach has been proposed to use efficiently these data. For instance, if the coding of presence or absence of genes in complete genomes gives interesting results, it does not take into account the phylogenetic information contained in sequences and ignores hidden paralogies by using a BLAST reciprocal best hit definition of orthology. In addition, concatenation of sequences of different genes as well as building of consensus trees only consider the few genes that are shared among all organisms. Here we present an attempt to use a supertree method to build the phylogenetic tree of 45 organisms, with special focus on bacterial phylogeny. This led us to perform a phylogenetic study of congruence of tree topologies, which allows the identification of a core of genes supporting similar species phylogeny. We then used this core of genes to infer a tree. This phylogeny presents several differences with the rRNA phylogeny, notably for the position of hyperthermophilic bacteria. PMID:12097345

  10. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists.

    PubMed

    Chow, Cheryl-Emiliane T; Kim, Diane Y; Sachdeva, Rohan; Caron, David A; Fuhrman, Jed A

    2014-04-01

    Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0-5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus-bacteria relationships were more cross-linked than protist-bacteria relationships, suggestive of increased taxonomic specificity in virus-bacteria relationships. We also found that 80% of bacterial-protist and 74% of bacterial-viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance. PMID:24196323

  11. A Gene-By-Gene Approach to Bacterial Population Genomics: Whole Genome MLST of Campylobacter

    PubMed Central

    Sheppard, Samuel K.; Jolley, Keith A.; Maiden, Martin C. J.

    2012-01-01

    Campylobacteriosis remains a major human public health problem world-wide. Genetic analyses of Campylobacter isolates, and particularly molecular epidemiology, have been central to the study of this disease, particularly the characterization of Campylobacter genotypes isolated from human infection, farm animals, and retail food. These studies have demonstrated that Campylobacter populations are highly structured, with distinct genotypes associated with particular wild or domestic animal sources, and that chicken meat is the most likely source of most human infection in countries such as the UK. The availability of multiple whole genome sequences from Campylobacter isolates presents the prospect of identifying those genes or allelic variants responsible for host-association and increased human disease risk, but the diversity of Campylobacter genomes present challenges for such analyses. We present a gene-by-gene approach for investigating the genetic basis of phenotypes in diverse bacteria such as Campylobacter, implemented with the BIGSDB software on the pubMLST.org/campylobacter website. PMID:24704917

  12. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host.

    PubMed

    Yamada, Yuuki; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin-ya, Kazuo; Cane, David E; Ikeda, Haruo

    2015-06-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match with any known compounds in spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowed assignment of the structures of 13 new cyclic terpenes. Among these newly identified compounds, two were found to be linear triquinane sesquiterpenes that have never previously been isolated from bacteria or any other source. The remaining 11 new compounds were shown to be diterpene hydrocarbons and alcohol, including hydropyrene (1), hydropyrenol (2), tsukubadiene (11) and odyverdienes A (12) and B (13) each displaying a novel diterpene skeleton that had not previously been reported. PMID:25605043

  13. Emergence of Collective Territorial Defense in Bacterial Communities: Horizontal Gene Transfer Can Stabilize Microbiomes

    PubMed Central

    Szab, Dra; Pongor, Sndor

    2014-01-01

    Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and resilient even though they consist of cells and species that compete for resources and also produce a large number of antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome. The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens and restore a protective environment. PMID:24755769

  14. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss

    PubMed Central

    2010-01-01

    Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While Listeria includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic Listeria strains. PMID:21126366

  15. Review: phage therapy: a modern tool to control bacterial infections.

    PubMed

    Qadir, Muhammad Imran

    2015-01-01

    The evolution of antibiotic-resistant in bacteria has aggravated curiosity in development of alternative therapy to conventional drugs. One of the emerging drugs that can be used alternative to antibiotics is bacteriophage therapy. The use of living phages in the cure of lethal infectious life threatening diseases caused by Gram positive and Gram negative bacteria has been reported. Another development in the field of bacteriophage therapy is the use of genetically modified and non replicating phages in the treatment of bacterial infection. Genetically engineered bacteriophages can be used as adjuvant along with antibiotic therapy. Phages encoded with lysosomal enzymes are also effectual in the treatment of infectious diseases. PMID:25553704

  16. Effective, Broad Spectrum Control of Virulent Bacterial Infections Using Cationic DNA Liposome Complexes Combined with Bacterial Antigens

    PubMed Central

    Ireland, Robin; Olivares-Zavaleta, Norma; Warawa, Jonathan M.; Gherardini, Frank C.; Jarrett, Clayton; Hinnebusch, B. Joseph; Belisle, John T.; Fairman, Jeffery; Bosio, Catharine M.

    2010-01-01

    Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens. PMID:20523903

  17. Multiple Genes Affect Sensitivity of Caenorhabditis elegans to the Bacterial Pathogen Microbacterium nematophilum

    PubMed Central

    Gravato-Nobre, Maria J.; Nicholas, Hannah R.; Nijland, Reindert; O'Rourke, Delia; Whittington, Deborah E.; Yook, Karen J.; Hodgkin, Jonathan

    2005-01-01

    Interactions with bacteria play a major role in immune responses, ecology, and evolution of all animals, but they have been neglected until recently in the case of C. elegans. We report a genetic investigation of the interaction of C. elegans with the nematode-specific pathogen Microbacterium nematophilum, which colonizes the rectum and causes distinctive tail swelling in its host. A total of 121 mutants with altered response to infection were isolated from selections or screens for a bacterially unswollen (Bus) phenotype, using both chemical and transposon mutagenesis. Some of these correspond to known genes, affecting either bacterial adhesion or colonization (srf-2, srf-3, srf-5) or host swelling response (sur-2, egl-5). Most mutants define 15 new genes (bus-1bus-6, bus-8, bus-10, bus-12bus-18). The majority of these mutants exhibit little or no rectal infection when challenged with the pathogen and are probably altered in surface properties such that the bacteria can no longer infect worms. A number have corresponding alterations in lectin staining and cuticle fragility. Most of the uninfectable mutants grow better than wild type in the presence of the pathogen, but the sur-2 mutant is hypersensitive, indicating that the tail-swelling response is associated with a specific defense mechanism against this pathogen. PMID:16079230

  18. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm.

    PubMed

    Wang, Zhao; Yang, Yuyin; Sun, Weimin; Dai, Yu; Xie, Shuguang

    2015-02-01

    Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation. PMID:25277711

  19. Fabrication of microtemplates for the control of bacterial immobilization

    SciTech Connect

    Miyahara, Yasuhiro; Mitamura, Koji; Saito, Nagahiro; Takai, Osamu

    2009-09-15

    The authors described a region-selective immobilization methods of bacteria by using superhydrophobic/superhydrophilic and superhydrophobic/poly(ethylene glycol) (PEG) micropatterns for culture scaffold templates. In the case of superhydrophobic/superhydrophilic micropatterns, the superhydrophobic surface was prepared first by microwave-plasma enhanced chemical vapor deposition (MPECVD) from trimethylmethoxysilane. Then the superhydrophilic regions were fabricated by irradiating the superhydrophobic surface with vuv light through a stencil mask. In the case of the superhydrophobic/PEG micropatterned surfaces, PEG surfaces were fabricated first by chemical reaction of ester groups of p-nitrophenyl PEG with NH{sub 2} group of NH{sub 2}-terminated self assembled monolayer from n-6-hexyl-3-aminopropyltrimethoxysilane. The superhydrophobic regions were fabricated by MPECVD thorough a stencil mask. In this study four bacteria were selected from viewpoint of peptidoglycan cell wall (E. coli versus B. subtilis), extracellular polysaccharide (E.coli versus P. stutzeri, P. aeruginosa), and growth rate (P. stutzeri versus P. aeruginosa). The former micropattern brought discrete adhesions of E. coli and B. subtilis specifically on the hydrophobic regions, Furthermore, using the superhydrophobic/PEG micropattern, adhesion of bacteria expanded for E. coli, B. subtilis, P. stutzeri, and P. aeruginosa. They observed a high bacterial adhesion onto superhydrophobic surfaces and the inhibitive effect of bacterial adhesion on PEG surfaces.

  20. Secondary Metabolites Control the Associated Bacterial Communities of Saprophytic Basidiomycotina Fungi

    PubMed Central

    de Carvalho, Maira Peres; Trck, Patrick; Abraham, Wolf-Rainer

    2015-01-01

    Fungi grow under humid conditions and are, therefore, prone to biofilm infections. A 16S rRNA fingerprint analysis was performed on 49 sporocarps of Basidiomycotina in order to determine whether they are able to control these biofilms. Ninety-five bacterial phylotypes, comprising 4 phyla and 10 families, were identified. While ectomycorrhizal fungi harbored the highest bacterial diversity, saprophytic fungi showed little or no association with bacteria. Seven fungal species were screened for antimicrobial and antibiofilm activities. Biofilm formation and bacterial growth was inhibited by extracts obtained from saprophytic fungi, which confirmed the hypothesis that many fungi modulate biofilm colonization on their sporocarps. PMID:25904019

  1. Facilitation of Bacterial Adaptation to Chlorothalonil-Contaminated Sites by Horizontal Transfer of the Chlorothalonil Hydrolytic Dehalogenase Gene?

    PubMed Central

    Liang, Bin; Wang, Guangli; Zhao, Yanfu; Chen, Kai; Li, Shunpeng; Jiang, Jiandong

    2011-01-01

    Horizontal transfer of the chlorothalonil hydrolytic dehalogenase gene (chd) is proposed based on the high conservation of the chd gene and its close association with a novel insertion sequence, ISOcsp1, in 16 isolated chlorothalonil-dechlorinating strains belonging to eight different genera. The ecological role of horizontal gene transfer is assumed to facilitate bacterial adaptation to chlorothalonil-contaminated sites, through detoxification of chlorothalonil to less toxic 2,4,5-trichloro-6-hydroxybenzene-1,3-dicarbonitrile. PMID:21498744

  2. Growth phase dependence of the activation of a bacterial gene for carotenoid synthesis by blue light.

    PubMed Central

    Fontes, M; Ruiz-Vzquez, R; Murillo, F J

    1993-01-01

    Myxococcus xanthus responds to blue light by producing carotenoid pigments. A mutation at a gene named carC is known to block the metabolism of phytoene, a carotenoid precursor, and this gene has now been cloned and sequenced. We show here that gene carC, which is homologous to phytoene dehydrogenase genes from other organisms, is tightly regulated by light through a mechanism that operates only when the cells have reached the stationary phase or are starved of a carbon source. A genetic element that mediates the effect of the growth phase has been identified. Gene carC is integrated with another unlinked carotenogenic gene in a single 'light regulon' controlled by common trans-acting genetic elements. A potential -35 site for the binding of sigma factors has been found upstream of the carC transcriptional start. However, the -10 region shows no similarity with analogous sites at promoters of other Gram-negative bacteria. Images PMID:8467787

  3. Genes Controlling Affiliative Behavior as Candidate Genes for Autism

    PubMed Central

    Yrigollen, Carolyn M.; Han, Summer S.; Kochetkova, Anna; Babitz, Tammy; Chang, Joseph T.; Volkmar, Fred R.; Leckman, James F.; Grigorenko, Elena L.

    2008-01-01

    Background Autism Spectrum Disorders (ASD) are neurodevelopmental disorders of complex etiology, with a recognized substantial contribution of heterogeneous genetic factors; one of the core features of ASD is a lack of affiliative behaviors. Methods Based on the existing literature, in this study we examined the hypothesis of allelic associations between genetic variants in six genes involved in control of maternal and affiliative behaviors (OXT, OXTR, PRL, PRLR, D?H, and FOSB). One hundred and seventy-seven probands with ASD from 151 families (n=527) were assessed with a set of related instruments capturing multiple facets of ASD. Multivariate and univariate phenotypes were constructed from these assessments and subjected to genetic linkage and association analyses using PBAT and FBAT software. Results The resulting pattern of findings, in general, confirmed the hypotheses of the significance of the genes involved in the development of affiliative behaviors in the manifestation of ASD (P-values ranging from 0.000005 to 0.05); statistically speaking, the strongest results were obtained for allelic associations with the PRL, PRLR, and OXTR genes. Conclusions Here we provided further evidence of an association between the allelic variants in a number of genes controlling affiliative behaviors and ASD. The outcomes of this study (a) contribute to a number of existing literatures on ASD, (b) allow formulation of new hypotheses of the involvement of the genes studied in this report, and (c) may enhance our understanding of previous reports of associations between ASD and other candidate genes (e.g., serotonergic and GABAergic). PMID:18207134

  4. A conservative region of the mercuric reductase gene (mera) as a molecular marker of bacterial mercury resistance

    PubMed Central

    Sotero-Martins, Adriana; de Jesus, Michele Silva; Lacerda, Michele; Moreira, Josino Costa; Filgueiras, Ana Luzia Lauria; Barrocas, Paulo Rubens Guimares

    2008-01-01

    The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II) to Hg0, which is dependent of the mercuric reductase enzyme (MerA) activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA) gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains. PMID:24031221

  5. Bacterial Community Structure of Acid-Impacted Lakes: What Controls Diversity??

    PubMed Central

    Percent, Sascha F.; Frischer, Marc E.; Vescio, Paul A.; Duffy, Ellen B.; Milano, Vincenzo; McLellan, Maggie; Stevens, Brett M.; Boylen, Charles W.; Nierzwicki-Bauer, Sandra A.

    2008-01-01

    Although it is recognized that acidification of freshwater systems results in decreased overall species richness of plants and animals, little is known about the response of aquatic microbial communities to acidification. In this study we examined bacterioplankton community diversity and structure in 18 lakes located in the Adirondack Park (in the state of New York in the United States) that were affected to various degrees by acidic deposition and assessed correlations with 31 physical and chemical parameters. The pH of these lakes ranged from 4.9 to 7.8. These studies were conducted as a component of the Adirondack Effects Assessment Program supported by the U.S. Environmental Protection Agency. Thirty-one independent 16S rRNA gene libraries consisting of 2,135 clones were constructed from epilimnion and hypolimnion water samples. Bacterioplankton community composition was determined by sequencing and amplified ribosomal DNA restriction analysis of the clone libraries. Nineteen bacterial classes representing 95 subclasses were observed, but clone libraries were dominated by representatives of the Actinobacteria and Betaproteobacteria classes. Although the diversity and richness of bacterioplankton communities were positively correlated with pH, the overall community composition assessed by principal component analysis was not. The strongest correlations were observed between bacterioplankton communities and lake depth, hydraulic retention time, dissolved inorganic carbon, and nonlabile monomeric aluminum concentrations. While there was not an overall correlation between bacterioplankton community structure and pH, several bacterial classes, including the Alphaproteobacteria, were directly correlated with acidity. These results indicate that unlike more identifiable correlations between acidity and species richness for higher trophic levels, controls on bacterioplankton community structure are likely more complex, involving both direct and indirect processes. PMID:18245245

  6. Selected Lactic Acid-Producing Bacterial Isolates with the Capacity to Reduce Salmonella Translocation and Virulence Gene Expression in Chickens

    PubMed Central

    Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua

    2014-01-01

    Background Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. Methodology/Principal Findings In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3–1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (106–7 CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (104 CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. Conclusions/Significance The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens. PMID:24728092

  7. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    PubMed

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management. PMID:25423586

  8. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing.

    PubMed

    Roux, Brice; Rodde, Nathalie; Jardinaud, Marie-Franoise; Timmers, Ton; Sauviac, Laurent; Cottret, Ludovic; Carrre, Sbastien; Sallet, Erika; Courcelle, Emmanuel; Moreau, Sandra; Debell, Frdric; Capela, Delphine; de Carvalho-Niebel, Fernanda; Gouzy, Jrme; Bruand, Claude; Gamas, Pascal

    2014-03-01

    Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions. This study, focused on the association between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti, led to the production of 942million sequencing read pairs that were unambiguously mapped on plant and bacterial genomes. Bioinformatic and statistical analyses enabled in-depth comparison, at a whole-genome level, of gene expression in specific nodule zones. Previously characterized symbiotic genes displayed the expected spatial pattern of expression, thus validating the robustness of our approach. We illustrate the use of this resource by examining gene expression associated with three essential elements of nodule development, namely meristem activity, cell differentiation and selected signaling processes related to bacterial Nod factors and redox status. We found that transcription factor genes essential for the control of the root apical meristem were also expressed in the nodule meristem, while the plant mRNAs most enriched in nodules compared with roots were mostly associated with zones comprising both plant and bacterial partners. The data, accessible on a dedicated website, represent a rich resource for microbiologists and plant biologists to address a variety of questions of both fundamental and applied interest. PMID:24483147

  9. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    PubMed Central

    Hong, Jeum Kyu; Kang, Su Ran; Kim, Yeon Hwa; Yoon, Dong June; Kim, Do Hoon; Kim, Hyeon Ji; Sung, Chang Hyun; Kang, Han Sol; Choi, Chang Won; Kim, Seong Hwan; Kim, Young Shik

    2013-01-01

    Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H2O2) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O2−) and H2O2 was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H2O2and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H2O2and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 106 and 107 cfu/ml of R. solanacearum. H2O2- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC)’ was calculated to compare disease protection by H2O2 and/or SNP with untreated control. Neither H2O2 nor SNP protect the tomato seedlings from the bacterial wilt, but H2O2+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H2O2 and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents. PMID:25288967

  10. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants.

    PubMed

    Hong, Jeum Kyu; Kang, Su Ran; Kim, Yeon Hwa; Yoon, Dong June; Kim, Do Hoon; Kim, Hyeon Ji; Sung, Chang Hyun; Kang, Han Sol; Choi, Chang Won; Kim, Seong Hwan; Kim, Young Shik

    2013-12-01

    Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H2O2) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O2 (-)) and H2O2 was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H2O2and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H2O2and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10(6) and 10(7) cfu/ml of R. solanacearum. H2O2- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by H2O2 and/or SNP with untreated control. Neither H2O2 nor SNP protect the tomato seedlings from the bacterial wilt, but H2O2+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H2O2 and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents. PMID:25288967

  11. Assessment of Bacterial bph Gene in Amazonian Dark Earth and Their Adjacent Soils

    PubMed Central

    Brossi, Maria Julia de Lima; Mendes, Lucas William; Germano, Mariana Gomes; Lima, Amanda Barbosa; Tsai, Siu Mui

    2014-01-01

    Amazonian Anthrosols are known to harbour distinct and highly diverse microbial communities. As most of the current assessments of these communities are based on taxonomic profiles, the functional gene structure of these communities, such as those responsible for key steps in the carbon cycle, mostly remain elusive. To gain insights into the diversity of catabolic genes involved in the degradation of hydrocarbons in anthropogenic horizons, we analysed the bacterial bph gene community structure, composition and abundance using T-RFLP, 454-pyrosequencing and quantitative PCR essays, respectively. Soil samples were collected in two Brazilian Amazon Dark Earth (ADE) sites and at their corresponding non-anthropogenic adjacent soils (ADJ), under two different land use systems, secondary forest (SF) and manioc cultivation (M). Redundancy analysis of T-RFLP data revealed differences in bph gene structure according to both soil type and land use. Chemical properties of ADE soils, such as high organic carbon and organic matter, as well as effective cation exchange capacity and pH, were significantly correlated with the structure of bph communities. Also, the taxonomic affiliation of bph gene sequences revealed the segregation of community composition according to the soil type. Sequences at ADE sites were mostly affiliated to aromatic hydrocarbon degraders belonging to the genera Streptomyces, Sphingomonas, Rhodococcus, Mycobacterium, Conexibacter and Burkholderia. In both land use sites, shannon's diversity indices based on the bph gene data were higher in ADE than ADJ soils. Collectively, our findings provide evidence that specific properties in ADE soils shape the structure and composition of bph communities. These results provide a basis for further investigations focusing on the bio-exploration of novel enzymes with potential use in the biotechnology/biodegradation industry. PMID:24927167

  12. Binding motifs in bacterial gene promoters modulate transcriptional effect of global regulators

    SciTech Connect

    Leuze, Michael Rex; Karpinets, Tatiana V; Syed, Mustafa H; Beliaev, Alexander S; Uberbacher, Edward C

    2012-01-01

    Bacterial gene regulation involves transcription factors (TFs) that influence the expression of many genes. Global regulators, including CRP (cAMP Receptor Protein), ArcA, and FNR, can modulate the transcriptional activity of multiple operons. The similarity of a regulatory element s sequence to a TF s consensus binding site (BS) and the position of the regulatory element in an operon promoter are considered the most important determinants of this TF s regulatory influence. In this study we explore the hypothesis that the number of TFBS half-sites (where a half-site is one half of the palindromic BS consensus sequence, which we shall refer to as a binding motif or a BM) of a global regulator in an operon s promoter plays an important role in the operon s transcriptional regulation. We examine empirical data from transcriptional profiling of the CRP regulon in Shewanella oneidenses MR 1 and Escherichia coli, and of the ArcA regulon in S. oneidenses MR 1. We compare the power of CRP BM counts and of full, symmetrical CRP TFBS characteristics, namely similarity to consensus and location, to predict CRP-induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full-length TFBS quality or location. Regression analysis indicates that IHF (Integration Host Factor) and ArcA have synergistic effects on CRP-induced gene transcription, positive and negative, respectively. Based on these results, we propose that the fine-tuning of bacterial transcriptional activity by CRP may involves not only the bending of the operon promoter, facilitated by CRP in cooperation with the histone-like protein IHF, but also the cumulative binding affinity of multiple weak BMs.

  13. Sulfonamide and tetracycline resistance genes in total- and culturable-bacterial assemblages in South African aquatic environments

    PubMed Central

    Suzuki, Satoru; Ogo, Mitsuko; Koike, Tatsuya; Takada, Hideshige; Newman, Brent

    2015-01-01

    Antibiotic resistant bacteria are ubiquitous in the natural environment. The introduction of effluent derived antibiotic resistance genes (ARGs) into aquatic environments is of concern in the spreading of genetic risk. This study showed the prevalence of sulfonamide and tetracycline resistance genes, sul1, sul2, sul3, and tet(M), in the total bacterial assemblage and colony forming bacterial assemblage in river and estuarine water and sewage treatment plants (STP) in South Africa. There was no correlation between antibiotic concentrations and ARGs, suggesting the targeted ARGs are spread in a wide area without connection to selection pressure. Among sul genes, sul1 and sul2 were major genes in the total (over 10-2 copies/16S) and colony forming bacteria assemblages (∼10-1 copies/16S). In urban waters, the sul3 gene was mostly not detectable in total and culturable assemblages, suggesting sul3 is not abundant. tet(M) was found in natural assemblages with 10-3 copies/16S level in STP, but was not detected in colony forming bacteria, suggesting the non-culturable (yet-to-be cultured) bacterial community in urban surface waters and STP effluent possess the tet(M) gene. Sulfamethoxazole (SMX) resistant (SMXr) and oxytetracycline (OTC) resistant (OTCr) bacterial communities in urban waters possessed not only sul1 and sul2 but also sul3 and tet(M) genes. These genes are widely distributed in SMXr and OTCr bacteria. In conclusion, urban river and estuarine water and STP effluent in the Durban area were highly contaminated with ARGs, and the yet-to-be cultured bacterial community may act as a non-visible ARG reservoir in certain situations. PMID:26300864

  14. Control mechanisms of plastid gene expression

    SciTech Connect

    Gruissem, W.; Tonkyn, J.C.

    1993-12-31

    Plastid DNAs of higher plants contain approximately 150 genes that encode RNAs and proteins for genetic and photosynthetic functions of the organelle. Results published in the last few years illustrate that the spatial and temporal expression of these plastid genes is regulated, in part, at the transcriptional level, but that developmentally controlled changes in mRNA stability, translational activity, and protein phosphorylation also have an important role in the control of plastid functions. This comprehensive review summarizes and discusses the mechanisms by which regulation of gene expression is exerted at the transcriptional and post-transcriptional levels. It provides an overview of our current knowledge, but also emphasizes areas that are controversial and in which information on regulatory mechanisms is still incomplete. 455 refs., 3 figs., 3 tabs.

  15. Biomarkers and Bacterial Pneumonia Risk in Patients with Treated HIV Infection: A Case-Control Study

    PubMed Central

    Bjerk, Sonja M.; Baker, Jason V.; Emery, Sean; Neuhaus, Jacqueline; Angus, Brian; Gordin, Fred M.; Pett, Sarah L.; Stephan, Christoph; Kunisaki, Ken M.

    2013-01-01

    Background Despite advances in HIV treatment, bacterial pneumonia continues to cause considerable morbidity and mortality in patients with HIV infection. Studies of biomarker associations with bacterial pneumonia risk in treated HIV-infected patients do not currently exist. Methods We performed a nested, matched, case-control study among participants randomized to continuous combination antiretroviral therapy (cART) in the Strategies for Management of Antiretroviral Therapy trial. Patients who developed bacterial pneumonia (cases) and patients without bacterial pneumonia (controls) were matched 1∶1 on clinical center, smoking status, age, and baseline cART use. Baseline levels of Club Cell Secretory Protein 16 (CC16), Surfactant Protein D (SP-D), C-reactive protein (hsCRP), interleukin-6 (IL-6), and d-dimer were compared between cases and controls. Results Cases (n = 72) and controls (n = 72) were 25.7% female, 51.4% black, 65.3% current smokers, 9.7% diabetic, 36.1% co-infected with Hepatitis B/C, and 75.0% were on cART at baseline. Median (IQR) age was 45 (41, 51) years with CD4+ count of 553 (436, 690) cells/mm3. Baseline CC16 and SP-D were similar between cases and controls, but hsCRP was significantly higher in cases than controls (2.94 µg/mL in cases vs. 1.93 µg/mL in controls; p = 0.02). IL-6 and d-dimer levels were also higher in cases compared to controls, though differences were not statistically significant (p-value 0.06 and 0.10, respectively). Conclusions In patients with cART-treated HIV infection, higher levels of systemic inflammatory markers were associated with increased bacterial pneumonia risk, while two pulmonary-specific inflammatory biomarkers, CC16 and SP-D, were not associated with bacterial pneumonia risk. PMID:23457535

  16. The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

    PubMed

    Goldberg, Brittany E; Mongodin, Emmanuel F; Jones, Cheron E; Chung, Michelle; Fraser, Claire M; Tate, Anupama; Zeichner, Steven L

    2015-01-01

    The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better characterize the oral microbiome in children and those with poorly-controlled HIV infections. PMID:26146997

  17. The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection

    PubMed Central

    Goldberg, Brittany E.; Mongodin, Emmanuel F.; Jones, Cheron E.; Chung, Michelle; Fraser, Claire M.; Tate, Anupama; Zeichner, Steven L.

    2015-01-01

    The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi’s sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better characterize the oral microbiome in children and those with poorly-controlled HIV infections. PMID:26146997

  18. A Window of Opportunity to Control the Bacterial Pathogen Pseudomonas aeruginosa Combining Antibiotics and Phages

    PubMed Central

    Torres-Barceló, Clara; Arias-Sánchez, Flor I.; Vasse, Marie; Ramsayer, Johan

    2014-01-01

    The evolution of antibiotic resistance in bacteria is a global concern and the use of bacteriophages alone or in combined therapies is attracting increasing attention as an alternative. Evolutionary theory predicts that the probability of bacterial resistance to both phages and antibiotics will be lower than to either separately, due for example to fitness costs or to trade-offs between phage resistance mechanisms and bacterial growth. In this study, we assess the population impacts of either individual or combined treatments of a bacteriophage and streptomycin on the nosocomial pathogen Pseudomonas aeruginosa. We show that combining phage and antibiotics substantially increases bacterial control compared to either separately, and that there is a specific time delay in antibiotic introduction independent of antibiotic dose, that minimizes both bacterial density and resistance to either antibiotics or phage. These results have implications for optimal combined therapeutic approaches. PMID:25259735

  19. Factors governing the expression of a bacterial gene in mammalian cells

    SciTech Connect

    Mulligan, R.C.; Berg, P.

    1981-05-01

    Cultured monkey kidney cells transfected with simian virus 40 (SV 40)-pBR322-derived deoxyribonucleic acid (DNA) vectors containing the Escherichia coli gene (Ecogpt, or gpt) coding for the enzyme xanthine-guanine phosphoribosyltransferase (XGPRT) synthesize the bacterial enzyme. This paper describes the structure of the messenger ribonucleic acids (mRNA's) formed during the expression of gpt and an unexpected feature of the nucleotide sequence in the gpt DNA segment. Analyses of the gpt-specific mRNA's produced during infection of CV1 cells indicate that in addition to the mRNA's expected on the basis of known simian virus 40 RNA splicing patterns, there is a novel SV40-gpt hybrid mRNA. The novel mRNA contains an SV40 leader segment spliced to RNA sequences transcribed from the bacterial DNA segment. The sequence of the 5'-proximal 345 nucleotides of the gpt DNA segment indicates that the only open translation phase begins with an AUG about 200 nucleotides from the end of the gpt DNA. Two additional AUGs as well as translation terminator codons in all three phases precede the XGPRT initiator codon. Deletion of the two that are upstream of the putative start codon increases the level of XGPRT production in transfected cells; deletion of sequences that contain the proposed XGPRT initiator AUG abolishes enzyme production. Based on the location of the XGPRT coding sequence in the recombinants and the structure of the mRNA's, the authors infer that the bacterial enzyme can be translated from an initiator AUG that is 400 to 800 nucleotides from the 5' terminus of the mRNA and preceded by two to six AUG triplets.

  20. PCR detection of bacterial genes provides evidence of death by drowning.

    PubMed

    Suto, Miwako; Kato, Naho; Abe, Sumiko; Nakamura, Masahide; Tsuchiya, Reo; Hiraiwa, Kouichi

    2009-04-01

    We have developed a sensitive and specific PCR method for detecting plankton DNA in cases of death by drowning. However, this PCR method could not be used for cases of drowning in water containing no plankton. Bacteria species are normally localized in the throat and trachea and they may invade into blood through the respiratory tract in people who have drowned as well as species localized in water. The aim of this study was to establish a novel and expedient PCR method for detecting bacterial genes in samples from drowning cases. We designed primer pairs for Streptococcus salivarius (SL1) and Streptococcus sanguinis (SN1), which are common species in the throat, and for Aeromonas hydrophila (AH1), which has been found in various water samples. With SL1, SN1, and AH1, we detected 10, 0.1, and 1 pg of target DNA, respectively. Among 19 drowned cases within 3 days postmortem, SL-DNA was detected in all of the blood samples from hearts with SL1 and AH-DNA was detected in several samples with AH1. In a case of drowning in a bathtub, use of the conventional acid digestion method for diatom analyses and the PCR method for identifying plankton DNA revealed no plankton, but our PCR method for detecting bacterial DNA showed a positive result for SL-DNA in a blood sample from the heart. In conclusion, our novel PCR method is highly specific and sensitive for detecting bacterial DNA and is useful for cases of death by drowning in water containing no plankton. PMID:19264526

  1. Application of nanotechnology to control bacterial adhesion and patterning on material surfaces

    PubMed Central

    Costello, Cait M.; Yeung, Chun L.; Rawson, Frankie J.; Mendes, Paula M.

    2012-01-01

    Bacterial adhesion and biofilm formation on surfaces raises health hazard issues in the medical environment. Previous studies of bacteria adhesion have focused on observations in their natural/native environments. Recently, surface science has contributed in advancing the understanding of bacterial adhesion by providing ideal platforms that attempt to mimic the bacteria's natural environments, whilst also enabling concurrent control, selectivity and spatial control of bacterial adhesion. In this review, we will look at techniques of how nanotechnology is used to control cell adhesion on a planar scale, in addition to describing the use of nanotools for cell micropatterning. Additionally, it will provide a general background of common methods for nanoscale modification enabling biologist unfamiliar with nanotechnology to enter the field. PMID:24273593

  2. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles.

    PubMed

    Kennedy, Katherine; Hall, Michael W; Lynch, Michael D J; Moreno-Hagelsieb, Gabriel; Neufeld, Josh D

    2014-09-01

    Massively parallel sequencing of 16S rRNA genes enables the comparison of terrestrial, aquatic, and host-associated microbial communities with sufficient sequencing depth for robust assessments of both alpha and beta diversity. Establishing standardized protocols for the analysis of microbial communities is dependent on increasing the reproducibility of PCR-based molecular surveys by minimizing sources of methodological bias. In this study, we tested the effects of template concentration, pooling of PCR amplicons, and sample preparation/interlane sequencing on the reproducibility associated with paired-end Illumina sequencing of bacterial 16S rRNA genes. Using DNA extracts from soil and fecal samples as templates, we sequenced pooled amplicons and individual reactions for both high (5- to 10-ng) and low (0.1-ng) template concentrations. In addition, all experimental manipulations were repeated on two separate days and sequenced on two different Illumina MiSeq lanes. Although within-sample sequence profiles were highly consistent, template concentration had a significant impact on sample profile variability for most samples. Pooling of multiple PCR amplicons, sample preparation, and interlane variability did not influence sample sequence data significantly. This systematic analysis underlines the importance of optimizing template concentration in order to minimize variability in microbial-community surveys and indicates that the practice of pooling multiple PCR amplicons prior to sequencing contributes proportionally less to reducing bias in 16S rRNA gene surveys with next-generation sequencing. PMID:25002428

  3. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  4. Construction of bacterial ghosts for transfer and expression of a chimeric hepatitis C virus gene in macrophages.

    PubMed

    Miri, M R; Behzad-Behbahani, A; Fardaei, M; Farhadi, A; Talebkhan, Y; Mohammadi, M; Tayebinia, M; Farokhinejad, F; Alavi, P; Fanian, M; Zare, F; Saberzade, J; Nikouyan, N; Okhovat, M A; Ranjbaran, R; Rafiei Dehbidi, G; Naderi, S

    2015-12-01

    The bacterial ghost (BG) production is a field of biotechnology for applications in vaccine and drug delivery. We assessed the capacity of BG for delivery of a recombinant gene encoded for both cell mediated and antibody dependent epitopes of hepatitis C virus (HCV) into murine macrophages. Escherichia coli (E. coli) cells were transformed with the lysis plasmid (pHH43). To produce chimeric gene, NS3 (non-structural protein 3) and core regions of HCV genome were fused together by splicing by overlap extension (SOEing) PCR and were cloned into plasmid pEGFP-C1. Bacterial ghosts were loaded with recombinant pEGFP-C1 and then were transferred to murine macrophages (RAW 264.7). To investigate plasmid transfection and chimeric mRNA transcription, fluorescent microscopy and RT-PCR were used. In vitro studies indicated that bacterial ghosts loaded with pEGFP-C1 plasmid were efficiently taken up by murine macrophages and indicated a high transfection rate (62%), as shown by fluorescent microscopy. RT-PCR from extracted intracellular mRNAs for chimeric Core-NS3 gene showed a specific 607 bp fragment of the gene. The sequence analysis of purified PCR products demonstrated the expected unique mRNA sequence. We constructed a chimeric HCV gene containing both cell mediated and antibody dependent epitopes with a significant expression in murine macrophages delivered by bacterial ghost. PMID:26578242

  5. Genes and Co-Expression Modules Common to Drought and Bacterial Stress Responses in Arabidopsis and Rice

    PubMed Central

    Shaik, Rafi; Ramakrishna, Wusirika

    2013-01-01

    Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape within the cell. Identification and characterization of the synergistic and antagonistic components of stress response mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress responses. To this end, we performed meta-analysis of drought (abiotic), bacterial (biotic) stress response in rice and Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214) and 28.7% (272) DEGs were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while CO-like TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-expression network analysis divided DEG sets into multiple modules that show high co-expression and identified stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and reversed co-expression patterns. PMID:24130868

  6. Impulse control: Temporal dynamics in gene transcription

    PubMed Central

    Yosef, Nir; Regev, Aviv

    2011-01-01

    Regulatory circuits controlling gene expression constantly rewire to adapt to environmental stimuli, differentiation cues, and disease. We review our current understanding of the temporal dynamics of gene expression in eukaryotes and prokaryotes and the molecular mechanisms that shape them. We delineate several prototypical temporal patterns, including ‘impulse’ (single-pulse) patterns in response to transient environmental stimuli, sustained (state transitioning) patterns in response to developmental cues, and oscillating patterns. We focus on impulse responses and their higher-order temporal organization in regulons and cascades, and describe how core protein circuits and cis-regulatory sequences in promoters integrate with chromatin architecture to generate these responses. PMID:21414481

  7. Light without substrate amendment: the bacterial luciferase gene cassette as a mammalian bioreporter

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Xu, Tingting; Smartt, Abby E.; Jegier, Pat; Ripp, Steven A.; Sayler, Gary S.

    2011-06-01

    Bioluminescent production represents a facile method for bioreporter detection in mammalian tissues. The lack of endogenous bioluminescent reactions in these tissues allows for high signal to noise ratios even at low signal strength compared to fluorescent signal detection. While the luciferase enzymes commonly employed for bioluminescent detection are those from class Insecta (firefly and click beetle luciferases), these are handicapped in that they require concurrent administration of a luciferin compound to elicit a bioluminescent signal. The bacterial luciferase (lux) gene cassette offers the advantages common to other bioluminescent proteins, but is simultaneously capable of synthesizing its own luciferin substrates using endogenously available cellular compounds. The longstanding shortcoming of the lux cassette has been its recalcitrance to function in the mammalian cellular environment. This paper will present an overview of the work completed to date to overcome this limitation and provide examples of mammalian lux-based bioreporter technologies that could provide the framework for advanced, biomedically relevant real-time sensor development.

  8. Influence of dietary antioxidants and fatty acids on neutrophil mediated bacterial killing and gene expression in healthy Beagles.

    PubMed

    Hall, Jean A; Chinn, Rachel M; Vorachek, William R; Gorman, M Elena; Greitl, Joe L; Joshi, Dinesh K; Jewell, Dennis E

    2011-02-15

    Dietary (n-3) fatty acids from fish oil have been used to modulate immune function in many mammalian species. Together, dietary antioxidants and behavioral enrichment have been shown to enhance neutrophil phagocytosis in geriatric Beagle dogs. The purpose of this study was to further investigate the effects of vitamins E and C, in combination with dietary fish oil, on neutrophil mediated bacterial killing, and on transcript levels of selected neutrophil mRNA. Fifty adult Beagle dogs were randomized into five dietary treatment groups for 60 days. All foods were complete and balanced and met the nutrient profiles of AAFCO for adult dogs. For 60 days before study initiation, dogs consumed a pretrial food that contained 74 IU/kg vitamin E and 0 mg/kg vitamin C. The five experimental foods were confirmed by analytical methods to contain ?640 IU/kg vitamin E and 130 mg/kg vitamin C (as fed). Experimental foods ranged from low levels of EPA and DHA (pretrial food and lowest experimental food had 0.01% EPA and no detectable DHA) to the highest experimental food with 0.25% EPA and 0.17% DHA. Ex vivo bactericidal activity of activated, peripheral-blood neutrophils against Lactococcus lactis was determined after 1 h incubation. Bactericidal activity was calculated as a percentage of control values (bacteria incubated in media without neutrophils). Transcript levels of genes involved in neutrophil-mediated immune functions were determined by real-time qPCR. Dogs in all treatment groups had increased serum vitamin E concentration (P<0.01). After consuming experimental food for 60 days, neutrophils from dogs in all 5 treatment groups also had increased bactericidal activity (P<0.01). Dietary fish oil however, had no effect on bactericidal activity. Stepwise multiple regression analysis demonstrated that the change in neutrophil mediated bacterial killing was significantly correlated to changes in gene expression of interleukin-8 receptor (IL-8R), interleukin converting enzyme (ICE), and myeloperoxidase (MPO; r(2)=0.33; P=0.003). When stepwise multiple regression analysis was performed considering each mRNA as a dependent variable and change in selected individual and summed fatty acid concentrations as independent variables, change in the ratio of saturated fatty acids (SFA) to polyunsaturated fatty acids (PUFA) was significant (P?0.05) in the mRNA regression analyses for IL-8R, ICE, MPO, and cyclooxygenase-2. In summary, circulating neutrophils from dogs fed diets enriched in vitamins E and C had significantly increased bactericidal activity as well as altered gene expression. Change in SFA to PUFA ratio also altered neutrophil gene expression. PMID:21112644

  9. Genome-Wide Identification of Streptococcus pneumoniae Genes Essential for Bacterial Replication during Experimental Meningitis▿ †

    PubMed Central

    Molzen, T. E.; Burghout, P.; Bootsma, H. J.; Brandt, C. T.; van der Gaast-de Jongh, Christa E.; Eleveld, M. J.; Verbeek, M. M.; Frimodt-Møller, N.; Østergaard, C.; Hermans, P. W. M.

    2011-01-01

    Meningitis is the most serious of invasive infections caused by the Gram-positive bacterium Streptococcus pneumoniae. Vaccines protect only against a limited number of serotypes, and evolving bacterial resistance to antimicrobials impedes treatment. Further insight into the molecular pathogenesis of invasive pneumococcal disease is required in order to enable the development of new or adjunctive treatments and/or pneumococcal vaccines that are efficient across serotypes. We applied genomic array footprinting (GAF) in the search for S. pneumoniae genes that are essential during experimental meningitis. A total of 6,000 independent TIGR4 marinerT7 transposon mutants distributed over four libraries were injected intracisternally into rabbits, and cerebrospinal fluid (CSF) was collected after 3, 9, and 15 h. Microarray analysis of mutant-specific probes from CSF samples and inocula identified 82 and 11 genes mutants of which had become attenuated or enriched, respectively, during infection. The results point to essential roles for capsular polysaccharides, nutrient uptake, and amino acid biosynthesis in bacterial replication during experimental meningitis. The GAF phenotype of a subset of identified targets was followed up by detailed studies of directed mutants in competitive and noncompetitive infection models of experimental rat meningitis. It appeared that adenylosuccinate synthetase, flavodoxin, and LivJ, the substrate binding protein of a branched-chain amino acid ABC transporter, are relevant as targets for future therapy and prevention of pneumococcal meningitis, since their mutants were attenuated in both models of infection as well as in competitive growth in human cerebrospinal fluid in vitro. PMID:21041497

  10. Natural Transformation Facilitates Transfer of Transposons, Integrons and Gene Cassettes between Bacterial Species

    PubMed Central

    Domingues, Sara; Harms, Klaus; Fricke, W. Florian; Johnsen, Pål J.; da Silva, Gabriela J.; Nielsen, Kaare Magne

    2012-01-01

    We have investigated to what extent natural transformation acting on free DNA substrates can facilitate transfer of mobile elements including transposons, integrons and/or gene cassettes between bacterial species. Naturally transformable cells of Acinetobacter baylyi were exposed to DNA from integron-carrying strains of the genera Acinetobacter, Citrobacter, Enterobacter, Escherichia, Pseudomonas, and Salmonella to determine the nature and frequency of transfer. Exposure to the various DNA sources resulted in acquisition of antibiotic resistance traits as well as entire integrons and transposons, over a 24 h exposure period. DNA incorporation was not solely dependent on integrase functions or the genetic relatedness between species. DNA sequence analyses revealed that several mechanisms facilitated stable integration in the recipient genome depending on the nature of the donor DNA; homologous or heterologous recombination and various types of transposition (Tn21-like and IS26-like). Both donor strains and transformed isolates were extensively characterized by antimicrobial susceptibility testing, integron- and cassette-specific PCRs, DNA sequencing, pulsed field gel electrophoreses (PFGE), Southern blot hybridizations, and by re-transformation assays. Two transformant strains were also genome-sequenced. Our data demonstrate that natural transformation facilitates interspecies transfer of genetic elements, suggesting that the transient presence of DNA in the cytoplasm may be sufficient for genomic integration to occur. Our study provides a plausible explanation for why sequence-conserved transposons, IS elements and integrons can be found disseminated among bacterial species. Moreover, natural transformation of integron harboring populations of competent bacteria revealed that interspecies exchange of gene cassettes can be highly efficient, and independent on genetic relatedness between donor and recipient. In conclusion, natural transformation provides a much broader capacity for horizontal acquisitions of genetic elements and hence, resistance traits from divergent species than previously assumed. PMID:22876180

  11. Medium-dependent control of the bacterial growth rate.

    PubMed

    Ehrenberg, Mns; Bremer, Hans; Dennis, Patrick P

    2013-04-01

    By combining results from previous studies of nutritional up-shifts we here re-investigate how bacteria adapt to different nutritional environments by adjusting their macromolecular composition for optimal growth. We demonstrate that, in contrast to a commonly held view the macromolecular composition of bacteria does not depend on the growth rate as an independent variable, but on three factors: (i) the genetic background (i.e. the strain used), (ii) the physiological history of the bacteria used for inoculation of a given growth medium, and (iii) the kind of nutrients in the growth medium. These factors determine the ribosome concentration and the average rate of protein synthesis per ribosome, and thus the growth rate. Immediately after a nutritional up-shift, the average number of ribosomes in the bacterial population increases exponentially with time at a rate which eventually is attained as the final post-shift growth rate of all cell components. After a nutritional up-shift from one minimal medium to another minimal medium of higher nutritional quality, ribosome and RNA polymerase syntheses are co-regulated and immediately increase by the same factor equal to the increase in the final growth rate. However, after an up-shift from a minimal medium to a medium containing all 20 amino acids, RNA polymerase and ribosome syntheses are no longer coregulated; a smaller rate of synthesis of RNA polymerase is compensated by a gradual increase in the fraction of free RNA polymerase, possibly due to a gradual saturation of mRNA promoters. We have also analyzed data from a recent publication, in which it was concluded that the macromolecular composition in terms of RNA/protein and RNA/DNA ratios is solely determined by the effector molecule ppGpp. Our analysis indicates that this is true only in special cases and that, in general, medium adaptation also depends on factors other than ppGpp. PMID:23228516

  12. Transgenic banana plants expressing Xanthomonas wilt resistance genes revealed a stable non-target bacterial colonization structure.

    PubMed

    Nimusiima, Jean; Köberl, Martina; Tumuhairwe, John Baptist; Kubiriba, Jerome; Staver, Charles; Berg, Gabriele

    2015-01-01

    Africa is among the continents where the battle over genetically modified crops is currently being played out. The impact of GM in Africa could potentially be very positive. In Uganda, researchers have developed transgenic banana lines resistant to banana Xanthomonas wilt. The transgenic lines expressing hrap and pflp can provide a timely solution to the pandemic. However, the impact of the transgenes expression on non-target microorganisms has not yet been investigated. To study this effect, transgenic and control lines were grown under field conditions and their associated microbiome was investigated by 16S rRNA gene profiling combining amplicon sequencing and molecular fingerprinting. Three years after sucker planting, no statistically significant differences between transgenic lines and their non-modified predecessors were detected for their associated bacterial communities. The overall gammaproteobacterial rhizosphere microbiome was highly dominated by Xanthomonadales, while Pseudomonadales and Enterobacteriales were accumulated in the pseudostem. Shannon indices revealed much higher diversity in the rhizosphere than in the pseudostem endosphere. However, the expression of the transgenes did not result in changes in the diversity of Gammaproteobacteria, the closest relatives of the target pathogen. In this field experiment, the expression of the resistance genes appears to have no consequences for non-target rhizobacteria and endophytes. PMID:26657016

  13. Transgenic banana plants expressing Xanthomonas wilt resistance genes revealed a stable non-target bacterial colonization structure

    PubMed Central

    Nimusiima, Jean; Köberl, Martina; Tumuhairwe, John Baptist; Kubiriba, Jerome; Staver, Charles; Berg, Gabriele

    2015-01-01

    Africa is among the continents where the battle over genetically modified crops is currently being played out. The impact of GM in Africa could potentially be very positive. In Uganda, researchers have developed transgenic banana lines resistant to banana Xanthomonas wilt. The transgenic lines expressing hrap and pflp can provide a timely solution to the pandemic. However, the impact of the transgenes expression on non-target microorganisms has not yet been investigated. To study this effect, transgenic and control lines were grown under field conditions and their associated microbiome was investigated by 16S rRNA gene profiling combining amplicon sequencing and molecular fingerprinting. Three years after sucker planting, no statistically significant differences between transgenic lines and their non-modified predecessors were detected for their associated bacterial communities. The overall gammaproteobacterial rhizosphere microbiome was highly dominated by Xanthomonadales, while Pseudomonadales and Enterobacteriales were accumulated in the pseudostem. Shannon indices revealed much higher diversity in the rhizosphere than in the pseudostem endosphere. However, the expression of the transgenes did not result in changes in the diversity of Gammaproteobacteria, the closest relatives of the target pathogen. In this field experiment, the expression of the resistance genes appears to have no consequences for non-target rhizobacteria and endophytes. PMID:26657016

  14. Terrestrial runoff controls the bacterial community composition of biofilms along a water quality gradient in the Great Barrier Reef.

    PubMed

    Witt, Verena; Wild, Christian; Uthicke, Sven

    2012-11-01

    16S rRNA gene molecular analysis elucidated the spatiotemporal distribution of bacterial biofilm communities along a water quality gradient. Multivariate statistics indicated that terrestrial runoff, in particular dissolved organic carbon and chlorophyll a concentrations, induced shifts of specific bacterial communities between locations and seasons, suggesting microbial biofilms could be suitable bioindicators for water quality. PMID:22904059

  15. Terrestrial Runoff Controls the Bacterial Community Composition of Biofilms along a Water Quality Gradient in the Great Barrier Reef

    PubMed Central

    Wild, Christian; Uthicke, Sven

    2012-01-01

    16S rRNA gene molecular analysis elucidated the spatiotemporal distribution of bacterial biofilm communities along a water quality gradient. Multivariate statistics indicated that terrestrial runoff, in particular dissolved organic carbon and chlorophyll a concentrations, induced shifts of specific bacterial communities between locations and seasons, suggesting microbial biofilms could be suitable bioindicators for water quality. PMID:22904059

  16. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    PubMed Central

    2010-01-01

    Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (?54) of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 ?54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism. PMID:20167112

  17. TGF-? control of stem cell differentiation genes.

    PubMed

    Massagu, Joan; Xi, Qiaoran

    2012-07-01

    The canonical TGF-?/Smad signaling pathway was delineated in the mid 90s and enriched over the past decade with many findings about its specificity, regulation, networking, and malfunctions in disease. However, a growing understanding of the chromatin status of a critical class of TGF-? target genes - the genes controlling differentiation of embryonic stem cells - recently prompted a reexamination of this pathway and its critical role in the regulation of stem cell differentiation. The new findings reveal master regulators of the pluripotent state set the stage for Smad-mediated activation of master regulators of the next differentiation stage. Furthermore, a novel branch of the TGF-?/Smad pathway has been identified in which a chromatin-reading Smad complex makes the master differentiation genes accessible to canonical Smad complexes for transcriptional activation. These findings provide exciting new insights into the global role of TGF-? signaling in the regulators of stem cell fate. PMID:22710171

  18. Rapid pair-wise synteny analysis of large bacterial genomes using web-based GeneOrder4.0

    PubMed Central

    2010-01-01

    Background The growing whole genome sequence databases necessitate the development of user-friendly software tools to mine these data. Web-based tools are particularly useful to wet-bench biologists as they enable platform-independent analysis of sequence data, without having to perform complex programming tasks and software compiling. Findings GeneOrder4.0 is a web-based "on-the-fly" synteny and gene order analysis tool for comparative bacterial genomics (ca. 8 Mb). It enables the visualization of synteny by plotting protein similarity scores between two genomes and it also provides visual annotation of "hypothetical" proteins from older archived genomes based on more recent annotations. Conclusions The web-based software tool GeneOrder4.0 is a user-friendly application that has been updated to allow the rapid analysis of synteny and gene order in large bacterial genomes. It is developed with the wet-bench researcher in mind. PMID:20178631

  19. {open_quotes}Horizontal{close_quotes} gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs - if at all - at an extremely low frequency

    SciTech Connect

    Schlueter, K.; Fuetterer, J.; Potrykus, I.

    1995-10-01

    The frequency of possible {open_quotes}horizontal{close_quotes} gene transfer between a plant and a tightly associated bacterial pathogen was studied in a model system consisting of transgenic Solanum tuberosum, containing a {beta}-lactamase gene linked to a pBR322 origin of replication, and Erwinia chrysanthemi. This experimental system offers optimal conditions for the detection of possible horizontal gene transfer events, even when they occur at very low frequency. Horizontal gene transfer was not detected under conditions mimicking a {open_quotes}natural{close_quotes} infection. The gradual, stepwise alteration of artificial, positive control conditions to idealized natural conditions, however, allowed the characterization of factors that affected gene transfer, and revealed a gradual decrease of the gene transfer frequency from 6.3 x 10{sup -2} under optimal control conditions to a calculated 2.0 x 10{sub -17} under idealized natural conditions. These data, in combination with other published studies, argue that horizontal gene transfer is so rare as to be essentially irrelevant to any realistic assessment of the risk involved in release experiments involving transgenic plants. 22 refs., 3 figs., 2 tabs.

  20. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    PubMed Central

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  1. Engineering an Enhanced, Thermostable, Monomeric Bacterial Luciferase Gene As a Reporter in Plant Protoplasts

    PubMed Central

    Song, Yunhong; Wei, Jinsong; Li, Changfu; Wang, Tietao; Wang, Yao; Zhao, Tianyong; Shen, Xihui

    2014-01-01

    The application of the luxCDABE operon of the bioluminescent bacterium Photorhabdus luminescens as a reporter has been published for bacteria, yeast and mammalian cells. We report here the optimization of fused luxAB (the bacterial luciferase heterodimeric enzyme) expression, quantum yield and its application as a reporter gene in plant protoplasts. The fused luxAB gene was mutated by error prone PCR or chemical mutagenesis and screened for enhanced luciferase activity utilizing decanal as substrate. Positive luxAB mutants with superior quantum yield were subsequently shuffled by DNase I digestion and PCR assembly for generation of recombinants with additional increases in luciferase activity in bacteria. The coding sequence of the best recombinant, called eluxAB, was then optimized further to conform to Arabidopsis (Arabidopsis thaliana) codon usage. A plant expression vector of the final, optimized eluxAB gene (opt-eluxAB) was constructed and transformed into protoplasts of Arabidopsis and maize (Zea mays). Luciferase activity was dramatically increased for opt-eluxAB compared to the original luxAB in Arabidopsis and maize cells. The opt-eluxAB driven by two copies of the 35S promoter expresses significantly higher than that driven by a single copy. These results indicate that the eluxAB gene can be used as a reporter in plant protoplasts. To our knowledge, this is the first report to engineer the bacterium Photorhabdus luminescens luciferase luxAB as a reporter by directed evolution which paved the way for further improving the luxAB reporter in the future. PMID:25271765

  2. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes.

    PubMed

    Wang, Hang; Li, Hongyi; Gilbert, Jack A; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian

    2015-11-01

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. PMID:26296728

  3. Controlling E. coli Gene Expression Noise.

    PubMed

    Kim, Kyung Hyuk; Choi, Kiri; Bartley, Bryan; Sauro, Herbert M

    2015-08-01

    Intracellular protein copy numbers show significant cell-to-cell variability within an isogenic population due to the random nature of biological reactions. Here we show how the variability in copy number can be controlled by perturbing gene expression. Depending on the genetic network and host, different perturbations can be applied to control variability. To understand more fully how noise propagates and behaves in biochemical networks we developed stochastic control analysis (SCA) which is a sensitivity-based analysis framework for the study of noise control. Here we apply SCA to synthetic gene expression systems encoded on plasmids that are transformed into Escherichia coli. We show that (1) dual control of transcription and translation efficiencies provides the most efficient way of noise-versus-mean control. (2) The expressed proteins follow the gamma distribution function as found in chromosomal proteins. (3) One of the major sources of noise, leading to the cell-to-cell variability in protein copy numbers, is related to bursty translation. (4) By taking into account stochastic fluctuations in autofluorescence, the correct scaling relationship between the noise and mean levels of the protein copy numbers was recovered for the case of weak fluorescence signals. PMID:26372647

  4. Control of gene expression by glucocorticoid hormones.

    PubMed Central

    Rousseau, G G

    1984-01-01

    Glucocorticoids control the expression of a small number of transcriptionally active genes by increasing or decreasing mRNA concentration. Either effect can result from a transcriptional or a post-transcriptional mechanism. Induction of mouse mammary tumour virus RNA results from a stimulation of transcription initiation and depends on the presence of defined regions in proviral DNA. These regions bind the glucocorticoid receptor and behave functionally as proto-enhancers. Glucocorticoid-inducible genes can retain their sensitivity to the hormone after transfer to a heterologous cell by transfection techniques. Non-inducible genes can become inducible when linked to the promoter region of an inducible gene. The mechanisms by which the receptor-steroid complex stimulates or inhibits transcription or influences mRNA stability are unknown. Receptor binding to nucleic acids appears to be a necessary but not sufficient condition. It is likely that the receptor also interacts with chromatin proteins. This might lead to a catalytic modification of these proteins, resulting in a modulation of gene expression. Development of glucocorticoid-sensitive, biochemically defined, cell-free transcription systems should provide a tool to delineate the molecular determinants of this essential regulatory mechanism. PMID:6095813

  5. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene

    PubMed Central

    Chen, Xi; Liang, Yong; Hua, Jing; Tao, Li; Qin, Wensheng; Chen, Sanfeng

    2010-01-01

    In order to efficiently utilize natural cellulose materials to produce ethylene, three expression vectors containing the ethylene-forming enzyme (efe) gene from Pseudomonas syringae pv. glycinea were constructed. The target gene was respectively controlled by different promoters: cbh I promoter from Trichoderma reesei cellobiohydrolases I gene, gpd promoter from Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase gene and pgk I promoter from T. reesei 3-phosphoglycerate kinase I gene. After transforming into T. reesei QM9414, 43 stable transformants were obtained by PCR amplification and ethylene determination. Southern blot analysis of 14 transformants demonstrated that the efe gene was integrated into chromosomal DNA with copy numbers from 1 to 4. Reverse transcription polymerase chain reaction (RT-PCR) analysis of 6 transformants showed that the heterologous gene was transcribed. By using wheat straw as a carbon source, the ethylene production rates of aforementioned 14 transformants were measured. Transformant C30-3 with pgk I promoter had the highest ethylene production (4,012 nl h-1 l-1). This indicates that agricultural wastes could be used to produce ethylene in recombinant filamentous fungus T. reesei. PMID:20150979

  6. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum

    PubMed Central

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  7. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum.

    PubMed

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  8. Identification and transcriptional profile of multiple genes in the posterior kidney of Nile tilapia at 6h post bacterial infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophi...

  9. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions

    PubMed Central

    Zhang, Yan-Cong; Lin, Kui

    2015-01-01

    Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms. PMID:26715828

  10. Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of atrazine and other s-triazine herbicides to control weeds in agricultural production fields has impacted surface and ground water in the United States and elsewhere. We previously reported the cloning, sequencing, and expression of six genes involved in the atrazine biodegradat...

  11. Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness

    PubMed Central

    Tecon, Robin; Or, Dani

    2016-01-01

    Recent studies have shown that rates of bacterial dispersion in soils are controlled by hydration conditions that define size and connectivity of the retained aqueous phase. Despite the ecological implications of such constraints, microscale observations of this phenomenon remain scarce. Here, we quantified aqueous film characteristics and bacterial flagellated motility in response to systematic variations in microhydrological conditions on porous ceramic surfaces that mimic unsaturated soils. We directly measured aqueous film thickness and documented its microscale heterogeneity. Flagellar motility was controlled by surface hydration conditions, as cell velocity decreased and dispersion practically ceased at water potentials exceeding –2 kPa (resulting in thinner and disconnected liquid films). The fragmentation of aquatic habitats was delineated indirectly through bacterial dispersal distances within connected aqueous clusters. We documented bacterial dispersal radii ranging from 100 to 10 μm as the water potential varied from 0 to –7 kPa, respectively. The observed decrease of flagellated velocity and dispersal ranges at lower matric potentials were in good agreement with mechanistic model predictions. Hydration-restricted habitats thus play significant role in bacterial motility and dispersal, which has potentially important impact on soil microbial ecology and diversity. PMID:26757676

  12. Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness.

    PubMed

    Tecon, Robin; Or, Dani

    2016-01-01

    Recent studies have shown that rates of bacterial dispersion in soils are controlled by hydration conditions that define size and connectivity of the retained aqueous phase. Despite the ecological implications of such constraints, microscale observations of this phenomenon remain scarce. Here, we quantified aqueous film characteristics and bacterial flagellated motility in response to systematic variations in microhydrological conditions on porous ceramic surfaces that mimic unsaturated soils. We directly measured aqueous film thickness and documented its microscale heterogeneity. Flagellar motility was controlled by surface hydration conditions, as cell velocity decreased and dispersion practically ceased at water potentials exceeding -2?kPa (resulting in thinner and disconnected liquid films). The fragmentation of aquatic habitats was delineated indirectly through bacterial dispersal distances within connected aqueous clusters. We documented bacterial dispersal radii ranging from 100 to 10??m as the water potential varied from 0 to -7?kPa, respectively. The observed decrease of flagellated velocity and dispersal ranges at lower matric potentials were in good agreement with mechanistic model predictions. Hydration-restricted habitats thus play significant role in bacterial motility and dispersal, which has potentially important impact on soil microbial ecology and diversity. PMID:26757676

  13. Gene-based identification of bacterial colonies with an electric chip.

    PubMed

    Gabig-Ciminska, Magdalena; Liu, Yanling; Enfors, Sven-Olof

    2005-10-15

    A method for the identification of bacterial colonies based on their content of specific genes is presented. This method does not depend on DNA separation or DNA amplification. Bacillus cereus carrying one of the genes (hblC) coding for the enterotoxin hemolysin was identified with this method. It is based on target DNA hybridization to a capturing probe immobilized on magnetic beads, followed by enzymatic labeling and measurement of the enzyme product with a silicon-based chip. An hblC-positive colony containing 10(7) cells could be assayed in 30 min after ultrasonication and centrifugation. The importance of optimizing the ultrasonication is illustrated by analysis of cell disruption kinetics and DNA fragmentation. An early endpoint PCR analysis was used to characterize the DNA fragmentation as a function of ultrasonication time. The first minutes of sonication increased the signal due to both increased DNA release and increased DNA fragmentation. The latter is assumed to increase the signal due to improved diffusion and faster hybridization of the target DNA. Too long sonication decreased the signal, presumably due to loss of hybridization sites on the targets caused by extensive DNA fragmentation. The results form a basis for rational design of an ultrasound cell disruption system integrated with analysis on chip that will move nucleic acid-based detection through real-time analysis closer to reality. PMID:16137631

  14. Characterization of a novel gene involved in cadmium accumulation screened from sponge-associated bacterial metagenome.

    PubMed

    Mori, Tetsushi; Iwamoto, Koji; Wakaoji, Satoshi; Araie, Hiroya; Kohara, Yotaro; Okamura, Yoshiko; Shiraiwa, Yoshihiro; Takeyama, Haruko

    2016-02-01

    Metagenome research has brought much attention for the identification of important and novel genes of industrial and pharmaceutical value. Here, using a metagenome library constructed from bacteria associated with the marine sponge, Styllisa massa, a high-throughput screening technique using radioisotope was implemented to screen for cadmium (Cd) binding or accumulation genes. From a total of 3301 randomly selected clones, a clone 247-11C was identified as harboring an open reading frame (ORF) showing Cd accumulation characteristics. The ORF, termed as ORF5, was further analyzed by protein functional studies to reveal the presence of a protein, Cdae-1. Cdae-1, composed of a signal peptide and domain harboring an E(G/A)KCG pentapeptide motif, enhanced Cd accumulation when expressed in Escherichia coli. Although showing no direct binding to Cd in vitro, the presence of important amino acid residues related to Cd detoxification suggests that Cdae-1 may possess a different mechanism from known Cd binding proteins such as metallothioneins (MTs) and phytochelatins (PCs). In summary, using the advantage of bacterial metagenomes, our findings in this work suggest the first report on the identification of a unique protein involved in Cd accumulation from bacteria associated with a marine sponge. PMID:26484790

  15. Selection and characterization of alpha-amylase-overproducing recombinant Escherichia coli containing the bacterial hemoglobin gene.

    PubMed

    Liu, S C; Ogretmen, B; Chuang, Y Y; Stark, B C

    1992-11-01

    We previously reported that the presence of the bacterial (Vitreoscilla) hemoglobin gene enhances alpha-amylase production in recombinant Escherichia coli strain MK79. Using the growth of MK79 on starch as a selective method we have produced a mutant strain (BSC9) that produces up to four times as much alpha-amylase as MK79. Both MK79 and BSC9 produce the most alpha-amylase (per cell and per milliliter) in the stationary phase; almost all of the enzyme is intracellular in both strains. Modification of the standard alpha-amylase assay increases the amount of amylase detected about sixfold. BSC9 has about five to nine times as many copies per cell as MK79 of the recombinant plasmid, which carries both the amylase and hemoglobin genes, but both strains produce about the same amount of hemoglobin. While MK79 respiration decreases upon going from log to stationary phase, BSC9 respiration increases during the same period. The two latter results may be of particular importance in determining the way in which hemoglobin enhances the production of cloned protein products in recombinant bacteria. PMID:1369145

  16. 14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN STATION MANAGER'S CONTROL DESK. ELECTRICAL CONTROL INDICATORS AND CONTROLS FOR REGULATING ELECTRICITY INTO PLANT AS WELL AS SYNCHRONIZING STARTUP OF PUMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  17. Factors influencing efficacy of plastic shelters for control of bacterial blight of lilac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastic shelters are thought to manage bacterial blight by protecting plants from rain and/or frost. In February to April 2008 and 2009, we studied the contribution of frost protection to efficacy of this cultural control practice. Lilacs in 1-gallon pots were exposed to four treatments: 1) plants...

  18. Transcriptomic and phylogenetic analysis of a bacterial cell cycle reveals strong associations between gene co-expression and evolution

    PubMed Central

    2013-01-01

    Background The genetic network involved in the bacterial cell cycle is poorly understood even though it underpins the remarkable ability of bacteria to proliferate. How such network evolves is even less clear. The major aims of this work were to identify and examine the genes and pathways that are differentially expressed during the Caulobacter crescentus cell cycle, and to analyze the evolutionary features of the cell cycle network. Results We used deep RNA sequencing to obtain high coverage RNA-Seq data of five C. crescentus cell cycle stages, each with three biological replicates. We found that 1,586 genes (over a third of the genome) display significant differential expression between stages. This gene list, which contains many genes previously unknown for their cell cycle regulation, includes almost half of the genes involved in primary metabolism, suggesting that these house-keeping genes are not constitutively transcribed during the cell cycle, as often assumed. Gene and module co-expression clustering reveal co-regulated pathways and suggest functionally coupled genes. In addition, an evolutionary analysis of the cell cycle network shows a high correlation between co-expression and co-evolution. Most co-expression modules have strong phylogenetic signals, with broadly conserved genes and clade-specific genes predominating different substructures of the cell cycle co-expression network. We also found that conserved genes tend to determine the expression profile of their module. Conclusion We describe the first phylogenetic and single-nucleotide-resolution transcriptomic analysis of a bacterial cell cycle network. In addition, the study suggests how evolution has shaped this network and provides direct biological network support that selective pressure is not on individual genes but rather on the relationship between genes, which highlights the importance of integrating phylogenetic analysis into biological network studies. PMID:23829427

  19. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B? production by Aspergillus flavus under different environmental and nutritional regimes.

    PubMed

    Al-Saad, Labeed A; Al-Badran, Adnan I; Al-Jumayli, Sami A; Magan, Naresh; Rodrguez, Alicia

    2016-01-18

    The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1. PMID:26513252

  20. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies.

    PubMed

    Mala?ov, Ivana; Doka?, Ji?; Varga, Marian; Kuntov, Lucie; Muk, Jan; Malkov, Denisa; R?i?kov, Vladislava; Pant??ek, Roman

    2013-02-01

    Staphylococcus aureus is a serious human and veterinary pathogen in which new strains with increasing virulence and antimicrobial resistance occur due to acquiring new genes by horizontal transfer. It is generally accepted that temperate bacteriophages play a major role in gene transfer. In this study, we proved the presence of various bacterial genes of the S.?aureus COL strain directly within the phage particles via qPCR and quantified their packaging frequency. Non-parametric statistical analysis showed that transducing bacteriophages ?11, ?80 and ?80? of serogroup B, in contrast to serogroup A bacteriophage ?81, efficiently package selected chromosomal genes localized in 4 various loci of the chromosome and 8 genes carried on variable elements, such as staphylococcal cassette chromosome SCCmec, staphylococcal pathogenicity island SaPI1, genomic islands vSa? and vSa?, and plasmids with various frequency. Bacterial gene copy number per ng of DNA isolated from phage particles ranged between 1.05??10(2) for the tetK plasmid gene and 3.86??10(5) for the SaPI1 integrase gene. The new and crucial finding that serogroup B bacteriophages can package concurrently ccrA1 (1.16??10(4)) and mecA (1.26??10(4)) located at SCCmec type I into their capsids indicates that generalized transduction plays an important role in the evolution and emergence of new methicillin-resistant clones. PMID:23757132

  1. Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts.

    PubMed

    Rollat-Farnier, Pierre-Antoine; Santos-Garcia, Diego; Rao, Qiong; Sagot, Marie-France; Silva, Francisco J; Henri, Hlne; Zchori-Fein, Einat; Latorre, Amparo; Moya, Andrs; Barbe, Valrie; Liu, Shu-Sheng; Wang, Xiao-Wei; Vavre, Fabrice; Mouton, Laurence

    2015-03-01

    Bacterial endosymbiosis is an important evolutionary process in insects, which can harbor both obligate and facultative symbionts. The evolution of these symbionts is driven by evolutionary convergence, and they exhibit among the tiniest genomes in prokaryotes. The large host spectrum of facultative symbionts and the high diversity of strategies they use to infect new hosts probably impact the evolution of their genome and explain why they undergo less severe genomic erosion than obligate symbionts. Candidatus Hamiltonella defensa is suitable for the investigation of the genomic evolution of facultative symbionts because the bacteria are engaged in specific relationships in two clades of insects. In aphids, H. defensa is found in several species with an intermediate prevalence and confers protection against parasitoids. In whiteflies, H. defensa is almost fixed in some species of Bemisia tabaci, which suggests an important role of and a transition toward obligate symbiosis. In this study, comparisons of the genome of H. defensa present in two B. tabaci species (Middle East Asia Minor 1 and Mediterranean) and in the aphid Acyrthosiphon pisum revealed that they belong to two distinct clades and underwent specific gene losses. In aphids, it contains highly virulent factors that could allow protection and horizontal transfers. In whiteflies, the genome lost these factors and seems to have a limited ability to acquire genes. However it contains genes that could be involved in the production of essential nutrients, which is consistent with a primordial role for this symbiont. In conclusion, although both lineages of H. defensa have mutualistic interactions with their hosts, their genomes follow distinct evolutionary trajectories that reflect their phenotype and could have important consequences on their evolvability. PMID:25714744

  2. The Evolution of the Bacterial Luciferase Gene Cassette (lux) as a Real-Time Bioreporter

    PubMed Central

    Close, Dan; Xu, Tingting; Smartt, Abby; Rogers, Alexandra; Crossley, Robert; Price, Sarah; Ripp, Steven; Sayler, Gary

    2012-01-01

    The bacterial luciferase gene cassette (lux) is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted. PMID:22368493

  3. Finding immune gene expression differences induced by marine bacterial pathogens in the Deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    NASA Astrophysics Data System (ADS)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-11-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterised by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio bacteria. Flavobacterium suspensions were also used as a non-pathogenic bacterium. Gene expression analyses were carried out using gill samples from infected animals by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h to 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the bacterium inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly evident for proteins of 18-20 KDa molecular mass, where most dissimilarity was found. Multivariate analyses demonstrated that immune genes, as well as experimental infections, clustered in discrete groups in accordance with the gene expression patterns induced by bacterial pathogens.

  4. Finding immune gene expression differences induced by marine bacterial pathogens in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    NASA Astrophysics Data System (ADS)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-02-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterized by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio strains. Flavobacterium suspensions were also used as an irrelevant bacterium. Gene expression analyses were carried out using gill samples from animals dissected at 12 h and 24 h post-infection times by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h and 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the microorganism species inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly around a protein area, of 18 KDa molecular mass, where most dissimilarities were found. Multivariate analyses demonstrated that immune genes, as well as experimental infections, clustered in discrete groups in accordance with the patterns observed in gene expression changes induced by bacterial pathogens.

  5. New insight into the molecular control of bacterial functional amyloids

    PubMed Central

    Taylor, Jonathan D.; Matthews, Steve J.

    2015-01-01

    Amyloid protein structure has been discovered in a variety of functional or pathogenic contexts. What distinguishes the former from the latter is that functional amyloid systems possess dedicated molecular control systems that determine the timing, location, and structure of the fibers. Failure to guide this process can result in cytotoxicity, as observed in several pathologies like Alzheimer's and Parkinson's Disease. Many gram-negative bacteria produce an extracellular amyloid fiber known as curli via a multi-component secretion system. During this process, aggregation-prone, semi-folded curli subunits have to cross the periplasm and outer-membrane and self-assemble into surface-attached fibers. Two recent breakthroughs have provided molecular details regarding periplasmic chaperoning and subunit secretion. This review offers a combined perspective on these first mechanistic insights into the curli system. PMID:25905048

  6. Systematic 16S rRNA Gene Sequencing of Atypical Clinical Isolates Identified 27 New Bacterial Species Associated with Humans

    PubMed Central

    Drancourt, M.; Berger, P.; Raoult, D.

    2004-01-01

    Clinical microorganisms isolated during a 5-year study in our hospital that could not be identified by conventional criteria were studied by 16S rRNA gene sequence analysis. Each isolate yielded a ?1,400-bp sequence containing <5 ambiguities which was compared with the GenBank 16S rRNA gene library; 1,404 such isolates were tested, and 120 were considered unique (27 isolates) or rare (?10 cases reported in the literature) human pathogens. Eleven new species, Actinobaculum massiliae, Candidatus Actinobaculum timonae, Paenibacillus sanguinis, Candidatus Bacteroides massiliae, Chryseobacterium massiliae, Candidatus Chryseobacterium timonae, Paenibacillus massiliensis, Candidatus Peptostreptococcus massiliae, Candidatus Prevotella massiliensis, Rhodobacter massiliensis, and Candidatus Veillonella atypica were identified. Sixteen species were obtained from humans for the first time. Our results show the important role that 16S rRNA gene sequence-based bacterial identification currently plays in recognizing unusual and emerging bacterial diseases. PMID:15131188

  7. Transgenic control of perforin gene expression

    SciTech Connect

    Lichtenheld, M.G.; Podack, E.R.; Levy, R.B.

    1995-03-01

    Perforin is a pore-forming effector molecule of CTL and NK cells. To characterize perforin gene expression and its transcriptional control mechanisms in vivo, expression of a cell surface tag, i.e., human CD4, was driven by 5.1 kb of the murin perforin 5{prime} flanking and promoter region in transgenic mice. Six out of seven transgenic lines expressed the perforin-tag hybrid gene at low to intermediate levels, depending on the integration site. Transgene expression occurred in all cells that physiologically are able to express perforin. At the whole organ level, significant amounts of transgenic mRNA and endogenous perforin mRNA were co-expressed in the lymphoid organs, as well as in the lung, the ileum, the oviduct/uterus, and the bone marrow. At the single cell level, the perforin tag was present on NK cells and on CD8{sup +}, as well as on CD4{sup +} cells. Also targeted were Thy-1.2{sup +} {gamma}{delta} T cells, but not Thy-1.2{sup -} {gamma}{delta} T cells, B cells, nor monocytes. During thymic T cell development, transgene expression occurred in double negative (CD4{sup -}CD8{sup -}) thymocytes and was detected at all subsequent stages, but exceeded the expression levels of the endogenous gene in the thymus. In conclusion, the analyzed perforin 5{prime} flanking and promoter region contains important cis-acting sequences that restrict perforin expression to T cells and NK cells, and therefore provides a unique tool for manipulating T cell and/or Nk cell-mediated immune responses in transgenic mice. On the other hand, the normal control of perforin gene expression involves at least one additional negative control mechanism that was not mediated by the transgenic promoter and upstream region. This control restricts perforin gene expression in thymically developing T cells and in most resting peripheral T cells, but can be released upon T cell activation. 43 refs., 7 figs., 1 tab.

  8. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems. PMID:9841679

  9. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls.

    PubMed

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  10. Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    PubMed Central

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  11. Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1.

    PubMed

    Kakar, Kaleem Ullah; Nawaz, Zarqa; Cui, Z; Almoneafy, Abdlwareth A; Zhu, Bo; Xie, Guan-Lin

    2014-02-01

    Biological control efficacy of Brevibacillus laterosporus B4 associated with rice rhizosphere was assessed against bacterial brown stripe of rice caused by Acidovorex avenae subsp. avenae. A biochemical bactericide (chitosan) was used as positive control in this experiment. Result of in vitro analysis indicated that B. laterosporus B4 and its culture filtrates (70%; v/v) exhibited low inhibitory effects than chitosan (5 mg/ml). However, culture suspension of B. laterosporus B4 prepared in 1% saline solution presented significant ability to control bacterial brown stripe in vivo. Bacterization of rice seeds for 24 h yielded a greater response (71.9%) for controlling brown stripe in vivo than chitosan (56%). Studies on mechanisms revealed that B. laterosporus B4 suppressed the biofilm formation and severely disrupted cell membrane integrity of A. avenae subsp. avenae, causing the leakage of intracellular substances. In addition, the expression level of virulence-related genes in pathogen recovered from biocontrol-agent-treated plants showed that the genes responsible for biofilm formation, motility, niche adaptation, membrane functionality and virulence of A. avenae subsp. avenae were down-regulated by B. laterosporus B4 treatment. The biocontrol activity of B. laterosporus B4 was attributed to a substance with protein nature. This protein nature was shown by using ammonium sulfate precipitation and subsequent treatment with protease. The results obtained from this study showed the potential effectiveness of B. laterosporus B4 as biocontrol agent in control of bacterial brown stripe of rice. PMID:23990042

  12. Environmental controls on bacterial tetraether membrane lipid distribution in soils

    NASA Astrophysics Data System (ADS)

    Weijers, Johan W. H.; Schouten, Stefan; van den Donker, Jurgen C.; Hopmans, Ellen C.; Sinninghe Damsté, Jaap S.

    2007-02-01

    Over the last years a novel group of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids has been discovered in peat bogs and soils. They consist of components with 4-6 methyl groups attached to the n-alkyl chains and 0 to 2 cyclopentyl moieties in the alkyl chain. These branched membrane lipids are produced by an as yet unknown group of anaerobic soil bacteria. In this study we analysed the branched membrane lipid content of 134 soil samples from 90 globally distributed locations to study the environmental factors controlling the relative distribution of the different branched GDGT isomers. Our results show that the relative amount of cyclopentyl moieties, expressed in the cyclisation ratio of branched tetraethers (CBT), is primarily related to the pH of the soil ( R2 = 0.70) and not to temperature ( R2 = 0.03). The relative amount of methyl branches, expressed in the methylation index of branched tetraethers (MBT), is positively correlated with the annual mean air temperature (MAT) ( R2 = 0.62) and, to a lesser extent, negatively correlated with the pH of the soil ( R2 = 0.37). If both parameters are combined, however, it appears that the variation in the MBT is largely explained by both MAT and pH ( R2 = 0.82). These results suggest that the relative distribution of soil-derived GDGT membrane lipids can be used in palaeoenvironmental studies to estimate past annual MAT and soil pH.

  13. Spaceflight Alters Bacterial Gene Expression and Virulence and Reveals Role for Global Regulator Hfq

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Ott, C. M.; zuBentrup, K. Honer; Ramamurthy R.; Quick, L.; Porwollik, S.; Cheng, P.; McClellan, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumaras, P.; Norwood, K.; Nickerson, C. A.; Bober, R.; Devich, J.; Ruggles, A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.

  14. Decision tools for bacterial blight resistance gene deployment in rice-based agricultural ecosystems

    PubMed Central

    Dossa, Gerbert S.; Sparks, Adam; Cruz, Casiana Vera; Oliva, Ricardo

    2015-01-01

    Attempting to achieve long-lasting and stable resistance using uniformly deployed rice varieties is not a sustainable approach. The real situation appears to be much more complex and dynamic, one in which pathogens quickly adapt to resistant varieties. To prevent disease epidemics, deployment should be customized and this decision will require interdisciplinary actions. This perspective article aims to highlight the current progress on disease resistance deployment to control bacterial blight in rice. Although the model system rice-Xanthomonas oryzae pv. oryzae has distinctive features that underpin the need for a case-by-case analysis, strategies to integrate those elements into a unique decision tool could be easily extended to other crops. PMID:25999970

  15. Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila.

    PubMed Central

    Laue, B E; Nelson, D C

    1994-01-01

    ATP sulfurylase is a key enzyme in the energy-generating sulfur oxidation pathways of many chemoautotrophic bacteria. The utilization of reduced sulfur compounds to fuel CO2 fixation by the still-uncultured bacterial endosymbionts provides the basis of nutrition in invertebrates, such as the tubeworm Riftia pachyptila, found at deep-sea hydrothermal vents. The symbiont-containing trophosome tissue contains high levels of ATP sulfurylase activity, facilitating the recent purification of the enzyme. The gene encoding the ATP sulfurylase from the Riftia symbiont (sopT) has now been cloned and sequenced by using the partial amino acid sequence of the purified protein. Characterization of the sopT gene has unequivocally shown its bacterial origin. This is the first ATP sulfurylase gene to be cloned and sequenced from a sulfur-oxidizing bacterium. The deduced amino acid sequence was compared to those of ATP sulfurylases reported from organisms which assimilate sulfate, resulting in the discovery that there is substantial homology with the Saccharomyces cerevisiae MET3 gene product but none with the products of the cysDN genes from Escherichia coli nor with the nodP and nodQ genes from Rhizobium meliloti. This and emerging evidence from other sources suggests that E. coli may be atypical, even among prokaryotic sulfate assimilators, in the enzyme it employs for adenosine 5'-phosphosulfate formation. The sopT gene probe also was shown to specifically identify chemoautotrophic bacteria which utilize ATP sulfurylase to oxidize sulfur compounds. Images PMID:8206850

  16. Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression.

    PubMed

    Rennoll-Bankert, Kristen E; Garcia-Garcia, Jose C; Sinclair, Sara H; Dumler, J Stephen

    2015-11-01

    Control of host epigenetics is becoming evident as a mechanism by which symbionts and pathogens survive. Anaplasma phagocytophilum, an obligate intracellular bacterium, down-regulates multiple host defence genes where histone deacetylase 1 (HDAC1) binds and histone 3 is deacetylated at their promoters, including the NADPH oxidase component, CYBB. How HDAC1 is targeted to defence gene promoters is unknown. Ankyrin A (AnkA), an A.?phagocytophilum type IV secretion system effector, enters the granulocyte nucleus, binds stretches of AT-rich DNA and alters transcription of antimicrobial defence genes, including down-regulation of CYBB. Here we found AnkA binds to a predicted matrix attachment region in the proximal CYBB promoter. Using the CYBB promoter as a model of cis-gene silencing, we interrogated the mechanism of AnkA-mediated CYBB repression. The N-terminus of AnkA was critical for nuclear localization, the central ANK repeats and C-terminus were important for DNA binding, and most promoter activity localized to the central ANK repeats. Furthermore, a direct interaction between AnkA and HDAC1 was detected at the CYBB promoter, and was critical for AnkA-mediated CYBB repression. This novel microbial manipulation of host chromatin and gene expression provides important evidence of the direct effects that prokaryotic nuclear effectors can exert over host transcription and function. PMID:25996657

  17. Bacterial-type ferredoxin genes in the nitrogen fixation regions of the cyanobacterium Anabaena sp. strain PCC 7120 and Rhizobium meliloti.

    PubMed Central

    Mulligan, M E; Buikema, W J; Haselkorn, R

    1988-01-01

    The nucleotide sequence of a region located downstream of the nifB gene, both in the cyanobacterium Anabaena sp. strain PCC 7120 and in Rhizobium meliloti, has been determined. This region contains a gene (fdxN) whose predicted polypeptide product strongly resembles typical bacterial ferredoxins. Cyanobacteria have not previously been shown to contain bacterial-type ferredoxins. The presence of this gene suggests that nitrogen-fixing cyanobacteria have at least four distinct ferredoxins. Images PMID:2842320

  18. Bacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis

    PubMed Central

    Heath-Heckman, Elizabeth A. C.; Peyer, Suzanne M.; Whistler, Cheryl A.; Apicella, Michael A.; Goldman, William E.; McFall-Ngai, Margaret J.

    2013-01-01

    ABSTRACT The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut. PMID:23549919

  19. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.

    PubMed

    Mao, Junwen; Lu, Ting

    2016-01-01

    Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general. PMID:26745428

  20. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide.

    PubMed Central

    Kurosaki, M; Li Calzi, M; Scanziani, E; Garattini, E; Terao, M

    1995-01-01

    The expression of the xanthine oxidoreductase gene was studied in various mouse organs and tissues, under basal conditions and on treatment with bacterial lipopolysaccharide. Levels of xanthine oxidoreductase protein and mRNA were compared in order to understand the molecular mechanisms regulating the expression of this enzyme system. The highest amounts of xanthine oxidoreductase and the respective mRNA are observed in the duodenum and jejunum, where the protein is present in an unusual form because of a specific proteolytic cleavage of the primary translation product present in all locations. Under basal conditions, multiple tissue-specific mechanisms of xanthine oxidoreductase regulation are evident. Lipopolysaccharide increases enzyme activity in some, but not all tissues, mainly via modulation of the respective transcript, although translational and post-translational mechanisms are also active. In situ hybridization studies on tissue sections obtained from mice under control conditions or with lipopolysaccharide treatment demonstrate that xanthine oxidoreductase is present in hepatocytes, predominantly in the proximal tubules of the kidney, epithelial layer of the gastrointestinal mucosa, the alveolar compartment of the lung, the pulpar region of the spleen and the vascular component of the heart. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:7864814

  1. 16S rRNA gene-based metagenomic analysis identifies a novel bacterial co-prevalence pattern in dental caries

    PubMed Central

    Jagathrakshakan, Sri Nisha; Sethumadhava, Raghavendra Jayesh; Mehta, Dhaval Tushar; Ramanathan, Arvind

    2015-01-01

    Objective: To identify the prevalence of acidogenic and nonacidogenic bacteria in patients with polycaries lesions, and to ascertain caries specific bacterial prevalence in relation to noncaries controls. Materials and Methods: Total genomic DNA extracted from saliva of three adults and four children from the same family were subjected to 16S rRNA gene sequencing analysis on a next generation sequencer, the PGS-Ion Torrent. Those bacterial genera with read counts > 1000 were considered as significant in each of the subject and used to associate the occurrence with caries. Results and Conclusion: Sequencing analysis indicated a higher prevalence of Streptococcus, Rothia, Granulicatella, Gemella, Actinomyces, Selenomonas, Haemophilus and Veillonella in the caries group relative to controls. While higher prevalence of Streptococcus, Rothia and Granulicatella were observed in all caries samples, the prevalence of others was observable in 2957% of samples. Interestingly, Rothia and Selenomonas, which are known to occur within anaerobic environments of dentinal caries and subgingival plaque biofilms, were seen in the saliva of these caries patients. Taken together, the study has identified for the first time a unique co-prevalence pattern of bacteria in caries patients that may be explored as distinct caries specific bacterial signature to predict cariogenesis in high-risk primary and mixed dentition age groups. PMID:25713496

  2. Photocaged Arabinose: A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression.

    PubMed

    Binder, Dennis; Bier, Claus; Grnberger, Alexander; Drobietz, Dagmar; Hage-Hlsmann, Jennifer; Wandrey, Georg; Bchs, Jochen; Kohlheyer, Dietrich; Loeschcke, Anita; Wiechert, Wolfgang; Jaeger, Karl-Erich; Pietruszka, Jrg; Drepper, Thomas

    2016-02-01

    Controlling cellular functions by light allows simple triggering of biological processes in a non-invasive fashion with high spatiotemporal resolution. In this context, light-regulated gene expression has enormous potential for achieving optogenetic control over almost any cellular process. Here, we report on two novel one-step cleavable photocaged arabinose compounds, which were applied as light-sensitive inducers of transcription in bacteria. Exposure of caged arabinose to UV-A light resulted in rapid activation of protein production, as demonstrated for GFP and the complete violacein biosynthetic pathway. Moreover, single-cell analysis revealed that intrinsic heterogeneity of arabinose-mediated induction of gene expression was overcome when using photocaged arabinose. We have thus established a novel phototrigger for synthetic bio(techno)logy applications that enables precise and homogeneous control of bacterial target gene expression. PMID:26677142

  3. Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters

    PubMed Central

    Devarajan, Naresh; Laffite, Amandine; Mulaji, Crispin Kyela; Otamonga, Jean-Paul; Mpiana, Pius Tshimankinda; Mubedi, Josué Ilunga; Prabakar, Kandasamy; Ibelings, Bastiaan Willem; Poté, John

    2016-01-01

    The occurrence of emerging biological contaminants including antibiotic resistance genes (ARGs) and Faecal Indicator Bacteria (FIB) is still little investigated in developing countries under tropical conditions. In this study, the total bacterial load, the abundance of FIB (E. coli and Enterococcus spp. (ENT)), Pseudomonas spp. and ARGs (blaTEM, blaCTX-M, blaSHV, blaNDM and aadA) were quantified using quantitative PCR in the total DNA extracted from the sediments recovered from hospital outlet pipes (HOP) and the Cauvery River Basin (CRB), Tiruchirappalli, Tamil Nadu, India. The abundance of bacterial marker genes were 120, 104 and 89 fold higher for the E. coli, Enterococcus spp. and Pseudomonas spp., respectively at HOP when compared with CRB. The ARGs aadA and blaTEM were most frequently detected in higher concentration than other ARGs at all the sampling sites. The ARGs blaSHV and blaNDM were identified in CRB sediments contaminated by hospital and urban wastewaters. The ARGs abundance strongly correlated (r ≥ 0.36, p < 0.05, n = 45) with total bacterial load and E. coli in the sediments, indicating a common origin and extant source of contamination. Tropical aquatic ecosystems receiving wastewaters can act as reservoir of ARGs, which could potentially be transferred to susceptible bacterial pathogens at these sites. PMID:26910062

  4. Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Mulaji, Crispin Kyela; Otamonga, Jean-Paul; Mpiana, Pius Tshimankinda; Mubedi, Josu Ilunga; Prabakar, Kandasamy; Ibelings, Bastiaan Willem; Pot, John

    2016-01-01

    The occurrence of emerging biological contaminants including antibiotic resistance genes (ARGs) and Faecal Indicator Bacteria (FIB) is still little investigated in developing countries under tropical conditions. In this study, the total bacterial load, the abundance of FIB (E. coli and Enterococcus spp. (ENT)), Pseudomonas spp. and ARGs (blaTEM, blaCTX-M, blaSHV, blaNDM and aadA) were quantified using quantitative PCR in the total DNA extracted from the sediments recovered from hospital outlet pipes (HOP) and the Cauvery River Basin (CRB), Tiruchirappalli, Tamil Nadu, India. The abundance of bacterial marker genes were 120, 104 and 89 fold higher for the E. coli, Enterococcus spp. and Pseudomonas spp., respectively at HOP when compared with CRB. The ARGs aadA and blaTEM were most frequently detected in higher concentration than other ARGs at all the sampling sites. The ARGs blaSHV and blaNDM were identified in CRB sediments contaminated by hospital and urban wastewaters. The ARGs abundance strongly correlated (r ? 0.36, p < 0.05, n = 45) with total bacterial load and E. coli in the sediments, indicating a common origin and extant source of contamination. Tropical aquatic ecosystems receiving wastewaters can act as reservoir of ARGs, which could potentially be transferred to susceptible bacterial pathogens at these sites. PMID:26910062

  5. A Molecular-Level Landscape of Diet-Gut Microbiome Interactions: Toward Dietary Interventions Targeting Bacterial Genes

    PubMed Central

    Ni, Yueqiong; Li, Jun

    2015-01-01

    ABSTRACT As diet is considered the major regulator of the gut ecosystem, the overall objective of this work was to demonstrate that a detailed knowledge of the phytochemical composition of food could add to our understanding of observed changes in functionality and activity of the gut microbiota. We used metatranscriptomic data from a human dietary intervention study to develop a network that consists of >400 compounds present in the administered plant-based diet linked to 609 microbial targets in the gut. Approximately 20% of the targeted bacterial proteins showed significant changes in their gene expression levels, while functional and topology analyses revealed that proteins in metabolic networks with high centrality are the most “vulnerable” targets. This global view and the mechanistic understanding of the associations between microbial gene expression and dietary molecules could be regarded as a promising methodological approach for targeting specific bacterial proteins that impact human health. PMID:26507230

  6. Lies and deception in bacterial gene regulation: the roles of nucleic acid decoys.

    PubMed

    Göpel, Yvonne; Görke, Boris

    2014-05-01

    Bacteria use intricately interconnected mechanisms acting at the transcriptional and post-transcriptional level to adjust gene expression to their needs. An intriguing example found in the chitosugar utilization systems of Escherichia coli and Salmonella is uncovered in a study by Plumbridge and colleagues. Three transcription factors (TFs), a small regulatory RNA (sRNA) and a sRNA trap cooperate to set thresholds and dynamics in regulation of chitosugar utilization. Specifically, under inducing conditions a decoy site on the polycistronic chitobiose (chbBCARFG) mRNA sequesters sRNA ChiX, which represses synthesis of the separately encoded chitoporin ChiP. Base-pairing of ChiX with its decoy has no role for the chb genes themselves when the mRNA is in excess. In the absence of substrate, however, this base-pairing tightly represses chbC encoding a subunit of the chitosugar transporter. Thus, one and the same sRNA/mRNA interaction serves different regulatory functions under different environmental conditions. The employment of RNA decoys to control the activities of post-transcriptional regulators themselves is an increasingly recognized mechanism in gene regulation. Another observation in the current study highlights the possibility that decoy sites might even exist on the DNA controlling the availability of TFs for their target promoters. PMID:24707963

  7. Controlling bacterial behavior with indole-containing natural products and derivatives

    PubMed Central

    Melander, Roberta J.; Minvielle, Marine J.; Melander, Christian

    2014-01-01

    Indole has recently been implicated as an important small molecule signal utilized by many bacteria to coordinate various forms of behavior. Indole plays a role in numerous bacterial processes, including: biofilm formation and maintenance, virulence factor production, antibiotic resistance and persister cell formation. Intercepting indole-signaling pathways with appropriately designed small molecules provides a n opportunity to control unwanted bacterial behaviors, and is an attractive anti-virulence therapeutic strategy. In this review, we give an overview of the process controlled by indole signaling, and summarize current efforts to design indole-containing small molecules to intercept these pathways, and detail the synthetic efforts towards accessing indole derived bioactive small molecules. PMID:25267859

  8. Microbial Control of the Culture of Artemia Juveniles through Preemptive Colonization by Selected Bacterial Strains

    PubMed Central

    Verschuere, Laurent; Rombaut, Geert; Huys, Geert; Dhont, Jean; Sorgeloos, Patrick; Verstraete, Willy

    1999-01-01

    The use of juvenile Artemia as feed in aquaculture and in the pet shop industry has been getting more attention during the last decade. In this study, the use of selected bacterial strains to improve the nutritional value of dry food for Artemia juveniles and to obtain control of the associated microbial community was examined. Nine bacterial strains were selected based on their positive effects on survival and/or growth of Artemia juveniles under monoxenic culture conditions, while other strains caused no significant effect, significantly lower rates of survival and/or growth, or even total mortality of the Artemia. The nine selected strains were used to preemptively colonize the culture water of Artemia juveniles. Xenic culture of Artemia under suboptimal conditions yielded better survival and/or growth rates when they were grown in the preemptively colonized culture medium than when grown in autoclaved seawater. The preemptive colonization of the culture water had a drastic influence on the microbial communities that developed in the culture water or that were associated with the Artemia, as determined with Biolog GN community-level physiological profiles. Chemotaxonomical characterization based on fatty acid methyl ester analysis of bacterial isolates recovered from the culture tanks was performed, and a comparison with the initially introduced strains was made. Finally, several modes of action for the beneficial effect of the bacterial strains are proposed. PMID:10347038

  9. Genome-Wide Identification of Hsp40 Genes in Channel Catfish and Their Regulated Expression after Bacterial Infection

    PubMed Central

    Li, Chao; Yao, Jun; Jiang, Chen; Li, Yun; Liu, Shikai; Liu, Zhanjiang

    2014-01-01

    Heat shock proteins (HSPs) consist of a large group of chaperones whose expression is induced by high temperature, hypoxia, infection and a number of other stresses. Among all the HSPs, Hsp40 is the largest HSP family, which bind to Hsp70 ATPase domain in assisting protein folding. In this study, we identified 57 hsp40s in channel catfish (Ictalurus punctatus) through in silico analysis using RNA-Seq and genome databases. These genes can be classified into three different types, Type I, II and III, based on their structural similarities. Phylogenetic and syntenic analyses provided strong evidence in supporting the orthologies of these HSPs. Meta-analyses of RNA-Seq datasets were conducted to analyze expression profile of Hsp40s following bacterial infection. Twenty seven hsp40s were found to be significantly up- or down-regulated in the liver after infection with E. ictaluri; 19 hsp40s were found to be significantly regulated in the intestine after infection with E. ictaluri; and 19 hsp40s were found to be significantly regulated in the gill following infection with F. columnare. Altogether, a total of 42 Hsp40 genes were regulated under disease situations involving three tissues and two bacterial infections. The significant regulated expression of Hsp40 genes after bacterial infection suggested their involvement in disease defenses in catfish. PMID:25542027

  10. The effects of pneumoperitoneum and controlled ventilation on peritoneal lymphatic bacterial clearance: experimental results in rats

    PubMed Central

    Casaroli, Armando Angelo; Mimica, Lycia M. J.; Fontes, Belchor; Rasslan, Samir

    2011-01-01

    OBJECTIVE: To evaluate the effect of pneumoperitoneum, both alone and in combination with controlled ventilation, on peritoneal lymphatic bacterial clearance using a rat bacterial peritonitis model. METHOD: A total of 69 male Wistar rats were intraperitoneally inoculated with an Escherichia coli solution (109 colony-forming units (cfu)/mL) and divided into three groups of 23 animals each: A (control group), B (pneumoperitoneum under 5 mmHg of constant pressure), and C (endotracheal intubation, controlled ventilation, and pneumoperitoneum as in Group B). The animals were sacrificed after 30 min under these conditions, and blood, mediastinal ganglia, lungs, peritoneum, liver, and spleen cultures were performed. RESULTS: Statistical analyses comparing the number of cfu/sample in each of the cultures showed that no differences existed between the three groups. CONCLUSION: Based on our results, we concluded that pneumoperitoneum, either alone or in association with mechanical ventilation, did not modify the bacterial clearance through the diaphragmatic lymphatic system of the peritoneal cavity. PMID:22179170

  11. Quantification of yeast and bacterial gene transcripts in retail cheeses by reverse transcription-quantitative PCR.

    PubMed

    Monnet, Christophe; Straub, Ccile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Franoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed. PMID:23124230

  12. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale

    PubMed Central

    Van Horn, David J.; Van Horn, M. Lee; Barrett, John E.; Gooseff, Michael N.; Altrichter, Adam E.; Geyer, Kevin M.; Zeglin, Lydia H.; Takacs-Vesbach, Cristina D.

    2013-01-01

    Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when determining the controls on soil microbial community characteristics. PMID:23824063

  13. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists

    PubMed Central

    Chow, Cheryl-Emiliane T; Kim, Diane Y; Sachdeva, Rohan; Caron, David A; Fuhrman, Jed A

    2014-01-01

    Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0–5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus–bacteria relationships were more cross-linked than protist–bacteria relationships, suggestive of increased taxonomic specificity in virus–bacteria relationships. We also found that 80% of bacterial–protist and 74% of bacterial–viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance. PMID:24196323

  14. The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and intragenomic conflict

    PubMed Central

    Rankin, Daniel J.; Turner, Leighton A.; Heinemann, Jack A.; Brown, Sam P.

    2012-01-01

    Bacterial genomes commonly contain addiction gene complexes that code for both a toxin and a corresponding antitoxin. As long as both genes are expressed, cells carrying the complex can remain healthy. However, loss of the complex (including segregational loss in daughter cells) can entail death of the cell. We develop a theoretical model to explore a number of evolutionary puzzles posed by toxinantitoxin (TA) population biology. We first extend earlier results demonstrating that TA complexes can spread on plasmids, as an adaptation to plasmid competition in spatially structured environments, and highlight the role of kin selection. We then considered the emergence of TA complexes on plasmids from previously unlinked toxin and antitoxin genes. We find that one of these traits must offer at least initially a direct advantage in some but not all environments encountered by the evolving plasmid population. Finally, our study predicts non-transitive rock-paper-scissors dynamics to be a feature of intragenomic conflict mediated by TA complexes. Intragenomic conflict could be sufficient to select deleterious genes on chromosomes and helps to explain the previously perplexing observation that many TA genes are found on bacterial chromosomes. PMID:22787022

  15. Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection.

    PubMed

    Song, Lin; Li, Chao; Xie, Yangjie; Liu, Shikai; Zhang, Jiaren; Yao, Jun; Jiang, Chen; Li, Yun; Liu, Zhanjiang

    2016-02-01

    Heat shock proteins 70/110 (Hsp70/110) are a family of conserved ubiquitously expressed heat shock proteins which are produced by cells in response to exposure to stressful conditions. Besides the chaperone and housekeeping functions, they are also known to be involved in immune response during infection. In this study, we identified 16 Hsp70/110 geness in channel catfish (Ictalurus punctatus) through in silico analysis using RNA-Seq and genome databases. Among them 12 members of Hsp70 (Hspa) family and 4 members of Hsp110 (Hsph) family were identified. Phylogenetic and syntenic analyses provided strong evidence in supporting the orthologies of these HSPs. In addition, we also determined the expression patterns of Hsp70/110 genes after Flavobacterium columnare and Edwardsiella ictaluri infections by meta-analyses, for the first time in channel catfish. Ten out of sixteen genes were significantly up/down-regulated after bacterial challenges. Specifically, nine genes were found significantly expressed in gill after F.columnare infection. Two genes were found significantly expressed in intestine after E.ictaluri infection. Pathogen-specific pattern and tissue-specific pattern were found in the two infections. The significantly regulated expressions of catfish Hsp70 genes after bacterial infections suggested their involvement in immune response in catfish. PMID:26693666

  16. Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been ob...

  17. Structure of Inserted Bacteriophage Mu-1 DNA and Physical Mapping of Bacterial Genes by Mu-1 DNA Insertion

    PubMed Central

    Hsu, Ming-Ta; Davidson, Norman

    1972-01-01

    It is shown, by electron microscope observation of the structures of heteroduplexes, that Mu-1 DNA inserted into the bacterial episomes Flac and F8[1] is collinear with, rather than a circulation permutation of, the DNA of the mature Mu-1 bacteriophage. Observation of the position of the inserted Mu defines a point within the gene that has been inactivated (the lacI gene for Flac and a transfer gene in F8[1] in these particular instances). These examples illustrate a new, general method for physical gene mapping. The episome with Mu DNA inserted into F8[1] [i.e., F8[1](Mu)], although derived from a single colony, is heterogeneous in that a self-renatured sample shows a nonhomology loop of length 3.0 kb. This nonhomology loop, which has previously been observed in mature Mu-1 DNA, is due to an inversion. Images PMID:4562742

  18. Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library.

    PubMed

    Jacquiod, Samuel; Demanche, Sandrine; Franqueville, Laure; Ausec, Luka; Xu, Zhuofei; Delmont, Tom O; Dunon, Vincent; Cagnon, Christine; Mandic-Mulec, Ines; Vogel, Timothy M; Simonet, Pascal

    2014-11-20

    A mix of oligonucleotide probes was used to hybridize soil metagenomic DNA from a fosmid clone library spotted on high density membranes. The pooled radio-labeled probes were designed to target genes encoding glycoside hydrolases GH18, dehalogenases, bacterial laccases and mobile genetic elements (integrases from integrons and insertion sequences). Positive hybridizing spots were affiliated to the corresponding clones in the library and the metagenomic inserts were sequenced. After assembly and annotation, new coding DNA sequences related to genes of interest were identified with low protein similarity against the closest hits in databases. This work highlights the sensitivity of DNA/DNA hybridization techniques as an effective and complementary way to recover novel genes from large metagenomic clone libraries. This study also supports that some of the identified catabolic genes might be associated with horizontal transfer events. PMID:24721211

  19. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues

    PubMed Central

    Peyer, Suzanne M.; Pankey, M. Sabrina; Oakley, Todd H.; McFall-Ngai, Margaret J.

    2014-01-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or light organ, which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ~1/4 into embryogenesis (Naef stage 18) and the light organ ~3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light-sensing photophore. PMID:24157521

  20. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues.

    PubMed

    Peyer, Suzanne M; Pankey, M Sabrina; Oakley, Todd H; McFall-Ngai, Margaret J

    2014-02-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or 'light organ', which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ∼1/4 into embryogenesis (Naef stage 18) and the light organ ∼3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light-sensing photophore. PMID:24157521

  1. In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water.

    PubMed

    Miller, Sarah M; Tourlousse, Dieter M; Stedtfeld, Robert D; Baushke, Samuel W; Herzog, Amanda B; Wick, Lukas M; Rouillard, Jean Marie; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A

    2008-04-01

    Pathogen detection tools with high reliability are needed for various applications, including food and water safety and clinical diagnostics. In this study, we designed and validated an in situ-synthesized biochip for detection of 12 microbial pathogens, including a suite of pathogens relevant to water safety. To enhance the reliability of presence/absence calls, probes were designed for multiple virulence and marker genes (VMGs) of each pathogen, and each VMG was targeted by an average of 17 probes. Hybridization of the biochip with amplicon mixtures demonstrated that 95% of the initially designed probes behaved as predicted in terms of positive/negative signals. The probes were further validated using DNA obtained from three different types of water samples and spiked with pathogen genomic DNA at decreasing relative abundance. Excellent specificity for making presence/absence calls was observed by using a cutoff of 0.5 for the positive fraction (i.e., the fraction of probes yielding a positive signal for a given VMG). A split multiplex PCR design for simultaneous amplification of the VMGs resulted in a detection limit of between 0.1 and 0.01% relative abundance, depending on the type of pathogen and the VMG. Thermodynamic analysis of the hybridization patterns obtained with DNA from the different water samples demonstrated that probes with a hybridization Gibbs free energy of approximately -19.3 kcal/mol provided the best trade-off between sensitivity and specificity. The developed biochip may be used to detect the described bacterial pathogens in water samples when parallel and specific detection is required. PMID:18245235

  2. INFLUENCE OF ROOT EXUDATES AND BACTERIAL METABOLIC ACTIVITY ON APPARENT CONJUGAL GENE TRANSFER FREQUENCIES IN THE RHIZOSPHERE OF WATER GRASS (ECHINOCLORA CRUSGALLI)

    EPA Science Inventory

    The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...

  3. Designer gene networks: Towards fundamental cellular control

    NASA Astrophysics Data System (ADS)

    Hasty, Jeff; Isaacs, Farren; Dolnik, Milos; McMillen, David; Collins, J. J.

    2001-03-01

    The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics. We first review the relevant work on synthetic gene networks, highlighting the important experimental findings with regard to genetic switches and oscillators. We then present the derivation of a deterministic model describing the temporal evolution of the concentration of protein in a single-gene network. Bistability in the steady-state protein concentration arises naturally as a consequence of autoregulatory feedback, and we focus on the hysteretic properties of the protein concentration as a function of the degradation rate. We then formulate the effect of an external noise source which interacts with the protein degradation rate. We demonstrate the utility of such a formulation by constructing a protein switch, whereby external noise pulses are used to switch the protein concentration between two values. Following the lead of earlier work, we show how the addition of a second network component can be used to construct a relaxation oscillator, whereby the system is driven around the hysteresis loop. We highlight the frequency dependence on the tunable parameter values, and discuss design plausibility. We emphasize how the model equations can be used to develop design criteria for robust oscillations, and illustrate this point with parameter plots illuminating the oscillatory regions for given parameter values. We then turn to the utilization of an intrinsic cellular process as a means of controlling the oscillations. We consider a network design which exhibits self-sustained oscillations, and discuss the driving of the oscillator in the context of synchronization. Then, as a second design, we consider a synthetic network with parameter values near, but outside, the oscillatory boundary. In this case, we show how resonance can lead to the induction of oscillations and amplification of a cellular signal. Finally, we construct a toggle switch from positive regulatory elements, and compare the switching properties for this network with those of a network constructed using negative regulation. Our results demonstrate the utility of model analysis in the construction of synthetic gene regulatory networks.

  4. Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA

    PubMed Central

    Brosig, Anton; Kuhrt, Heidrun; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2015-01-01

    Purpose The pathogenesis of age-related macular degeneration (AMD) is associated with systemic and local inflammation. Various studies suggested that viral or bacterial infection may aggravate retinal inflammation in the aged retina. We compared the effects of synthetic viral RNA (poly(I:C)) and viral/bacterial DNA (CpG-ODN) on the expression of genes known to be involved in the development of AMD in retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells were stimulated with poly(I:C; 500 g/ml) or CpG-ODN (500 nM). Alterations in gene expression and protein secretion were determined with real-time RTPCR and ELISA, respectively. Phosphorylation of signal transduction molecules was revealed by western blotting. Results Poly(I:C) induced gene expression of the pattern recognition receptor TLR3, transcription factors (HIF-1?, p65/NF-?B), the angiogenic factor bFGF, inflammatory factors (IL-1?, IL-6, TNF?, MCP-1, MIP-2), and complement factors (C5, C9, CFB). Poly(I:C) also induced phosphorylation of ERK1/2 and p38 MAPK proteins, and the secretion of bFGF and TNF? from the cells. CpG-ODN induced moderate gene expression of transcription factors (p65/NF-?B, NFAT5) and complement factors (C5, C9), while it had no effect on the expression of various TLR, angiogenic factor, and inflammatory factor genes. The activities of various signal transduction pathways and transcription factors were differentially involved in mediating the poly(I:C)-induced transcriptional activation of distinct genes. Conclusions The widespread effects of viral RNA, and the restricted effects of viral/bacterial DNA, on the gene expression pattern of RPE cells may suggest that viral RNA rather than viral/bacterial DNA induces physiologic alterations of RPE cells, which may aggravate inflammation in the aged retina. The data also suggest that selective inhibition of distinct signal transduction pathways or individual transcription factors may not be effective to inhibit viral retinal inflammation. PMID:26330750

  5. Regulated bioluminescence as a tool for bioremediation process monitoring and control of bacterial cultures

    NASA Technical Reports Server (NTRS)

    Burlage, Robert S.; Heitzer, Armin; Digrazia, Philip M.

    1991-01-01

    An effective on-line monitoring technique for toxic waste bioremediation using bioluminescent microorganisms has shown great potential for the description and optimization of biological processes. The lux genes of the bacterium Vibrio fischeri are used by this species to produce visible light. The lux genes can be genetically fused to the control region of a catabolic gene, with the result that bioluminescence is produced whenever the catabolic gene is induced. Thus the detection of light from a sample indicates that genetic expression from a specific gene is occurring. This technique was used to monitor biodegradation of specific contaminants from waste sites. For these studies, fusions between the lux genes and the operons for naphthalene and toluene/xylene degradation were constructed. Strains carrying one of these fusions respond sensitively and specifically to target substrates. Bioluminescence from these cultures can be rapidly measured in a nondestructive and noninvasive manner. The potential for this technique in this and other biological systems is discussed.

  6. Copy Number Variation of the Beta Defensin Gene Cluster on Chromosome 8p Influences the Bacterial Microbiota within the Nasopharynx of Otitis-Prone Children

    PubMed Central

    Bevins, Charles L.; Hollox, Edward J.; Bakaletz, Lauren O.

    2014-01-01

    As there is increasing evidence that aberrant defensin expression is related to susceptibility for infectious disease and inflammatory disorders, we sought to determine if copy number of the beta-defensin gene cluster located on chromosome 8p23.1 (DEFB107, 106, 105, 104, 103, DEFB4 and SPAG11), that shows copy number variation as a block, was associated with susceptibility to otitis media (OM). The gene DEFB103 within this complex encodes human beta defensin-3 (hBD-3), an antimicrobial peptide (AP) expressed by epithelial cells that line the mammalian airway, important for defense of mucosal surfaces and previously shown to have bactericidal activity in vitro against multiple human pathogens, including the three that predominate in OM. To this end, we conducted a retrospective case-control study of 113 OM prone children and 267 controls aged five to sixty months. We identified the copy number of the above defined beta-defensin gene cluster (DEFB-CN) in each study subject by paralogue ratio assays. The mean DEFB-CN was indistinguishable between subjects classified as OM prone based on a recent history of multiple episodes of OM and control subjects who had no history of OM (4.4±0.96 versus 4.4±1.08, respectively: Odds Ratio [OR]: 1.16 (95% CI: 0.61, 2.20). Despite a lack of direct association, we observed a statistically significant correlation between DEFB-CN and nasopharyngeal bacterial colonization patterns. Collectively, our findings suggested that susceptibility to OM might be mediated by genetic variation among individuals, wherein a DEFB-CN less than 4 exerts a marked influence on the microbiota of the nasopharynx, specifically with regard to colonization by the three predominant bacterial pathogens of OM. PMID:24867293

  7. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces

    PubMed Central

    Wang, Liyun; Fan, Daming; Chen, Wei; Terentjev, Eugene M.

    2015-01-01

    In medicine and food industry, bacterial colonisation on surfaces is a common cause of infections and severe illnesses. However, the detailed quantitative information about the dynamics and the mechanisms involved in bacterial proliferation on solid substrates is still lacking. In this study we investigated the adhesion and detachment, the individual growth and colonisation, and the cell size control of Escherichia coli (E. coli) MG1655 on polyethylene terephthalate (PET) surfaces. The results show that the bacterial growth curve on PET exhibits the distinct lag and log phases, but the generation time is more than twice longer than in bulk medium. Single cells in the lag phase are more likely to detach than clustered ones in the log phase; clustered bacteria in micro-colonies have stronger adhesive bonds with surfaces and their neighbours with the progressing colonisation. We show that the cell size is under the density-dependent pathway control: when the adherent cells are at low density, the culture medium is responsible for coordinating cell division and cell size; when the clustered cells are at high population density, we demonstrate that the effect of quorum sensing causes the cell size decrease as the cell density on surfaces increases. PMID:26464114

  8. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces.

    PubMed

    Wang, Liyun; Fan, Daming; Chen, Wei; Terentjev, Eugene M

    2015-01-01

    In medicine and food industry, bacterial colonisation on surfaces is a common cause of infections and severe illnesses. However, the detailed quantitative information about the dynamics and the mechanisms involved in bacterial proliferation on solid substrates is still lacking. In this study we investigated the adhesion and detachment, the individual growth and colonisation, and the cell size control of Escherichia coli (E. coli) MG1655 on polyethylene terephthalate (PET) surfaces. The results show that the bacterial growth curve on PET exhibits the distinct lag and log phases, but the generation time is more than twice longer than in bulk medium. Single cells in the lag phase are more likely to detach than clustered ones in the log phase; clustered bacteria in micro-colonies have stronger adhesive bonds with surfaces and their neighbours with the progressing colonisation. We show that the cell size is under the density-dependent pathway control: when the adherent cells are at low density, the culture medium is responsible for coordinating cell division and cell size; when the clustered cells are at high population density, we demonstrate that the effect of quorum sensing causes the cell size decrease as the cell density on surfaces increases. PMID:26464114

  9. Controlled release evaluation of bacterial fertilizer using polymer composites as matrix.

    PubMed

    Wu, Chin-San

    2008-11-24

    The use of polybutylene succinate (PBSU)/starch-type composite as biodegradable matrix material for the controlled release of bacterial fertilizer was evaluated. The composites were prepared by a melting-blending method and various methods/instruments were applied to characterize composites and PBSU. The mechanical properties of the PBSU/starch composite were worse than PBSU alone because the former had poor compatibility between starch and the polymer matrix. Much better dispersion and homogeneity were observed in the composite when PBSU was replaced by acrylic acid grafted PBSU (PBSU-g-AA), hence leading to better mechanical properties of PBSU-g-AA/starch. Furthermore, PBSU-g-AA/starch was more easily processed. The bacterial fertilizer was encapsulated in PBSU and PBSU-g-AA/starch matrix. Increased blending of starch increased the biodegradability of matrix and the amount and rate of cell release from matrix suggesting that this composite is a promising candidate material for 'controlled release' bacterial fertilizer. PMID:18796320

  10. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene.

    PubMed

    He, Y K; Sun, J G; Feng, X Z; Czak, M; Mrton, L

    2001-09-01

    Mercury pollution is a major environmental problem accompanying industrial activities. Most of the mercury released ends up and retained in the soil as complexes of the toxic ionic mercury (Hg2+), which then can be converted by microbes into the even more toxic methylmercury which tends to bioaccumulate. Mercury detoxification of the soil can also occur by microbes converting the ionic mercury into the least toxic metallic mercury (Hg0) form, which then evaporates. The remediation potential of transgenic plants carrying the MerA gene from E. coli encoding mercuric ion reductase could be evaluated. A modified version of the gene, optimized for plant codon preferences (merApe9, Rugh et al. 1996), was introduced into tobacco by Agrobacterium-mediated leaf disk transformation. Transgenic seeds were resistant to HgCl2 at 50 microM, and some of them (10-20% ) could germinate on media containing as much as 350 microM HgCl2, while the control plants were fully inhibited or died on 50 microM HgCl2. The rate of elemental mercury evolution from Hg2+ (added as HgCl2) was 5-8 times higher for transgenic plants than the control. Mercury volatilization by isolated organs standardized for fresh weight was higher (up to 5 times) in the roots than in shoots or the leaves. The data suggest that it is the root system of the transgenic plants that volatilizes most of the reduced mercury (Hg0). It also suggests that much of the mercury need not enter the vascular system to be transported to the leaves for volatilization. Transgenic plants with the merApe9 gene may be used to mercury detoxification for environmental improvement in mercury-contaminated regions more efficiently than it had been predicted based on data on volatilization of whole plants via the upper parts only (Rugh et al. 1996). PMID:11642409

  11. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; LeBlanc, Carly L.; Honer zu Bentrup, Kerstin; Hammond, Timothy; Pierson, Duane L.

    2003-01-01

    Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.

  12. Bacterial Community Composition of South China Sea Sediments through Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Background Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Methodology/Principal Findings Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. Conclusions This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m. PMID:24205246

  13. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Graham, Neil D; Meijer, Maria; Prabakar, Kandasamy; Mubedi, Josu I; Elongo, Vicky; Mpiana, Pius T; Ibelings, Bastiaan Willem; Wildi, Walter; Pot, John

    2015-06-01

    Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum -lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ? 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality. PMID:25933054

  14. Comprehensive Analysis of Bacterial Flora in Postoperative Maxillary Cyst Fluid by 16S rRNA Gene and Culture Methods

    PubMed Central

    Sano, Naoto; Yamashita, Yoshio; Fukuda, Kazumasa; Taniguchi, Hatsumi; Goto, Masaaki; Miyamoto, Hiroshi

    2012-01-01

    Intracystic fluid was aseptically collected from 11 patients with postoperative maxillary cyst (POMC), and DNA was extracted from the POMC fluid. Bacterial species were identified by sequencing after cloning of approximately 580?bp of the 16S rRNA gene. Identification of pathogenic bacteria was also performed by culture methods. The phylogenetic identity was determined by sequencing 517596?bp in each of the 1139 16S rRNA gene clones. A total of 1114 clones were classified while the remaining 25 clones were unclassified. A total of 103 bacterial species belonging to 42 genera were identified in POMC fluid samples by 16S rRNA gene analysis. Species of Prevotella (91%), Neisseria (73%), Fusobacterium (73%), Porphyromonas (73%), and Propionibacterium (73%) were found to be highly prevalent in all patients. Streptococcus mitis (64%), Fusobacterium nucleatum (55%), Propionibacterium acnes (55%), Staphylococcus capitis (55%), and Streptococcus salivarius (55%) were detected in more than 6 of the 11 patients. The results obtained by the culture method were different from those obtained by 16S rRNA gene analysis, but both approaches may be necessary for the identification of pathogens, especially of bacteria that are difficult to detect by culture methods, and the development of rational treatments for patients with POMC. PMID:22685668

  15. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice

    PubMed Central

    2013-01-01

    Background The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome) strategy to expand our understanding of human gene regulation in vivo. Results In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. Conclusions We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression. PMID:24124870

  16. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant

    PubMed Central

    Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis

    2013-01-01

    Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, blaTEM, blaCTX-M, blaSHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347

  17. GPo1 alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium

    PubMed Central

    Luo, Qun; He, Ying; Hou, Deng-Yong; Zhang, Jian-Guo; Shen, Xian-Rong

    2015-01-01

    To facilitate the biodegradation of diesel oil, an oil biodegradation bacterial consortium was constructed. The alkane hydroxylase (alkB) gene of Pseudomonas putida GPo1 was constructed in a pCom8 expression vector, and the pCom8-GPo1 alkB plasmid was transformed into Escherichia coli DH5?. The AlkB protein was expressed by diesel oil induction and detected through SDS-polyacrylamide gel electrophoresis. The culture of the recombinant (pCom8-GPo1 alkB/E. coli DH5?) with the oil biodegradation bacterial consortium increased the degradation ratio of diesel oil at 24 h from 31% to 50%, and the facilitation rates were increased as the proportion of pCom8-GPo1 alkB/E. coli DH5? to the consortium increased. The results suggested that the expression of the GPo1 gene in E. coli DH5? could enhance the function of diesel oil degradation by the bacterial consortium. PMID:26413044

  18. Identification of Klebsiella Pneumoniae Genes Uniquely Expressed in a Strain Virulent Using a Murine Model of Bacterial Pneumonia

    PubMed Central

    Lau, Helen Y.; Clegg, Steven; Moore, Thomas A.

    2007-01-01

    Klebsiella pneumoniae is a gram negative bacterium of significant clinical importance. This study examines the differential pulmonary host anti-bacterial responses towards two clinical isolates of K. pneumoniae. Intratracheal inoculation with 7104 CFU of strain 43816 induced 100% mortality in C57BL/6J mice within 5 days post infection, whereas infection with 5105 CFU of strain IA565 resulted in 100% survival. Infection with strain 43816 resulted in significant pulmonary and peripheral blood bacterial burden and induction of the chemokines MIP-2, KC and MCP-1 by 24 hours post infection. In contrast, IA565-infected mice displayed basal chemokine levels and no detectable bacteria by 24 hours post inoculation were isolated from lungs or peripheral blood. These data indicate an apparent lack of pathogenicity of strain IA565. Since little is known about Klebsiella-specific virulence genes, we have utilized PCR-based genomic DNA and cDNA suppressive subtractive hybridization and identified nine DNA sequences unique to a pathogenic strain of K. pneumoniae 43816. These sequences were highly homologous to enteric bacterial genes regulating iron uptake, fimbrial-mediated adhesion, energy production and conversion, transcriptional regulation, signal transduction, restriction endonuclease activity, and membrane transport. PMID:17369011

  19. Description of Drinking Water Bacterial Communities Using 16S rRNA Gene Sequence Analyses

    EPA Science Inventory

    Descriptions of bacterial communities inhabiting water distribution systems (WDS) have mainly been accomplished using culture-based approaches. Due to the inherent selective nature of culture-based approaches, the majority of bacteria inhabiting WDS remain uncharacterized. The go...

  20. Characterization of gtf, a Glucosyltransferase Gene in the Genomes of Pediococcus parvulus and Oenococcus oeni, Two Bacterial Species Commonly Found in Wine?

    PubMed Central

    Dols-Lafargue, Marguerite; Lee, Hyo Young; Le Marrec, Claire; Heyraud, Alain; Chambat, Grard; Lonvaud-Funel, Aline

    2008-01-01

    Ropiness is a bacterial alteration in wines, beers, and ciders, caused by ?-glucan-synthesizing pediococci. A single glucosyltransferase, Gtf, controls ropy polysaccharide synthesis. In this study, we show that the corresponding gtf gene is also present on the chromosomes of several strains of Oenococcus oeni isolated from nonropy wines. gtf is surrounded by mobile elements that may be implicated in its integration into the chromosome of O. oeni. gtf is expressed in all the gtf+ strains, and ?-glucan is detected in the majority of these strains. Part of this ?-glucan accumulates around the cells forming a capsule, while the other part is liberated into the medium together with heteropolysaccharides. Most of the time, this polymer excretion does not lead to ropiness in a model medium. In addition, we show that wild or recombinant bacterial strains harboring a functional gtf gene (gtf+) are more resistant to several stresses occurring in wine (alcohol, pH, and SO2) and exhibit increased adhesion capacities compared to their gtf mutant variants. PMID:18469121

  1. Multiple gene loci affecting genetic background-controlled disease resistance conferred by R gene Xa3/Xa26 in rice.

    PubMed

    Zhou, Yan; Cao, Yinglong; Huang, Yi; Xie, Weibo; Xu, Caiguo; Li, Xianghua; Wang, Shiping

    2009-12-01

    The function of bacterial-blight resistance gene Xa3/Xa26 in rice is influenced by genetic background; the Oryza sativa L. ssp. japonica background can increase Xa3/Xa26 expression, resulting in an enhanced resistance. To identify whether Xa3/Xa26 transcript level is the only factor contributing to genetic background-controlled resistance, we screened an F(2) population that was developed from a cross between Oryza sativa L. ssp. indica and japonica rice lines and was segregating for Xa3/Xa26, and compared the expression profiles of a pair of indica and japonica rice lines that both carried Xa3/Xa26. Eight quantitative trait loci (QTLs), in addition to Xa3/Xa26, were identified as contributing to the bacterial resistance of this population. Four of the eight QTLs were contributed to the japonica line. The resistance of this population was also affected by epistatic effects. Some F(2) individuals showed significantly increased Xa3/Xa26 transcripts, but the increased transcripts did not completely correlate with the reduced disease in this population. The analysis of the expression profile of Xa3/Xa26-mediated resistance using a microarray containing approximate 7,990 rice genes identified 44 differentially expressed genes. Thirty-five genes were rapidly activated in the japonica background, but not in the indica background, during disease resistance. These results suggest that multiple factors, including the one resulting in increased Xa3/Xa26 expression, may contribute to the enhanced resistance in the japonica background. These factors can cause a variation in gene expression profile that differs from that in the indica background during disease resistance. PMID:19826775

  2. Bacterial control on the structure of As-Fe oxy-hydroxides in acid mine drainage.

    NASA Astrophysics Data System (ADS)

    Morin, G.; Lebrun, S.; Juillot, F.; Casiot, C.; Bruneel, O.; Belin, S.; Proux, O.; Brown, G. E.; Guyot, F.; Calas, G.

    2004-12-01

    Nano-crystalline or amorphous iron oxy-hydroxides are kinetically favored with respect to stable crystalline phases in low temperature environments. Therefore, they frequently occur as transient phases in Earth's surface environments. They exhibit very-high surface areas (few 100 cm2/g) and thus play a key role in the geochemical cycles of minor and trace elements, including toxic elements as arsenic. Natural low-temperature iron oxides also potentially host biological signatures since they can form through various biologically driven reactions. In the present communication, we compare the mineralogy and crystal chemistry of biogenic As-rich iron precipitates synthesized using various acidophilic bacterial strain isolated from an exceptionally arsenic-rich acid mine drainage [1]. XAS, XRD, SEM and TEM investigation of these highly reactive nano-minerals obtained in controlled conditions allows to better constrain their mechanisms of formation. Our data show that the enzymatic oxidation of Fe(II) and/or As(III) play a key role in controlling the nature of the mineral species precipitating in acid mine drainage. We show that the nature of mineral species forming from solutions can be directly determined by the metabolic activity of specific bacterial strains. This influence is thought to be primarily indirect, bacteria controlling the rate of Fe(II) and As(III) oxidation reactions, which in turn leads to various Fe(III) and As(V) super-saturation conditions. These latter parameters are crucial in controlling the structure of nano-crystalline As-Fe low temperature minerals. 1- Morin et al. (2003) Bacterial formation of tooeleite and mixed As(III)/(V)-Fe(III) gels in the Carnouls acid mine drainage, France. A XANES, XRD and SEM study. Environ. Sci. and Technol. 37,1705-1712.

  3. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen.

    PubMed

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J; Schembri, Mark A; Sweet, Matthew J

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses. PMID:26803628

  4. Bacterial Control of Pores Induced by the Type III Secretion System: Mind the Gap

    PubMed Central

    Guignot, Julie; Tran Van Nhieu, Guy

    2016-01-01

    Type III secretion systems (T3SSs) are specialized secretion apparatus involved in the virulence of many Gram-negative pathogens, enabling the injection of bacterial type III effectors into host cells. The T3SS-dependent injection of effectors requires the insertion into host cell membranes of a pore-forming “translocon,” whose effects on cell responses remain ill-defined. As opposed to pore-forming toxins that damage host cell plasma membranes and induce cell survival mechanisms, T3SS-dependent pore formation is transient, being regulated by cell membrane repair mechanisms or bacterial effectors. Here, we review host cell responses to pore formation induced by T3SSs associated with the loss of plasma membrane integrity and regulation of innate immunity. We will particularly focus on recent advances in mechanisms controlling pore formation and the activity of the T3SS linked to type III effectors or bacterial proteases. The implications of the regulation of the T3SS translocon activity during the infectious process will be discussed. PMID:27014264

  5. Seasonal Changes in Bacterial and Archaeal Gene Expression Patterns across Salinity Gradients in the Columbia River Coastal Margin

    PubMed Central

    Smith, Maria W.; Herfort, Lydie; Tyrol, Kaitlin; Suciu, Dominic; Campbell, Victoria; Crump, Byron C.; Peterson, Tawnya D.; Zuber, Peter; Baptista, Antonio M.; Simon, Holly M.

    2010-01-01

    Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April) and late summer (August). Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean) relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition. Furthermore, our results suggest that highly-active particle-attached microbiota in the Columbia River water column may perform dissimilatory nitrate reduction (both dentrification and DNRA) within anoxic particle microniches. PMID:20967204

  6. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine.

    PubMed

    Bourdineaud, J-P; Nehm, B; Tesse, S; Lonvaud-Funel, A

    2004-04-01

    The wine lactic acid bacteria Oenococcus oeni has to cope with harsh environmental conditions including an acidic pH, a high alcoholic content, non-optimal growth temperatures, and growth inhibitory compounds such as fatty acids, phenolic acids and tannins. We here describe characterisation and cloning of the O. oeni omrA gene encoding a protein belonging to the ATP-binding cassette superfamily of transporters. The OmrA protein displays the highest sequence similarity with the subfamily of ATP-dependent multidrug resistance (MDR) proteins, most notably the bacterial Lactococcus lactis LmrA homologue of the human MDR1 P-glycoprotein. The omrA gene proved to be a stress-responsive gene since its expression was increased at high temperature or under osmotic shock. The OmrA protein function was tested in Escherichia coli, and consistent with the omrA gene expression pattern, OmrA conferred protection to bacteria grown on a high salt medium. OmrA also triggered bacterial resistance to sodium laurate, wine and ethanol toxicity. The homologous LmrA protein featured the same stress-protective pattern than OmrA when expressed in E. coli, and the contribution to resistance of both OmrA and LmrA transporters was decreased by verapamil, a well-known inhibitor of the human MDR1 protein. Genes homologous to omrA were detected in other wine lactic acid bacteria, suggesting that this type of genes might constitute a well-conserved stress-protective molecular device. PMID:15033264

  7. Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins.

    PubMed

    Koch-Nolte, F; Haag, F; Braren, R; Khl, M; Hoovers, J; Balasubramanian, S; Bazan, F; Thiele, H G

    1997-02-01

    Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designated ART3 and ART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32-41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and by in situ hybridization, we have mapped the two genes to human chromosomes 4p14-p15.1 and 12q13.2-q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the "tip of an iceberg," i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. PMID:9119374

  8. Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins

    SciTech Connect

    Koch-Nolte, F.; Haag, F.; Braren, R.

    1997-02-01

    Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designated ART3 and ART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32-41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and by in situ hybridization, we have mapped the two genes to human chromosomes 4p14-p15.l and 12q13.2- q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the {open_quotes}tip of an iceberg,{close_quote} i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. 35 refs., 4 figs.

  9. Bacterial rRNA Genes Associated with Soil Suppressiveness against the Plant-Parasitic Nematode Heterodera schachtii

    PubMed Central

    Yin, Bei; Valinsky, Lea; Gao, Xuebiao; Becker, J. Ole; Borneman, James

    2003-01-01

    The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, ?-Proteobacteria, ?-Proteobacteria, and ?-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured ?-proteobacterial clones was consistently associated with the highly suppressive treatments. A quantitative PCR analysis confirmed the association of this Rhizobium-like rDNA group with the H. schachtii suppressiveness. PMID:12620845

  10. Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco.

    PubMed

    Gtz, Thomas; Sandmann, Gerhard; Rmer, Susanne

    2002-09-01

    Carotenoids are essential components of the photosynthetic apparatus involved in plant photoprotection. To investigate the protective role of zeaxanthin under high light and UV stress we have increased the capacity for its biosynthesis in tobacco plants (Nicotiana tabacum L. cv. Samsun) by transformation with a heterologous carotenoid gene encoding beta-carotene hydroxylase (crtZ) from Erwinia uredovora under constitutive promoter control. This enzyme is responsible for the conversion of beta-carotene into zeaxanthin. Although the total pigment content of the transgenics was similar to control plants, the transformants synthesized zeaxanthin more rapidly and in larger quantities than controls upon transfer to high-intensity white light. Low-light-adapted tobacco plants were shown to be susceptible to UV exposure and therefore chosen for comparative analysis of wild-type and transgenics. Overall effects of UV irradiation were studied by measuring bioproductivity and pigment content. The UV exposed transformed plants maintained a higher biomass and a greater amount of photosynthetic pigments than controls. For revelation of direct effects, photosynthesis, pigment composition and chlorophyll fluorescence were examined immediately after UV treatment. Low-light-adapted plants of the crtZ transgenics showed less reduction in photosynthetic oxygen evolution and had higher chlorophyll fluorescence levels in comparison to control plants. After 1 h of high-light pre-illumination and subsequent UV exposure a greater amount of xanthophyll cycle pigments was retained in the transformants. In addition, the transgenic plants suffered less lipid peroxidation than the wild-type after treatment with the singlet-oxygen generator rose bengal. Our results indicate that an enhancement of zeaxanthin formation in the presence of a functional xanthophyll cycle contributes to UV stress protection and prevention of UV damage. PMID:12139004

  11. Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging

    PubMed Central

    Jiang, Yuanyuan; Sigmund, Felix; Reber, Josefine; Luís Deán-Ben, Xosé; Glasl, Sarah; Kneipp, Moritz; Estrada, Héctor; Razansky, Daniel; Ntziachristos, Vasilis; Westmeyer, Gil G.

    2015-01-01

    There is growing interest in genetically expressed reporters for in vivo studies of bacterial colonization in the context of infectious disease research, studies of the bacterial microbiome or cancer imaging and treatment. To empower non-invasive high-resolution bacterial tracking with deep tissue penetration, we herein use the genetically controlled biosynthesis of the deep-purple pigment Violacein as a photobleaching-resistant chromophore label for in vivo optoacoustic (photoacoustic) imaging in the near-infrared range. We demonstrate that Violacein-producing bacteria can be imaged with high contrast-to-noise in strongly vascularized xenografted murine tumors and further observe that Violacein shows anti-tumoral activity. Our experiments thus identify Violacein as a robust bacterial label for non-invasive optoacoustic imaging with high potential for basic research and future theranostic applications in bacterial tumor targeting. PMID:26091543

  12. Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging.

    PubMed

    Jiang, Yuanyuan; Sigmund, Felix; Reber, Josefine; Den-Ben, Xos Lus; Glasl, Sarah; Kneipp, Moritz; Estrada, Hctor; Razansky, Daniel; Ntziachristos, Vasilis; Westmeyer, Gil G

    2015-01-01

    There is growing interest in genetically expressed reporters for in vivo studies of bacterial colonization in the context of infectious disease research, studies of the bacterial microbiome or cancer imaging and treatment. To empower non-invasive high-resolution bacterial tracking with deep tissue penetration, we herein use the genetically controlled biosynthesis of the deep-purple pigment Violacein as a photobleaching-resistant chromophore label for in vivo optoacoustic (photoacoustic) imaging in the near-infrared range. We demonstrate that Violacein-producing bacteria can be imaged with high contrast-to-noise in strongly vascularized xenografted murine tumors and further observe that Violacein shows anti-tumoral activity. Our experiments thus identify Violacein as a robust bacterial label for non-invasive optoacoustic imaging with high potential for basic research and future theranostic applications in bacterial tumor targeting. PMID:26091543

  13. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    SciTech Connect

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  14. Diversity of the Ring-Cleaving Dioxygenase Gene pcaH in a Salt Marsh Bacterial Community

    PubMed Central

    Buchan, Alison; Neidle, Ellen L.; Moran, Mary Ann

    2001-01-01

    Degradation of lignin-related aromatic compounds is an important ecological process in the highly productive salt marshes of the southeastern United States, yet little is known about the mediating organisms or their catabolic pathways. Here we report the diversity of a gene encoding a key ring-cleaving enzyme of the β-ketoadipate pathway, pcaH, amplified from bacterial communities associated with decaying Spartina alterniflora, the salt marsh grass that dominates these coastal systems, as well as from enrichment cultures with aromatic substrates (p-hydroxybenzoate, anthranilate, vanillate, and dehydroabietate). Sequence analysis of 149 pcaH clones revealed 85 unique sequences. Thirteen of the 53 amino acid residues compared were invariant in the PcaH proteins, suggesting that these residues have a required catalytic or structural function. Fifty-eight percent of the clones matched sequences amplified from a collection of 36 bacterial isolates obtained from seawater, marine sediments, or senescent Spartina. Fifty-two percent of the pcaH clones could be assigned to the roseobacter group, a marine lineage of the class α-Proteobacteria abundant in coastal ecosystems. Another 6% of the clones matched genes retrieved from isolates belonging to the genera Acinetobacter, Bacillus, and Stappia, and 42% of the clones could not be assigned to a cultured bacterium based on sequence identity. These results suggest that the diversity of the genes encoding a single step in aromatic compound degradation in the coastal marsh examined is high. PMID:11722937

  15. Developments in the control of bacterial kidney disease of salmonid fishes

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Bullock, G.L.

    1989-01-01

    Bacterial kidney disease of salmonid fishes, caused by Renibactenum salrnoninarum, was first reported more than 50 yr ago; nevertheless, large gaps persist in our knowledge of the infection - particularly in methods for its control. In the 1950's, principal control measures consisted of prophylactic or therapeutic feeding of sulfonamides, which were later supplanted by the antibiotic erythromycin. Chemotherapy has effected some reduction of mortality, but benefits are typically transient and mortality usually resumes after the drug is withdrawn. Some studies have indicated that diet composition affects the prevalence and severity of the disease. Although tests of chemotherapeutants and diet modification have continued, research emphasis has shifted partly toward prevention of the disease by breaking the infection cycle. It is now generally accepted that R. salrnoninarum can be transmitted both vertically and horizontally. Experimental evidence indicates that immersion of newly fertilized eggs in iodophor or erythromycin does not prevent vertical transmission. However, the injection of female salmon with erythromycin before they spawn shows promise as a practical means of interrupting vertical transmission. The results of attempts to prevent infection of juvenile salmonids by vaccination against bacterial kidney disease have been disappointing, thus underscoring a basic need for a better understanding of protective mechanisms in salmonids. The recent development of more sensitive and quantitative detection methods should aid in evaluating the efficacy of current and future control strategies.

  16. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    NASA Astrophysics Data System (ADS)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  17. 16S rRNA gene sequencing is a non-culture method of defining the specific bacterial etiology of ventilator-associated pneumonia

    PubMed Central

    Xia, Li-Ping; Bian, Long-Yan; Xu, Min; Liu, Ying; Tang, Ai-Ling; Ye, Wen-Qin

    2015-01-01

    Ventilator-associated pneumonia (VAP) is an acquired respiratory tract infection following tracheal intubation. The most common hospital-acquired infection among patients with acute respiratory failure, VAP is associated with a mortality rate of 20-30%. The standard bacterial culture method for identifying the etiology of VAP is not specific, timely, or accurate in identifying the bacterial pathogens. This study used 16S rRNA gene metagenomic sequencing to identify and quantify the pathogenic bacteria in lower respiratory tract and oropharyngeal samples of 55 VAP patients. Sequencing of the 16S rRNA gene has served as a valuable tool in bacterial identification, particularly when other biochemical, molecular, or phenotypic identification techniques fail. In this study, 16S rRNA gene sequencing was performed in parallel with the standard bacterial culture method to identify and quantify bacteria present in the collected patient samples. Sequence analysis showed the colonization of multidrug-resistant strains in VAP secretions. Further, this method identified Prevotella, Proteus, Aquabacter, and Sphingomonas bacterial genera that were not detected by the standard bacterial culture method. Seven categories of bacteria, Streptococcus, Neisseria, Corynebacterium, Acinetobacter, Staphylococcus, Pseudomonas and Klebsiella, were detectable by both 16S rRNA gene sequencing and standard bacterial culture methods. Further, 16S rRNA gene sequencing had a significantly higher sensitivity in detecting Streptococcus and Pseudomonas when compared to standard bacterial culture. Together, these data present 16S rRNA gene sequencing as a novel VAP diagnosis tool that will further enable pathogen-specific treatment of VAP.

  18. 16S rRNA gene sequencing is a non-culture method of defining the specific bacterial etiology of ventilator-associated pneumonia.

    PubMed

    Xia, Li-Ping; Bian, Long-Yan; Xu, Min; Liu, Ying; Tang, Ai-Ling; Ye, Wen-Qin

    2015-01-01

    Ventilator-associated pneumonia (VAP) is an acquired respiratory tract infection following tracheal intubation. The most common hospital-acquired infection among patients with acute respiratory failure, VAP is associated with a mortality rate of 20-30%. The standard bacterial culture method for identifying the etiology of VAP is not specific, timely, or accurate in identifying the bacterial pathogens. This study used 16S rRNA gene metagenomic sequencing to identify and quantify the pathogenic bacteria in lower respiratory tract and oropharyngeal samples of 55 VAP patients. Sequencing of the 16S rRNA gene has served as a valuable tool in bacterial identification, particularly when other biochemical, molecular, or phenotypic identification techniques fail. In this study, 16S rRNA gene sequencing was performed in parallel with the standard bacterial culture method to identify and quantify bacteria present in the collected patient samples. Sequence analysis showed the colonization of multidrug-resistant strains in VAP secretions. Further, this method identified Prevotella, Proteus, Aquabacter, and Sphingomonas bacterial genera that were not detected by the standard bacterial culture method. Seven categories of bacteria, Streptococcus, Neisseria, Corynebacterium, Acinetobacter, Staphylococcus, Pseudomonas and Klebsiella, were detectable by both 16S rRNA gene sequencing and standard bacterial culture methods. Further, 16S rRNA gene sequencing had a significantly higher sensitivity in detecting Streptococcus and Pseudomonas when compared to standard bacterial culture. Together, these data present 16S rRNA gene sequencing as a novel VAP diagnosis tool that will further enable pathogen-specific treatment of VAP. PMID:26770469

  19. Refined identification of Vibrio bacterial flora from Acanthasther planci based on biochemical profiling and analysis of housekeeping genes.

    PubMed

    Rivera-Posada, J A; Pratchett, M; Cano-Gomez, A; Arango-Gomez, J D; Owens, L

    2011-09-01

    We used a polyphasic approach for precise identification of bacterial flora (Vibrionaceae) isolated from crown-of-thorns starfish (COTS) from Lizard Island (Great Barrier Reef, Australia) and Guam (U.S.A., Western Pacific Ocean). Previous 16S rRNA gene phylogenetic analysis was useful to allocate and identify isolates within the Photobacterium, Splendidus and Harveyi clades but failed in the identification of Vibrio harveyi-like isolates. Species of the V harveyi group have almost indistinguishable phenotypes and genotypes, and thus, identification by standard biochemical tests and 16S rRNA gene analysis is commonly inaccurate. Biochemical profiling and sequence analysis of additional topA and mreB housekeeping genes were carried out for definitive identification of 19 bacterial isolates recovered from sick and wild COTS. For 8 isolates, biochemical profiles and topA and mreB gene sequence alignments with the closest relatives (GenBank) confirmed previous 16S rRNA-based identification: V. fortis and Photobacterium eurosenbergii species (from wild COTS), and V natriegens (from diseased COTS). Further phylogenetic analysis based on topA and mreB concatenated sequences served to identify the remaining 11 V harveyi-like isolates: V. owensii and V. rotiferianus (from wild COTS), and V. owensii, V. rotiferianus, and V. harveyi (from diseased COTS). This study further confirms the reliability of topA-mreB gene sequence analysis for identification of these close species, and it reveals a wider distribution range of the potentially pathogenic V. harveyi group. PMID:22013751

  20. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost.

    PubMed

    Kitamura, Rika; Ishii, Kazuo; Maeda, Isamu; Kozaki, Toshinori; Iwabuchi, Kazunori; Saito, Takahiro

    2016-01-01

    Biofiltration technology based on microbial degradation and assimilation is used for the removal of malodorous compounds, such as ammonia. Microbes that degrade malodorous and/or organic substances are involved in composting and are retained after composting; therefore, mature composts can serve as an ideal candidate for a biofilter medium. In this study, we focused on different types of raw compost materials, as these are important factors determining the bacterial community profile and the chemical component of the compost. Therefore, bacterial community profiles, the abundance of the bacterial ammonia monooxygenase gene (amoA), and the quantities of chemical components were analyzed in composts produced from either food waste or cattle manure. The community profiles with the lowest beta diversity were obtained from single type of cattle manure compost. However, cattle manure composts showed greater alpha diversity, contained higher amounts of various rRNA gene fragments than those of food waste composts and contained the amoA gene by relative quantification, and Proteobacteria were abundantly found and nitrifying bacteria were detected in it. Nitrifying bacteria are responsible for ammonia oxidation and mainly belong to the Proteobacteria or Nitrospira phyla. The quantities of chemical components, such as salt, phosphorus, and nitrogen, differed between the cattle manure and food waste composts, indicating that the raw materials provided different fermentation environments that were crucial for the formation of different community profiles. The results also suggest that cattle manure might be a more suitable raw material for the production of composts to be used in the biofiltration of ammonia. PMID:26111599

  1. Electrotransformation and Expression of Bacterial Genes Encoding Hygromycin Phosphotransferase and ?-Galactosidase in the Pathogenic Fungus Histoplasma capsulatum

    PubMed Central

    Woods, Jon P.; Heinecke, Elizabeth L.; Goldman, William E.

    1998-01-01

    We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional ?-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus. PMID:9529100

  2. Influence of Rice Development on the Function of Bacterial Blight Resistance Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease resistance genes most commonly used in breeding programs are single, dominant, resistance (R) genes with relative effectiveness influenced by plant developmental stage. Knowing the developmental stages at which an R gene is functional is important for disease management. In rice, resistanc...

  3. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules.

    PubMed

    Liu, Chien-Hung; Wu, Jane-Yii; Chang, Jo-Shu

    2008-04-01

    An indigenous Cellulosimicrobium cellulans GS6 isolate able to solubilize insoluble phosphate complexes in soil is a potential bacterial fertilizer. Enclosure of the phosphate-solubilizing bacterium (PSB) in biodegradable capsules may protect the PSB cells inoculated into soil and, in the meantime, enable the control of cell release that confers long-term fertilizing effects. In this study, calcium alginate (CA) was used as the core matrix to encapsulate cells of C. cellulans GS6. The cell-liberating properties of the CA-based capsules were modified by blending with a variety of supplemental materials (SM), including chitin, cellulose, olive oil, and gelatin. The experimental results showed that the maximum cell-release percentage (MCR%) of the capsules decreased in the order of CA-cellulose>CA-olive oil>CA-chitin>CA-gelatin>CA. Furthermore, a mass transport model was developed to accurately describe the kinetics of cell release results for each capsule. The diffusion coefficient (D(e)) of each capsule was also determined from the model simulation. We found that the estimated D(e) values are positively correlated to the release rate with rare exceptions. Lastly, as our results underscored the crucial roles that the type of capsules plays in the rate and amount of cell release, controlled release of the bacterial fertilizer (C. cellulans GS6 cells) may be achieved via the design of capsule materials. PMID:17482812

  4. The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582.

    PubMed

    Augimeri, Richard V; Strap, Janice L

    2015-01-01

    Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature. PMID:26733991

  5. The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582

    PubMed Central

    Augimeri, Richard V.; Strap, Janice L.

    2015-01-01

    Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature. PMID:26733991

  6. Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing

    PubMed Central

    Basak, Pijush; Pramanik, Arnab; Sengupta, Sohan; Nag, Sudip; Bhattacharyya, Anish; Roy, Debojyoti; Pattanayak, Rudradip; Ghosh, Abhrajyoti; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2015-01-01

    The global knowledge of microbial diversity and function in Sundarbans ecosystem is still scarce, despite global advancement in understanding the microbial diversity. In the present study, we have analyzed the diversity and distribution of bacteria in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. Metagenome is comprised of 1,53,926 sequences with 108.8 Mbp data and with 55 ± 2% G + C content. Metagenome sequence data are available at NCBI under the Bioproject database with accession no. PRJNA245459. Bacterial community metagenome sequences were analyzed by MG-RAST software representing the presence of 56,547 species belonging to 44 different phyla. The taxonomic analysis revealed the dominance of phyla Proteobacteria within our dataset. Further taxonomic analysis revealed abundance of Bacteroidetes, Acidobactreia, Firmicutes, Actinobacteria, Nitrospirae, Cyanobacteria, Planctomycetes and Fusobacteria group as the predominant bacterial assemblages in this largely pristine mangrove habitat. The distribution of different community datasets obtained from four sediment samples originated from one sampling station at two different depths providing better understanding of the sediment bacterial diversity and its relationship to the ecosystem dynamics of this pristine mangrove sediment of Dhulibhashani in, Sundarbans. PMID:26981367

  7. Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing.

    PubMed

    Basak, Pijush; Pramanik, Arnab; Sengupta, Sohan; Nag, Sudip; Bhattacharyya, Anish; Roy, Debojyoti; Pattanayak, Rudradip; Ghosh, Abhrajyoti; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2016-03-01

    The global knowledge of microbial diversity and function in Sundarbans ecosystem is still scarce, despite global advancement in understanding the microbial diversity. In the present study, we have analyzed the diversity and distribution of bacteria in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. Metagenome is comprised of 1,53,926 sequences with 108.8 Mbp data and with 55 ± 2% G + C content. Metagenome sequence data are available at NCBI under the Bioproject database with accession no. PRJNA245459. Bacterial community metagenome sequences were analyzed by MG-RAST software representing the presence of 56,547 species belonging to 44 different phyla. The taxonomic analysis revealed the dominance of phyla Proteobacteria within our dataset. Further taxonomic analysis revealed abundance of Bacteroidetes, Acidobactreia, Firmicutes, Actinobacteria, Nitrospirae, Cyanobacteria, Planctomycetes and Fusobacteria group as the predominant bacterial assemblages in this largely pristine mangrove habitat. The distribution of different community datasets obtained from four sediment samples originated from one sampling station at two different depths providing better understanding of the sediment bacterial diversity and its relationship to the ecosystem dynamics of this pristine mangrove sediment of Dhulibhashani in, Sundarbans. PMID:26981367

  8. [Direct cloning of gene encoding a novel amylomaltase from soil bacterial DNA for large-ring cyclodextrin production].

    PubMed

    Sawasdee, K; Rudeekulthamrong, P; Zimmermann, W; Murakami, S; Pongsawasdi, P; Kaulpiboon, J

    2014-01-01

    The aim of this study was to isolate a novel amylomaltase gene from community DNA of soil samples collected from Ban Nong Khrok hot spring in Thailand without bacterial cultivation. Using PCR, a 1.5 kb full-length gene was amplified and ligated with pGEM-T easy vector to transform into Escherichia coli DH5 alpha for sequencing. The obtained gene encoding an amylomaltase consisted of 1.503 bp that translated into 500 amino acids. Amino acid sequence deduced from this gene was highly homologous with that of amylomaltase from Thermus thermophillus ATCC 33923. In order to express the enzyme, the cloned gene was subcloned into plasmid pET-17b and introduced into E. coli BL21 (DE3). The maximum expression was observed when the cloned cells were cultured at 37 degrees C for 6 h with 0.5 mM IPTG induction. By 10% SDS-PAGE, the relative molecular mass of the purified amylomaltase was approximately 58 kDa. This enzyme was optimally active at 70 degrees C and pH 9.0. In addition, the enzyme could hydrolyze pea starch to yield the large-ring cyclodextrins with degrees of polymerization of 23 and higher. It is noted that CD29 was the product in the largest quantity under all tested conditions. PMID:25272748

  9. Rapid development of gene-tagged microsatellite markers from bacterial artificial chromosome clones using anchored TAA repeat primers.

    PubMed

    Waldbieser, Geoffrey C; Quiniou, Sylvie M A; Karsi, Attila

    2003-11-01

    We developed a technique to improve the efficiency of producing TAA repeat microsatellite markers linked to interspecific conserved genes. Template DNA was prepared from cultures derived from single bacterial artificial chromosome (BAC) colonies using a simple alkaline lysis miniprep. The presence of conserved genes in each BAC clone was verified by sequencing with gene-specific primers. The BAC templates were directly sequenced using short tandem repeat-anchored primers (STRAPs), consisting of TAA repeats with one or two unique 3' terminal bases. At least one STRAP provided sufficient 3' flanking sequence from each clone for the design of a BAC-specific primer. The BAC-specific primer was used to sequence back through the tandem repeat and obtain 5' flanking sequence, and a second BAC-specific primer was designed for microsatellite genotype analysis. This technique quickly provided microsatellite markers with an average of 15 tandem repeats for the BAC clones tested. The identification of polymorphic microsatellite loci in these clones permits the identification of alleles linked to candidate genes, placement of conserved genes on genetic linkage maps, and integration of linkage and physical maps. PMID:14628671

  10. Binding motifs in bacterial gene promoters modulate transcriptional effects of global regulators CRP and ArcA

    SciTech Connect

    Leuze, Mike; Karpinets, Tatiana V.; Syed, Mustafa H.; Beliaev, Alex S.; Uberbacher, Edward

    2012-05-30

    Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location.

  11. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins

    PubMed Central

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E.; Ha, Un-Hwan; Wu, Donghai

    2015-01-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. Significance The present study describes a novel and powerful tool for the delivery of the genome editing enzyme transcription activator-like effector nuclease (TALEN) directly into pluripotent stem cells (PSCs), achieving desired base changes on the genomes of PSCs with high efficiency. This novel approach uses bacteria as a protein delivery tool. It is easy to manipulate and adaptable to scaling up. This is a safe delivery system, because the delivery strains can be easily eliminated using simple antibiotic treatment. Type III secretion system (T3SS)-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene alterations within PSCs for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. The results of the present study also pave the way to applying the bacterial T3SS to deliver transcriptional factors into PSCs for cellular reprogramming, raising the hope of a safe technology that can be used in cell or tissue replacement therapy for human genetic diseases. PMID:26062981

  12. PPARs in the Control of Uncoupling Proteins Gene Expression

    PubMed Central

    Villarroya, Francesc; Iglesias, Roser; Giralt, Marta

    2007-01-01

    Uncoupling proteins (UCPs) are mitochondrial membrane transporters involved in the control of energy conversion in mitochondria. Experimental and genetic evidence relate dysfunctions of UCPs with metabolic syndrome and obesity. The PPAR subtypes mediate to a large extent the transcriptional regulation of the UCP genes, with a distinct relevance depending on the UCP gene and the tissue in which it is expressed. UCP1 gene is under the dual control of PPAR? and PPAR? in relation to brown adipocyte differentiation and lipid oxidation, respectively. UCP3 gene is regulated by PPAR? and PPAR? in the muscle, heart, and adipose tissues. UCP2 gene is also under the control of PPARs even in tissues in which it is the predominantly expressed UCP (eg, the pancreas and liver). This review summarizes the current understanding of the role of PPARs in UCPs gene expression in normal conditions and also in the context of type-2 diabetes or obesity. PMID:17389766

  13. Optogenetic Control of Gene Expression in Drosophila

    PubMed Central

    Chan, Yick-Bun; Alekseyenko, Olga V.; Kravitz, Edward A.

    2015-01-01

    To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes. PMID:26383635

  14. Chemical Signals of Synthetic Disaccharide Derivatives Dominate Rhamnolipids at Controlling Multiple Bacterial Activities.

    PubMed

    Singh, Nischal; Shetye, Gauri S; Zheng, Hewen; Sun, Jiayue; Luk, Yan-Yeung

    2016-01-01

    Microbes secrete molecules that modify their environment. Here, we demonstrate a class of synthetic disaccharide derivatives (DSDs) that mimics and dominates the activity of naturally secreted rhamnolipids by Pseudomonas aeruginosa. The DSDs exhibit the dual function of activating and inhibiting the swarming motility through a concentration-dependent activity reversal that is characteristic of signaling molecules. Whereas DSDs tethered with a saturated farnesyl group exhibit inhibition of both biofilm formation and swarming motility, with higher activities than rhamnolipids, a saturated farnesyl tethered with a sulfonate group only inhibits swarming motility but promote biofilm formation. These results identified important structural elements for controlling swarming motility, biofilm formation, and bacterial adhesion and suggest an effective chemical approach to control intertwined signaling processes that are important for biofilm formation and motilities. PMID:26511780

  15. Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity.

    PubMed

    Adams, Heather E; Crump, Byron C; Kling, George W

    2015-01-01

    Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacterial production ((14)C-labeled leucine uptake) up to seven times over controls, and warmer incubation temperatures increased the speed of this response to added nutrients. Bacterial cell numbers also increased in response to temperature and nutrient additions with cell-specific carbon uptake initially increasing and then declining after 2 days. Bacterial community composition (BCC; determined by means of 16S denaturing gradient gel electrophoresis fingerprinting) shifted rapidly in response to changes in incubation temperature and the addition of nutrients, within 2 days in some cases. While the bacteria in these habitats responded to nutrient additions with rapid changes in productivity and community composition, water temperature controlled the speed of the metabolic response and affected the resultant change in bacterial community structure, constraining the potential responses to pulsed nutrient subsidies associated with storm events. In all cases, at higher nutrient levels and temperatures the effect of initial BCC on bacterial activity was muted, suggesting a consistent, robust interaction of temperature, and nutrients controlling activity in these aquatic systems. PMID:25873916

  16. Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity

    PubMed Central

    Adams, Heather E.; Crump, Byron C.; Kling, George W.

    2015-01-01

    Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacterial production (14C-labeled leucine uptake) up to seven times over controls, and warmer incubation temperatures increased the speed of this response to added nutrients. Bacterial cell numbers also increased in response to temperature and nutrient additions with cell-specific carbon uptake initially increasing and then declining after 2 days. Bacterial community composition (BCC; determined by means of 16S denaturing gradient gel electrophoresis fingerprinting) shifted rapidly in response to changes in incubation temperature and the addition of nutrients, within 2 days in some cases. While the bacteria in these habitats responded to nutrient additions with rapid changes in productivity and community composition, water temperature controlled the speed of the metabolic response and affected the resultant change in bacterial community structure, constraining the potential responses to pulsed nutrient subsidies associated with storm events. In all cases, at higher nutrient levels and temperatures the effect of initial BCC on bacterial activity was muted, suggesting a consistent, robust interaction of temperature, and nutrients controlling activity in these aquatic systems. PMID:25873916

  17. Bacterial Cell Wall Synthesis Gene uppP Is Required for Burkholderia Colonization of the Stinkbug Gut

    PubMed Central

    Kim, Jiyeun Kate; Lee, Ho Jin; Kikuchi, Yoshitomo; Kitagawa, Wataru; Nikoh, Naruo

    2013-01-01

    To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont. PMID:23747704

  18. Bacterial cell wall synthesis gene uppP is required for Burkholderia colonization of the Stinkbug Gut.

    PubMed

    Kim, Jiyeun Kate; Lee, Ho Jin; Kikuchi, Yoshitomo; Kitagawa, Wataru; Nikoh, Naruo; Fukatsu, Takema; Lee, Bok Luel

    2013-08-01

    To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ?uppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ?uppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ?uppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ?uppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont. PMID:23747704

  19. Quantitative PCR Monitoring of Antibiotic Resistance Genes and Bacterial Pathogens in Three European Artificial Groundwater Recharge Systems▿ †

    PubMed Central

    Böckelmann, Uta; Dörries, Hans-Henno; Ayuso-Gabella, M. Neus; Salgot de Marçay, Miquel; Tandoi, Valter; Levantesi, Caterina; Masciopinto, Costantino; Van Houtte, Emmanuel; Szewzyk, Ulrich; Wintgens, Thomas; Grohmann, Elisabeth

    2009-01-01

    Aquifer recharge presents advantages for integrated water management in the anthropic cycle, namely, advanced treatment of reclaimed water and additional dilution of pollutants due to mixing with natural groundwater. Nevertheless, this practice represents a health and environmental hazard because of the presence of pathogenic microorganisms and chemical contaminants. To assess the quality of water extracted from recharged aquifers, the groundwater recharge systems in Torreele, Belgium, Sabadell, Spain, and Nardò, Italy, were investigated for fecal-contamination indicators, bacterial pathogens, and antibiotic resistance genes over the period of 1 year. Real-time quantitative PCR assays for Helicobacter pylori, Yersinia enterocolitica, and Mycobacterium avium subsp. paratuberculosis, human pathogens with long-time survival capacity in water, and for the resistance genes ermB, mecA, blaSHV-5, ampC, tetO, and vanA were adapted or developed for water samples differing in pollutant content. The resistance genes and pathogen concentrations were determined at five or six sampling points for each recharge system. In drinking and irrigation water, none of the pathogens were detected. tetO and ermB were found frequently in reclaimed water from Sabadell and Nardò. mecA was detected only once in reclaimed water from Sabadell. The three aquifer recharge systems demonstrated different capacities for removal of fecal contaminators and antibiotic resistance genes. Ultrafiltration and reverse osmosis in the Torreele plant proved to be very efficient barriers for the elimination of both contaminant types, whereas aquifer passage followed by UV treatment and chlorination at Sabadell and the fractured and permeable aquifer at Nardò posed only partial barriers for bacterial contaminants. PMID:19011075

  20. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins.

    PubMed

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E; Ha, Un-Hwan; Wu, Donghai; Wu, Weihui; Terada, Naohiro; Jin, Shouguang

    2015-08-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. PMID:26062981

  1. Survey of culture, goldengate assay, universal biosensor assay, and 16S rRNA Gene sequencing as alternative methods of bacterial pathogen detection.

    PubMed

    Lindsay, Brianna; Pop, Mihai; Antonio, Martin; Walker, Alan W; Mai, Volker; Ahmed, Dilruba; Oundo, Joseph; Tamboura, Boubou; Panchalingam, Sandra; Levine, Myron M; Kotloff, Karen; Li, Shan; Magder, Laurence S; Paulson, Joseph N; Liu, Bo; Ikumapayi, Usman; Ebruke, Chinelo; Dione, Michel; Adeyemi, Mitchell; Rance, Richard; Stares, Mark D; Ukhanova, Maria; Barnes, Bret; Lewis, Ian; Ahmed, Firoz; Alam, Meer Taifur; Amin, Ruhul; Siddiqui, Sabbir; Ochieng, John B; Ouma, Emmanuel; Juma, Jane; Mailu, Eunice; Omore, Richard; O'Reilly, Ciara E; Hannis, James; Manalili, Sheri; Deleon, Jonna; Yasuda, Irene; Blyn, Lawrence; Ranken, Raymond; Li, Feng; Housley, Roberta; Ecker, David J; Hossain, M Anowar; Breiman, Robert F; Morris, J Glenn; McDaniel, Timothy K; Parkhill, Julian; Saha, Debasish; Sampath, Rangarajan; Stine, O Colin; Nataro, James P

    2013-10-01

    Cultivation-based assays combined with PCR or enzyme-linked immunosorbent assay (ELISA)-based methods for finding virulence factors are standard methods for detecting bacterial pathogens in stools; however, with emerging molecular technologies, new methods have become available. The aim of this study was to compare four distinct detection technologies for the identification of pathogens in stools from children under 5 years of age in The Gambia, Mali, Kenya, and Bangladesh. The children were identified, using currently accepted clinical protocols, as either controls or cases with moderate to severe diarrhea. A total of 3,610 stool samples were tested by established clinical culture techniques: 3,179 DNA samples by the Universal Biosensor assay (Ibis Biosciences, Inc.), 1,466 DNA samples by the GoldenGate assay (Illumina), and 1,006 DNA samples by sequencing of 16S rRNA genes. Each method detected different proportions of samples testing positive for each of seven enteric pathogens, enteroaggregative Escherichia coli (EAEC), enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), Shigella spp., Campylobacter jejuni, Salmonella enterica, and Aeromonas spp. The comparisons among detection methods included the frequency of positive stool samples and kappa values for making pairwise comparisons. Overall, the standard culture methods detected Shigella spp., EPEC, ETEC, and EAEC in smaller proportions of the samples than either of the methods based on detection of the virulence genes from DNA in whole stools. The GoldenGate method revealed the greatest agreement with the other methods. The agreement among methods was higher in cases than in controls. The new molecular technologies have a high potential for highly sensitive identification of bacterial diarrheal pathogens. PMID:23884998

  2. Survey of Culture, GoldenGate Assay, Universal Biosensor Assay, and 16S rRNA Gene Sequencing as Alternative Methods of Bacterial Pathogen Detection

    PubMed Central

    Pop, Mihai; Antonio, Martin; Walker, Alan W.; Mai, Volker; Ahmed, Dilruba; Oundo, Joseph; Tamboura, Boubou; Panchalingam, Sandra; Levine, Myron M.; Kotloff, Karen; Li, Shan; Magder, Laurence S.; Paulson, Joseph N.; Liu, Bo; Ikumapayi, Usman; Ebruke, Chinelo; Dione, Michel; Adeyemi, Mitchell; Rance, Richard; Stares, Mark D.; Ukhanova, Maria; Barnes, Bret; Lewis, Ian; Ahmed, Firoz; Alam, Meer Taifur; Amin, Ruhul; Siddiqui, Sabbir; Ochieng, John B.; Ouma, Emmanuel; Juma, Jane; Mailu, Eunice; Omore, Richard; O'Reilly, Ciara E.; Hannis, James; Manalili, Sheri; DeLeon, Jonna; Yasuda, Irene; Blyn, Lawrence; Ranken, Raymond; Li, Feng; Housley, Roberta; Ecker, David J.; Hossain, M. Anowar; Breiman, Robert F.; Morris, J. Glenn; McDaniel, Timothy K.; Parkhill, Julian; Saha, Debasish; Sampath, Rangarajan; Stine, O. Colin; Nataro, James P.

    2013-01-01

    Cultivation-based assays combined with PCR or enzyme-linked immunosorbent assay (ELISA)-based methods for finding virulence factors are standard methods for detecting bacterial pathogens in stools; however, with emerging molecular technologies, new methods have become available. The aim of this study was to compare four distinct detection technologies for the identification of pathogens in stools from children under 5 years of age in The Gambia, Mali, Kenya, and Bangladesh. The children were identified, using currently accepted clinical protocols, as either controls or cases with moderate to severe diarrhea. A total of 3,610 stool samples were tested by established clinical culture techniques: 3,179 DNA samples by the Universal Biosensor assay (Ibis Biosciences, Inc.), 1,466 DNA samples by the GoldenGate assay (Illumina), and 1,006 DNA samples by sequencing of 16S rRNA genes. Each method detected different proportions of samples testing positive for each of seven enteric pathogens, enteroaggregative Escherichia coli (EAEC), enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), Shigella spp., Campylobacter jejuni, Salmonella enterica, and Aeromonas spp. The comparisons among detection methods included the frequency of positive stool samples and kappa values for making pairwise comparisons. Overall, the standard culture methods detected Shigella spp., EPEC, ETEC, and EAEC in smaller proportions of the samples than either of the methods based on detection of the virulence genes from DNA in whole stools. The GoldenGate method revealed the greatest agreement with the other methods. The agreement among methods was higher in cases than in controls. The new molecular technologies have a high potential for highly sensitive identification of bacterial diarrheal pathogens. PMID:23884998

  3. Molecular cloning, sequencing, and expression of the crr gene: the structural gene for IIIGlc of the bacterial PEP:glucose phosphotransferase system.

    PubMed Central

    Nelson, S O; Schuitema, A R; Benne, R; van der Ploeg, L H; Plijter, J S; Aan, F; Postma, P W

    1984-01-01

    The phosphoenolpyruvate:glucose phosphotransferase system (PTS) of Salmonella typhimurium is involved both in glucose transport and in the regulation and synthesis of adenylate cyclase and several transport systems. The crr gene has been implicated in this regulating mechanism. A 9.6-kb segment of the S. typhimurium chromosome containing the crr gene was cloned in pAT153. The cloned fragment also complemented cysA mutations but did not contain a functional pts operon which is closely linked to the crr gene and codes for two enzymes of the PTS. Although cysA and crr have been reported to be located on opposite sides of ptsHI, our results suggest that the correct gene order is cysK-ptsHI-crr-cysA. Expression of crr plasmids in a maxicell system yielded two proteins which reacted with specific anti-serum against IIIGlc. The apparent mol. wts. in SDS-polyacrylamide gels were 20 000 and 21 000, the former corresponding to the major band of purified IIIGlc. Both forms were also observed in bacterial extracts and purified IIIGlc. The crr gene was localized on a 1-kb EcoRI-EcoRV fragment of the 9.6-kb insert and sequenced. It codes for a single protein (18 556 D) containing 169 amino acid residues and identified as IIIGlc. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6086327

  4. Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression.

    PubMed Central

    Rogers, E E; Ausubel, F M

    1997-01-01

    To identify plant defense responses that limit pathogen attack, Arabidopsis eds mutants that exhibit enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 were previously identified. In this study, we show that each of four eds mutants (eds5-1, eds6-1, eds7-1, and eds9-1) has a distinguishable phenotype with respect to the degree of susceptibility to a panel of bacterial phytopathogens and the ability to activate pathogenesis-related PR-1 gene expression after pathogen attack. None of the four eds mutants exhibited observable defects in mounting a hypersensitive response. Although all four eds mutants were also capable of mounting a systemic acquired resistance response, enhanced growth of P. s. maculicola ES4326 was still apparent in the secondarily infected leaves of three of the eds mutants. These data indicate that eds genes define a diverse set of previously unknown defense responses that affect resistance to virulent pathogens. PMID:9090877

  5. Prosthecobacter fluviatilis sp. nov., which lacks the bacterial tubulin btubA and btubB genes.

    PubMed

    Takeda, Minoru; Yoneya, Akiko; Miyazaki, Yuichi; Kondo, Keiko; Makita, Hiroko; Kondoh, Masashi; Suzuki, Ichiro; Koizumi, Jun-ichi

    2008-07-01

    Leptothrix cholodnii is a sheathed bacterium often found in metal-rich and oligotrophic aquatic environments. A bacterial strain that is able to degrade the NaOH-treated sheath of L. cholodnii was isolated. The isolate was a Gram-negative, aerobic and prosthecate bacterium. The optimum growth temperature and pH were 30 degrees C and pH 7.0, respectively. The DNA G+C content was 62.9 mol%. The major respiratory quinone was MK-6. A phylogenetic analysis based on the 16S rRNA gene indicated that the isolate is a member of the genus Prosthecobacter. The nearest relative was the type strain of Prosthecobacter vanneervenii, with a similarity of 97.1 %. However, the isolate does not possess the bacterial tubulin genes, btubA and btubB, unique to known species of the genus Prosthecobacter. It is proposed that the isolate represents a novel species, Prosthecobacter fluviatilis sp. nov. The type strain is HAQ-1(T) (=JCM 14805(T) =KACC 12649(T) =KCTC 22182(T)). PMID:18599695

  6. nspA gene as a specific genetic marker for detection of Neisseria meningitidis causing bacterial meningitis.

    PubMed

    Bhatt, Neha; Khan, Nazneen; Dash, Sandip K; Khare, Shashi; Kumar, Ashok

    2014-06-01

    Bacterial meningitis caused by Neisseria meningitidis which causes human brain meninges damage, is generally diagnosed from patient cerebrospinal fluid through microscopy, immunological assays, biochemical test, PCR, microarray and biosensors. However, these methods are expensive, time-consuming or non-confirmatory due to certain limitations. A quick PCR based method was developed for detection of bacterial meningitis caused by N. meningitidis using specific primers based on amplification of virulence nspA (Neisseria surface protein A) gene partial sequence (202 bp). The nspA gene amplicon could be used as a genetic marker for minimum detection of 10 ng genomic DNA (G-DNA) of N. meningitidis with high sensitivity only in 80 min, which is least time reported for the confirmation of the disease. However, the lower detection limit was found as low as 1.0 ng G-DNA, but with less sensitivity. The cross-reactivity of the genetic marker, was also studied with other possible pathogens. A comparison with the presently available detection methods and our method was also done using patient samples. PMID:25204083

  7. Proteomics as a Quality Control Tool of Pharmaceutical Probiotic Bacterial Lysate Products

    PubMed Central

    Klein, Gnter; Schanstra, Joost P.; Hoffmann, Janosch; Mischak, Harald; Siwy, Justyna; Zimmermann, Kurt

    2013-01-01

    Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 8789% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots. PMID:23840518

  8. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    SciTech Connect

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.; Heimesaat, Markus M.

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.

  9. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    DOE PAGESBeta

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.; Heimesaat, Markus M.

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n =more » 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.« less

  10. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens

    PubMed Central

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.

    2015-01-01

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Nave Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci. PMID:25658760

  11. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens.

    PubMed

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L; Lynch, Susan V

    2015-01-01

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Nave Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci. PMID:25658760

  12. The M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of Riemerella anatipestifer.

    PubMed

    Zou, Jiechi; Wang, Xiaolan; Tian, Mingxing; Cao, Shoulin; Hou, Wanwan; Wang, Shaohui; Han, Xiangan; Ding, Chan; Yu, Shengqing

    2015-05-15

    Riemerella anatipestifer is one of the most economically important pathogens of farm ducks worldwide. However, the molecular mechanisms regarding its antigenicity and pathogenicity are poorly understood. We previously constructed a library of random Tn4351 transposon mutants using R. anatipestifer strain CH3. In this study, M949_1556 gene inactivated mutant strain CH3?M949_1556 was identified by screening of the library using monoclonal antibody against R. anatipestifer serotype 1 lipopolysaccharide (LPS) (anti-LPS MAb) followed by sequence analysis. The mutant strain presented no reactivity to the anti-LPS MAb in an indirect ELISA. Animal studies showed that the median lethal dose (LD50) of CH3?M949_1556 was >10(10) colony forming units (CFU), which was attenuated more than 50 times, compared with that of wild-type strain CH3 (LD50=210(8) CFU). The bacterial loads in the blood of CH3?M949_1556 infected ducks were significantly decreased, compared with those of CH3-infected ducks. In addition, CH3?M949_1556 presented significant, higher susceptibility to complement-dependent killing than CH3 did in vitro. Furthermore, CH3?M949_1556 showed increased bacterial adhesion and invasion capacities to Vero cells. Immunization with CH3?M949_1556-inactived vaccine was effective in protecting the ducks from challenge with R. anatipestifer serotype 1 strain WJ4, serotype 2 strain Yb2 and serotype 10 strain HXb2, suggesting that the mutant strain CH3?M949_1556 could provide a broad cross-protection among R. anatipestifer serotypes 1, 2 and 10 strains. Our results demonstrated that the M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of R. anatipestifer. PMID:25804836

  13. Transcription-coupled DNA supercoiling dictates the chromosomal arrangement of bacterial genes.

    PubMed

    Sobetzko, Patrick

    2016-02-29

    Over the recent decade, the central importance of DNA supercoiling in chromosome organization and global gene regulation of bacteria became more and more visible. With a regulon comprising more than 2000 genes in Escherichia coli, DNA supercoiling is among the most influential regulators of gene expression found in bacteria so far. However, the mechanism creating thousands of diverse temporal gene expression patterns coordinated by DNA supercoiling remains unclear. In this study we show that a specific chromosomal arrangement of genes modulates the local levels of DNA supercoiling at gene promoters via transcription-coupled DNA supercoiling (TCDS) in the model organism E. coli. Our findings provide a consistent explanation for the strong positive coupling of temporal gene expression patterns of neighboring genes. Using comparative genomics we are furthermore able to provide evidence that TCDS is a driving force for the evolution of chromosomal gene arrangement patterns in other Enterobacteriaceae. With the currently available data of promoter supercoiling sensitivity we prove that the same principle is applicable also for the evolutionary distant gram-positive pathogenic bacterium Streptococcus pneumoniae. Moreover, our findings are fully consistent with recent investigations concerning the regulatory impact of TCDS on gene pairs in eukaryots underpinning the broad applicability of our analysis. PMID:26783203

  14. Transcription-coupled DNA supercoiling dictates the chromosomal arrangement of bacterial genes

    PubMed Central

    Sobetzko, Patrick

    2016-01-01

    Over the recent decade, the central importance of DNA supercoiling in chromosome organization and global gene regulation of bacteria became more and more visible. With a regulon comprising more than 2000 genes in Escherichia coli, DNA supercoiling is among the most influential regulators of gene expression found in bacteria so far. However, the mechanism creating thousands of diverse temporal gene expression patterns coordinated by DNA supercoiling remains unclear. In this study we show that a specific chromosomal arrangement of genes modulates the local levels of DNA supercoiling at gene promoters via transcription-coupled DNA supercoiling (TCDS) in the model organism E. coli. Our findings provide a consistent explanation for the strong positive coupling of temporal gene expression patterns of neighboring genes. Using comparative genomics we are furthermore able to provide evidence that TCDS is a driving force for the evolution of chromosomal gene arrangement patterns in other Enterobacteriaceae. With the currently available data of promoter supercoiling sensitivity we prove that the same principle is applicable also for the evolutionary distant gram-positive pathogenic bacterium Streptococcus pneumoniae. Moreover, our findings are fully consistent with recent investigations concerning the regulatory impact of TCDS on gene pairs in eukaryots underpinning the broad applicability of our analysis. PMID:26783203

  15. The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    PubMed Central

    Connolly, James P. R.; Goldstone, Robert J.; Burgess, Karl; Cogdell, Richard J.; Beatson, Scott A.; Vollmer, Waldemar; Smith, David G. E.; Roe, Andrew J.

    2014-01-01

    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host-pathogen interaction. Here we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type Three Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the LEE pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity. PMID:25526369

  16. Genetic transformation of Nannochloropsis oculata with a bacterial phleomycin resistance gene as dominant selective marker

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Pan, Kehou; Zhang, Lin; Zhu, Baohua; Yang, Guanpin; Zhang, Xiangyang

    2016-04-01

    The gene ble from Streptoalloteichus hindustanus is widely used as a selective antibiotic marker. It can control the phleomycin resistance, and significantly increase the tolerance of hosts to zeocin. The unicellular marine microalga Nannochloropsis oculata is extremely sensitive to zeocin. We selected ble as the selective marker for the genetic transformation of N. oculata. After the algal cells at a density of 2×107 cells mL-1 was digested with 4% hemicellulase and 2% driselase for 1 h, the protoplasts accounted for 90% of the total. The ble was placed at the downstream of promoter HSP70A-RUBS2 isolated from Chlamydomonas reinhardtii, yielding a recombinant expression construct pMS188. The construct was transferred into the protoplasts through electroporation (1 kV, 15 μS). The transformed protoplasts were cultured in fresh f/2 liquid medium, and selected on solid f/2 medium supplemented with 500 ng mL-1 zeocin. The PCR result proved that ble existed in the transformants. Three transformants had been cultured for at least 5 generations without losing ble. Southern blotting analysis showed that the ble has been integrated into the genome of N. oculata. The ble will serve as a new dominant selective marker in genetic engineering N. oculata.

  17. Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies

    PubMed Central

    2014-01-01

    Background The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations. Results Analysis of 10 individuals from each of seven geographic regions, encompassing Africa, Asia and Europe, revealed that the genes gdh and ITS exhibited the highest number of polymorphic sites (59% and 79%, respectively) and most OTUs (defined at 99% identity) were unique to a given country. In contrast, the gene gtf had the lowest number of polymorphic sites (21%), and most OTUs were shared among countries. Most of the variation in the gdh and ITS genes was explained by the high clonal diversity within individuals (around 80%) followed by inter-individual variation of around 20%, leaving the geographic region as providing virtually no source of sequence variation. Conversely, for gtf the variation within individuals accounted for 32%, between individuals for 57% and among geographic regions for 11%. This geographic signature persisted upon extension of the analysis to four additional locations from the American continent. Pearson correlation analysis, pairwise Fst-cluster analysis as well as UniFrac analyses consistently supported a tree structure in which the European countries clustered tightly together and branched with American countries and South Africa, to the exclusion of Asian countries and the Congo. Conclusion This study shows that saliva harbours protein-coding bacterial genes that are geographically structured, and which could potentially be used for addressing previously unresolved human migration events. PMID:25183372

  18. Diversity of endophytic bacteria in Malaysian plants as revealed by 16S rRNA encoding gene sequence based method of bacterial identification?

    PubMed Central

    Loh, Chye Ying; Tan, Yin Yin; Rohani, Rahim; Weber, Jean-Frdric F.; Bhore, Subhash Janardhan

    2013-01-01

    Bacterial endophytes do have several potential applications in pharmacy, medicine and agricultural biotech industry. The main objective of this study was to understand types of bacterial endophytes associated with dicotyledonous (dicot) and monocotyledonous (monocot) plant species. Isolation of the endophytic bacteria was performed using surface-sterilized various tissue samples, and identification of the endophytic bacterial isolates (EBIs) was completed using 16S rRNA encoding gene sequence similarity based method. In total, 996 EBIs were isolated and identified from 1055 samples of 31 monocot and 65 dicot plant species from Peninsular Malaysia. The 996 EBIs represented 71 different types of bacterial species. Twelve (12) out of 71 species are reported as endophytes for the first time. We conclude that diverse types of bacterial endophytes are associated with dicot and monocot plants, and could be useful in pharmacy, medicine and agricultural biotechnology for various potential applications. PMID:24396249

  19. Transcriptional Control of the TNF Gene

    PubMed Central

    Falvo, James V.; Tsytsykova, Alla V.; Goldfeld, Anne E.

    2016-01-01

    The cytokine TNF is a critical mediator of immune and inflammatory responses. The TNF gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving the recruitment of distinct sets of transcription factors to a compact and modular promoter region. In this review, we describe our current understanding of the mechanisms through which TNF transcription is specifically activated by a variety of extracellular stimuli in multiple cell types, including T cells, B cells, macrophages, mast cells, dendritic cells, and fibroblasts. We discuss the role of nuclear factor of activated T cells and other transcription factors and coactivators in enhanceosome formation, as well as the contradictory evidence for a role for nuclear factor κB as a classical activator of the TNF gene. We describe the impact of evolutionarily conserved cis-regulatory DNA motifs in the TNF locus upon TNF gene transcription, in contrast to the neutral effect of single nucleotide polymorphisms. We also assess the regulatory role of chromatin organization, epigenetic modifications, and long-range chromosomal interactions at the TNF locus. PMID:20173386

  20. Regulated bioluminescence as a tool for bioremediation process monitoring and control of bacterial cultures

    SciTech Connect

    Burlage, R.S.; Heitzer, A.; DiGrazia, P.M.

    1991-12-01

    An effective on-line monitoring technique for toxic waste bioremediation using bioluminescent microorganisms has demonstrated great potential for the description and optimization of biological processes. The lux genes of the bacterium Vibrio Fascheri are used by this species to produce visible light. The lux genes can be genetically fused to the control region of a catabolic gene, with the result that bioluminescence is produced whenever the catabolic gene is induced. Thus the detection of light from a sample (monoculture, consortium, or bioreactor) indicates that genetic expression from a specific gene is occurring. We have used this technique to monitor biodegradation of specific contaminants from waste sites. For these studies, fusions between the lux genes and the operons for naphthalene (nah) and toluene/xylene (xyl) degradation were constructed. Strains carrying one of these fusions respond sensitively and specifically to target substrates. Bioluminescence from these cultures can be rapidly measured in a non-destructive and non-invasive manner. The potential for this technique in this and other biological systems is discussed. 7 refs., 3 figs.

  1. Regulated bioluminescence as a tool for bioremediation process monitoring and control of bacterial cultures

    SciTech Connect

    Burlage, R.S. ); Heitzer, A.; DiGrazia, P.M. . Center for Environmental Biotechnology)

    1991-01-01

    An effective on-line monitoring technique for toxic waste bioremediation using bioluminescent microorganisms has demonstrated great potential for the description and optimization of biological processes. The lux genes of the bacterium Vibrio Fascheri are used by this species to produce visible light. The lux genes can be genetically fused to the control region of a catabolic gene, with the result that bioluminescence is produced whenever the catabolic gene is induced. Thus the detection of light from a sample (monoculture, consortium, or bioreactor) indicates that genetic expression from a specific gene is occurring. We have used this technique to monitor biodegradation of specific contaminants from waste sites. For these studies, fusions between the lux genes and the operons for naphthalene (nah) and toluene/xylene (xyl) degradation were constructed. Strains carrying one of these fusions respond sensitively and specifically to target substrates. Bioluminescence from these cultures can be rapidly measured in a non-destructive and non-invasive manner. The potential for this technique in this and other biological systems is discussed. 7 refs., 3 figs.

  2. Organization and control of genes encoding catabolic enzymes in Rhizobiaceae

    SciTech Connect

    Parke, D.; Ornston, L.N.

    1993-03-01

    Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the [beta]-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novel regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate [beta]-carboxy-cis,cis-muconate. [beta]-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for [beta]-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to [beta]-carboxy-cis,cis-muconate.

  3. Novel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence

    PubMed Central

    An, Shi-qi; Caly, Delphine L.; McCarthy, Yvonne; Murdoch, Sarah L.; Ward, Joseph; Febrer, Melanie; Dow, J. Maxwell; Ryan, Robert P.

    2014-01-01

    Bis-(3′,5′) cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (Kd∼2 µM). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence. PMID:25329577

  4. Bacterial contamination of central venous catheters during insertion: a double blind randomised controlled trial.

    PubMed

    Hall, N J; Hartley, J; Ade-Ajayi, N; Laughlan, K; Roebuck, D; Kleidon, T; Powis, D; Pierro, A

    2005-07-01

    Static electricity within sterile packaging may result in bacterial contamination of central venous catheters (CVCs) prior to insertion. To prevent this, some surgeons inject saline into the pack before opening it. This trial was designed to determine the effect of this procedure. A double blind randomised controlled trial of 47 CVCs comparing injection of 2 ml of sterile saline into the pack prior to opening with no injection was performed. Five centimetre lengths cut from the tip of the catheter before and after subcutaneous tunnelling were sent for microbiological culture. Eight catheters (17%) showed evidence of bacterial contamination prior to insertion into the vein. Two (4.2%) were contaminated prior to tunnelling and seven (14.9%) afterwards. One catheter was contaminated before and after tunnelling. All but one of the contaminating bacteria were coagulase negative staphylococci. There was no significant difference in the contamination rate between catheters from packs that had been injected (5/25) and those that had not (3/22), P = 0.56. Just under one-fifth of the catheters were contaminated with bacteria prior to insertion into the vein but this was not influenced by prior injection of saline into the pack. We conclude that there is no evidence to support the practice of injecting the catheter pack prior to opening. PMID:16010547

  5. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis.

    PubMed

    Mergaert, Peter; Uchiumi, Toshiki; Alunni, Benot; Evanno, Gwnalle; Cheron, Anglique; Catrice, Olivier; Mausset, Anne-Elisabeth; Barloy-Hubler, Frdrique; Galibert, Francis; Kondorosi, Adam; Kondorosi, Eva

    2006-03-28

    Symbiosis between legumes and Rhizobium bacteria leads to the formation of root nodules where bacteria in the infected plant cells are converted into nitrogen-fixing bacteroids. Nodules with a persistent meristem are indeterminate, whereas nodules without meristem are determinate. The symbiotic plant cells in both nodule types are polyploid because of several cycles of endoreduplication (genome replication without mitosis and cytokinesis) and grow consequently to extreme sizes. Here we demonstrate that differentiation of bacteroids in indeterminate nodules of Medicago and related legumes from the galegoid clade shows remarkable similarity to host cell differentiation. During bacteroid maturation, repeated DNA replication without cytokinesis results in extensive amplification of the entire bacterial genome and elongation of bacteria. This finding reveals a positive correlation in prokaryotes between DNA content and cell size, similar to that in eukaryotes. These polyploid bacteroids are metabolically functional but display increased membrane permeability and are nonviable, because they lose their ability to resume growth. In contrast, bacteroids in determinate nodules of the nongalegoid legumes lotus and bean are comparable to free-living bacteria in their genomic DNA content, cell size, and viability. Using recombinant Rhizobium strains nodulating both legume types, we show that bacteroid differentiation is controlled by the host plant. Plant factors present in nodules of galegoid legumes but absent from nodules of nongalegoid legumes block bacterial cell division and trigger endoreduplication cycles, thereby forcing the endosymbionts toward a terminally differentiated state. Hence, Medicago and related legumes have evolved a mechanism to dominate the symbiosis. PMID:16547129

  6. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins are central regulators of plant growth and development, but little is known about their mode of action. By using differential display, we identified a gene, IBC6 (for induced by cytokinin), from etiolated Arabidopsis seedlings, that is induced rapidly by cytokinin. The steady state level of IBC6 mRNA was elevated within 10 min by the exogenous application of cytokinin, and this induction did not require de novo protein synthesis. IBC6 was not induced by other plant hormones or by light. A second Arabidopsis gene with a sequence highly similar to IBC6 was identified. This IBC7 gene also was induced by cytokinin, although with somewhat slower kinetics and to a lesser extent. The pattern of expression of the two genes was similar, with higher expression in leaves, rachises, and flowers and lower transcript levels in roots and siliques. Sequence analysis revealed that IBC6 and IBC7 are similar to the receiver domain of bacterial two-component response regulators. This homology, coupled with previously published work on the CKI1 histidine kinase homolog, suggests that these proteins may play a role in early cytokinin signaling.

  7. Temporal and Spatial Coexistence of Archaeal and Bacterial amoA Genes and Gene Transcripts in Lake Lucerne

    PubMed Central

    Vissers, Elisabeth W.; Anselmetti, Flavio S.; Bodelier, Paul L. E.; Muyzer, Gerard; Schleper, Christa; Tourna, Maria; Laanbroek, Hendrikus J.

    2013-01-01

    Despite their crucial role in the nitrogen cycle, freshwater ecosystems are relatively rarely studied for active ammonia oxidizers (AO). This study of Lake Lucerne determined the abundance of both amoA genes and gene transcripts of ammonia-oxidizing archaea (AOA) and bacteria (AOB) over a period of 16 months, shedding more light on the role of both AO in a deep, alpine lake environment. At the surface, at 42?m water depth, and in the water layer immediately above the sediment, AOA generally outnumbered AOB. However, in the surface water during summer stratification, when both AO were low in abundance, AOB were more numerous than AOA. Temporal distribution patterns of AOA and AOB were comparable. Higher abundances of amoA gene transcripts were observed at the onset and end of summer stratification. In summer, archaeal amoA genes and transcripts correlated negatively with temperature and conductivity. Concentrations of ammonium and oxygen did not vary enough to explain the amoA gene and transcript dynamics. The observed herbivorous zooplankton may have caused a hidden flux of mineralized ammonium and a change in abundance of genes and transcripts. At the surface, AO might have been repressed during summer stratification due to nutrient limitation caused by active phytoplankton. PMID:23533328

  8. R gene-controlled host specificity in the legumerhizobia symbiosis

    PubMed Central

    Yang, Shengming; Tang, Fang; Gao, Muqiang; Krishnan, Hari B.; Zhu, Hongyan

    2010-01-01

    Leguminous plants can enter into root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. An intriguing but still poorly understood property of the symbiosis is its host specificity, which is controlled at multiple levels involving both rhizobial and host genes. It is widely believed that the host specificity is determined by specific recognition of bacterially derived Nod factors by the cognate host receptor(s). Here we describe the positional cloning of two soybean genes Rj2 and Rfg1 that restrict nodulation with specific strains of Bradyrhizobium japonicum and Sinorhizobium fredii, respectively. We show that Rj2 and Rfg1 are allelic genes encoding a member of the Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant resistance (R) proteins. The involvement of host R genes in the control of genotype-specific infection and nodulation reveals a common recognition mechanism underlying symbiotic and pathogenic hostbacteria interactions and suggests the existence of their cognate avirulence genes derived from rhizobia. This study suggests that establishment of a root nodule symbiosis requires the evasion of plant immune responses triggered by rhizobial effectors. PMID:20937853

  9. Single gene target bacterial identification. groEL gene sequencing for discriminating clinical isolates of Burkholderia pseudomallei and Burkholderia thailandensis.

    PubMed

    Woo, Patrick C Y; Woo, Gibson K S; Lau, Susanna K P; Wong, Samson S Y; Yuen, Kwok yung

    2002-10-01

    Proper identification of Burkholderia pseudomallei and Burkholderia thailandensis is crucial in guiding clinical management of patients with suspected melioidosis, as more than 99% of cases of melioidosis are caused by B. pseudomallei, whereas B. thailandensis is only responsible for causing less than 1% of the cases. However, the difference between the 16S ribosomal RNA gene sequences of B. pseudomallei and that of B. thailandensis is only 1%, and is therefore not discriminative enough for distinguishing the 2 species confidently. In this study, we amplified and sequenced the groEL genes of 7 strains of B. thailandensis and 6 strains of B. pseudomallei, and compared the sequences with 7 other groEL gene sequences of Burkholderia species. BLAST analysis revealed that the putative protein encoded by the groEL gene of B. thailandensis has 99.6%, 99.5%, 98.4%, 98.5%, and 96.5% amino acid identity with the groEL of B. pseudomallei, B. mallei, B. cepacia, B. vietnamiensis, and B. fungorum respectively. The amino acid sequences of GroEL of the strains of B. thailandensis and B. pseudomallei all showed >99.5% amino acid identity with each other. The nucleotide sequence of the groEL gene of any of the strains of B. thailandensis showed >99.8% nucleotide identity with that of any of the other strains of B. thailandensis, and the nucleotide sequence of the groEL gene of any of the strains of B. pseudomallei showed >99.5% nucleotide identity with that of any of the other strains of B. pseudomallei. However, the nucleotide sequence of any of the strains of B. thailandensis showed <97.6% nucleotide identity with any of the strains of B. pseudomallei. The amino acid sequences of GroEL of the 20 strains of Burkholderia species all showed >96% amino acid identity with each other. Furthermore, the nucleotide sequence of the groEL genes of the 2 strains of B. cepacia showed >99.5% nucleotide identity with each other, and the nucleotide sequence of the groEL gene of B. mallei showed >99.5% nucleotide identity with any of the strains of B. pseudomallei. The groEL gene sequence is therefore good for distinguishing between B. thailandensis and B. pseudomallei, and the GroEL amino acid and groEL nucleotide sequences of this single gene locus may potentially be useful for a 2-tier hierarchical identification of medically important Burkholderia at the genus and species levels respectively. PMID:12458120

  10. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  11. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana.

    PubMed

    Eamens, Andrew L; McHale, Marcus; Waterhouse, Peter M

    2014-01-01

    In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA* (passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/amiRNA* sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana. PMID:24057368

  12. A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors

    PubMed Central

    Ortega, Davi R.; Yang, Chen; Ames, Peter; Baudry, Jerome; Parkinson, John S.; Zhulin, Igor B.

    2015-01-01

    Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signaling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signaling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396' pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well. PMID:24335957

  13. Membrane Proteases in the Bacterial Protein Secretion and Quality Control Pathway

    PubMed Central

    Wang, Peng; van Dijl, Jan Maarten

    2012-01-01

    Summary: Proteolytic cleavage of proteins that are permanently or transiently associated with the cytoplasmic membrane is crucially important for a wide range of essential processes in bacteria. This applies in particular to the secretion of proteins and to membrane protein quality control. Major progress has been made in elucidating the structure-function relationships of many of the responsible membrane proteases, including signal peptidases, signal peptide hydrolases, FtsH, the rhomboid protease GlpG, and the site 1 protease DegS. These enzymes employ very different mechanisms to cleave substrates at the cytoplasmic and extracytoplasmic membrane surfaces or within the plane of the membrane. This review highlights the different ways that bacterial membrane proteases degrade their substrates, with special emphasis on catalytic mechanisms and substrate delivery to the respective active sites. PMID:22688815

  14. A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors

    NASA Astrophysics Data System (ADS)

    Ortega, Davi R.; Yang, Chen; Ames, Peter; Baudry, Jerome; Parkinson, John S.; Zhulin, Igor B.

    2013-12-01

    Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signalling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signalling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396? pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well.

  15. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies.

    PubMed

    Vasileiadis, Sotirios; Puglisi, Edoardo; Arena, Maria; Cappa, Fabrizio; Cocconcelli, Pier S; Trevisan, Marco

    2012-01-01

    The novel multi-million read generating sequencing technologies are very promising for resolving the immense soil 16S rRNA gene bacterial diversity. Yet they have a limited maximum sequence length screening ability, restricting studies in screening DNA stretches of single 16S rRNA gene hypervariable (V) regions. The aim of the present study was to assess the effects of properties of four consecutive V regions (V3-6) on commonly applied analytical methodologies in bacterial ecology studies. Using an in silico approach, the performance of each V region was compared with the complete 16S rRNA gene stretch. We assessed related properties of the soil derived bacterial sequence collection of the Ribosomal Database Project (RDP) database and concomitantly performed simulations based on published datasets. Results indicate that overall the most prominent V region for soil bacterial diversity studies was V3, even though it was outperformed in some of the tests. Despite its high performance during most tests, V4 was less conserved along flanking sites, thus reducing its ability for bacterial diversity coverage. V5 performed well in the non-redundant RDP database based analysis. However V5 did not resemble the full-length 16S rRNA gene sequence results as well as V3 and V4 did when the natural sequence frequency and occurrence approximation was considered in the virtual experiment. Although, the highly conserved flanking sequence regions of V6 provide the ability to amplify partial 16S rRNA gene sequences from very diverse owners, it was demonstrated that V6 was the least informative compared to the rest examined V regions. Our results indicate that environment specific database exploration and theoretical assessment of the experimental approach are strongly suggested in 16S rRNA gene based bacterial diversity studies. PMID:22880076

  16. GenePRIMP: A software quality control tool

    ScienceCinema

    Amrita Pati

    2010-09-01

    Amrita Pati of the DOE Joint Genome Institute's Genome Biology group describes the software tool GenePRIMP and how it fits into the quality control pipeline for microbial genomics. Further details regarding GenePRIMP appear in a paper published online May 2, 2010 in Nature Methods.

  17. GenePRIMP: A software quality control tool

    SciTech Connect

    Amrita Pati

    2010-05-05

    Amrita Pati of the DOE Joint Genome Institute's Genome Biology group describes the software tool GenePRIMP and how it fits into the quality control pipeline for microbial genomics. Further details regarding GenePRIMP appear in a paper published online May 2, 2010 in Nature Methods.

  18. Pathogenic bacterial species associated with endodontic infection evade innate immune control by disabling neutrophils.

    PubMed

    Matsui, Aritsune; Jin, Jun-O; Johnston, Christopher D; Yamazaki, Hajime; Houri-Haddad, Yael; Rittling, Susan R

    2014-10-01

    Endodontic infections, in which oral bacteria access the tooth pulp chamber, are common and do not resolve once established. To investigate the effects of these infections on the innate immune response, we established a mouse subcutaneous chamber model, where a mixture of four oral pathogens commonly associated with these infections (endodontic pathogens [EP]), i.e., Fusobacterium nucleatum, Streptococcus intermedius, Parvimonas micra, and Prevotella intermedia, was inoculated into subcutaneously implanted titanium chambers. Cells that infiltrated the chamber after these infections were primarily neutrophils; however, these neutrophils were unable to control the infection. Infection with a nonpathogenic oral bacterial species, Streptococcus mitis, resulted in well-controlled infection, with bacterial numbers reduced by 4 to 5 log units after 7 days. Propidium iodide (PI) staining of the chamber neutrophils identified three distinct populations: neutrophils from EP-infected chambers were intermediate in PI staining, while cells in chambers from mice infected with S. mitis were PI positive (apoptotic) or negative (live). Strikingly, neutrophils from EP-infected chambers were severely impaired in their ability to phagocytose and to generate reactive oxygen species in vitro after removal from the chamber compared to cells from S. mitis-infected chambers. The mechanism of neutrophil impairment was necrotic cell death as determined by morphological analyses. P. intermedia alone could induce a similar neutrophil phenotype. We conclude that the endodontic pathogens, particularly P. intermedia, can efficiently disable and kill infiltrating neutrophils, allowing these infections to become established. These results can help explain the persistence of endodontic infections and demonstrate a new virulence mechanism associated with P. intermedia. PMID:25024367

  19. Pathogenic Bacterial Species Associated with Endodontic Infection Evade Innate Immune Control by Disabling Neutrophils

    PubMed Central

    Matsui, Aritsune; Jin, Jun-O; Johnston, Christopher D.; Yamazaki, Hajime; Houri-Haddad, Yael

    2014-01-01

    Endodontic infections, in which oral bacteria access the tooth pulp chamber, are common and do not resolve once established. To investigate the effects of these infections on the innate immune response, we established a mouse subcutaneous chamber model, where a mixture of four oral pathogens commonly associated with these infections (endodontic pathogens [EP]), i.e., Fusobacterium nucleatum, Streptococcus intermedius, Parvimonas micra, and Prevotella intermedia, was inoculated into subcutaneously implanted titanium chambers. Cells that infiltrated the chamber after these infections were primarily neutrophils; however, these neutrophils were unable to control the infection. Infection with a nonpathogenic oral bacterial species, Streptococcus mitis, resulted in well-controlled infection, with bacterial numbers reduced by 4 to 5 log units after 7 days. Propidium iodide (PI) staining of the chamber neutrophils identified three distinct populations: neutrophils from EP-infected chambers were intermediate in PI staining, while cells in chambers from mice infected with S. mitis were PI positive (apoptotic) or negative (live). Strikingly, neutrophils from EP-infected chambers were severely impaired in their ability to phagocytose and to generate reactive oxygen species in vitro after removal from the chamber compared to cells from S. mitis-infected chambers. The mechanism of neutrophil impairment was necrotic cell death as determined by morphological analyses. P. intermedia alone could induce a similar neutrophil phenotype. We conclude that the endodontic pathogens, particularly P. intermedia, can efficiently disable and kill infiltrating neutrophils, allowing these infections to become established. These results can help explain the persistence of endodontic infections and demonstrate a new virulence mechanism associated with P. intermedia. PMID:25024367

  20. Distribution, structure and diversity of bacterial genes encoding two-component proteins in the Euryarchaeota

    PubMed Central

    Ashby, Mark K.

    2006-01-01

    The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005) were searched for the presence of potential two-component open reading frames (ORFs) using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005) and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events. PMID:16877318

  1. Control of globin gene expression during development and erythroid differentiation

    PubMed Central

    Stamatoyannopoulos, George

    2010-01-01

    Extensive studies during the last 30 years have led to considerable understanding of cellular and molecular control of hemoglobin switching. Cell biology studies in the 1970s defined the control of globin genes during erythroid differentiation and led to development of therapies for sickle cell disease. Molecular investigations of the last 20 years have delineated the two basic mechanisms that control globin gene activity during developmentautonomous silencing and gene competition. Studies of hemoglobin switching have provided major insights on the control of gene loci by remote regulatory elements. Research in this field has an impact on understanding regulatory mechanisms in general and is of particular importance for eventual development of molecular cures for sickle cell disease and ? thalassemia. PMID:15730849

  2. Variability in abundance of the Bacterial and Archaeal 16S rRNA and amoA genes in water columns of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Chen, S.; Xie, W.; Wang, P.; Zhang, C. L.

    2014-12-01

    Recent advances in marine microbial ecology have shown that ammonia-oxidizing Archaea (AOA) are more abundant than ammonia-oxidizing bacteria (AOB), although total Bacteria are more abundant than total Archaea in marine environments. This study aimed to examine the spatial distribution and abundance of planktonic archaeal and bacterial 16S rRNA- and amoA genes in the northern South China Sea. Water samples were collected at different depths at six stations (maximum depth ranging from 1800 m to 3200 m)with four stations (B2, B3, B6, B7) located along a transect from the northeastern continental slope to the Bashi Strait and the other two (D3, D5) located southwest of this transect. Quantitative PCR of the 16S rRNA- and amoA genes was used to estimate the abundances of total Archaea, total Bacteria, and AOA and AOB, respectively. At the B series stations, the abundance of bacterial 16S rRNA gene was twofold to 36fold higher than that of the archaeal 16S rRNA gene while fivefold lower to sixfold higher at the two D stations, with both genes showing peak values slightly below sea surface (5-75 m depths) at all stations. The archaeal amoA gene had similar variations with the archaeal 16S rRNA gene, but was 1-4 orders of magnitude lower than the archaeal 16S rRNA gene at all stations. Bacterial amoA gene was below the detection at all stations. Our results also show the difference in depth profiles among these stations, which may be caused by the difference in water movement between these regions. The non-detection of bacterial amoA gene indicates that ammonia-oxidizing Archaea are the dominant group of microorganisms in nitrification of the South China Sea, which is consistent with observations in other oceans.

  3. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder. PMID:26332965

  4. Rho-dependent transcription termination of a bacterial operon is antagonized by an extrachromosomal gene product.

    PubMed Central

    Lagos, R; Jiang, R Z; Kim, S; Goldstein, R

    1986-01-01

    The psu gene product of "phasmid" (phage-plasmid) P4 acts as a transcription antitermination factor in trans and in cis, respectively, within the morphogenic operons of its P2 phage helper during lytic viral development and on P4 itself during the establishment stage of its alternative mode of propagation as a plasmid. Here we show that psu also antagonizes activity of the Escherichia coli transcription termination factor rho at the terminator of the trp operon. Such a finding provides to our knowledge the first direct evidence for antitermination activity at a known rho-dependent site by the psu gene product. It also reveals an example of an extrachromosomal gene product that acts on specific sites of three different genomes to regulate expression of unlinked families of genes. Images PMID:3540944

  5. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea.

    PubMed Central

    Pastuglia, M; Roby, D; Dumas, C; Cock, J M

    1997-01-01

    A receptor-like kinase, SRK, has been implicated in the autoincompatible response that leads to the rejection of self-pollen in Brassica plants. SRK is encoded by one member of a multigene family, which includes several receptor-like kinase genes with patterns of expression very different from that of SRK but of unknown function. Here, we report the characterization of a novel member of the Brassica S gene family, SFR2. RNA gel blot analysis demonstrated that SFR2 mRNA accumulated rapidly in response both to wounding and to infiltration with either of two bacteria: Xanthomonas campestris, a pathogen, and Escherichia coli, a saprophyte. SFR2 mRNA also accumulated rapidly after treatment with salicylic acid, a molecule that has been implicated in plant defense response signaling pathways. A SFR2 promoter and reporter gene fusion was introduced into tobacco and was shown to be induced by bacteria of another genus, Ralstonia (Pseudomonas) solanacearum. The accumulation of SFR2 mRNA in response to wounding and pathogen invasion is typical of a gene involved in the defense responses of the plant. The rapidity of SFR2 mRNA accumulation is consistent with SFR2 playing a role in the signal transduction pathway that leads to induction of plant defense proteins, such as pathogenesis-related proteins or enzymes of phenylpropanoid metabolism. PMID:9014364

  6. A Locked Nucleic Acid (LNA)-Based Real-Time PCR Assay for the Rapid Detection of Multiple Bacterial Antibiotic Resistance Genes Directly from Positive Blood Culture

    PubMed Central

    Zhu, Lingxiang; Shen, Dingxia; Zhou, Qiming; Li, Zexia; Fang, Xiangdong; Li, Quan-Zhen

    2015-01-01

    Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA)-based quantitative real-time PCR (LNA-qPCR) method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1–10 colony forming units (CFU) per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4%) were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates. PMID:25775001

  7. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin.

    PubMed

    Slager, Jelle; Kjos, Morten; Attaiech, Laetitia; Veening, Jan-Willem

    2014-04-10

    Streptococcus pneumoniae (pneumococcus) kills nearly 1 million children annually, and the emergence of antibiotic-resistant strains poses a serious threat to human health. Because pneumococci can take up DNA from their environment by a process called competence, genes associated with antibiotic resistance can rapidly spread. Remarkably, competence is activated in response to several antibiotics. Here, we demonstrate that antibiotics targeting DNA replication cause an increase in the copy number of genes proximal to the origin of replication (oriC). As the genes required for competence initiation are located near oriC, competence is thereby activated. Transcriptome analyses show that antibiotics targeting DNA replication also upregulate origin-proximal gene expression in other bacteria. This mechanism is a direct, intrinsic consequence of replication fork stalling. Our data suggest that evolution has conserved the oriC-proximal location of important genes in bacteria to allow for a robust response to replication stress without the need for complex gene-regulatory pathways. PAPERCLIP: PMID:24725406

  8. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    USGS Publications Warehouse

    Richter, C.A.; Wright-Osment, Maureen K.; Zajicek, J.L.; Honeyfield, D.C.; Tillitt, D.E.

    2009-01-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity.

  9. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.

    PubMed

    Rivero, Mercedes; Furman, Nicols; Mencacci, Nicols; Picca, Pablo; Toum, Laila; Lentz, Ezequiel; Bravo-Almonacid, Fernando; Mentaberry, Alejandro

    2012-01-20

    Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens. PMID:22115953

  10. Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters.

    PubMed

    Pärnänen, Katariina; Karkman, Antti; Virta, Marko; Eronen-Rasimus, Eeva; Kaartokallio, Hermanni

    2015-01-01

    Polyhydroxyalkanoates (PHAs) are macromolecules produced by bacteria as means for storing carbon and energy in intracellular granules. PHAs have physical properties similar to those of plastics and have become of interest to industry as materials for environmentally friendly bioplastic production. There is an ongoing search for new PHA-producing bacterial strains and PHA-synthesizing enzymes tolerating extreme conditions to find ways of producing PHAs at cold temperatures and high solute concentrations. Moreover, the study of PHA producers in the sea-ice biome can aid in understanding the microbial ecology of carbon cycling in ice-associated ecosystems. In this study, PHA producers and PHA synthase genes were examined under the extreme environmental conditions of sea ice and cold seawater to find evidence of PHA production in an environment requiring adaptation to high salinity and cold temperatures. Sea ice and cold estuarine water samples were collected from the northern Baltic Sea and evidence of PHA production was gathered, using microscopy with Nile Blue A staining of PHA-granules and PCR assays detecting PHA-synthesis genes. The PHA granules and PHA synthases were found at all sampling locations, in both sea ice and water, and throughout the sampling period spanning over 10 years. Our study shows, for the first time, that PHA synthesis occurs in Baltic Sea cold-adapted bacteria in their natural environment, which makes the Baltic Sea and its cold environments an interesting choice in the quest for PHA-synthesizing bacteria and synthesis genes. PMID:25280551

  11. An Acidic PATHOGENESIS-RELATED1 Gene of Oryza grandiglumis is Involved in Disease Resistance Response Against Bacterial Infection

    PubMed Central

    Shin, Sang Hyun; Pak, Jung-Hun; Kim, Mi Jin; Kim, Hye Jeong; Oh, Ju Sung; Choi, Hong Kyu; Jung, Ho Won; Chung, Young Soo

    2014-01-01

    Wild rice, Oryza grandiglumis shows hyper-resistance response to pathogen infection. In order to identify genes necessary for defense response in plants, we have carried out a subtractive hybridization coupled with a cDNA macroarray. An acidic PATHOGENESIS-RELATED1 (PR1) gene of the wild rice is highly identical to the acidic PR1 genes of different plant species. The OgPR1a cDNA has an apparent single open reading frame with a predicted molecular mass 40,621 Da and an isoelectic point of 5.14. Both in silico analysis and a transient expression assay in onion epidermal cells revealed that the OgPR1a protein could be localized in intercellular space in plants. The OgPR1a mRNA was strongly transcribed by the exogenous treatment with ethylene and jasmonic acid as well as protein phosphatase inhibitors. Additionally, ectopic expression of the OgPR1a conferred disease resistance on Arabidopsis to the bacterial and fungal infections. PMID:25289005

  12. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation.

    PubMed Central

    Chang, I S; Kim, B H; Shin, P K

    1997-01-01

    Lactic acid bacteria isolated from an industrial-scale ethanol fermentation process were used to evaluate sulfite as a bacterial-contamination control agent in a cell-recycled continuous ethanol fermentation process. The viabilities of bacteria were decreased by sulfite at concentrations of 100 to 400 mg liter-1, while sulfite at the same concentrations did not change the viability of the Saccharomyces cerevisiae strain used in this process. Sulfite was effective only in the presence of oxygen. Bacteria showed differences in their susceptibilities to sulfite. Facultatively heterofermentative Lactobacillus casei 4-3 was more susceptible than was obligatory heterofermentative Lactobacillus fermentum 7-1. The former showed higher enzyme activities involved in the production and consumption of hydrogen peroxide than did the latter. The viability of L. fermentum 7-1 could be selectively controlled by hydrogen peroxide at concentrations of 1 to 10 mM. Based on these findings, it is hypothesized that the sulfur trioxide radical anions formed by peroxidase in the presence of hydrogen peroxide are responsible for the control of contaminating bacteria. Sulfite did not kill the yeast strain, which has catalase to degrade hydrogen peroxide. A cell-recycled continuous ethanol fermentation process was run successfully with sulfite treatments. PMID:8979332

  13. Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle.

    PubMed

    Reiter, Lillian; Kolstø, Anne-Brit; Piehler, Armin P

    2011-08-01

    Quantitative reverse-transcription PCR (RT-qPCR) has become a major tool to better understand the biology and pathogenesis of bacteria. One prerequisite of valid RT-qPCR data is their proper normalization to stably expressed reference genes. To identify and evaluate reference genes suitable for normalization of gene expression data in Bacillus cereus group strains, mRNA levels of eleven candidate reference genes (rpsU, nifU, udp (UDP-N-acetylglucosamine 2-epimerase), BT9727_5154/BC_5475, BT9727_4034/BC_4293, BT9727_4549/BC_4813, pspA, gatB_Yqey (gatB_Yqey domain containing protein), helicase (SWF/SNF family protein), adk and pta) and a target gene (BT9727_3305/BC3547+BC3546) were quantified by RT-qPCR at different time points throughout the entire life cycle of the wild-type B. cereus ATCC 14579 and Bacillus thuringiensis subsp. konkukian 97-27, a phylogenetically closely related strain to Bacillus anthracis. The programs geNorm and Normfinder were used to calculate expression stabilities and identified the genes gatB_Yqey, rpsU and udp as the most stably expressed reference genes. Compared to this combination or the sets of reference genes as recommended by geNorm or Normfinder, normalization using a traditional housekeeping gene (adk) alone resulted in significantly different gene expression results and in a significant overestimation of the target gene transcription. Normalization of the data to the reference gene gatB_Yqey alone showed no or only small differences to the reference gene combinations indicating that gatB_Yqey may be used as a single reference gene when investigating rather large changes in mRNA transcription. Otherwise, a combination of the stably expressed reference genes is recommended. In conclusion, the present study underlines the importance of normalization to stably expressed reference genes and presents valid endogenous controls suitable for normalization of transcriptional data throughout the life cycle of B. cereus group strains. PMID:21620905

  14. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    PubMed

    Lopes, Ana R; Manaia, Clia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. PMID:24245591

  15. Mobilizable narrow host range plasmids as natural suicide vectors enabling horizontal gene transfer among distantly related bacterial species.

    PubMed

    Smorawinska, Maria; Szuplewska, Magdalena; Zaleski, Piotr; Wawrzyniak, Pawe?; Maj, Anna; Plucienniczak, Andrzej; Bartosik, Dariusz

    2012-01-01

    Klebsiella pneumoniae 287-w carries three small narrow host range (NHR) plasmids (pIGMS31, pIGMS32, and pIGRK), which could be maintained in several closely related species of Gammaproteobacteria, but not in Alphaproteobacteria. The plasmids contain different mobilization systems (MOB), whose activity in Escherichia coli was demonstrated in the presence of the helper transfer system originating from plasmid RK2. The MOBs of pIGMS31 and pIGMS32 are highly conserved in many bacterial plasmids (members of the MOB family), while the predicted MOB of pIGRK has a unique structure, encoding a protein similar to phage-related integrases. The MOBs of pIGMS31 and pIGMS32 enabled the transfer of heterologous replicons from E. coli into both gammaproteobacterial and alphaproteobacterial hosts, which suggests that these NHR plasmids contain broad host range MOB systems. Such plasmids therefore represent efficient carrier molecules, which may act as natural suicide vectors promoting the spread of diverse genetic information (including other types of mobile elements, e.g. resistance transposons) among evolutionarily distinct bacterial species. Thus, mobilizable NHR plasmids may play a much more important role in horizontal gene transfer than previously thought. PMID:22092700

  16. Magnetic field-controlled gene expression in encapsulated cells

    PubMed Central

    Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Tllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Gnzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas

    2012-01-01

    Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778

  17. Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces

    PubMed Central

    2014-01-01

    Background Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. A total of 37 resistance genes against Xoo has been identified in rice. Of these, ten BLB resistance genes have been mapped on rice chromosomes, while 6 have been cloned, sequenced and characterized. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal. Results In this study 34 pairs of primers were designed from conserved domains of 6 BLB resistance genes; Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 diverse rice accessions of known disease phenotype. A total of 140 alleles were identified including 41 rare and 26 null alleles. The average polymorphism information content (PIC) value was 0.56/primer pair. The DNA profiles identified each of the rice landraces unequivocally. The amplified polymorphic DNA bands were used to calculate genetic similarity of the rice landraces in all possible pair combinations. The similarity among the rice accessions ranged from 18% to 89% and the dendrogram produced from the similarity values was divided into 2 major clusters. The conserved domains identified within the sequenced rare alleles include Leucine-Rich Repeat, BED-type zinc finger domain, sugar transferase domain and the domain of the carbohydrate esterase 4 superfamily. Conclusions This study revealed high genetic diversity at conserved domains of six BLB resistance genes in a set of 22 rice accessions. The inclusion of more genotypes from remote ecological niches and hotspots holds promise for identification of further genetic diversity at the BLB resistance genes. PMID:25016378

  18. Construction of an American mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry

    PubMed Central

    2011-01-01

    Background Bacterial artificial chromosome (BAC) libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. Results Here, we report the construction and characterization of the CHORI-231 BAC library constructed from a Danish-farmed, male American mink (Neovison vison). The library contains approximately 165,888 clones with an average insert size of 170 kb, representing approximately 10-fold coverage. High-density filters, each consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs), representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library. These included candidate genes for coat coloring, hair growth and length, coarseness, and some receptors potentially involved in viral diseases in mink. The extensive screening yielded positive results for 19 of these genes. Thirty-five clones corresponding to 19 genes were sequenced using 454 Roche, and large contigs (184 kb in average) were assembled. Knowing the complete sequences of these candidate genes will enable confirmation of the association with a phenotype and the finding of causative mutations for the targeted phenotypes. Additionally, 1577 BAC clones were end sequenced; 2505 BAC end sequences (80% of BACs) were obtained. An excess of 2 Mb has been analyzed, thus giving a snapshot of the mink genome. Conclusions The availability of the CHORI-321 American mink BAC library will aid in identification of genes and genomic regions of interest. We have demonstrated how the library can be used to identify specific genes of interest, develop genetic markers, and for BAC end sequencing and deep sequencing of selected clones. To our knowledge, this is the first report of 454 sequencing of selected BAC clones in mammals and re-assures the suitability of this technique for obtaining the sequence information of genes of interest in small genomics projects. The BAC end sequences described in this paper have been deposited in the GenBank data library [HN339419-HN341884, HN604664-HN604702]. The 454 produced contigs derived from selected clones are deposited with reference numbers [GenBank: JF288166-JF288183 &JF310744]. PMID:21740547

  19. Comparative tissue expression of American lobster (Homarus americanus) immune genes during bacterial and scuticociliate challenge.

    PubMed

    Clark, K Fraser; Acorn, Adam R; Wang, Haili; Greenwood, Spencer J

    2015-12-01

    The American lobster (Homarus americanus) fishery is the most economically significant fishery in Canada; although comparatively little is known about the lobsters' response to pathogenic challenge. This is the first study to investigate the expression of immune genes in tissues outside of the lobster hepatopancreas in response to challenges by the Gram-positive bacteria, Aerococcus viridans var. homari or the scuticociliate parasite, Anophryoides haemophila. The hepatopancreas has been regarded as the major humoral immune organ in crustaceans, but the contribution of other organs and tissues to the molecular immune response has largely been overlooked. This study used RT-qPCR to monitor the gene expression of several immune genes including three anti-lipopolysaccharide isoforms (ALF) Homame ALF-B1, Homame ALF-C1 and ALFHa-1, acute phase serum amyloid protein A (SAA), as well as thioredoxin and hexokinase, in antennal gland and gill tissues. Our findings indicate that the gene expression of the SAA and all ALF isoforms in the antennal gland and gill tissues increased in response to pathogenic challenge. However, there was differential expression of individual ALF isoforms that were dependent on both the tissue, and the pathogen used in the challenge. The gene expression changes of several immune genes were found to be higher in the antennal gland than have been previously reported for the hepatopancreas. This study demonstrates that increased immune gene expression from the gill and antennal gland over the course of pathogen induced disease contributes to the immune response of H. americanus. PMID:26551049

  20. Joint effects of heavy metal binary mixtures on seed germination, root and shoot growth, bacterial bioluminescence, and gene mutation.

    PubMed

    Kong, In Chul

    2013-05-01

    This investigation was to assess the joint effects of metal binary mixtures on seed germination, root and shoot growth, bacterial bioluminescence, and gene mutation based on the one toxic unit (1 TU) approach. Different sensitivities and orders of toxicity of metal mixtures were observed among the bioassays. In general, mostly additive or antagonistic effects were observed, while almost no synergistic effects by the binary metal mixtures in all bioassays. Therefore, the combined effects of heavy metals in the different bioassays were difficult to generalize since they were dependent on both chemical type and the organism used in each bioassay. However, these results indicate that a battery of bioassays with mixture chemicals as opposed to just a single assay with single metal is a better strategy for the bioassessment of environmental pollutants. PMID:24218818

  1. Abundance and Distribution of Dimethylsulfoniopropionate Degradation Genes and the Corresponding Bacterial Community Structure at Dimethyl Sulfide Hot Spots in the Tropical and Subtropical Pacific Ocean

    PubMed Central

    Suzuki, Shotaro; Omori, Yuko; Wong, Shu-Kuan; Ijichi, Minoru; Kaneko, Ryo; Kameyama, Sohiko; Tanimoto, Hiroshi; Hamasaki, Koji

    2015-01-01

    Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean. PMID:25862229

  2. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean.

    PubMed

    Cui, Yingshun; Suzuki, Shotaro; Omori, Yuko; Wong, Shu-Kuan; Ijichi, Minoru; Kaneko, Ryo; Kameyama, Sohiko; Tanimoto, Hiroshi; Hamasaki, Koji

    2015-06-15

    Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean. PMID:25862229

  3. Development of a 9600-clone procedure for oligonucleotide fingerprinting of rRNA genes: utilization to identify soil bacterial rRNA genes that correlate in abundance with the development of avocado root rot.

    PubMed

    Bent, Elizabeth; Yin, Bei; Figueroa, Andres; Ye, Jingxiao; Fu, Qi; Liu, Zheng; McDonald, Virginia; Jeske, Daniel; Jiang, Tao; Borneman, James

    2006-10-01

    Oligonucleotide fingerprinting of rRNA genes (OFRG) is an array-based method that generates microbial community profiles through analysis of rRNA gene clone libraries. The original OFRG method allowed 1536 clones to be analyzed per experiment. This report describes a procedure for analyzing 9600 clones per experiment, including a new probe set for bacterial analysis, and improved data processing and statistical analysis tools. The software tools are available at the OFRG website (). Use of the 9600-clone procedure was demonstrated by examining the bacterial rRNA gene compositions of soils subjected to various temperature treatments. These treatments produced a series of soils with a range of abilities to suppress avocado root rot, enabling the identification of bacterial rRNA genes that correlate in abundance with root rot suppressiveness. OFRG analysis of these soils produced 8876 bacterial rRNA gene fingerprints grouped into 5123 clusters, or operational taxonomic units (OTUs). Eleven OTUs exhibited a positive correlation between the number of clones and the percentage of healthy roots. An in silico analysis was performed to examine the relationship between the number of rRNA genes analyzed and the number of correlates (rRNA gene-avocado root rot symptoms) identified. As the number of clones decreased, fewer correlates were identified. To further increase the throughput of the OFRG method, use of a glass slide-fluorescent probe microarray format was also explored. PMID:16712989