Science.gov

Sample records for conventional power distribution

  1. Green power marketing claims: A free ride on conventional power?

    SciTech Connect

    Glaser, P.S.

    1999-07-01

    It appears that a lot, if not most, of the green power being marketed to consumers today in customer choice states is not green at all, at least as that term may be understood by the typical consumer. Such power is not, contrary to claims, coal and nuke free and does not displace power generated from coal or nuclear power plants. It does not create a market for renewable resources. And it does not make a contribution to improving environmental quality. Indeed, it appears that green power in its current form is receiving a free ride on the conventional power industry, a face about which green power consumers are not being made aware.

  2. Exponentiated power Lindley distribution

    PubMed Central

    Ashour, Samir K.; Eltehiwy, Mahmoud A.

    2014-01-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  3. Exponentiated power Lindley distribution.

    PubMed

    Ashour, Samir K; Eltehiwy, Mahmoud A

    2015-11-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  4. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  5. Industrial power distribution

    SciTech Connect

    Sorrells, M.A.

    1990-01-01

    This paper is a broad overview of industrial power distribution. Primary focus will be on selection of the various low voltage components to achieve the end product. Emphasis will be on the use of national standards to ensure a safe and well designed installation.

  6. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  7. Adaptive conventional power system stabilizer based on artificial neural network

    SciTech Connect

    Kothari, M.L.; Segal, R.; Ghodki, B.K.

    1995-12-31

    This paper deals with an artificial neural network (ANN) based adaptive conventional power system stabilizer (PSS). The ANN comprises an input layer, a hidden layer and an output layer. The input vector to the ANN comprises real power (P) and reactive power (Q), while the output vector comprises optimum PSS parameters. A systematic approach for generating training set covering wide range of operating conditions, is presented. The ANN has been trained using back-propagation training algorithm. Investigations reveal that the dynamic performance of ANN based adaptive conventional PSS is quite insensitive to wide variations in loading conditions.

  8. Optical power distribution system

    SciTech Connect

    Lalmond, R.G.

    1987-09-08

    This patent describes an apparatus for supplying electrical power to electrical components mounted on a circuit board. It consists of: a printed circuit board; electrical components mounted on the printed circuit board; electrically powered sources of optical energy; photovoltaic cell arrays; each photovoltaic cell array being mounted on a corresponding one of the electrical components to provide electrical power to the electrical component on which it is mounted; and means for coupling the optical energy from the electrically powered sources of optical energy to the photovoltaic cell arrays.

  9. Power budget considerations for optically activated conventional sensors and actuators

    NASA Astrophysics Data System (ADS)

    Liu, Kexing

    1991-02-01

    Optically powered conventional instrumentation with optical fiber links that combine the advantages of a familiar technology and of fiber optics is described. A number of examples are given of the development of pneumatic pressure sensors and actuators with reduced power consumption that are operated by optical power and incorporated with fiber-optic links. Their performance and power budget are discussed. They are particularly applicable to transmissions through regions having high EM interference, high EM pulses, and explosive, radiative, or corrosive hazards, such as in nuclear power plants, process plants, aircraft, or spacecraft. These low-optical-power transmission and operation characteristics will help to meet safety requirements and to reduce the system cost.

  10. Distributed Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to assess the feasibility of safely collecting solar power at geostationary orbit and delivering it to earth. A strategy which could harness a small fraction of the millions of gigawatts of sunlight passing near earth could adequately supply the power needs of earth and those of space exploration far into the future. Light collected and enhanced both spatially and temporally in space and beamed to earth provides probably the only practical means of safe and efficient delivery of this space solar power to earth. In particular, we analyzed the feasibility of delivering power to sites on earth at a comparable intensity, after conversion to a usable form, to existing power needs. Two major obstacles in the delivery of space solar power to earth are safety and the development of a source suitable for space. We focused our approach on: (1) identifying system requirements and designing a strategy satisfying current eye and skin safety requirements; and (2) identifying a concept for a potential space-based source for producing the enhanced light.

  11. Power management and distribution technology

    NASA Technical Reports Server (NTRS)

    Dickman, John Ellis

    1993-01-01

    Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.

  12. Power Law Distribution in Education

    NASA Astrophysics Data System (ADS)

    Gupta, Hari M.; Campanha, José R.; Chavarette, Fábio R.

    We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study-day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects are due to the nature of the subjects themselves. Further and better study, teaching and economical conditions are more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.

  13. Participation of non-conventional energy resources in power system frequency control

    NASA Astrophysics Data System (ADS)

    Aghazadeh Tabrizi, Mehriar

    Frequency control is one of the key issues in designing, planning and reliably operating a power system and is becoming more challenging as new complexities and uncertainties are introduced into the modern power systems. Traditionally, power system frequency has been controlled using conventional generation units' capabilities namely inertial, primary and secondary frequency responses. Limited fossil-based fuel resources, ever-increasing energy consumption and rising public awareness for environmental protection have created growing interest in use of non-conventional energy resources such as Wind Generation Resources (WGRs) and Solar Generation Resources (SGRs) which have unfavorable characteristics in comparison with conventional generation units such as lack of frequency response. The more conventional generation units are replaced by these resources, the more challenges power system operators will face in terms of power system frequency control. These challenges are further compounded due to less system inertia during off-peak hours or within small power systems. This dissertation mainly focuses on participation of SGRs and Interior Permanent Magnet Synchronous Generator (IPMSG) based WGRs in power system frequency control. Detailed information regarding dynamic modeling of power system including conventional generation units, SGRs and IPMSG based WGRs is provided. The frequency response of conventional generation units is compared with that of SGRs and IPMSG based WGRs. The control systems associated with IPMSG based WGR and SGR are modified in order to improve their frequency response capabilities. The effectiveness of the proposed control strategies is evaluated and confirmed via MATLAB based time-domain simulations for different scenarios. Moreover, application of Battery Energy Storage Systems (BESSs) in power system frequency regulation is discussed. The detailed dynamic model of BESSs is utilized to develop a simplified model suitable for Automatic

  14. Second law analysis of a conventional steam power plant

    NASA Technical Reports Server (NTRS)

    Liu, Geng; Turner, Robert H.; Cengel, Yunus A.

    1993-01-01

    A numerical investigation of exergy destroyed by operation of a conventional steam power plant is computed via an exergy cascade. An order of magnitude analysis shows that exergy destruction is dominated by combustion and heat transfer across temperature differences inside the boiler, and conversion of energy entering the turbine/generator sets from thermal to electrical. Combustion and heat transfer inside the boiler accounts for 53.83 percent of the total exergy destruction. Converting thermal energy into electrical energy is responsible for 41.34 percent of the total exergy destruction. Heat transfer across the condenser accounts for 2.89 percent of the total exergy destruction. Fluid flow with friction is responsible for 0.50 percent of the total exergy destruction. The boiler feed pump turbine accounts for 0.25 percent of the total exergy destruction. Fluid flow mixing is responsible for 0.23 percent of the total exergy destruction. Other equipment including gland steam condenser, drain cooler, deaerator and heat exchangers are, in the aggregate, responsible for less than one percent of the total exergy destruction. An energy analysis is also given for comparison of exergy cascade to energy cascade. Efficiencies based on both the first law and second law of thermodynamics are calculated for a number of components and for the plant. The results show that high first law efficiency does not mean high second law efficiency. Therefore, the second law analysis has been proven to be a more powerful tool in pinpointing real losses. The procedure used to determine total exergy destruction and second law efficiency can be used in a conceptual design and parametric study to evaluate the performance of other steam power plants and other thermal systems.

  15. Measurement Of Spectral Power Distribution

    NASA Astrophysics Data System (ADS)

    Moore, J. R.

    1980-11-01

    The majority of spectroradiometers make measurements at a number of discrete wavelength settings spaced evenly across the spectrum. Many modern light sources such as fluorescent or metal halide lamps have complex line spectra which may not be properly evaluated by this method. An automated spectroradiometer system involving a non-stop spectral scan with continuous integration of the output signal from the detector is described. The method is designed to make accurate measurements of all types of spectral power distribution whether made up of lines or continuum or any mixture of the two.

  16. Space station power management and distribution

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1985-01-01

    The power system architecture is presented by a series of schematics which illustrate the power management and distribution (PMAD) system at the component level, including converters, controllers, switchgear, rotary power transfer devices, power and data cables, remote power controllers, and load converters. Power distribution options, reference power management, and control strategy are also outlined. A summary of advanced development status and plans and an overview of system test plans are presented.

  17. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect

    Chu, P.; Epstein, M.; Gould, L.; Botros, P.

    1995-12-31

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  18. Improved conventional testing of power plant cables. Final report

    SciTech Connect

    Anadakumaran, K.; Braun, J.M.; DiPaul, J.A. |

    1995-09-01

    The objective of the project is to develop improved condition monitoring techniques to assess the condition of power plant cables, particularly the unshielded cables found in older thermal plants. The cables of interest were insulated with PVC, butyl rubber, SBR (styrene butadiene rubber), EPR (ethylene propylene rubber), PE and XLPE (crosslinked polyethylene) as either single conductor, twisted pair, shielded and unshielded. The cables were thermally aged to embrittlement and characterized by physical, chemical and electrical tests. Physical characterization included, in addition to reference tensile elongation, tests performed on microscopic samples for quasi-nondestructive examination. Different tests proved particularly suited to different types of insulation. The dielectric characterization underlined the value of performing tests at other than power frequency and/or dc. Electric field calculations were carried out to develop a field testing strategy for unshielded cables and notably to investigate the feasibility of providing a suitable ground plane by testing conductor to grounded conductors(s). Two major electrical diagnostic test techniques were investigated in detail, low frequency insulation analysis to probe the bulk condition of insulations and partial discharge (PD) testing to detect cracks and defects. PD testing is well established but more challenging to perform with unshielded cables. Because of the attenuation properties of typical plant cables, a dual ended detector configuration is necessary. Two novel techniques were developed to provide dual ended detection without need for a second cable as the return path from the far end detector.

  19. Using frictional power to model LSST removal with conventional abrasives

    NASA Astrophysics Data System (ADS)

    Allen, Richard G.; Hubler, William H.

    2015-08-01

    The stressed lap on the Large Polishing Machine (LPM) at the University of Arizona Richard F. Caris Mirror Lab has recently been used to polish the M1 and M3 surfaces of the 8.4-m mirror for the Large Synoptic Survey Telescope (LSST). Loadcells in the three 4-bar links that connect this lap to the spindle of the machine allow the translational forces and torque on the lap to be measured once a second. These force readings and all other available machine parameters are recorded in history files that can be used to create a 2D removal map from one or more polishing runs. While the Preston equation has been used for many years to predict removal in a conventional polishing process, we have adopted a new equation that assumes that removal is proportional to the energy that is transferred from the lap to the substrate via friction. Specifically, the instantaneous removal rate at any point is defined to be the product of four parameters - an energy conversion factor which we call the Allen coefficient, the coefficient of friction, the lap pressure, and the speed of the lap. The Allen coefficient is the ratio of volumetric removal to frictional energy for a particular combination of pad material, abrasive, and substrate. Because our calculations take into account changes in the coefficient of friction between the lap and mirror, our 2D removal maps usually correlate well with optical data. Removal maps for future polishing strokes are created in simulations that track the position and speed of individual lap pads.

  20. Electric power distribution and load transfer system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1989-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  1. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  2. AIR QUALITY IMPACTS USING SRC VERSUS CONVENTIONAL COAL IN POWER PLANTS

    EPA Science Inventory

    The report gives results of air quality modeling to assess the impact of burning solvent-refined coal (SRC) instead of conventional coal in three power plants which exceeded National Ambient Air Quality Standards when burning conventional coal. The EPA CRSTER Gaussian plume model...

  3. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  4. Moisture distribution during conventional or electrical resistance oven baking of bread dough and subsequent storage.

    PubMed

    Derde, Liesbeth J; Gomand, Sara V; Courtin, Christophe M; Delcour, Jan A

    2014-07-01

    Electrical resistance oven (ERO) baking processes bread dough with little temperature gradient in the baking dough. Heating of the dough by means of an ERO is based on the principles of Joule's first law and Ohm's law. This study compared the changes in moisture distribution and physical changes in starch of breads conventionally baked or using an ERO. The moisture contents in fresh ERO breads are generally lower than those in conventional breads. During storage of conventionally baked breads, water migrates from the crumb to the crust and moisture contents decrease throughout the bread crumb. Evidently, less moisture redistribution occurs in ERO breads. Also, the protons of ERO bread constituents were less mobile than their counterparts in conventional bread. Starch retrogradation occurs to similar extents in conventional and ERO bread. As a result, the changes in proton mobility cannot be attributed to differences in levels of retrograded starch and seem to be primarily determined by the overall lower moisture content. PMID:24949810

  5. Computer Power: Part 1: Distribution of Power (and Communications).

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1988-01-01

    Discussion of the distribution of power to personal computers and computer terminals addresses options such as extension cords, perimeter raceways, and interior raceways. Sidebars explain: (1) the National Electrical Code; (2) volts, amps, and watts; (3) transformers, circuit breakers, and circuits; and (4) power vs. data wiring. (MES)

  6. Space Solar Power Management and Distribution (PMAD)

    NASA Technical Reports Server (NTRS)

    Lynch, Thomas H.

    2000-01-01

    This paper presents, in viewgraph form, SSP PMAD (Space Solar Power Management and Distribution). The topics include: 1) Architecture; 2) Backside Thermal View; 3) Solar Array Interface; 4) Transformer design and risks; 5) Twelve phase rectifier; 6) Antenna (80V) Converters; 7) Distribution Cables; 8) Weight Analysis; and 9) PMAD Summary.

  7. Cathode power distribution system and method of using the same for power distribution

    DOEpatents

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  8. Intelligent Systems for Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2002-01-01

    The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.

  9. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  10. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  11. Grid-connected distributed solar power systems

    NASA Astrophysics Data System (ADS)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  12. Technology survey of electrical power generation and distribution for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Redding, T. E.

    1975-01-01

    Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.

  13. Vibration Monitoring of Power Distribution Poles

    SciTech Connect

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterization of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.

  14. Power distribution studies for CMS forward tracker

    SciTech Connect

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R&D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  15. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  16. Computed lateral power spectral density response of conventional and STOL airplanes to random atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1974-01-01

    A method of computing the power spectral densities of the lateral response of airplanes to random atmospheric turbulence was adapted to an electronic digital computer. By use of this program, the power spectral densities of the lateral roll, yaw, and sideslip angular displacement of several conventional and STOL airplanes were computed. The results show that for the conventional airplanes, the roll response is more prominent than that for yaw or sideslip response. For the STOL airplanes, on the other hand, the yaw and sideslip responses were larger than the roll response. The response frequency of the STOL airplanes generally is higher than that for the conventional airplanes. This combination of greater sensitivity of the STOL airplanes in yaw and sideslip and the frequency at which they occur could be a factor causing the poor riding qualities of this class of airplanes.

  17. Assessing Mothers' and Children's Perceptions of Power through Personal, Conventional, and Prudential Conflict Situations

    ERIC Educational Resources Information Center

    Porta, Sandra Della; Howe, Nina

    2012-01-01

    Mothers' and school-aged children's perceptions of types of power executed (coercive, reward, legitimate, information, negotiation, and sneaky) in three domains of conflict (personal, conventional, and prudential) were investigated. Participants included 41 children ranging from 7 to 12 years (M = 10.12, SD = 1.42) and their mothers. Perceptions…

  18. Distribution and uptake pathways of organochlorine pesticides in greenhouse and conventional vegetables.

    PubMed

    Zhang, Anping; Luo, Wenxiu; Sun, Jianqiang; Xiao, Hang; Liu, Weiping

    2015-02-01

    The application of greenhouse vegetable cultivation has dramatically expanded worldwide during the last several decades. However, little information is available on the distribution and uptake of pesticides in greenhouse vegetables. To bridge this knowledge gap, the present study was initiated to investigate the distribution and uptake of organochlorine pesticides (OCPs) in vegetables from plastic greenhouse and conventional cultivation methods. The uptake pathways of OCPs were not significantly different between these two cultivation methods. The arithmetic means of OCP concentrations in greenhouse vegetables were higher than those in conventional vegetables, although there was no significant difference. This small difference raised the concern of whether the tiny difference could be magnified to a significant difference by bioaccumulation in the food chain. The issue should be addressed by a well-designed scheme in future studies. PMID:25466687

  19. Power quality monitoring of a distribution system

    SciTech Connect

    Barker, P.P.; Burke, J.T.; Mancao, R.T.; Short, T.A.; Warren, C.A. ); Burns, C.W.; Siewierski, J.J. )

    1994-04-01

    The Niagara Mohawk Power Corporation (NMPC) Research and Development Department sponsored a major power quality study of two distribution feeders in the Buffalo, New York region. All levels of these systems, from the substation bus to the customer service entrance, were instrumented with monitoring equipment. A variety of measurements, encompassing both transient and steady state system behavior, were performed. The use of multiple monitoring locations allowed NMPC to assess the origins and scope of various disturbances. The study generated a database which can serve as a guide for assessing relative power quality on the NMPC system. The study also formulated suggestions on areas which the industry (both the power industry and consumer products industry) might address in the future on the effect of standard utility operation towards consumer appliances.

  20. Force and pressure distribution beneath a conventional dressage saddle and a treeless dressage saddle with panels.

    PubMed

    Clayton, Hilary M; O'Connor, Katherine A; Kaiser, Leeann J

    2014-01-01

    The objective of this study was to compare forces and pressure profiles beneath a conventional dressage saddle with a beechwood spring tree and a treeless dressage saddle without a rigid internal support and incorporating large panels and a gullet. The null hypothesis was that there is no difference in the force and pressure variables for the two saddles. Six horses were ridden by the same rider using the conventional dressage saddle and the treeless dressage saddle in random order and pressure data were recorded using an electronic pressure mat as the horses trotted in a straight line. The data strings were divided into strides with ten strides analyzed per horse-saddle combination. Variables describing the loaded area, total force, force distribution and pressure distribution were calculated and compared between saddles using a three-factor ANOVA (P<0.05). Contact area and force variables did not differ between saddles but maximal pressure, mean pressure and area with pressure >11kPa were higher for the treeless dressage saddle. The panels of the treeless dressage saddle provided contact area and force distribution comparable to a conventional treed saddle but high pressure areas were a consequence of a narrow gullet and highly-sloped panels. It was concluded that, even with a treeless saddle, the size, shape, angulation, and position of the panels must fit the individual horse. PMID:24268681

  1. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  2. Uncertainty evaluation in BEACON power distribution monitoring

    SciTech Connect

    Morita, T.; Goldstein, N.P. )

    1989-11-01

    BEACON is an advanced operational core support package that has a three-dimensional nodal code as its cornerstone. The three-dimensional calculation includes all necessary pressurized water reactor feedback effects. The generation of the measured power distribution from the core instrumentation is one of the primary functions of the core-monitoring software. The purpose of this paper is to discuss evaluation of the uncertainty in the measured assembly power from the BEACON system. The study covers not only the normal operating conditions, but off-normal situations to demonstrate BEACON's applicability for that condition.

  3. Comparisons of selected laser beam power missions to conventionally powered missions

    NASA Technical Reports Server (NTRS)

    Bozek, John M.; Oleson, Steven R.; Landis, Geoffrey A.; Stavnes, Mark W.

    1993-01-01

    Earth-based laser sites beaming laser power to space assets have shown benefits over competing power system concepts for specific missions. Missions analyzed in this report that show benefits of laser beam power are low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) transfer, LEO to low lunar orbit (LLO) cargo missions, and lunar-base power. Both laser- and solar-powered orbit-transfer vehicles (OTV's) make a 'tug' concept viable, which substantially reduces cumulative initial mass to LEO in comparison to chemical propulsion concepts. Lunar cargo missions utilizing laser electric propulsion from Earth-orbit to LLO show substantial mass saving to LEO over chemical propulsion systems. Lunar-base power system options were compared on a landed-mass basis. Photovoltaics with regenerative fuel cells, reactor-based systems, and laser-based systems were sized to meet a generic lunar-base power profile. A laser-based system begins to show landed mass benefits over reactor-based systems when proposed production facilities on the Moon require power levels greater than approximately 300 kWe. Benefit/cost ratios of laser power systems for an OTV, both to GEO and LLO, and for a lunar base were calculated to be greater than 1.

  4. Study on electrical power output of floating photovoltaic and conventional photovoltaic

    NASA Astrophysics Data System (ADS)

    Azmi, Mohd Syahriman Mohd; Othman, Mohd Yusof Hj.; Ruslan, Mohd Hafidz Hj.; Sopian, Kamaruzzaman; Majid, Zafri Azran Abdul

    2013-11-01

    In this paper, several attempt were made to investigate the best electrical performance of a floating photovoltaic (FPV). In photovoltaic (PV) system, the electrical efficiency of the system decreases rapidly as the PV module temperature increases. Therefore, in order to achieve higher electrical efficiency, the PV module have to be cooled by removing the heat in some way. This paper presents study on a conventional photovoltaic (PV) module and floating photovoltaic (FPV) system. The objective of the study is to compare the performance of conventional PV module and FPV. At FPV, an absorber comprises of aluminum flat-box housing was attached to the back of the PV module to absorb heat. Water is used to cool the PV module by passing it under the bottom surface of the module. The system was tested under simulated solar intensity of 417 W/m2, 667 W/m2 and 834 W/m2. Current (I) - voltage (V) curves and power (P) - voltage (V) curves of the results were analyzed. The study found that the FPV has higher efficiency and total power gain than the conventional PV module. The average PV temperature in a FPV might be lower than that for a conventional PV module, thereby increasing its electrical power output. The simplicity of the system structure and aluminum as the chosen material enabled it to reduce the installation costs for a larger scale. Applicable as heat sink, this FPV system is convenient to place on lakes, ponds or rivers.

  5. A Service Oriented Architecture for Exploring High Performance Distributed Power Models

    SciTech Connect

    Liu, Yan; Chase, Jared M.; Gorton, Ian

    2012-11-12

    Power grids are increasingly incorporating high quality, high throughput sensor devices inside power distribution networks. These devices are driving an unprecedented increase in the volume and rate of available information. The real-time requirements for handling this data are beyond the capacity of conventional power models running in central utilities. Hence, we are exploring distributed power models deployed at the regional scale. The connection of these models for a larger geographic region is supported by a distributed system architecture. This architecture is built in a service oriented style, whereby distributed power models running on high performance clusters are exposed as services. Each service is semantically annotated and therefore can be discovered through a service catalog and composed into workflows. The overall architecture has been implemented as an integrated workflow environment useful for power researchers to explore newly developed distributed power models.

  6. Life-cycle cost analysis of conventional and fuel cell/battery powered urban passenger vehicles

    NASA Astrophysics Data System (ADS)

    1992-11-01

    This Final Report summarizes the work on the life cycle cost (LCC) analysis of conventional and fuel cell/battery powered urban passenger vehicles. The purpose of the work is to support the Division in making sound economic comparisons between conventional and fuel cell/battery powered buses, passenger vans, and cars for strategic analysis of programmatic R&D goals. The LCC analysis can indicate whether paying a relatively high initial capital cost for advanced technology with low operating and/or environmental costs is advantageous over paying a lower initial cost for conventional technology with higher operating and/or environmental costs. While minimizing life cycle cost is an important consideration, it does not always result in technology penetration in the marketplace. The LCC analysis model developed under this contract facilitates consideration of all perspectives. Over 100 studies have been acquired and analyzed for their applicability. Drawing on prior work by JPL and Los Alamos National Laboratory as primary sources, specific analytical relationships and cost/performance data relevant to fuel cell/battery and intemal combustion engine (ICE) powered vehicles were selected for development of an LCC analysis model. The completed LCC model is structured around twelve integrated modules. Comparative analysis is made between conventional gasoline and diesel vehicles and fuel cell/battery vehicles using either phosphoric acid fuel cells or proton-exchange membrane fuel cells. In all, seven base vehicle configuration cases with a total of 21 vehicle class/powertrain/fuel combinations are analyzed. The LCC model represents a significant advance in comparative economic analysis of conventional and fuel cell/battery powered vehicle technologies embodying several unique features which were not included in prior models.

  7. Relativity, nonextensivity, and extended power law distributions.

    PubMed

    Silva, R; Lima, J A S

    2005-11-01

    A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory. PMID:16383791

  8. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  9. Numerical simulation and comparison of conventional and sloped solar chimney power plants: the case for Lanzhou.

    PubMed

    Cao, Fei; Li, Huashan; Zhang, Yang; Zhao, Liang

    2013-01-01

    The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights. PMID:24489515

  10. Numerical Simulation and Comparison of Conventional and Sloped Solar Chimney Power Plants: The Case for Lanzhou

    PubMed Central

    Zhang, Yang; Zhao, Liang

    2013-01-01

    The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights. PMID:24489515

  11. Microwave Driven Actuators Power Allocation and Distribution

    NASA Technical Reports Server (NTRS)

    Forbes, Timothy; Song, Kyo D.

    2000-01-01

    Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.

  12. Failure property distributions for conventional and highly crosslinked ultrahigh molecular weight polyethylenes.

    PubMed

    Kurtz, S M; Bergström, J; Rimnac, C M

    2005-05-01

    To make stochastic (probabilistic) failure predictions of a conventional or highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) material, not only must a failure criterion be defined, but it is also necessary to specify a probability distribution of the failure strength. This study sought to evaluate both parametric and nonparametric statistical approaches to describing the failure properties of UHMWPE, based on the Normal and Weibull model distributions, respectively. Because fatigue and fracture properties of materials have historically been well described with the use of Weibull statistics, it was expected that a nonparametric approach would provide a better fit of the failure distributions than the parametric approach. The ultimate true stress, true strain, and ultimate chain stretch data at failure were analyzed from 60 tensile tests conducted previously. The ultimate load and ultimate displacement from 121 small punch tests conducted previously were also analyzed. It was found that both Normal and Weibull models provide a reasonable description of the central tendency of the failure distribution. The principal difference between the Normal and Weibull models can be appreciated in the predicted lower-bound response at the tail end of the distribution. The data support the use of both parametric and nonparametric methods to bracket the lower-bound failure prediction in order to simulate the failure threshold for UHMWPE. PMID:15772963

  13. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  14. Interaction of lightning with power distribution lines

    NASA Astrophysics Data System (ADS)

    Mata, Carlos Tomas

    Triggered-lightning experiments were conducted in 1996, 1999, and 2000 to study the responses of overhead power distribution lines to lightning at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida. The lightning was artificially initiated (triggered) from natural thunderclouds using the rocket-and-wire technique, and its current was directed to a phase conductor at midspan or at a pole near the center of the line. Experimental results and associated EMTP modeling are presented in this dissertation for the following line configurations: (1)a two-conductor, 740-m overhead distribution line with 2 arrester stations in 1996; (2)a four- conductor, 245-m overhead distribution line with 2 arrester stations in 1999; and (3)a four-conductor, 829-m overhead distribution line with 6 arrester stations in 2000. The three-phase lines tested in 1999 and 2000 were standard designs of a major Florida power company. Lightning peak currents injected into the lines ranged from 7 to 57 kA. Voltages and currents were measured at various locations along the line. Video and photographic cameras were used to image lightning channels and detect line flashovers. The significant results of the research are (1)flashovers between conductors were observed, both accompanied and not accompanied by arrester failures, (2)an arrester failed on seven of eight direct lightning strikes to the line in 2000, (3)arcing between conductors may prevent failures of arresters connected to the struck phase, (4)the bulk of the lightning current flows from the struck phase to neutral through the arresters closest to the strike point, (5)the withstand energy of the arresters can be exceeded due to the contribution from multiple strokes and/or relatively low-level, long-lasting current components, (6)the distribution of charge transferred to ground among multiple neutral grounds, which is determined by low-frequency, low-current grounding resistances is different from the

  15. High power distributed x-ray source

    NASA Astrophysics Data System (ADS)

    Frutschy, Kris; Neculaes, Bogdan; Inzinna, Lou; Caiafa, Antonio; Reynolds, Joe; Zou, Yun; Zhang, Xi; Gunturi, Satish; Cao, Yang; Waters, Bill; Wagner, Dave; De Man, Bruno; McDevitt, Dan; Roffers, Rick; Lounsberry, Brian; Pelc, Norbert J.

    2010-04-01

    This paper summarizes the development of a distributed x-ray source with up to 60kW demonstrated instantaneous power. Component integration and test results are shown for the dispenser cathode electron gun, fast switching controls, high voltage stand-off insulator, brazed anode, and vacuum system. The current multisource prototype has been operated for over 100 hours without failure, and additional testing is needed to discover the limiting component. Example focal spot measurements and x-ray radiographs are included. Lastly, future development opportunities are highlighted.

  16. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  17. Power Law Distributions in Two Community Currencies

    NASA Astrophysics Data System (ADS)

    Kichiji, N.; Nishibe, M.

    2007-07-01

    The purpose of this paper is to highlight certain newly discovered social phenomena that accord with Zipf's law, in addition to the famous natural and social phenomena including word frequencies, earthquake magnitude, city size, income1 etc. that are already known to follow it. These phenomena have recently been discovered within the transaction amount (payments or receipts) distributions within two different Community Currencies (CC) that had been initiated as social experiments. One is a local CC circulating in a specific geographical area, such as a town. The other is a virtual CC used among members who belong to a certain community of interest (COI) on the Internet. We conducted two empirical studies to estimate the economic vitalization effects they had on their respective local economies. The results we found were that the amount of transactions (payments and receipts) of the two CCs was distributed according to a power-law distribution with a unity rank exponent. In addition, we found differences between the two CCs with regard to the shapes of their distribution over a low-transaction range. The result may originate from the difference in methods of issuing CCs or in the magnitudes of the minimum-value unit; however, this result calls for further investigation.

  18. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  19. Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor

    SciTech Connect

    Lawler, J.S.

    2001-10-29

    The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA) [1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitive to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance.

  20. Electric and magnetic properties measurement and analysis of a conventional and a superconducting power transformer

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Pronto, A. G.; Vilhena, N.; Pina, J. M.

    2014-05-01

    Power transformers based on High Temperature Superconductors (HTS) technology have revealed potential for several practical applications, offering economic, environmental and operational benefits. In this work, two 650 VA single-phase transformers prototypes were developed, tested and characterized: a conventional one, using copper windings, and another with the same primary copper winding, but with a secondary winding made of HTS BSCCO tape. The two prototypes were compared regarding magnetic properties, losses, electric parameters and efficiency, and the results are presented and interpreted. Also, several measures to determine AC critical current of the HTS tape were made. The results are compared with DC critical current for the same tape.

  1. Satellite control of electric power distribution

    NASA Technical Reports Server (NTRS)

    Bergen, L.

    1981-01-01

    An L-band frequencies satellite link providing the medium for direct control of electrical loads at individual customer sites from remote central locations is described. All loads supplied under interruptible-service contracts are likely condidates for such control, and they can be cycled or switched off to reduce system loads. For every kW of load eliminated or deferred to off-peak hours, the power company reduces its need for additional generating capacity. In addition, the satellite could switch meter registers so that their readings automatically reflected the time of consumption. The system would perform load-shedding operations during emergencies, disconnecting large blocks of load according to predetermined priorities. Among the distribution operations conducted by the satellite in real time would be: load reconfiguration, voltage regulation, fault isolation, and capacitor and feeder load control.

  2. Simulation of existing gas-fuelled conventional steam power plant using Cycle Tempo

    NASA Astrophysics Data System (ADS)

    Jamel, M. S.; Abd Rahman, A.; Shamsuddin, A. H.

    2013-06-01

    Simulation of a 200 MW gas-fuelled conventional steam power plant located in Basra, Iraq was carried out. The thermodynamic performance of the considered power plant is estimated by a system simulation. A flow-sheet computer program, "Cycle-Tempo" is used for the study. The plant components and piping systems were considered and described in detail. The simulation results were verified against data gathered from the log sheet obtained from the station during its operation hours and good results were obtained. Operational factors like the stack exhaust temperature and excess air percentage were studied and discussed, as were environmental factors, such as ambient air temperature and water inlet temperature. In addition, detailed exergy losses were illustrated and describe the temperature profiles for the main plant components. The results prompted many suggestions for improvement of the plant performance.

  3. Conventional and Explosive Pulsed Power Development at Texas A&m University

    NASA Astrophysics Data System (ADS)

    Freeman, B.; Faleski, T.; Hamilton, I.; Rock, J.; Parish, T.

    2004-11-01

    A new capability for performing conventional and explosive pulsed power programs is being developed at Texas A&M University (TAMU), through the Texas Engineering Experiment Station of the TAMU System. The primary machine being installed in this facility is a low inductance, ~460 kJ, 60 kV capacitor bank. Flexibility to support different loads is being designed into this system, as is the ability to disconnect experiments from the laboratory machine for testing at the explosive pulsed power test site. Initial experiments will be conducted using a plasma focus as the load, with this low inductance, high-current capacitor bank as a driver. We expect to realize peak currents of 3 to 4 MA in the plasma focus. Potential applications include pulsed neutron source studies, intense X-ray production development for possible commercial applications, and high-energy-density plasma science investigations. Other potential loads for this capacitor bank include magnetohydrodynamic plasma accelerators and systems that may be of interest to magnetized fusion energy experiments. The proposed site for the explosive pulsed power facility on the TAMU Riverside Campus has been experimentally qualified. We anticipate that with a fully developed facility that incorporates blast, shrapnel, and acoustic mitigation measures, experiments containing 22.7 kg of explosive will be reasonable. Presently, parts are available to assemble a power source for potential explosive generator development and application shots.

  4. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.

    PubMed

    Wang, Shuxiao; Zhang, Lei; Wu, Ye; Ancora, Maria Pia; Zhao, Yu; Hao, Jiming

    2010-06-01

    China's 11th 5-yr plan has regulated total sulfur dioxide (SO2) emissions by installing flue gas desulfurization (FGD) devices and shutting down small thermal power units. These control measures will not only significantly reduce the emission of conventional pollutants but also benefit the reduction of mercury emissions from coal-fired power plants. This paper uses the emission factor method to estimate the efficiencies of these measures on mercury emission abatement. From 2005 to 2010, coal consumption in power plants will increase by 59%; however, the mercury emission will only rise from 141 to 155 t, with an increase of 10%. The average emission rate of mercury from coal burning will decrease from 126 mg Hg/t of coal to 87 mg Hg/t of coal. The effects of the three desulfurization measures were assessed and show that wet FGD will play an important role in mercury removal. Mercury emissions in 2015 and 2020 are also projected under different policy scenarios. Under the most probable scenario, the total mercury emission in coal-fired power plants in China will decrease to 130 t by 2020, which will benefit from the rapid installation of fabric filters and selective catalytic reduction. PMID:20564998

  5. Patch Network for Power Allocation and Distribution in Smart Materials

    NASA Technical Reports Server (NTRS)

    Golembiewski, Walter T.

    2000-01-01

    The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.

  6. Power-Law Distributions Based on Exponential Distributions: Latent Scaling, Spurious Zipf's Law, and Fractal Rabbits

    NASA Astrophysics Data System (ADS)

    Chen, Yanguang

    2015-03-01

    The difference between the inverse power function and the negative exponential function is significant. The former suggests a complex distribution, while the latter indicates a simple distribution. However, the association of the power-law distribution with the exponential distribution has been seldom researched. This paper is devoted to exploring the relationships between exponential laws and power laws from the angle of view of urban geography. Using mathematical derivation and numerical experiments, I reveal that a power-law distribution can be created through a semi-moving average process of an exponential distribution. For the distributions defined in a one-dimension space (e.g. Zipf's law), the power exponent is 1; while for those defined in a two-dimension space (e.g. Clark's law), the power exponent is 2. The findings of this study are as follows. First, the exponential distributions suggest a hidden scaling, but the scaling exponents suggest a Euclidean dimension. Second, special power-law distributions can be derived from exponential distributions, but they differ from the typical power-law distributions. Third, it is the real power-law distributions that can be related with fractal dimension. This study discloses an inherent link between simplicity and complexity. In practice, maybe the result presented in this paper can be employed to distinguish the real power laws from spurious power laws (e.g. the fake Zipf distribution).

  7. Design note about a 75 KVA quiet power distribution system

    SciTech Connect

    Visser, A.T.

    1984-04-05

    This note describes a 75KVA quiet power distribution system for X 653 in neutrino Lab D. It is fed from the regular AC distribution which exists in the building and it has no standby power. Its purpose is to remove electrical disturbances which are present on the regular AC distribution.

  8. The acute effects of conventional, complex, and contrast protocols on lower-body power.

    PubMed

    Talpey, Scott W; Young, Warren B; Saunders, Natalie

    2014-02-01

    This study compared conventional, complex, and contrast protocols on peak power (PP) output. Static vs. dynamic contractions were also manipulated to determine the effect of these confounding variables. Eighteen recreationally trained men [age, 21.1 ± 3.3 years; body mass, 81.7 ± 15.9 kg; height, 182.8 ± 6.2 cm; 5 repetition maximum (5RM) half back squat, 119.2 ± 25.4 kg; 5RM/BW, 1.5 ± 0.2 kg] involved in sports including Australian Rules football, basketball, soccer, and rugby participated in this investigation. Five protocols were executed in a randomized order, a conventional protocol in which 3 sets of 4 countermovement jumps (CMJs) were performed 2 minutes apart. Contrast protocols using a heavy resistance conditioning action of either 4 repetitions with a 5RM load or a 5-second static back squat were alternated with sets of 4 CMJs. Complex conditions with 3 sets of 4 repetitions of a 5RM back squat or a 5-second static back squat were performed before the 3 sets of CMJs. In all conditions, 4 minutes of rest followed sets of heavy resistance exercises and 2 minutes of rest followed each set of CMJs. Individual set means and a total session mean were calculated from each CMJ performed during the session. Results showed that the conventional protocol produced significantly greater PP than all conditions except for the dynamic complex and the static contrast. Results suggest that the use of the complex and contrast protocols used in this investigation should not be used for acute increases in lower-body PP in recreationally trained individuals. PMID:23689340

  9. Power conversion distribution system using a resonant high-frequency AC link

    NASA Technical Reports Server (NTRS)

    Sood, P. K.; Lipo, T. A.

    1986-01-01

    Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.

  10. The place of solar power: an economic analysis of concentrated and distributed solar power

    PubMed Central

    2012-01-01

    Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm

  11. Testing strength and power in soccer players: the application of conventional and traditional methods of assessment.

    PubMed

    Paul, Darren J; Nassis, George P

    2015-06-01

    Soccer is a highly complex sport influenced by many physical, psychological, tactical, and technical factors. In terms of basic physical components, strength and power are considered requisites for many important actions such as tackling, jumping, and shooting. Hence, assessment of strength and power is commonly performed within a soccer club's test battery. The objective is to use valid, reliable, and sensitive measures that allow for trustworthy analysis of the physical characteristics of players. Before any credence can be placed in test results, test's validity, reliability, and sensitivity needs to be established. This will allow practitioners to make informed decisions about test selection. This review examines the reliability, validity, and sensitivity of different strength and power assessments in soccer. The suitability of conventional and functional tests is detailed and the strengths and weaknesses of isokinetic dynamometry, hand-held dynamometry (HHD), repetition maximum, and power testing are also addressed. Generally, the tests considered in this review provide moderate to high reliability in soccer players of different training level. Similarly, the consensus demonstrates test methods to be sensitive to training interventions. In comparison, test validity seems less established. Isokinetic dynamometry has often been recognized as a gold standard measure of testing strength. Other methods of assessment are emerging as viable options (e.g., HHD), likely due to functionality and suitability of testing. Given the demands within a soccer club setting, practitioners should endeavor to use testing procedures that are informative yet not time consuming or labor intensive. By providing this, practitioners may have the option to perform more regular monitoring throughout the season rather than a limited number of specific time periods. PMID:25546446

  12. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  13. Developments in space power components for power management and distribution

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Advanced power electronic components development for space applications is discussed. The components described include transformers, inductors, semiconductor devices such as transistors and diodes, remote power controllers, and transmission lines.

  14. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... functioning normally. (2) Essential loads, after failure of any one prime mover, power converter, or energy... source of power is required, after any failure or malfunction in any one power supply system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power source capacity and distribution....

  15. Design of a power management and distribution system for a thermionic-diode powered spacecraft

    SciTech Connect

    Kimnach, G.L.

    1996-12-31

    The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force`s integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TIDs) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TID-emitters reach peak temperatures of approximately 2,200 K, and the TID-collectors are run at approximately 1,000 K. Because of the high Specific Impulse (I{sub sp}) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN and C, power, etc., a substantial increase in payload mass is possible. This potentially allows for a step-down in the required launch vehicle size or class for similar payload mass using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1,000 W{sub e} at 28 {+-} 6V{sub dc} to the payload/spacecraft from a maximum TID generation capability of 1,070 W{sub e} at 2,200 K, producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TIDs is the responsibility of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed.

  16. Design of a power management and distribution system for a thermionic-diode powered spacecraft

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.

    1996-01-01

    The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force's Integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TMD's) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TDM-emitters reach peak temperatures of approximately 2200K, and the TID-collectors are run at approximately 1000K. Because of the high Specific Impulse (I(sup sp)) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN&C, power, etc., a substantial increase in payload weight is possible. This potentially allows for a stepdown in the required launch vehicle size or class for similar payload weight using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1000W(sub e) at 28+/-6V(sub dc) to the payload/spacecraft from a maximum TID generation capability of 1070W(sub e) at 2200K. Producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TID's are the responsibilities of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed herein.

  17. Electron energy distribution control by fiat: breaking from the conventional flux ratio scaling rules in etch

    NASA Astrophysics Data System (ADS)

    Ranjan, Alok; Wang, Mingmei; Sherpa, Sonam; Ventzek, Peter

    2015-03-01

    With shrinking critical dimensions, minimizing each of aspect ratio dependent etching (ARDE), bowing, undercut, selectivity, and within die uniformly across a wafer is met by trading off one requirement against another. The problem of trade-offs is especially critical. At the root of the problem is that roles radical flux, ion flux and ion energy play may be both good and bad. Increasing one parameter helps meeting one requirement but hinders meeting the other. Managing process by managing flux ratios and ion energy alone with conventional sources is not adequate because surface chemistry is uncontrollable. At the root of lack of control is that the electron energy distribution function (eedf) has not been controlled. Fortunately the high density surface wave sources control the eedf by fiat. High density surface wave sources are characterized by distinct plasma regions: an active plasma generation region with high electron temperature (Te) and an ionization free but chemistry rich diffusive region (low Te region). Pressure aids is segregating the regions by proving a means for momentum relaxation between the source and downstream region. "Spatial pulsing" allows access to plasma chemistry with reasonably high ion flux, from the active plasma generation region, just above the wafer. Low plasma potential enables precise passivation of surfaces which is critical for atomic layer etch (ALE) or high precision etch where the roles of plasma species can be limited to their purposed roles. High precision etch need not be at the cost of speed and manufacturability. Large ion flux at precisely controlled ion energy with RLSATM realizes fast desorption steps for ALE without compromising process throughput and precision.

  18. Space Power Management and Distribution Status and Trends

    NASA Technical Reports Server (NTRS)

    Reppucci, G. M.; Biess, J. J.; Inouye, L.

    1984-01-01

    An overview of space power management and distribution (PMAD) is provided which encompasses historical and current technology trends. The PMAD components discussed include power source control, energy storage control, and load power processing electronic equipment. The status of distribution equipment comprised of rotary joints and power switchgear is evaluated based on power level trends in the public, military, and commercial sectors. Component level technology thrusts, as driven by perceived system level trends, are compared to technology status of piece-parts such as power semiconductors, capacitors, and magnetics to determine critical barriers.

  19. Impacts of the Minamata Convention for Mercury Emissions from Coal-fired Power Generation in Asia

    NASA Astrophysics Data System (ADS)

    Giang, A.; Stokes, L. C.; Streets, D. G.; Corbitt, E. S.; Selin, N. E.

    2014-12-01

    We explore the potential implications of the recently signed United Nations Minamata Convention on Mercury for emissions from coal-fired power generation in Asia, and the impacts of these emissions changes on deposition of mercury worldwide by 2050. We use qualitative interviews, document analysis, and engineering analysis to create plausible technology scenarios consistent with the Convention, taking into account both technological and political factors. We translate these scenarios into possible emissions inventories for 2050, based on IPCC development scenarios, and then use the GEOS-Chem global transport model to evaluate the effect of these different technology choices on mercury deposition over geographic regions and oceans. We find that China is most likely to address mercury control through co-benefits from technologies for SO2, NOx, and particulate matter (PM) capture that will be required to attain its existing air quality goals. In contrast, India is likely to focus on improvements to plant efficiency such as upgrading boilers, and coal washing. Compared to current technologies, we project that these changes will result in emissions decreases of approximately 140 and 190 Mg/yr for China and India respectively in 2050, under an A1B development scenario. With these emissions reductions, simulated average gross deposition over India and China are reduced by approximately 10 and 3 μg/m2/yr respectively, and the global average concentration of total gaseous mercury (TGM) is reduced by approximately 10% in the Northern hemisphere. Stricter, but technologically feasible, requirements for mercury control in both countries could lead to an additional 200 Mg/yr of emissions reductions. Modeled differences in concentration and deposition patterns between technology suites are due to differences in both the mercury removal efficiency of technologies and their resulting stack speciation.

  20. Performance assessment of conventional and base-isolated nuclear power plants for earthquake and blast loadings

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Nan

    Nuclear power plants (NPPs) and spent nuclear fuel (SNF) are required by code and regulations to be designed for a family of extreme events, including very rare earthquake shaking, loss of coolant accidents, and tornado-borne missile impacts. Blast loading due to malevolent attack became a design consideration for NPPs and SNF after the terrorist attacks of September 11, 2001. The studies presented in this dissertation assess the performance of sample conventional and base isolated NPP reactor buildings subjected to seismic effects and blast loadings. The response of the sample reactor building to tornado-borne missile impacts and internal events (e.g., loss of coolant accidents) will not change if the building is base isolated and so these hazards were not considered. The sample NPP reactor building studied in this dissertation is composed of containment and internal structures with a total weight of approximately 75,000 tons. Four configurations of the reactor building are studied, including one conventional fixed-base reactor building and three base-isolated reactor buildings using Friction Pendulum(TM), lead rubber and low damping rubber bearings. The seismic assessment of the sample reactor building is performed using a new procedure proposed in this dissertation that builds on the methodology presented in the draft ATC-58 Guidelines and the widely used Zion method, which uses fragility curves defined in terms of ground-motion parameters for NPP seismic probabilistic risk assessment. The new procedure improves the Zion method by using fragility curves that are defined in terms of structural response parameters since damage and failure of NPP components are more closely tied to structural response parameters than to ground motion parameters. Alternate ground motion scaling methods are studied to help establish an optimal procedure for scaling ground motions for the purpose of seismic performance assessment. The proposed performance assessment procedure is used

  1. A Testbed for Deploying Distributed State Estimation in Power Grid

    SciTech Connect

    Jin, Shuangshuang; Chen, Yousu; Rice, Mark J.; Liu, Yan; Gorton, Ian

    2012-07-22

    Abstract—With the increasing demand, scale and data information of power systems, fast distributed applications are becoming more important in power system operation and control. This paper proposes a testbed for evaluating power system distributed applications, considering data exchange among distributed areas. A high-performance computing (HPC) version of distributed state estimation is implemented and used as a distributed application example. The IEEE 118-bus system is used to deploy the parallel distributed state estimation, and the MeDICi middleware is used for data communication. The performance of the testbed demonstrates its capability to evaluate parallel distributed state estimation by leveraging the HPC paradigm. This testbed can also be applied to evaluate other distributed applications.

  2. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose...

  3. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose...

  4. On the application of a machine learning technique to fault diagnosis of power distribution lines

    SciTech Connect

    Togami, Masato; Abe, Norihiro; Kitahashi, T.; Ogawa, Harunao

    1995-10-01

    This paper presents one method for fault diagnosis of power distribution lines by using a decision tree. The conventional method, using a decision tree, applies only to discrete attribute values. To apply it to fault diagnosis of power distribution lines, in practice it must be revised in order to treat attributes whose values range over certain widths. This is because the sensor value or attribute value varies owing to the resistance of the fault point or is influenced by noise. The proposed method is useful when the attribute value has such a property, and it takes into consideration the cost of acquiring the information and the probability of the occurrence of a fault.

  5. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  6. Nutrient flow and distribution in conventional cage, enriched colony, and aviary layer houses.

    PubMed

    Lin, Xing Jun; Zhang, Ruihong; Jiang, Shumei; Elmashad, Hamed M; Mitloehner, Frank

    2016-01-01

    This study was carried out to measure the mass flow and distribution of nutrients (N, C, S, P, and K) as well as solids and moisture in conventional cage (CC), enriched colony (EC), and aviary (AV) laying-hen houses with Lohmann LSL lite hens located on a commercial laying-hen farm in Iowa. The weight of consumed feed and water, and amounts of eggs and manure production were collected weekly from each house for 2 entire flocks for a total of 28 mo. Samples of feed, egg, manure, litter, and hens were regularly taken and analyzed for total solids and nutrients (N, C, S, P, and K). The nutrient losses to the atmosphere were calculated using a mass balance approach. The losses of nutrients were calculated by subtracting the nutrient contents in eggs, manure, and layer body weight gain from the nutrients intake. The research results showed that the feed intake and manure production rates were similar in the 3 houses. The average nutrient intake in feed, in g d(-1) hen(-1), for the 3 houses was 42.0 C, 2.96 N, 0.36 S, 0.55 P, and 0.79 K. The nutrient intake was partitioned as follow: C - 18% in eggs, 28% in manure, and 54% in air losses; N - 34% in eggs, 58% in manure, and 8% in air losses; S - 26% in eggs, 68% in manure, and 6% in air losses; P - 17% in eggs, 79% in manure, and 3.1% in air losses; and K - 9% in eggs, 89% in manure, and 1.6% in air losses. Manure removed from the EC house was drier than manure from the CC or AV house. Among the 3 hen houses studied, the EC house had the lowest nutrient losses and the AV house had the highest losses. Nutrient loss in CC was statistically similar to EC. But loss of N, C, and S in AV differed from CC and EC. Furthermore, the loss of P and K in the 3 housing systems was statistically similar. The AV had a doubled mortality rate compared to CC and EC. PMID:26628346

  7. Inverter power module with distributed support for direct substrate cooling

    DOEpatents

    Miller, David Harold; Korich, Mark D.; Ward, Terence G.; Mann, Brooks S.

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  8. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  9. Automated distribution system management for multichannel space power systems

    NASA Technical Reports Server (NTRS)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  10. Automation of Space Station module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Bechtel, Robert; Weeks, Dave; Walls, Bryan

    1990-01-01

    Viewgraphs on automation of space station module (SSM) power management and distribution (PMAD) system are presented. Topics covered include: reasons for power system automation; SSM/PMAD approach to automation; SSM/PMAD test bed; SSM/PMAD topology; functional partitioning; SSM/PMAD control; rack level autonomy; FRAMES AI system; and future technology needs for power system automation.

  11. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    SciTech Connect

    Klüter, Sebastian Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  12. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  13. A Systematic Investigation of Pressure Distributions at High Speeds over Five Representative NACA Low-Drag and Conventional Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Graham, Donald J; Nitzberg, Gerald E; Olson, Robert N

    1945-01-01

    Pressure distributions determined from high-speed wind-tunnel tests are presented for five NACA airfoil sections representative of both low-drag and conventional types. Section characteristics of lift, drag, and quarter-chord pitching moment are presented along with the measured pressure distributions for the NACA 65sub2-215 (a=0.5), 66sub2-215 (a=0.6), 0015, 23015, and 4415 airfoils for Mach numbers up to approximately 0.85. A critical study is made of the airfoil pressure distributions in an attempt to formulate a set of general criteria for defining the character of high speed flows over typical airfoil shapes. Comparisons are made of the relative characteristics of the low-drag and conventional airfoils investigated insofar as they would influence the high-speed performance and the high-speed stability and control characteristics of airplanes employing these wing sections.

  14. Comparing Different Fault Identification Algorithms in Distributed Power System

    NASA Astrophysics Data System (ADS)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  15. Thresholded Power law Size Distributions of Instabilities in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2015-11-01

    Power-law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold x0; (3) contamination by an event-unrelated background xb; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in the simplest terms with a “thresholded power law” distribution function (also called generalized Pareto [type II] or Lomax distribution), N(x){dx}\\propto {(x+{x}0)}-a{dx}, where x0 > 0 is positive for a threshold effect, while x0 < 0 is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold x0. We apply the thresholded power law distribution function to terrestrial, solar (HXRBS, BATSE, RHESSI), and stellar flare (Kepler) data sets. We find that the thresholded power law model provides an adequate fit to most of the observed data. Major advantages of this model are the automated choice of the power law fitting range, diagnostics of background contamination, physical instability thresholds, instrumental detection thresholds, and finite system size limits. When testing self-organized criticality models that predict ideal power laws, we suggest including these natural truncation effects.

  16. Root production, distribution, and turnover in conventional and organic northern highbush blueberry systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Northern highbush blueberry is a shallow-rooted crop with very fine, fibrous roots. Recently, we installed minirhizotrons (root observation tubes) in a conventional and an organic blueberry planting in western Oregon. We wanted to know exactly when and where new roots were being produced and determi...

  17. Performance of conventionally powered vehicles tested to an electric vehicle test procedure

    NASA Technical Reports Server (NTRS)

    Slavik, R. J.; Dustin, M. O.; Lumannick, S.

    1977-01-01

    A conventional Volkswagen transporter, a Renault 5, a Pacer, and a U. S. Postal Service general DJ-5 delivery van were treated to an electric vehicle test procedure in order to allow direct comparison of conventional and electric vehicles. Performance test results for the four vehicles are presented.

  18. Distributed Power Sources for Mars Colonization

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Shaban, Yasser

    2003-01-01

    One of the fundamental needs for Mars colonization is an abundant source of energy. The total energy system will probably use a mixture of sources based on solar energy, fuel cells, and nuclear energy. Here we concentrate on the possibility of developing a distributed system employing several unique new types of nuclear energy sources, specifically small fusion devices using inertial electrostatic confinement and portable ``battery type'' proton reaction cells.

  19. Correlative analysis of MRI-evident abductor hip muscle degeneration and power after minimally invasive versus conventional unilateral cementless THA.

    PubMed

    Vasilakis, Ioannis; Solomou, Ekaterini; Vitsas, Vasilis; Fennema, Peter; Korovessis, Panagiotis; Siamblis, Dimitrios K

    2012-12-01

    The 2 main null hypotheses of this study were: (1) the 4-year surgical trauma-related degeneration within the hip abductor muscles after a minimally invasive approach to total hip arthroplasty would be similar to that following a conventional approach; and (2) no differences in perioperative blood loss or postoperative hip pain would be observed between the minimally invasive and conventional approaches.In 40 consecutive randomly selected adult patients with unilateral primary hip osteoarthritis, a cementless Zweymüller-Plus THA (Smith & Nephew Orthopaedics, Baar, Switzerland) was implanted by a single surgeon in 1 institution during the same period. Twenty patients underwent a minimally invasive approach (group A), and 20 patients underwent a conventional anterolateral approach (group B). Four years postoperatively, the operated and contralateral nonoperated hips of 37 available patients from both groups were examined with magnetic resonance imaging to show any changes in the gluteus medius and tensor fascia latae. Simultaneously, hip abductor power was measured bilaterally in both groups. Anthropometric data, blood loss, Short Form 36 self-assessment questionnaire, visual analog pain score, and walking distance were also analyzed.The reliability of magnetic resonance imaging and hip abductor power measurements was high. No difference was found in hip abductor power on the operated side between the 2 groups, whereas hip abductor power on the nonoperated side was significantly higher in both groups. This study revealed no mechanical and functional benefits in favor of patients undergoing minimally invasive vs conventional total hip arthroplasty. PMID:23218622

  20. Electricity distribution network power quality regulation

    NASA Astrophysics Data System (ADS)

    Lopez Sanchez, Jose Maria

    The regulation of the electricity distribution utilities has evolved to a scenario based on competition and cost-effectiveness. This cost reduction may affect the quality performance. A quality regulatory proposal based on yardstick competition is presented in this Ph.D. thesis. The proposal focuses on the continuity of supply in the electricity distribution networks. The competition is against objective values of the selected zonal quality indices that are computed using a probabilistic model that takes into account the historical behavior of the distribution network and considers the quality indices as random variables. A monitoring scheme has been developed to obtain the basic reliability indices from the rough data. A methodology to segment the supplied area is proposed. The implementation plan of the regulatory proposal and the incentive/penalty scheme to encourage utilities to improve their quality indices, are also presented. An implementation study case of the scheme is shown. The conceptual framework of this proposal and the different regulations of the continuity of supply of several countries are also reviewed in detail.

  1. Description of a 20 kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  2. Description of a 20 Kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  3. Thirty-Third Annual Power Distribution Conference

    SciTech Connect

    Oerting, J.A. Jr.

    1980-01-01

    A description is given of how the Gulf Power Company which serves 10 westernmost counties of Florida deals with hurricanes. Gulf's hurricane procedures currently contain 661 pages of detailed information for each area of responsibility, including the general concept for restoration of damage, as well as details describing how this will be accomplished. Included are area storm center locations, personnel assignments, material allocations, vehicle assignments, radio frequencies, news media contacts, special priorities for restoration of service, details of logistics associated with lodging and feeding, telephone center operation to take incoming calls from customers and all of the other functions.

  4. A study of power conditioning and power distribution and components

    NASA Technical Reports Server (NTRS)

    Horton, H. M.; Honnell, M. A.

    1973-01-01

    A comprehensive simulation and analysis performed on the operation of the regulator part of the Charger/Battery/Regulator Module (CBRM) are detailed. The CBRM is utilized as an integral component of the Skylab/Apollo Telescope Mount (ATM) electrical power system and contains a switching mode electronic regulator. Implementing circuit analysis techniques, pertinent voltages and currents are calculated; these, in turn, are incorporated into the regulator system study. Investigation of the turn-on and turn-off times associated with the switching circuitry is performed and an examination is made on these calculations. A simulation model computer program is utilized to generate graphs that relate various CBRM parameters to one another.

  5. 99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. Power distribution in two-dimensional optical network channels

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue; Karim, Mohammad A.

    1996-04-01

    The power distribution in two-dimensional optical network channels is analyzed. The maximum number of allowable channels as determined by the characteristics of optical detector is identified, in particular, for neural-network and wavelet-transform applications.

  7. Distribution and metabolism of ingested NO3- and NO2- in germfree and conventional-flora rats.

    PubMed Central

    Witter, J P; Balish, E

    1979-01-01

    Germfree and conventional-flora Sprague-Dawley rats were fed sodium nitrate or sodium nitrite in their drinking water (1,000 microgram/ml), and various organs, tissues, and sections of the intestinal tract were assayed for nitrate (NO3-) and nitrite (NO2-) by a spectrophotometric method. When fed NO3-, germfree rats had chemically detectable levels of NO3- (only) in the stomach, small intestine, cecum, and colon. Conventional-flora rats fed NO3- had both NO3- and NO2- in the stomach, but only NO3- in the small intestine and colon. When fed NO2-, germfree rats had both NO3- and NO2- in the entire gastrointestinal tract. Conventional-flora rats fed NO2- had both ions in the stomach and small intestine, but only NO3- in the large intestine. Conventional-flora rats fed NO3- or NO2- had lower amounts of these ions in the gastrointestinal tract than comparably fed germfree rats. Control (non-NO3- or NO2--fed) germfree and conventional-flora rats had trace amounts of NO3- (only) in their stomachs and bladders. These results, in conjunction with various in vitro studies with intestinal contents, suggest that NO3- or NO2- reduction is a function of the normal bacterial flora, whereas NO2- oxidation is attributable to the mammalian host. In addition, the distribution of these ions after their ingestion appears more widespread in the body than previously thought. PMID:543701

  8. Distributed Hierarchical Control of Multi-Area Power Systems with Improved Primary Frequency Regulation

    SciTech Connect

    Lian, Jianming; Marinovici, Laurentiu D.; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2012-12-12

    The conventional distributed hierarchical control architecture for multi-area power systems is revisited. In this paper, a new distributed hierarchical control architecture is proposed. In the proposed architecture, pilot generators are selected in each area to be equipped with decentralized robust control as a supplementary to the conventional droop speed control. With the improved primary frequency control, the system frequency can be restored to the nominal value without the help of secondary frequency control, which reduces the burden of the automatic generation control for frequency restoration. Moreover, the low frequency inter-area electromechanical oscillations can also be effectively damped. The effectiveness of the proposed distributed hierarchical control architecture is validated through detailed simulations.

  9. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  10. A comparative study of electric power distribution systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.

    1990-01-01

    The electric power distribution systems for spacecraft are compared concentrating on two interrelated issues: the choice between dc and high frequency ac, and the converter/inverter topology to be used at the power source. The relative merits of dc and ac distribution are discussed. Specific converter and inverter topologies are identified and analyzed in detail for the purpose of detailed comparison. Finally, specific topologies are recommended for use in dc and ac systems.

  11. High-power CSI-fed induction motor drive with optimal power distribution based control

    NASA Astrophysics Data System (ADS)

    Kwak, S.-S.

    2011-11-01

    In this article, a current source inverter (CSI) fed induction motor drive with an optimal power distribution control is proposed for high-power applications. The CSI-fed drive is configured with a six-step CSI along with a pulsewidth modulated voltage source inverter (PWM-VSI) and capacitors. Due to the PWM-VSI and the capacitor, sinusoidal motor currents and voltages with high quality as well as natural commutation of the six-step CSI can be obtained. Since this CSI-fed drive can deliver required output power through both the six-step CSI and PWM-VSI, this article shows that the kVA ratings of both the inverters can be reduced by proper real power distribution. The optimal power distribution under load requirements, based on power flow modelling of the CSI-fed drive, is proposed to not only minimise the PWM-VSI rating but also reduce the six-step CSI rating. The dc-link current control of the six-step CSI is developed to realise the optimal power distribution. Furthermore, a vector controlled drive for high-power induction motors is proposed based on the optimal power distribution. Experimental results verify the high-power CSI-fed drive with the optimal power distribution control.

  12. 62. View of amplifiermodulator control system with power distribution panel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. View of amplifier-modulator control system with power distribution panel on left, control power supply in middle, and amplifier modulator on right, second floor in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General § 23.1310 Power source...

  14. Analytical Limit Distributions from Random Power-Law Interactions

    NASA Astrophysics Data System (ADS)

    Zaid, Irwin; Mizuno, Daisuke

    2016-07-01

    Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated.

  15. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    NASA Technical Reports Server (NTRS)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  16. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  17. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  18. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  19. Two-Year-Olds Learn Novel Nouns, Verbs, and Conventional Actions from Massed or Distributed Exposures.

    ERIC Educational Resources Information Center

    Childers, Jane B.; Tomasello, Michael

    2002-01-01

    Examined 2-year-olds' comprehension and production of novel nouns, verbs, or actions at 3 intervals after training conducted in massed or distributed exposures. Found that for comprehension, children learned all item types in all training conditions at all retention intervals. Production was better for nonverbal actions than for either word type…

  20. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  1. Probabilistic Vulnerability Assessment Based on Power Flow and Voltage Distribution

    SciTech Connect

    Ma, Jian; Huang, Zhenyu; Wong, Pak C.; Ferryman, Thomas A.

    2010-04-30

    Risk assessment of large scale power systems has been an important problem in power system reliability study. Probabilistic technique provides a powerful tool to solve the task. In this paper, we present the results of a study on probabilistic vulnerability assessment on WECC system. Cumulant based expansion method is applied to obtain the probabilistic distribution function (PDF) and cumulative distribution function (CDF) of power flows on transmission lines and voltage. Overall risk index based on the system vulnerability analysis is calculated using the WECC system. The simulation results based on WECC system is used to demonstrate the effectiveness of the method. The methodology can be applied to the risk analysis on large scale power systems.

  2. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  3. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  4. Distributed photovoltaic generation in residential distribution systems: Impacts on power quality and anti-islanding

    NASA Astrophysics Data System (ADS)

    Mitra, Parag

    The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated.

  5. Automation of the Athens (Tennessee) electric power distribution system

    SciTech Connect

    Rizy, D.T.; Stovall, J.P.; Usry, G.H.

    1988-01-01

    A large scale distribution automation research and development project has been conducted at the Athens Utilities Board (AUB) in Athens, Tennessee. The project goal was to experiment with the integrated monitoring and control of an entire distribution system from a central distribution control center. The project was sponsored by the U.S. Department of Energy, Office of Energy Storage and Distribution, Electric Energy Systems Program and managed by the Oak Ridge National Laboratory. The experience with the distribution substation monitoring and control, feeder monitoring, voltage and reactive power (vary) control, system (or circuit) reconfiguration for emergency and maintenance situations, and load control are described. A distribution automation applications software package for assessing system configuration, and volt/var control on automated radial distribution feeders was developed and is also described. 8 refs.

  6. A Cost to Benefit Analysis of a Next Generation Electric Power Distribution System

    NASA Astrophysics Data System (ADS)

    Raman, Apurva

    This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast protection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs. Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this reflects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a

  7. Parallel Computing Environments and Methods for Power Distribution System Simulation

    SciTech Connect

    Lu, Ning; Taylor, Zachary T.; Chassin, David P.; Guttromson, Ross T.; Studham, Scott S.

    2005-11-10

    The development of cost-effective high-performance parallel computing on multi-processor super computers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution system simulator (PDSS) takes a bottom-up approach and simulates load at appliance level, where detailed thermal models for appliances are used. This approach works well for a small power distribution system consisting of a few thousand appliances. When the number of appliances increases, the simulation uses up the PC memory and its run time increases to a point where the approach is no longer feasible to model a practical large power distribution system. This paper presents an effort made to port a PC-based power distribution system simulator (PDSS) to a 128-processor shared-memory super computer. The paper offers an overview of the parallel computing environment and a description of the modification made to the PDSS model. The performances of the PDSS running on a standalone PC and on the super computer are compared. Future research direction of utilizing parallel computing in the power distribution system simulation is also addressed.

  8. Power laws, discontinuities and regional city size distributions

    USGS Publications Warehouse

    Garmestani, A.S.; Allen, C.R.; Gallagher, C.M.

    2008-01-01

    Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux. ?? 2008.

  9. The Effects of Transients on Photospheric and Chromospheric Power Distributions

    NASA Astrophysics Data System (ADS)

    Samanta, T.; Henriques, V. M. J.; Banerjee, D.; Krishna Prasad, S.; Mathioudakis, M.; Jess, D.; Pant, V.

    2016-09-01

    We have observed a quiet-Sun region with the Swedish 1 m Solar Telescope equipped with the CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, Hα line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as “magnetic shadows.” These also show enhanced power close to the photosphere, traditionally referred to as “power halos.” The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore whether small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs), and Rapid Redshifted Excursions (RREs), can strongly influence the power maps. The short and finite lifetime of these events strongly affects all power maps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect on the power suppression around 3 minutes, and wave interaction may play a key role here. Our high-cadence observations reveal that flows, waves, and shocks manifest in the presence of magnetic fields to form a nonlinear magnetohydrodynamic system.

  10. Benefits of Power Electronic Interfaces for Distributed Energy Systems

    SciTech Connect

    Kroposki, B.; Pink, C.; DeBlasio, R.; Thomas, H.; Simoes, M.; Sen, P. K.

    2006-01-01

    Optimization of overall electrical system performance is important for the long-term economic viability of distributed energy (DE) systems. With the increasing use of DE systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for distributed energy applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/VAR support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper examines the system integration and optimization issues associated with DE systems and show the benefits of using PE interfaces for such applications.

  11. Power law tails in the Italian personal income distribution

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.

    2005-05-01

    We investigate the shape of the Italian personal income distribution using microdata from the Survey on Household Income and Wealth, made publicly available by the Bank of Italy for the years 1977-2002. We find that the upper tail of the distribution is consistent with a Pareto-power law type distribution, while the rest follows a two-parameter lognormal distribution. The results of our analysis show a shift of the distribution and a change of the indexes specifying it over time. As regards the first issue, we test the hypothesis that the evolution of both gross domestic product and personal income is governed by similar mechanisms, pointing to the existence of correlation between these quantities. The fluctuations of the shape of income distribution are instead quantified by establishing some links with the business cycle phases experienced by the Italian economy over the years covered by our dataset.

  12. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  13. Electrical Power Distribution and Control Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Fu, Johnny S.; Liffring, Mark; Mehdi, Ishaque S.

    2001-01-01

    This slide presentation reviews the use of Electrical Power Distribution and Control (EPD&C) Modeling and how modeling can support analysis. The presentation discusses using the EASY5 model to simulate and analyze the Space Shuttle Electric Auxiliary Power Unit. Diagrams of the model schematics are included, as well as graphs of the battery cell impedance, hydraulic load dynamics, and EPD&C response to hydraulic load variations.

  14. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  15. A non-conventional watershed partitioning method for semi-distributed hydrological modelling: the package ALADHYN

    NASA Astrophysics Data System (ADS)

    Menduni, Giovanni; Pagani, Alessandro; Rulli, Maria Cristina; Rosso, Renzo

    2002-02-01

    The extraction of the river network from a digital elevation model (DEM) plays a fundamental role in modelling spatially distributed hydrological processes. The present paper deals with a new two-step procedure based on the preliminary identification of an ideal drainage network (IDN) from contour lines through a variable mesh size, and the further extraction of the actual drainage network (AND) from the IDN using land morphology. The steepest downslope direction search is used to identify individual channels, which are further merged into a network path draining to a given node of the IDN. The contributing area, peaks and saddles are determined by means of a steepest upslope direction search. The basin area is thus partitioned into physically based finite elements enclosed by irregular polygons. Different methods, i.e. the constant and variable threshold area methods, the contour line curvature method, and a topologic method descending from the Hortonian ordering scheme, are used to extract the ADN from the IDN. The contour line curvature method is shown to provide the most appropriate method from a comparison with field surveys. Using the ADN one can model the hydrological response of any sub-basin using a semi-distributed approach. The model presented here combines storm abstraction by the SCS-CN method with surface runoff routing as a geomorphological dispersion process. This is modelled using the gamma instantaneous unit hydrograph as parameterized by river geomorphology. The results are implemented using a project-oriented software facility for the Analysis of LAnd Digital HYdrological Networks (ALADHYN).

  16. Pump combiner loss as a function of input numerical aperture power distribution

    NASA Astrophysics Data System (ADS)

    Sévigny, Benoit; Poirier, Pierre; Faucher, Mathieu

    2009-02-01

    High-power combiner designs (such as kilowatt-class combiners and beyond) are increasingly aggressive on brightness conservation in order to reduce the brightness loss of the pumps as much as possible in both direct diode combining and pump and signal coupling, especially with the advent of next-generation high-power pumps. Since most of the pump loss is due to brightness loss across the combiner, tighter designs (close to the brightness limit) are considerably more sensitive to variations in the input power distribution as a function of numerical aperture; for instance, next-generation, high-power multi-emitter pumps are likely to have larger numerical apertures than conventional single-emitter diodes. As a consequence, pump insertion loss for a given combiner design sitting close to the brightness limit should be dependant on the input power distribution. Aside from presenting a manufacturing challenge, high brightness combiners also imply more sophisticated testing to allow a deeper understanding of the loss with respect to the far-field distribution of the pump inputs and thus enable the extrapolation of loss for an arbitrary, cylindrically symmetric radiant intensity distribution. In this paper, we present a novel test method to measure loss as a function of numerical aperture (NA) fill factor using a variable NA source with square-shaped far field distributions. Results are presented for a range of combiners, such as 7x1 and 19x1 pump combiners, with different brightness ratio and fiber inputs. Combiners violating the brightness conservation equation are also characterized in order to estimate the loss as a function of input power vs. NA distribution and fill factor.

  17. Electric power scheduling - A distributed problem-solving approach

    NASA Technical Reports Server (NTRS)

    Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

    1990-01-01

    Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity.

  18. Power law distribution of dividends in horse races

    NASA Astrophysics Data System (ADS)

    Park, K.; Domany, E.

    2001-02-01

    We discovered that the distribution of dividends in Korean horse races follows a power law. A simple model of betting is proposed, which reproduces the observed distribution. The model provides a mechanism to arrive at the true underlying winning probabilities, which are initially unknown, in a self-organized collective fashion, through the dynamic process of betting. Numerical simulations yield excellent agreement with the empirical data.

  19. Power consumption of communication systems employing radio-over-fiber distributed antenna systems for railway

    NASA Astrophysics Data System (ADS)

    Pham, Tien Dat; Kanno, Atsushi; Kawanishi, Tetsuya

    2013-01-01

    Demand on high speed communication and broadband access connection for fast moving passengers is rapidly increasing. However, the current wireless access communication techniques for railway which are mainly based on GSM for rail, satellite, and macro-cell cellular networks cannot meet the requirement of communication on fast moving trains. Cellular networks with small cell size and high carrier frequencies can be realized as a promising solution to overcome the current obstacles. In that situation, a radio-over-fiber distributed antenna system using WDM technology can be an attractive means to connect small base stations along the railway track to the control centers. However, considering a huge number of base stations placed along the railway track, power consumption will become one of the main concerns. In this paper, we investigate and optimize power consumption and energy efficiency of a Radio-over-Fiber distributed antenna system (RoF DAS) for railway. Based on the model, optimum system design in terms of remote antenna cell size and number of cells in a WDM ring are derived with respect to system energy consumption and efficiency. From the model we can also determine an appropriate scheme to upgrade a currently deployed conventional cellular network to a system employing RoF DAS technology. The power consumption and energy efficiency of the conventional and the upgraded systems are compared. The results demonstrate a significant save of power consumption and remarkable enhancement of energy efficiency when using a RoF DAS system.

  20. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    NASA Astrophysics Data System (ADS)

    Reynolds, C.; Kandlikar, M.

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km.

  1. Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.

    SciTech Connect

    Robinett, Rush D., III; Wilson, David Gerald

    2010-05-01

    In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

  2. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  3. Power-law distribution of family names in Japanese societies

    NASA Astrophysics Data System (ADS)

    Miyazima, Sasuke; Lee, Youngki; Nagamine, Tomomasa; Miyajima, Hiroaki

    2000-04-01

    We study the frequency distribution of family names. From a common data base, we count the number of people who share the same family name. This is the size of the family. We find that (i) the total number of different family names in a society scales as a power law of the population, (ii) the total number of family names of the same size decreases as the size increases with a power law and (iii) the relation between size and rank of a family name also shows a power law. These scaling properties are found to be consistent for five different regional communities in Japan.

  4. Proposal of an Innovative Electric Power Distribution System based on Packet Power Transactions

    NASA Astrophysics Data System (ADS)

    Inoue, Jun; Fujii, Yasumasa

    Recently, the introduction of decentralized generators, such as photovoltaic power generations, has been promoted rapidly. In the future, extensive use of PV is thought to give rise to the daytime surplus electricity, and a household will manage the surplus electricity rationally. The purpose of this research is to propose an innovative electric power distribution system based on packet power transactions. First, this paper explains distributed markets of which the price can easily reflect the geographical diversity of renewable energy availability and load curve characteristic within the local area. Second, this paper exemplifies the specific electronic circuit that makes pulse-shaped power transmission to develop the packet power distribution system. Finally, this paper shows the results of multi-agent simulations of electricity trading to evaluate the usefulness of the proposed system.

  5. Impacts of the Minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia.

    PubMed

    Giang, Amanda; Stokes, Leah C; Streets, David G; Corbitt, Elizabeth S; Selin, Noelle E

    2015-05-01

    We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project ∼90 and 150 Mg·y(-1) of avoided power sector emissions for China and India, respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India ∼2 and 13 μg·m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg·y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively. PMID:25851589

  6. A Distributed Cooperative Power Allocation Method for Campus Buildings

    SciTech Connect

    Hao, He; Sun, Yannan; Carroll, Thomas E.; Somani, Abhishek

    2015-09-01

    We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designed using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method

  7. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    SciTech Connect

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  8. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  9. Analytical Limit Distributions from Random Power-Law Interactions.

    PubMed

    Zaid, Irwin; Mizuno, Daisuke

    2016-07-15

    Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated. PMID:27472105

  10. New-type cable accessories for power distribution

    SciTech Connect

    Sanjo, K.; Kawano, K.; Shiraoka, K.; Yasuda, N.; Yatsuka, K.

    1982-12-01

    This paper describes new types of cable accessories for improving the reliability of power distribution cable systems. The practical development of a 25kV-class cable termination, and a waterproof sleeve for cable joints based on heat-shrinkable components made of irradiated polyolefine is discussed. Furthermore, the theoretical and practical data are given.

  11. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  12. Evaluation of conventional electric power generating industry quality assurance and reliability practices

    SciTech Connect

    Anderson, R.T.; Lauffenburger, H.A.

    1981-03-01

    The techniques and practices utilized in an allied industry (electric power generation) that might serve as a baseline for formulating Quality Assurance and Reliability (QA and R) procedures for photovoltaic solar energy systems were studied. The study results provide direct near-term input for establishing validation methods as part of the SERI performance criteria and test standards development task.

  13. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  14. Statistical Models of Power-law Distributions in Homogeneous Plasmas

    SciTech Connect

    Roth, Ilan

    2011-01-04

    A variety of in-situ measurements in space plasmas point out to an intermittent formation of distribution functions with elongated tails and power-law at high energies. Power-laws form ubiquitous signature of many complex systems, plasma being a good example of a non-Boltzmann behavior for distribution functions of energetic particles. Particles, which either undergo mutual collisions or are scattered in phase space by electromagnetic fluctuations, exhibit statistical properties, which are determined by the transition probability density function of a single interaction, while their non-asymptotic evolution may determine the observed high-energy populations. It is shown that relaxation of the Brownian motion assumptions leads to non-analytical characteristic functions and to generalization of the Fokker-Planck equation with fractional derivatives that result in power law solutions parameterized by the probability density function.

  15. The optical power distribution in a dark room

    NASA Astrophysics Data System (ADS)

    Liner, Andrej; Papes, Martin; Vitasek, Jan; Koudelka, Petr; Látal, Jan; Cubik, Jakub; Vašinek, Vladimir

    2012-01-01

    Nowadays, in the field of communications systems radio transmission frequencies are dominant inside buildings. Due to the increasing of large number of users and devices, that use these frequencies, there is danger of accruing interferences and reducing the transmission performance. Therefore, indoor wireless optical systems are beginning to use as an alternative solution. Indoor wireless optical systems can use for communication direct and reflected light rays. This article deals with the measurement of optical power distribution in the model dark room. As a light source we use white power LEDs located on the ceiling of the room. The measurement of the optical power distribution was performed in dark room, which was specially constructed for this purpose. This room was also modelled in LightTools software that allows simulate a real measurement. This article compares the results of the measurement and the simulation.

  16. Exploring empowerment in settings: mapping distributions of network power.

    PubMed

    Neal, Jennifer Watling

    2014-06-01

    This paper brings together two trends in the empowerment literature-understanding empowerment in settings and understanding empowerment as relational-by examining what makes settings empowering from a social network perspective. Specifically, extending Neal and Neal's (Am J Community Psychol 48(3/4):157-167, 2011) conception of network power, an empowering setting is defined as one in which (1) actors have existing relationships that allow for the exchange of resources and (2) the distribution of network power among actors in the setting is roughly equal. The paper includes a description of how researchers can examine distributions of network power in settings. Next, this process is illustrated in both an abstract example and using empirical data on early adolescents' peer relationships in urban classrooms. Finally, implications for theory, methods, and intervention related to understanding empowering settings are explored. PMID:24213301

  17. [The Framework Convention for Tobacco Control (FCTC): a powerful public health instrument].

    PubMed

    Bovet, P; Cornuz, J; Paccaud, F

    2012-07-11

    The Framework Convention on Tobacco Control (FCTC) isa global and comprehensive legal framework for reducing demand for tobacco (e.g. price measures; ban on smoking in enclosed places; contents of tobacco products; packaging and labeling; advertising, promotion and sponsorship; liability, tobacco cessation, etc.) and supply (e.g. illicit trade; sales to/by minors, etc.). Adopted in 2003, the FCTC has been ratified by 174 countries so far. Switzerland has signed the treaty in 2004 but ratification will necessitate the implementation of stronger tobacco control measures at the national level. The FCTC is a priority of any strategy to reduce noncommunicable diseases in populations. Broad implementation of the FCTC has the potential to prevent a substantial proportion of the billion of tobacco-related deaths expected in the 21st century. PMID:22934470

  18. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    NASA Astrophysics Data System (ADS)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2016-03-01

    The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  19. Multi-kw dc power distribution system study program

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1974-01-01

    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

  20. Is cortical distribution of spectral power a stable individual characteristic?

    PubMed

    Knyazev, Gennady G

    2009-05-01

    General understanding in EEG research is that cortical distribution of spectral power varies as a function of time, frequency, state, and experimental condition. There are findings, however, which show that individual-specific patterns of cortical spectral power distribution could be amazingly stable, at least in some experimental conditions. In this study two different experimental datasets were used to analyze stability and variability of individual pattern of cortical spectral power distribution across time, experimental conditions, and frequency bands. First experiment consisted of presentation of pictures of emotional facial expressions. Second experiment was an auditory stop-signal task. In both experiments a number of psychometric measures were obtained from each participant. It has been shown that in spite of high short-term variability, individual-specific patterns of cortical spectral power distribution are remarkably stable across frequency bands, long periods of time, and experimental conditions. These patterns are related to state and trait participant's characteristics. The antero-posterior spectral power gradient emerged as the most prominent feature associated with important personality dimensions. Relatively higher oscillatory activity in the frontal cortical region relates to female gender and Behavioral Inhibition tendencies. Relatively higher activity at posterior sites is associated with Extraversion. Significant differences in event-related spectral perturbations upon presentation of emotionally loaded stimuli were found between high and low antero-posterior gradient participants. These data show that cortical distribution of oscillatory activity may be seen as a relatively stable individual characteristic. Enhanced or diminished oscillatory activity of some cortical regions, such as the prefrontal cortex, may play an important role in organization of human behavior. PMID:19047002

  1. Learning geotemporal nonstationary failure and recovery of power distribution.

    PubMed

    Wei, Yun; Ji, Chuanyi; Galvan, Floyd; Couvillon, Stephen; Orellana, George; Momoh, James

    2014-01-01

    Smart energy grid is an emerging area for new applications of machine learning in a nonstationary environment. Such a nonstationary environment emerges when large-scale failures occur at power networks because of external disruptions such as hurricanes and severe storms. Power distribution networks lie at the edge of the grid, and are especially vulnerable to external disruptions. Quantifiable approaches are lacking and needed to learn nonstationary behaviors of large-scale failure and recovery of power distribution. This paper studies such nonstationary behaviors in three aspects. First, a novel formulation is derived for an entire life cycle of large-scale failure and recovery of power distribution. Second, spatial-temporal models of failure and recovery of power distribution are developed as geolocation-based multivariate nonstationary GI(t)/G(t)/∞ queues. Third, the nonstationary spatial-temporal models identify a small number of parameters to be learned. Learning is applied to two real-life examples of large-scale disruptions. One is from Hurricane Ike, where data from an operational network is exact on failures and recoveries. The other is from Hurricane Sandy, where aggregated data is used for inferring failure and recovery processes at one of the impacted areas. Model parameters are learned using real data. Two findings emerge as results of learning: 1) failure rates behave similarly at the two different provider networks for two different hurricanes but differently at the geographical regions and 2) both the rapid and slow-recovery are present for Hurricane Ike but only slow recovery is shown for a regional distribution network from Hurricane Sandy. PMID:24806656

  2. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  3. Using SMES as a multi-purpose interface in power generation, transmission and distribution systems

    NASA Astrophysics Data System (ADS)

    Tam, Kwa-Sur; Zhang, X.; Yarali, A.

    The objectives are to introduce the concept of the multiterminal superconductive magnetic energy storage (MSMES) scheme and to show that new SMES applications and more SMES benefits to electric power systems can be realized by using MSMES. The authors show a schematic diagram of the conventional SMES system. The SMES magnet is charged and discharged through one dc/ac converter terminal and the SMES unit is connected as a shunt device to the ac power system. The authors show a schematic diagram of a three-terminal SMES system which is used to explain the principle of operation of a MSMES system. Potential applications of MSMES systems in power generation, transmission, and distribution systems are discussed.

  4. Distribution automation pilot project at Georgia Power Company. Final report

    SciTech Connect

    Hall, J.M.

    1997-12-01

    This report includes a Benefit-Cost Study for Distribution Automation (DA) at Georgia Power Company, an Evaluation of two communication systems for Distribution Automation, and Development and Evaluation of a standards-based interface between an AM/FM system and SCADA. The Benefit-Cost Study addresses the functional requirements and performance of the major Distribution Automation functions under GPC`s conditions. Five implementation scenarios for Distribution Automation are analyzed. The performance of the DA functions is simulated for four prototype GPC substations in the Carrollton and Tucker areas. The results of the simulation are extrapolated for the entire GPC distribution system. A number of reliability related functions along with real-time modeling and volt/var control functions are recommended for implementation at GPC. GPC has installed two pilot communication systems for Distribution Automation. Both pilot systems use proprietary radio technologies for communications with pole-top power system devices and customer meters. One of these systems, in the Carrollton area, uses a Metricom{trademark} UtiliNet{trademark} radio system, and the other, in the Tucker area, uses a CellNet{trademark} Data Systems, Inc. CellNet radio system. The performance of these two systems is described and evaluated in the project. The advantages and disadvantages of the communication systems for the recommended distribution automation system at GPC are analyzed. A transfer format from a mapping and facilities database to a SCADA database for the Georgia Power Company was developed and tested for the project. The mapping and facilities database is implemented as an Oracle database in the ARC/Info AM/FM/GIS application by ESRI, and the SCADA database is implemented on the OASyS 5.0 SCADA platform provided by Valmet Automation. The National Transfer Format (NTF) is the vehicle for the transfer of data from the GIS to the SCADA system.

  5. A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Submodule Differential Power Processing

    SciTech Connect

    Qin, SB; Cady, ST; Dominguez-Garcia, AD; Pilawa-Podgurski, RCN

    2015-04-01

    This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented. The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.

  6. Multi-layer sampling in conventional monitoring wells for improved estimation of vertical contaminant distributions and mass

    NASA Astrophysics Data System (ADS)

    Puls, Robert W.; Paul, Cynthia J.

    1997-02-01

    "Traditional" approaches to sampling groundwater and interpreting monitoring well data often provide misleading pictures of plume shape and location in the subsurface and the true extent of contamination. Groundwater samples acquired using pumps and bailers in conventional monitoring wells yield data which are largely dependent upon the length of the screened interval, the purging and sampling method employed, and the purge volume extracted prior to sample collection. Accurate delineation of plume boundaries and vertical concentration gradients is desirable, to accurately characterize waste sites and optimize remedial strategies. The objective of this study was to compare sampling results using four different sampling approaches and devices. Conventional monitoring wells were sampled with an electric submersible pump using low-flow sampling techniques and with a bailer using "traditional" sampling methods. The same wells were also sampled with a passive multi-layer sampling system (DMLS®, Margan Ltd.). Finally, aqueous concentrations were also determined in the formation adjacent to the monitoring wells studied using a Geoprobe® and short (30 cm) screens. Results indicated that "traditional" sampling methods can provide misleading information regarding contaminant distribution and mass and indeed can miss the presence of contamination altogether.

  7. Distributed Multi-Agent-Based Protection Scheme for Transient Stability Enhancement in Power Systems

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Mahmud, M. A.; Pota, H. R.; Hossain, M. J.; Orchi, T. F.

    2015-04-01

    This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.

  8. Distributed renewable power from biomass and other waste fuels

    NASA Astrophysics Data System (ADS)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  9. Automatic control system by power distribution in a power-generating reactor

    SciTech Connect

    Aleksakov, A.N.; Podlazov, L.N.; Ryabov, V.I.; Shevchenko, V.V.; Postnikov, V.V.

    1980-12-01

    The development of the theoretical principles of construction of these systems and of sufficiently detailed nonlinear dynamic numerical models of a power-generation unit with an RBMK reactor have allowed a consistent procedure to be produced for the engineering synthesis of an (local automated control) LAC-LEP (local emergency protection) system. The LAC system facilitates the shaping and maintenance of the desired power distribution in the whole volume of the reactor. In emergency situations, the LAC-LEP system qualitatively reduces the power to a safe level and effectively suppresses the power warpings in one-half of the reactor, which are characteristic for these reactors.

  10. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Backhaus, Scott; Sule, Petr

    2009-01-01

    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

  11. The power law distribution for lower tail cities in India

    NASA Astrophysics Data System (ADS)

    Devadoss, Stephen; Luckstead, Jeff; Danforth, Diana; Akhundjanov, Sherzod

    2016-01-01

    The city size distribution for lower tail cities has received scant attention because a small portion of the population lives in rural villages, particularly in developed countries, and data are not readily available for small cities. However, in developing countries much of the population inhabits rural areas. The purpose of this study is to test whether power law holds for small cities in India by using the most recent and comprehensive Indian census data for the year 2011. Our results show that lower tail cities for India do exhibit a power law.

  12. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  13. Power-law distributions in noisy dynamical systems

    NASA Astrophysics Data System (ADS)

    Wilkinson, Michael; Guichardaz, Robin; Pradas, Marc; Pumir, Alain

    2015-09-01

    We consider a dynamical system which is non-autonomous, has a stable attractor and which is perturbed by an additive noise. We establish that under some quite typical conditions, the intermittent fluctuations from the attractor have a probability distribution with power-law tails. We show that this results from a stochastic cascade of amplification of fluctuations due to transient periods of instability. The exponent of the power-law is interpreted as a negative fractal dimension, and is explicitly determined, using numerics or perturbation expansion, in the case of a model of colloidal particles in one-dimension.

  14. Power management and distribution considerations for a lunar base

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Coleman, Anthony S.

    1991-01-01

    Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process.

  15. Electric power scheduling: A distributed problem-solving approach

    NASA Technical Reports Server (NTRS)

    Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

    1990-01-01

    Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity. The value-driven free-market economic model is such a tool.

  16. Modeling Uncertainties in Power System by Generalized Lambda Distribution

    NASA Astrophysics Data System (ADS)

    Xiao, Qing

    2014-06-01

    This paper employs the generalized lambda distribution (GLD) to model random variables with various probability distributions in power system. In the context of the probability weighted moment (PWM), an optimization-free method is developed to assess the parameters of GLD. By equating the first four PWMs of GLD with those of the target random variable, a polynomial equation with one unknown is derived to solve for the parameters of GLD. When employing GLD to model correlated multivariate random variables, a method of accommodating the dependency is put forward. Finally, three examples are worked to demonstrate the proposed method.

  17. Power distribution for an Am/Cm bushing melter

    SciTech Connect

    Gong, C.; Hardy, B.J.

    1996-12-31

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am{sup 243} and Cm{sup 244}. Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to ORNL for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. Vitrification will be effected by depositing a liquid feed stream containing the isotopes in solution, together with a stream of glass frit, onto the top of a molten glass pool in a melter. The glass is non-conducting and the melter is a Platinum/Rhodium alloy vessel which is heated by passing an electric current through it. Because most of the power is required to evaporate the liquid feed at the top of the glass pool, power demands differ for the upper and lower parts of the melter. In addition, the melter is batch fed so that the local power requirements vary with time. In order to design a unique split power supply, which ensures adequate local power delivery, an analysis of the melter power distribution was performed with the ABAQUS finite element code. ABAQUS was used to calculate the electric potential and current density distributions in the melter for a variety of current and potential boundary conditions. The results of the calculation were compared with test data and will be used to compute power densities for input to a computational fluid dynamics model for the melter.

  18. Power system distributed oscilation detection based on Synchrophasor data

    NASA Astrophysics Data System (ADS)

    Ning, Jiawei

    Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed

  19. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  20. On estimating the exponent of power-law frequency distributions.

    PubMed

    White, Ethan P; Enquist, Brian J; Green, Jessica L

    2008-04-01

    Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited. PMID:18481513

  1. Power-law distribution in Japanese racetrack betting

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi

    2006-08-01

    Gambling is one of the basic economic activities that humans indulge in. An investigation of gambling activities provides deep insights into the economic actions of people and sheds lights on the study of econophysics. In this paper we present an analysis of the distribution of the final odds of the races organized by the Japan Racing Association. The distribution of the final odds Po(x) indicates a clear power-law Po(x)∝1/x, where x represents the final odds. This power-law can be explained on the basis of the assumption that every bettor bets his money on the horse that appears to be the strongest in a race.

  2. Application of geographic information system in distribution power network automation

    NASA Astrophysics Data System (ADS)

    Wei, Xianmin

    2011-02-01

    Geographic information system (GIS) is the computer system in support of computer software with collection, storage, management, retrieval and comprehensive analysis of a variety of geospatial information, with various forms output data and graphics products. This paper introduced GIS data organization and its main applications in distribution power network automation, including both offline and online, and proposed component-based system development model and the need to establish WEBGIS and reliability.

  3. Pseudodynamic planning for expansion of power distribution sytems

    SciTech Connect

    Ramirez-Rosado, I.J. ); Gonen, T. )

    1991-02-01

    This paper presents basic and extended planning models, based on a pseudodynamic methodology, to solve the global expansion problem (sizing, locating, and timing) of distribution substations and feeders throughout the planning time period. The objective functions, that represent the expansion costs, are minimized by successive concatenated optimizations subject to the Kirchhoff's current law, power capacity limits and logical constraints, in the basic model. It also presents an extended model that is obtained by including the voltage drop constraints in the basic model.

  4. Assessment of distributed solar power systems: Issues and impacts

    NASA Astrophysics Data System (ADS)

    Moyle, R. A.; Chernoff, H.; Schweizer, T. C.; Patton, J. B.

    1982-11-01

    The installation of distributed solar-power systems presents electric utilities with a host of questions. Some of the technical and economic impacts of these systems are discussed. Among the technical interconnect issues are isolated operation, power quality, line safety, and metering options. Economic issues include user purchase criteria, structures and installation costs, marketing and product distribution costs, and interconnect costs. An interactive computer program that allows easy calculation of allowable system prices and allowable generation-equipment prices was developed as part of this project. It is concluded that the technical problems raised by distributed solar systems are surmountable, but their resolution may be costly. The stringent purchase criteria likely to be imposed by many potential system users and the economies of large-scale systems make small systems (less than 10 to 20 kW) less attractive than larger systems. Utilities that consider life-cycle costs in making investment decisions and third-party investors who have tax and financial advantages are likely to place the highest value on solar-power systems.

  5. D0 Cryogenic Controls I/O Base Power Distribution

    SciTech Connect

    Markley, D.; /Fermilab

    1991-03-09

    The D0 cryogenic control system has 3 I/O bases and 1 25 amp 24vdc power supply. Each I/O base uses both 120 vac and 24 vdc. There are as many as 14 modules in each base, depending on what type of module it may require ac or dc. Then there are as many as 32 devices (instrumentation) per module. There is a power distribution network that provides power to this system. It was configured so that no conductors, devices, or components could carry or receive more current or voltage than they could safely handle. This is done to protect both personel and components from fire, heat, and electric shock.

  6. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    SciTech Connect

    Matos, Al; Stuby, Rick

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  7. Klystron Cluster Scheme for ILC High Power RF Distribution

    SciTech Connect

    Nantista, Christopher; Adolphsen, Chris; /SLAC

    2009-07-06

    We present a concept for powering the main linacs of the International Linear Collider (ILC) by delivering high power RF from the surface via overmoded, low-loss waveguides at widely spaced intervals. The baseline design employs a two-tunnel layout, with klystrons and modulators evenly distributed along a service tunnel running parallel to the accelerator tunnel. This new idea eliminates the need for the service tunnel. It also brings most of the warm heat load to the surface, dramatically reducing the tunnel water cooling and HVAC requirements. In the envisioned configuration, groups of 70 klystrons and modulators are clustered in surface buildings every 2.5 km. Their outputs are combined into two half-meter diameter circular TE{sub 01} mode evacuated waveguides. These are directed via special bends through a deep shaft and along the tunnel, one upstream and one downstream. Each feeds approximately 1.25 km of linac with power tapped off in 10 MW portions at 38 m intervals. The power is extracted through a novel coaxial tap-off (CTO), after which the local distribution is as it would be from a klystron. The tap-off design is also employed in reverse for the initial combining.

  8. Power Management and Distribution (PMAD) Model Development: Final Report

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.

    2011-01-01

    Power management and distribution (PMAD) models were developed in the early 1990's to model candidate architectures for various Space Exploration Initiative (SEI) missions. They were used to generate "ballpark" component mass estimates to support conceptual PMAD system design studies. The initial set of models was provided to NASA Lewis Research Center (since renamed Glenn Research Center) in 1992. They were developed to estimate the characteristics of power conditioning components predicted to be available in the 2005 timeframe. Early 90's component and device designs and material technologies were projected forward to the 2005 timeframe, and algorithms reflecting those design and material improvements were incorporated into the models to generate mass, volume, and efficiency estimates for circa 2005 components. The models are about ten years old now and NASA GRC requested a review of them to determine if they should be updated to bring them into agreement with current performance projections or to incorporate unforeseen design or technology advances. This report documents the results of this review and the updated power conditioning models and new transmission line models generated to estimate post 2005 PMAD system masses and sizes. This effort continues the expansion and enhancement of a library of PMAD models developed to allow system designers to assess future power system architectures and distribution techniques quickly and consistently.

  9. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  11. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  12. Distributed Hierarchical Control Architecture for Transient Dynamics Improvement in Power Systems

    SciTech Connect

    Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2013-08-24

    In this paper, a novel distributed hierarchical coordinated control architecture is proposed for large scale power systems. The newly considered architecture facilitates frequency restoration and power balancing functions to be decoupled and implemented at different levels. At the local level, decentralized robust generator controllers are designed to quickly restore frequency after large faults and disturbances in the system. The controllers presented herein are shown to improve transient stability performance, as compared to conventional governor and excitation control. At the area level, Automatic Generation Control (AGC) is modified and coordinates with the decentralized robust controllers to reach the interchange schedule in the tie lines. The interaction of local and zonal controllers is validated through detailed simulations.

  13. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    NASA Astrophysics Data System (ADS)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  14. Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).

    SciTech Connect

    Nourai, Ali

    2007-06-01

    AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

  15. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  16. Life cycle assessment of overhead and underground primary power distribution.

    PubMed

    Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack

    2010-07-15

    Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems. PMID:20553042

  17. A Multi-Agent Design for Power Distribution Systems Automation

    NASA Astrophysics Data System (ADS)

    Ghorbani, M. Jawad

    A new Multi Agent System (MAS) design for fault location, isolation and restoration in power distribution systems is presented. In proposed approach, when there is a fault in the Power Distribution System (PDS), MAS quickly isolates the fault and restores the service to fault-free zones. Hierarchical coordination strategy is introduced to manage the agents which integrate the advantages of both centralized and decentralized coordination strategies. In this framework, Zone Agent (ZA) locate and isolate the fault based on the locally available information and assist the Feeder Agent (FA) for reconfiguration and restoration. FA can solve the restoration problem using the existing algorithms for the 0-1 Knapsack problem. A novel Q-learning mechanism is also introduced to support the FAs in decision making for restoration. Also a distributed MAS-Based Load Shedding (LS) technique has been used to supply as many of higher priority customers as possible, in case there is more demand than generation. The design is illustrated by the use of simulation case studies for fault location, isolation and restoration on West Virginia Super Circuit (WVSC) and hardware implementation for fault location and isolation in a laboratory platform. The results from the case studies indicate the performance of proposed MAS designs.

  18. An extended conventional fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect

    Scarangella, M. J.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

  19. Operational maintenance data for power generation distribution and HVAC components

    SciTech Connect

    Hollis, H.D.; Hale, P.S. Jr.; Arno, R.G.; Briggs, S.J.

    1995-12-31

    This paper describes the culmination of a 24,000 man hour effort to collect operational and maintenance data on 239 power generation, power distribution and HVAC items, including gas turbine generators, diesel engine generators, switch gear assemblies, cables, boilers, piping, valves and chillers. This program was designed to determine the effects of new technology equipment, i.e., equipment installed after 1971, on availability. The central hypothesis was that this new equipment would exhibit a significant increase in availability, with corresponding decreases in required maintenance and the occurrence of failures. Information was obtained on a variety of commercial and industrial facility types (including office buildings, hospitals, water treatment facilities, prisons, utilities, manufacturing facilities, school universities and bank computer centers), with varying degrees of maintenance quality.

  20. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  1. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  2. Optimal multi-stage planning of power distribution systems

    SciTech Connect

    Gonen, T.; Ramirez-Rosado, I.J.

    1987-04-01

    This paper presents a completely-dynamic mixed-integer model to solve the optimal sizing, timing, and location of distribution substation and feeder expansion problems simultaneously. The objective function of the model represents the present worth of costs of investment, energy, and demand losses of the system which takes place throughout the planning time horizon. It is minimized subject to the Kirchhoff's current law, power capacity limits, and logical constraints by using a standard mathematical programming system. The developed model allows to include the explicit constraints of radiality and voltage drop in its formulation.

  3. Automated fault location and diagnosis on electric power distribution feeders

    SciTech Connect

    Zhu, J.; Lubkeman, D.L.; Girgis, A.A.

    1997-04-01

    This paper presents new techniques for locating and diagnosing faults on electric power distribution feeders. The proposed fault location and diagnosis scheme is capable of accurately identifying the location of a fault upon its occurrence, based on the integration of information available from disturbance recording devices with knowledge contained in a distribution feeder database. The developed fault location and diagnosis system can also be applied to the investigation of temporary faults that may not result in a blown fuse. The proposed fault location algorithm is based on the steady-state analysis of the faulted distribution network. To deal with the uncertainties inherent in the system modeling and the phasor estimation, the fault location algorithm has been adapted to estimate fault regions based on probabilistic modeling and analysis. Since the distribution feeder is a radial network, multiple possibilities of fault locations could be computed with measurements available only at the substation. To identify the actual fault location, a fault diagnosis algorithm has been developed to prune down and rank the possible fault locations by integrating the available pieces of evidence. Testing of the developed fault location and diagnosis system using field data has demonstrated its potential for practical use.

  4. Space Station module Power Management And Distribution (PMAD) system

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1990-01-01

    This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface

  5. Distributed Power Control with Multiple Agents in a Distributed Base Station Scheme Using Macrodiversity

    NASA Astrophysics Data System (ADS)

    Leroux, Philippe; Roy, Sébastien

    Power management in wireless networks has been thoroughly studied and applied in many different contexts. However, the problem has not been tackled from a multiple-agent perspective (MA). This paper intends to do so in the context of a wireless network comprised of distributed base stations using macrodiversity. The proposed design is shown to provide efficient use of macrodiversity resources and high energy efficiency when compared with more traditional algorithms. Moreover, the power control mechanism is completely decentralized, while avoiding direct information exchange or excessive signaling, which makes it highly scalable. Its auto-configuration property, stemming from its MA basis, offers high adaptivity when experiencing high or low interference levels. This leads to a naturally balanced resource usage, while also maintaining nearly full efficiency with only a reduced set of discrete power levels, thus making low-cost electronic implementation practical.

  6. Power Law Distributions of Patents as Indicators of Innovation

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion; Hendy, Shaun

    2013-03-01

    The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Such figures however give an overly simplistic measure of innovation within a country. Here we present evidence that the distribution of patents amongst applicants within many countries is well-fitted to a power law distribution with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.

  7. Power-law distribution of gene expression fluctuations

    NASA Astrophysics Data System (ADS)

    Nacher, J. C.; Ochiai, T.

    2008-09-01

    Large-scale genomic technologies has opened new possibilities to infer gene regulatory networks from time series data. Here, we investigate the relationship between the dynamic information of gene expression in time series and the underlying network structure. First, our results show that the distribution of gene expression fluctuations (i.e., standard deviation) follows a power-law. This finding indicates that while most genes exhibit a relatively low variation in expression level, a few genes are revealed as highly variable genes. Second, we propose a stochastic model that explains the emergence of this power-law behavior. The model derives a relationship that connects the standard deviation (variance) of each node to its degree. In particular, it allows us to identify a global property of the underlying genetic regulatory network, such as the degree exponent, by only computing dynamic information. This result not only offers an interesting link to explore the topology of real systems without knowing the real structure but also supports earlier findings showing that gene networks may follow a scale-free distribution.

  8. A distributed control approach for power and energy management in a notional shipboard power system

    NASA Astrophysics Data System (ADS)

    Shen, Qunying

    The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability

  9. Phytoplankton distribution during two contrasted summers in a Mediterranean harbour: combining automated submersible flow cytometry with conventional techniques.

    PubMed

    Thyssen, Melilotus; Beker, Beatriz; Ediger, Dilek; Yilmaz, Doruk; Garcia, Nicole; Denis, Michel

    2011-02-01

    Automated in situ flow cytometry, high-pressure liquid chromatography (HPLC), optical microscopy and fluorometry were combined to monitor phytoplankton over two summer periods (2005 and 2006). In 2006, temperature was higher and nutrients lower than in 2005, generating differences in the phytoplankton assemblages (i.e., abundance and structure). Pigment-size classes based on daily HPLC analysis provided evidence for higher proportions of picoplankton and nanoplankton with higher biomass in 2005 and a dominance of microplankton with lower biomass in 2006, the latter with lower specific diversity, as evidenced by weekly microscopy analyses. Total chlorophyll a estimations from fluorometry measurements recorded every 30 min were higher in 2005 than in 2006, as for the HPLC chlorophyll a concentrations. An automated in situ flow cytometer (Thyssen et al., J Plankton Res 30(9):1027-1040, 2008a) sampled seawater every 30 min. Data analysis yielded the resolution of seven clusters based on light scatter and fluorescence. In 2006, an increase in abundance of the largest cells was observed, confirming pigment and microscopy data. The results suggest that the ecosystem was on a constant renewing process in summer 2005 due to a strong wind event and on a highly productive and recycling way in summer 2006 due to stratification of the upper water layer. Automated submersible flow cytometry confirms to be a powerful tool providing high-resolution data by monitoring phytoplankton at the single cell level. This technology gives access to the shape of the light scatter and fluorescence signals generated by each cell passing through a laser beam and that are linked to size, structure and pigment content of the target cell. When combined with conventional techniques, it further improves our understanding of phytoplankton assemblages. PMID:20221799

  10. Study of the longitudinal distribution of power generated in a random distributed feedback Raman fibre laser with unidirectional pumping

    SciTech Connect

    Churkin, D V; El-Taher, A E; Vatnik, I D; Babin, Sergei A

    2012-09-30

    The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. (optical fibres, lasers and amplifiers. properties and applications)

  11. Single-phase power distribution system power flow and fault analysis

    NASA Technical Reports Server (NTRS)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  12. EMC and power quality standards for 20-kHz power distribution

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1987-01-01

    The Space Station Power Distribution System has been baselined as a sinusoidal single phase, 440 VRMS system. This system has certain unique characteristics directly affecting its application. In particular, existing systematic description and control documents were modified to reflect the high operating frequency. This paper will discuss amendments made on Mil STD 704 (Electrical Power Characteristics), and Mil STD 461-B (Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference). In some cases these amendments reflect changes of several orders of magnitude. Implications and impacts of these changes are discussed.

  13. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  14. Power law distributions and dynamic behaviour of stock markets

    NASA Astrophysics Data System (ADS)

    Richmond, P.

    2001-04-01

    A simple agent model is introduced by analogy with the mean field approach to the Ising model for a magnetic system. Our model is characterised by a generalised Langevin equation = F ϕ + G ϕ t where t is the usual Gaussian white noise, i.e.: t t' = 2Dδ t-t' and t = 0. Both the associated Fokker Planck equation and the long time probability distribution function can be obtained analytically. A steady state solution may be expressed as P ϕ = exp{ - Ψ ϕ - ln G(ϕ)} where Ψ ϕ = - F/ G dϕ and Z is a normalization factor. This is explored for the simple case where F ϕ = Jϕ + bϕ2 - cϕ3 and fluctuations characterised by the amplitude G ϕ = ϕ + ɛ when it readily yields for ϕ>>ɛ, a distribution function with power law tails, viz: P ϕ = exp{ 2bϕ-cϕ2 /D}. The parameter c ensures convergence of the distribution function for large values of ϕ. It might be loosely associated with the activity of so-called value traders. The parameter J may be associated with the activity of noise traders. Output for the associated time series show all the characteristics of familiar financial time series providing J < 0 and D | J|.

  15. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  16. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  17. Methanation of recovered oxyfuel-CO2 from Ketzin and of flue gas emitted by conventional power plants

    NASA Astrophysics Data System (ADS)

    Müller, Klaus; Beinlich, Niklas; Rachow, Fabian; Israel, Johannes; Schwiertz, Carola; Charlafti, Evgenia; Schmeißer, Dieter

    2015-04-01

    The catalytic conversion of CO2 with H2 into CH4 is possible by the Sabatier reaction CO2 + 4H2 -> CH4 + 2H2O. Using excess energy from renewable electricity generation, this reaction offers an opportunity for recycling of CO2 as synthetic natural gas, for example. In result, CO2 emissions caused by fossil natural gas are reduced by the amount of this reintegrated and recycled CO2. In laboratory scale, we study the Sabatier reaction in the context of carbon capture and storage. We use used real processed oxy-fuel CO2 before and after injection at the pilot plant in Ketzin/Brandenburg. Here, one important aspect is the stability of the performance of catalysts for Sabatiers reaction against contaminations like SOx or NOx. We find a stable conversion before and after storage in the Ketzin aquifer. In addition, we report on the performance of the Sabatier reaction as direct methanation of flue gas, emitted by conventional power plants. We use an upscaled system, with a maximum input flow rate of 50Nm3/h Gas (or 5Nm3/h CO2, 25Nm3/h flue gas, 20Nm3/h H2, according to the flue gas composition). The performance is characterized in a simulated composition of flue gas and under real conditions at a power plant in Schwarze Pumpe, Brandenburg, Germany. In all cases, we find a conversion near 90%, with ~100% selectivity. In an upscaled system with high input flows of educt gas, the reaction is also autoorganized. At a certain limit of gas flow, a steady state equilibrium of exothermic heat production and thermal flow is reached and the reaction needs no further external annealing.

  18. Root distribution in a California semi-arid oak savanna ecosystem as determined by conventional sampling and ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Raz-Yaseef, N.; Baldocchi, D. D.

    2011-12-01

    Koteen, Laura E., Raz-Yaseef, Naama, and Dennis D. Baldocchi University of California, Berkeley California's blue oak, Quercus douglasii, is a unique tree in several ways. Despite the intense heat of California's central valley and Sierra foothills, and absence of precipitation during dry summer months, blue oaks are winter deciduous, and rely on a suite of drought adaptation measures for highly-efficient water use. To date, much more is known about aboveground dynamics in semi-arid oak savanna ecosystems than belowground. Yet, the root system is instrumental in ensuring oak survival and in determining the magnitude and timing of land-atmospheric fluxes via its control of water and nutrient supply to aboveground processes and soil moisture content. Tree root distribution is notoriously heterogeneous. Therefore a comprehensive sampling effort is needed in order to optimally represent it. To further understand the patterns of water use in oak savanna ecosystems in the Sierra foothills of California, we have sought to characterize the root system by depth. To accomplish this goal, we have sampled the root system using conventional sampling methods (i.e. pit and core sampling), in conjunction with ground penetrating radar (GPR). Using both methods together made it possible to compensate for the limitations of each: Fine roots can only be detected by conventional sampling, and involve time intensive work in the lab, limiting sample size. GPR, on the other hand, allows for much greater spatial coverage and therefore more comprehensive characterization of the coarse root component. An extensive field campaign was executed during May 2011. 7 tree areas where chosen, representing the range of tree sizes and composition at the research site: 2 small trees, 2 large trees and 2 tree clusters. One additional very large tree that has undergone extensive additional physiological measurements was also chosen in order to posit and test hypotheses about linkages among root, soil

  19. Leadership in Mammalian Societies: Emergence, Distribution, Power, and Payoff.

    PubMed

    Smith, Jennifer E; Gavrilets, Sergey; Mulder, Monique Borgerhoff; Hooper, Paul L; El Mouden, Claire; Nettle, Daniel; Hauert, Christoph; Hill, Kim; Perry, Susan; Pusey, Anne E; van Vugt, Mark; Smith, Eric Alden

    2016-01-01

    Leadership is an active area of research in both the biological and social sciences. This review provides a transdisciplinary synthesis of biological and social-science views of leadership from an evolutionary perspective, and examines patterns of leadership in a set of small-scale human and non-human mammalian societies. We review empirical and theoretical work on leadership in four domains: movement, food acquisition, within-group conflict mediation, and between-group interactions. We categorize patterns of variation in leadership in five dimensions: distribution (across individuals), emergence (achieved versus inherited), power, relative payoff to leadership, and generality (across domains). We find that human leadership exhibits commonalities with and differences from the broader mammalian pattern, raising interesting theoretical and empirical issues. PMID:26552515

  20. A distributed power market for the Smart Grid

    NASA Astrophysics Data System (ADS)

    McCulloch, Ryan James

    To address the challenges of resource allocation in the Smart Electrical Grid a new power market is proposed. A distributed and autonomous contract net based market system in which participants, represented by the agents, engage in two distinct yet interconnected markets in order to determine resource allocation. Key to this proposed design is the 2 market structure which separates negotiations between consumers and reliable generation from negotiations between consumers and intermittent energy resources. The first or primary market operates as a first price sealed bid reverse auction while the second or secondary market utilizes a uniform price auction. In order to evaluate this new market a simulator is developed and the market is modeled and tested within it. The results of these tests indicate that the proposed design is an effective method of allocating electrical grid resources amongst consumers, generators, and intermittent energy resources with some feasibility and scalability limitations.

  1. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  2. MULTI-LAYER SAMPLING IN CONVENTIONAL MONITORING WELLS FOR IMPROVED ESTIMATION OF VERTICAL CONTAMINANT DISTRIBUTIONS AND MASS

    EPA Science Inventory

    "Traditional" approaches to sampling groundwater and interpreting monitoring well data often provide misleading pictures of plume shape and location in the subsurface and the true extent of contamination. Groundwater samples acquired using pumps and bailers in conventional monito...

  3. Characterization of imaging performance in differential phase contrast CT compared with the conventional CT—Noise power spectrum NPS(k)

    PubMed Central

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2011-01-01

    Purpose: The differential phase contrast CT is emerging as a new technology to improve the contrast sensitivity of the conventional CT. Via system analysis, modeling, and computer simulation, the authors study the noise power spectrum (NPS)—an imaging performance indicator—of the differential phase contrast CT and compare it with that of the conventional CT. Methods: The differential phase contrast CT is implemented with x-ray tube and gratings. The x-ray propagation and data acquisition are modeled and simulated with Fourier analysis and Fresnel analysis. To avoid any interference caused by scatter and beam hardening, a monochromatic x-ray source (30 keV) is assumed, which irradiates the object to be imaged by 360° so that no weighting scheme is needed. A 20-fold up-sampling is assumed to simulate x-ray beam’s propagation through the gratings G1 and G2 with periods 8 and 4 μm, respectively, while the intergrating distance is 193.6 mm (1∕16 of the Tabolt distance). The dimension of the detector cell for data acquisition ranges from 32 × 32 to 128 × 128 μm2, while the field of view in data acquisition is 40.96 × 40.96 mm2. A uniform water phantom with a diameter 37.68 mm is employed to study the NPS, with its complex refraction coefficient n = 1 − δ + iβ = 1 − 2.5604 × 10−7 + i1.2353 × 10−10. The x-ray flux ranges from 106 to 108 photon∕cm2·projection and observes the Poisson distribution, which is consistent with that of micro-CT in preclinical applications. The image matrix of reconstructed water phantom is 1280 × 1280, and a total of 180 regions at 128 × 128 matrix are used for NPS calculation via 2D Fourier Transform in which adequate zero padding is applied to avoid aliasing. Results: The preliminary data show that the differential phase contrast CT manifests its NPS with a 1∕|k| trait, while the distribution of the conventional CTs NPS observes |k|. This accounts for the

  4. C -parameter distribution at N3LL' including power corrections

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-01

    We compute the e+e- C -parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O (αs3), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O (ΛQCD) renormalon ambiguity in the soft function, we switch from the MS ¯ to a short distance "Rgap" scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C -parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≃ 2.5 % at Q =mZ.

  5. Power Law Distributions of Patents as Indicators of Innovation

    PubMed Central

    O’Neale, Dion R. J.; Hendy, Shaun C.

    2012-01-01

    The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries. PMID:23227144

  6. C -parameter distribution at N 3 LL ' including power corrections

    DOE PAGESBeta

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-15

    We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switchmore » from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.« less

  7. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  8. RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid

    NASA Astrophysics Data System (ADS)

    Taylor, Zachariah David

    In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.

  9. Validating MCNP for LEU Fuel Design via Power Distribution Comparisons

    SciTech Connect

    Primm, Trent; Maldonado, G Ivan; Chandler, David

    2008-11-01

    The mission of the Reduced Enrichment for Research and Test Reactors (RERTR) Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low enriched uranium (LEU) fuel and targets. Oak Ridge National Lab (ORNL) is reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction of flux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. A current 3-D Monte Carlo N-Particle (MCNP) model was modified to replicate the HFIR Critical Experiment 3 (HFIRCE-3) core of 1965. In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. Foils (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil s activity to the activity of a normalizing foil. The current work consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the normalizing foil. Power distributions were obtained for the clean core (no poison in moderator and symmetrical rod position at 17.5 inches) and fully poisoned-moderator (1.35 g B/liter in moderator and rods fully withdrawn) conditions. The observed deviations between the

  10. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  11. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

    SciTech Connect

    Hodge, B. M.; Milligan, M.

    2011-03-01

    In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

  12. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  13. Distributed solid state programmable thermostat/power controller

    NASA Technical Reports Server (NTRS)

    Alexander, Jane C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2008-01-01

    A self-contained power controller having a power driver switch, programmable controller, communication port, and environmental parameter measuring device coupled to a controllable device. The self-contained power controller needs only a single voltage source to power discrete devices, analog devices, and the controlled device. The programmable controller has a run mode which, when selected, upon the occurrence of a trigger event changes the state of a power driver switch and wherein the power driver switch is maintained by the programmable controller at the same state until the occurrence of a second event.

  14. Inference of Statistical Patterns in Complex Geosystems: Fitting Power-law Distributions.

    NASA Astrophysics Data System (ADS)

    Deluca, Anna; Corral, Alvaro

    2014-05-01

    Power-law distributions contain precious information about a large variety of physical processes. Although there are sound theoretical grounds for these distributions, the empirical evidence giving support to power laws has been traditionally weak. Recently, Clauset et al. have proposed a systematic method to find over which range (if any) a certain distribution behaves as a power law. However, their method fails to recognize true (simulated) power-law tails in some instances, rejecting the power-law hypothesis. Moreover, the method does not perform well when it is extended to power-law distributions with an upper truncation. We present an alternative procedure, valid for truncated as well as for non-truncated power-law distributions, based in maximum likelihood estimation, the Kolmogorov-Smirnov goodness-of-fit test, and Monte Carlo simulations. We will test the performance of our method on several empirical data which were previously analyzed with less systematic approaches.

  15. A study using a Monte Carlo method of the optimal configuration of a distribution network in terms of power loss sensing.

    PubMed

    Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul

    2011-01-01

    Recently there have been many studies of power systems with a focus on "New and Renewable Energy" as part of "New Growth Engine Industry" promoted by the Korean government. "New And Renewable Energy"-especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels-is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI's IntelliGrid research program. The European Union (EU), which represents Europe's Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers

  16. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  17. Distributed Bragg reflector ring oscillators: A large aperture source of high single-mode optical power

    SciTech Connect

    Dzurko, K.M.; Hardy, A.; Scifres, D.R.; Welch, D.F.; Waarts, R.G.; Lang, R.J. )

    1993-06-01

    Distributed Bragg reflector (DBR) ring oscillators are the first monolithic semiconductor lasers containing broad-area active regions which operate in a single mode to several times their threshold current. Orthogonally oriented diffraction gratings surrounding an unpatterned active region select a single spatial and temporal mode of oscillation. This paper presents both analytic and experimental verification of single mode operation for active dimensions up to 368 [times] 1000 [mu]m. Threshold current densities under 200 A/cm[sup 2] and total differential efficiencies greater than 60% have been measured. DBR ring oscillators have demonstrated over 1 W of single frequency output power, 460 mW of spatially coherent, single frequency output power, and nearly circular diffraction limited output to 4 [times] I[sub th]. The performance potential of these devices is enormous, considering that the output apertures are nearly two orders of magnitude wider than conventional single mode sources which generate up to 0.2 W of coherent output.

  18. Power distribution in complex environmental negotiations: Does balance matter?

    USGS Publications Warehouse

    Burkardt, N.; Lamb, B.L.; Taylor, J.G.

    1997-01-01

    We studied six interagency negotiations covering Federal Energy Regulatory Commission (FERC) hydroelectric power licenses. Negotiations occurred between state and federal resource agencies and developers over project operations and natural resource mitigation. We postulated that a balance of power among parties was necessary for successful negotiations. We found a complex relationship between balanced power and success and conclude that a balance of power was associated with success in these negotiations. Power played a dynamic role in the bargaining and illuminates important considerations for regulatory design.

  19. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  20. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    SciTech Connect

    Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric; Jacobson, Jacob; Schwab, Amy; Wu, May; Argo, Andrew; Brandt, Craig C.; Cafferty, Kara; Chiu, Yi-Wen; Dutta, Abhijit; Eaton, Laurence M.; Searcy, Erin

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  1. Comparative cost models of a liquid nitrogen vapor phase (LNVP) cold chain-distributed cryopreserved malaria vaccine vs. a conventional vaccine

    PubMed Central

    Garcia, Cristina Reyes; Manzi, Fatuma; Tediosi, Fabrizio; Hoffman, Stephen L.; James, Eric R.

    2013-01-01

    Typically, vaccines distributed through the Expanded Program on Immunization (EPI) use a 2–8 °C cold chain with 4–5 stops. The PfSPZ Vaccine comprises whole live-attenuated cryopreserved sporozoites stored in liquid nitrogen (LN2) vapor phase (LNVP) below −140 °C and would be distributed through a LNVP cold chain. The purpose of this study was to model LNVP cold chain distribution for the cryopreserved PfSPZ Vaccine in Tanzania, estimate the costs and compare these costs to those that would be incurred in distributing a ‘conventional’ malaria vaccine through the EPI. Capital and recurrent costs for storage, transportation, labor, energy usage and facilities were determined for the birth cohort in Tanzania over five years. Costs were calculated using WHO/UNESCO calculators. These were applied to a 2–8 °C distribution model with national, regional, district, and health facility levels, and for the cryopreserved vaccine using a ‘modified hub-and-spoke’ (MH-S) LNVP distribution system comprising a central national store, peripheral health facilities and an intermediate district-level transhipment stop. Estimated costs per fully immunized child (FIC) were $ 6.11 for the LNVP-distributed cryopreserved vaccine where the LN2 is generated, and $ 6.04 with purchased LN2 (assuming US $ 1.00/L). The FIC costs for distributing a conventional vaccine using the four level 2–8 °C cold chain were $ 6.10, and with a tariff distribution system as occurs in Tanzania the FIC cost was $ 5.53. The models, therefore, predicted little difference in 5-year distribution costs between the PfSPZ Vaccine distributed through a MH-S LNVP cold chain and a conventional vaccine distributed through the more traditional EPI system. A LNVP cold chain provides additional benefits through the use of durable dry shippers because no refrigerators, freezers or refrigerated trucks are required. Thus strain at the cold chain periphery, vaccine wastage from cold chain failures and the

  2. Power components for the space station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  3. Power components for the Space Station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  4. Improving Power Quality in Low-Voltage Networks Containing Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    Mazumder, Sumit; Ghosh, Arindam; Zare, Firuz

    2013-05-01

    Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM.

  5. The Seductive Power of an Innovation: Enrolling Non-Conventional Actors in a Drip Irrigation Community in Morocco

    ERIC Educational Resources Information Center

    Benouniche, Maya; Errahj, Mostafa; Kuper, Marcel

    2016-01-01

    Purpose: The aim of this study was to analyze the motivations of non-conventional innovation actors to engage in innovation processes, how their involvement changed the technology and their own social-professional status, and to analyze their role in the diffusion of the innovation. Design/methodology/approach: We studied the innovation process of…

  6. Effect of Changing Treatment Disinfectants on the Microbiology of Distributed Water and Pipe Biofilm Communities using Conventional and Metagenomic Approaches

    EPA Science Inventory

    The purpose of this research was to add to our knowledge of chlorine and monochloramine disinfectants, with regards to effects on the microbial communities in distribution systems. A whole metagenome-based approach using sophisticated molecular tools (e.g., next generation sequen...

  7. Soil profile nutrient distribution following 10 years of poultry litter application in conventional and conservation tillage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution of pH, P, K, Ca, Mg, Mn and Zn within the soil profile was determined following 10 years of poultry litter application to a Cecil sandy loam soil in the Southern Piedmont. During the 10 year period, 95 Mg ha-1 of poultry litter was applied to five cotton crops and five corn crops. ...

  8. Distributed Energy Resources, Power Quality and Reliability - Background

    SciTech Connect

    Schienbein, Lawrence A.; DeSteese, John G.

    2002-01-31

    Power quality [PQ] and power reliability [PR] gained importance in the industrialized world as the pace of installation of sensitive appliances and other electrical loads by utility customers accelerated, beginning in the mid 1980s. Utility-grid-connected customers rapidly discovered that this equipment was increasingly sensitive to various abnormalities in the electricity supply.

  9. Effect of spatial distribution of dissipated power on modeling of SMR BAW resonators at high power levels.

    PubMed

    Tag, Andreas; Bader, Bernhard; Huck, Christian; Karolewski, Dominik; Pitschi, Maximilian; Weigel, Robert; Hagelauer, Amelie

    2015-10-01

    The modeling of bulk acoustic wave resonators at elevated power levels has been improved by taking the spatial distribution of the dominating loss mechanisms into account. The spatial distribution of the dissipated power enables more accurate modeling of the temperature increase caused by the applied power. Thus, it is also possible to more accurately model the frequency shifts of the resonators' impedance curves resulting from the temperature increase caused by the applied power. Simulation and measurement results for the temperatures and impedances of the resonators with different layerstacks at high power loads are presented. The simulation and measurement results are in good agreement, confirming the presented modeling approach. Furthermore, the de-embedding procedure used to obtain vectorial scattering parameters of the resonators during high power loads, the according measurement setup, and the procedure for measuring absolute temperatures by infrared thermography are discussed. PMID:26470048

  10. Systems analysis of the space shuttle. [communication systems, computer systems, and power distribution

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.; Oh, S. J.; Thau, F.

    1975-01-01

    Developments in communications systems, computer systems, and power distribution systems for the space shuttle are described. The use of high speed delta modulation for bit rate compression in the transmission of television signals is discussed. Simultaneous Multiprocessor Organization, an approach to computer organization, is presented. Methods of computer simulation and automatic malfunction detection for the shuttle power distribution system are also described.