Science.gov

Sample records for conventional superconducting tip

  1. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    SciTech Connect

    Kimura, H.; Barber Jr., R. P.; Ono, S.; Ando, Yoichi; Dynes, Robert C.

    2009-10-28

    We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi2Sr2CaCu2O8+ single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson ICRN product. Corresponding energy gap measurements were also performed and a surprising inverse correlation was observed between the local ICRN product and the local energy gap.

  2. High-temperature superconductivity: A conventional conundrum

    DOE PAGESBeta

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  3. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-01

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF6 plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi2Se3 at temperatures ranging from 30 mK to 9 K.

  4. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    SciTech Connect

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-07

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.

  5. Rectangular Waveguides with Two Conventional and Two Superconducting Walls

    NASA Technical Reports Server (NTRS)

    Yalamanchili, Raj; Qiu, Zheng An; Wang, Yen-Chu

    1995-01-01

    The propagation properties of transverse electric TE(sup pm) modes and their dispersion relations in rectangular waveguides with two conventional and two superconducting walls, derived by using the Meissner boundary conditions on the superconducting walls, are presented. In addition to recovering some previously known results, some novel results have been obtained: the cut-off wavelength of the dominant TE(sup 10) mode is greater than that of the conventional TE(sub 10) mode, and the tangential electric field and normal magnetic field for the dominant mode TE(sup 10) exist on the superconducting surfaces. Expressions for electromagnetic components, surface currents, attenuation coefficient, maximum transmitted power, dispersion and wave impedance are also presented.

  6. High temperature superconductivity in sulfur hydride under ultrahigh pressure: A complex superconducting phase beyond conventional BCS

    NASA Astrophysics Data System (ADS)

    Bussmann-Holder, Annette; Köhler, Jürgen; Whangbo, M.-H.; Bianconi, Antonio; Simon, Arndt

    2016-05-01

    The recent report of superconductivity under high pressure at the record transition temperature of Tc =203 K in pressurized H2S has been identified as conventional in view of the observation of an isotope effect upon deuteration. Here it is demonstrated that conventional theories of superconductivity in the sense of BCS or Eliashberg formalisms cannot account for the pressure dependence of the isotope coefficient. The only way out of the dilemma is a multi-band approach of superconductivity where already small interband coupling suffices to achieve the high values of Tc together with the anomalous pressure dependent isotope coefficient. In addition, it is shown that anharmonicity of the hydrogen bonds vanishes under pressure whereas anharmonic phonon modes related to sulfur are still active.

  7. Andreev nanoprobe of half-metallic CrO2 films using superconducting cuprate tips

    NASA Astrophysics Data System (ADS)

    Turel, C. S.; Guilaran, I. J.; Xiong, P.; Wei, J. Y. T.

    2011-11-01

    Superconducting tips of YBa2Cu3O7-x were used to perform point-contact Andreev reflection spectroscopy on half-metallic CrO2 thin films. At 4.2 K, strong suppression of the d-wave Andreev reflection characteristics was observed, consistent with the high spin polarization of CrO2. Our technique was validated by comparison with data taken on non-magnetic Au films and with data taken by superconducting Pb tips. The point contacts were estimated to be ≲10 nm in size, attesting to their ballistic and microscopic nature. Our results demonstrate the feasibility of using superconducting cuprate tips as spin-sensitive nanoprobes of ferromagnets.

  8. Emergence of nanoscale inhomogeneity in the superconducting state of a homogeneously disordered conventional superconductor

    PubMed Central

    Kamlapure, Anand; Das, Tanmay; Ganguli, Somesh Chandra; Parmar, Jayesh B.; Bhattacharyya, Somnath; Raychaudhuri, Pratap

    2013-01-01

    The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking these domains as a function of temperature we observe that the superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system. PMID:24132046

  9. Calibration of tip and sample temperature of a scanning tunneling microscope using a superconductive sample

    SciTech Connect

    Stocker, Matthias; Pfeifer, Holger; Koslowski, Berndt

    2014-05-15

    The temperature of the electrodes is a crucial parameter in virtually all tunneling experiments. The temperature not only controls the thermodynamic state of the electrodes but also causes thermal broadening, which limits the energy resolution. Unfortunately, the construction of many scanning tunneling microscopes inherits a weak thermal link between tip and sample in order to make one side movable. Such, the temperature of that electrode is badly defined. Here, the authors present a procedure to calibrate the tip temperature by very simple means. The authors use a superconducting sample (Nb) and a standard tip made from W. Due to the asymmetry in the density of states of the superconductor (SC)—normal metal (NM) tunneling junction, the SC temperature controls predominantly the density of states while the NM controls the thermal smearing. By numerically simulating the I-V curves and numerically optimizing the tip temperature and the SC gap width, the tip temperature can be accurately deduced if the sample temperature is known or measureable. In our case, the temperature dependence of the SC gap may serve as a temperature sensor, leading to an accurate NM temperature even if the SC temperature is unknown.

  10. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    SciTech Connect

    Eltschka, Matthias Jäck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R.; Kondrashov, Oleg V.; Skvortsov, Mikhail A.; Kern, Klaus

    2015-09-21

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparing our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.

  11. A Flight Comparison of Conventional Ailerons on a Rectangular Wing and of Conventional and Floating Wing-Tip Ailerons on a Tapered Wing

    NASA Technical Reports Server (NTRS)

    Soule, H A; Gracey, W

    1938-01-01

    Report presents the results of flight tests comparing the relative effectiveness of conventional ailerons of the same size on wings of rectangular and tapered plan forms made with a Fairchild 22 airplane. Information is included comparing conventional and floating wing-tip ailerons on a tapered wing. The results showed that the conventional ailerons were somewhat more effective on the tapered than on the rectangular wing. The difference, however, was so small as to be imperceptible to the pilots. The floating wing-tip ailerons were only half as effective as the conventional ailerons and, for this reason, were considered unsatisfactory.

  12. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

    NASA Astrophysics Data System (ADS)

    Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I.

    2015-09-01

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  13. Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system

    NASA Astrophysics Data System (ADS)

    Kokail, Christian; Heil, Christoph; Boeri, Lilia

    2016-08-01

    Motivated by the recent report of superconductivity above 200 K in ultra-dense hydrogen sulfide, we search for high-TC conventional superconductivity in the phase diagram of the binary Li-S system, using ab initio methods for crystal structure prediction and linear response calculations for the electron-phonon coupling. We find that at pressures higher than 20 GPa, several new compositions, besides the known Li2S , are stabilized; many exhibit electride-like interstitial charge localization observed in other alkali-metal compounds. Of all predicted phases, only an fcc phase of Li3S , metastable before 640 GPa, exhibits a sizable TC, in contrast to what is observed in sulfur and phosphorus hydrides, where several stoichiometries lead to high TC. We attribute this difference to 2 s -2 p hybridization and avoided core overlap, and predict similar behavior for other alkali-metal compounds.

  14. Experimental results in eddy current nondestructive testing based on superconductive and conventional electromagnetic probes

    SciTech Connect

    Valentino, M.; Ruosi, A.; Pepe, G.; Mollo, V.; D`Alto, R.; Peluso, G.

    1999-04-20

    This paper deals with the electromagnetic nondestructive testing performed by SQUID magnetometry on stratified aluminum alloy plates as those commonly encountered in the aircraft industry. The anomalous magnetic fields generated by flaws wit h known electromagnetic characteristics have been modeled by a three-dimensional specific code based on a finite element formulation. The numerical solution has correctly predicted the shape of the complicated magnetic field response due to the defect. Once accuracy and reliability of experimental data taken by superconductive probe have been tested, a benchmark-like problem has been faced. Measurements performed by conventional probes like fluxgate and inductive coil have been compared with the ones taken by innovative device based on superconductive materials.

  15. Comparison of Heparin-Coated and Conventional Split-Tip Hemodialysis Catheters

    SciTech Connect

    Clark, Timothy W. I. Jacobs, David; Charles, Hearns W.; Kovacs, Sandor; Aquino, Theresa; Erinjeri, Joseph; Benstein, Judith A.

    2009-07-15

    Catheter coatings have the potential to decrease infection and thrombosis in patients with chronic dialysis catheters. We report our midterm experience with a heparin-coated dialysis catheter. This retrospective, case-control study was approved by our Institutional Review Board. A total of 88 tunneled dialysis catheters were inserted over a 13-month period via the internal jugular vein. Thirty-eight uncoated split-tip catheters and 50 heparin-coated catheters were inserted. Primary catheter patency was compared between the two groups using the log rank test, with infection and/or thrombosis considered as catheter failures. Dialysis parameters during the first and last dialysis sessions, including pump speed, actual blood flow, and arterial port pressures, were compared using unpaired t-tests. Primary patency of the uncoated catheters was 86.0 {+-} 6.5% at 30 days and 76.1 {+-} 8.9% at 90 days. Primary patency of heparin-coated catheters was 92.0 {+-} 6.2% at 30 days and 81.6 {+-} 8.0% at 90 days (p = 0.87, log rank test). Infection requiring catheter removal occurred in four patients with uncoated catheters and two patients with heparin-coated catheters (p = 0.23). Catheter thrombosis requiring catheter replacement or thrombolysis occurred in one patient with an uncoated catheter and two patients with heparin-coated catheters (p = 0.9). No differences in catheter function during hemodialysis were seen between the two groups. In conclusion, the heparin-coated catheter did not show a significantly longer patency compared to the uncoated catheter. The flow characteristics of this device were comparable to those of the conventional uncoated catheter. A demonstrable benefit of the heparin-coated catheter in randomized trials is needed before a recommendation for routine implementation can be made.

  16. Superconductivity

    SciTech Connect

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries.

  17. Comparison between loop-tip guidewire-assisted and conventional endoscopic cannulation in high risk patients

    PubMed Central

    Masci, Enzo; Mangiavillano, Benedetto; Luigiano, Carmelo; Bizzotto, Alessandra; Limido, Eugenio; Cantù, Paolo; Manes, Gianpiero; Viaggi, Paolo; Spinzi, Giancarlo; Radaelli, Franco; Mariani, Alberto; Virgilio, Clara; Alibrandi, Angela; Testoni, Pier Alberto

    2015-01-01

    Background: The guidewire biliary cannulation (GWC) technique may increase the cannulation rate and decrease the risk for post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis. The aim of our multicenter prospective randomized controlled trial was to determine if the use of an atraumatic loop-tip guidewire reduces the rate of post-ERCP pancreatitis (PEP) compared with the standard contrast-assisted cannulation (CC) technique. Methods: From June 2012 to December 2013, a total of 320 patients who had a naïve papilla and were referred for ERCP were randomly assigned to the GWC group (n = 160) or the CC group (n = 160). GWC or CC was randomly used. In cases of failed cannulation in both arms after crossover, biliary access was attempted with alternative techniques (e. g., dual-wire technique, pancreatic duct stenting, precut). Results: The biliary cannulation rates were 81 % in the GWC group and 73 % in the CC group (P = n. s.). Following crossover, cannulation was successful in 8 % and 11 % of patients in the GWC and CC groups, respectively. With use of an alternative technique, the cannulation rates were 98 % in the GWC group and 96 % in the CC group, respectively. The rates of PEP were 5 % in the GWC group and 12 % in the CC group (P = 0.027). The post-interventional complication rates did not differ between the two groups. Conclusion: GWC with the new wire guide is associated with a lower rate of PEP in comparison with the CC technique. Clinical trial reference number: NCT01771419 PMID:26528503

  18. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  19. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  20. Electric and magnetic properties measurement and analysis of a conventional and a superconducting power transformer

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Pronto, A. G.; Vilhena, N.; Pina, J. M.

    2014-05-01

    Power transformers based on High Temperature Superconductors (HTS) technology have revealed potential for several practical applications, offering economic, environmental and operational benefits. In this work, two 650 VA single-phase transformers prototypes were developed, tested and characterized: a conventional one, using copper windings, and another with the same primary copper winding, but with a secondary winding made of HTS BSCCO tape. The two prototypes were compared regarding magnetic properties, losses, electric parameters and efficiency, and the results are presented and interpreted. Also, several measures to determine AC critical current of the HTS tape were made. The results are compared with DC critical current for the same tape.

  1. The First Page of the Official Journal of the Constitutional Convention--Just the Tip of a Records Iceberg!

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2012-01-01

    On Monday, September 17, 1787, 39 delegates to the Federal Convention in Philadelphia signed the Constitution of the United States, along with Major William Jackson, who had served as the secretary of the Convention. That same day, Jackson received instructions to leave for New York City on Tuesday and carry the document to Congress. All of these…

  2. Comparison of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips of Nicotiana and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Giddings, T. H. Jr; Staehelin, L. A.; Sack, F. D.

    1990-01-01

    To circumvent the limitations of chemical fixation (CF) and to gain more reliable structural information about higher plant tissues, we have cryofixed root tips of Nicotiana and Arabidopsis by high pressure freezing (HPF). Whereas other freezing techniques preserve tissue to a relatively shallow depth, HPF in conjunction with freeze substitution (FS) resulted in excellent preservation of entire root tips. Compared to CF, in tissue prepared by HPF/FS: (1) the plasmalemma and all internal membranes were much smoother and often coated on the cytoplasmic side by a thin layer of stained material, (2) the plasmalemma was appressed to the cell wall, (3) organelle profiles were rounder, (4) the cytoplasmic, mitochondrial, and amyloplast matrices were denser, (5) vacuoles contained electron dense material, (6) microtubules appeared to be more numerous and straighter, with crossbridges observed between them, (7) cisternae of endoplasmic reticulum (ER) were wider and filled with material, (8) Golgi intercisternal elements were more clearly resolved and were observed between both Golgi vesicles and cisternae, and (9) larger vesicles were associated with Golgi stacks. This study demonstrates that HPF/FS can be used to successfully preserve the ultrastructure of relatively large plant tissues without the use of intracellular cryoprotectants.

  3. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  4. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  5. Wind-Tunnel Investigation of the Low-Speed Characteristics of a 1/8-Scale Model of the Republic XP-91 Airplane with a Vee and a Conventional Tail. Addendum - Characteristics with a Revised Conventional Tail and Drooped Wing Tips

    NASA Technical Reports Server (NTRS)

    Weiberg, James A.; Anderson, Warren E.

    1958-01-01

    Additional wind-tunnel tests were made of a 1/8-scale model of the Republic XP-91 airplane to determine its characteristics with various modifications. The modifications included a revised conventional tail, revised rocket arrangement, drooped wing tips, and revised landing gear and doors. Tests were also made to determine the effectiveness of the control surfaces of the model with the conventional tail and the effect of changing wing incidence and tail length. The revised rocket arrangement provided a considerable increase in the static directional stability contributed by the vee tail at small angles of yaw. The conventional tail provided a greater static directional stability than the vee tail without increasing the rolling moment due to sideslip. The rolling moment die to sideslip was considerable reduced by either drooped wing tips or open main landing-gear doors. The reduction in rolling moment due to sideslip resulting from the drooped tips was less with the landing-gear doors open than with the doors closed. A change in wing incidence from 0 degrees to 6 degrees reduced the elevator angle required for balance by approximately 6 degrees.

  6. A direct current superconducting quantum interference device gradiometer with a digital signal processor controlled flux-locked loop and comparison with a conventional analog feedback scheme

    SciTech Connect

    Kung, P.J.; Bracht, R.R.; Flynn, E.R.; Lewis, P.S.

    1996-01-01

    A double-washer dc superconducting quantum interference device (SQUID) gradiometer with a flux-locked loop (FLL) based on a digital signal processor (DSP) has been developed for biomagnetic applications. All of the analog electronics in the conventional FLL are replaced and implemented by the DSP except for the low-noise field-effect transistor preamplifier at the front end of the signal recovery components. The DSP performs the signal demodulation by synchronously sampling the recovered signals and applying the appropriate full wave rectification. The signals are then integrated, filtered, and applied to the output. At 4.2 K, the white flux noise of the gradiometer measured in a DSP FLL mode is about 4{mu}{phi}{sub 0}/{radical}Hz and the noise at 1 Hz is 13 {mu}{phi}{sub 0}/{radical}Hz. The corresponding noise levels in the gradiometer operated by the conventional FLL are 1.8 and 3{mu}{phi}{sub 0}/{radical}Hz. The poorer system performance in the DSP FLL compared to the analog FLL is mainly caused by the ambient field noise and interference signals picked up through the connecting cables. Additional noise is also added to the overall noise floor by the instruments employed in the DSP system in the present prototype setup. Further improvement in the noise characteristics and the dynamic behavior of the DSP SQUID gradiometer is expected when a better configuration of DSP with the associated I/O devices is implemented. Additional improvements of the DSP programs are expected by incorporating higher-order integration, adaptive control, and noise reduction schemes. {copyright} {ital 1996 American Institute of Physics.}

  7. Development of a Millikelvin dual-tip Josephson scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Anita

    In this thesis, I first describe the design and construction of a dual-tip millikelvin STM system. The STM is mounted on a dilution refrigerator and the setup includes vibration isolation, rf-filtered wiring, an ultra high vacuum (UHV) sample preparation chamber and sample transfer mechanism. Next I describe a novel superconducting tip fabrication technique. My technique involves dry-etching sections of 250 mum diameter Nb wire with an SF6 plasma in a reactive ion etcher. I present data taken with these tips on various samples at temperatures ranging from 30 mK to 9 K. My results demonstrate that the tips are superconducting, achieve good spectroscopic energy resolution, are mechanically robust over long time periods, and are atomically sharp. I also show data characterizing the performance of our system. This data is in the form of atomic resolution images, spectroscopy, noise spectra and simultaneous scans taken with both tips of the STM. I used these to examine the tip-sample stability, cross talk between the two tips, and to extract the effective noise temperature (˜185 mK) of the sample by fitting the spectroscopy data to a voltage noise model. Finally, I present spectroscopy data taken with a Nb tip on a Nb(100) sample at 30 mK. The enhanced spectroscopic resolution at this temperature allowed me to resolve peaks in the fluctuation-dominated supercurrent at sub-gap voltages. My analysis indicates that these peaks are due to the incoherent tunneling of Cooper pairs at resonant frequencies of the STM's electromagnetic environment. By measuring the response of the STM junction to microwaves, I identified the charge carriers in this regime as Cooper pairs with charge 2e. The amplitude of the response current scales as the square of the Bessel functions, indicating that the pair tunneling originates from photon assisted tunneling in the incoherent regime, rather than the more conventionally observed Shapiro steps in the coherent regime.

  8. Technology Tips

    ERIC Educational Resources Information Center

    Mathematics Teacher, 2004

    2004-01-01

    Some inexpensive or free ways that enable to capture and use images in work are mentioned. The first tip demonstrates the methods of using some of the built-in capabilities of the Macintosh and Windows-based PC operating systems, and the second tip describes methods to capture and create images using SnagIt.

  9. Conventional magnetic superconductors

    DOE PAGESBeta

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  10. Conventional magnetic superconductors

    SciTech Connect

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led to the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.

  11. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  12. Tipping Point

    MedlinePlus Videos and Cool Tools

    ... Tipping Point by CPSC Blogger September 22 appliance child Childproofing CPSC danger death electrical fall furniture head ... TV falls with about the same force as child falling from the third story of a building. ...

  13. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  14. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  15. Conventional s-Wave Superconductivity in BiS2-Based NdO0.71F0.29BiS2 Revealed by Thermal Transport Measurements

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuya; Tokiwa, Yoshifumi; Terazawa, Daiki; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao; Terashima, Takahito; Matsuda, Yuji

    2016-07-01

    To study the superconducting gap structure of BiS2-based layered compound NdO0.71F0.29BiS2 (Tc = 5 K), we measured the thermal conductivity κ, which is a sensitive probe of low-energy quasiparticle spectrum. In the absence of a magnetic field, residual linear term in the thermal conductivity κ0/T at T → 0 is vanishingly small, indicating that the residual normal fluid, which is expected for nodal superconductors, is absent. Moreover, the applied magnetic field hardly affects thermal conductivity in wide range of the vortex state, indicating the absence of Doppler shifted quasiparticles. These results provide evidence that NdO0.71F0.29BiS2 is a fully gapped superconductor. The obtained gap structure, along with the robustness of the superconductivity against the impurity, suggest a conventional s-wave superconducting state in NdO0.71F0.29BiS2.

  16. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS.

    PubMed

    Majdalany, Bill S; Elliott, Eric D; Michaels, Anthony J; Hanje, A James; Saad, Wael E A

    2016-07-01

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application. PMID:26902703

  17. Tomography of Majorana fermions with STM tips

    NASA Astrophysics Data System (ADS)

    Chevallier, Denis; Klinovaja, Jelena

    2016-07-01

    We investigate numerically the possibility to detect the spatial profile of Majorana fermions (MFs) by using STM tips that are made of either normal or superconducting material. In both cases, we are able to resolve the localization length and the oscillation period of the MF wave function. We show that the tunneling between the substrate and the tip, necessary to get the information on the wave-function oscillations, has to be weaker in the case of a superconducting probe. In the strong tunneling regime, the differential conductance saturates making it more difficult to observe the exponential decay of MFs. The temperature broadening of the profile is strongly suppressed in the case of the superconducting tip resulting, generally, in better resolution.

  18. Technology Tips

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    2004-01-01

    A dynamic program for geometry called Cabri Geometry II is used to examine properties of figures like triangles and make connections with other mathematical ideas like ellipse. The technology tip includes directions for creating such a problem with technology and suggestions for exploring it.

  19. TIP list

    SciTech Connect

    Ludwig, M E

    2006-06-22

    Subcontractors and vendors providing services, including the installation of purchased goods, are required to complete a TIP List. This list does not include every Environment, Safety, and Health (ES&H) related concern at LLNL. It is intended to highlight major concerns common to most on-site service activities.

  20. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  1. Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2012-01-01

    The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.

  2. 4 Tips: Asthma and Complementary Health Practices

    MedlinePlus

    ... U V W X Y Z 4 Tips: Asthma and Complementary Health Practices Share: Asthma is a chronic lung disease that affects people ... cure, most people are able to control their asthma with conventional therapies and by avoiding the substances ...

  3. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  4. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  5. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  6. Feasibility of using high temperature superconducting magnets and conventional magnetic loop antennas to attract or repel objects at the space station

    NASA Astrophysics Data System (ADS)

    Randhawa, Manjit S.

    1989-02-01

    A study was undertaken to see if magnetic forces can be used at the Space Station to attract or repel spacecrafts such as the Orbital Manuevering Vehicle (OMV) or the Orbiter. A large magnet, in the form of a current loop, is assumed to be placed at the Space Station and another one on the spacecraft. The expression for the force between the two dipoles (loops) is obtained. Using a force of 15 Newtons (3.4 pounds) in order to move the spacecraft, the number of ampere-turn needed in the current loops was calculated at various distances between them. The expression for the force of attraction between a current loop and a soft magnetic material was also examined and the number of amp-turn needed to provide a force of one-tenth of a pound at various distances is also calculated. This one tenth of a pound force would be used in a life line system for the retrieval of an adrift crewman or tool at the Space Station. The feasibility of using conventional antenna on the Station and the incoming vehicle for attraction or repulsion was also examined.

  7. Feasibility of using high temperature superconducting magnets and conventional magnetic loop antennas to attract or repel objects at the space station

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1989-01-01

    A study was undertaken to see if magnetic forces can be used at the Space Station to attract or repel spacecrafts such as the Orbital Manuevering Vehicle (OMV) or the Orbiter. A large magnet, in the form of a current loop, is assumed to be placed at the Space Station and another one on the spacecraft. The expression for the force between the two dipoles (loops) is obtained. Using a force of 15 Newtons (3.4 pounds) in order to move the spacecraft, the number of ampere-turn needed in the current loops was calculated at various distances between them. The expression for the force of attraction between a current loop and a soft magnetic material was also examined and the number of amp-turn needed to provide a force of one-tenth of a pound at various distances is also calculated. This one tenth of a pound force would be used in a life line system for the retrieval of an adrift crewman or tool at the Space Station. The feasibility of using conventional antenna on the Station and the incoming vehicle for attraction or repulsion was also examined.

  8. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  9. Prom Health and Safety Tips

    MedlinePlus

    ... Healthy Occasions Autumn Tips Camping Tips Family Reunions Gardening Tips Halloween Tips Healthy Halloween Prom Tips Spring ... ways to stay active, such as walking, dancing, gardening, swimming, and more. Be active for 60 minutes ...

  10. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  11. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  12. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  13. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  14. Nasal Tip Deficiency.

    PubMed

    Cerkes, Nazim

    2016-01-01

    Nasal tip deficiency can be congenital or secondary to previous nasal surgeries. Underdeveloped medial crura usually present with underprojected tip and lack of tip definition. Weakness or malposition of lateral crura causes alar rim retraction and lateral nasal wall weakness. Structural grafting of alar cartilages strengthens the tip framework, reinforces the disrupted support mechanisms, and controls the position of the nasal tip. In secondary cases, anatomic reconstruction of the weakened or interrupted alar cartilages and reconstitution of a stable nasal tip tripod must be the goal for a predictable outcome. PMID:26616702

  15. The challenge of unconventional superconductivity.

    SciTech Connect

    Norman, M. R.

    2011-04-08

    During the past few decades, several new classes of superconductors have been discovered that do not appear to be related to traditional superconductors. The source of the superconductivity of these materials is likely different from the electron-ion interactions that are at the heart of conventional superconductivity. Developing a rigorous theory for any of these classes of materials has proven to be a difficult challenge and will remain one of the major problems in physics in the decades to come.

  16. Flows with tip leakage

    NASA Astrophysics Data System (ADS)

    Moore, John

    The flow development within the tip gap and the flow tip leakage, applying Navier-Stokes codes, are discussed. The loss production, the turbine inefficiency and the heat transfer to the blade tip, are considered. The measurements and calculations used demonstrate features of the flow, such as separation and reattachment on the blade tip, shock formation in the tip gap, and formation and dissipation of tip gap secondary kinetic energy. A procedure for calculating turbine blade tip temperatures is included. The results for a centrifugal compressor show the interaction of the tip leakage and passage flows. The radial blackflow near the shroud wall at low off-design flow rates is considered. The calculations demonstrate the potential use of a computational fluid dynamics code for predicting a centrifugal compressor map.

  17. Diet and Exercise Tips

    MedlinePlus

    ... Health News & Publications Annual Meeting Calendar Diet and Exercise Tips Diet and Exercise Tips News media interested in covering the latest ... Health Statistics concludes that 35 percent of adults exercise regularly (more than 6 of 10 don’t), ...

  18. Slender tip laser scalpel

    DOEpatents

    Veligdan, James T.

    2004-01-06

    A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.

  19. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  20. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  1. Child Transportation Safety Tips.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This document presents nine tips regarding safe infant and child transportation, each tip explained in one to two pages. The tips are as follows: (1) quick safety seat checkup; (2) where should your child ride? (3) how to protect your new baby in the car; (4) what safety seat to use for a big baby or toddler? (5) how should preschool and school…

  2. 100 Tips for Parents.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    Noting that involved parents can improve their children's chances of succeeding in school, this packet of cards offers 100 tips created to help parents become more involved in their child's education. Following a card of general tips on becoming involved, tips are offered in the following topic areas: helping a child stay alcohol, tobacco, and…

  3. The crooked nasal tip.

    PubMed

    Warner, Jeremy; Adamson, Peter

    2011-10-01

    Successful treatment of the crooked nasal tip includes proper analysis and assessment, employment of the proper techniques, reaching ideal tip dynamics, and close follow-up. Both the caudal septum and the nasal tip cartilages must be addressed. When executed properly, satisfaction should be high for both the patient and the surgeon. PMID:22028009

  4. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGESBeta

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  5. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  6. Photoresponse mechanism of superconducting magnesium diboride

    NASA Astrophysics Data System (ADS)

    Khafizov, Marat

    The recent discovery of superconductivity in MgB2, with its BCS-like Cooper pairing mechanism and the 40-K critical temperature, and the demonstration of efficient single-optical-photon detection in superconducting NbN nanowire meanders inspired an interest in the development of superconducting radiation detectors based on MgB2. We report the results of our experimental and theoretical studies of a photoresponse mechanism in superconducting MgB2 thin films and microbridges. We demonstrate that despite the two-gap nature of this material, the nonequilibrium superconducting recovery dynamics in MgB2 is similar to conventional one-gap, both low- and high-temperature superconductors and is governed by quasiparticle recombination, limited by the phonon bottleneck mechanism. Our measured 100-ps-wide responses in MgB2 superconducting microbridges, operated at temperatures above 20 K, make this material promising for superconducting photodetector applications.

  7. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points. PMID:22270703

  8. Proposed experimental test of the theory of hole superconductivity

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2016-06-01

    The theory of hole superconductivity predicts that in the reversible transition between normal and superconducting phases in the presence of a magnetic field there is charge flow in direction perpendicular to the normal-superconductor phase boundary. In contrast, the conventional BCS-London theory of superconductivity predicts no such charge flow. Here we discuss an experiment to test these predictions.

  9. Operational experience with superconducting synchrotron magnets

    SciTech Connect

    Martin, P.S.

    1987-03-01

    The operational experience with the Fermilab Tevatron is presented, with emphasis on reliability and failure modes. Comprisons are made between the operating efficiencies for the superconducting machine and for he conventional Main Ring.

  10. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  11. Fano fingerprints of Majoranas in Kitaev dimers of superconducting adatoms

    NASA Astrophysics Data System (ADS)

    Dessotti, F. A.; Ricco, L. S.; Marques, Y.; Machado, R. S.; Guessi, L. H.; Figueira, M. S.; de Souza, M.; Seridonio, A. C.

    2016-09-01

    We investigate theoretically a Fano interferometer composed by STM and AFM tips close to a Kitaev dimer of superconducting adatoms, in which the adatom placed under the AFM tip, encloses a pair of Majorana fermions (MFs). For the binding energy Δ of the Cooper pair delocalized into the adatoms under the tips coincident with the tunneling amplitude t between them, namely Δ=t, we find that only one MF beneath the AFM tip hybridizes with the adatom coupled to the STM tips. As a result, a gate invariance feature emerges: the Fano profile of the transmittance rises as an invariant quantity depending upon the STM tips Fermi energy, due to the symmetric swap in the gate potential of the AFM tip.

  12. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  13. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  14. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  15. Superconductive articles

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    An article of manufacture including a substrate, a patterned interlayer of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of oxides of Ce, Y, Cm, Dy, Er, Eu, Fe, Gd, Ho, In, La, Mn, Lu, Nd, Pr, Pu, Sm, Tb, Tl, Tm, Y, and Yb over the entire exposed surface of the intermediate article, and, a ceramic superconductive material layer as an overcoat upon the buffer layer whereby the ceramic superconductive material situated directly above the substrate has a crystal structure substantially different than the ceramic superconductive material situated above the overcoated patterned interlayer.

  16. Ten Tips from George.

    ERIC Educational Resources Information Center

    Lee, Helen C.

    The paper describes a current events lesson based on an editorial which quoted 10 tips from George Washington and suggested that a review of Washington's statements might be useful in making judgments about current national issues. Used in United States history, world history, and government classes, adaptation and revision of the tips lead…

  17. ADHD: Tips to Try

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? ADHD: Tips to Try KidsHealth > For Teens > ADHD: Tips to Try Print A A A Text Size en español TDAH: Consejos que puedes probar ADHD , or attention deficit hyperactivity disorder, is a medical ...

  18. Air Travel Health Tips

    MedlinePlus

    MENU Return to Web version Air Travel Health Tips Air Travel Health Tips How can I improve plane travel? Most people don't have any problems when ... and dosages of all of your medicines. The air in airplanes is dry, so drink nonalcoholic, decaffeinated ...

  19. Total Telephone Tips.

    ERIC Educational Resources Information Center

    Corder, Lloyd E.; And Others

    This manual of telephone behavior tips for business and sales professionals offers ways to handle the disgruntled caller and makes suggestions on topics relevant to the telephone. The manual is divided into the following sections and subsections: (1) Common Courtesy (staff tips, answering the telephone, screening calls, transferring calls, taking…

  20. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  1. Characterizing atomic force microscopy tip shape in use.

    PubMed

    Wang, Chunmei; Itoh, Hiroshi; Sun, Jielin; Hu, Jun; Shen, Dianhong; Ichimura, Shingo

    2009-02-01

    A new tip characterizer based on the fabrication of multilayer thin films for atomic force microscopy (AFM) was developed to analyze the effective tip shape while in use. The precise structure of this tip characterizer was measured by transmission electron microscopy. Four different types of commercial tips with various radii were characterized by the tip characterizer and by conventional scanning electron microscopy (SEM). The results were compared to obtain a relationship between the actual and effective tip shapes. A quantitative analysis was performed of apex radii measured from line profiles of comb-shaped patterns and nanometer-scale knife-edges without the problem of edge uncertainty in the SEM image. Degradation of the AFM tip induced by electron-beam irradiation was studied by using SEM and the tip characterizer. A potential technique for fabricating symmetric AFM tips based on irradiation by an electron beam and a quantitative analysis of changing the tip apex in SEM were examined with AFM using the tip characterizer. PMID:19441396

  2. Outcomes of TIPS for Treatment of Gastroesophageal Variceal Hemorrhage

    PubMed Central

    Parvinian, Ahmad; Gaba, Ron C.

    2014-01-01

    Variceal hemorrhage is a life-threatening complication of cirrhosis that requires a multidisciplinary approach to management. The transjugular intrahepatic portosystemic shunt (TIPS) procedure is a minimally invasive image-guided intervention used for secondary prevention of bleeding and as salvage therapy in acute hemorrhage. This review focuses on the role of TIPS in the setting of variceal hemorrhage, with emphasis on the pathophysiology and conventional management of variceal hemorrhage, current and emerging indications for TIPS creation, TIPS clinical outcomes, and the role of adjuvant embolotherapy. PMID:25177086

  3. Empirical corrections to the span load distribution at the tip

    NASA Technical Reports Server (NTRS)

    Pearson, H A

    1937-01-01

    An analysis of existing pressure-distribution data was made to determine the variation of the tip loading with wing plan form. A series of empirical tip corrections was derived that may be added to theoretical curves in certain cases to obtain a closer approach to the actual loading at the tip. The analysis indicated that the need for a tip correction decreases as either the aspect ratio or the wing taper is increased. In general, it may be said that, for wings of conventional aspect ratio, corrections to the theoretical span load curves are necessary only if the wing is tapered less than 2:1 and has a blunt tip. If the tip is well rounded in plan form, no correction appears necessary even for a wing with no taper.

  4. Tip-enhanced Raman scattering microscopy: Recent advance in tip production

    NASA Astrophysics Data System (ADS)

    Fujita, Yasuhiko; Walke, Peter; De Feyter, Steven; Uji-i, Hiroshi

    2016-08-01

    Tip-enhanced Raman scattering (TERS) microscopy is a technique that combines the chemical sensitivity of Raman spectroscopy with the resolving power of scanning probe microscopy. The key component of any TERS setup is a plasmonically-active noble metal tip, which serves to couple far-field incident radiation with the near-field. Thus, the design and implementation of reproducible probes are crucial for the continued development of TERS as a tool for nanoscopic analysis. Here we discuss conventional methods for the fabrication of TERS-ready tips, highlighting the problems therein, as well as detailing more recent developments to improve reducibility. In addition, the idea of remote excitation-TERS is enlightened upon, whereby TERS sensitivity is further improved by using propagating surface plasmons to separate the incident radiation from the tip apex, as well as how this can be incorporated into the fabrication process.

  5. Signalling by tips.

    PubMed

    Feijó, José A; Costa, Sílvia S; Prado, Ana Margarida; Becker, Jörg D; Certal, Ana Catarina

    2004-10-01

    New molecules, including protein kinases, lipids and molecules that have neurotransmitter activities in animals have emerged as important players in tip-growing cells. Transcriptomics analysis reveals that the largest single class of genes expressed in pollen tubes encode signal transducers, reflecting the necessity to decode complex and diverse pathways that are associated with tip growth. Many of these pathways may use common intracellular second messengers, with ions and reactive oxygen species emerging as two major common denominators in many of the processes involved in tip growth. These second messengers might influence the actin cytoskeleton through known interactions with actin-binding proteins. In turn, changes in the dynamic properties of the cytoskeleton would define the basic polarity events needed to shape and modify tip-growing cells. PMID:15337103

  6. Tips for labor coaches

    MedlinePlus

    ... some tips for getting prepared. Before the big day arrives Labor coaches should go to childbirth classes ... get through her labor and delivery. When the day arrives You might be at the hospital for ...

  7. Technology Tips: A Potpourri.

    ERIC Educational Resources Information Center

    Cuoco, Albert A.; And Others, Eds.

    1994-01-01

    Contains tips from readers about using technology in the classroom, including notebook computers, classroom sets of calculators, geometry software, LOGO software, publisher discounts, curriculum materials in CD-ROM, and volunteer help in computers and computer networking for schools. (MKR)

  8. Head Injury Prevention Tips

    MedlinePlus

    Head Injury Prevention Tips American Association of Neurological Surgeons 5550 Meadowbrook Drive, Rolling Meadows, IL 60008-3852 ... defined as a blow or jolt to the head or a penetrating head injury that disrupts the ...

  9. Insider conference tips

    NASA Astrophysics Data System (ADS)

    Tennant, Jill

    2012-01-01

    Attending an educator conference and its associated exhibit hall can be a rewarding experience for your brain. But if you keep in mind these insider's tips, your feet, arms, stomach, and wallet will also thank you.

  10. Tips for Daily Living

    MedlinePlus

    ... After Stroke Weight Training After Stroke Tips for Improving Fine Motor Skills Functional Tone Management Arm Training Program Constraint-Induced Movement Therapy Emotional & Behavioral Challenges Self-Esteem after Stroke Post-Stroke Mood Disorders One-side ...

  11. Footwear Selection Tips

    MedlinePlus

    ... Foot Health Information Tips for Healthy Feet Footwear & Products Foot Health Awareness Diabetes Awareness What is a Podiatrist? Today's Podiatrist Education & Professional Development Podiatric Education Young Physicians Annual Scientific Meeting Webinars ...

  12. Ten Tips for Teachers

    ERIC Educational Resources Information Center

    Mahon, Robert Lee

    2005-01-01

    In this article, the author shares some tips for teachers. His tips are as follows: (1) a teacher should forget his or her education; (2) a teacher should forget the theory (3) a teacher should remember that he or she is a translator, not an originator; (4) a teacher should respect his or her students; (5) a teacher should be true to his or her…

  13. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  14. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  15. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  16. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  17. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  18. Thermal Infrared Profiling Spectrometer (TIPS)

    NASA Astrophysics Data System (ADS)

    Lanzl, Franz; Miosga, Gerhard; Lehmann, Frank; Richter, Rudolf; Tank, Volker; Boehl, R.

    1990-01-01

    The Thermal Infrared Profiling Spectrometer (TIPS) is an airborne/spaceborne sensor concept developed at DLR-Institute for Optoelectronics for scientific observations in remote sensing of the earth surface. The patented spectrometer design is based on a fast scanning Fourier spectrometer (FSM) using a rotating retroreflector to achieve the appropriate path alteration thus avoiding the usual linear movement of one of the mirrors in an conventional Michelson interferometer. The spectral band covers the 3 - 13 μm band with a spectral resolution of 5 cm-1 (50 nm at 10 μm). The measured signal is an interferogramm, derived quantities are spectral emissivity, spectral radiance and surface temperature. The optical system consists of an aperture filling plane tilting mirror to provide off-nadir observation and calibration mode. The collecting mirror focal length and the detector area yields an instantaneous field of view (ifov) of 1.2 mrad, noise equivalent temperature resolution of 0.04K (300K), and a noise equivalent change in emissivity Δɛof 6 x 10-4. Calibration is performed by two aperture filling area blackbodies at two different temperatures. An extensive simulation of signal/noise performance of the TIPS has been evaluated by means of the simulation programm SENSAT9, developed by DI.R. This simulation comprises the sensor performance, typical variations of atmospheric conditions and selected spectra from ground surfaces. Results of this simulation are discussed and a description of the sensor is presented.

  19. Generating Electrospray Ionization on Ballpoint Tips.

    PubMed

    Ji, Baocheng; Xia, Bing; Gao, Yuanji; Ma, Fengwei; Ding, Lisheng; Zhou, Yan

    2016-05-17

    In this study, we report a simple and economical ballpoint electrospray ionization mass spectrometry (BP-ESI-MS) technique. This combines a small ballpoint tip with a syringe pump for the direct loading and ionization of various samples in different phases (including solution, semisolid, and solid) and allows for additional applications in surface analysis. The tiny metal ball on the ballpoint tip exhibits a larger surface for ionization than that of a conventional sharp tip end, resulting in higher ionization efficiency and less sample consumption. The adamant properties of the ballpoint tip allow sampling by simply penetrating or scraping various surfaces, such as a fruit peel, paper, or fabric. Complex samples, such as fine herbal powders and small solid samples, could be stored in the hollow space in the ballpoint socket and subsequently extracted online, which greatly facilitated MS analysis with little to no sample preparation. Positive ion mode was attempted, and various compounds, including amino acids, carbohydrates, flavonoids, and alkaloids, were detected from different types of samples. The results demonstrated that the special and excellent physical characteristics of ballpoint tips allowed for fast and convenient sampling and ionization for mass spectrometry analysis by the BP-ESI-MS method. PMID:27111601

  20. Hard-tip, soft-spring lithography.

    PubMed

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications. PMID:21270890

  1. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    DOEpatents

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  2. Stability of magnetic tip/superconductor levitation systems

    NASA Astrophysics Data System (ADS)

    K. Alqadi, M.

    2015-11-01

    The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.

  3. Superconductivity in two-dimensional boron allotropes

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Zeng, Shuming; Ni, Jun

    2016-01-01

    We use ab initio evolutionary algorithm and first-principles calculations to investigate structural, electronic, vibrational, and superconducting properties of two-dimensional (2 D ) boron allotropes. Remarkably, we show that conventional BCS superconductivity in the stable 2 D boron structures is ubiquitous with the critical temperature Tc above the liquid hydrogen temperature for certain configurations. Due to the electronic states of the Fermi surface originating from both σ and π electrons, the superconductivity of the 2 D structures arises from multiple phonon modes. Our results support that 2 D boron structure may be a pure single-element material with the highest Tc on conditions without high pressure and external strain.

  4. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  5. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  6. Strong Single-Photon Coupling in Superconducting Quantum Magnetomechanics

    NASA Astrophysics Data System (ADS)

    Via, Guillem; Kirchmair, Gerhard; Romero-Isart, Oriol

    2015-04-01

    We show that the inductive coupling between the quantum mechanical motion of a superconducting microcantilever and a flux-dependent microwave quantum circuit can attain the strong single-photon nanomechanical coupling regime with feasible experimental parameters. We propose to use a superconducting strip, which is in the Meissner state, at the tip of a cantilever. A pickup coil collects the flux generated by the sheet currents induced by an external quadrupole magnetic field centered at the strip location. The position-dependent magnetic response of the superconducting strip, enhanced by both diamagnetism and demagnetizing effects, leads to a strong magnetomechanical coupling to quantum circuits.

  7. Highly robust stainless steel tips as microelectrospray emitters.

    PubMed

    Ishihama, Yasushi; Katayama, Hiroyuki; Asakawa, Naoki; Oda, Yoshiya

    2002-01-01

    Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications. PMID:11968120

  8. Tips from the Classroom.

    ERIC Educational Resources Information Center

    Hart, R. Kay; And Others

    1994-01-01

    Tips for English-as-a-Second-Language classes include collecting passport stamps in an oral skills class (R. Kay Hart); turning process essays into treasure hunts (Margaret Moulton); using icebreakers (Beverly Williams, David Rutledge, Brent Green); and techniques for understanding course syllabi (Ruth Overman Fischer). (LB)

  9. Early Childhood Action Tips.

    ERIC Educational Resources Information Center

    O'Donnell, Nina Sazer

    In response to requests for information from people and organizations all over the United States on how to contribute to the healthy development of young children, the Families and Work Institute has gathered concrete suggestions from leaders in diverse fields into this booklet of action tips. This effort was undertaken to support the "I Am Your…

  10. Tips for Teachers.

    ERIC Educational Resources Information Center

    Dishon, Dee; And Others

    1989-01-01

    This section includes (1) "Time Saver Options" (Dishon and P. W. O'Leary), which outlines ways to teach cooperative skills; (2) "Getting Started--Tips from Teachers," a collection of ideas for all levels; and (3) "Cooperative Mathematics Lesson Plans" for developing problem-solving skills, fractions, word problems, and number concepts. (JD)

  11. EcoTipping Points

    ERIC Educational Resources Information Center

    Marten, Gerald G.; Matthews, Catherine E.

    2009-01-01

    Contrary to what we often hear and teach, there is good news to be found on the environmental front. Environmental success stories show us not only that sustainability is possible, but also how people have made it happen. We can make these stories and their lessons accessible to students with help from the EcoTipping Points Project, which has…

  12. Tips for Energy Savers.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    According to 1986 U.S. Department of Energy data, 48% of our residential energy is used to heat and cool our homes, 16% goes for heating water, 12% is used to refrigerators and freezers, and the remaining 24% goes into lighting, cooking, and running appliances. This booklet contains tips for saving energy, including sections on: (1) draft-proof…

  13. Tips for Leading Walks.

    ERIC Educational Resources Information Center

    Kriesberg, Daniel

    2001-01-01

    Offers reminders and tips for improving interpretive walks, including having a theme, drawing on basic teaching methods, drawing on all senses rather than just talking, being a role model to show how learning can be fun, using picture books, using tools of the trade to encourage visitors to learn for themselves, and playing games. (PVD)

  14. Health Tips for Adults

    MedlinePlus

    ... Griffin Rodgers, Director of the NIDDK Clinical Trials Current research studies and how you can volunteer Community Outreach and Health Fairs Science-based information and tips for planning an outreach effort or community event For Health Care Professionals Patient and provider resources ...

  15. Kegel Exercise Tips

    MedlinePlus

    ... PDF, 345 KB) Alternate Language URL Español Kegel Exercise Tips Page Content What are Kegel exercises? To do Kegel exercises, you just squeeze your ... help with your bladder control. How do you exercise your pelvic muscles? Find the right muscles. Try ...

  16. Propeller Tip Flutter

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    The present report is limited to a case of tip flutter recognized by experience as being important. It is the case where outside interferences force vibrations upon the propeller. Such interferences may be set up by the engine, or they may be the result of an unsymmetrical field of flow.

  17. TIPs for Technology Integration.

    ERIC Educational Resources Information Center

    Mandell, Susan; Sorge, Dennis H.; Russell, James D.

    2002-01-01

    Discusses the role of the teacher in effectively using technology in education based on the Technology Integration Project (TIP). Topics include why use technology; types of computer software; how to select software; software integration strategies; and effectively planning lessons that integrate the chosen software and integration strategy. (LRW)

  18. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  19. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  20. 14. TIP TOP MINE. TAILINGS LOCATED DIRECTLY WEST FROM TIP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. TIP TOP MINE. TAILINGS LOCATED DIRECTLY WEST FROM TIP TOP HOUSE. ID-31-C-12 WOODEN STRUCTURE IS VISIBLE IN TOP LEFT. CABLES VISIBLE LEFT AND CENTER OF TAILINGS. HOUSE IS JUST OVER APEX OF TAILINGS. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Tip Top Mine, West face Florida Mountain, approximately 150 feet below summit, Silver City, Owyhee County, ID

  1. Tipping off endothelial tubes: nitric oxide drives tip cells.

    PubMed

    Priya, Mani Krishna; Sahu, Giriraj; Soto-Pantoja, David R; Goldy, Naga; Sundaresan, Abaya Meenakshi; Jadhav, Vivek; Barathkumar, T R; Saran, Uttara; Jaffar Ali, B M; Roberts, David D; Bera, Amal Kanti; Chatterjee, Suvro

    2015-04-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, is a complex process that warrants cell migration, proliferation, tip cell formation, ring formation, and finally tube formation. Angiogenesis is initiated by a single leader endothelial cell called "tip cell," followed by vessel elongation by "stalk cells." Tip cells are characterized by their long filopodial extensions and expression of vascular endothelial growth factor receptor-2 and endocan. Although nitric oxide (NO) is an important modulator of angiogenesis, its role in angiogenic sprouting and specifically in tip cell formation is poorly understood. The present study tested the role of endothelial nitric oxide synthase (eNOS)/NO/cyclic GMP (cGMP) signaling in tip cell formation. In primary endothelial cell culture, about 40% of the tip cells showed characteristic sub-cellular localization of eNOS toward the anterior progressive end of the tip cells, and eNOS became phosphorylated at serine 1177. Loss of eNOS suppressed tip cell formation. Live cell NO imaging demonstrated approximately 35% more NO in tip cells compared with stalk cells. Tip cells showed increased level of cGMP relative to stalk cells. Further, the dissection of NO downstream signaling using pharmacological inhibitors and inducers indicates that NO uses the sGC/cGMP pathway in tip cells to lead angiogenesis. Taken together, the present study confirms that eNOS/NO/cGMP signaling defines the direction of tip cell migration and thereby initiates new blood vessel formation. PMID:25510468

  2. Transjugular intrahepatic portosystemic shunt (TIPS)

    MedlinePlus

    ... gov/ency/article/007210.htm Transjugular intrahepatic portosystemic shunt (TIPS) To use the sharing features on this page, please enable JavaScript. Transjugular intrahepatic portosystemic shunt (TIPS) is a procedure to create new connections ...

  3. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  4. Disdrometer and Tipping Bucket Rain Gauge Handbook

    SciTech Connect

    Bartholomew. MJ

    2009-12-01

    The Distromet disdrometer model RD-80 and NovaLynx tipping bucket rain gauge model 260-2500E-12 are two devices deployed a few meters apart to measure the character and amount of liquid precipitation. The main purpose of the disdrometer is to measure drop size distribution, which it does over 20 size classes from 0.3 mm to 5.4 mm. The data from both instruments can be used to determine rain rate. The disdrometer results can also be used to infer several properties including drop number density, radar reflectivity, liquid water content, and energy flux. Two coefficients, N0 and Λ, from an exponential fit between drop diameter and drop number density, are routinely calculated. Data are collected once a minute. The instruments make completely different kinds of measurements. Rain that falls on the disdrometer sensor moves a plunger on a vertical axis. The disdrometer transforms the plunger motion into electrical impulses whose strength is proportional to drop diameter. The rain gauge is the conventional tipping bucket type. Each tip collects an amount equivalent to 0.01 in. of water, and each tip is counted by a data acquisition system anchored by a Campbell CR1000 data logger.

  5. TIPS: 25 years later.

    PubMed

    Rössle, Martin

    2013-11-01

    In the 25 years since the first TIPS intervention has been performed, technical standards, indications, and contraindications have been set up. The previous considerable problem of shunt failure by thrombosis or intimal proliferation in the stent or in the draining hepatic vein has been reduced considerably by the availability of polytetrafluoroethylene (PTFE)-covered stents resulting in reduced rebleeding and improved survival. Unfortunately, most clinical studies have been performed prior to the release of the covered stent and, therefore, do not represent the present state of the art. In spite of this, TIPS has gained increasing acceptance in the treatment of the various complications of portal hypertension and vascular diseases of the liver. PMID:23811307

  6. Propeller tip vortex interactions

    NASA Technical Reports Server (NTRS)

    Johnston, Robert T.; Sullivan, John P.

    1990-01-01

    Propeller wakes interacting with aircraft aerodynamic surfaces are a source of noise and vibration. For this reason, flow visualization work on the motion of the helical tip vortex over a wing and through the second stage of a counterrotation propeller (CRP) has been pursued. Initially, work was done on the motion of a propeller helix as it passes over the center of a 9.0 aspect ratio wing. The propeller tip vortex experiences significant spanwise displacements when passing across a lifting wing. A stationary propeller blade or stator was installed behind the rotating propeller to model the blade vortex interaction in a CRP. The resulting vortex interaction was found to depend on the relative vortex strengths and vortex sign.

  7. Writing tips for authors.

    PubMed

    Servodidio, C A

    1998-03-01

    Writing an article for publication may seem intimidating to you at first, but believe it or not, it can be exciting and fun. When you initially accept a writing assignment, research a clinical "gut feeling," or describe a nursing scenario, it may seem like a gargantuan task, but when you break it into small segments or steps you may be surprised how quickly you will complete your project. This article will offer some helpful hints or tips to get you started. Many of the tips will apply specifically for submission of an article to insight; absorb all clues that might be helpful and disregard anything that won't help you. Remember, you can get your article published, and the insight editorial board and peer reviewers only want to facilitate your success! PMID:9866524

  8. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  9. Superconductivity in the ferromagnetic semiconductor samarium nitride

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; Granville, S.; Engel, A.; Chong, S. V.; Governale, M.; Zülicke, U.; Moghaddam, A. G.; Trodahl, H. J.; Natali, F.; Vézian, S.; Ruck, B. J.

    2016-07-01

    Conventional wisdom expects that making semiconductors ferromagnetic requires doping with magnetic ions and that superconductivity cannot coexist with magnetism. However, recent concerted efforts exploring new classes of materials have established that intrinsic ferromagnetic semiconductors exist and that certain types of strongly correlated metals can be ferromagnetic and superconducting at the same time. Here we show that the trifecta of semiconducting behavior, ferromagnetism, and superconductivity can be achieved in a single material. Samarium nitride (SmN) is a well-characterized intrinsic ferromagnetic semiconductor, hosting strongly spin-ordered 4 f electrons below a Curie temperature of 27 K. We have now observed that it also hosts a superconducting phase below 4 K when doped to electron concentrations above 1021cm-3 . The large exchange splitting of the conduction band in SmN favors equal-spin triplet pairing with p -wave symmetry. Significantly, superconductivity is enhanced in superlattices of gadolinium nitride (GdN) and SmN. An analysis of the robustness of such a superconducting phase against disorder leads to the conclusion that the 4 f bands are crucial for superconductivity, making SmN a heavy-fermion-type superconductor.

  10. Future development of large superconducting generators

    SciTech Connect

    Singh, S.K.; Mole, C.J.

    1989-03-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field.

  11. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  12. Tipping point leadership.

    PubMed

    Kim, W Chan; Mauborgne, Renée

    2003-04-01

    When William Bratton was appointed police commissioner of New York City in 1994, turf wars over jurisdiction and funding were rife and crime was out of control. Yet in less than two years, and without an increase in his budget, Bratton turned New York into the safest large city in the nation. And the NYPD was only the latest of five law-enforcement agencies Bratton had turned around. In each case, he succeeded in record time despite limited resources, a demotivated staff, opposition from powerful vested interests, and an organization wedded to the status quo. Bratton's turnarounds demonstrate what the authors call tipping point leadership. The theory of tipping points hinges on the insight that in any organization, fundamental changes can occur quickly when the beliefs and energies of a critical mass of people create an epidemic movement toward an idea. Bratton begins by overcoming the cognitive hurdles that block organizations from recognizing the need for change. He does this by putting managers face-to-face with operational problems. Next, he manages around limitations on funds, staff, or equipment by concentrating resources on the areas that are most in need of change and that have the biggest payoffs. He meanwhile solves the motivation problem by singling out key influencers--people with disproportionate power due to their connections or persuasive abilities. Finally, he closes off resistance from powerful opponents. Not every CEO has the personality to be a Bill Bratton, but his successes are due to much more than his personality. He relies on a remarkably consistent method that any manager looking to turn around an organization can use to overcome the forces of inertia and reach the tipping point. PMID:12687920

  13. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  14. Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Maines, Brant H.; Arndt, Roger E. A.

    2000-11-01

    Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research

  15. Gardening Health and Safety Tips

    MedlinePlus

    ... Health History Parent Information Vaccines & Immunizations Healthy Living Gardening Health and Safety Tips Recommend on Facebook Tweet Share Compartir Gardening can be a great way to enjoy the ...

  16. Gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  17. Superconductivity in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Maiti, Saurabh

    Iron based superconductors(FeSC) are a new class of high temperature superconductors with very intriguing properties. These materials cannot be explained using the 'conventional' logic of the 'conventional' superconductors, and is also different from the Cuprates-the other popular class of high temperature superconductors. A complete description of the superconducting state in these materials requires a thorough understanding of its superconducting order parameter and the mechanism that leads to superconductivity-both of which are unsettled issues. In this thesis, we attempt to tackle some aspects of these issues. We first discuss, keeping the wisdom of Fermi-liquid theory in mind, the criteria for the superconducting instability in FeSC which is a lattice based system. Superconductivity in lattice based systems is different from well known BCS superconductivity. We make the point that the presence of electron and hole like carriers are crucial for the manifestations of such properties in the FeSCs. We then present a prescription to analyze the symmetries and structure of the superconducting order parameter (the gap) in generic lattice based systems where only the interaction amongst fermions close to the Fermi surface is important. We demonstrate the effectiveness of this prescription by applying it to the case of FeSCs where we study the evolution of the gap with injecting of carriers (of both hole and electron like). This prescription avoids use of heavy numerical studies and still gives results in excellent agreement with numerical and experimental studies. Elaborating more on the intriguing nature of FeSCs, we also point to the possibility of a new time reversal symmetry breaking s+is state that is unique to systems like these (due to presence of multiple Fermi pockets of the carriers) and discuss its experimental consequences.

  18. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  19. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  20. Mechanical Control of Individual Superconducting Vortices.

    PubMed

    Kremen, Anna; Wissberg, Shai; Haham, Noam; Persky, Eylon; Frenkel, Yiftach; Kalisky, Beena

    2016-03-01

    Manipulating individual vortices in a deterministic way is challenging; ideally, manipulation should be effective, local, and tunable in strength and location. Here, we show that vortices respond to local mechanical stress applied in the vicinity of the vortex. We utilized this interaction to move individual vortices in thin superconducting films via local mechanical contact without magnetic field or current. We used a scanning superconducting quantum interference device to image vortices and to apply local vertical stress with the tip of our sensor. Vortices were attracted to the contact point, relocated, and were stable at their new location. We show that vortices move only after contact and that more effective manipulation is achieved with stronger force and longer contact time. Mechanical manipulation of vortices provides a local view of the interaction between strain and nanomagnetic objects as well as controllable, effective, and reproducible manipulation technique. PMID:26836018

  1. Mechanical Control of Individual Superconducting Vortices

    PubMed Central

    2016-01-01

    Manipulating individual vortices in a deterministic way is challenging; ideally, manipulation should be effective, local, and tunable in strength and location. Here, we show that vortices respond to local mechanical stress applied in the vicinity of the vortex. We utilized this interaction to move individual vortices in thin superconducting films via local mechanical contact without magnetic field or current. We used a scanning superconducting quantum interference device to image vortices and to apply local vertical stress with the tip of our sensor. Vortices were attracted to the contact point, relocated, and were stable at their new location. We show that vortices move only after contact and that more effective manipulation is achieved with stronger force and longer contact time. Mechanical manipulation of vortices provides a local view of the interaction between strain and nanomagnetic objects as well as controllable, effective, and reproducible manipulation technique. PMID:26836018

  2. A nanoemitter based on a superconducting material

    NASA Astrophysics Data System (ADS)

    Hou, Jin-Long; Chang, Wei-Tse; Shih, Chih-Chiang; Yu, Yu-Fong; Fu, Tsu-Yi; Hwang, Ing-Shouh

    2016-06-01

    The coherence of an electron beam is crucial for the performance of electron microscopy, coherent diffractive imaging, holography, and many other advanced instrumentation methods that rely on the phase coherence of electron waves. Here we present a reliable method for preparing a niobium nanoemitter, which is thermally and chemically stable. The tip apex is a (100) facet with a lateral dimension of ˜1 nm, surrounded by four (310) facets. Adsorption of one monolayer of noble gas, particularly Xe, onto the nanoemitter greatly enhances the emission current and current stability. This electron source will probably possess both spatial and temporal coherence if the emitter is cooled below the superconducting temperature.

  3. Ten tips to help learning.

    PubMed

    Dickerson, Pamela S

    2003-01-01

    Facilitating learning for nurses in the healthcare environment is challenging. These 10 tips are designed to help staff development educators explore ways to enhance learning. The emphasis is on active involvement of the learner, with the educator as facilitator rather than "teacher." Tips are evidence-based, specific, and to the point, with suggestions for implementation. PMID:14581833

  4. The Macro - TIPS Course Package.

    ERIC Educational Resources Information Center

    Heriot-Watt Univ., Edinburgh (Scotland). Esmee Fairbairn Economics Research Centre.

    The TIPS (Teaching Information Processing System) Course Package was designed to be used with the Macro-Games Course Package (SO 011 930) in order to train college students to apply the tools of economic analysis to current problems. TIPS is used to provide feedback and individualized assignments to students, as well as information about the…

  5. Brilliant Writing Tips for Students

    ERIC Educational Resources Information Center

    Copus, Julia

    2010-01-01

    With tips on punctuation, style, grammar and essay structure, this handy guide provides succinct and practical guidance on students most common areas of concern in their written work. Each tip is supplemented by authentic examples of student writing, suggested re-writes, and appropriate self-help exercises. This book contains four parts. Part I:…

  6. Superconducting materials

    SciTech Connect

    Ruvalds, J.

    1992-01-01

    Our research on high temperatures superconductors has produced novel insights for the normal state properties of copper oxides that have been discovered in the last few years. Advances in materials preparation have produced singly crystal samples, and sophisticated surface cleavage techniques have unveiled truly metallic behavior in many respects. Thus, the recent confirmation of a Fermi surface in several cuprate superconductors by photoemission spectroscopy has aroused interest in experimental features which heretofore were in apparent contrast to the expectations for a conventional Fermi Liquid. Our group has discovered that nested'' nearly parallel sections of the electron orbits yields an anomalous response which influences the electrical resistivity, optical reflectance, Raman spectrum, and neutron scattering cross section. Our analysis has provided an explanation for seemingly disparate experimental features of high temperature superconductors using consistent values for the electron-electron coupling and the plasma frequency. Our results include the following properties of high temperature superconductors: Nested Fermi Liquid Response in High Temperature Superconductors, Optical Reflectivity and Electron Energy Loss Data, Raman Spectra, Neutron Scattering Cross Section and Scaling, and Prospects for New Superconductors.

  7. Tip-enhanced Raman spectroscopy: tip-related issues.

    PubMed

    Huang, Teng-Xiang; Huang, Sheng-Chao; Li, Mao-Hua; Zeng, Zhi-Cong; Wang, Xiang; Ren, Bin

    2015-11-01

    After over 15 years of development, tip-enhanced Raman spectroscopy (TERS) is now facing a very important stage in its history. TERS offers high detection sensitivity down to single molecules and a high spatial resolution down to sub-nanometers, which make it an unprecedented nanoscale analytical technique offering molecular fingerprint information. The tip is the core element in TERS, as it is the only source through which to support the enhancement effect and provide the high spatial resolution. However, TERS suffers and will continue to suffer from the limited availability of TERS tips with a high enhancement, good stability, and high reproducibility. This review focuses on the tip-related issues in TERS. We first discuss the parameters that influence the enhancement and spatial resolution of TERS and the possibility to optimize the performance of a TERS system via an in-depth understanding of the enhancement mechanism. We then analyze the methods that have been developed for producing TERS tips, including vacuum-based deposition, electrochemical etching, electrodeposition, electroless deposition, and microfabrication, with discussion on the advantages and weaknesses of some important methods. We also tackle the issue of lifetime and protection protocols of TERS tips which are very important for the stability of a tip. Last, some fundamental problems and challenges are proposed, which should be addressed before this promising nanoscale characterization tool can exert its full potential. Graphical Abstract ᅟ. PMID:26314483

  8. Superconducting quadrupoles

    SciTech Connect

    McInturff, A.D.

    1985-07-01

    The data base for this paper will represent the work from two different groups and two different Laboratories (Brookhaven National Laboratory and Fermi National Accelerator Laboratory). The majority of the data was that obtained by the Fermi National Accelerator Group and is the most recent, and is based on a larger number of coil windings. The coil winding sizes that will be discussed are 12 cm, (Figure 1) 7.6 cm and 5 cm, (Figure 2) for the inner diameter. The maximum gradients measured in the 5 cm sizes were 1.93 T/cm at 3.5 K and 1.79 T/cm at 4.2 K. In the 7.6 cm size were 1.35 T/cm at 2.0 K and 1.1 T/cm at 4.2 K and in the 12.0 cm size was 1.35 T/cm at 4.2 K. The 12 cm size used a cold iron shield, but had an older conductor, so one effect (increase due to Fe) offset the other (lower J/sub c/ (H) of the earlier superconductor). These gradients (especially the 12 cm measurements) can be improved using more modern conductors, (i.e., approx.20% + g/(cm A) and their higher current densities. These gradients represent an increase of 2 to 3+ times the value obtainable using conventional iron and copper magnets at a comparable aperature. The original purposes for these coils were for the 12 cm size, the Isabelle lattice, the 7.6 cm size, the Tevatron lattice and low ..beta.. insertion focus, and the 5 cm size, the final focus of SLC at SLAC and SSC size coils.

  9. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    PubMed

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics. PMID:24420248

  10. The Evolution of Transjugular Intrahepatic Portosystemic Shunt: Tips.

    PubMed

    Fanelli, Fabrizio

    2014-01-01

    Since Richter's description in the literature in 1989 of the first procedure on human patients, transjugular intrahepatic portosystemic shunt (TIPS) has been worldwide considered as a noninvasive technique to manage portal hypertension complications. TIPS succeeds in lowering the hepatic sinusoidal pressure and in increasing the circulatory flow, thus reducing sodium retention, ascites recurrence, and variceal bleeding. Required several revisions of the shunt TIPS can be performed in case of different conditions such as hepatorenal syndrome, hepatichydrothorax, portal vein thrombosis, and Budd-Chiari syndrome. Most of the previous studies on TIPS procedure were based on the use of bare stents and most patients chose TIPS 2-3 years after traditional treatment, thus making TIPS appear to be not superior to endoscopy in survival rates. Bare stents were associated with higher incidence of shunt failure and consequently patients required several revisions during the follow-up. With the introduction of a dedicated e-PTFE covered stent-graft, these problems were completely solved, No more reinterventions are required with a tremendous improvement of patient's quality of life. One of the main drawbacks of the use of e-PTFE covered stent-graft is higher incidence of hepatic encephalopathy. In those cases refractory to the conventional medical therapy, a shunt reduction must be performed. PMID:27335841

  11. The Evolution of Transjugular Intrahepatic Portosystemic Shunt: Tips

    PubMed Central

    Fanelli, Fabrizio

    2014-01-01

    Since Richter's description in the literature in 1989 of the first procedure on human patients, transjugular intrahepatic portosystemic shunt (TIPS) has been worldwide considered as a noninvasive technique to manage portal hypertension complications. TIPS succeeds in lowering the hepatic sinusoidal pressure and in increasing the circulatory flow, thus reducing sodium retention, ascites recurrence, and variceal bleeding. Required several revisions of the shunt TIPS can be performed in case of different conditions such as hepatorenal syndrome, hepatichydrothorax, portal vein thrombosis, and Budd-Chiari syndrome. Most of the previous studies on TIPS procedure were based on the use of bare stents and most patients chose TIPS 2-3 years after traditional treatment, thus making TIPS appear to be not superior to endoscopy in survival rates. Bare stents were associated with higher incidence of shunt failure and consequently patients required several revisions during the follow-up. With the introduction of a dedicated e-PTFE covered stent-graft, these problems were completely solved, No more reinterventions are required with a tremendous improvement of patient's quality of life. One of the main drawbacks of the use of e-PTFE covered stent-graft is higher incidence of hepatic encephalopathy. In those cases refractory to the conventional medical therapy, a shunt reduction must be performed. PMID:27335841

  12. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  13. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  14. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  15. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  16. Microwave mode structure of superconducting metamaterial resonators

    NASA Astrophysics Data System (ADS)

    Wang, Haozhi; Rouxinol, Francisco; Lahaye, Matthew; Plourde, Britton

    2015-03-01

    Arrays of lumped circuit elements can be used to form metamaterial resonant structures that exhibit novel behavior compared to resonators made from conventional distributed transmission lines. By engineering the parameters and configurations of the lumped elements composing the unit cell of such a metamaterial resonator, one can generate spectra with wide stop-bands as well as pass-bands with dense microwave modes. If the metamaterials are fabricated from superconducting traces, the losses can be low enough to allow for these dense modes to be resolved and potentially coupled to quantum systems, such as superconducting qubits. We will present our low-temperature measurements of a variety of superconducting metamaterial resonators and we will compare these with numerical simulations of the microwave properties.

  17. Phonon limited superconducting correlations in metallic nanograins

    NASA Astrophysics Data System (ADS)

    Croitoru, M. D.; Shanenko, A. A.; Vagov, A.; Milošević, M. V.; Axt, V. M.; Peeters, F. M.

    2015-11-01

    Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement.

  18. Phonon limited superconducting correlations in metallic nanograins

    PubMed Central

    Croitoru, M. D.; Shanenko, A. A.; Vagov, A.; Milošević, M. V.; Axt, V. M.; Peeters, F. M.

    2015-01-01

    Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement. PMID:26565073

  19. At the Tipping Point

    SciTech Connect

    Wiley, H. S.

    2011-02-28

    There comes a time in every field of science when things suddenly change. While it might not be immediately apparent that things are different, a tipping point has occurred. Biology is now at such a point. The reason is the introduction of high-throughput genomics-based technologies. I am not talking about the consequences of the sequencing of the human genome (and every other genome within reach). The change is due to new technologies that generate an enormous amount of data about the molecular composition of cells. These include proteomics, transcriptional profiling by sequencing, and the ability to globally measure microRNAs and post-translational modifications of proteins. These mountains of digital data can be mapped to a common frame of reference: the organism’s genome. With the new high-throughput technologies, we can generate tens of thousands of data points from each sample. Data are now measured in terabytes and the time necessary to analyze data can now require years. Obviously, we can’t wait to interpret the data fully before the next experiment. In fact, we might never be able to even look at all of it, much less understand it. This volume of data requires sophisticated computational and statistical methods for its analysis and is forcing biologists to approach data interpretation as a collaborative venture.

  20. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  1. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  2. A superconducting-nanowire three-terminal electrothermal device.

    PubMed

    McCaughan, Adam N; Berggren, Karl K

    2014-10-01

    Superconducting electronics based on Josephson junctions are used to sense and process electronic signals with minimal loss; however, they are ultrasensitive to magnetic fields, limited in their amplification capabilities, and difficult to manufacture. We have developed a 3-terminal, nanowire-based superconducting electrothermal device which has no Josephson junctions. This device, which we call the nanocryotron, can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nanocryotron has a demonstrated gain of >20, can drive impedances of 100 kΩ, and operates in typical ambient magnetic fields. We have additionally applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nanocryotron has immediate applications in classical and quantum communications, photon sensing, and astronomy, and its input characteristics are suitable for integration with existing superconducting technologies. PMID:25233488

  3. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  4. LTS Gradiometers Based-On Superconducting Imaging Surface Design

    SciTech Connect

    Matlachov, A.N.; Kraus, R.H., Jr.; Espy, M.A.

    1999-06-21

    Gradiometer-like devices can be built using a superconducting imaging surface design. Such devices behave similarly to conventional wire-wound gradiometers for nearby magnetic sources. A large gradiometer array can be built by placing SQUID magnetometers close to the surface of a large superconducting plane. The most attractive advantage of such a gradiometer array is the ability to change a baseline for all channels simultaneously by mechanically moving the superconducting imaging surface relative to the sensor array. This can easily be accomplished even when the gradiometer array is cold. We built, experimentally tested, and simulated both first- and second-order gradiometer-like devices with adjustable baseline using the superconducting imaging surface design. First-order radial gradiometer sensors were made by placing planar magnetometers parallel to and near the superconducting imaging surface. A second-order electronic gradiometer was realized by subtracting the output from two of the first-order gradiometers described above.

  5. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer.

    PubMed

    Wang, Andrew; Butte, Manish J

    2014-08-01

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished. PMID:25161320

  6. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    PubMed Central

    Wang, Andrew; Butte, Manish J.

    2014-01-01

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished. PMID:25161320

  7. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    SciTech Connect

    Wang, Andrew; Butte, Manish J.

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  8. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  9. A high gradient superconducting quadrupole for a low charge state ion linac

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-07-01

    A superconducting quadrupole magnet has been designed for use as the focusing element in a low charge state linac proposed at Argonne. The expected field gradient is 350 T/m at an operating current of 53 A, and the bore diameter is 3 cm. The use of rare earth material holmium for pole tips provides about 10% more gradient then iron pole tips. The design and the status of construction of a prototype singlet magnet is described.

  10. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  11. The Case for Using Blunt-Tipped Lightning Rods as Strike Receptors.

    NASA Astrophysics Data System (ADS)

    Moore, C. B.; Aulich, G. D.; Rison, William

    2003-07-01

    Conventional lightning rods used in the United States have sharp tips, a practice derived from Benjamin Franklin's discovery of a means to obtain protection from lightning. However, the virtue of sharp tips for strike reception has never been established. An examination of the relevant physics shows that very strong electric fields are required above the tips of rods in order that they function as strike receptors but that the gradients of the field strength over sharp-tipped rods are so great that, at distances of a few millimeters, the local fields are often too weak for the development of upward-going streamers. In field tests, rods with rounded tips have been found to be better strike receptors than were nearby sharp-tipped rods.

  12. Effect of inflow cannula tip design on potential parameters of blood compatibility and thrombosis.

    PubMed

    Wong, Kai Chun; Büsen, Martin; Benzinger, Carrie; Gäng, René; Bezema, Mirko; Greatrex, Nicholas; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2014-09-01

    During ventricular assist device support, a cannula acts as a bridge between the native cardiovascular system and a foreign mechanical device. Cannula tip design strongly affects the function of the cannula and its potential for blood trauma. In this study, the flow fields of five different tip geometries within the ventricle were evaluated using stereo particle image velocimetry. Inflow cannulae with conventional tip geometries (blunt, blunt with four side ports, beveled with three side ports, and cage) and a custom-designed crown tip were interposed between a mixed-flow rotary blood pump and a compressible, translucent silicone left ventricle. The contractile function of the failing ventricle and hemodynamics were reproduced in a mock circulation loop. The rotary blood pump was interfaced with the ventricle and aorta and used to fully support the failing ventricle. Among these five tip geometries, high-shear volume ( γ ˙ ≥ 2778 / s , potential parameter of platelet activation) was found to be the greatest in the blunt tip. The cage tip was observed to have the highest low-shear volume and recirculation volume ( γ ˙ ≤ 100 / s and Vz  > 0, respectively; potential parameters of thrombus formation). The crown tip, together with conventional tip geometries with side ports (blunt with four side ports and beveled with three side ports) showed no significant difference in either high-shear volume or low-shear volume. However, recirculation volume was reduced significantly in the crown tip. Despite limited generalizability to clinical situations, these transient-state measurements supported the potential mitigation of complications by changing the design of conventional cannula tip geometries. PMID:25234762

  13. Design Optimization of Superconducting Parallel-bar Cavities

    SciTech Connect

    Delayen, Jean R.; De Silva, Payagalage Suba

    2009-11-01

    The parallel-bar structure is a new superconducting geometry [1] whose features and properties may have significant advantages over conventional superconducting deflecting and crabbing cavities for a number of applications. Jefferson Lab is in need for a 499 MHz, 11 GeV rf separator as part of its 12 GeV upgrade program. We report on design optimization studies performed to-date for this and other applications.

  14. 2D barrier in a superconducting niobium square

    SciTech Connect

    Joya, Miryam R. Barba-ortega, J.; Sardella, Edson

    2014-11-05

    The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.

  15. Unconventional high-Tc superconductivity in fullerides.

    PubMed

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501971

  16. Scanning SQUID-on-tip microscopy of vortex matter

    NASA Astrophysics Data System (ADS)

    Anahory, Yonathan; Embon, Lior; Vasyukov, Denis; Cuppens, Jo; Lachman, Ella; Halbertal, Dorri; Yaakobi, Elad; Uri, Aviram; Myasoedov, Yuri; Rappaport, Michael L.; Huber, Martin E.; Zeldov, Eli; Weizmann Institute of Science Team; University of Colorado at Denver Team

    2014-03-01

    We present a scanning nanoSQUID microscope with record spatial resolution, spin sensitivity, and operating magnetic fields for the study of vortex matter. The key element of the microscope is the SQUID-on-tip (SOT) device, which is fabricated by pulling a quartz tube into a sharp pipette, followed by three steps of thermal evaporation of a thin superconducting film onto the sides and the apex of the pipette. The devices operate at 4.2 K in applied fields of up to 1T and can be made with diameters down to 50 nm. The SQUIDs-on-tip display an extremely low flux noise of Φn = 50 nΦ0/Hz1/2 and corresponding spin sensitivity of better than 1 μB/Hz1/2, which is about two orders of magnitude improvement over any previous SQUID. Using this new tool we have investigated static and dynamic behavior of vortices in superconducting Pb films. By driving ac and dc transport current we can study vortex displacement and the vortex potential landscape with sub-atomic precision. Azrieli and Minerva Foundation, FQRNT(Quebec), ERC (Europe)

  17. 5 Tips for New Moms

    MedlinePlus

    ... medlineplus/news/fullstory_158727.html 5 Tips for New Moms Talk to a doctor before giving babies ... As they celebrate their first Mother's Day, many new moms will admit motherhood is wonderful but daunting ...

  18. Search Tips: MedlinePlus

    MedlinePlus

    ... of this page: https://medlineplus.gov/searchtips.html Search Tips To use the sharing features on this page, please enable JavaScript. How do I search MedlinePlus? The search box appears at the top ...

  19. Sports Injury Prevention Tip Sheet

    MedlinePlus

    ... Finance Human Resources and Administrative Services Information Technology Marketing and Sales Membership Practice Public Affairs Quality Publishing ... Feedback Recent a a a print email share Facebook Twitter 2016 Sports Injury Prevention Tip Sheet 3/ ...

  20. Tip-like anodic alumina

    NASA Astrophysics Data System (ADS)

    Sun, Q. W.; Ding, G. Q.; Li, Y. B.; Zheng, M. J.; Shen, W. Z.

    2007-05-01

    Porous anodic alumina membranes and various nanotips have been demonstrating individually their unique usefulness in current nanotechnology. We present a one-step electrochemical approach to fabricate nanoscale alumina tips (tip-like anodic alumina, TAA) in order to combine the benefits of porous anodic alumina and a nanoscale tip array. The realized TAA has an ordered tip surface with controllable aspect ratio and high sheet density of ~1011 cm-2. The formation of alumina nanotips is due to the heat-driven dissolution of the nanopore surface. We have further shown that the surface nanostructure in TAA leads to the wettability reversal, and preferred nucleation and growth during material deposition. The easy and large-scale fabrication of TAA makes it possible for novel nanodevice applications.

  1. Fatigue-Crack-Tip Locator

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Clendenin, C. Gerald; Wincheski, Buzz; Fulton, James P.; Todhunter, Ronald G.; Simpson, John W.

    1994-01-01

    Fatigue-testing system includes automated subsystem continuously tracking location of fatigue-crack tip in metal or other highly electrically conductive specimen. Fatigue-crack-tip-locating subsystem also searches specimen to find initial fatigue crack and its tip and to trace out hidden fatigue cracks and other flaws inside specimen. Subsystem operates under overall control of personal computer, which also controls load frame applying prescribed cyclic stresses to specimen. Electromagnetic flaw detector based on eddy-current principle scanned over surface of specimen. Flaw detector described in "Electromagnetic Flaw Detector Is Easier To Use" (LAR-15046). System provides automated control and monitoring of fatigue experiments, saving time for researchers and enabling experiments to run unattended 24 hours a day. All information on crack-tip trajectories and rates of growth of cracks recorded automatically, so researchers have access to more information.

  2. Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples.

    PubMed

    Precner, Marián; Fedor, Ján; Šoltýs, Ján; Cambel, Vladimír

    2015-02-01

    Standard magnetic force microscopy (MFM) is considered as a powerful tool used for magnetic field imaging at nanoscale. The method consists of two passes realized by the magnetic tip. Within the first one, the topography pass, the magnetic tip directly touches the magnetic sample. Such contact perturbs the magnetization of the sample explored. To avoid the sample touching the magnetic tip, we present a new approach to magnetic field scanning by segregating the topological and magnetic scans with two different tips located on a cut cantilever. The approach minimizes the disturbance of sample magnetization, which could be a major problem in conventional MFM images of soft magnetic samples. By cutting the cantilever in half using the focused ion beam technique, we create one sensor with two different tips--one tip is magnetized, and the other one is left non-magnetized. The non-magnetized tip is used for topography and the magnetized one for the magnetic field imaging. The method developed we call dual-tip magnetic force microscopy (DT-MFM). We describe in detail the dual-tip fabrication process. In the experiments, we show that the DT-MFM method reduces significantly the perturbations of the magnetic tip as compared to the standard MFM method. The present technique can be used to investigate microscopic magnetic domain structures in a variety of magnetic samples and is relevant in a wide range of applications, e.g., data storage and biomedicine. PMID:25586704

  3. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  4. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  5. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element. PMID:17750320

  6. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  7. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  8. Superconductivity of magnesium diboride

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Canfield, Paul C.

    2015-07-01

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In this article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. In particular, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  9. Superconductivity of magnesium diboride

    DOE PAGESBeta

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  10. Development of superconductive magnets

    NASA Technical Reports Server (NTRS)

    Laurence, J. C.

    1970-01-01

    Survey of superconductive magnets considers - stabilization problems, advances in materials and their uses, and design evolution. Uses of superconducting magnets in particle accelerators and bubble chambers, as well as possible applications in magnetohydrodynamic and thermonuclear power generation and levitation are discussed.

  11. Conceptual study of superconducting urban area power systems

    NASA Astrophysics Data System (ADS)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  12. Superconducting Graphene Nanoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Wang, Joel; Zaffalon, Michele; Jarillo-Herrero, Pablo

    2010-03-01

    Graphene, a single atom-thick sheet of graphite discovered in recent years, has attracted tremendous attention due to its exotic electronic properties. At low energy, its gapless linear band structure results in transport properties described by the Dirac equation, making it an ideal system for the study of exotic quantum phenomena and other new physics. Graphene may also exhibit many novel transport characteristics in the superconducting regime. New phenomena, such as pseudo-diffusive dynamics of ballistic electrons, the relativistic Josephson effect, and specular Andreev reflection are predicted by theoretical models combining relativistic quantum mechanics and superconductivity. We study these phenomena experimentally with superconductor-graphene-superconductor junctions. The supercurrent in graphene is induced by the superconducting contacts through proximity effect. Various superconducting materials are considered for different explorations. Preliminary tests indicate clean electrical contact with graphene and superconducting properties as expected.

  13. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  14. Turbine blade with contoured chamfered squealer tip

    DOEpatents

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axially extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.

  15. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  16. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  17. Superconductivity in doped insulators

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  18. Structures behind superconductivity

    SciTech Connect

    Rotman, D.

    1988-07-01

    The previously reported preparation and structures of superconducting materials are reviewed. The two systems, Y-Ba-Cu-O and La-Cu-O, previously reported with high transition temperatures are discussed in some detail. The new systems introduced in 1987 that were not based on a rare earth but including Bi-Sr-Cu-O are also reviewed. Superconductive materials including thallium rather than bismuth that have been reported but not thoroughly studied are discussed briefly. It is pointed out that many superconducting materials have been prepared, but good documentation of the structures and properties of these materials need much more study.

  19. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  20. Recent developments in superconducting receivers

    SciTech Connect

    Richards, P.L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high {Tc} superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high {Tc} bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  1. Management of thumb tip injuries.

    PubMed

    Germann, Günter; Sauerbier, Michael; Rudolf, Klaus D; Hrabowski, Manuel

    2015-03-01

    The management of thumb tip injuries has undergone great changes in recent years. The traditional armamentarium of flaps has been expanded and replaced by a wide variety of flaps with more versatility and less donor side morbidity. Parallel to the development of new flaps, the conservative treatment of thumb tip injuries with semi-occlusive dressing has gained ground in the treatment of these injuries. Although tedious and time-consuming, and requiring intensive communication with the patient to explain the look and occasionally fetid smell of the wound, this technique yields excellent results with respect to restoring contour and sensibility in pulp injuries. The article gives an update on the current options for treating thumb tip injuries including the most commonly applied flaps. PMID:25708438

  2. Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties

    SciTech Connect

    Groll, Nickolas; Pellin, Michael J.; Zasadzinksi, John F.; Proslier, Thomas

    2015-09-15

    We describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T{sub C}) and density of states over large surface areas with size up to mm{sup 2}. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that can be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. The point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.

  3. Tipping Points in Texas Rivers

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2016-04-01

    Anticipating geomorphic tipping points requires that we learn from the past. Major geomorphic changes in coastal plain rivers of Texas resulting in river metamorphosis or regime shifts were identified, and the major driving factors determined. Nine fluvial tipping points were identified from contemporary observations, historical records, and Quaternary reconstructions. Two of the tipping points (between general aggrading and degrading valley states) are associated with reversals in a fundamental system control (sea-level). One (stable or aggrading vs. degrading channels) is associated with an abrupt change in sediment supply due to dam construction, and two others (changes from meandering to anastomosing channel patterns, and different anastomosis styles) are similarly related to changes in sediment supply and/or transport capacity, but with additional elements of historical contingency. Three tipping points are related to avulsions. One, from a regime dominated to reoccupation of former channels to one dominated by progradation into flood basins, is driven by progressive long term filling of incised valleys. Another, nodal avulsions, are driven by disturbances associated with tectonics or listric faults. The third, avulsions and related valley metamorphosis in unfilled incised valleys, is due to fundamental dynamical instabilities within the fluvial system. This synthesis and analysis suggests that geomorphic tipping points are sometimes associated with general extrinsic or intrinsic (to the fluvial system) environmental change, independent of any disturbances or instabilities. Others are associated with natural (e.g., tectonic) or human (dams) disturbances, and still others with intrinsic geomorphic instabilities. This suggests that future tipping points will be equally diverse with respect to their drivers.

  4. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-01

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  5. Imaging epitaxial graphene on SiC(0001) using STM with functionalized W tips

    NASA Astrophysics Data System (ADS)

    Rhim, S. H.; Qi, Y.; Sun, G. F.; Liu, Y.; Weinert, M.; Li, L.

    2012-02-01

    Epitaxial graphene on SiC(0001) is studied using scanning tunneling microscopy with W tips functionalized by transition-metal (Cr, Fe) coatings, enabling the imaging of states within a few meV of the Fermi level that are not accessible with conventional W tips. First-principles modeling of these tips as pyramidal structures on W(110) indicates that an apex atom is stable for the Cr/W(110) tip but not for the Fe/W(110) or W/W(110) tips. Further calculations of the tunneling current show that the Cr- and Fe-coated tips can get significantly closer to the substrate than a bare W tip at a given current, and that the Cr (Fe) tip states contributing to the tunneling at low bias are spatially more localized than the W tip states. These characteristics lead to increased resolution, making possible the selective imaging of the complex electronic properties of the epitaxial graphene on SiC(0001)1,2.

  6. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization.

    PubMed

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-15

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips. PMID:26926558

  7. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  8. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  9. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  10. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  11. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  12. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  13. Superconductive ceramic oxide combination

    SciTech Connect

    Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.

    1991-03-05

    This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.

  14. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  15. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P.; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C. Stephen; Levy, Jeremy

    2015-05-01

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

  16. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  17. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  18. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  19. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  20. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  1. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  2. Polarization-Controllable Winged Nanocone Tip Antenna

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Mäkitalo, Jouni; Kauranen, Martti

    We propose winged metal nanocone optical antennas for efficient coupling of far-field radiation into the near-field of sharp metal tips. Unlike normal sharp metal tips, the winged nanocones require no oscillating field along the tip axis for the excitation of the tips. We calculate extinction spectra and local-field enhancements for single and winged gold nanocones and show that the field enhancements in the tips of the winged cones are due to a combination of particle plasmon resonances and a lightning-rod effect. We also propose that the winged nanocones could be used for optical far-field background suppression for tip-enhanced microscopy.

  3. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  4. Scanning tip microwave near field microscope

    DOEpatents

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  5. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.

    PubMed

    Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV. PMID:24784617

  6. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    SciTech Connect

    Roychowdhury, Anita; Gubrud, M. A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-04-15

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  7. Attempt to evaluate the tip vane concept with a lifting-line model

    NASA Astrophysics Data System (ADS)

    Devries, O.

    1985-09-01

    A nonlinear vortex model based on a lifting-line approximation (code HELIX) was developed to estimate the aerodynamic performance of the tip vane wind turbine. Application of the code reveals a strong dependence of the performance on the tip-speed ratio lambda. Though a power coefficient Cp-1 can be obtained for lambda between 3 and 4, the power is scarcely in excess of that of a conventional turbine (Cp between 0.40 and 0.45) for lambda between 10 and 11. The costs of rotor, gear box, and tower increase so strongly at low lambda, that the cost effectiveness of a tip vane wind turbine is only slightly better than for a conventional high lambda wind turbine. The perspectives of the tip vane concept are therefore more limited than originally expected.

  8. Blade tip timing (BTT) uncertainties

    NASA Astrophysics Data System (ADS)

    Russhard, Pete

    2016-06-01

    Blade Tip Timing (BTT) is an alternative technique for characterising blade vibration in which non-contact timing probes (e.g. capacitance or optical probes), typically mounted on the engine casing (figure 1), and are used to measure the time at which a blade passes each probe. This time is compared with the time at which the blade would have passed the probe if it had been undergoing no vibration. For a number of years the aerospace industry has been sponsoring research into Blade Tip Timing technologies that have been developed as tools to obtain rotor blade tip deflections. These have been successful in demonstrating the potential of the technology, but rarely produced quantitative data, along with a demonstration of a traceable value for measurement uncertainty. BTT technologies have been developed under a cloak of secrecy by the gas turbine OEM's due to the competitive advantages it offered if it could be shown to work. BTT measurements are sensitive to many variables and there is a need to quantify the measurement uncertainty of the complete technology and to define a set of guidelines as to how BTT should be applied to different vehicles. The data shown in figure 2 was developed from US government sponsored program that bought together four different tip timing system and a gas turbine engine test. Comparisons showed that they were just capable of obtaining measurement within a +/-25% uncertainty band when compared to strain gauges even when using the same input data sets.

  9. Assigning Effective Homework. Classroom Tips

    ERIC Educational Resources Information Center

    American Federation of Teachers (NJ), 2010

    2010-01-01

    Each new school year brings high hopes, great expectations and challenges for both new and seasoned educators. The American Federation of Teachers (AFT) has developed a series called "Classroom Tips" to help educators start the year right and anticipate the year ahead. Over the past 40 years, most research studies on homework have found that…

  10. STRV Cryocooler Tip Motion Suppression

    NASA Technical Reports Server (NTRS)

    Glaser, R.; Ross, R. G., Jr.; Johnson, D. L.

    1994-01-01

    The Space Technology Research Vehicle (STRV-1b) scheduled to fly at the beginning of June 1994, has a cryocooler vibration suppression experiment aboard doing motion suppression of the tip of the coldfinger. STRV-1b is a bread box sized satellite to be launched on the next flight of the Ariane-4.

  11. Useful Tips on Avoiding Plagiarism

    ERIC Educational Resources Information Center

    Hamalainen, Maryellen

    2007-01-01

    Teachers are generally kind and nurturing people. Students who plagiarize their assignments from these kind and nurturing teachers are often given a second chance when caught and encouraged to do their work over, but it would be better to eliminate their need to plagiarize. The first tip for eliminating plagiarism has not so much to do with what…

  12. Library Management Tips that Work

    ERIC Educational Resources Information Center

    Smallwood, Carol, Ed.

    2011-01-01

    There's no shortage of library management books out there--but how many of them actually tackle the little details of day-to-day management, the hard-to-categorize things that slip through the cracks of a larger handbook? "Library Management Tips that Work" does exactly that, addressing dozens of such issues facing library managers, including: (1)…

  13. 99 Tips for Safe Schools.

    ERIC Educational Resources Information Center

    Kaufer, Steve

    This pamphlet highlights 99 tips for maintaining safe schools. Areas of interest include: alarm systems and control of access, vandalism, parent education, transportation, school design, personnel training, and graffiti. The majority of the pointers deal with maintaining and implementing various forms of electronic surveillance and strategies for…

  14. Top 10 Staff Survival Tips.

    ERIC Educational Resources Information Center

    O'Brien, Laurie

    1995-01-01

    Tips for camp staff on how to survive summer camp include not giving campers sugary drinks before bedtime, setting behavior limits with campers, setting an example by following camp rules, getting enough rest, being fair and consistent, controlling anger, being accountable for actions, asking questions, and being flexible. (LP)

  15. Job Search Tips for Women.

    ERIC Educational Resources Information Center

    LeBlanc, Carol

    This booklet contains a self-appraisal inventory and some tips on job hunting which are intended to assist women who have not worked for a while, have never held a job before, or want to change careers. The self-appraisal inventory is designed to help the user pinpoint educational and vocational experiences, skills, and special abilities that will…

  16. Teaching Tips: Improving College Instruction.

    ERIC Educational Resources Information Center

    McGlynn, Angela Provitera

    Designed to help teachers improve instruction, this handbook provides tips gathered from focus groups of teachers and students at New Jersey's Mercer County Community College, as well as from other teaching resources. The first part focuses on the contribution of faculty-student interaction to student success, listing 21 suggestions for building…

  17. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  18. Predicting casualties implied by TIPs

    NASA Astrophysics Data System (ADS)

    Trendafiloski, G.; Wyss, M.; Wyss, B. M.

    2009-12-01

    When an earthquake is predicted, forecast, or expected with a higher than normal probability, losses are implied. We estimated the casualties (fatalities plus injured) that should be expected if earthquakes in TIPs (locations of Temporarily Increased Probability of earthquakes) defined by Kossobokov et al. (2009) should occur. We classified the predictions of losses into the categories red (more than 400 fatalities or more than 1,000 injured), yellow (between 100 and 400 fatalities), green (fewer than 100 fatalities), and gray (undetermined). TIPs in Central Chile, the Philippines, Papua, and Taiwan are in the red class, TIPs in Southern Sumatra, Nicaragua, Vanatu, and Honshu in the yellow class, and TIPs in Tonga, Loyalty Islands, Vanatu, S. Sandwich Islands, Banda Sea, and the Kuriles, are classified as green. TIPs where the losses depend moderately on the assumed point of major energy release were classified as yellow; TIPs such as in the Talaud Islands and in Tonga, where the losses depend very strongly on the location of the epicenter, were classified as gray. The accuracy of loss estimates after earthquakes with known hypocenter and magnitude are affected by uncertainties in transmission and soil properties, the composition of the building stock, the population present, and the method by which the numbers of casualties are calculated. In the case of TIPs, uncertainties in magnitude and location are added, thus we calculate losses for a range of these two parameters. Therefore, our calculations can only be considered order of magnitude estimates. Nevertheless, our predictions can come to within a factor of two of the observed numbers, as in the case of the M7.6 earthquake of October 2005 in Pakistan that resulted in 85,000 fatalities (Wyss, 2005). In subduction zones, the geometrical relationship between the earthquake source capable of a great earthquake and the population is clear because there is only one major fault plane available, thus the epicentral

  19. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition

    SciTech Connect

    Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2011-11-15

    Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

  20. Macroscopic Models of Superconductivity

    NASA Astrophysics Data System (ADS)

    Chapman, S. J.

    Available from UMI in association with The British Library. Requires signed TDF. After giving a description of the basic physical phenomena to be modelled, we begin by formulating a sharp -interface free-boundary model for the destruction of superconductivity by an applied magnetic field, under isothermal and anisothermal conditions, which takes the form of a vectorial Stefan model similar to the classical scalar Stefan model of solid/liquid phase transitions and identical in certain two-dimensional situations. This model is found sometimes to have instabilities similar to those of the classical Stefan model. We then describe the Ginzburg-Landau theory of superconductivity, in which the sharp interface is 'smoothed out' by the introduction of an order parameter, representing the number density of superconducting electrons. By performing a formal asymptotic analysis of this model as various parameters in it tend to zero we find that the leading order solution does indeed satisfy the vectorial Stefan model. However, at the next order we find the emergence of terms analogous to those of 'surface tension' and 'kinetic undercooling' in the scalar Stefan model. Moreover, the 'surface energy' of a normal/superconducting interface is found to take both positive and negative values, defining Type I and Type II superconductors respectively. We discuss the response of superconductors to external influences by considering the nucleation of superconductivity with decreasing magnetic field and with decreasing temperature respectively, and find there to be a pitchfork bifurcation to a superconducting state which is subcritical for Type I superconductors and supercritical for Type II superconductors. We also examine the effects of boundaries on the nucleation field, and describe in more detail the nature of the superconducting solution in Type II superconductors--the so-called 'mixed state'. Finally, we present some open questions concerning both the modelling and analysis of

  1. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  2. 6 Tips: IBS and Complementary Health Practices

    MedlinePlus

    ... R S T U V W X Y Z 6 Tips: IBS and Complementary Health Practices Share: As ... a complementary health practice for IBS, here are 6 tips: Hypnotherapy (hypnosis). This practice involves the power ...

  3. Feasibility study of a superconducting motor for electrical helicopter propulsion

    NASA Astrophysics Data System (ADS)

    Simons, C. A. B. A. E.; Sanabria-Walter, C.; Polinder, H.

    2014-05-01

    During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter propulsion systems could benefit from the increased performance. This paper describes the feasibility study of a superconducting motor to be used for helicopter propulsion as part of a More Electric Aircraft (MEA). For this, the armature, field windings and cryostat are designed, aiming at meeting the difficult specifications. Since superconductors have virtually no electrical resistance when cooled down below a certain critical temperature, they can be used to build high field and low weight coils for electrical machines. Especially the possibility to not use iron can make the superconducting motor lighter with a higher power density compared with conventional Permanent Magnet (PM) motors.

  4. Unconventional Superconductivity in YPtBi and Related Topological Semimetals

    NASA Astrophysics Data System (ADS)

    Meinert, Markus

    2016-04-01

    YPtBi, a topological semimetal with a very low carrier density, was recently found to be superconducting below Tc=0.77 K . In conventional theory, the nearly vanishing density of states around the Fermi level would imply a vanishing electron-phonon coupling and would, therefore, not allow for superconductivity. Based on relativistic density-functional theory calculations of the electron-phonon coupling in YPtBi, it is found that carrier concentrations of more than 1021 cm-3 are required to explain the observed critical temperature with the conventional pairing mechanism, which is several orders of magnitude larger than experimentally observed. It is very likely that an unconventional pairing mechanism is responsible for the superconductivity in YPtBi and related topological semimetals with half-Heusler structure.

  5. Unconventional Superconductivity in YPtBi and Related Topological Semimetals.

    PubMed

    Meinert, Markus

    2016-04-01

    YPtBi, a topological semimetal with a very low carrier density, was recently found to be superconducting below T_{c}=0.77  K. In conventional theory, the nearly vanishing density of states around the Fermi level would imply a vanishing electron-phonon coupling and would, therefore, not allow for superconductivity. Based on relativistic density-functional theory calculations of the electron-phonon coupling in YPtBi, it is found that carrier concentrations of more than 10^{21}  cm^{-3} are required to explain the observed critical temperature with the conventional pairing mechanism, which is several orders of magnitude larger than experimentally observed. It is very likely that an unconventional pairing mechanism is responsible for the superconductivity in YPtBi and related topological semimetals with half-Heusler structure. PMID:27081999

  6. Tip cap for a rotor blade

    NASA Technical Reports Server (NTRS)

    Kofel, W. K.; Tuley, E. N.; Gay, C. H., Jr.; Troeger, R. E.; Sterman, A. P. (Inventor)

    1983-01-01

    A replaceable tip cap for attachment to the end of a rotor blade is described. The tip cap includes a plurality of walls defining a compartment which, if desired, can be divided into a plurality of subcompartments. The tip cap can include inlet and outlet holes in walls thereof to permit fluid communication of a cooling fluid there through. Abrasive material can be attached with the radially outer wall of the tip cap.

  7. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Torti, Richard

    1991-01-01

    The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.

  8. High pressure superconducting radial magnetic bearing

    NASA Technical Reports Server (NTRS)

    Eyssa, Y. M.; Huang, X.

    1990-01-01

    In a conventional radial magnetic bearing, the rotor (soft magnetic material) can only have attraction force from one of the electromagnets in the stator. The stator electromagnets consist of small copper windings with a soft magnetic material iron yoke. The maximum pressure obtainable is about 200 N/sq cm. It is shown that replacing the stator copper winding by a superconducting winding in the above configuration can increase the pressure to about 1000 N/sq cm. It is also shown that replacing the iron in the rotor by a group of superconducting windings in persistent mode and using a group of saddle coils in the stator can produce a pressure in excess of 2000 N/sq cm.

  9. Electron Pairing Without Superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy; Cheng, G.; Tomczyk, M.; Lu, S.; Veazey, J. P.; Huang, M.; Irvin, P.; Ryu, S.; Lee, H.; Eom, C.-B.; Hellberg, C. S.

    2015-03-01

    Strontium titanate (SrTiO3) exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. We describe transport experiments with nanowire-based quantum dots localized at the interface between SrTiO3 and LaAlO3. Electrostatic gating of the quantum dot reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical magnetic field Bp 1-4 Tesla, an order of magnitude larger than the superconducting critical magnetic field. For B Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as T = 900 mK, far above the superconducting transition temperature (Tc 300 mK). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by an attractive-U Hubbard model that describes real-space electron pairing as a precursor to superconductivity. This work was supported by ARO MURI W911NF-08-1-0317 (J.L.), AFOSR MURI FA9550-10-1-0524 (C.-B.E., J.L.) and FA9550-12-1-0342 (C.-B.E.), and grants from the National Science Foundation DMR-1104191 (J.L.), DMR.

  10. Radio-frequency quadrupole vane-tip geometries

    SciTech Connect

    Crandall, K.R.; Mills, R.S.; Wangler, T.P.

    1983-01-01

    Radio-frequency quadrupole (RFQ) linacs are becoming widely accepted in the accelerator community. They have the remarkable capability of simultaneously bunching low-energy ion beams and accelerating them to energies at which conventional accelerators can be used, accomplishing this with high-transmission efficiencies and low-emittance growths. The electric fields, used for radial focusing, bunching, and accelerating, are determined by the geometry of the vane tips. The choice of the best vane-tip geometry depends on considerations such as the peak surface electric field, per cent of higher multipole components, and ease of machining. We review the vane-tip geometry based on the ideal two-term potential function and briefly describe a method for calculating the electric field components in an RFQ cell with arbitrary vane-tip geometry. We describe five basic geometries and use the prototype RFQ design for the Fusion Materials Irradiation Test (FMIT) accelerator as an example to compare the characteristics of the various geometries.