Science.gov

Sample records for conventional superconducting tip

  1. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    SciTech Connect

    Kimura, H.; Barber Jr., R. P.; Ono, S.; Ando, Yoichi; Dynes, Robert C.

    2009-10-28

    We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi2Sr2CaCu2O8+ single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson ICRN product. Corresponding energy gap measurements were also performed and a surprising inverse correlation was observed between the local ICRN product and the local energy gap.

  2. High-temperature superconductivity: A conventional conundrum

    DOE PAGESBeta

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  3. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-01

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF6 plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi2Se3 at temperatures ranging from 30 mK to 9 K.

  4. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    SciTech Connect

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-07

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.

  5. Rectangular Waveguides with Two Conventional and Two Superconducting Walls

    NASA Technical Reports Server (NTRS)

    Yalamanchili, Raj; Qiu, Zheng An; Wang, Yen-Chu

    1995-01-01

    The propagation properties of transverse electric TE(sup pm) modes and their dispersion relations in rectangular waveguides with two conventional and two superconducting walls, derived by using the Meissner boundary conditions on the superconducting walls, are presented. In addition to recovering some previously known results, some novel results have been obtained: the cut-off wavelength of the dominant TE(sup 10) mode is greater than that of the conventional TE(sub 10) mode, and the tangential electric field and normal magnetic field for the dominant mode TE(sup 10) exist on the superconducting surfaces. Expressions for electromagnetic components, surface currents, attenuation coefficient, maximum transmitted power, dispersion and wave impedance are also presented.

  6. High temperature superconductivity in sulfur hydride under ultrahigh pressure: A complex superconducting phase beyond conventional BCS

    NASA Astrophysics Data System (ADS)

    Bussmann-Holder, Annette; Köhler, Jürgen; Whangbo, M.-H.; Bianconi, Antonio; Simon, Arndt

    2016-05-01

    The recent report of superconductivity under high pressure at the record transition temperature of Tc =203 K in pressurized H2S has been identified as conventional in view of the observation of an isotope effect upon deuteration. Here it is demonstrated that conventional theories of superconductivity in the sense of BCS or Eliashberg formalisms cannot account for the pressure dependence of the isotope coefficient. The only way out of the dilemma is a multi-band approach of superconductivity where already small interband coupling suffices to achieve the high values of Tc together with the anomalous pressure dependent isotope coefficient. In addition, it is shown that anharmonicity of the hydrogen bonds vanishes under pressure whereas anharmonic phonon modes related to sulfur are still active.

  7. Andreev nanoprobe of half-metallic CrO2 films using superconducting cuprate tips

    NASA Astrophysics Data System (ADS)

    Turel, C. S.; Guilaran, I. J.; Xiong, P.; Wei, J. Y. T.

    2011-11-01

    Superconducting tips of YBa2Cu3O7-x were used to perform point-contact Andreev reflection spectroscopy on half-metallic CrO2 thin films. At 4.2 K, strong suppression of the d-wave Andreev reflection characteristics was observed, consistent with the high spin polarization of CrO2. Our technique was validated by comparison with data taken on non-magnetic Au films and with data taken by superconducting Pb tips. The point contacts were estimated to be ≲10 nm in size, attesting to their ballistic and microscopic nature. Our results demonstrate the feasibility of using superconducting cuprate tips as spin-sensitive nanoprobes of ferromagnets.

  8. Emergence of nanoscale inhomogeneity in the superconducting state of a homogeneously disordered conventional superconductor

    PubMed Central

    Kamlapure, Anand; Das, Tanmay; Ganguli, Somesh Chandra; Parmar, Jayesh B.; Bhattacharyya, Somnath; Raychaudhuri, Pratap

    2013-01-01

    The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking these domains as a function of temperature we observe that the superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system. PMID:24132046

  9. Calibration of tip and sample temperature of a scanning tunneling microscope using a superconductive sample

    SciTech Connect

    Stocker, Matthias; Pfeifer, Holger; Koslowski, Berndt

    2014-05-15

    The temperature of the electrodes is a crucial parameter in virtually all tunneling experiments. The temperature not only controls the thermodynamic state of the electrodes but also causes thermal broadening, which limits the energy resolution. Unfortunately, the construction of many scanning tunneling microscopes inherits a weak thermal link between tip and sample in order to make one side movable. Such, the temperature of that electrode is badly defined. Here, the authors present a procedure to calibrate the tip temperature by very simple means. The authors use a superconducting sample (Nb) and a standard tip made from W. Due to the asymmetry in the density of states of the superconductor (SC)—normal metal (NM) tunneling junction, the SC temperature controls predominantly the density of states while the NM controls the thermal smearing. By numerically simulating the I-V curves and numerically optimizing the tip temperature and the SC gap width, the tip temperature can be accurately deduced if the sample temperature is known or measureable. In our case, the temperature dependence of the SC gap may serve as a temperature sensor, leading to an accurate NM temperature even if the SC temperature is unknown.

  10. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    SciTech Connect

    Eltschka, Matthias Jäck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R.; Kondrashov, Oleg V.; Skvortsov, Mikhail A.; Kern, Klaus

    2015-09-21

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparing our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.

  11. A Flight Comparison of Conventional Ailerons on a Rectangular Wing and of Conventional and Floating Wing-Tip Ailerons on a Tapered Wing

    NASA Technical Reports Server (NTRS)

    Soule, H A; Gracey, W

    1938-01-01

    Report presents the results of flight tests comparing the relative effectiveness of conventional ailerons of the same size on wings of rectangular and tapered plan forms made with a Fairchild 22 airplane. Information is included comparing conventional and floating wing-tip ailerons on a tapered wing. The results showed that the conventional ailerons were somewhat more effective on the tapered than on the rectangular wing. The difference, however, was so small as to be imperceptible to the pilots. The floating wing-tip ailerons were only half as effective as the conventional ailerons and, for this reason, were considered unsatisfactory.

  12. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

    NASA Astrophysics Data System (ADS)

    Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I.

    2015-09-01

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  13. Experimental results in eddy current nondestructive testing based on superconductive and conventional electromagnetic probes

    SciTech Connect

    Valentino, M.; Ruosi, A.; Pepe, G.; Mollo, V.; D`Alto, R.; Peluso, G.

    1999-04-20

    This paper deals with the electromagnetic nondestructive testing performed by SQUID magnetometry on stratified aluminum alloy plates as those commonly encountered in the aircraft industry. The anomalous magnetic fields generated by flaws wit h known electromagnetic characteristics have been modeled by a three-dimensional specific code based on a finite element formulation. The numerical solution has correctly predicted the shape of the complicated magnetic field response due to the defect. Once accuracy and reliability of experimental data taken by superconductive probe have been tested, a benchmark-like problem has been faced. Measurements performed by conventional probes like fluxgate and inductive coil have been compared with the ones taken by innovative device based on superconductive materials.

  14. Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system

    NASA Astrophysics Data System (ADS)

    Kokail, Christian; Heil, Christoph; Boeri, Lilia

    2016-08-01

    Motivated by the recent report of superconductivity above 200 K in ultra-dense hydrogen sulfide, we search for high-TC conventional superconductivity in the phase diagram of the binary Li-S system, using ab initio methods for crystal structure prediction and linear response calculations for the electron-phonon coupling. We find that at pressures higher than 20 GPa, several new compositions, besides the known Li2S , are stabilized; many exhibit electride-like interstitial charge localization observed in other alkali-metal compounds. Of all predicted phases, only an fcc phase of Li3S , metastable before 640 GPa, exhibits a sizable TC, in contrast to what is observed in sulfur and phosphorus hydrides, where several stoichiometries lead to high TC. We attribute this difference to 2 s -2 p hybridization and avoided core overlap, and predict similar behavior for other alkali-metal compounds.

  15. Comparison of Heparin-Coated and Conventional Split-Tip Hemodialysis Catheters

    SciTech Connect

    Clark, Timothy W. I. Jacobs, David; Charles, Hearns W.; Kovacs, Sandor; Aquino, Theresa; Erinjeri, Joseph; Benstein, Judith A.

    2009-07-15

    Catheter coatings have the potential to decrease infection and thrombosis in patients with chronic dialysis catheters. We report our midterm experience with a heparin-coated dialysis catheter. This retrospective, case-control study was approved by our Institutional Review Board. A total of 88 tunneled dialysis catheters were inserted over a 13-month period via the internal jugular vein. Thirty-eight uncoated split-tip catheters and 50 heparin-coated catheters were inserted. Primary catheter patency was compared between the two groups using the log rank test, with infection and/or thrombosis considered as catheter failures. Dialysis parameters during the first and last dialysis sessions, including pump speed, actual blood flow, and arterial port pressures, were compared using unpaired t-tests. Primary patency of the uncoated catheters was 86.0 {+-} 6.5% at 30 days and 76.1 {+-} 8.9% at 90 days. Primary patency of heparin-coated catheters was 92.0 {+-} 6.2% at 30 days and 81.6 {+-} 8.0% at 90 days (p = 0.87, log rank test). Infection requiring catheter removal occurred in four patients with uncoated catheters and two patients with heparin-coated catheters (p = 0.23). Catheter thrombosis requiring catheter replacement or thrombolysis occurred in one patient with an uncoated catheter and two patients with heparin-coated catheters (p = 0.9). No differences in catheter function during hemodialysis were seen between the two groups. In conclusion, the heparin-coated catheter did not show a significantly longer patency compared to the uncoated catheter. The flow characteristics of this device were comparable to those of the conventional uncoated catheter. A demonstrable benefit of the heparin-coated catheter in randomized trials is needed before a recommendation for routine implementation can be made.

  16. Superconductivity

    SciTech Connect

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries.

  17. Comparison between loop-tip guidewire-assisted and conventional endoscopic cannulation in high risk patients

    PubMed Central

    Masci, Enzo; Mangiavillano, Benedetto; Luigiano, Carmelo; Bizzotto, Alessandra; Limido, Eugenio; Cantù, Paolo; Manes, Gianpiero; Viaggi, Paolo; Spinzi, Giancarlo; Radaelli, Franco; Mariani, Alberto; Virgilio, Clara; Alibrandi, Angela; Testoni, Pier Alberto

    2015-01-01

    Background: The guidewire biliary cannulation (GWC) technique may increase the cannulation rate and decrease the risk for post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis. The aim of our multicenter prospective randomized controlled trial was to determine if the use of an atraumatic loop-tip guidewire reduces the rate of post-ERCP pancreatitis (PEP) compared with the standard contrast-assisted cannulation (CC) technique. Methods: From June 2012 to December 2013, a total of 320 patients who had a naïve papilla and were referred for ERCP were randomly assigned to the GWC group (n = 160) or the CC group (n = 160). GWC or CC was randomly used. In cases of failed cannulation in both arms after crossover, biliary access was attempted with alternative techniques (e. g., dual-wire technique, pancreatic duct stenting, precut). Results: The biliary cannulation rates were 81 % in the GWC group and 73 % in the CC group (P = n. s.). Following crossover, cannulation was successful in 8 % and 11 % of patients in the GWC and CC groups, respectively. With use of an alternative technique, the cannulation rates were 98 % in the GWC group and 96 % in the CC group, respectively. The rates of PEP were 5 % in the GWC group and 12 % in the CC group (P = 0.027). The post-interventional complication rates did not differ between the two groups. Conclusion: GWC with the new wire guide is associated with a lower rate of PEP in comparison with the CC technique. Clinical trial reference number: NCT01771419 PMID:26528503

  18. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  19. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  20. Electric and magnetic properties measurement and analysis of a conventional and a superconducting power transformer

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Pronto, A. G.; Vilhena, N.; Pina, J. M.

    2014-05-01

    Power transformers based on High Temperature Superconductors (HTS) technology have revealed potential for several practical applications, offering economic, environmental and operational benefits. In this work, two 650 VA single-phase transformers prototypes were developed, tested and characterized: a conventional one, using copper windings, and another with the same primary copper winding, but with a secondary winding made of HTS BSCCO tape. The two prototypes were compared regarding magnetic properties, losses, electric parameters and efficiency, and the results are presented and interpreted. Also, several measures to determine AC critical current of the HTS tape were made. The results are compared with DC critical current for the same tape.

  1. The First Page of the Official Journal of the Constitutional Convention--Just the Tip of a Records Iceberg!

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2012-01-01

    On Monday, September 17, 1787, 39 delegates to the Federal Convention in Philadelphia signed the Constitution of the United States, along with Major William Jackson, who had served as the secretary of the Convention. That same day, Jackson received instructions to leave for New York City on Tuesday and carry the document to Congress. All of these…

  2. Comparison of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips of Nicotiana and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Giddings, T. H. Jr; Staehelin, L. A.; Sack, F. D.

    1990-01-01

    To circumvent the limitations of chemical fixation (CF) and to gain more reliable structural information about higher plant tissues, we have cryofixed root tips of Nicotiana and Arabidopsis by high pressure freezing (HPF). Whereas other freezing techniques preserve tissue to a relatively shallow depth, HPF in conjunction with freeze substitution (FS) resulted in excellent preservation of entire root tips. Compared to CF, in tissue prepared by HPF/FS: (1) the plasmalemma and all internal membranes were much smoother and often coated on the cytoplasmic side by a thin layer of stained material, (2) the plasmalemma was appressed to the cell wall, (3) organelle profiles were rounder, (4) the cytoplasmic, mitochondrial, and amyloplast matrices were denser, (5) vacuoles contained electron dense material, (6) microtubules appeared to be more numerous and straighter, with crossbridges observed between them, (7) cisternae of endoplasmic reticulum (ER) were wider and filled with material, (8) Golgi intercisternal elements were more clearly resolved and were observed between both Golgi vesicles and cisternae, and (9) larger vesicles were associated with Golgi stacks. This study demonstrates that HPF/FS can be used to successfully preserve the ultrastructure of relatively large plant tissues without the use of intracellular cryoprotectants.

  3. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  4. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  5. Wind-Tunnel Investigation of the Low-Speed Characteristics of a 1/8-Scale Model of the Republic XP-91 Airplane with a Vee and a Conventional Tail. Addendum - Characteristics with a Revised Conventional Tail and Drooped Wing Tips

    NASA Technical Reports Server (NTRS)

    Weiberg, James A.; Anderson, Warren E.

    1958-01-01

    Additional wind-tunnel tests were made of a 1/8-scale model of the Republic XP-91 airplane to determine its characteristics with various modifications. The modifications included a revised conventional tail, revised rocket arrangement, drooped wing tips, and revised landing gear and doors. Tests were also made to determine the effectiveness of the control surfaces of the model with the conventional tail and the effect of changing wing incidence and tail length. The revised rocket arrangement provided a considerable increase in the static directional stability contributed by the vee tail at small angles of yaw. The conventional tail provided a greater static directional stability than the vee tail without increasing the rolling moment due to sideslip. The rolling moment die to sideslip was considerable reduced by either drooped wing tips or open main landing-gear doors. The reduction in rolling moment due to sideslip resulting from the drooped tips was less with the landing-gear doors open than with the doors closed. A change in wing incidence from 0 degrees to 6 degrees reduced the elevator angle required for balance by approximately 6 degrees.

  6. A direct current superconducting quantum interference device gradiometer with a digital signal processor controlled flux-locked loop and comparison with a conventional analog feedback scheme

    SciTech Connect

    Kung, P.J.; Bracht, R.R.; Flynn, E.R.; Lewis, P.S.

    1996-01-01

    A double-washer dc superconducting quantum interference device (SQUID) gradiometer with a flux-locked loop (FLL) based on a digital signal processor (DSP) has been developed for biomagnetic applications. All of the analog electronics in the conventional FLL are replaced and implemented by the DSP except for the low-noise field-effect transistor preamplifier at the front end of the signal recovery components. The DSP performs the signal demodulation by synchronously sampling the recovered signals and applying the appropriate full wave rectification. The signals are then integrated, filtered, and applied to the output. At 4.2 K, the white flux noise of the gradiometer measured in a DSP FLL mode is about 4{mu}{phi}{sub 0}/{radical}Hz and the noise at 1 Hz is 13 {mu}{phi}{sub 0}/{radical}Hz. The corresponding noise levels in the gradiometer operated by the conventional FLL are 1.8 and 3{mu}{phi}{sub 0}/{radical}Hz. The poorer system performance in the DSP FLL compared to the analog FLL is mainly caused by the ambient field noise and interference signals picked up through the connecting cables. Additional noise is also added to the overall noise floor by the instruments employed in the DSP system in the present prototype setup. Further improvement in the noise characteristics and the dynamic behavior of the DSP SQUID gradiometer is expected when a better configuration of DSP with the associated I/O devices is implemented. Additional improvements of the DSP programs are expected by incorporating higher-order integration, adaptive control, and noise reduction schemes. {copyright} {ital 1996 American Institute of Physics.}

  7. Development of a Millikelvin dual-tip Josephson scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Anita

    In this thesis, I first describe the design and construction of a dual-tip millikelvin STM system. The STM is mounted on a dilution refrigerator and the setup includes vibration isolation, rf-filtered wiring, an ultra high vacuum (UHV) sample preparation chamber and sample transfer mechanism. Next I describe a novel superconducting tip fabrication technique. My technique involves dry-etching sections of 250 mum diameter Nb wire with an SF6 plasma in a reactive ion etcher. I present data taken with these tips on various samples at temperatures ranging from 30 mK to 9 K. My results demonstrate that the tips are superconducting, achieve good spectroscopic energy resolution, are mechanically robust over long time periods, and are atomically sharp. I also show data characterizing the performance of our system. This data is in the form of atomic resolution images, spectroscopy, noise spectra and simultaneous scans taken with both tips of the STM. I used these to examine the tip-sample stability, cross talk between the two tips, and to extract the effective noise temperature (˜185 mK) of the sample by fitting the spectroscopy data to a voltage noise model. Finally, I present spectroscopy data taken with a Nb tip on a Nb(100) sample at 30 mK. The enhanced spectroscopic resolution at this temperature allowed me to resolve peaks in the fluctuation-dominated supercurrent at sub-gap voltages. My analysis indicates that these peaks are due to the incoherent tunneling of Cooper pairs at resonant frequencies of the STM's electromagnetic environment. By measuring the response of the STM junction to microwaves, I identified the charge carriers in this regime as Cooper pairs with charge 2e. The amplitude of the response current scales as the square of the Bessel functions, indicating that the pair tunneling originates from photon assisted tunneling in the incoherent regime, rather than the more conventionally observed Shapiro steps in the coherent regime.

  8. Technology Tips

    ERIC Educational Resources Information Center

    Mathematics Teacher, 2004

    2004-01-01

    Some inexpensive or free ways that enable to capture and use images in work are mentioned. The first tip demonstrates the methods of using some of the built-in capabilities of the Macintosh and Windows-based PC operating systems, and the second tip describes methods to capture and create images using SnagIt.

  9. Conventional magnetic superconductors

    DOE PAGESBeta

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  10. Conventional magnetic superconductors

    SciTech Connect

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led to the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.

  11. Tipping Point

    MedlinePlus Videos and Cool Tools

    ... Tipping Point by CPSC Blogger September 22 appliance child Childproofing CPSC danger death electrical fall furniture head ... TV falls with about the same force as child falling from the third story of a building. ...

  12. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  13. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  14. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  15. Conventional s-Wave Superconductivity in BiS2-Based NdO0.71F0.29BiS2 Revealed by Thermal Transport Measurements

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuya; Tokiwa, Yoshifumi; Terazawa, Daiki; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao; Terashima, Takahito; Matsuda, Yuji

    2016-07-01

    To study the superconducting gap structure of BiS2-based layered compound NdO0.71F0.29BiS2 (Tc = 5 K), we measured the thermal conductivity κ, which is a sensitive probe of low-energy quasiparticle spectrum. In the absence of a magnetic field, residual linear term in the thermal conductivity κ0/T at T → 0 is vanishingly small, indicating that the residual normal fluid, which is expected for nodal superconductors, is absent. Moreover, the applied magnetic field hardly affects thermal conductivity in wide range of the vortex state, indicating the absence of Doppler shifted quasiparticles. These results provide evidence that NdO0.71F0.29BiS2 is a fully gapped superconductor. The obtained gap structure, along with the robustness of the superconductivity against the impurity, suggest a conventional s-wave superconducting state in NdO0.71F0.29BiS2.

  16. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS.

    PubMed

    Majdalany, Bill S; Elliott, Eric D; Michaels, Anthony J; Hanje, A James; Saad, Wael E A

    2016-07-01

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application. PMID:26902703

  17. Tomography of Majorana fermions with STM tips

    NASA Astrophysics Data System (ADS)

    Chevallier, Denis; Klinovaja, Jelena

    2016-07-01

    We investigate numerically the possibility to detect the spatial profile of Majorana fermions (MFs) by using STM tips that are made of either normal or superconducting material. In both cases, we are able to resolve the localization length and the oscillation period of the MF wave function. We show that the tunneling between the substrate and the tip, necessary to get the information on the wave-function oscillations, has to be weaker in the case of a superconducting probe. In the strong tunneling regime, the differential conductance saturates making it more difficult to observe the exponential decay of MFs. The temperature broadening of the profile is strongly suppressed in the case of the superconducting tip resulting, generally, in better resolution.

  18. TIP list

    SciTech Connect

    Ludwig, M E

    2006-06-22

    Subcontractors and vendors providing services, including the installation of purchased goods, are required to complete a TIP List. This list does not include every Environment, Safety, and Health (ES&H) related concern at LLNL. It is intended to highlight major concerns common to most on-site service activities.

  19. Technology Tips

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    2004-01-01

    A dynamic program for geometry called Cabri Geometry II is used to examine properties of figures like triangles and make connections with other mathematical ideas like ellipse. The technology tip includes directions for creating such a problem with technology and suggestions for exploring it.

  20. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  1. Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2012-01-01

    The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.

  2. 4 Tips: Asthma and Complementary Health Practices

    MedlinePlus

    ... U V W X Y Z 4 Tips: Asthma and Complementary Health Practices Share: Asthma is a chronic lung disease that affects people ... cure, most people are able to control their asthma with conventional therapies and by avoiding the substances ...

  3. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  4. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  5. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  6. Feasibility of using high temperature superconducting magnets and conventional magnetic loop antennas to attract or repel objects at the space station

    NASA Astrophysics Data System (ADS)

    Randhawa, Manjit S.

    1989-02-01

    A study was undertaken to see if magnetic forces can be used at the Space Station to attract or repel spacecrafts such as the Orbital Manuevering Vehicle (OMV) or the Orbiter. A large magnet, in the form of a current loop, is assumed to be placed at the Space Station and another one on the spacecraft. The expression for the force between the two dipoles (loops) is obtained. Using a force of 15 Newtons (3.4 pounds) in order to move the spacecraft, the number of ampere-turn needed in the current loops was calculated at various distances between them. The expression for the force of attraction between a current loop and a soft magnetic material was also examined and the number of amp-turn needed to provide a force of one-tenth of a pound at various distances is also calculated. This one tenth of a pound force would be used in a life line system for the retrieval of an adrift crewman or tool at the Space Station. The feasibility of using conventional antenna on the Station and the incoming vehicle for attraction or repulsion was also examined.

  7. Feasibility of using high temperature superconducting magnets and conventional magnetic loop antennas to attract or repel objects at the space station

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1989-01-01

    A study was undertaken to see if magnetic forces can be used at the Space Station to attract or repel spacecrafts such as the Orbital Manuevering Vehicle (OMV) or the Orbiter. A large magnet, in the form of a current loop, is assumed to be placed at the Space Station and another one on the spacecraft. The expression for the force between the two dipoles (loops) is obtained. Using a force of 15 Newtons (3.4 pounds) in order to move the spacecraft, the number of ampere-turn needed in the current loops was calculated at various distances between them. The expression for the force of attraction between a current loop and a soft magnetic material was also examined and the number of amp-turn needed to provide a force of one-tenth of a pound at various distances is also calculated. This one tenth of a pound force would be used in a life line system for the retrieval of an adrift crewman or tool at the Space Station. The feasibility of using conventional antenna on the Station and the incoming vehicle for attraction or repulsion was also examined.

  8. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  9. Prom Health and Safety Tips

    MedlinePlus

    ... Healthy Occasions Autumn Tips Camping Tips Family Reunions Gardening Tips Halloween Tips Healthy Halloween Prom Tips Spring ... ways to stay active, such as walking, dancing, gardening, swimming, and more. Be active for 60 minutes ...

  10. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  11. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  12. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  13. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  14. Nasal Tip Deficiency.

    PubMed

    Cerkes, Nazim

    2016-01-01

    Nasal tip deficiency can be congenital or secondary to previous nasal surgeries. Underdeveloped medial crura usually present with underprojected tip and lack of tip definition. Weakness or malposition of lateral crura causes alar rim retraction and lateral nasal wall weakness. Structural grafting of alar cartilages strengthens the tip framework, reinforces the disrupted support mechanisms, and controls the position of the nasal tip. In secondary cases, anatomic reconstruction of the weakened or interrupted alar cartilages and reconstitution of a stable nasal tip tripod must be the goal for a predictable outcome. PMID:26616702

  15. The challenge of unconventional superconductivity.

    SciTech Connect

    Norman, M. R.

    2011-04-08

    During the past few decades, several new classes of superconductors have been discovered that do not appear to be related to traditional superconductors. The source of the superconductivity of these materials is likely different from the electron-ion interactions that are at the heart of conventional superconductivity. Developing a rigorous theory for any of these classes of materials has proven to be a difficult challenge and will remain one of the major problems in physics in the decades to come.

  16. Flows with tip leakage

    NASA Astrophysics Data System (ADS)

    Moore, John

    The flow development within the tip gap and the flow tip leakage, applying Navier-Stokes codes, are discussed. The loss production, the turbine inefficiency and the heat transfer to the blade tip, are considered. The measurements and calculations used demonstrate features of the flow, such as separation and reattachment on the blade tip, shock formation in the tip gap, and formation and dissipation of tip gap secondary kinetic energy. A procedure for calculating turbine blade tip temperatures is included. The results for a centrifugal compressor show the interaction of the tip leakage and passage flows. The radial blackflow near the shroud wall at low off-design flow rates is considered. The calculations demonstrate the potential use of a computational fluid dynamics code for predicting a centrifugal compressor map.

  17. Diet and Exercise Tips

    MedlinePlus

    ... Health News & Publications Annual Meeting Calendar Diet and Exercise Tips Diet and Exercise Tips News media interested in covering the latest ... Health Statistics concludes that 35 percent of adults exercise regularly (more than 6 of 10 don’t), ...

  18. Slender tip laser scalpel

    DOEpatents

    Veligdan, James T.

    2004-01-06

    A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.

  19. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  20. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  1. 100 Tips for Parents.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    Noting that involved parents can improve their children's chances of succeeding in school, this packet of cards offers 100 tips created to help parents become more involved in their child's education. Following a card of general tips on becoming involved, tips are offered in the following topic areas: helping a child stay alcohol, tobacco, and…

  2. Child Transportation Safety Tips.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This document presents nine tips regarding safe infant and child transportation, each tip explained in one to two pages. The tips are as follows: (1) quick safety seat checkup; (2) where should your child ride? (3) how to protect your new baby in the car; (4) what safety seat to use for a big baby or toddler? (5) how should preschool and school…

  3. The crooked nasal tip.

    PubMed

    Warner, Jeremy; Adamson, Peter

    2011-10-01

    Successful treatment of the crooked nasal tip includes proper analysis and assessment, employment of the proper techniques, reaching ideal tip dynamics, and close follow-up. Both the caudal septum and the nasal tip cartilages must be addressed. When executed properly, satisfaction should be high for both the patient and the surgeon. PMID:22028009

  4. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGESBeta

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  5. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  6. Photoresponse mechanism of superconducting magnesium diboride

    NASA Astrophysics Data System (ADS)

    Khafizov, Marat

    The recent discovery of superconductivity in MgB2, with its BCS-like Cooper pairing mechanism and the 40-K critical temperature, and the demonstration of efficient single-optical-photon detection in superconducting NbN nanowire meanders inspired an interest in the development of superconducting radiation detectors based on MgB2. We report the results of our experimental and theoretical studies of a photoresponse mechanism in superconducting MgB2 thin films and microbridges. We demonstrate that despite the two-gap nature of this material, the nonequilibrium superconducting recovery dynamics in MgB2 is similar to conventional one-gap, both low- and high-temperature superconductors and is governed by quasiparticle recombination, limited by the phonon bottleneck mechanism. Our measured 100-ps-wide responses in MgB2 superconducting microbridges, operated at temperatures above 20 K, make this material promising for superconducting photodetector applications.

  7. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points. PMID:22270703

  8. Proposed experimental test of the theory of hole superconductivity

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2016-06-01

    The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.

  9. Operational experience with superconducting synchrotron magnets

    SciTech Connect

    Martin, P.S.

    1987-03-01

    The operational experience with the Fermilab Tevatron is presented, with emphasis on reliability and failure modes. Comprisons are made between the operating efficiencies for the superconducting machine and for he conventional Main Ring.

  10. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  11. Fano fingerprints of Majoranas in Kitaev dimers of superconducting adatoms

    NASA Astrophysics Data System (ADS)

    Dessotti, F. A.; Ricco, L. S.; Marques, Y.; Machado, R. S.; Guessi, L. H.; Figueira, M. S.; de Souza, M.; Seridonio, A. C.

    2016-09-01

    We investigate theoretically a Fano interferometer composed by STM and AFM tips close to a Kitaev dimer of superconducting adatoms, in which the adatom placed under the AFM tip, encloses a pair of Majorana fermions (MFs). For the binding energy Δ of the Cooper pair delocalized into the adatoms under the tips coincident with the tunneling amplitude t between them, namely Δ=t, we find that only one MF beneath the AFM tip hybridizes with the adatom coupled to the STM tips. As a result, a gate invariance feature emerges: the Fano profile of the transmittance rises as an invariant quantity depending upon the STM tips Fermi energy, due to the symmetric swap in the gate potential of the AFM tip.

  12. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  13. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  14. Superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    An article of manufacture including a substrate, a patterned interlayer of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of oxides of Ce, Y, Cm, Dy, Er, Eu, Fe, Gd, Ho, In, La, Mn, Lu, Nd, Pr, Pu, Sm, Tb, Tl, Tm, Y, and Yb over the entire exposed surface of the intermediate article, and, a ceramic superconductive material layer as an overcoat upon the buffer layer whereby the ceramic superconductive material situated directly above the substrate has a crystal structure substantially different than the ceramic superconductive material situated above the overcoated patterned interlayer.

  15. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  16. Ten Tips from George.

    ERIC Educational Resources Information Center

    Lee, Helen C.

    The paper describes a current events lesson based on an editorial which quoted 10 tips from George Washington and suggested that a review of Washington's statements might be useful in making judgments about current national issues. Used in United States history, world history, and government classes, adaptation and revision of the tips lead…

  17. ADHD: Tips to Try

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? ADHD: Tips to Try KidsHealth > For Teens > ADHD: Tips to Try Print A A A Text Size en español TDAH: Consejos que puedes probar ADHD , or attention deficit hyperactivity disorder, is a medical ...

  18. Air Travel Health Tips

    MedlinePlus

    MENU Return to Web version Air Travel Health Tips Air Travel Health Tips How can I improve plane travel? Most people don't have any problems when ... and dosages of all of your medicines. The air in airplanes is dry, so drink nonalcoholic, decaffeinated ...

  19. Total Telephone Tips.

    ERIC Educational Resources Information Center

    Corder, Lloyd E.; And Others

    This manual of telephone behavior tips for business and sales professionals offers ways to handle the disgruntled caller and makes suggestions on topics relevant to the telephone. The manual is divided into the following sections and subsections: (1) Common Courtesy (staff tips, answering the telephone, screening calls, transferring calls, taking…

  20. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  1. Characterizing atomic force microscopy tip shape in use.

    PubMed

    Wang, Chunmei; Itoh, Hiroshi; Sun, Jielin; Hu, Jun; Shen, Dianhong; Ichimura, Shingo

    2009-02-01

    A new tip characterizer based on the fabrication of multilayer thin films for atomic force microscopy (AFM) was developed to analyze the effective tip shape while in use. The precise structure of this tip characterizer was measured by transmission electron microscopy. Four different types of commercial tips with various radii were characterized by the tip characterizer and by conventional scanning electron microscopy (SEM). The results were compared to obtain a relationship between the actual and effective tip shapes. A quantitative analysis was performed of apex radii measured from line profiles of comb-shaped patterns and nanometer-scale knife-edges without the problem of edge uncertainty in the SEM image. Degradation of the AFM tip induced by electron-beam irradiation was studied by using SEM and the tip characterizer. A potential technique for fabricating symmetric AFM tips based on irradiation by an electron beam and a quantitative analysis of changing the tip apex in SEM were examined with AFM using the tip characterizer. PMID:19441396

  2. Outcomes of TIPS for Treatment of Gastroesophageal Variceal Hemorrhage

    PubMed Central

    Parvinian, Ahmad; Gaba, Ron C.

    2014-01-01

    Variceal hemorrhage is a life-threatening complication of cirrhosis that requires a multidisciplinary approach to management. The transjugular intrahepatic portosystemic shunt (TIPS) procedure is a minimally invasive image-guided intervention used for secondary prevention of bleeding and as salvage therapy in acute hemorrhage. This review focuses on the role of TIPS in the setting of variceal hemorrhage, with emphasis on the pathophysiology and conventional management of variceal hemorrhage, current and emerging indications for TIPS creation, TIPS clinical outcomes, and the role of adjuvant embolotherapy. PMID:25177086

  3. Empirical corrections to the span load distribution at the tip

    NASA Technical Reports Server (NTRS)

    Pearson, H A

    1937-01-01

    An analysis of existing pressure-distribution data was made to determine the variation of the tip loading with wing plan form. A series of empirical tip corrections was derived that may be added to theoretical curves in certain cases to obtain a closer approach to the actual loading at the tip. The analysis indicated that the need for a tip correction decreases as either the aspect ratio or the wing taper is increased. In general, it may be said that, for wings of conventional aspect ratio, corrections to the theoretical span load curves are necessary only if the wing is tapered less than 2:1 and has a blunt tip. If the tip is well rounded in plan form, no correction appears necessary even for a wing with no taper.

  4. Tip-enhanced Raman scattering microscopy: Recent advance in tip production

    NASA Astrophysics Data System (ADS)

    Fujita, Yasuhiko; Walke, Peter; De Feyter, Steven; Uji-i, Hiroshi

    2016-08-01

    Tip-enhanced Raman scattering (TERS) microscopy is a technique that combines the chemical sensitivity of Raman spectroscopy with the resolving power of scanning probe microscopy. The key component of any TERS setup is a plasmonically-active noble metal tip, which serves to couple far-field incident radiation with the near-field. Thus, the design and implementation of reproducible probes are crucial for the continued development of TERS as a tool for nanoscopic analysis. Here we discuss conventional methods for the fabrication of TERS-ready tips, highlighting the problems therein, as well as detailing more recent developments to improve reducibility. In addition, the idea of remote excitation-TERS is enlightened upon, whereby TERS sensitivity is further improved by using propagating surface plasmons to separate the incident radiation from the tip apex, as well as how this can be incorporated into the fabrication process.

  5. Insider conference tips

    NASA Astrophysics Data System (ADS)

    Tennant, Jill

    2012-01-01

    Attending an educator conference and its associated exhibit hall can be a rewarding experience for your brain. But if you keep in mind these insider's tips, your feet, arms, stomach, and wallet will also thank you.

  6. Tips for Daily Living

    MedlinePlus

    ... After Stroke Weight Training After Stroke Tips for Improving Fine Motor Skills Functional Tone Management Arm Training Program Constraint-Induced Movement Therapy Emotional & Behavioral Challenges Self-Esteem after Stroke Post-Stroke Mood Disorders One-side ...

  7. Signalling by tips.

    PubMed

    Feijó, José A; Costa, Sílvia S; Prado, Ana Margarida; Becker, Jörg D; Certal, Ana Catarina

    2004-10-01

    New molecules, including protein kinases, lipids and molecules that have neurotransmitter activities in animals have emerged as important players in tip-growing cells. Transcriptomics analysis reveals that the largest single class of genes expressed in pollen tubes encode signal transducers, reflecting the necessity to decode complex and diverse pathways that are associated with tip growth. Many of these pathways may use common intracellular second messengers, with ions and reactive oxygen species emerging as two major common denominators in many of the processes involved in tip growth. These second messengers might influence the actin cytoskeleton through known interactions with actin-binding proteins. In turn, changes in the dynamic properties of the cytoskeleton would define the basic polarity events needed to shape and modify tip-growing cells. PMID:15337103

  8. Tips for labor coaches

    MedlinePlus

    ... some tips for getting prepared. Before the big day arrives Labor coaches should go to childbirth classes ... get through her labor and delivery. When the day arrives You might be at the hospital for ...

  9. Technology Tips: A Potpourri.

    ERIC Educational Resources Information Center

    Cuoco, Albert A.; And Others, Eds.

    1994-01-01

    Contains tips from readers about using technology in the classroom, including notebook computers, classroom sets of calculators, geometry software, LOGO software, publisher discounts, curriculum materials in CD-ROM, and volunteer help in computers and computer networking for schools. (MKR)

  10. Head Injury Prevention Tips

    MedlinePlus

    Head Injury Prevention Tips American Association of Neurological Surgeons 5550 Meadowbrook Drive, Rolling Meadows, IL 60008-3852 ... defined as a blow or jolt to the head or a penetrating head injury that disrupts the ...

  11. Footwear Selection Tips

    MedlinePlus

    ... Foot Health Information Tips for Healthy Feet Footwear & Products Foot Health Awareness Diabetes Awareness What is a Podiatrist? Today's Podiatrist Education & Professional Development Podiatric Education Young Physicians Annual Scientific Meeting Webinars ...

  12. Ten Tips for Teachers

    ERIC Educational Resources Information Center

    Mahon, Robert Lee

    2005-01-01

    In this article, the author shares some tips for teachers. His tips are as follows: (1) a teacher should forget his or her education; (2) a teacher should forget the theory (3) a teacher should remember that he or she is a translator, not an originator; (4) a teacher should respect his or her students; (5) a teacher should be true to his or her…

  13. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  14. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  15. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  16. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  17. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  18. Thermal Infrared Profiling Spectrometer (TIPS)

    NASA Astrophysics Data System (ADS)

    Lanzl, Franz; Miosga, Gerhard; Lehmann, Frank; Richter, Rudolf; Tank, Volker; Boehl, R.

    1990-01-01

    The Thermal Infrared Profiling Spectrometer (TIPS) is an airborne/spaceborne sensor concept developed at DLR-Institute for Optoelectronics for scientific observations in remote sensing of the earth surface. The patented spectrometer design is based on a fast scanning Fourier spectrometer (FSM) using a rotating retroreflector to achieve the appropriate path alteration thus avoiding the usual linear movement of one of the mirrors in an conventional Michelson interferometer. The spectral band covers the 3 - 13 μm band with a spectral resolution of 5 cm-1 (50 nm at 10 μm). The measured signal is an interferogramm, derived quantities are spectral emissivity, spectral radiance and surface temperature. The optical system consists of an aperture filling plane tilting mirror to provide off-nadir observation and calibration mode. The collecting mirror focal length and the detector area yields an instantaneous field of view (ifov) of 1.2 mrad, noise equivalent temperature resolution of 0.04K (300K), and a noise equivalent change in emissivity Δɛof 6 x 10-4. Calibration is performed by two aperture filling area blackbodies at two different temperatures. An extensive simulation of signal/noise performance of the TIPS has been evaluated by means of the simulation programm SENSAT9, developed by DI.R. This simulation comprises the sensor performance, typical variations of atmospheric conditions and selected spectra from ground surfaces. Results of this simulation are discussed and a description of the sensor is presented.

  19. Hard-tip, soft-spring lithography.

    PubMed

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications. PMID:21270890

  20. Generating Electrospray Ionization on Ballpoint Tips.

    PubMed

    Ji, Baocheng; Xia, Bing; Gao, Yuanji; Ma, Fengwei; Ding, Lisheng; Zhou, Yan

    2016-05-17

    In this study, we report a simple and economical ballpoint electrospray ionization mass spectrometry (BP-ESI-MS) technique. This combines a small ballpoint tip with a syringe pump for the direct loading and ionization of various samples in different phases (including solution, semisolid, and solid) and allows for additional applications in surface analysis. The tiny metal ball on the ballpoint tip exhibits a larger surface for ionization than that of a conventional sharp tip end, resulting in higher ionization efficiency and less sample consumption. The adamant properties of the ballpoint tip allow sampling by simply penetrating or scraping various surfaces, such as a fruit peel, paper, or fabric. Complex samples, such as fine herbal powders and small solid samples, could be stored in the hollow space in the ballpoint socket and subsequently extracted online, which greatly facilitated MS analysis with little to no sample preparation. Positive ion mode was attempted, and various compounds, including amino acids, carbohydrates, flavonoids, and alkaloids, were detected from different types of samples. The results demonstrated that the special and excellent physical characteristics of ballpoint tips allowed for fast and convenient sampling and ionization for mass spectrometry analysis by the BP-ESI-MS method. PMID:27111601

  1. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    DOEpatents

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  2. Stability of magnetic tip/superconductor levitation systems

    NASA Astrophysics Data System (ADS)

    K. Alqadi, M.

    2015-11-01

    The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.

  3. Superconductivity in two-dimensional boron allotropes

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Zeng, Shuming; Ni, Jun

    2016-01-01

    We use ab initio evolutionary algorithm and first-principles calculations to investigate structural, electronic, vibrational, and superconducting properties of two-dimensional (2 D ) boron allotropes. Remarkably, we show that conventional BCS superconductivity in the stable 2 D boron structures is ubiquitous with the critical temperature Tc above the liquid hydrogen temperature for certain configurations. Due to the electronic states of the Fermi surface originating from both σ and π electrons, the superconductivity of the 2 D structures arises from multiple phonon modes. Our results support that 2 D boron structure may be a pure single-element material with the highest Tc on conditions without high pressure and external strain.

  4. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  5. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  6. Strong Single-Photon Coupling in Superconducting Quantum Magnetomechanics

    NASA Astrophysics Data System (ADS)

    Via, Guillem; Kirchmair, Gerhard; Romero-Isart, Oriol

    2015-04-01

    We show that the inductive coupling between the quantum mechanical motion of a superconducting microcantilever and a flux-dependent microwave quantum circuit can attain the strong single-photon nanomechanical coupling regime with feasible experimental parameters. We propose to use a superconducting strip, which is in the Meissner state, at the tip of a cantilever. A pickup coil collects the flux generated by the sheet currents induced by an external quadrupole magnetic field centered at the strip location. The position-dependent magnetic response of the superconducting strip, enhanced by both diamagnetism and demagnetizing effects, leads to a strong magnetomechanical coupling to quantum circuits.

  7. Highly robust stainless steel tips as microelectrospray emitters.

    PubMed

    Ishihama, Yasushi; Katayama, Hiroyuki; Asakawa, Naoki; Oda, Yoshiya

    2002-01-01

    Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications. PMID:11968120

  8. Tips for Energy Savers.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    According to 1986 U.S. Department of Energy data, 48% of our residential energy is used to heat and cool our homes, 16% goes for heating water, 12% is used to refrigerators and freezers, and the remaining 24% goes into lighting, cooking, and running appliances. This booklet contains tips for saving energy, including sections on: (1) draft-proof…

  9. Tips for Leading Walks.

    ERIC Educational Resources Information Center

    Kriesberg, Daniel

    2001-01-01

    Offers reminders and tips for improving interpretive walks, including having a theme, drawing on basic teaching methods, drawing on all senses rather than just talking, being a role model to show how learning can be fun, using picture books, using tools of the trade to encourage visitors to learn for themselves, and playing games. (PVD)

  10. Health Tips for Adults

    MedlinePlus

    ... Griffin Rodgers, Director of the NIDDK Clinical Trials Current research studies and how you can volunteer Community Outreach and Health Fairs Science-based information and tips for planning an outreach effort or community event For Health Care Professionals Patient and provider resources ...

  11. Kegel Exercise Tips

    MedlinePlus

    ... PDF, 345 KB) Alternate Language URL Español Kegel Exercise Tips Page Content What are Kegel exercises? To do Kegel exercises, you just squeeze your ... help with your bladder control. How do you exercise your pelvic muscles? Find the right muscles. Try ...

  12. Early Childhood Action Tips.

    ERIC Educational Resources Information Center

    O'Donnell, Nina Sazer

    In response to requests for information from people and organizations all over the United States on how to contribute to the healthy development of young children, the Families and Work Institute has gathered concrete suggestions from leaders in diverse fields into this booklet of action tips. This effort was undertaken to support the "I Am Your…

  13. Tips for Teachers.

    ERIC Educational Resources Information Center

    Dishon, Dee; And Others

    1989-01-01

    This section includes (1) "Time Saver Options" (Dishon and P. W. O'Leary), which outlines ways to teach cooperative skills; (2) "Getting Started--Tips from Teachers," a collection of ideas for all levels; and (3) "Cooperative Mathematics Lesson Plans" for developing problem-solving skills, fractions, word problems, and number concepts. (JD)

  14. EcoTipping Points

    ERIC Educational Resources Information Center

    Marten, Gerald G.; Matthews, Catherine E.

    2009-01-01

    Contrary to what we often hear and teach, there is good news to be found on the environmental front. Environmental success stories show us not only that sustainability is possible, but also how people have made it happen. We can make these stories and their lessons accessible to students with help from the EcoTipping Points Project, which has…

  15. TIPs for Technology Integration.

    ERIC Educational Resources Information Center

    Mandell, Susan; Sorge, Dennis H.; Russell, James D.

    2002-01-01

    Discusses the role of the teacher in effectively using technology in education based on the Technology Integration Project (TIP). Topics include why use technology; types of computer software; how to select software; software integration strategies; and effectively planning lessons that integrate the chosen software and integration strategy. (LRW)

  16. Propeller Tip Flutter

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    The present report is limited to a case of tip flutter recognized by experience as being important. It is the case where outside interferences force vibrations upon the propeller. Such interferences may be set up by the engine, or they may be the result of an unsymmetrical field of flow.

  17. Tips from the Classroom.

    ERIC Educational Resources Information Center

    Hart, R. Kay; And Others

    1994-01-01

    Tips for English-as-a-Second-Language classes include collecting passport stamps in an oral skills class (R. Kay Hart); turning process essays into treasure hunts (Margaret Moulton); using icebreakers (Beverly Williams, David Rutledge, Brent Green); and techniques for understanding course syllabi (Ruth Overman Fischer). (LB)

  18. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  19. 14. TIP TOP MINE. TAILINGS LOCATED DIRECTLY WEST FROM TIP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. TIP TOP MINE. TAILINGS LOCATED DIRECTLY WEST FROM TIP TOP HOUSE. ID-31-C-12 WOODEN STRUCTURE IS VISIBLE IN TOP LEFT. CABLES VISIBLE LEFT AND CENTER OF TAILINGS. HOUSE IS JUST OVER APEX OF TAILINGS. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Tip Top Mine, West face Florida Mountain, approximately 150 feet below summit, Silver City, Owyhee County, ID

  20. Tipping off endothelial tubes: nitric oxide drives tip cells.

    PubMed

    Priya, Mani Krishna; Sahu, Giriraj; Soto-Pantoja, David R; Goldy, Naga; Sundaresan, Abaya Meenakshi; Jadhav, Vivek; Barathkumar, T R; Saran, Uttara; Jaffar Ali, B M; Roberts, David D; Bera, Amal Kanti; Chatterjee, Suvro

    2015-04-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, is a complex process that warrants cell migration, proliferation, tip cell formation, ring formation, and finally tube formation. Angiogenesis is initiated by a single leader endothelial cell called "tip cell," followed by vessel elongation by "stalk cells." Tip cells are characterized by their long filopodial extensions and expression of vascular endothelial growth factor receptor-2 and endocan. Although nitric oxide (NO) is an important modulator of angiogenesis, its role in angiogenic sprouting and specifically in tip cell formation is poorly understood. The present study tested the role of endothelial nitric oxide synthase (eNOS)/NO/cyclic GMP (cGMP) signaling in tip cell formation. In primary endothelial cell culture, about 40% of the tip cells showed characteristic sub-cellular localization of eNOS toward the anterior progressive end of the tip cells, and eNOS became phosphorylated at serine 1177. Loss of eNOS suppressed tip cell formation. Live cell NO imaging demonstrated approximately 35% more NO in tip cells compared with stalk cells. Tip cells showed increased level of cGMP relative to stalk cells. Further, the dissection of NO downstream signaling using pharmacological inhibitors and inducers indicates that NO uses the sGC/cGMP pathway in tip cells to lead angiogenesis. Taken together, the present study confirms that eNOS/NO/cGMP signaling defines the direction of tip cell migration and thereby initiates new blood vessel formation. PMID:25510468

  1. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  2. Transjugular intrahepatic portosystemic shunt (TIPS)

    MedlinePlus

    ... gov/ency/article/007210.htm Transjugular intrahepatic portosystemic shunt (TIPS) To use the sharing features on this page, please enable JavaScript. Transjugular intrahepatic portosystemic shunt (TIPS) is a procedure to create new connections ...

  3. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  4. Disdrometer and Tipping Bucket Rain Gauge Handbook

    SciTech Connect

    Bartholomew. MJ

    2009-12-01

    The Distromet disdrometer model RD-80 and NovaLynx tipping bucket rain gauge model 260-2500E-12 are two devices deployed a few meters apart to measure the character and amount of liquid precipitation. The main purpose of the disdrometer is to measure drop size distribution, which it does over 20 size classes from 0.3 mm to 5.4 mm. The data from both instruments can be used to determine rain rate. The disdrometer results can also be used to infer several properties including drop number density, radar reflectivity, liquid water content, and energy flux. Two coefficients, N0 and Λ, from an exponential fit between drop diameter and drop number density, are routinely calculated. Data are collected once a minute. The instruments make completely different kinds of measurements. Rain that falls on the disdrometer sensor moves a plunger on a vertical axis. The disdrometer transforms the plunger motion into electrical impulses whose strength is proportional to drop diameter. The rain gauge is the conventional tipping bucket type. Each tip collects an amount equivalent to 0.01 in. of water, and each tip is counted by a data acquisition system anchored by a Campbell CR1000 data logger.

  5. Propeller tip vortex interactions

    NASA Technical Reports Server (NTRS)

    Johnston, Robert T.; Sullivan, John P.

    1990-01-01

    Propeller wakes interacting with aircraft aerodynamic surfaces are a source of noise and vibration. For this reason, flow visualization work on the motion of the helical tip vortex over a wing and through the second stage of a counterrotation propeller (CRP) has been pursued. Initially, work was done on the motion of a propeller helix as it passes over the center of a 9.0 aspect ratio wing. The propeller tip vortex experiences significant spanwise displacements when passing across a lifting wing. A stationary propeller blade or stator was installed behind the rotating propeller to model the blade vortex interaction in a CRP. The resulting vortex interaction was found to depend on the relative vortex strengths and vortex sign.

  6. Writing tips for authors.

    PubMed

    Servodidio, C A

    1998-03-01

    Writing an article for publication may seem intimidating to you at first, but believe it or not, it can be exciting and fun. When you initially accept a writing assignment, research a clinical "gut feeling," or describe a nursing scenario, it may seem like a gargantuan task, but when you break it into small segments or steps you may be surprised how quickly you will complete your project. This article will offer some helpful hints or tips to get you started. Many of the tips will apply specifically for submission of an article to insight; absorb all clues that might be helpful and disregard anything that won't help you. Remember, you can get your article published, and the insight editorial board and peer reviewers only want to facilitate your success! PMID:9866524

  7. TIPS: 25 years later.

    PubMed

    Rössle, Martin

    2013-11-01

    In the 25 years since the first TIPS intervention has been performed, technical standards, indications, and contraindications have been set up. The previous considerable problem of shunt failure by thrombosis or intimal proliferation in the stent or in the draining hepatic vein has been reduced considerably by the availability of polytetrafluoroethylene (PTFE)-covered stents resulting in reduced rebleeding and improved survival. Unfortunately, most clinical studies have been performed prior to the release of the covered stent and, therefore, do not represent the present state of the art. In spite of this, TIPS has gained increasing acceptance in the treatment of the various complications of portal hypertension and vascular diseases of the liver. PMID:23811307

  8. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  9. Superconductivity in the ferromagnetic semiconductor samarium nitride

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; Granville, S.; Engel, A.; Chong, S. V.; Governale, M.; Zülicke, U.; Moghaddam, A. G.; Trodahl, H. J.; Natali, F.; Vézian, S.; Ruck, B. J.

    2016-07-01

    Conventional wisdom expects that making semiconductors ferromagnetic requires doping with magnetic ions and that superconductivity cannot coexist with magnetism. However, recent concerted efforts exploring new classes of materials have established that intrinsic ferromagnetic semiconductors exist and that certain types of strongly correlated metals can be ferromagnetic and superconducting at the same time. Here we show that the trifecta of semiconducting behavior, ferromagnetism, and superconductivity can be achieved in a single material. Samarium nitride (SmN) is a well-characterized intrinsic ferromagnetic semiconductor, hosting strongly spin-ordered 4 f electrons below a Curie temperature of 27 K. We have now observed that it also hosts a superconducting phase below 4 K when doped to electron concentrations above 1021cm-3 . The large exchange splitting of the conduction band in SmN favors equal-spin triplet pairing with p -wave symmetry. Significantly, superconductivity is enhanced in superlattices of gadolinium nitride (GdN) and SmN. An analysis of the robustness of such a superconducting phase against disorder leads to the conclusion that the 4 f bands are crucial for superconductivity, making SmN a heavy-fermion-type superconductor.

  10. Future development of large superconducting generators

    SciTech Connect

    Singh, S.K.; Mole, C.J.

    1989-03-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field.

  11. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  12. Tipping point leadership.

    PubMed

    Kim, W Chan; Mauborgne, Renée

    2003-04-01

    When William Bratton was appointed police commissioner of New York City in 1994, turf wars over jurisdiction and funding were rife and crime was out of control. Yet in less than two years, and without an increase in his budget, Bratton turned New York into the safest large city in the nation. And the NYPD was only the latest of five law-enforcement agencies Bratton had turned around. In each case, he succeeded in record time despite limited resources, a demotivated staff, opposition from powerful vested interests, and an organization wedded to the status quo. Bratton's turnarounds demonstrate what the authors call tipping point leadership. The theory of tipping points hinges on the insight that in any organization, fundamental changes can occur quickly when the beliefs and energies of a critical mass of people create an epidemic movement toward an idea. Bratton begins by overcoming the cognitive hurdles that block organizations from recognizing the need for change. He does this by putting managers face-to-face with operational problems. Next, he manages around limitations on funds, staff, or equipment by concentrating resources on the areas that are most in need of change and that have the biggest payoffs. He meanwhile solves the motivation problem by singling out key influencers--people with disproportionate power due to their connections or persuasive abilities. Finally, he closes off resistance from powerful opponents. Not every CEO has the personality to be a Bill Bratton, but his successes are due to much more than his personality. He relies on a remarkably consistent method that any manager looking to turn around an organization can use to overcome the forces of inertia and reach the tipping point. PMID:12687920

  13. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  14. Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Maines, Brant H.; Arndt, Roger E. A.

    2000-11-01

    Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research

  15. Gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  16. Gardening Health and Safety Tips

    MedlinePlus

    ... Health History Parent Information Vaccines & Immunizations Healthy Living Gardening Health and Safety Tips Recommend on Facebook Tweet Share Compartir Gardening can be a great way to enjoy the ...

  17. Superconductivity in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Maiti, Saurabh

    Iron based superconductors(FeSC) are a new class of high temperature superconductors with very intriguing properties. These materials cannot be explained using the 'conventional' logic of the 'conventional' superconductors, and is also different from the Cuprates-the other popular class of high temperature superconductors. A complete description of the superconducting state in these materials requires a thorough understanding of its superconducting order parameter and the mechanism that leads to superconductivity-both of which are unsettled issues. In this thesis, we attempt to tackle some aspects of these issues. We first discuss, keeping the wisdom of Fermi-liquid theory in mind, the criteria for the superconducting instability in FeSC which is a lattice based system. Superconductivity in lattice based systems is different from well known BCS superconductivity. We make the point that the presence of electron and hole like carriers are crucial for the manifestations of such properties in the FeSCs. We then present a prescription to analyze the symmetries and structure of the superconducting order parameter (the gap) in generic lattice based systems where only the interaction amongst fermions close to the Fermi surface is important. We demonstrate the effectiveness of this prescription by applying it to the case of FeSCs where we study the evolution of the gap with injecting of carriers (of both hole and electron like). This prescription avoids use of heavy numerical studies and still gives results in excellent agreement with numerical and experimental studies. Elaborating more on the intriguing nature of FeSCs, we also point to the possibility of a new time reversal symmetry breaking s+is state that is unique to systems like these (due to presence of multiple Fermi pockets of the carriers) and discuss its experimental consequences.

  18. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  19. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  20. Mechanical Control of Individual Superconducting Vortices.

    PubMed

    Kremen, Anna; Wissberg, Shai; Haham, Noam; Persky, Eylon; Frenkel, Yiftach; Kalisky, Beena

    2016-03-01

    Manipulating individual vortices in a deterministic way is challenging; ideally, manipulation should be effective, local, and tunable in strength and location. Here, we show that vortices respond to local mechanical stress applied in the vicinity of the vortex. We utilized this interaction to move individual vortices in thin superconducting films via local mechanical contact without magnetic field or current. We used a scanning superconducting quantum interference device to image vortices and to apply local vertical stress with the tip of our sensor. Vortices were attracted to the contact point, relocated, and were stable at their new location. We show that vortices move only after contact and that more effective manipulation is achieved with stronger force and longer contact time. Mechanical manipulation of vortices provides a local view of the interaction between strain and nanomagnetic objects as well as controllable, effective, and reproducible manipulation technique. PMID:26836018

  1. Mechanical Control of Individual Superconducting Vortices

    PubMed Central

    2016-01-01

    Manipulating individual vortices in a deterministic way is challenging; ideally, manipulation should be effective, local, and tunable in strength and location. Here, we show that vortices respond to local mechanical stress applied in the vicinity of the vortex. We utilized this interaction to move individual vortices in thin superconducting films via local mechanical contact without magnetic field or current. We used a scanning superconducting quantum interference device to image vortices and to apply local vertical stress with the tip of our sensor. Vortices were attracted to the contact point, relocated, and were stable at their new location. We show that vortices move only after contact and that more effective manipulation is achieved with stronger force and longer contact time. Mechanical manipulation of vortices provides a local view of the interaction between strain and nanomagnetic objects as well as controllable, effective, and reproducible manipulation technique. PMID:26836018

  2. A nanoemitter based on a superconducting material

    NASA Astrophysics Data System (ADS)

    Hou, Jin-Long; Chang, Wei-Tse; Shih, Chih-Chiang; Yu, Yu-Fong; Fu, Tsu-Yi; Hwang, Ing-Shouh

    2016-06-01

    The coherence of an electron beam is crucial for the performance of electron microscopy, coherent diffractive imaging, holography, and many other advanced instrumentation methods that rely on the phase coherence of electron waves. Here we present a reliable method for preparing a niobium nanoemitter, which is thermally and chemically stable. The tip apex is a (100) facet with a lateral dimension of ˜1 nm, surrounded by four (310) facets. Adsorption of one monolayer of noble gas, particularly Xe, onto the nanoemitter greatly enhances the emission current and current stability. This electron source will probably possess both spatial and temporal coherence if the emitter is cooled below the superconducting temperature.

  3. The Macro - TIPS Course Package.

    ERIC Educational Resources Information Center

    Heriot-Watt Univ., Edinburgh (Scotland). Esmee Fairbairn Economics Research Centre.

    The TIPS (Teaching Information Processing System) Course Package was designed to be used with the Macro-Games Course Package (SO 011 930) in order to train college students to apply the tools of economic analysis to current problems. TIPS is used to provide feedback and individualized assignments to students, as well as information about the…

  4. Ten tips to help learning.

    PubMed

    Dickerson, Pamela S

    2003-01-01

    Facilitating learning for nurses in the healthcare environment is challenging. These 10 tips are designed to help staff development educators explore ways to enhance learning. The emphasis is on active involvement of the learner, with the educator as facilitator rather than "teacher." Tips are evidence-based, specific, and to the point, with suggestions for implementation. PMID:14581833

  5. Brilliant Writing Tips for Students

    ERIC Educational Resources Information Center

    Copus, Julia

    2010-01-01

    With tips on punctuation, style, grammar and essay structure, this handy guide provides succinct and practical guidance on students most common areas of concern in their written work. Each tip is supplemented by authentic examples of student writing, suggested re-writes, and appropriate self-help exercises. This book contains four parts. Part I:…

  6. Superconducting materials

    SciTech Connect

    Ruvalds, J.

    1992-01-01

    Our research on high temperatures superconductors has produced novel insights for the normal state properties of copper oxides that have been discovered in the last few years. Advances in materials preparation have produced singly crystal samples, and sophisticated surface cleavage techniques have unveiled truly metallic behavior in many respects. Thus, the recent confirmation of a Fermi surface in several cuprate superconductors by photoemission spectroscopy has aroused interest in experimental features which heretofore were in apparent contrast to the expectations for a conventional Fermi Liquid. Our group has discovered that nested'' nearly parallel sections of the electron orbits yields an anomalous response which influences the electrical resistivity, optical reflectance, Raman spectrum, and neutron scattering cross section. Our analysis has provided an explanation for seemingly disparate experimental features of high temperature superconductors using consistent values for the electron-electron coupling and the plasma frequency. Our results include the following properties of high temperature superconductors: Nested Fermi Liquid Response in High Temperature Superconductors, Optical Reflectivity and Electron Energy Loss Data, Raman Spectra, Neutron Scattering Cross Section and Scaling, and Prospects for New Superconductors.

  7. Tip-enhanced Raman spectroscopy: tip-related issues.

    PubMed

    Huang, Teng-Xiang; Huang, Sheng-Chao; Li, Mao-Hua; Zeng, Zhi-Cong; Wang, Xiang; Ren, Bin

    2015-11-01

    After over 15 years of development, tip-enhanced Raman spectroscopy (TERS) is now facing a very important stage in its history. TERS offers high detection sensitivity down to single molecules and a high spatial resolution down to sub-nanometers, which make it an unprecedented nanoscale analytical technique offering molecular fingerprint information. The tip is the core element in TERS, as it is the only source through which to support the enhancement effect and provide the high spatial resolution. However, TERS suffers and will continue to suffer from the limited availability of TERS tips with a high enhancement, good stability, and high reproducibility. This review focuses on the tip-related issues in TERS. We first discuss the parameters that influence the enhancement and spatial resolution of TERS and the possibility to optimize the performance of a TERS system via an in-depth understanding of the enhancement mechanism. We then analyze the methods that have been developed for producing TERS tips, including vacuum-based deposition, electrochemical etching, electrodeposition, electroless deposition, and microfabrication, with discussion on the advantages and weaknesses of some important methods. We also tackle the issue of lifetime and protection protocols of TERS tips which are very important for the stability of a tip. Last, some fundamental problems and challenges are proposed, which should be addressed before this promising nanoscale characterization tool can exert its full potential. Graphical Abstract ᅟ. PMID:26314483

  8. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    PubMed

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics. PMID:24420248

  9. The Evolution of Transjugular Intrahepatic Portosystemic Shunt: Tips

    PubMed Central

    Fanelli, Fabrizio

    2014-01-01

    Since Richter's description in the literature in 1989 of the first procedure on human patients, transjugular intrahepatic portosystemic shunt (TIPS) has been worldwide considered as a noninvasive technique to manage portal hypertension complications. TIPS succeeds in lowering the hepatic sinusoidal pressure and in increasing the circulatory flow, thus reducing sodium retention, ascites recurrence, and variceal bleeding. Required several revisions of the shunt TIPS can be performed in case of different conditions such as hepatorenal syndrome, hepatichydrothorax, portal vein thrombosis, and Budd-Chiari syndrome. Most of the previous studies on TIPS procedure were based on the use of bare stents and most patients chose TIPS 2-3 years after traditional treatment, thus making TIPS appear to be not superior to endoscopy in survival rates. Bare stents were associated with higher incidence of shunt failure and consequently patients required several revisions during the follow-up. With the introduction of a dedicated e-PTFE covered stent-graft, these problems were completely solved, No more reinterventions are required with a tremendous improvement of patient's quality of life. One of the main drawbacks of the use of e-PTFE covered stent-graft is higher incidence of hepatic encephalopathy. In those cases refractory to the conventional medical therapy, a shunt reduction must be performed. PMID:27335841

  10. The Evolution of Transjugular Intrahepatic Portosystemic Shunt: Tips.

    PubMed

    Fanelli, Fabrizio

    2014-01-01

    Since Richter's description in the literature in 1989 of the first procedure on human patients, transjugular intrahepatic portosystemic shunt (TIPS) has been worldwide considered as a noninvasive technique to manage portal hypertension complications. TIPS succeeds in lowering the hepatic sinusoidal pressure and in increasing the circulatory flow, thus reducing sodium retention, ascites recurrence, and variceal bleeding. Required several revisions of the shunt TIPS can be performed in case of different conditions such as hepatorenal syndrome, hepatichydrothorax, portal vein thrombosis, and Budd-Chiari syndrome. Most of the previous studies on TIPS procedure were based on the use of bare stents and most patients chose TIPS 2-3 years after traditional treatment, thus making TIPS appear to be not superior to endoscopy in survival rates. Bare stents were associated with higher incidence of shunt failure and consequently patients required several revisions during the follow-up. With the introduction of a dedicated e-PTFE covered stent-graft, these problems were completely solved, No more reinterventions are required with a tremendous improvement of patient's quality of life. One of the main drawbacks of the use of e-PTFE covered stent-graft is higher incidence of hepatic encephalopathy. In those cases refractory to the conventional medical therapy, a shunt reduction must be performed. PMID:27335841

  11. Superconducting quadrupoles

    SciTech Connect

    McInturff, A.D.

    1985-07-01

    The data base for this paper will represent the work from two different groups and two different Laboratories (Brookhaven National Laboratory and Fermi National Accelerator Laboratory). The majority of the data was that obtained by the Fermi National Accelerator Group and is the most recent, and is based on a larger number of coil windings. The coil winding sizes that will be discussed are 12 cm, (Figure 1) 7.6 cm and 5 cm, (Figure 2) for the inner diameter. The maximum gradients measured in the 5 cm sizes were 1.93 T/cm at 3.5 K and 1.79 T/cm at 4.2 K. In the 7.6 cm size were 1.35 T/cm at 2.0 K and 1.1 T/cm at 4.2 K and in the 12.0 cm size was 1.35 T/cm at 4.2 K. The 12 cm size used a cold iron shield, but had an older conductor, so one effect (increase due to Fe) offset the other (lower J/sub c/ (H) of the earlier superconductor). These gradients (especially the 12 cm measurements) can be improved using more modern conductors, (i.e., approx.20% + g/(cm A) and their higher current densities. These gradients represent an increase of 2 to 3+ times the value obtainable using conventional iron and copper magnets at a comparable aperature. The original purposes for these coils were for the 12 cm size, the Isabelle lattice, the 7.6 cm size, the Tevatron lattice and low ..beta.. insertion focus, and the 5 cm size, the final focus of SLC at SLAC and SSC size coils.

  12. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  13. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  14. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  15. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  16. At the Tipping Point

    SciTech Connect

    Wiley, H. S.

    2011-02-28

    There comes a time in every field of science when things suddenly change. While it might not be immediately apparent that things are different, a tipping point has occurred. Biology is now at such a point. The reason is the introduction of high-throughput genomics-based technologies. I am not talking about the consequences of the sequencing of the human genome (and every other genome within reach). The change is due to new technologies that generate an enormous amount of data about the molecular composition of cells. These include proteomics, transcriptional profiling by sequencing, and the ability to globally measure microRNAs and post-translational modifications of proteins. These mountains of digital data can be mapped to a common frame of reference: the organism’s genome. With the new high-throughput technologies, we can generate tens of thousands of data points from each sample. Data are now measured in terabytes and the time necessary to analyze data can now require years. Obviously, we can’t wait to interpret the data fully before the next experiment. In fact, we might never be able to even look at all of it, much less understand it. This volume of data requires sophisticated computational and statistical methods for its analysis and is forcing biologists to approach data interpretation as a collaborative venture.

  17. Phonon limited superconducting correlations in metallic nanograins

    NASA Astrophysics Data System (ADS)

    Croitoru, M. D.; Shanenko, A. A.; Vagov, A.; Milošević, M. V.; Axt, V. M.; Peeters, F. M.

    2015-11-01

    Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement.

  18. Phonon limited superconducting correlations in metallic nanograins

    PubMed Central

    Croitoru, M. D.; Shanenko, A. A.; Vagov, A.; Milošević, M. V.; Axt, V. M.; Peeters, F. M.

    2015-01-01

    Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement. PMID:26565073

  19. Microwave mode structure of superconducting metamaterial resonators

    NASA Astrophysics Data System (ADS)

    Wang, Haozhi; Rouxinol, Francisco; Lahaye, Matthew; Plourde, Britton

    2015-03-01

    Arrays of lumped circuit elements can be used to form metamaterial resonant structures that exhibit novel behavior compared to resonators made from conventional distributed transmission lines. By engineering the parameters and configurations of the lumped elements composing the unit cell of such a metamaterial resonator, one can generate spectra with wide stop-bands as well as pass-bands with dense microwave modes. If the metamaterials are fabricated from superconducting traces, the losses can be low enough to allow for these dense modes to be resolved and potentially coupled to quantum systems, such as superconducting qubits. We will present our low-temperature measurements of a variety of superconducting metamaterial resonators and we will compare these with numerical simulations of the microwave properties.

  20. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  1. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  2. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  3. LTS Gradiometers Based-On Superconducting Imaging Surface Design

    SciTech Connect

    Matlachov, A.N.; Kraus, R.H., Jr.; Espy, M.A.

    1999-06-21

    Gradiometer-like devices can be built using a superconducting imaging surface design. Such devices behave similarly to conventional wire-wound gradiometers for nearby magnetic sources. A large gradiometer array can be built by placing SQUID magnetometers close to the surface of a large superconducting plane. The most attractive advantage of such a gradiometer array is the ability to change a baseline for all channels simultaneously by mechanically moving the superconducting imaging surface relative to the sensor array. This can easily be accomplished even when the gradiometer array is cold. We built, experimentally tested, and simulated both first- and second-order gradiometer-like devices with adjustable baseline using the superconducting imaging surface design. First-order radial gradiometer sensors were made by placing planar magnetometers parallel to and near the superconducting imaging surface. A second-order electronic gradiometer was realized by subtracting the output from two of the first-order gradiometers described above.

  4. A superconducting-nanowire three-terminal electrothermal device.

    PubMed

    McCaughan, Adam N; Berggren, Karl K

    2014-10-01

    Superconducting electronics based on Josephson junctions are used to sense and process electronic signals with minimal loss; however, they are ultrasensitive to magnetic fields, limited in their amplification capabilities, and difficult to manufacture. We have developed a 3-terminal, nanowire-based superconducting electrothermal device which has no Josephson junctions. This device, which we call the nanocryotron, can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nanocryotron has a demonstrated gain of >20, can drive impedances of 100 kΩ, and operates in typical ambient magnetic fields. We have additionally applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nanocryotron has immediate applications in classical and quantum communications, photon sensing, and astronomy, and its input characteristics are suitable for integration with existing superconducting technologies. PMID:25233488

  5. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    PubMed Central

    Wang, Andrew; Butte, Manish J.

    2014-01-01

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished. PMID:25161320

  6. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer.

    PubMed

    Wang, Andrew; Butte, Manish J

    2014-08-01

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished. PMID:25161320

  7. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    SciTech Connect

    Wang, Andrew; Butte, Manish J.

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  8. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  9. A high gradient superconducting quadrupole for a low charge state ion linac

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-07-01

    A superconducting quadrupole magnet has been designed for use as the focusing element in a low charge state linac proposed at Argonne. The expected field gradient is 350 T/m at an operating current of 53 A, and the bore diameter is 3 cm. The use of rare earth material holmium for pole tips provides about 10% more gradient then iron pole tips. The design and the status of construction of a prototype singlet magnet is described.

  10. The Case for Using Blunt-Tipped Lightning Rods as Strike Receptors.

    NASA Astrophysics Data System (ADS)

    Moore, C. B.; Aulich, G. D.; Rison, William

    2003-07-01

    Conventional lightning rods used in the United States have sharp tips, a practice derived from Benjamin Franklin's discovery of a means to obtain protection from lightning. However, the virtue of sharp tips for strike reception has never been established. An examination of the relevant physics shows that very strong electric fields are required above the tips of rods in order that they function as strike receptors but that the gradients of the field strength over sharp-tipped rods are so great that, at distances of a few millimeters, the local fields are often too weak for the development of upward-going streamers. In field tests, rods with rounded tips have been found to be better strike receptors than were nearby sharp-tipped rods.

  11. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  12. Effect of inflow cannula tip design on potential parameters of blood compatibility and thrombosis.

    PubMed

    Wong, Kai Chun; Büsen, Martin; Benzinger, Carrie; Gäng, René; Bezema, Mirko; Greatrex, Nicholas; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2014-09-01

    During ventricular assist device support, a cannula acts as a bridge between the native cardiovascular system and a foreign mechanical device. Cannula tip design strongly affects the function of the cannula and its potential for blood trauma. In this study, the flow fields of five different tip geometries within the ventricle were evaluated using stereo particle image velocimetry. Inflow cannulae with conventional tip geometries (blunt, blunt with four side ports, beveled with three side ports, and cage) and a custom-designed crown tip were interposed between a mixed-flow rotary blood pump and a compressible, translucent silicone left ventricle. The contractile function of the failing ventricle and hemodynamics were reproduced in a mock circulation loop. The rotary blood pump was interfaced with the ventricle and aorta and used to fully support the failing ventricle. Among these five tip geometries, high-shear volume ( γ ˙ ≥ 2778 / s , potential parameter of platelet activation) was found to be the greatest in the blunt tip. The cage tip was observed to have the highest low-shear volume and recirculation volume ( γ ˙ ≤ 100 / s and Vz  > 0, respectively; potential parameters of thrombus formation). The crown tip, together with conventional tip geometries with side ports (blunt with four side ports and beveled with three side ports) showed no significant difference in either high-shear volume or low-shear volume. However, recirculation volume was reduced significantly in the crown tip. Despite limited generalizability to clinical situations, these transient-state measurements supported the potential mitigation of complications by changing the design of conventional cannula tip geometries. PMID:25234762

  13. Tip-like anodic alumina

    NASA Astrophysics Data System (ADS)

    Sun, Q. W.; Ding, G. Q.; Li, Y. B.; Zheng, M. J.; Shen, W. Z.

    2007-05-01

    Porous anodic alumina membranes and various nanotips have been demonstrating individually their unique usefulness in current nanotechnology. We present a one-step electrochemical approach to fabricate nanoscale alumina tips (tip-like anodic alumina, TAA) in order to combine the benefits of porous anodic alumina and a nanoscale tip array. The realized TAA has an ordered tip surface with controllable aspect ratio and high sheet density of ~1011 cm-2. The formation of alumina nanotips is due to the heat-driven dissolution of the nanopore surface. We have further shown that the surface nanostructure in TAA leads to the wettability reversal, and preferred nucleation and growth during material deposition. The easy and large-scale fabrication of TAA makes it possible for novel nanodevice applications.

  14. 5 Tips for New Moms

    MedlinePlus

    ... medlineplus/news/fullstory_158727.html 5 Tips for New Moms Talk to a doctor before giving babies ... As they celebrate their first Mother's Day, many new moms will admit motherhood is wonderful but daunting ...

  15. Search Tips: MedlinePlus

    MedlinePlus

    ... of this page: https://medlineplus.gov/searchtips.html Search Tips To use the sharing features on this page, please enable JavaScript. How do I search MedlinePlus? The search box appears at the top ...

  16. Sports Injury Prevention Tip Sheet

    MedlinePlus

    ... Finance Human Resources and Administrative Services Information Technology Marketing and Sales Membership Practice Public Affairs Quality Publishing ... Feedback Recent a a a print email share Facebook Twitter 2016 Sports Injury Prevention Tip Sheet 3/ ...

  17. Fatigue-Crack-Tip Locator

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Clendenin, C. Gerald; Wincheski, Buzz; Fulton, James P.; Todhunter, Ronald G.; Simpson, John W.

    1994-01-01

    Fatigue-testing system includes automated subsystem continuously tracking location of fatigue-crack tip in metal or other highly electrically conductive specimen. Fatigue-crack-tip-locating subsystem also searches specimen to find initial fatigue crack and its tip and to trace out hidden fatigue cracks and other flaws inside specimen. Subsystem operates under overall control of personal computer, which also controls load frame applying prescribed cyclic stresses to specimen. Electromagnetic flaw detector based on eddy-current principle scanned over surface of specimen. Flaw detector described in "Electromagnetic Flaw Detector Is Easier To Use" (LAR-15046). System provides automated control and monitoring of fatigue experiments, saving time for researchers and enabling experiments to run unattended 24 hours a day. All information on crack-tip trajectories and rates of growth of cracks recorded automatically, so researchers have access to more information.

  18. Scanning SQUID-on-tip microscopy of vortex matter

    NASA Astrophysics Data System (ADS)

    Anahory, Yonathan; Embon, Lior; Vasyukov, Denis; Cuppens, Jo; Lachman, Ella; Halbertal, Dorri; Yaakobi, Elad; Uri, Aviram; Myasoedov, Yuri; Rappaport, Michael L.; Huber, Martin E.; Zeldov, Eli; Weizmann Institute of Science Team; University of Colorado at Denver Team

    2014-03-01

    We present a scanning nanoSQUID microscope with record spatial resolution, spin sensitivity, and operating magnetic fields for the study of vortex matter. The key element of the microscope is the SQUID-on-tip (SOT) device, which is fabricated by pulling a quartz tube into a sharp pipette, followed by three steps of thermal evaporation of a thin superconducting film onto the sides and the apex of the pipette. The devices operate at 4.2 K in applied fields of up to 1T and can be made with diameters down to 50 nm. The SQUIDs-on-tip display an extremely low flux noise of Φn = 50 nΦ0/Hz1/2 and corresponding spin sensitivity of better than 1 μB/Hz1/2, which is about two orders of magnitude improvement over any previous SQUID. Using this new tool we have investigated static and dynamic behavior of vortices in superconducting Pb films. By driving ac and dc transport current we can study vortex displacement and the vortex potential landscape with sub-atomic precision. Azrieli and Minerva Foundation, FQRNT(Quebec), ERC (Europe)

  19. Unconventional high-Tc superconductivity in fullerides.

    PubMed

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501971

  20. Design Optimization of Superconducting Parallel-bar Cavities

    SciTech Connect

    Delayen, Jean R.; De Silva, Payagalage Suba

    2009-11-01

    The parallel-bar structure is a new superconducting geometry [1] whose features and properties may have significant advantages over conventional superconducting deflecting and crabbing cavities for a number of applications. Jefferson Lab is in need for a 499 MHz, 11 GeV rf separator as part of its 12 GeV upgrade program. We report on design optimization studies performed to-date for this and other applications.

  1. 2D barrier in a superconducting niobium square

    SciTech Connect

    Joya, Miryam R. Barba-ortega, J.; Sardella, Edson

    2014-11-05

    The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.

  2. Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples.

    PubMed

    Precner, Marián; Fedor, Ján; Šoltýs, Ján; Cambel, Vladimír

    2015-02-01

    Standard magnetic force microscopy (MFM) is considered as a powerful tool used for magnetic field imaging at nanoscale. The method consists of two passes realized by the magnetic tip. Within the first one, the topography pass, the magnetic tip directly touches the magnetic sample. Such contact perturbs the magnetization of the sample explored. To avoid the sample touching the magnetic tip, we present a new approach to magnetic field scanning by segregating the topological and magnetic scans with two different tips located on a cut cantilever. The approach minimizes the disturbance of sample magnetization, which could be a major problem in conventional MFM images of soft magnetic samples. By cutting the cantilever in half using the focused ion beam technique, we create one sensor with two different tips--one tip is magnetized, and the other one is left non-magnetized. The non-magnetized tip is used for topography and the magnetized one for the magnetic field imaging. The method developed we call dual-tip magnetic force microscopy (DT-MFM). We describe in detail the dual-tip fabrication process. In the experiments, we show that the DT-MFM method reduces significantly the perturbations of the magnetic tip as compared to the standard MFM method. The present technique can be used to investigate microscopic magnetic domain structures in a variety of magnetic samples and is relevant in a wide range of applications, e.g., data storage and biomedicine. PMID:25586704

  3. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  4. Superconductivity of magnesium diboride

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Canfield, Paul C.

    2015-07-01

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In this article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. In particular, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  5. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  6. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  7. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element. PMID:17750320

  8. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  9. Development of superconductive magnets

    NASA Technical Reports Server (NTRS)

    Laurence, J. C.

    1970-01-01

    Survey of superconductive magnets considers - stabilization problems, advances in materials and their uses, and design evolution. Uses of superconducting magnets in particle accelerators and bubble chambers, as well as possible applications in magnetohydrodynamic and thermonuclear power generation and levitation are discussed.

  10. Superconductivity of magnesium diboride

    DOE PAGESBeta

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  11. Conceptual study of superconducting urban area power systems

    NASA Astrophysics Data System (ADS)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  12. Superconducting Graphene Nanoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Wang, Joel; Zaffalon, Michele; Jarillo-Herrero, Pablo

    2010-03-01

    Graphene, a single atom-thick sheet of graphite discovered in recent years, has attracted tremendous attention due to its exotic electronic properties. At low energy, its gapless linear band structure results in transport properties described by the Dirac equation, making it an ideal system for the study of exotic quantum phenomena and other new physics. Graphene may also exhibit many novel transport characteristics in the superconducting regime. New phenomena, such as pseudo-diffusive dynamics of ballistic electrons, the relativistic Josephson effect, and specular Andreev reflection are predicted by theoretical models combining relativistic quantum mechanics and superconductivity. We study these phenomena experimentally with superconductor-graphene-superconductor junctions. The supercurrent in graphene is induced by the superconducting contacts through proximity effect. Various superconducting materials are considered for different explorations. Preliminary tests indicate clean electrical contact with graphene and superconducting properties as expected.

  13. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  14. Turbine blade with contoured chamfered squealer tip

    DOEpatents

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axially extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.

  15. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  16. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  17. Structures behind superconductivity

    SciTech Connect

    Rotman, D.

    1988-07-01

    The previously reported preparation and structures of superconducting materials are reviewed. The two systems, Y-Ba-Cu-O and La-Cu-O, previously reported with high transition temperatures are discussed in some detail. The new systems introduced in 1987 that were not based on a rare earth but including Bi-Sr-Cu-O are also reviewed. Superconductive materials including thallium rather than bismuth that have been reported but not thoroughly studied are discussed briefly. It is pointed out that many superconducting materials have been prepared, but good documentation of the structures and properties of these materials need much more study.

  18. Superconductivity in doped insulators

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  19. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  20. Recent developments in superconducting receivers

    SciTech Connect

    Richards, P.L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high {Tc} superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high {Tc} bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  1. Management of thumb tip injuries.

    PubMed

    Germann, Günter; Sauerbier, Michael; Rudolf, Klaus D; Hrabowski, Manuel

    2015-03-01

    The management of thumb tip injuries has undergone great changes in recent years. The traditional armamentarium of flaps has been expanded and replaced by a wide variety of flaps with more versatility and less donor side morbidity. Parallel to the development of new flaps, the conservative treatment of thumb tip injuries with semi-occlusive dressing has gained ground in the treatment of these injuries. Although tedious and time-consuming, and requiring intensive communication with the patient to explain the look and occasionally fetid smell of the wound, this technique yields excellent results with respect to restoring contour and sensibility in pulp injuries. The article gives an update on the current options for treating thumb tip injuries including the most commonly applied flaps. PMID:25708438

  2. Tipping Points in Texas Rivers

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2016-04-01

    Anticipating geomorphic tipping points requires that we learn from the past. Major geomorphic changes in coastal plain rivers of Texas resulting in river metamorphosis or regime shifts were identified, and the major driving factors determined. Nine fluvial tipping points were identified from contemporary observations, historical records, and Quaternary reconstructions. Two of the tipping points (between general aggrading and degrading valley states) are associated with reversals in a fundamental system control (sea-level). One (stable or aggrading vs. degrading channels) is associated with an abrupt change in sediment supply due to dam construction, and two others (changes from meandering to anastomosing channel patterns, and different anastomosis styles) are similarly related to changes in sediment supply and/or transport capacity, but with additional elements of historical contingency. Three tipping points are related to avulsions. One, from a regime dominated to reoccupation of former channels to one dominated by progradation into flood basins, is driven by progressive long term filling of incised valleys. Another, nodal avulsions, are driven by disturbances associated with tectonics or listric faults. The third, avulsions and related valley metamorphosis in unfilled incised valleys, is due to fundamental dynamical instabilities within the fluvial system. This synthesis and analysis suggests that geomorphic tipping points are sometimes associated with general extrinsic or intrinsic (to the fluvial system) environmental change, independent of any disturbances or instabilities. Others are associated with natural (e.g., tectonic) or human (dams) disturbances, and still others with intrinsic geomorphic instabilities. This suggests that future tipping points will be equally diverse with respect to their drivers.

  3. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-01

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  4. Imaging epitaxial graphene on SiC(0001) using STM with functionalized W tips

    NASA Astrophysics Data System (ADS)

    Rhim, S. H.; Qi, Y.; Sun, G. F.; Liu, Y.; Weinert, M.; Li, L.

    2012-02-01

    Epitaxial graphene on SiC(0001) is studied using scanning tunneling microscopy with W tips functionalized by transition-metal (Cr, Fe) coatings, enabling the imaging of states within a few meV of the Fermi level that are not accessible with conventional W tips. First-principles modeling of these tips as pyramidal structures on W(110) indicates that an apex atom is stable for the Cr/W(110) tip but not for the Fe/W(110) or W/W(110) tips. Further calculations of the tunneling current show that the Cr- and Fe-coated tips can get significantly closer to the substrate than a bare W tip at a given current, and that the Cr (Fe) tip states contributing to the tunneling at low bias are spatially more localized than the W tip states. These characteristics lead to increased resolution, making possible the selective imaging of the complex electronic properties of the epitaxial graphene on SiC(0001)1,2.

  5. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization.

    PubMed

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-15

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips. PMID:26926558

  6. Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties

    SciTech Connect

    Groll, Nickolas; Pellin, Michael J.; Zasadzinksi, John F.; Proslier, Thomas

    2015-09-15

    We describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T{sub C}) and density of states over large surface areas with size up to mm{sup 2}. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that can be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. The point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.

  7. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  8. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  9. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  10. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  11. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  12. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  13. Superconductive ceramic oxide combination

    SciTech Connect

    Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.

    1991-03-05

    This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.

  14. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  15. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P.; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C. Stephen; Levy, Jeremy

    2015-05-01

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  16. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  17. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  18. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  19. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  20. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  1. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  2. Polarization-Controllable Winged Nanocone Tip Antenna

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Mäkitalo, Jouni; Kauranen, Martti

    We propose winged metal nanocone optical antennas for efficient coupling of far-field radiation into the near-field of sharp metal tips. Unlike normal sharp metal tips, the winged nanocones require no oscillating field along the tip axis for the excitation of the tips. We calculate extinction spectra and local-field enhancements for single and winged gold nanocones and show that the field enhancements in the tips of the winged cones are due to a combination of particle plasmon resonances and a lightning-rod effect. We also propose that the winged nanocones could be used for optical far-field background suppression for tip-enhanced microscopy.

  3. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  4. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  5. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.

    PubMed

    Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV. PMID:24784617

  6. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    SciTech Connect

    Roychowdhury, Anita; Gubrud, M. A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-04-15

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  7. Attempt to evaluate the tip vane concept with a lifting-line model

    NASA Astrophysics Data System (ADS)

    Devries, O.

    1985-09-01

    A nonlinear vortex model based on a lifting-line approximation (code HELIX) was developed to estimate the aerodynamic performance of the tip vane wind turbine. Application of the code reveals a strong dependence of the performance on the tip-speed ratio lambda. Though a power coefficient Cp-1 can be obtained for lambda between 3 and 4, the power is scarcely in excess of that of a conventional turbine (Cp between 0.40 and 0.45) for lambda between 10 and 11. The costs of rotor, gear box, and tower increase so strongly at low lambda, that the cost effectiveness of a tip vane wind turbine is only slightly better than for a conventional high lambda wind turbine. The perspectives of the tip vane concept are therefore more limited than originally expected.

  8. Library Management Tips that Work

    ERIC Educational Resources Information Center

    Smallwood, Carol, Ed.

    2011-01-01

    There's no shortage of library management books out there--but how many of them actually tackle the little details of day-to-day management, the hard-to-categorize things that slip through the cracks of a larger handbook? "Library Management Tips that Work" does exactly that, addressing dozens of such issues facing library managers, including: (1)…

  9. 99 Tips for Safe Schools.

    ERIC Educational Resources Information Center

    Kaufer, Steve

    This pamphlet highlights 99 tips for maintaining safe schools. Areas of interest include: alarm systems and control of access, vandalism, parent education, transportation, school design, personnel training, and graffiti. The majority of the pointers deal with maintaining and implementing various forms of electronic surveillance and strategies for…

  10. Assigning Effective Homework. Classroom Tips

    ERIC Educational Resources Information Center

    American Federation of Teachers (NJ), 2010

    2010-01-01

    Each new school year brings high hopes, great expectations and challenges for both new and seasoned educators. The American Federation of Teachers (AFT) has developed a series called "Classroom Tips" to help educators start the year right and anticipate the year ahead. Over the past 40 years, most research studies on homework have found that…

  11. STRV Cryocooler Tip Motion Suppression

    NASA Technical Reports Server (NTRS)

    Glaser, R.; Ross, R. G., Jr.; Johnson, D. L.

    1994-01-01

    The Space Technology Research Vehicle (STRV-1b) scheduled to fly at the beginning of June 1994, has a cryocooler vibration suppression experiment aboard doing motion suppression of the tip of the coldfinger. STRV-1b is a bread box sized satellite to be launched on the next flight of the Ariane-4.

  12. Useful Tips on Avoiding Plagiarism

    ERIC Educational Resources Information Center

    Hamalainen, Maryellen

    2007-01-01

    Teachers are generally kind and nurturing people. Students who plagiarize their assignments from these kind and nurturing teachers are often given a second chance when caught and encouraged to do their work over, but it would be better to eliminate their need to plagiarize. The first tip for eliminating plagiarism has not so much to do with what…

  13. Top 10 Staff Survival Tips.

    ERIC Educational Resources Information Center

    O'Brien, Laurie

    1995-01-01

    Tips for camp staff on how to survive summer camp include not giving campers sugary drinks before bedtime, setting behavior limits with campers, setting an example by following camp rules, getting enough rest, being fair and consistent, controlling anger, being accountable for actions, asking questions, and being flexible. (LP)

  14. Teaching Tips: Improving College Instruction.

    ERIC Educational Resources Information Center

    McGlynn, Angela Provitera

    Designed to help teachers improve instruction, this handbook provides tips gathered from focus groups of teachers and students at New Jersey's Mercer County Community College, as well as from other teaching resources. The first part focuses on the contribution of faculty-student interaction to student success, listing 21 suggestions for building…

  15. Blade tip timing (BTT) uncertainties

    NASA Astrophysics Data System (ADS)

    Russhard, Pete

    2016-06-01

    Blade Tip Timing (BTT) is an alternative technique for characterising blade vibration in which non-contact timing probes (e.g. capacitance or optical probes), typically mounted on the engine casing (figure 1), and are used to measure the time at which a blade passes each probe. This time is compared with the time at which the blade would have passed the probe if it had been undergoing no vibration. For a number of years the aerospace industry has been sponsoring research into Blade Tip Timing technologies that have been developed as tools to obtain rotor blade tip deflections. These have been successful in demonstrating the potential of the technology, but rarely produced quantitative data, along with a demonstration of a traceable value for measurement uncertainty. BTT technologies have been developed under a cloak of secrecy by the gas turbine OEM's due to the competitive advantages it offered if it could be shown to work. BTT measurements are sensitive to many variables and there is a need to quantify the measurement uncertainty of the complete technology and to define a set of guidelines as to how BTT should be applied to different vehicles. The data shown in figure 2 was developed from US government sponsored program that bought together four different tip timing system and a gas turbine engine test. Comparisons showed that they were just capable of obtaining measurement within a +/-25% uncertainty band when compared to strain gauges even when using the same input data sets.

  16. Job Search Tips for Women.

    ERIC Educational Resources Information Center

    LeBlanc, Carol

    This booklet contains a self-appraisal inventory and some tips on job hunting which are intended to assist women who have not worked for a while, have never held a job before, or want to change careers. The self-appraisal inventory is designed to help the user pinpoint educational and vocational experiences, skills, and special abilities that will…

  17. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  18. Predicting casualties implied by TIPs

    NASA Astrophysics Data System (ADS)

    Trendafiloski, G.; Wyss, M.; Wyss, B. M.

    2009-12-01

    When an earthquake is predicted, forecast, or expected with a higher than normal probability, losses are implied. We estimated the casualties (fatalities plus injured) that should be expected if earthquakes in TIPs (locations of Temporarily Increased Probability of earthquakes) defined by Kossobokov et al. (2009) should occur. We classified the predictions of losses into the categories red (more than 400 fatalities or more than 1,000 injured), yellow (between 100 and 400 fatalities), green (fewer than 100 fatalities), and gray (undetermined). TIPs in Central Chile, the Philippines, Papua, and Taiwan are in the red class, TIPs in Southern Sumatra, Nicaragua, Vanatu, and Honshu in the yellow class, and TIPs in Tonga, Loyalty Islands, Vanatu, S. Sandwich Islands, Banda Sea, and the Kuriles, are classified as green. TIPs where the losses depend moderately on the assumed point of major energy release were classified as yellow; TIPs such as in the Talaud Islands and in Tonga, where the losses depend very strongly on the location of the epicenter, were classified as gray. The accuracy of loss estimates after earthquakes with known hypocenter and magnitude are affected by uncertainties in transmission and soil properties, the composition of the building stock, the population present, and the method by which the numbers of casualties are calculated. In the case of TIPs, uncertainties in magnitude and location are added, thus we calculate losses for a range of these two parameters. Therefore, our calculations can only be considered order of magnitude estimates. Nevertheless, our predictions can come to within a factor of two of the observed numbers, as in the case of the M7.6 earthquake of October 2005 in Pakistan that resulted in 85,000 fatalities (Wyss, 2005). In subduction zones, the geometrical relationship between the earthquake source capable of a great earthquake and the population is clear because there is only one major fault plane available, thus the epicentral

  19. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition

    SciTech Connect

    Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2011-11-15

    Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

  20. Macroscopic Models of Superconductivity

    NASA Astrophysics Data System (ADS)

    Chapman, S. J.

    Available from UMI in association with The British Library. Requires signed TDF. After giving a description of the basic physical phenomena to be modelled, we begin by formulating a sharp -interface free-boundary model for the destruction of superconductivity by an applied magnetic field, under isothermal and anisothermal conditions, which takes the form of a vectorial Stefan model similar to the classical scalar Stefan model of solid/liquid phase transitions and identical in certain two-dimensional situations. This model is found sometimes to have instabilities similar to those of the classical Stefan model. We then describe the Ginzburg-Landau theory of superconductivity, in which the sharp interface is 'smoothed out' by the introduction of an order parameter, representing the number density of superconducting electrons. By performing a formal asymptotic analysis of this model as various parameters in it tend to zero we find that the leading order solution does indeed satisfy the vectorial Stefan model. However, at the next order we find the emergence of terms analogous to those of 'surface tension' and 'kinetic undercooling' in the scalar Stefan model. Moreover, the 'surface energy' of a normal/superconducting interface is found to take both positive and negative values, defining Type I and Type II superconductors respectively. We discuss the response of superconductors to external influences by considering the nucleation of superconductivity with decreasing magnetic field and with decreasing temperature respectively, and find there to be a pitchfork bifurcation to a superconducting state which is subcritical for Type I superconductors and supercritical for Type II superconductors. We also examine the effects of boundaries on the nucleation field, and describe in more detail the nature of the superconducting solution in Type II superconductors--the so-called 'mixed state'. Finally, we present some open questions concerning both the modelling and analysis of

  1. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  2. 6 Tips: IBS and Complementary Health Practices

    MedlinePlus

    ... R S T U V W X Y Z 6 Tips: IBS and Complementary Health Practices Share: As ... a complementary health practice for IBS, here are 6 tips: Hypnotherapy (hypnosis). This practice involves the power ...

  3. Feasibility study of a superconducting motor for electrical helicopter propulsion

    NASA Astrophysics Data System (ADS)

    Simons, C. A. B. A. E.; Sanabria-Walter, C.; Polinder, H.

    2014-05-01

    During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter propulsion systems could benefit from the increased performance. This paper describes the feasibility study of a superconducting motor to be used for helicopter propulsion as part of a More Electric Aircraft (MEA). For this, the armature, field windings and cryostat are designed, aiming at meeting the difficult specifications. Since superconductors have virtually no electrical resistance when cooled down below a certain critical temperature, they can be used to build high field and low weight coils for electrical machines. Especially the possibility to not use iron can make the superconducting motor lighter with a higher power density compared with conventional Permanent Magnet (PM) motors.

  4. Unconventional Superconductivity in YPtBi and Related Topological Semimetals

    NASA Astrophysics Data System (ADS)

    Meinert, Markus

    2016-04-01

    YPtBi, a topological semimetal with a very low carrier density, was recently found to be superconducting below Tc=0.77 K . In conventional theory, the nearly vanishing density of states around the Fermi level would imply a vanishing electron-phonon coupling and would, therefore, not allow for superconductivity. Based on relativistic density-functional theory calculations of the electron-phonon coupling in YPtBi, it is found that carrier concentrations of more than 1021 cm-3 are required to explain the observed critical temperature with the conventional pairing mechanism, which is several orders of magnitude larger than experimentally observed. It is very likely that an unconventional pairing mechanism is responsible for the superconductivity in YPtBi and related topological semimetals with half-Heusler structure.

  5. Unconventional Superconductivity in YPtBi and Related Topological Semimetals.

    PubMed

    Meinert, Markus

    2016-04-01

    YPtBi, a topological semimetal with a very low carrier density, was recently found to be superconducting below T_{c}=0.77  K. In conventional theory, the nearly vanishing density of states around the Fermi level would imply a vanishing electron-phonon coupling and would, therefore, not allow for superconductivity. Based on relativistic density-functional theory calculations of the electron-phonon coupling in YPtBi, it is found that carrier concentrations of more than 10^{21}  cm^{-3} are required to explain the observed critical temperature with the conventional pairing mechanism, which is several orders of magnitude larger than experimentally observed. It is very likely that an unconventional pairing mechanism is responsible for the superconductivity in YPtBi and related topological semimetals with half-Heusler structure. PMID:27081999

  6. Tip cap for a rotor blade

    NASA Technical Reports Server (NTRS)

    Kofel, W. K.; Tuley, E. N.; Gay, C. H., Jr.; Troeger, R. E.; Sterman, A. P. (Inventor)

    1983-01-01

    A replaceable tip cap for attachment to the end of a rotor blade is described. The tip cap includes a plurality of walls defining a compartment which, if desired, can be divided into a plurality of subcompartments. The tip cap can include inlet and outlet holes in walls thereof to permit fluid communication of a cooling fluid there through. Abrasive material can be attached with the radially outer wall of the tip cap.

  7. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Torti, Richard

    1991-01-01

    The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.

  8. High pressure superconducting radial magnetic bearing

    NASA Technical Reports Server (NTRS)

    Eyssa, Y. M.; Huang, X.

    1990-01-01

    In a conventional radial magnetic bearing, the rotor (soft magnetic material) can only have attraction force from one of the electromagnets in the stator. The stator electromagnets consist of small copper windings with a soft magnetic material iron yoke. The maximum pressure obtainable is about 200 N/sq cm. It is shown that replacing the stator copper winding by a superconducting winding in the above configuration can increase the pressure to about 1000 N/sq cm. It is also shown that replacing the iron in the rotor by a group of superconducting windings in persistent mode and using a group of saddle coils in the stator can produce a pressure in excess of 2000 N/sq cm.

  9. Electron Pairing Without Superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy; Cheng, G.; Tomczyk, M.; Lu, S.; Veazey, J. P.; Huang, M.; Irvin, P.; Ryu, S.; Lee, H.; Eom, C.-B.; Hellberg, C. S.

    2015-03-01

    Strontium titanate (SrTiO3) exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. We describe transport experiments with nanowire-based quantum dots localized at the interface between SrTiO3 and LaAlO3. Electrostatic gating of the quantum dot reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical magnetic field Bp 1-4 Tesla, an order of magnitude larger than the superconducting critical magnetic field. For B Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as T = 900 mK, far above the superconducting transition temperature (Tc 300 mK). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by an attractive-U Hubbard model that describes real-space electron pairing as a precursor to superconductivity. This work was supported by ARO MURI W911NF-08-1-0317 (J.L.), AFOSR MURI FA9550-10-1-0524 (C.-B.E., J.L.) and FA9550-12-1-0342 (C.-B.E.), and grants from the National Science Foundation DMR-1104191 (J.L.), DMR.

  10. Smoking - tips on how to quit

    MedlinePlus

    Cigarettes - tips on how to quit; Smoking cessation - tips on how to quit; Smokeless tobacco - tips on how to quit ... There are many ways to quit smoking. There are also resources to ... co-workers may be supportive. But to be successful, you must ...

  11. Injector tip for an internal combustion engine

    DOEpatents

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  12. Radio-frequency quadrupole vane-tip geometries

    SciTech Connect

    Crandall, K.R.; Mills, R.S.; Wangler, T.P.

    1983-01-01

    Radio-frequency quadrupole (RFQ) linacs are becoming widely accepted in the accelerator community. They have the remarkable capability of simultaneously bunching low-energy ion beams and accelerating them to energies at which conventional accelerators can be used, accomplishing this with high-transmission efficiencies and low-emittance growths. The electric fields, used for radial focusing, bunching, and accelerating, are determined by the geometry of the vane tips. The choice of the best vane-tip geometry depends on considerations such as the peak surface electric field, per cent of higher multipole components, and ease of machining. We review the vane-tip geometry based on the ideal two-term potential function and briefly describe a method for calculating the electric field components in an RFQ cell with arbitrary vane-tip geometry. We describe five basic geometries and use the prototype RFQ design for the Fusion Materials Irradiation Test (FMIT) accelerator as an example to compare the characteristics of the various geometries.

  13. Radio-frequency quadrupole vane-tip geometries

    SciTech Connect

    Crandall, K.R.; Mills, R.S.; Wangler, T.P.

    1983-08-01

    Radio-frequency quadrupole (RFQ) linacs are becoming widely accepted in the accelerator community. They have the remarkable capability of simultaneously bunching low-energy ion beams and accelerating them to energies at which conventional accelerators can be used, accomplishing this with high transmission efficiencies and low-emittance growths. The electric fields, used for radial focusing, bunching, and accelerating, are determined by the geometry of the vane tips. The choice of the best vane-tip geometry depends on considerations such as the peak surface electric field, per cent of higher multipole components, and ease of machining. The authors review the vane-tip geometry based on the ''ideal'' two-term potential function and briefly describe a method for calculating the electric field components in an RFQ cell with arbitrary vane-tip geometry. They describe five basic geometries and use the prototype RFQ design for the Fusion Materials Irradiation Test (FMIT) accelerator as an example to compare the characteristics of the various geometries.

  14. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  15. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  16. Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films.

    PubMed

    Song, Can-Li; Zhang, Hui-Min; Zhong, Yong; Hu, Xiao-Peng; Ji, Shuai-Hua; Wang, Lili; He, Ke; Ma, Xu-Cun; Xue, Qi-Kun

    2016-04-15

    We report on the emergence of two disconnected superconducting domes in alkali-metal potassium- (K-)doped FeSe ultrathin films grown on graphitized SiC(0001). The superconductivity exhibits hypersensitivity to K dosage in the lower-T_{c} dome, whereas in the heavily electron-doped higher-T_{c} dome it becomes spatially homogeneous and robust against disorder, supportive of a conventional Cooper-pairing mechanism. Furthermore, the heavily K-doped multilayer FeSe films all reveal a large superconducting gap of ∼14  meV, irrespective of film thickness, verifying the higher-T_{c} superconductivity only in the topmost FeSe layer. The unusual finding of a double-dome superconducting phase is a step towards the mechanistic understanding of superconductivity in FeSe-derived superconductors. PMID:27127981

  17. Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films

    NASA Astrophysics Data System (ADS)

    Song, Can-Li; Zhang, Hui-Min; Zhong, Yong; Hu, Xiao-Peng; Ji, Shuai-Hua; Wang, Lili; He, Ke; Ma, Xu-Cun; Xue, Qi-Kun

    2016-04-01

    We report on the emergence of two disconnected superconducting domes in alkali-metal potassium- (K-)doped FeSe ultrathin films grown on graphitized SiC(0001). The superconductivity exhibits hypersensitivity to K dosage in the lower-Tc dome, whereas in the heavily electron-doped higher-Tc dome it becomes spatially homogeneous and robust against disorder, supportive of a conventional Cooper-pairing mechanism. Furthermore, the heavily K-doped multilayer FeSe films all reveal a large superconducting gap of ˜14 meV , irrespective of film thickness, verifying the higher-Tc superconductivity only in the topmost FeSe layer. The unusual finding of a double-dome superconducting phase is a step towards the mechanistic understanding of superconductivity in FeSe-derived superconductors.

  18. Phase-Imaging with a Sharpened Multi-Walled Carbon Nanotube AFM Tip: Investigation of Low-k Dielectric Polymer Hybrids

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Stevens, Ramsey M.; Meyyappan, M.; Volksen, Willi; Miller, Robert D.

    2005-01-01

    Phase shift tapping mode scanning force microscopy (TMSFM) has evolved into a very powerful technique for the nanoscale surface characterization of compositional variations in heterogeneous samples. Phase shift signal measures the difference between the phase angle of the excitation signal and the phase angle of the cantilever response. The signal correlates to the tip-sample inelastic interactions, identifying the different chemical and/or physical property of surfaces. In general, the resolution and quality of scanning probe microscopic images are highly dependent on the size of the scanning probe tip. In improving AFM tip technology, we recently developed a technique for sharpening the tip of a multi-walled carbon nanotube (CNT) AFM tip, reducing the radius of curvature of the CNT tip to less than 5 nm while still maintaining the inherent stability of multi-walled CNT tips. Herein we report the use of sharpened (CNT) AFM tips for phase-imaging of polymer hybrids, a precursor for generating nanoporous low-k dielectrics for on-chip interconnect applications. Using sharpened CNT tips, we obtained phase-contrast images having domains less than 10 nm. In contrast, conventional Si tips and unsharpened CNT tips (radius greater than 15 nm) were not able to resolve the nanoscale domains in the polymer hybrid films. C1early, the size of the CNT tip contributes significantly to the resolution of phase-contrast imaging. In addition, a study on the nonlinear tapping dynamics of the multi-walled CNT tip indicates that the multi-walled CNT tip is immune to conventional imaging instabilities related to the coexistence of attractive and repulsive tapping regimes. This factor may also contribute to the phase-contrast image quality of multi-walled CNT AFM tips. This presentation will also offer data in support of the stability of the CNT tip for phase shift TMSFM.

  19. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  20. Magnetically levitated superconducting bearing

    SciTech Connect

    Weinberger, B.R.; Lynds, L. Jr.

    1993-10-26

    A magnetically levitated superconducting bearing includes a magnet mounted on a shaft that is rotatable around an axis of rotation and a Type II superconductor supported on a stator in proximity to the magnet. The superconductor is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet to produce an attractive force that levitates the magnet and supports a load on the shaft. The interaction between the superconductor and magnet also produces surface screening currents that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature. The bearing could also be constructed so the magnet is supported on the stator and the superconductor is mounted on the shaft. The bearing can be operated by cooling the superconductor to its superconducting state in the presence of a magnetic field. 6 figures.

  1. Midwest Superconductivity Consortium

    SciTech Connect

    Liedl, G.L.

    1992-01-01

    The Midwest Superconductivity Consortium's, MISCON, mission is to advance the science and understanding of high {Tc} superconductivity. Programmatic research focuses upon key materials-related problems: synthesis and processing; and limiting features in transport phenomena. During the past twenty-one projects produced over eighty-seven talks and seventy-two publications. Key achievements this past year expand our understanding of processing phenomena relating to crystallization and texture, metal superconductor composites, and modulated microstructures. Further noteworthy accomplishments include calculations on 2-D superconductor insulator transition, prediction of flux line lattice melting, and an expansion of our understanding and use of microwave phenomena as related to superconductors.

  2. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  3. Gambling with Superconducting Fluctuations

    NASA Astrophysics Data System (ADS)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  4. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  5. Numerical investigation & comparison of a tandem-bladed turbocharger centrifugal compressor stage with conventional design

    NASA Astrophysics Data System (ADS)

    Danish, Syed Noman; Qureshi, Shafiq Rehman; EL-Leathy, Abdelrahman; Khan, Salah Ud-Din; Umer, Usama; Ma, Chaochen

    2014-12-01

    Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor. Stage characteristics are explored for various tip clearance levels, axial spacings and circumferential clockings. Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle, meridional gas passage and camber distributions in order to have a true comparison with conventional design. Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance. Linear-equation models for correlating stage characteristics with tip clearance are proposed. Comparing two designs, it is clearly evident that the conventional design shows better performance at moderate flow rates. However; near choke flow, tandem design gives better results primarily because of the increase in throat area. Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.

  6. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    SciTech Connect

    Stępniak, A.; Caminale, M.; Leon Vanegas, A. A.; Oka, H.; Sander, D.; Kirschner, J.

    2015-01-15

    Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS) measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  7. Superconducting Clusters and Colossal Effects in Underdoped Cuprates

    NASA Astrophysics Data System (ADS)

    Alvarez, Gonzalo; Mayr, Matthias; Moreo, Adriana

    2005-03-01

    Phenomenological models for the antiferromagnetic vs. d-wave superconductivity competition in cuprates are studied[1] using conventional Monte Carlo techniques. The analysis suggests that cuprates may show a variety of different behaviors in the very underdoped regime: local coexistence, stripes, or, if disorder is present, states with nanoscale superconducting clusters. The transition from an antiferromagnetic to a superconducting state does not seem universal. In particular, inhomogeneous states lead to the possibility of colossal effects in some cuprates, analogous of those in manganites. Under suitable conditions, non-superconducting Cu-oxides could rapidly[2] become superconducting by the influence of weak perturbations that align the randomly oriented phases of the superconducting clusters in the mixed state. Consequences of these ideas for angle resolved photoemission and scanning tunneling microscopy experiments[3] will also discussed. [1] Alvarez et al., cond-mat/0401474, to appear in PRB. [2] I. Bozovic et al., PRL 93, 157002, (2004) [3] A. Ino et al., PRB 62, 4127 (2000); K. Lang et al, Nature 415, 412 (2002). Research performed in part at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.

  8. Lightweight MgB2 superconducting 10 MW wind generator

    NASA Astrophysics Data System (ADS)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  9. Pseudogap in a thin film of a conventional superconductor.

    SciTech Connect

    Sacepe, B.; Chapelier, C.; Baturina, T. I.; Vinokur, V. M.; Baklanov, M. R.; Sanquer, M.

    2010-12-01

    A superconducting state is characterized by the gap in the electronic density of states, which vanishes at the superconducting transition temperature T{sub c}. It was discovered that in high-temperature superconductors, a noticeable depression in the density of states, the pseudogap, still remains even at temperatures above T{sub c}. Here, we show that a pseudogap exists in a conventional superconductor, ultrathin titanium nitride films, over a wide range of temperatures above T{sub c}. Our study reveals that this pseudogap state is induced by superconducting fluctuations and favoured by two-dimensionality and by the proximity to the transition to the insulating state. A general character of the observed phenomenon provides a powerful tool to discriminate between fluctuations as the origin of the pseudogap state and other contributions in the layered high-temperature superconductor compounds.

  10. Spin-orbit-coupled superconductivity

    PubMed Central

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C.-T.

    2014-01-01

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature Tc, clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < Tc, the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity. PMID:24961726

  11. Free-standing superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer, the ceramic superconductive material layer and the protective material layer, removing the protective material layer from the composite structure whereby a substrate-free, free-standing ceramic superconductive film remains.

  12. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  13. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  14. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  15. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  16. Langmuir vacuum and superconductivity

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2012-06-01

    It is shown that, in the "jelly" model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  17. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  18. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  19. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  20. Superconductive electromagnet apparatus

    SciTech Connect

    Mine, S.

    1982-12-14

    Disclosed is a superconductive electromagnet apparatus having a coil with a coiled conductor with a channel between adjacently disposed the paths of the coil conductor of which width is selected in accordance with amounts of heat produced at the corresponding portions of the coil section as viewed in cross section.

  1. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  2. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  3. Superconducting magnets 1992

    SciTech Connect

    Not Available

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T{sub c} at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design.

  4. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  5. Robust Majorana Conductance Peaks for a Superconducting Lead

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Vinkler-Aviv, Yuval; Glazman, Leonid I.; von Oppen, Felix

    2015-12-01

    Experimental evidence for Majorana bound states largely relies on measurements of the tunneling conductance. While the conductance into a Majorana state is in principle quantized to 2 e2/h , observation of this quantization has been elusive, presumably due to temperature broadening in the normal-metal lead. Here, we propose to use a superconducting lead instead, whose gap strongly suppresses thermal excitations. For a wide range of tunneling strengths and temperatures, a Majorana state is then signaled by symmetric conductance peaks at e V =±Δ of a universal height G =(4 -π )2 e2/h . For a superconducting scanning tunneling microscope tip, Majorana states appear as spatial conductance plateaus while the conductance varies with the local wave function for trivial Andreev bound states. We discuss effects of nonresonant (bulk) Andreev reflections and quasiparticle poisoning.

  6. Robust Majorana Conductance Peaks for a Superconducting Lead.

    PubMed

    Peng, Yang; Pientka, Falko; Vinkler-Aviv, Yuval; Glazman, Leonid I; von Oppen, Felix

    2015-12-31

    Experimental evidence for Majorana bound states largely relies on measurements of the tunneling conductance. While the conductance into a Majorana state is in principle quantized to 2e^{2}/h, observation of this quantization has been elusive, presumably due to temperature broadening in the normal-metal lead. Here, we propose to use a superconducting lead instead, whose gap strongly suppresses thermal excitations. For a wide range of tunneling strengths and temperatures, a Majorana state is then signaled by symmetric conductance peaks at eV=±Δ of a universal height G=(4-π)2e(2)/h. For a superconducting scanning tunneling microscope tip, Majorana states appear as spatial conductance plateaus while the conductance varies with the local wave function for trivial Andreev bound states. We discuss effects of nonresonant (bulk) Andreev reflections and quasiparticle poisoning. PMID:26765015

  7. Decomposing Composing Conventions.

    ERIC Educational Resources Information Center

    Beers, Terry

    Recent research has invited critiques of the authoritative descriptions of composing found in many rhetoric textbooks. The concept of "convention" may be especially useful in rethinking the teleological basis of these textbook descriptions. Conventions found in composition textbooks need to be unmasked as arbitrary concepts which serve to…

  8. Superstructures and superconductivity

    SciTech Connect

    Fisk, Z.; Aeppli, G.

    1993-04-02

    Heavy fermion materials - so named because their conduction electrons behave as though they had extra mass - are like the cuprates in that they exhibit unusual superconducting properties. By the time the cuprates had been discovered, a good understanding of these materials was in hand. Unlike theories of high-[Tc] superconductivity, however, ideas about heavy fermions have not been the subject of great controversy. Thus, most of the effort in this backwater of condensed matter physics has focused on certain details of the behavior of one particularly well-studied compounds, UPt[sub 3]. The cause for sustained interest was that the process of developing ever more elaborate explanations for ever more elaborate experiments did not seem to converage. A recent paper by Midgley et al. reporting modulations in the crystal lattice of UPt[sub 3] suggests that theory and experiment might finally converge in a way that, while it does not threaten the broad understanding of heavy fermion systems, involves a degree of freedom ignored until now even in the face of past experience with elemental metallic uranium. Their transmission electron micrograph evidence for the existence of an incommensurate lattice modulation in UPt[sub 3] implicates this modulation as a probable source of the double superconducting transitions. Remarkably, the superconducting and magnetic coherence lengths, and the now discovered modulation period, are all of the same magnitude. For some time people have felt that stacking faults might be relevant to the properties of UPt[sub 3], but these new results are distinct from this. What Midgley et al. suggest is that the complicated superconducting phase diagram of UPt[sub 3] derives from the internal strain field caused by the modulation, and that this strain field lifts the degeneracy associated with unconventional pairing.

  9. Characterization of Fabrication Defects in Superconducting Epitaxial Aluminum Resonators

    NASA Astrophysics Data System (ADS)

    Siwak, Nathan; He, Lei; Hackley, Justin; Richardson, Christopher

    2015-03-01

    A continuing challenge in superconducting quantum computing is the creation of low-loss superconducting aluminum resonators. Significant processing difficulties lie in the removal of residues resulting from conventional Cl-based plasma etching without damaging the aluminum patterns. Correlations of resist residues and corrosion pit defect densities with cleaning process variations are completed using charge contrast-enhanced imaging in a scanning electron microscope. These quantified defects provide insight into the effectiveness of specific device processing steps in reducing these artifacts which can introduce additional loss mechanisms and limit potentially high performance devices. Currently at Northrop Grumman Corp.

  10. Entangled Coherent States Generation in two Superconducting LC Circuits

    SciTech Connect

    Chen Meiyu; Zhang Weimin

    2008-11-07

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  11. Designs for a high power superconducting delay line

    SciTech Connect

    Chen, Y.J.; Caporaso, G.

    1997-06-26

    Potential designs for a high power superconducting delay line of approximately 10 microsecs duration are described. The transmitted signal should have low dispersion and little attenuation to recapture the original signal. Such demands cannot be met using conventional metal conductors. This paper outlines a proposal for a new transmission line design using low temperature superconducting material which meets system specifications. The 25 omega line is designed to carry pulsed signals with an approximate rise time of 8 nsec and a maximum voltage magnitude of 25 kV. Predicted electrical design and performance of the line will be presented.

  12. Multipacting Analysis of the Superconducting Parallel-bar Cavity

    SciTech Connect

    S.U. De Silva, J.R. Delayen,

    2011-03-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. Multipacting can be a limiting factor to the performance of in any superconducting structure. In the parallel-bar cavity the main contribution to the deflection is due to the transverse deflecting voltage, between the parallel bars, making the design potentially prone to multipacting. This paper presents the results of analytical calculations and numerical simulations of multipacting in the parallel-bar cavity with resonant voltage, impact energies and corresponding particle trajectories.

  13. Hidden Fermionic Excitation Boosting High-Temperature Superconductivity in Cuprates.

    PubMed

    Sakai, Shiro; Civelli, Marcello; Imada, Masatoshi

    2016-02-01

    The dynamics of a microscopic cuprate model, namely, the two-dimensional Hubbard model, is studied with a cluster extension of the dynamical mean-field theory. We find a nontrivial structure of the frequency-dependent self-energies, which describes an unprecedented interplay between the pseudogap and superconductivity. We show that these properties are well described by quasiparticles hybridizing with (hidden) fermionic excitations, emergent from the strong electronic correlations. The hidden fermion enhances superconductivity via a mechanism distinct from a conventional boson-mediated pairing, and originates the normal-state pseudogap. Though the hidden fermion is elusive in experiments, it can solve many experimental puzzles. PMID:26894730

  14. Hidden Fermionic Excitation Boosting High-Temperature Superconductivity in Cuprates

    NASA Astrophysics Data System (ADS)

    Sakai, Shiro; Civelli, Marcello; Imada, Masatoshi

    2016-02-01

    The dynamics of a microscopic cuprate model, namely, the two-dimensional Hubbard model, is studied with a cluster extension of the dynamical mean-field theory. We find a nontrivial structure of the frequency-dependent self-energies, which describes an unprecedented interplay between the pseudogap and superconductivity. We show that these properties are well described by quasiparticles hybridizing with (hidden) fermionic excitations, emergent from the strong electronic correlations. The hidden fermion enhances superconductivity via a mechanism distinct from a conventional boson-mediated pairing, and originates the normal-state pseudogap. Though the hidden fermion is elusive in experiments, it can solve many experimental puzzles.

  15. Enhancing bulk superconductivity by engineering granular materials

    NASA Astrophysics Data System (ADS)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  16. Photon-number-resolving superconducting nanowire detectors

    NASA Astrophysics Data System (ADS)

    Mattioli, Francesco; Zhou, Zili; Gaggero, Alessandro; Gaudio, Rosalinda; Jahanmirinejad, Saeedeh; Sahin, Döndü; Marsili, Francesco; Leoni, Roberto; Fiore, Andrea

    2015-10-01

    In recent years, photon-number-resolving (PNR) detectors have attracted great interest, mainly because they can play a key role in diverse application fields. A PNR detector with a large dynamic range would represent an ideal photon detector, bringing the linear response of conventional analogue detectors down to the single-photon level. Several technologies, such as InGaAs single photon avalanche detectors (SPADs), arrays of silicon photomultipliers, InGaAs SPADs with self-differencing circuits and transition edge sensors have shown photon number resolving capability. Superconducting nanowires provide free-running single-photon sensitivity from visible to mid-infrared frequencies, low dark counts, excellent timing resolution (<60 ps) and short dead time (˜10 ns), at an easily accessible temperature (2-3 K), but they do not inherently resolve the photon number. In this framework, PNR detectors based on arrays of superconducting nanowires have been proposed. In this article we describe a number of methods and device configurations that have been pursued to obtain PNR capability using superconducting nanowire detectors.

  17. Tips and nodes are complementary not competing approaches to the calibration of molecular clocks

    PubMed Central

    2016-01-01

    Molecular clock methodology provides the best means of establishing evolutionary timescales, the accuracy and precision of which remain reliant on calibration, traditionally based on fossil constraints on clade (node) ages. Tip calibration has been developed to obviate undesirable aspects of node calibration, including the need for maximum age constraints that are invariably very difficult to justify. Instead, tip calibration incorporates fossil species as dated tips alongside living relatives, potentially improving the accuracy and precision of divergence time estimates. We demonstrate that tip calibration yields node calibrations that violate fossil evidence, contributing to unjustifiably young and ancient age estimates, less precise and (presumably) accurate than conventional node calibration. However, we go on to show that node and tip calibrations are complementary, producing meaningful age estimates, with node minima enforcing realistic ages and fossil tips interacting with node calibrations to objectively define maximum age constraints on clade ages. Together, tip and node calibrations may yield evolutionary timescales that are better justified, more precise and accurate than either calibration strategy can achieve alone. PMID:27095263

  18. Tip-induced nano-writing/machining of Si and DLC surfaces ``anodic'' versus thermal oxidation?

    NASA Astrophysics Data System (ADS)

    Myhra, S.; Watson, G. S.

    2005-08-01

    Tip-induced oxidative manipulation of conducting surfaces, e.g., Si and some metals, has conventionally been described by a field-induced anodic mechanism. Likewise, in the case of electrically conducting graphitic and diamond-like carbon (DLC) films, tip-induced conversion of carbon to CO2 was initially thought to be due to an ionisation process. There is now mounting evidence for thermal activation playing an important role. The state of the tip is a critical, but largely disregarded, factor in such experiments. The present project has been prepared and characterized by I V analysis, tips with different initial characteristics (e.g., H-termination , Au-coating, native oxide). Likewise, several surfaces have been prepared (e.g., Si plus termination by either native or thermal oxide, or plus H-termination, DLC and Au), and also subjected to I V analysis. The resultant point-contact characteristics were found to range from ohmic to non-ohmic (the latter due to either direct or Fowler Nordheim tunnelling). The various combinations were tested with respect to oxidative yield and tip durability. It was found that the presence of a tunnelling barrier at the point of contact is essential for enhancing yield. Tip durability, on the other hand, is promoted by the barrier being located in the surface thus localizing thermal deposition in the surface rather than in the tip.

  19. An inexpensive method of small paraffin tissue microarrays using mechanical pencil tips

    PubMed Central

    2011-01-01

    Background Tissue microarray technology has provided a high throughput means of evaluating potential biomarkers in archival pathological specimens. This study was carried out in order to produce tissue microarray blocks using mechanical pencil tips without high cost. Method Conventional mechanical pencil tips (Rotring Tikky II Mechanical Pencil 1.0 mm) were used to cut out 1 mm wax cylinders from the recipient block, creating from 36 to 72 holes. Three cores of tumor areas were punched out manually by using the mechanical pencil tips from donor paraffin embedded tissue blocks and transferred to the holes of the paraffin tissue microarrays. Results This technique was easy and caused little damage to the donor blocks. We successfully performed H&E slides and immunodetection without substantial tissue cylinder loss. Conclusion Our mechanical pencil tip technique is the most inexpensive easy technique among the literature. It also takes a reasonable amount of time and reduces antibody consumption during immunohistochemistry PMID:22132713

  20. Blade Tip Rubbing Stress Prediction

    NASA Technical Reports Server (NTRS)

    Davis, Gary A.; Clough, Ray C.

    1991-01-01

    An analytical model was constructed to predict the magnitude of stresses produced by rubbing a turbine blade against its tip seal. This model used a linearized approach to the problem, after a parametric study, found that the nonlinear effects were of insignificant magnitude. The important input parameters to the model were: the arc through which rubbing occurs, the turbine rotor speed, normal force exerted on the blade, and the rubbing coefficient of friction. Since it is not possible to exactly specify some of these parameters, values were entered into the model which bracket likely values. The form of the forcing function was another variable which was impossible to specify precisely, but the assumption of a half-sine wave with a period equal to the duration of the rub was taken as a realistic assumption. The analytical model predicted resonances between harmonics of the forcing function decomposition and known harmonics of the blade. Thus, it seemed probable that blade tip rubbing could be at least a contributor to the blade-cracking phenomenon. A full-scale, full-speed test conducted on the space shuttle main engine high pressure fuel turbopump Whirligig tester was conducted at speeds between 33,000 and 28,000 RPM to confirm analytical predictions.

  1. Tokamak coordinate conventions: COCOS

    NASA Astrophysics Data System (ADS)

    Sauter, O.; Medvedev, S. Yu.

    2013-02-01

    Dealing with electromagnetic fields, in particular current and related magnetic fields, yields "natural" physical vector relations in 3-D. However, when it comes to choosing local coordinate systems, the "usual" right-handed systems are not necessarily the best choices, which means that there are several options being chosen. In the magnetic fusion community such a difficulty exists for the choices of the cylindrical and of the toroidal coordinate systems. In addition many codes depend on knowledge of an equilibrium. In particular, the Grad-Shafranov axisymmetric equilibrium solution for tokamak plasmas, ψ, does not depend on the sign of the plasma current Ip nor that of the magnetic field B0. This often results in ill-defined conventions. Moreover the sign, amplitude and offset of ψ are of less importance, since the free sources in the equation depend on the normalized radial coordinate. The signs of the free sources, dp/dψ and dF2/dψ (p being the pressure, ψ the poloidal magnetic flux and F=RBφ), must be consistent to generate the current density profile. For example, RF and CD calculations (Radio Frequency heating and Current Drive) require an exact sign convention in order to calculate a co- or counter-CD component. It is shown that there are over 16 different coordinate conventions. This paper proposes a unique identifier, the COCOS convention, to distinguish between the 16 most-commonly used options. Given the present worldwide efforts towards code integration, the proposed new index COCOS defining uniquely the COordinate COnventionS required as input by a given code or module is particularly useful. As codes use different conventions, it is useful to allow different sign conventions for equilibrium code input and output, equilibrium being at the core of any calculations in magnetic fusion. Additionally, given two different COCOS conventions, it becomes simple to transform between them. The relevant transformations are described in detail.

  2. Tipping elements in the Earth's climate system

    SciTech Connect

    Lenton, T.M.; Held, H.; Lucht, W.; Rahmstorf, S.; Kriegler, E. |; Hall, J.W.; Schellnhuber, H.J. |

    2008-02-12

    The term 'tipping point' commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here the authors introduce the term 'tipping element' to describe large-scale components of the Earth system that may pass a tipping point. They critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and they assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then the authors explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.

  3. Disc Motor: Conventional and Superconductor Simulated Results Analysis

    NASA Astrophysics Data System (ADS)

    Inácio, David; Martins, João; Neves, Mário Ventim; Álvarez, Alfredo; Rodrigues, Amadeu Leão

    Taking into consideration the development and integration of electrical machines with lower dimensions and higher performance, this paper presents the design and development of a three-phase axial flux disc motor, with 50 Hz frequency supply. It is made with two conventional semi-stators and a rotor, which can be implemented with a conventional aluminum disc or a high temperature-superconducting disc. The analysis of the motor characteristics is done with a 2D commercial finite elements package, being the modeling performed as a linear motor. The obtained results allow concluding that the superconductor motor provides a higher force than the conventional one. The conventional disc motor presents an asynchronous behavior, like a conventional induction motor, while the superconductor motor presents both synchronous and asynchronous behaviors.

  4. An investigation of counterrotating tip vortex interaction

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Uenishi, K.; Gliebe, P. R.

    1989-01-01

    A tip vortex interaction model originally developed for compressors has been extended and adapted for use with counterrotating open rotors. Comparison of available acoustic data with predictions (made with and without the tip vortex model included) illustrate the importance of this interaction effect. This report documents the analytical modeling, a limited experimental verification, and certain key parametric studies pertaining to the tip vortex as a noise source mechanism for the unsteady loading noise of counterrotating properllers.

  5. A Quiet Convention.

    ERIC Educational Resources Information Center

    Suggs, Welch

    2003-01-01

    Describes how discussion of governance and academic standards dominated the proceedings at the first NCAA convention of Myles Brand's presidency. The new president also offered a qualified endorsement of Title IX. (EV)

  6. Cincinnati; Our Convention City

    ERIC Educational Resources Information Center

    Borchin, Anna

    1970-01-01

    During Easter week, 1971, Cincinnati will be the hostess of the 50th anniversary convention of the Catholic Library Association. Items of historical interest concerning the city are briefly described. (NH)

  7. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  8. Cantilevers and tips for atomic force microscopy.

    PubMed

    Tortonese, M

    1997-01-01

    The cantilever and the tip are at the centerpiece of the AFM. Properties such as the cantilever stiffness and resonant frequency, tip shape and sharpness, and material characteristics determine the mode of operation of the AFM and the type of experiments and measurements that can be performed. The possibility of batch fabricating cantilevers has permitted the fabrication and characterization of specialized tips for a variety of experiments. We believe that the use of new materials and tip shapes will allow new applications for the AFM in the future. PMID:9086369

  9. RANS computations of tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile

    2015-12-01

    The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.

  10. Turbine blade tip with offset squealer

    DOEpatents

    Bunker, Ronald Scott

    2001-01-01

    An industrial turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationary shroud. The rotating blade includes a root section, an airfoil having a pressure sidewall and a suction sidewall defining an outer periphery and a tip portion having a tip cap. An offset squealer is disposed on the tip cap. The offset squealer is positioned inward from the outer periphery of the rotating blade. The offset squealer increases the flow resistance and reduces the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  11. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  12. Landscape of superconducting membranes

    SciTech Connect

    Denef, Frederik; Hartnoll, Sean A.

    2009-06-15

    The AdS/CFT correspondence may connect the landscape of string vacua and the 'atomic landscape' of condensed matter physics. We study the stability of a landscape of IR fixed points of N=2 large N gauge theories in 2+1 dimensions, dual to Sasaki-Einstein compactifications of M theory, toward a superconducting state. By exhibiting instabilities of charged black holes in these compactifications, we show that many of these theories have charged operators that condense when the theory is placed at a finite chemical potential. We compute a statistical distribution of critical superconducting temperatures for a subset of these theories. With a chemical potential of 1 mV, we find critical temperatures ranging between 0.24 and 165 K.

  13. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  14. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  15. Parameters of high-temperature superconducting transformers

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2015-12-01

    Parameters of the high-temperature superconducting (HTSC) transformer with a core-type magnetic circuit and with coaxial and symmetrical interleaved windings made of the first-generation HTSC wire with a localized magnetic field are considered. The parameters of the most widespread core-type transformer with a coaxial HTSC winding are compared with those of a conventional transformer with a copper wire winding. Advantages of the HTSC transformers, such as reduction in the leakage inductive reactance and the HTSC winding's cross section, volume, and mass, as compared with the same parameters of conventional transformers with a copper wire winding are demonstrated. The efficiency of the HTSC transformers has proven to be determined predominantly by the core loss. In order to increase the efficiency of the HTSC transformer, it is proposed to use the amorphous electrical steel as the material of its magnetic circuit.

  16. Topological Superconductivity with Magnetic Atoms

    NASA Astrophysics Data System (ADS)

    Glazman, Leonid

    2015-03-01

    Chains of magnetic impurities embedded in a conventional s-wave superconductor may induce the formation of a topologically non-trivial superconducting phase. If such a phase is formed along a chain, then its ends carry Majorana fermions. We investigate this possibility theoretically by developing a tight-binding Bogoliubov-de Gennes description, starting from the Shiba bound states induced by the individual magnetic impurities. While the resulting Hamiltonian has similarities with the Kitaev model for one-dimensional spinless p-wave superconductors, there are also important differences, most notably the long-range (power-law) nature of hopping and pairing as well as the complex hopping amplitudes. We develop an analytical theory, complemented by numerical approaches, which accounts for the electron long-range pairing and hopping along the chain, inhomogeneous magnetic order in the chain of embedded impurities or spin-orbit coupling in the host superconductor, and the possibility of direct electron hopping between the impurity atoms. This allows us to elucidate the domain of parameters favoring the formation of a topological phase and to find the spatial structure of Majorana states appearing in that phase. This talk is based on joint work with F. von Oppen, Falko Pientka, and Yang Peng.

  17. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  18. Superconductivity in graphite intercalation compounds

    DOE PAGESBeta

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  19. Tunable superconductivity in decorated graphene

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Allain, Adrien; Marty, Laetitia; Bendiab, Nedjma; Toulemonde, Pierre; Strobel, Pierre; Coraux, Johann; Bouchiat, Vincent

    2013-03-01

    Graphene offers an exposed bidimensional gas of high mobility charge carriers with gate tunable density. Its chemical inertness offers an outstanding platform to explore exotic 2D superconductivity. Superconductivity can be induced in graphene by means of proximity effect (by depositing a set of superconducting metal clusters such as lead or tin nanoparticles). The influence of decoration material, density or particles and disorder of graphene will be discussed. In the case of disordered graphene, Tin decoration leads to a gate-tunable superconducting-to-insulator quantum phase transition. Superconductivity in graphene is also expected to occur under strong charge doping (induced either by gating or under chemical decoration, in analogy with graphite intercalated compounds). I will also show preliminary results showing the influence of Calcium intercalation of few layer graphene and progress toward the demonstration of intrinsic superconductivity in such systems. Work supported by EU GRANT FP7-NMP GRENADA.

  20. Plasma model of superconducting crystals

    NASA Astrophysics Data System (ADS)

    Netesova, Nadezhda P.

    2016-04-01

    Within inharmonious plasma oscillation model the superconducting crystal AB is considered consisting of two subsystems 2AB=A2+B2. In high-temperature superconductors spontaneous division into two phases: superconducting and isolating was revealed. Phase separation was caused by plasma instability. It is obtained the transition superconducting phase temperature dependence Tc = F (q12, q1, q2, V12, V1, V2) on the isotopic substitution physical parameters: q - initial and component interaction parameters, V - volume in initial and component crystal lattices. The isotopic transition superconducting phase temperature displacement ΔTc is associated with the change of the initial and component interaction and crystal lattice parameters. From the plasma mechanism of superconductivity follows superconducting crystals exist at room temperature.

  1. Topological confinement and superconductivity

    SciTech Connect

    Al-hassanieh, Dhaled A; Batista, Cristian D

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  2. TPX superconducting PF magnets

    SciTech Connect

    Calvin, H.; Christiansen, O.; Cizek, J.

    1995-12-31

    The Westinghouse team has extended the Lawrence Livermore National Laboratory advanced conceptual design for the TPX PF magnets through preliminary design. This is the first time superconducting PF magnets have been designed for application in a tokamak. Particular challenges were encountered and solved in developing the coil insulation system, welding the helium stubs, and winding the coil. The authors fabricated a coil using copper stranded CIC conductor, to surface manufacturability issues and demonstrate the solutions.

  3. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  4. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  5. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  6. Supercurrent in superconducting graphene

    NASA Astrophysics Data System (ADS)

    Kopnin, N. B.; Sonin, E. B.

    2010-07-01

    The problem of supercurrent in superconducting graphene is revisited and the supercurrent is calculated within the mean-field model employing the two-component wave functions on a honeycomb lattice with pairing between different valleys in the Brillouin zone. We show that the supercurrent within the linear approximation in the order-parameter-phase gradient is always finite even if the doping level is exactly zero.

  7. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  8. Superconducting cascade electron refrigerator

    NASA Astrophysics Data System (ADS)

    Camarasa-Gómez, M.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.; Giazotto, F.

    2014-05-01

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  9. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  10. Superconducting light generator for large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.

    2014-05-01

    Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.

  11. Surface-resistance measurements using superconducting stripline resonators

    SciTech Connect

    Hafner, Daniel; Dressel, Martin; Scheffler, Marc

    2014-01-15

    We present a method to measure the absolute surface resistance of conductive samples at a set of GHz frequencies with superconducting lead stripline resonators at temperatures 1–6 K. The stripline structure can easily be applied for bulk samples and allows direct calculation of the surface resistance without the requirement of additional calibration measurements or sample reference points. We further describe a correction method to reduce experimental background on high-Q resonance modes by exploiting TEM-properties of the external cabling. We then show applications of this method to the reference materials gold, tantalum, and tin, which include the anomalous skin effect and conventional superconductivity. Furthermore, we extract the complex optical conductivity for an all-lead stripline resonator to find a coherence peak and the superconducting gap of lead.

  12. Efficient cooling of superconducting fiber core via holey cladding

    NASA Astrophysics Data System (ADS)

    Homa, Daniel; Kaur, Gurbinder; Pickrell, Gary; Liang, Yongxuan

    2014-05-01

    Superconductivity has the potential to alter the entire landscape of technological advancement and innovation. Unfortunately, its true potential has been limited, in part, by the lack of conventional geometries, adequate stability, cooling efficiencies and in turn, cost. In this study, we demonstrate an optical fiber design with a superconducting core that is cooled via the flow of liquid helium in holes disposed in the fused silica cladding. The efficiently micro cooled superconducting fiber lends itself to low current electronic applications such as ultrasensitive sensing and imaging, quantum measurement instrumentation and supercomputing. Although not presently applicable for large scale applications such as high current transmission lines or motors, the basic approach may be combined with other traditional technologies to improve cooling efficiency and reliability.

  13. Proximity superconductivity in ballistic graphene at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Prance, J. R.; Ben Shalom, M.; Zhu, M. J.; Fal'Ko, V. I.; Mishchenko, A.; Kretinin, A. V.; Novoselov, K. S.; Woods, C. R.; Watanabe, K.; Taniguchi, T.; Geim, A. K.

    We present measurements of the superconducting proximity effect in graphene-based Josephson junctions with a mean free path of several microns, which exceeds the junctions' length. The junctions exhibit low contact resistance and large supercurrents. We observe Fabry-Pérot oscillations in the normal-state resistance and the critical current of the junctions. The proximity effect is mostly suppressed in magnetic fields of <10 mT showing the conventional Fraunhofer interference pattern; however, unexpectedly, a weak proximity effect survives in magnetic fields as high as 1 T. Superconducting states randomly appear and disappear as a function of field and carrier concentration, and each exhibits a supercurrent carrying capacity close to the universal limit of e Δ/h where Δ is the superconducting gap of the contacts. We attribute the high-field supercurrent to mesoscopic Andreev states that persist near graphene edges. Our work reveals new proximity regimes that can be controlled by quantum confinement and cyclotron motion.

  14. Superconducting thin film cavities and base electrode planarization

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher Doyle

    1997-11-01

    This study concerns two separate projects. The first deals with a new technique to improve superconducting tunnel junction fabrication technology through the use of planarized base electrodes. Planarization, resulting in smooth film surfaces, is realized by coating a conventional niobium base electrode with a multilayer of niobium and aluminum. Very low leakage tunnel junctions were made using this method. The second project involves electromagnetic coupling to a superconducting thin film cavity. A novel device, potentially useful as an x-ray detector, has been fabricated and characterized. The theory of operation of this closed superconducting cavity, or "Fiske Cavity", is presented along with experimental results. Current - voltage measurements reveal current steps at selected voltages that are predicted theoretically and indicate electromagnetic coupling in this system. This form of coupling motivates new devices with arrays of phase locked junctions that interact through an underlying resonant waveguide and with no external microwave source.

  15. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  16. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  17. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  18. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  19. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  20. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  1. Charge Aspects of Composite Pair Superconductivity

    NASA Astrophysics Data System (ADS)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  2. Thermal Infrared Profiling Spectrometer (TIPS)

    NASA Astrophysics Data System (ADS)

    Lanzl, Franz; Miosga, G.; Lehmann, F.; Richter, R.; Tank, V.

    1989-12-01

    An airborne/spaceborne sensor concept developed for scientific observations in remote sensing of the earth surface is presented. The spectrometer design is based on a fast scanning Fourier spectrometer using a rotating retroreflector. The spectrometer covers the 3-13-micron band with a spectral resolution of 5/cm. The measured signal is an interferogramm, while derived quantities are spectral emissivity, spectral radiance, and surface temperature. The optical system consists of an aperture-filling plane tilting mirror to provide off-nadir observation and calibration modes. The collecting mirror focal length and the detector area yield an instantaneous field of view of 1.2 mrad, noise equivalent temperature resolution of 0.004 K, and a noise equivalent change in emissivity of 0.0006. The simulation results of signal-to-noise performance of the TIPS are presented and discussed.

  3. Heat Generation and Efficiency of a New Modified Phaco Tip and Sleeve

    PubMed Central

    Tchah, Hungwon; Kim, Myoung Joon

    2016-01-01

    Purpose To compare a modified phacoemulsification tip with the established micro tip, in terms of temperature at the corneal wound, efficiency, and chatter events, using the Centurion® Vision system. Methods Eighty porcine eyes were randomized into 4 groups: 1)sleeveless conventional 45D MiniFlared ABS® Kelman tip (1.1-mm incision); 2)sleeveless new modified 45D ABS® INTREPID® balanced tip(1.1-mm incision); 3) Kelman tip with own sleeve (2.2-mm incision); 4)Balanced tip with modified 4-rib sleeve (2.2-mm incision). Measurements were taken with 2 settings: longitudinal(power 40% and 70%) and torsional mode (power 40% and 100%). Peak temperatures were measured 0, 10, 30, and 60 seconds after continuous ultrasound power. For the efficiency test, porcine lens nuclei were formalin soaked and cut into 2.0 mm3 cubes. Efficiency and chatter were examined. Results In all longitudinal settings, the sleeveless groups(1 and 2) showed lower temperatures than the sleeved groups(3 and 4) (P = 0.003). In 100% torsional mode, groups 3 and 4 produced significantly different temperatures(37.13 ± 1.44 and 35.14 ± 0.54, respectively; P = 0.007).The efficiency, in a 100% power torsional setting, was13.52 ± 2.60 sec for group 4, and 44.45± 14.75 sec for group 3 (P<0.001). Conclusions The two different bare tips show no significant differences in thermogenesis. However, the balanced tip with sleeve produces lower temperaturesat100% torsional power and better efficiency than the Kelman tip. PMID:27487206

  4. Texas Intense Positron Source (TIPS)

    NASA Astrophysics Data System (ADS)

    O'Kelly, D.

    2003-03-01

    The Texas Intense Positron Source (TIPS) is a state of the art variable energy positron beam under construction at the Nuclear Engineering Teaching Laboratory (NETL). Projected intensities on the order of the order of 10^7 e+/second using ^64Cu as the positron source are expected. Owing to is short half-life (t1/2 12.8 hrs), plans are to produce the ^64Cu isotope on-site using beam port 1 of NETL TRIGA Mark II reactor. Following tungsten moderation, the positrons will be electrostatically focused and accelerated from few 10's of eV up to 30 keV. This intensity and energy range should allow routine performance of several analytical techniques of interest to surface scientists (PALS, PADB and perhaps PAES and LEPD.) The TIPS project is being developed in parallel phases. Phase I of the project entails construction of the vacuum system, source chamber, main beam line, electrostatic/magnetic focusing and transport system as well as moderator design. Initial construction, testing and characterization of moderator and beam transport elements are underway and will use a commercially available 10 mCi ^22Na radioisotope as a source of positrons. Phase II of the project is concerned primarily with the Cu source geometry and thermal properties as well as production and physical handling of the radioisotope. Additional instrument optimizing based upon experience gained during Phase I will be incorporated in the final design. Current progress of both phases will be presented along with motivations and future directions.

  5. Superconductivity in intercalated molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R.; Hadek, V.; Rembaum, A.

    1972-01-01

    X-ray studies show the existence of two different types of expansions of the intercalated unit cell in both Na and K compounds. Two different phases are also indicated in the superconducting behavior of the K compound. All intercalated samples studied show a superconducting transition. K and Rb compounds become superconductors in the temperature range from 6.5 to 6.0 K. The Na compounds become superconductors at about 4.5 K. In all cases, the superconductivity disappears upon a short exposure of the sample to air. This phenomenon confirms that the superconductivity is due to the presence of the alkali metal.

  6. Superconducting linacs: some recent developments

    SciTech Connect

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  7. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  8. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  9. Superconducting tape characterization under flexion

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Suárez, P.; Cáceres, D.; Pérez, B.; Cordero, E.; Castaño, A.

    2002-08-01

    Electrotechnical applications of high temperature superconducting materials are limited by the difficulty of constructing classical windings with ceramic materials. While Bi-2223 tape may be a solution, it cannot be bent to radii less than a certain value since its superconducting capacity disappears. We describe an automated measurement system of the characteristics of this tape under flexion. It consists of a device that coils the tape over cylinders with different radii. At the same time, the parameters of its superconducting behaviour (e.g. resistance) are taken and processed. This system was developed at the “Benito Mahedero Laboratory of Superconducting Electrical Applications” in the University of Extremadura.

  10. Self-organized topological superconductivity in a Yu-Shiba-Rusinov chain

    NASA Astrophysics Data System (ADS)

    Schecter, Michael; Flensberg, Karsten; Christensen, Morten H.; Andersen, Brian M.; Paaske, Jens

    2016-04-01

    We study a chain of magnetic moments exchange coupled to a conventional three-dimensional superconductor. In the normal state the chain orders into a collinear configuration, while in the superconducting phase we find that ferromagnetism is unstable to the formation of a magnetic spiral state. Beyond weak exchange coupling the spiral wave vector greatly exceeds the inverse superconducting coherence length as a result of the strong spin-spin interaction mediated through the subgap band of Yu-Shiba-Rusinov states. Moreover, the simple spin-spin exchange description breaks down as the subgap band crosses the Fermi energy, wherein the spiral phase becomes stabilized by the spontaneous opening of a p -wave superconducting gap within the band. This leads to the possibility of electron-driven topological superconductivity with Majorana boundary modes using magnetic atoms on superconducting surfaces.

  11. Lateral tip control effects in critical dimension atomic force microscope metrology: the large tip limit

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald G.; Orji, Ndubuisi G.; Goldband, Ryan S.

    2016-01-01

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezoactuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To confirm that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD tips, we recently performed experiments using a very large non-CD tip with an etched plateau of ˜2-μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm/V is the baseline

  12. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit

    PubMed Central

    Dixson, Ronald G.; Orji, Ndubuisi G.; Goldband, Ryan S.

    2016-01-01

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm

  13. Superconducting MgB2 flowers: growth mechanism and their superconducting properties

    NASA Astrophysics Data System (ADS)

    Seong, Won Kyung; Ranot, Mahipal; Lee, Ji Yeong; Yang, Cheol-Woong; Lee, Jae Hak; Oh, Young Hoon; Ahn, Jae-Pyoung; Kang, Won Nam

    2016-04-01

    We report for the first time the growth and the systematic study of the growth mechanism for flower-like MgB2 structures fabricated on the substrates for solid-state electronics by the hybrid physical-chemical vapor deposition (HPCVD) technique. The MgB2 flower has a width of 30 μm and a height of 10 μm. The superconductivity of MgB2 flowers was confirmed by a magnetization measurement, and the transition temperature is 39 K, which is comparable with high-quality bulk samples. The excellent current-carrying capability was demonstrated by MgB2 flowers. To understand the nucleation and growth mechanism of MgB2 flowers a very systematic study was performed by a high-resolution transmission electron microscope (HRTEM) and atom probe (AP) microscopy. The HRTEM revealed that the seed grain of a MgB2 flower has a [101¯0] direction, and the flower is composed of micro-columnar MgB2 grains having pyramidal tips and which are grown along the (0001) plane. A clear understanding of the growth mechanism for MgB2 flowers could lead to the growth of other low-dimensional MgB2 structures for superconducting electronic devices.

  14. Framing the Future: Workbased Learning Facilitation Tips.

    ERIC Educational Resources Information Center

    Australian National Training Authority, Melbourne.

    This resource provides tips to assist facilitators as they work with Australia's Framing the Future project teams. The 16 tips are about group selection; how to prepare for input; participant roles; how to use participants and observers; scribes and recorders; some ideas for launches and fun; praise! praise! praise!; making facilitation the key to…

  15. Schools That Quit "Tipping" in Mississippi.

    ERIC Educational Resources Information Center

    Munford, Luther

    As described by some observers, white flight rapidly and irreversibly leads to black or nearly all black schools, once the ratio of blacks to whites in a school reaches a tipping point. Research in Mississippi, however, has uncovered school districts where tipping has not only stopped, in some cases it has even reversed. Events there call into…

  16. Teaching Tips Innovations in Undergraduate Science Instruction

    ERIC Educational Resources Information Center

    Druger, Marvin; Crow, Linda

    2004-01-01

    Like a spirited idea exchange among experienced professors, "Teaching Tips: Innovations in Undergraduate Science Instruction" brings the best thinking from campuses nationwide about how to engage undergraduate science students. Published to commemorate the 25th anniversary of the founding of the Society for College Science Teachers (SCST), "Tips"…

  17. Managing Tips for Teachers of the Gifted.

    ERIC Educational Resources Information Center

    Hays, Betsy Bauer; Conley, Jane Bauer

    1993-01-01

    Ten tips are provided to help teachers of gifted students cope with the unique stressors that they face. Tips include making parents allies, putting grades in perspective, and setting realistic goals. Activities are presented for use as introductory "ice-breakers" or concluding activities for workshops for teachers and parents of gifted students.…

  18. Cryopreservation of in vitro grown shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter in Plant Cell Culture, Development and Biotechnology describes student laboratory exercises for cryopreservation of the growing shoot tips of plants in liquid nitrogen. It includes two exercises involving step by step protocols for use with shoot tips. Vitrification (fast freezing) an...

  19. Economics of tipping the climate dominoes

    NASA Astrophysics Data System (ADS)

    Lemoine, Derek; Traeger, Christian P.

    2016-05-01

    Greenhouse gas emissions can trigger irreversible regime shifts in the climate system, known as tipping points. Multiple tipping points affect each other’s probability of occurrence, potentially causing a `domino effect’. We analyse climate policy in the presence of a potential domino effect. We incorporate three different tipping points occurring at unknown thresholds into an integrated climate-economy model. The optimal emission policy considers all possible thresholds and the resulting interactions between tipping points, economic activity, and policy responses into the indefinite future. We quantify the cost of delaying optimal emission controls in the presence of uncertain tipping points and also the benefit of detecting when individual tipping points have been triggered. We show that the presence of these tipping points nearly doubles today’s optimal carbon tax and reduces peak warming along the optimal path by approximately 1 °C. The presence of these tipping points increases the cost of delaying optimal policy until mid-century by nearly 150%.

  20. The Tipping Point in School Culture

    ERIC Educational Resources Information Center

    Nelsen, Jeff; Hill, Bob

    2009-01-01

    Once changes or innovations reach the tipping point, they spread throughout an organization and become entrenched as part of the culture, becoming "just the way we do things around here." These authors see the tipping point at play with systemic improvement in two urban school districts with which they have worked. Here, they describe the lessons…

  1. News: Tripping over tipping points/elements

    EPA Science Inventory

    The term “tipping point” has been used to identify a critical threshold susceptible to a tiny perturbation that can qualitatively alter the state or development of a system. “Tipping element” has been introduced to describe large-scale components of the Earth system that may pass...

  2. Medical Errors: Tips to Help Prevent Them

    MedlinePlus

    ... to Web version Medical Errors: Tips to Help Prevent Them Medical Errors: Tips to Help Prevent Them Medical errors are one of the nation's ... single most important way you can help to prevent errors is to be an active member of ...

  3. Ten Tips for Better Washroom Design.

    ERIC Educational Resources Information Center

    Bigger, Alan S.; Bigger, Linda B.

    1998-01-01

    Offers 10 tips for renovating or building school washrooms that enhance user satisfaction while making them easier to maintain. Tips cover all aspects of school washroom design and highlights the following elements of effective washroom design development: user input; ease of maintenance; accessibility; and functionality. (GR)

  4. Josephson current between topological and conventional superconductors

    NASA Astrophysics Data System (ADS)

    Ioselevich, P. A.; Ostrovsky, P. M.; Feigel'man, M. V.

    2016-03-01

    We study the stationary Josephson current in a junction between a topological and an ordinary (topologically trivial) superconductor. Such an S-TS junction hosts a Majorana zero mode that significantly influences the current-phase relation. The presence of the Majorana state is intimately related with the breaking of the time-reversal symmetry in the system. We derive a general expression for the supercurrent for a class of short topological junctions in terms of the normal-state scattering matrix. The result is strongly asymmetric with respect to the superconducting gaps in the ordinary (Δ0) and topological (Δtop) leads. We apply the general result to a simple model of a nanowire setup with strong spin-orbit coupling in an external magnetic field and proximity-induced superconductivity. The system shows parametrically strong suppression of the critical current Ic∝Δtop/RN2 in the tunneling limit (RN is the normal-state resistance). This is in strong contrast with the Ambegaokar-Baratoff relation applicable to junctions with preserved time-reversal symmetry. We also consider the case of a generic junction with a random scattering matrix and obtain a more conventional scaling law Ic∝Δtop/RN .

  5. Lateral tip control effects in CD-AFM metrology: the large tip limit

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald; Goldband, Ryan S.; Orji, Ndubuisi G.

    2015-10-01

    Critical dimension atomic force microscopes (CD-AFMs) use flared tips and two-dimensional sensing and control of the tip-sample interaction to enable scanning of features with near-vertical or even reentrant sidewalls. Sidewall sensing in CD-AFM usually involves lateral dither of the tip, which was the case in the first two generations of instruments. Current, third generation instruments also utilize a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. We have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To further validate our prior conclusions about the dependence of effective tip width on lateral stiffness, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm/V is the baseline response due to the induced motion of the cantilever base.

  6. 'Oxide-free' tip for scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Colton, R. J.; Baker, S. M.; Baldeschwieler, J. D.; Kaiser, W. J.

    1987-01-01

    A new tip for scanning tunneling microscopy and a tip repair procedure that allows one to reproducibly obtain atomic images of highly oriented pyrolytic graphite with previously inoperable tips are reported. The tips are shown to be relatively oxide-free and highly resistant to oxidation. The tips are fabricated with graphite by two distinct methods.

  7. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  8. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  9. Tip cap for a turbine rotor blade

    SciTech Connect

    Kimmel, Keith D

    2014-03-25

    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  10. Molecular Mechanics of Tip-Link Cadherins

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P.

    2011-11-01

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is likely composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their complete molecular structure, elasticity, and deafness-related structural defects remain largely unknown. We present crystal structures of extracellular (EC) tip-link cadherin repeats involved in hereditary deafness and tip link formation. In addition, we show that the deafness mutation D101G, in the linker region between the repeats EC1 and EC2 of cadherin-23, causes a slight bend between repeats and decreases Ca2+ affinity. Molecular dynamics simulations suggest that tip-link cadherin repeats are stiff and that either removing Ca2+ or mutating Ca2+-binding residues reduces rigidity and unfolding strength. The structures and simulations also suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with protocadherin-15 to form the tip link.

  11. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  12. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    NASA Astrophysics Data System (ADS)

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-10-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field.

  13. Electric control of superconducting transition through a spin-orbit coupled interface.

    PubMed

    Ouassou, Jabir Ali; Di Bernardo, Angelo; Robinson, Jason W A; Linder, Jacob

    2016-01-01

    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices. PMID:27426887

  14. Electric control of superconducting transition through a spin-orbit coupled interface

    PubMed Central

    Ouassou, Jabir Ali; Di Bernardo, Angelo; Robinson, Jason W. A.; Linder, Jacob

    2016-01-01

    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices. PMID:27426887

  15. Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1994-01-01

    A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.

  16. Convention Problems - 1787.

    ERIC Educational Resources Information Center

    Hanson, Deroy L.

    Designed to motivate eighth-grade civics students in the study of the United States Constitution, this game is intended to simulate the basic problems faced by the delegates to the Philadelphia Convention of 1787. The four parts of the game introduce the governmental concepts of the bicameral legislature, the executive branch, the judicial branch,…

  17. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  18. Superconducting Field-Effect Transistors

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Romanofsky, Robert R.; Tabib-Azar, Massood

    1995-01-01

    Devices offer switching speeds greater than semiconducting counterparts. High-Tc superconducting field-effect transistors (SUPEFETs) investigated for use as electronic switches in delay-line-type microwave phase shifters. Resemble semiconductor field-effect transistors in some respects, but their operation based on different principle; namely, electric-field control of transition between superconductivity and normal conductivity.

  19. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  20. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  1. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  2. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  3. Superconducting Nanotube Dots

    NASA Astrophysics Data System (ADS)

    Schönenberger, Christian

    2007-03-01

    In this talk, I will focus on charge transport in carbon nanotube devices with superconducting source and drain contacts in the finite-bias non-equilibrium transport regime. As contact material, bi-layers of Au and Al were used and transport has been studied at temperatures in the 0.1 K range. Because carbon nanotubes are quantum dots (qdots), we in fact explore the physics of qdots with superconducting contacts, something which only recently became possible thanks to carbon nanotubes and most recently to semiconducting nanowires. In my talk, I will first summarize our pioneering work on multiwalled carbon nanotubes in which we could demonstrate proximity induced effects both in the weak and the strong coupling regime. In the latter an intriguing interplay between superconductivity and Kondo physics appears. Then, I will discuss the physics of multiple Andreev reflection in a situation when only one resonant state is present and compare this with experimental results. Finally, I will compare our early results with our recent measurements on single-wall carbon nanotubes. This work has been supported by the Swiss Institute on Nanoscience, the Swiss National Science Foundation, EU projects DIENOW and HYSWITCH. I gratefully acknowledge contribution of the following persons to this work (in alphabetic order): B. Babic, W. Belzig, C. Bruder, M. R. Buitelaar, J.-C. Cuevas, A. Eichler, L. Forro, J. Gobrecht, M. Gr"aber, M. Iqbal, T. Kontos, A. Levy Yeyati, A. Martin-Rodero, T. Nussbaumer, S. Oberholzer, C. Strunk, H. Scharf, J. Trbovic, E. Vecino, M. Weiss

  4. The way to reduce electrical charge of a droplet dispensed from a pipette tip

    NASA Astrophysics Data System (ADS)

    Choi, Dongwhi; Lee, Horim; Im, Do Jin; Kim, Dong Sung

    2013-11-01

    Recently, we reported that a conventional pipetting always makes a charged droplet by spontaneous electrical charging process. The charge amount depends on the constituents of the droplet, on coating material of pipette tip and on atmospheric humidity. We clarified that this natural electrification of a droplet is originated from the charge separation between a droplet and pipette tip surface. The electrical interaction between charged droplet hanging on the end of the pipette tip and the pipette tip inner surface makes the droplet hard to detach from the pipette tip. To suggest the way to suppress the electrification phenomenon, we investigate the influence of the polymer composition on the amount of the charge of the droplet. The Faraday cup method is performed to measure the charge amount of the droplet. The result can be used to reduce charge amount of a droplet dispensed from the micropipette tip effectively. This work was supported by the Mid-career Researcher Program No. 2011-0029454 funded by the Korea government (MEST).

  5. Evaluating ECG-aided tip localization of peripherally inserted central catheter in patients with cancer

    PubMed Central

    Liu, Yan-Jin; Dong, Lei; Lou, Xiao-Ping; Miao, Jin-Hong; Li, Xiu-Xia; Li, Xiao-Jing; Li, Jing; Liu, Qian-Qian; Chang, Zhi-Wei

    2015-01-01

    Objective: To evaluate ECG-aided tip localization of peripherally inserted central catheter (PICC) in the patients with cancer. Methods: Between September and December 2014, 170 patients undergoing PICC were divided into observation group and control group (each group with 85 patients). In observation group, patients received ECG-aided tip localization of PICC. In control group, PICC was performed with conventional method. After PICC was performed, all patients took orthophoria chest radiograph (OCR) to check whether the tip position of PICC was appropriate. Finally, successful rate of the first PICC was compared between the two groups. Results: In observation group, OCR showed that the tip of PICC was located in middle and low one-third of superior vena cava in 85 patients. In control group, OCR showed that the tip of PICC was located between superior vena cava and right atrium in 75 patients. The successful rate of the first PICC was significantly higher in observation group than in control group (P < 0.05). Conclusion: ECG-aided tip localization of PICC is accurate and safe, and is worth clinically recommending. PMID:26550382

  6. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  7. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  8. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  9. Induced superconductivity in graphene

    NASA Astrophysics Data System (ADS)

    Heersche, Hubert B.; Jarillo-Herrero, Pablo; Oostinga, Jeroen B.; Vandersypen, Lieven M. K.; Morpurgo, Alberto F.

    2007-07-01

    Graphene layers, prepared by mechanical exfoliation, were contacted by superconducting electrodes consisting of a titanium-aluminium bilayer. Quantum hall measurements in the normal state confirmed the single layer nature of the graphene samples. Proximity induced supercurrents were observed in all samples, below 1 K. Using a backgate, the Fermi energy could be swept from valence to conduction band via the Charge neutrality point, demonstrating supercurrents carried by holes and electrons, respectively. Interestingly, a finite supercurrent was also observed at the charge neutrality (or Dirac) point, where the density of carrier states vanishes. Our results demonstrate phase coherence in graphene.

  10. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    SciTech Connect

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  11. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    PubMed

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 < or ~  p < or ~ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  12. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    SciTech Connect

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  13. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    PubMed Central

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Rüegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p  3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p  7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc  1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5  p  7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  14. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    DOE PAGESBeta

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; et al

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreasesmore » upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.« less

  15. Tipping Points, Great and Small

    NASA Astrophysics Data System (ADS)

    Morrison, Foster

    2010-12-01

    The Forum by Jordan et al. [2010] addressed environmental problems of various scales in great detail, but getting the critical message through to the formulators of public policies requires going back to basics, namely, that exponential growth (of a population, an economy, or most anything else) is not sustainable. When have you heard any politician or economist from anywhere across the ideological spectrum say anything other than that more growth is essential? There is no need for computer models to demonstrate “limits to growth,” as was done in the 1960s. Of course, as one seeks more details, the complexity of modeling will rapidly outstrip the capabilities of both observation and computing. This is common with nonlinear systems, even simple ones. Thus, identifying all possible “tipping points,” as suggested by Jordan et al. [2010], and then stopping just short of them, is impractical if not impossible. The main thing needed to avoid environmental disasters is a bit of common sense.

  16. Compressor Stability Enhancement Using Discrete Tip Injection

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Hathaway, Michael D.; Thorp, Scott A.; Strazisar, Anthony J.; Bright, Michelle B.

    2001-01-01

    Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing small in tip-critical rotors. This process is examined in a transonic axial compressor rotor through experiments and time-averaged Navier-Stokes CFD simulations. Measurements and simulations for discrete injection are presented for a range of injection rates and distributions of injectors around the annulus. The simulations indicate that tip injection increases stability by unloading the rotor tip and that increasing injection velocity improves the effectiveness of tip injection. For the tested rotor, experimental results demonstrate that at 70 percent speed the stalling flow coefficient can be reduced by 30 percent using an injected mass- flow equivalent to 1 percent of the annulus flow. At design speed, the stalling flow coefficient was reduced by 6 percent using an injected mass-fiow equivalent to 2 percent of the annulus flow. The experiments show that stability enhancement is related to the mass-averaged axial velocity at the tip. For a given injected mass-flow, the mass-averaged axial velocity at the tip is increased by injecting flow over discrete portions of the circumference as opposed to full-annular injection. The implications of these results on the design of recirculating casing treatments and other methods to enhance stability will be discussed.

  17. Activation of materials proposed for use in superconducting linac applications

    SciTech Connect

    Hanson, A.L.; Snead, C.L.; Greene, G.A.; Chan, K.C.D.; Safa, H.

    1998-01-01

    Samples of construction materials proposed for use in both superconducting and conventional high-power linear accelerators have been activated with 800 and 2,000 MeV protons to study the decay characteristics of these activated materials. Irradiation times ranged from 10 minutes to 18.67 hours. The decay characteristics of these activated materials were measured and compared to calculated decay curves based on simplified assumptions.

  18. Oxygen-Free Welding Contact Tips

    NASA Technical Reports Server (NTRS)

    Pike, James F.

    1993-01-01

    Contact tips for gas/metal arc welding (GMAW) fabricated from oxygen-free copper. Prototype tips tested in robotic welding, for which application intended. Reduces electrical erosion, increases electrical conductivity, and reduces mechanical wear. Productivity of robotic welding increases while time during welding interrupted for removal and replacement of contact tips minimal. Improves alignment of joints and filler metal, reducing rate of rejection and repair of unacceptable weldments. Utility extends beyond aerospace industry to mass production of various types of hardware, including heavy off-highway construction equipment.

  19. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  20. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  1. Superconducting current transducer

    SciTech Connect

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs.

  2. Overview on superconducting photoinjectors

    NASA Astrophysics Data System (ADS)

    Arnold, A.; Teichert, J.

    2011-02-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR-free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng.PSISDG0277-786X 5534, 22 (2004)10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1μmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang , in Proceedings of the 31st International Free Electron Laser Conference (FEL 09), Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009), p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  3. CFD analysis of cloud cavitation on three tip-modified propellers with systematically varied tip geometry

    NASA Astrophysics Data System (ADS)

    Shin, K. W.; Andersen, P.

    2015-12-01

    The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used as the reference propeller. For the reference propeller, sheet cavitation extends over a whole chord length in the hull wake peak. As the blade gets out of the wake peak, the rear part of sheet cavity is detached in a form of cloud cavitation. For the reference propeller, the tip pitch reduction from the maximum is about 35%. When decreasing the tip pitch reduction to 10%, tip vortex cavitation is formed and cloud cavitation is significantly weakened. When increasing the tip pitch reduction to 60%, sheet cavitation slightly moves to inner radii and cloud cavitation grows larger.

  4. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  5. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect

    Pleva, E. F.; Mehrotra, V.; Schwenterly, S W

    2010-01-01

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  6. 6 Tips to Avoid Medication Mistakes

    MedlinePlus

    ... consumer www.fda.gov/consumer/updates/medtips062107.html 6 Tips to Avoid Medication Mistakes 1. Know the ... labels & follow directions 5. Keep your doctors informed 6. K eep a list of all your medications ...

  7. Health Tip: Exercise for A Healthier Heart

    MedlinePlus

    ... gov/medlineplus/news/fullstory_158255.html Health Tip: Exercise for a Healthier Heart Activity helps protect against ... 11, 2016 (HealthDay News) -- It's common knowledge that exercise helps you shed pounds. But it also can ...

  8. Tips for Working With External Reviewers.

    PubMed

    Bleich, Michael R

    2015-12-01

    Leaders are responsible for creating a culture of quality and safety within a highly regulated industry. Five tips for working with regulators are presented from a leadership coaching framework. PMID:26641150

  9. Better Health and You: Tips for Adults

    MedlinePlus

    ... Resources Additional Reading from the Weight-control Information Network Introduction This publication is part of the Healthy ... Your Lifespan Series from the Weight-control Information Network (WIN). The series offers health tips for readers ...

  10. Can't sleep? Try these tips

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000853.htm Can’t sleep? Try these tips To use the sharing features ... time. But if it happens often, lack of sleep can affect your health and make it hard ...

  11. Fit for Two: Tips for Pregnancy

    MedlinePlus

    ... Language URL Español Fit for Two - Tips for Pregnancy Page Content Introduction How can I use this ... is gaining a healthy amount of weight during pregnancy important? Gaining the right amount of weight during ...

  12. Quick Tips - When Planning for Surgery

    MedlinePlus

    ... Go to Online Store Quick Tips — When Planning for Surgery The single most important way you ... your care. This information will help you when planning for surgery. No surgery is risk free. It ...

  13. Tips for Teens with Diabetes: About Diabetes

    ERIC Educational Resources Information Center

    National Diabetes Education Program (NDEP), 2010

    2010-01-01

    Diabetes is a serious disease. It means that one's blood glucose, also called blood sugar, is too high. Having too much glucose in a person's blood is not healthy. This paper offers tips for managing diabetes.

  14. Four Medication Safety Tips for Older Adults

    MedlinePlus

    ... Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers Consumer Updates Four Medication Safety Tips for Older Adults Share Tweet Linkedin Pin ...

  15. Smokeless Tobacco: Tips on How to Stop

    MedlinePlus

    MENU Return to Web version Tobacco Addiction | Smokeless Tobacco: Tips on how to stop Why is it hard to quit using smokeless tobacco? Like cigarettes, smokeless tobacco (snuff or chewing tobacco) contains ...

  16. Back-to-School Health Tips: Immunizations

    MedlinePlus

    ... JavaScript on. Feature: Back-to-School Health Tips: Immunizations Past Issues / Fall 2014 Table of Contents Your ... eating healthy lunches and snacks. Check-Ups and Immunizations It's a good idea to take your child ...

  17. Six Tips to Prevent Dialysis Infections

    MedlinePlus

    ... of infection. Ask your doctor about getting a fistula or graft instead. Learn how to take care ... have any problem with the catheter. Patients with Fistulas or Grafts TIP Take care of your dialysis ...

  18. Teamcenter community : administration tips and tricks

    NASA Technical Reports Server (NTRS)

    Rangel, Gabriel

    2005-01-01

    This presentation covers what areas of prerequisites are important to understand and how one can improve performance and maintenance of an existing implementation. It will also cover tips and tricks for site migration and how to plan for upgrades.

  19. Coated tips for scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Duarte, Nicolás; Eklund, Peter; Tadigadapa, Srinivas

    2007-02-01

    This paper presents a unique solution to the inaccuracies produced when thermally scanning various micro and nano systems with thermistor tip scanning thermal microscopy (SThM). Under dc measurement conditions, thermistor tip heating induces perturbations in the measured system that change with sample properties like material and geometry. As a result, normal SThM scans are affected by errors that make it difficult to interpret the 2D-temperature scans of such systems. By coating the SThM tips with a thermally resistive material (100nm of Si 3N 4) we demonstrate that the temperature dependence on sample material and geometry can be minimized and the tip heating problem can be mitigated to that of a constant temperature offset problem. Included are the first images of coated scanning thermal microscopy (C-SThM) as well as a lumped model that describes the basis of the improvement seen in the thermal images.

  20. Tips to Protect Workers in Cold Environments

    MedlinePlus

    ... Anti-Retaliation Tips To Protect Workers In Cold Environments Prolonged exposure to freezing or cold temperatures may ... 321-OSHA. Freedom of Information Act | Privacy & Security Statement | Disclaimers | Important Web Site Notices | International | Contact Us ...

  1. 20 Tips to Help Prevent Medical Errors

    MedlinePlus

    ... Prevent Medical Errors 20 Tips to Help Prevent Medical Errors: Patient Fact Sheet This information is for ... current information. Select to Download PDF (295 KB). Medical errors can occur anywhere in the health care ...

  2. Sam Donaldson: Tips from A Cancer Survivor

    MedlinePlus

    ... little bit about the disease now and the survivability of various forms and stages. Klose: Do you ... More "Understanding Cancer" Articles Understanding Cancer / Cancer Today / Survivability and Hope / Sam Donaldson: Tips From a Cancer ...

  3. Compressor airfoil tip clearance optimization system

    SciTech Connect

    Little, David A.; Pu, Zhengxiang

    2015-08-18

    A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.

  4. Safe Travel Tips for Older Adults

    MedlinePlus

    ... our other tip sheets. Before you board a plane, train, cruise, or get in your car for ... sanitizer, especially after spending time on a crowded plane, train, or bus, and before eating. Use common ...

  5. Needle tip localization using stylet vibration.

    PubMed

    Harmat, Adam; Rohling, Robert N; Salcudean, Septimiu E

    2006-09-01

    Power Doppler ultrasound is used to localize the tip of a needle by detecting physical vibrations. Two types of vibrations are investigated, lateral and axial. The lateral vibrations are created by rotating a stylet, whose tip is slightly bent, inside a stationary cannula while the stylet is completely within the cannula. The minute deflection at the needle tip when rotated causes tissue motion. The axial vibration is induced by extending and retracting a straight stylet inside a stationary cannula. The stylet's tip makes contact with the tissue and causes it to move. The lateral vibration method was found to perform approximately the same under a variety of configurations (e.g., different insertion angles and depths) and better than the axial vibration method. Tissue stiffness affects the performance of the lateral vibration method, but good images can be obtained through proper tuning of the ultrasound machine. PMID:16965974

  6. A modified Goldman nasal tip procedure for the drooping nasal tip.

    PubMed

    McLure, T C

    1991-02-01

    A modification of Irving Goldman's nasal tip procedure that borrows from the lateral crus to augment the height of the medial crus is described. Goldman's procedure has been modified by not including the vestibular skin with the segment of the lateral crus that is rolled medially to increase nasal tip projection, by adding a nasal septal cartilage strut between the medial crura for support when the medial crura are weak, and by maintaining a small separation caudally of the repositioned lateral crura at the new nasal dome to simulate a double nasal dome. This modified Goldman nasal tip procedure allows the surgeon to reshape the lower lateral nasal cartilage to increase nasal tip projection as an alternative to the use of a shield-type nasal tip graft, and at the same time it narrows the nasal tip with minimal resection of the lateral crus of the lower lateral nasal cartilage. PMID:1989017

  7. Tip velocity tracking control for elastic manipulators

    NASA Astrophysics Data System (ADS)

    Sever, Manfred Dieter Martin

    A unique approach to tip velocity control of an elastic robotic manipulator is presented. This method has potential application in teleoperation control and in applications where the trajectory is generated in real-time. Control is effected by reducing the tip velocity tracking error between the desired tip velocity and the measured tip velocity. Thus, in teleoperation, the concept of dead reckoning is used, so that while the manipulator's desired tip velocity is specified, the goal is for the tip to follow a path, leading toward a desired terminal position. This is done by concentrating the controller's effort on the manipulator tip while allowing the manipulator's links to deform., The controller utilizes a gain scheduling scheme to arrive at an appropriate feedback law. The control algorithm is implemented using a parallel-processing scheme on a multiprocessor system which consists of INMOS TransputersRTM . Experimental results are obtained using Radius, the Space Robotics Laboratory Facility at the University of Toronto Institute for Aerospace Studies. Radius was designed to serve specifically as a test-bed for the development and evaluation of control methods for elastic manipulators. For the present work Radius is configured as a two-link manipulator with both links structurally flexible. One of the trajectories used for the simulations and experiment is a square, which is quite difficult for an elastic manipulator to execute. This box trajectory is more demanding than trajectories typically executed by Canadarm and so link elasticity becomes an important consideration. The effect of elasticity is demonstrated using an independent joint PD controller. In simulation, excellent tip velocity tracking was achieved using the proposed controller. In the experiment, reasonable accuracy in following the desired tip path was attained, however, disturbances, mainly a result of unmodeled joint dynamics, caused degraded performance. The controller may be improved by

  8. Ultralow biased field emitter using single-wall carbon nanotube directly grown onto silicon tip by thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazuhiko; Kinosita, Seizo; Gotoh, Yoshitaka; Uchiyama, Tetsuo; Manalis, Scott; Quate, Calvin

    2001-01-01

    A carbon-nanotube field emitter which has single-wall carbon nanotubes with a diameter of 1-2 nm grown directly onto the Si tips by thermal chemical vapor deposition was developed. Owing to the 10-20 times smaller diameter of the nanotube than the conventional silicon (Si) tip, the fabricated carbon-nanotube field emitter showed an ultralow threshold voltage of 10 V for the field emission of electrons, which is more than ten times smaller value than the conventional Si emitter.

  9. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  10. Antiferromagnetic hedgehogs with superconducting cores

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Sheehy, Daniel E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.

  11. Antiferromagnetic hedgehogs with superconducting cores

    SciTech Connect

    Goldbart, P.M.; Sheehy, D.E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  12. Superconductivity in alkali-doped fullerene nanowhiskers.

    PubMed

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  13. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  14. Superconducting qubits with semiconductor nanowire Josephson junctions

    NASA Astrophysics Data System (ADS)

    Petersson, K. D.; Larsen, T. W.; Kuemmeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M.

    2015-03-01

    Superconducting transmon qubits are a promising basis for a scalable quantum information processor. The recent development of semiconducting InAs nanowires with in situ molecular beam epitaxy-grown Al contacts presents new possibilities for building hybrid superconductor/semiconductor devices using precise bottom up fabrication techniques. Here, we take advantage of these high quality materials to develop superconducting qubits with superconductor-normal-superconductor Josephson junctions (JJs) where the normal element is an InAs semiconductor nanowire. We have fabricated transmon qubits in which the conventional Al-Al2O3-Al JJs are replaced by a single gate-tunable nanowire JJ. Using spectroscopy to probe the qubit we observe fluctuations in its level splitting with gate voltage that are consistent with universal conductance fluctuations in the nanowire's normal state conductance. Our gate-tunable nanowire transmons may enable new means of control for large scale qubit architectures and hybrid topological quantum computing schemes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation and the European Commission.

  15. Superconductivity in alkali-doped fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun’ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  16. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  17. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  18. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  19. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  20. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  1. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  2. Superconducting combined function magnets

    SciTech Connect

    Hahn, H.; Fernow, R.C.

    1983-01-01

    Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

  3. Superconductivity in uranium compounds

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2014-08-01

    On the basis of microscopic theory it is demonstrated how the coupling between the electrons by means of magnetization fluctuations in ferromagnetic metals with orthorhombic symmetry gives rise to an equal-spin pairing superconducting state with the general form of the order parameter dictated by symmetry. The strong upturn of the upper critical field along the b direction above 5 T in UCoGe is explained by the increase of the pairing interaction caused by the suppression of the Curie temperature by a magnetic field parallel to the b axis. It is proposed that a similar phenomenon at a much higher field must take place also for a field directed along the magnetically hardest a direction.

  4. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.

    PubMed

    Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A

    2015-09-21

    We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible. PMID:26406688

  5. Investigation on spectral response of micro-cavity structure by symmetrical tapered fiber tips

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2016-06-01

    We proposed and experimentally demonstrated a micro-cavity structure made of symmetrical tapered fiber tips. The waist of a conventional fiber taper fabricated from heating and stretching technique is symmetrically cleaved, and the aligned fiber tips with air gap constitute a Fabry-Perot micro-cavity due to the reflection at the tip facet. The spectral responses of such micro-cavity structure have been investigated both in beam propagation models and experiments. The multibeam interference in the micro-cavity and the impact of the waist diameter and cavity length on the spectral response has been successfully demonstrated. And a micro-cavity structure with 45 μm waist diameter was experimentally achieved, the measured spectra agree well with the simulation ones, indicating that the spectral response of the micro-cavity structure is contributed by both the multibeam interference and the Fabry-Perot micro-cavity.

  6. The tip-link molecular complex of the auditory mechano-electrical transduction machinery.

    PubMed

    Pepermans, Elise; Petit, Christine

    2015-12-01

    Sound waves are converted into electrical signals by a process of mechano-electrical transduction (MET), which takes place in the hair bundle of cochlear hair cells. In response to the mechanical stimulus of the hair bundle, the tip-links, key components of the MET machinery, are tensioned and the MET channels open, which results in the generation of the cell receptor potential. Tip-links are composed of cadherin-23 (Cdh23) and protocadherin-15 (Pcdh15), both non-conventional cadherins, that form the upper and the lower part of these links, respectively. Here, we review the various Pcdh15 isoforms present in the organ of Corti, their localization in the auditory hair bundles, their involvement in the molecular complex forming the tip-link, and their interactions with transmembrane molecules that are components of the lower MET machinery. PMID:26049141

  7. Superconductivity and the environment: a Roadmap

    NASA Astrophysics Data System (ADS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    gas emissions according to the Kyoto Protocol (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). New technologies would include superconducting energy storage systems to effectively store power generation from renewable sources as well as high-temperature superconducting systems used in generators, transformers and synchronous motors in power stations and heavy-industry facilities. However, to be effective, these systems must be superior to conventional systems and, in reality, market penetration will occur as existing electrical machinery is written off. At current write-off rates, to achieve a 50% transfer to superconducting systems will take 20 years (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). The Roadmap next considers dc transmission of green power with a section by Eckroad and Marian who provide an update on the development of superconducting power transmission lines in view of recent sustainability studies. The potential of magnetic energy storage is then presented by Coi and Kim, who argue that a successful transition to wind and solar power generation must be harmonized with the conventional electrical network, which requires a storage technology with a fast response and long backup times. Transport. Superconducting Maglev trains and motors for international shipping have the potential to considerably reduce the emissions that contribute to greenhouse gases while improving their economic viability by reducing losses and improving efficiencies. International shipping, alone, contributes 3% of the greenhouse gas emissions. Three sections of the Roadmap identify how high-speed rail can be a major solution to providing fast, low energy, environmentally-friendly transport enabling reduction in automobile and aircraft travel by offering an alternative that is very competitive. With maritime international environmental regulations tightening, HTS motors with the characteristics of high torque and compactness will become important devices for

  8. Dimensions and the profile of surface nanobubbles: tip-nanobubble interactions and nanobubble deformation in atomic force microscopy.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-10-14

    The interactions between argon surface nanobubbles and AFM tips on HOPG (highly oriented pyrolitic graphite) in water and the concomitant nanobubble deformation were analyzed as a function of position on the nanobubbles in a combined tapping mode and force-volume mode AFM study with hydrophilic and hydrophobic AFM tips. On the basis of the detailed analysis of force-distance curves acquired on the bubbles, we found that for hydrophobic tips the bubble interface may jump toward the tip and that the tip-bubble interaction strength and the magnitude of the bubble deformation were functions of vertical and horizontal position of the tip on the bubble and depended on the bubble size and tip size and functionality. The spatial variation is attributed to long-range attractive forces originating from the substrate under the bubbles, which dominate the interaction at the bubble rim. The nonuniform bubble deformation leads to a nonuniform underestimation of the bubble height, width, and contact angle in conventional AFM height data. In particular, scanning with a hydrophobic tip resulted in severe bubble deformation and distorted information in the AFM height image. For a typical nanobubble, the upward deformation may extend up to tens of nanometers above the unperturbed bubble height, and the lateral deformation may constitute 20% of the bubble width. Therefore, only scanning with a hydrophilic tip and no direct contact between the tip and the bubble may reduce nanobubble deformation and provide reliable AFM images that can be used to estimate adequately the unperturbed nanobubble dimensions. The deformation of the bubble shape and underestimation of the bubble size lead to the conclusion that the profile of surface nanobubbles is much closer than previously thought to a nearly flat bubble profile and hence that the Laplace pressure is much closer to the atmospheric pressure. Together with line pinning, this may explain the long nanobubble lifetimes observed previously. The

  9. Mixed-mu superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  10. Mixed-mu superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  11. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  12. Superconductivity: A celebration of pairs

    NASA Astrophysics Data System (ADS)

    Norman, Michael R.

    2007-12-01

    It is fifty years since John Bardeen, Leon Cooper and Bob Schrieffer presented the microscopic theory of superconductivity. At a wonderful conference in Urbana the 'good old days' were remembered, and the challenges ahead surveyed.

  13. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649

  14. Superconductivity from Emerging Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Werner, Philipp

    2015-12-01

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  15. 29 CFR 531.59 - The tip wage credit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false The tip wage credit. 531.59 Section 531.59 Labor... PAYMENTS UNDER THE FAIR LABOR STANDARDS ACT OF 1938 Tipped Employees § 531.59 The tip wage credit. (a) In...), provided that the employer satisfies all the requirements of section 3(m). This tip credit is in...

  16. 29 CFR 531.59 - The tip wage credit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false The tip wage credit. 531.59 Section 531.59 Labor... PAYMENTS UNDER THE FAIR LABOR STANDARDS ACT OF 1938 Tipped Employees § 531.59 The tip wage credit. (a) In...), provided that the employer satisfies all the requirements of section 3(m). This tip credit is in...

  17. TIPS Evaluation Project Retrospective Study: Wave 1 and 2.

    ERIC Educational Resources Information Center

    Hubbard, Susan M.; Mulvey, Kevin P.

    2003-01-01

    Measured substance abuse treatment professionals' knowledge, attitudes, and practices regarding the Treatment Improvement Protocol (TIP) series and the 28 TIPs. Results for 3,267 respondents in wave 1 and 1,028 in wave 2 indicate that almost half of all professionals were aware of the TIPs. Attitudes toward TIPs were positive, but professionals…

  18. Axial compressor blade design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Erler, Engin

    Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this

  19. High pressure studies of superconductivity

    NASA Astrophysics Data System (ADS)

    Hillier, Narelle Jayne

    Superconductivity has been studied extensively since it was first discovered over 100 years ago. High pressure studies, in particular, have been vital in furthering our understanding of the superconducting state. Pressure allows researchers to enhance the properties of existing superconductors, to find new superconductors, and to test the validity of theoretical models. This thesis presents a series of high pressure measurements performed in both He-gas and diamond anvil cell systems on various superconductors and on materials in which pressure-induced superconductivity has been predicted. Under pressure the alkali metals undergo a radical departure from the nearly-free electron model. In Li this leads to a superconducting transition temperature that is among the highest of the elements. All alkali metals have been predicted to become superconducting under pressure. Pursuant to this, a search for superconductivity has been conducted in the alkali metals Na and K. In addition, the effect of increasing electron concentration on Li1-xMgx alloys has been studied. Metallic hydrogen and hydrogen-rich compounds are believed to be good candidates for high temperature superconductivity. High pressure optical studies of benzene (C6H6) have been performed to 2 Mbar to search for pressure-induced metallization. Finally, cuprate and iron-based materials are considered high-Tc superconductors. These layered compounds exhibit anisotropic behavior under pressure. Precise hydrostatic measurements of dTc/dP on HgBa2CuO 4+delta have been carried out in conjunction with uniaxial pressure experiments by another group. The results obtained provide insight into the effect of each of the lattice parameters on Tc. Finally, a series of hydrostatic and non-hydrostatic measurements on LnFePO (Ln = La, Pr, Nd) reveal startling evidence that the superconducting state in the iron-based superconductors is highly sensitive to lattice strain.

  20. Magnetic Levitators With Superconductive Components

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1995-01-01

    Magnetic noncontact levitators that include superconductive components provide vibration-damping suspension for cryogenic instruments, according to proposal. Because superconductive components attached to levitated cryogenic instruments, no additional coolant liquid or refrigeration power needed. Also because vibration-damping components of levitators located outside cold chambers, in ambient environment, not necessary to waste coolant liquid or refrigeration power on dissipation of vibrational energy. At least three levitating magnets and three superconductors necessary for stable levitation.

  1. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  2. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  3. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  4. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel. PMID:17280160

  5. Electrodynamics of superconducting pnictide superlattices

    SciTech Connect

    Perucchi, A.; Pietro, P. Di; Capitani, F.; Lupi, S.; Lee, S.; Kang, J. H.; Eom, C. B.; Jiang, J.; Weiss, J. D.; Hellstrom, E. E.; Dore, P.

    2014-06-02

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  6. Number theory, periodic orbits, and superconductivity in nanocubes

    NASA Astrophysics Data System (ADS)

    Mayoh, James; García-García, Antonio M.

    2014-07-01

    We study superconductivity in isolated superconducting nanocubes and nanosquares of size L in the limit of negligible disorder δ /Δ0≪1 and kFL≫1 for which mean-field theory and semiclassical techniques are applicable, with kF the Fermi wave vector, δ the mean level spacing, and Δ0 the bulk gap. By using periodic orbit theory and number theory we find explicit analytical expressions for the size dependence of the superconducting order parameter. Our formalism takes into account contributions from both the spectral density and the interaction matrix elements in a basis of one-body eigenstates. The leading size dependence of the energy gap in three dimensions seems to be universal as it agrees with the result for chaotic grains. In the region of parameters corresponding to conventional metallic superconductors, and for sizes L ≳10 nm, the contribution to the superconducting gap from the matrix elements is substantial (˜20%). Deviations from the bulk limit are still clearly observed even for comparatively large grains L ˜50 nm. These analytical results are in excellent agreement with the numerical solution of the mean-field gap equation.

  7. Single-gap superconductivity in β -B i2Pd

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Pribulová, Z.; Samuely, T.; Szabó, P.; Cambel, V.; Šoltýs, J.; Herrera, E.; Suderow, H.; Correa-Orellana, A.; Prabhakaran, D.; Samuely, P.

    2016-04-01

    The β -B i2Pd compound has been proposed as another example of a multigap superconductor [Imai et al., J. Phys. Soc. Jpn. 81, 113708 (2012), 10.1143/JPSJ.81.113708]. Here, we report on measurements of several important physical quantities capable of showing a presence of multiple energy gaps on our superconducting single crystals of β -B i2Pd with the critical temperature Tc close to 5 K. The calorimetric study via a sensitive ac technique shows a sharp anomaly at the superconducting transition, however only a single energy gap is detected. Also other characteristics inferred from calorimetric measurements as the field dependence of the Sommerfeld coefficient and the temperature and angular dependence of the upper critical magnetic field point unequivocally to standard single s -wave gap superconductivity. The Hall-probe magnetometry provides the same result from the analysis of the temperature dependence of the lower critical field. A single-gapped BCS density of states is detected by the scanning tunneling spectroscopy measurements. Then, the bulk as well as the surface sensitive probes evidence a standard conventional superconductivity in this system where the topologically protected surface states have been recently detected by angle-resolved photoemission spectroscopy [Sakano et al., Nat. Commun. 6, 8595 (2015)., 10.1038/ncomms9595].

  8. Route to Topological Superconductivity via Magnetic Field Rotation.

    PubMed

    Loder, Florian; Kampf, Arno P; Kopp, Thilo

    2015-01-01

    The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H(c2), which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor. PMID:26477669

  9. Route to Topological Superconductivity via Magnetic Field Rotation

    PubMed Central

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo

    2015-01-01

    The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field Hc2, which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor. PMID:26477669

  10. Unconventional superconducting quantum interference in a suspended graphene resonator

    NASA Astrophysics Data System (ADS)

    Allen, Monica; Nurgaliev, Daniyar; Akhmerov, Anton; Yacoby, Amir

    2014-03-01

    In a coherent electron cavity, quantum interference of electron waves replaces classical diffusion as a key feature of electronic transport. Here we report novel behavior that emerges by coupling superconducting reservoirs to a Fabry-Perot resonator in bilayer graphene. In this device, a pair of superconducting electrodes is coupled to a suspended graphene membrane and defines a ballistic cavity between the two graphene-electrode interfaces. Tuning the Fermi wavelength in the cavity with a gate electrode moves the system on and off resonance, thus inducing an oscillatory critical current whose period satisfies the Fabry-Perot interference conditions. By varying the magnetic flux through the junction, we explore the rich interplay between superconducting quantum interference and resonant cavity states and demonstrate a non-trivial correspondence between the supercurrent and normal state resistance. To describe our findings, we use a numerical model based on the tight-binding approach and Landauer-Buttiker scattering formalism. These results constitute a departure from the conventional Josephson effect in graphene and motivate exploration of new effects at the intersection of superconductivity and optics-like phenomena.

  11. Nanoscale PtSi Tips for Conducting Probe Technologies

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Harish; Sebastian, Abu; Despont, Michel

    2009-01-01

    A method to improve the conduction and wear properties of nanometric conducting tips by forming silicides of Pt at the tip apex is presented. Tips with PtSi apexes are fabricated in conjunction with standard Si tips. Wear measurements are carried out on both tip types of similar geometries, and a one-on-one comparison between Si and PtSi at the nanoscale is shown for the first time. Both the wear properties on tetrahedral amorphous carbon and the conduction on Au of the PtSi tip apexes are shown to be superior to the Si tips.

  12. Biodiesel from conventional feedstocks.

    PubMed

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted. PMID:22085921

  13. Conventional therapies for psoriasis.

    PubMed

    Rebora, A

    2007-01-01

    Conventional treatments of psoriasis include topical and systemic drugs. For sake of brevity, the presentation will deal only with systemic therapy. Three drugs are presently available in Italy: methotrexate, acitretin and cyclosporin A. Their efficacy is almost identical, all of them achieving PASI 75 in about 60% of cases in 12 weeks The indications (which, in Italy, do not include psoriasis for methotrexate), the contraindications, the interactions, the adverse effects and the precautions in their use will be discussed. Methotrexate side effects account for more than 10% of cases and include nausea and vomiting and chiefly increase of blood levels of liver enzymes. Acitretin side effects are numerous and varied, the most severe being increase of liver enzymes and blood lipids, renal impairment, and teratogenicity. Cyclosporin side effects are chiefly hypertension and renal failure. The Author concludes that cyclosporin is the drug with the best efficacy/side effect ratio, though it should be used in selected cases. PMID:17828351

  14. Detection of felt tip markers on microscope slides

    NASA Astrophysics Data System (ADS)

    Friedrich, David; Meyer-Ebrecht, Dietrich; Böcking, Alfred; Merhof, Dorit

    2014-03-01

    Sensitivity and specificity of conventional cytological methods for cancer diagnosis can be raised significantly by applying further adjuvant cytological methods. To this end, the pathologist marks regions of interest (ROI) with a felt tip pen on the microscope slide for further analysis. This paper presents algorithms for the automated detection of these ROIs, which enables further automated processing of these regions by digital pathology solutions and image analysis. For this purpose, an overview scan is obtained at low magnification. Slides from different manufacturers need to be treated, as they might contain certain regions which need to be excluded from the analysis. Therefore the slide type is identified first. Subsequently, the felt tip marks are detected automatically, and gaps appearing in the case of ROIs which have been drawn incompletely are closed. Based on the marker detection, the ROIs are obtained. The algorithms have been optimized on a training set of 82 manually annotated images. On the test set, the slide types of all but one out of 81 slides were identified correctly. A sensitivity of 98.31% and a positive predictive value of 97.48% were reached for the detection of ROIs. In combination with a slide loader or a whole slide imaging scanner as well as automated image analysis, this enables fully automated batch processing of slides.

  15. Crystal growth and annealing study of fragile, non-bulk superconductivity in YFe2Ge 2

    DOE PAGESBeta

    Kim, H.; Ran, S.; Mun, E. D.; Hodovanets, H.; Tanatar, M. A.; Prozorov, R.; Bud’ko, S. L.; Canfield, P. C.

    2015-02-05

    In this study, we investigated the occurrence and nature of superconductivity in single crystals of YFe2Ge2 grown out of Sn flux by employing X-ray diffraction, electrical resistivity and specific heat measurements. We found that the residual resistivity ratio (RRR) of single crystals can be greatly improved, reaching as high as ~60, by decanting the crystals from the molten Sn at ~350°C and/or by annealing at temperatures between 550°C and 600°C. We found that the samples with RRR ≳ 34 showed resistive signatures of superconductivity with the onset of the superconducting transition Tc ≈ 1.4K. RRR values vary between 35 andmore » 65 with, on average, no systematic change in value Tc, indicating that the systematic changes in RRR do not lead to comparable changes in Tc. Specific heat measurements on samples that showed the clear resistive signatures of a superconducting transition did not show any signature of a superconducting phase transition, which suggests that the superconductivity observed in this compound is either some sort of filamentary, strain-stabilized superconductivity associated with small amounts of stressed YFe2Ge2 (perhaps at twin boundaries or dislocations) or is a second crystallographic phase that is present at level below detection capability of conventional powder X-ray techniques.« less

  16. Theoretical study of electron-phonon superconductivity

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan Edward

    This theoretical study of superconductivity examines some of the limiting factors that constrain the Tc of conventional, phonon-mediated superconductors. For materials with wide-bandwidth metallic states, electronic instabilities that are theoretically challenging to deal with can be avoided. In this case, structural instability can still result from phonon softening caused by strong electron-phonon coupling of electrons at the Fermi level. Superconductivity is also limited by the total electron-phonon coupling available within a material given the hypothetical ability to arbitrarily dope the material. This limit is studied by deriving a generalization of the McMillan-Hopfield parameter, h˜ (E), which measures the strength of electron-phonon coupling including anisotropy effects and rigid-band doping of the Fermi level to E. I examine these bounds for some covalent superconductors including MgB2, where Tc has reached the limit set by total electron-phonon coupling strength, and boron-doped diamond, which is far from any bounds. To consider the possibility of increasing the Tc of boron-doped diamond, calculations of electron-phonon coupling are performed for boron-doped diamond structures without electronically compensating defects over a wide range of boron concentration. The effects of boron substitutional disorder are incorporated through the use of randomly generated supercells, leading to a disorder-broadened distribution of results. After averaging over disorder, this study predicts a maximum bulk Tc near 55 K for boron concentrations between 20% -- 30%, assuming the validity of the simple structural model used and a Coulomb pseudopotential of micro* = 0.12. Considering only the largest electron-phonon coupling values of the distribution, superconductivity may still percolate through the material at higher temperatures, up to 80 K, through the regions of large coupling. A synthesis path is proposed to experimentally access higher levels of boron concentration

  17. Size-Reduction Template Stripping of Smooth Curved Metallic Tips for Adiabatic Nanofocusing of Surface Plasmons.

    PubMed

    Johnson, Timothy W; Klemme, Daniel J; Oh, Sang-Hyun

    2016-06-01

    We present a new technique to engineer metallic interfaces to produce sharp tips with smooth curved surfaces and variable tip angles, as well as ridges with arbitrary contour shapes, all of which can be integrated with grating couplers for applications in plasmonics and nanophotonics. We combine template stripping, a nanofabrication scheme, with atomic layer deposition (ALD) to produce the ultrasharp nanoscale tips and wedges using only conventional photolithography. Conformal ALD coating of insulators over silicon trench molds of various shapes reduces their widths to make nanoscale features without high-resolution lithography. Along with a metal deposition and template stripping, this size-reduction scheme can mass-produce narrow and ultrasharp (<10 nm radius of curvature) metallic wedges and tips over an entire 4 in. wafer. This size-reduction scheme can create metallic tips out of arbitrary trench patterns that have smooth curved surfaces to facilitate efficient adiabatic nanofocusing which will benefit applications in near-field optical spectroscopy, plasmonic waveguides, particle trapping, hot-electron plasmonics, and nonlinear optics. PMID:27156522

  18. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    NASA Astrophysics Data System (ADS)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  19. Quantitative analysis and application of tip position modulation-scanning electrochemical microscopy.

    PubMed

    Edwards, Martin A; Whitworth, Anna L; Unwin, Patrick R

    2011-03-15

    Tip position modulation (TPM) involves moving the ultramicroelectrode (UME) tip of a scanning electrochemical microscope (SECM) perpendicular to the substrate in a sinusoidal fashion with a small amplitude compared to the tip/sample separation. The UME, which serves as the working electrode in a conventional voltammetric setup, is held at a potential to detect a species in solution at a transport-limited rate and the resulting current (ac and dc) is measured. This paper shows that tip-induced convection is an important factor in TPM. A model has been developed that describes the TPM response for the most challenging case of an inert substrate, where tip-induced convective effects compared to diffusion are greatest. The model provides an improved description of the ac response compared to existing treatment, as evidenced by the analysis of TPM-SECM approach curves (current-distance characteristics). The extension of the model to SECM-induced transfer is considered and it is shown that one can extract highly precise information on the permeability of a sample from such measurements, for which experiments and theory are compared. The prospects for using the technique more widely are highlighted and routes to improving the theoretical analysis further are briefly discussed. PMID:21322581

  20. Assessment of Potential Aerodynamic Benefits from Spanwise Blowing at the Wing Tip. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond Edward

    1992-01-01

    A comprehensive set of experimental and analytical investigations have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate aspect ratio, swept wing. An analytical model has been developed to simulate a jet exhausting from the wing tip. An experimental study of a subsonic jet exhausting from the wing tip was conducted to investigate the effect of spanwise blowing from the tip on the aerodynamic characteristics of a moderate aspect ratio, swept wing. Wing force and moment data and surface pressure data were measured at Mach numbers up to 0.72. Results indicate that small amounts of blowing from small jets increase the lift curve slope a small amount, but have no effect on drag. Larger amounts of blowing from longer jets blowing increases lift near the tip and reduce drag at low Mach numbers. These benefits decrease with increasing Mach number, and vanish at Mach 0.5. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. With current technology and conventional wing shapes, spanwise blowing at the wing tip does not appear to be a practical means of reducing drag of moderate aspect ratio wings at high subsonic Mach numbers.

  1. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  2. A silver nanowire-based tip suitable for STM tip-enhanced Raman scattering.

    PubMed

    Fujita, Yasuhiko; Chiba, Rie; Lu, Gang; Horimoto, Noriko N; Kajimoto, Shinji; Fukumura, Hiroshi; Uji-i, Hiroshi

    2014-09-01

    A chemically synthesized silver nanowire was used for atomic-resolution STM imaging and tip-enhanced Raman scattering (TERS) spectroscopy, yielding excellent reproducibility. This TERS tip will open a new venue to surface analysis, such as molecular finger printing at nanoscales. PMID:24956261

  3. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  4. 75 FR 11226 - Proposed Collection; Comment Request for Tip Reporting Alternative Tip Agreement Used in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Used in the Cosmetology and Barber Industry AGENCY: Internal Revenue Service (IRS), Treasury. ACTION..., the IRS is soliciting comments concerning Tip Reporting Alternative Commitment used in the Cosmetology...: Tip Reporting Alternative Commitment Agreement used in the Cosmetology and Barber Industry. OMB...

  5. 78 FR 13402 - Proposed Collection; Comment Request for Tip Reporting Alternative Tip Agreement Used in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... Used in the Cosmetology and Barber Industry AGENCY: Internal Revenue Service (IRS), Treasury. ACTION..., the IRS is soliciting comments concerning tip reporting alternative commitment used in the cosmetology...: Tip Reporting Alternative Commitment Agreement used in the Cosmetology and Barber Industry. OMB...

  6. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  7. Encoding Active Device Elements at Nanowire Tips.

    PubMed

    No, You-Shin; Gao, Ruixuan; Mankin, Max N; Day, Robert W; Park, Hong-Gyu; Lieber, Charles M

    2016-07-13

    Semiconductor nanowires and other one-dimensional materials are attractive for highly sensitive and spatially confined electrical and optical signal detection in biological and physical systems, although it has been difficult to localize active electronic or optoelectronic device function at one end of such one-dimensional structures. Here we report a new nanowire structure in which the material and dopant are modulated specifically at only one end of nanowires to encode an active two-terminal device element. We present a general bottom-up synthetic scheme for these tip-modulated nanowires and illustrate this with the synthesis of nanoscale p-n junctions. Electron microscopy imaging verifies the designed p-Si nanowire core with SiO2 insulating inner shell and n-Si outer shell with clean p-Si/n-Si tip junction. Electrical transport measurements with independent contacts to the p-Si core and n-Si shell exhibited a current rectification behavior through the tip and no detectable current through the SiO2 shell. Electrical measurements also exhibited an n-type response in conductance versus water-gate voltage with pulsed gate experiments yielding a temporal resolution of at least 0.1 ms and ∼90% device sensitivity localized to within 0.5 μm from the nanowire p-n tip. In addition, photocurrent experiments showed an open-circuit voltage of 0.75 V at illumination power of ∼28.1 μW, exhibited linear dependence of photocurrent with respect to incident illumination power with an estimated responsivity up to ∼0.22 A/W, and revealed localized photocurrent generation at the nanowire tip. The tip-modulated concept was further extended to a top-down/bottom-up hybrid approach that enabled large-scale production of vertical tip-modulated nanowires with a final synthetic yield of >75% with >4300 nanowires. Vertical tip-modulated nanowires were fabricated into >50 individually addressable nanowire device arrays showing diode-like current-voltage characteristics. These tip

  8. Dynamic analysis of a free-tip rotor

    NASA Technical Reports Server (NTRS)

    Chopra, I.

    1981-01-01

    The flag-lag-torsion flutter of a constant-lift rotor (CLR) and a free-tip rotor (FTR) has been investigated in hovering flight. The CLR blade consists of a finite number of strips pivotally mounted on the spar; torsional stiffness of the strips is attained through the elastic axis offset from the aerodynamic center. It is shown that, with a suitable combination of lag damper and negative pitch-flap coupling, it is possible to design a CLR blade that is free of aeroelastic instability with suitable airfoil selection. The FTR blade, which consists of an inboard section similar to that of a conventional blade and a small outboard section freely pitching on its spar, is also free of aeroelastic instability.

  9. Desensitization of over tip leakage in an axial turbine rotor by tip surface coolant injection

    NASA Astrophysics Data System (ADS)

    Rao, Nikhil Molahally

    Mechanical energy extraction in axial flow turbine rotors occurs through a change in angular momentum of the working fluid. The gap between the turbine rotor and the stationary casing is referred to as the tip gap. High pressure turbine blades are typically un-shrouded and pressure driven flow through the tip gap is termed as over tip leakage. Over tip leakage reduces efficiency of the turbine stage and also causes thermal distress to blade tip surfaces. The gap height typically increases over the operational life of a turbine, leading to increased efficiency drop. The thermal load on the tip surface also increases with increasing gap height and is exacerbated by the radial transport of high temperature fluid found in the core of the combustor exit flow. Thus over tip leakage not only decreases stage efficiency, but also constrains it by limiting the maximum cycle temperature. Reducing the sensitivity of turbine performance to the effects of the tip gap is termed Tip Desensitization. An experimental investigation of tip desensitization through coolant injection from a tip surface trench was conducted in a large scale, low speed, rotating research turbine facility. Five out of twenty nine rotor blades, referred to as cooled blades, are provided with coolant injection at four locations, at 61%, 71%, 81%, and 91% blade tip axial chord length. At each of the first three locations the coolant jets are directed towards the blade pressure-side, while coolant is exhausted radially at the last location. The sensitivity of total pressure defect, due to over tip leakage, to tip gap height is reduced by both coolant injection and roughening of the casing surface. The total pressure defect due to the large gap height of 1.40% blade height is reduced to levels comparable to the defect due to a gap height of 0.72% blade height. The strong total pressure gradient that characterizes the leakage vortex due to the gap height of 1.40% blade height is considerably diminished by both

  10. Fractal superconductivity near localization threshold

    SciTech Connect

    Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.

    2010-07-15

    We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk 'poor conductors' in which Fermi energy E{sub F} is located in the region of localized states not so far from the Anderson mobility edge E{sub c}. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at E{sub F} = E{sub c}, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at E{sub F} still deeper inside a localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap {Delta}, that is due to many-body correlations and a new 'pseudo-gap' energy scale {Delta}{sub P} which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive T{sub c}. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical

  11. Effect of blade tip configuration on tip clearance loss of a centrifugal impeller

    NASA Astrophysics Data System (ADS)

    Ishida, Masahiro; Ueki, Hironobu; Senoo, Yasutoshi

    1989-06-01

    The effect of blade tip configuration on the tip clearance loss was examined experimentally using an unshrouded centrifugal impeller with backward-leaning blades. Tips with rounded edges, sharp square edges, and edges with end plates were tested. The observed tip clearance effects could be theoretically predicted by assuming reasonable values of the contraction coefficent alpha = 0.91 for the round edge, 0.73 for the sharp square edge, and 0.53 for the end-plate edge. The impeller efficiency was improved by about 1.5 point by reducing the contraction coefficient from 0.91 to 0.53. The effect of contraction coefficient on impeller efficiency depends on the ratio of leakage loss to the tip clearance loss. Improved efficiency for impellers with highly loaded blades is expected from reducing the contraction coefficient.

  12. Split-tip scanning capacitance microscopy (SSCM): Special techniques in surface characterization and measurements

    NASA Astrophysics Data System (ADS)

    Clark, Beverly Andrew, III

    Hallen). This work invents and develops a new technique for electrical, electro-optical, and topographical characterization at the nanoscale. Split-tip scanning capacitance microscopy (SSCM) offers advantages over other scanning probe methods. The dependence of the measurements on sample characteristics is reduced, and analysis is simplified by having both electrodes secured to the probe. This feature allows non-conducting, as well as conducting surfaces to be imaged without loss of optical or capacitance resolution. SSCM allows surface measurements without destroying the sample of interest and does not require special surface preparation. To develop this new technique, the project focused on the following: (1) shear-force feedback as an accurate tip-sample distance controller; (2) imaging techniques for irregular sample surfaces; (3) development of computational model for simulating split-tip measurements; (4) split-tip integration into a conventional near-field scanning optical microscope; (5) contrast modeling for surface structures; (6) tip-sample approach capacitance measurements as a stringent test of SSCM. We show that a non-linear tip sample interaction dominates the shear force feedback signal evidenced by a change in the resonance frequency as the tip approaches the sample. Shear force feedback relies on a decrease in the signal amplitude at the operating frequency. We present data and a numerical model describing the time response and how this nonlinear interaction can be used to speed up the response. We demonstrate the imaging of irregular surfaces such as paint samples and show the distribution of pigment quantified by the peak in the histogram of optical signal versus separation at the nano- to micron scale illuminates the length-scale of failure in paint samples. We compare a high quality paint sample with one that fails a standard quality control test based upon visual inspection. Features such as pigment clumping and pigment density fluctuations

  13. Tip gap height effects on the aerodynamic performance of a cavity squealer tip in a turbine cascade in comparison with plane tip results: part 1—tip gap flow structure

    NASA Astrophysics Data System (ADS)

    Lee, Sang Woo; Kim, Seon Ung

    2010-11-01

    Tip gap height effects on the flow structure over a cavity squealer tip have been investigated in a linear turbine cascade for power generation, in comparison with the corresponding plane tip results. Oil film flow visualizations are conducted on the tip surface and casing wall for tip gap height-to-chord ratios of h/c = 1.0, 2.0, and 3.0%. The squealer tip has a recessed cavity enclosed by a full length squealer with its rim height-to-chord ratio of 5.51%. The results show that most of in-coming fluid entering the tip gap inlet for the cavity squealer tip is entrapped by the suction-side squealer rim, and the cavity fluid is discharged into the blade flow passage over the suction-side squealer rim in the region from the mid-chord to the trailing edge. Regardless of h/c, the cavity squealer tip makes the leakage flow zone narrower than the plane tip, and is superior to the plane tip in reducing the tip leakage mass flow rate. A qualitative flow model describing full flow features over the cavity squealer tip is suggested. In this flow model, the tip gap exit area is classified into four different regions, and the tip gap height effects on the discharge characteristics in each region are discussed in detail.

  14. What superconducts in sulfur hydrides under pressure and why

    NASA Astrophysics Data System (ADS)

    Bernstein, N.; Hellberg, C. Stephen; Johannes, M. D.; Mazin, I. I.; Mehl, M. J.

    2015-02-01

    The recent discovery of superconductivity at 190 K in highly compressed H2S is spectacular not only because it sets a record high critical temperature, but because it does so in a material that appears to be, and we argue here that it is, a conventional strong-coupling BCS superconductor. Intriguingly, superconductivity in the observed pressure and temperature range was predicted theoretically in a similar compound, H3S . Several important questions about this remarkable result, however, are left unanswered: (1) Does the stoichiometry of the superconducting compound differ from the nominal composition, and could it be the predicted H3S compound? (2) Is the physical origin of the anomalously high critical temperature related only to the high H phonon frequencies, or does strong electron-ion coupling play a role? We show that at experimentally relevant pressures H2S is unstable, decomposing into H3S and S, and that H3S has a record high Tc due to its covalent bonds driven metallic, which make this compound rather similar to MgB2, but unlike most other good conventional superconductors.

  15. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  16. Tip characterizer for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroshi; Fujimoto, Toshiyuki; Ichimura, Shingo

    2006-10-01

    A tip characterizer for atomic force microscopy (AFM) was developed based on the fabrication of multilayer thin films. Comb-shaped line and space (LS) and wedge-shaped knife-edge structures were fabricated on a GaAs substrate. GaAs /InGaP superlattices were used to control the width of the structures precisely, and selective chemical etching was used to form sharp edges on the nanostructures. The minimum size of the LS structure was designed to be 10nm, and the radius of the knife edge was less than 5nm. These nanostructures were used as a well-defined tip characterizer to measure the shape of a tip on a cantilever from line profiles of AFM images.

  17. Domain wall manipulation with a magnetic tip.

    PubMed

    Stapelfeldt, T; Wieser, R; Vedmedenko, E Y; Wiesendanger, R

    2011-07-01

    A theoretical concept of local manipulation of magnetic domain walls is introduced. In the proposed procedure, a domain wall is driven by a spin-polarized current induced by a magnetic tip, as used in a scanning tunneling microscope, placed above a magnetic nanostripe and then moved along its long axis with a current flowing through the vacuum barrier. The angular momentum from the spin-polarized current exerts a torque on the magnetic moments underneath the tip and leads to a displacement of the domain wall. Particularly, the manipulation of a ferromagnetic 180° transverse domain wall has been studied by means of Landau-Lifshitz-Gilbert dynamics and Monte Carlo simulations. Different relative orientations of the tip and the sample magnetization have been considered. PMID:21797636

  18. Electrochemical sharpening of field emission tips

    DOEpatents

    Bernhardt, Anthony F.

    1999-01-01

    A method for sharpening field emitter tips by electroetching/polishing. In gated field emitters, it is very important to initiate electron emission at the lowest possible voltage and thus the composition of the emitter and the gate, as well as the emitter-gate structure, are important factors. This method of sharpening the emitter tips uses the grid as a counter electrode in electroetching of the emitters, which can produce extremely sharp emitter tips as well as remove asperities and other imperfections in the emitters, each in relation to the specific grid hole in which it resides. This has the effect of making emission more uniform among the emitters as well as lowering the turn-on voltage.

  19. Electrochemical sharpening of field emission tips

    DOEpatents

    Bernhardt, A.F.

    1999-04-06

    A method is disclosed for sharpening field emitter tips by electroetching/polishing. In gated field emitters, it is very important to initiate electron emission at the lowest possible voltage and thus the composition of the emitter and the gate, as well as the emitter-gate structure, are important factors. This method of sharpening the emitter tips uses the grid as a counter electrode in electroetching of the emitters, which can produce extremely sharp emitter tips as well as remove asperities and other imperfections in the emitters, each in relation to the specific grid hole in which it resides. This has the effect of making emission more uniform among the emitters as well as lowering the turn-on voltage. 3 figs.

  20. Full tip imaging in atom probe tomography.

    PubMed

    Du, Sichao; Burgess, Timothy; Loi, Shyeh Tjing; Gault, Baptiste; Gao, Qiang; Bao, Peite; Li, Li; Cui, Xiangyuan; Kong Yeoh, Wai; Tan, Hark Hoe; Jagadish, Chennupati; Ringer, Simon P; Zheng, Rongkun

    2013-01-01

    Atom probe tomography (APT) is capable of simultaneously revealing the chemical identities and three dimensional positions of individual atoms within a needle-shaped specimen, but suffers from a limited field-of-view (FOV), i.e., only the core of the specimen is effectively detected. Therefore, the capacity to analyze the full tip is crucial and much desired in cases that the shell of the specimen is also the region of interest. In this paper, we demonstrate that, in the analysis of III-V nanowires epitaxially grown from a substrate, the presence of the flat substrate positioned only micrometers away from the analyzed tip apex alters the field distribution and ion trajectories, which provides extra image compression that allows for the analysis of the entire specimen. An array of experimental results, including field desorption maps, elemental distributions, and crystallographic features clearly demonstrate the fact that the whole tip has been imaged, which is confirmed by electrostatic simulations. PMID:23142750